
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-22-2015 12:00 AM

Advanced Compression and Latency Reduction Techniques Over Advanced Compression and Latency Reduction Techniques Over

Data Networks Data Networks

Fuad Shamieh, The University of Western Ontario

Supervisor: Dr. Xianbin Wang, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Fuad Shamieh 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Shamieh, Fuad, "Advanced Compression and Latency Reduction Techniques Over Data Networks" (2015).
Electronic Thesis and Dissertation Repository. 2844.
https://ir.lib.uwo.ca/etd/2844

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=ir.lib.uwo.ca%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2844?utm_source=ir.lib.uwo.ca%2Fetd%2F2844&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ADVANCED COMPRESSION AND LATENCY REDUCTION
TECHNIQUES OVER DATA NETWORKS

(Thesis format: Monograph)

by

Fuad Shamieh

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Engineering Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Fuad Shamieh 2015

Abstract

Applications and services operating over Internet protocol (IP) networks often suffer from

high latency and packet loss rates. These problems are attributed to data congestion resulting

from the lack of network resources available to support the demand. The usage of IP networks

is not only increasing, but very dynamic as well.

In order to alleviate the above-mentioned problems and to maintain a reasonable Quality of

Service (QoS) for the end users, two novel adaptive compression techniques are proposed to

reduce packets’ payload size. The proposed schemes exploit lossless compression algorithms

to perform the compression process on the packets’ payloads and thus decrease the overall net-

work congestion. The first adaptive compression scheme utilizes two key network performance

indicators as design metrics. These metrics include the varying round-trip time (RTT) and the

number of dropped packets. The second compression scheme uses other network information

such as the incoming packet rate, intermediate nodes processing rate, average packet waiting

time within a queue of an intermediate node, and time required to perform the compression

process.

The performances of the proposed algorithms are evaluated through Network Simulator 3

(NS3). The simulation results show an improvement in network conditions, such as the number

of dropped packets, network latency, and throughput.

Keywords: Compression, Congestion, TCP, UDP, Latency

ii

Acknowledgments

First and foremost, I would like thank my supervisor, Dr. Xianbin Wang, for his continuous
support, guidance, patience, and motivation. He encouraged me to pursue a deeper understand-
ing of my areas of interest.

In addition to my supervisor, I would like to thank Dr. Ahmed Refaey, Dr. Auon Akhtar,
and Dr. Hao Li for their continuous guidance and support.

My sincere appreciation and gratitude also goes to Steven Andrews, Kyle Doerr, and Mo-
hamad Khalil for helping me throughout my thesis.

I would like to thank my friends Ali Al-Saady, Alfred Kenny, Antoan Antun, Rakan Duqum,
and Scott Van Heesch for keeping my spirits up.

Last but not least, I would like to thank my parents, Jamal Shamieh and Naila Farraj, and
my sister, Ilein Shamieh, for their endless support and encouragement.

Finally, I would also like to acknowledge the Faculty of Engineering, especially the Depart-
ment of Electrical and Computer Engineering at Western University for the excellent facilities,
libraries, and resources available to graduate students.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents iv

List of Figures vii

List of Tables ix

Abbreviations x

1 Introduction 1
1.1 Defining Networks . 2
1.2 Motivation - Network Congestion . 3
1.3 Proposed Solutions . 4

1.3.1 Adaptive Compression and Decompression Scheme Based on Real-
Time Network Feedback . 5

1.3.2 Adaptive Distributed Compression and Decompression Scheme Utiliz-
ing Intermediate Network Nodes . 5

1.4 Thesis Organization and Contribution . 5

2 Background Study on the Internet Protocol Stack, Network Delays, Compres-
sion Algorithms, and Modes of Compression 8
2.1 Internet Protocol Stack Model Overview . 9
2.2 Internet Protocol Stack Layer Usage . 9
2.3 Application Layer . 11
2.4 Transport Layer . 12

2.4.1 TCP Operation . 12
2.4.2 UDP Operation . 16
2.4.3 TCP and UDP Checksum . 16

2.5 Network Layer . 17
2.6 Data-Link Layer . 19
2.7 Physical Layer . 20
2.8 Network Delays . 20
2.9 Compression Algorithms . 23

2.9.1 Lempel-Ziv Compression Algorithm 24

iv

LZ77 . 24
2.9.2 ZLIB . 27

2.10 Modes of Compression . 30
2.10.1 Stateless Compression . 30
2.10.2 Streaming Compression . 31
2.10.3 Offline Compression . 31
2.10.4 Block Compression . 32

2.11 Minimum Size for Performing Compression 32

3 Literature Review on Compression Based Network Congestion Mitigation So-
lutions 33
3.1 Introduction . 33
3.2 Compressing Packets Adaptively Inside the Network 33
3.3 Adaptive On-the-Fly Compression . 35
3.4 IPzip: A Stream-Aware IP Compression Algorithm 37
3.5 Delayed-Dictionary Compression for Packet Networks 39
3.6 Adaptive Online Data Compression . 40
3.7 IP Payload Compression Protocol - IPComp 41
3.8 Summary . 43

4 An Adaptive Compression Technique Based on Real-Time Network Feedback 45
4.1 Introduction . 45
4.2 Compressed and Non-compressed Packet Identification 47
4.3 Flow of Operations . 48

4.3.1 Passive Mode . 48
4.3.2 Intermediate Mode . 51
4.3.3 Active Mode . 53

4.4 Implementation . 55
4.4.1 Software Implementation . 55
4.4.2 Hardware Implementation . 57
4.4.3 End-hosts Mutual Agreement and Mode Selection 57
4.4.4 Compression Scheme Selection . 61

4.5 Simulation Model . 62
4.5.1 Performance Metrics and Results . 63
4.5.2 Analysis . 68

4.6 Summary . 72

5 Adaptive Distributed Compression and Decompression Scheme Utilizing Inter-
mediate Network Nodes 74
5.1 Introduction . 74
5.2 Queueing Model for the Network . 76
5.3 Packet Generation Rate . 77
5.4 Compressed and Non-compressed Packet Identification 80
5.5 Implementation . 80

5.5.1 Generic/Traditional Routers . 81

v

Software and Hardware Planes . 81
Input Ports . 81
Switching Fabric . 83
Output Ports . 83
Routing Processor . 84

5.5.2 Hardware Implementation . 85
5.5.3 Anatomy of An Advanced Intermediate Node/Advanced L3 Router . . 85

Software and Hardware Planes . 85
Input Ports . 87
Switching Fabric . 88
Output Ports . 88
Routing Processor . 89

5.5.4 Heuristic Algorithm . 90
5.6 Simulation Model . 92
5.7 Performance Metrics and Results . 93
5.8 Analysis . 97
5.9 Summary . 100

6 Conclusion 101
6.1 Conclusion . 101
6.2 Future Work . 106

6.2.1 First Set of Additions . 106
6.2.2 Second Set of Additions . 107
6.2.3 Simulation and Implementation . 107

Bibliography 109

Curriculum Vitae 112

vi

List of Figures

1.1 A Simple Circuit-Switched Network with Four Links and Four Routers 2
1.2 A Simple Packet-Switched Network Suffering from Congestion 4

2.1 Vertical Representation on the Usage of the Internet Protocol Stack 10
2.2 The Internet Protocol Stack Layers Reference Model 10
2.3 Application Layer Message Formulation by Header Encapsulation of Data . . . 12
2.4 TCP Three-Way Handshake Process . 13
2.5 TCP Header Structure . 14
2.6 Transport Layer Segment Formulation by Header Encapsulation of Upper Layer’s

Data . 16
2.7 UDP Layer Header Structure . 16
2.8 Network Layer Datagram Formulation by Header Encapsulation of Upper Lay-

ers’ Data . 17
2.9 IPv4 - Network Layer Header Structure . 18
2.10 Data-Link Layer Frame Formulation by Header and Trailer Encapsulation of

Upper Layers’ Data . 19
2.11 Data-Link Layer Frame Structure . 19
2.12 Physical Layer Encoding and Transmitting Data in the Form of Bits 20
2.13 LZ77 Sample of a Window and Lookahead Buffer Separated by a Coding Po-

sition Indicator . 25
2.14 Simple Prefix Coding of Four Symbols . 28

3.1 Parking Lot Topology . 35
3.2 DDC Combined with LZ77 with a Delay of δ Units 40
3.3 IPComp Header Structure . 42

4.1 Network where the Compression and Decompression of Payloads Occurs Within
the End-hosts. 46

4.2 Decision Tree to Identify a Packet’s Compression Status 47
4.3 Passive Mode’s Logic and Method of Operation Flow Chart. 49
4.4 Intermediate Mode’s Logic and Method of Operation Flow Chart. 52
4.5 Active Mode’s Logic and Method of Operation Flow Chart. 54
4.6 The Location where the Implemented Scheme will Intercept Communications

to Perform the Compression or Decompression Process 55
4.7 A) Is the Packet Structure of a Regular Packet In a System Without Any Com-

pression Scheme. B) Is the Packet Structure After Performing the Compression
Operation. 56

vii

4.8 Three-way Handshake Process Between End-hosts to Agree Whether to Use
Any of the Proposed Compression Schemes 58

4.9 ACK Packet Structure . 58
4.10 Routine Followed By End-hosts While Using the Compression Enabled Protocol 60
4.11 Passive Mode Simulation Results . 66
4.12 Intermediate Mode Simulation Results . 67
4.13 Active Mode Simulation Results . 67

5.1 Sample Network where the Compression and Decompression Processes Occur
Within the Intermediate Nodes of the Network. 75

5.2 Parking Lot Topology With Intermediate Nodes Capable of Advanced Data
Processing . 76

5.3 Queue View From the Intermediate Nodes’ Perspective 76
5.4 Average Number of Packets in a Queue of an Intermediate Node as a Function

of ρ . 79
5.5 Identifying if the Payload is Compressed or Otherwise 80
5.6 Abstract View of L3 Router Architecture . 82
5.7 Input Port Stages Experienced by Packets . 83
5.8 Output Port Stages Experienced by Packets 84
5.9 Advanced L3 Router Architecture . 86
5.10 Input Ports With Advanced Functionality and Three Distinct Queues 87
5.11 Output Ports With Advanced Functionality to Perform the Required Compres-

sion and Decompression Processes . 89
5.12 Simplified Algorithm for the Proposed Scheme 91
5.13 Network Topology Used for the Simulation 92
5.14 Simulation Results in the Absence and Presence of the Compression Scheme

Under Different Network Loads . 97

viii

List of Tables

2.1 Sample Latency Values for Different Networks of Various Speeds and Dis-
tances. The Size of Each Packet is 1500 bytes. 23

2.2 LZ77 Example - Sample Input String . 26
2.3 Encoding Process of the Input String Resulting in An Output of Tokens Indi-

cating Matches Within the Original String . 26
2.4 Decoding Process where the Output of the Encoder is Treated as an Input . . . 27
2.5 An Example of Rearranging the Codes of Symbols 29

3.1 CPI Values and Their Representation . 43

4.1 Sample EtherType Values . 48
4.2 Internal Network Values for Passive Mode . 64
4.3 Calculated Network Values for Passive Mode 65
4.4 Internal Network Values for Intermediate Node 65
4.5 Calculated Network Values for Intermediate Mode 65
4.6 Internal Network Values for Active Mode . 65
4.7 Calculated Network Values for Active Mode 66

5.1 Packet Generation Rate of Each Source Node as a Function of the Intermediate
Node’s Forwarding Rate . 93

5.2 Simulation Results with the Source Node Generation Rate of λ = 50% in the
Absence of the Compression Scheme . 95

5.3 Simulation Results with the Source Node Generation Rate of λ = 50% in the
Presence of the Compression Scheme . 95

5.4 Simulation Results with the Source Node Generation Rate of λ = 60% in the
Absence of the Compression Scheme . 95

5.5 Simulation Results with the Source Node Generation Rate of λ = 60% in the
Presence of the Compression Scheme . 96

5.6 Simulation Results with the Source Node Generation Rate of λ = 80% in the
Absence of the Compression Scheme . 96

5.7 Simulation Results with the Source Node Generation Rate of λ = 80% in the
Presence of the Compression Scheme . 96

ix

Abbreviations

ACK Acknowledgment
API Application Programming Interface
BLRTT Baseline Round-Trip Time
CPI Coding Position Indicator
CSMA/CD Carrier Sense Multiple Access / Collision Detection
FCS Frame Check Sequence
FPGA Field Programmable Gate Array
HTTP HyperText Transfer Protocol
ICT Information and Communication Infrastructure
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IRTT Instantaneous Round-Trip Time
LZ77 Lempel-Ziv
LZO Lempel-Ziv-Oberhumer
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NBLRTT New Baseline Round-Trip Time
NS3 Network Simulator 3
P-K Pollaczek-Khinchin
P2P Peer-to-Peer
pps Packets Per Second
QoS Quality of Service
RTT Round-Trip Time
SDN Software Defined Networking
TCP Transmission Control Protocol
UDP User Datagram Protocol
VoIP Voice over Internet Protocol
WWW World Wide Web

x

Chapter 1

Introduction

The use of traditional, real-time, and delay sensitive applications and services over in-

formation and communications technology (ICT) infrastructure is becoming more popular.

Emerging real-time applications, such as data retrieval from data centers, are delay sensitive.

It follows that certain network performance metrics must be realized for an acceptable Quality

of Service (QoS). Maintaining these expectations is becoming more difficult because of the

continuous increase in size and frequency of the generated and transmitted data.

The primary challenge to overcome is the instigated end-to-end delay as the behavior and

usage of a given network changes. The rapid growth of the number of clients and their dynamic

behavior within an Internet protocol (IP) network induces largely varying data flows, yielding

high data congestion. In order to improve the usage of real-time applications, end-to-end delays

must be reduced [1][2].

The particular focus of this thesis is the design and validation of different compression

schemes that are adaptive in nature and easily deployed. The compression schemes attempt

to compress the payload of data packets being transmitted over a given network set-up. The

reduction in packet size after successfully applying compression results in an increase in band-

width utilization and a reduction in network congestion, thereby decreasing the number of

dropped packets.

The advantages of the compression schemes are enhanced bandwidth utilization and in-

creased number of active simultaneous network applications while maintaining a smooth com-

1

2 Chapter 1. Introduction

munication session. An adaptive compression scheme is preferable over a constant compres-

sion scheme for two reasons: the slight possibility of having a compression process that may

increase the overall transmission time, and increased number of CPU cycles [3][4].

In the following sections, a brief description of networks and the congestion problem is

given.

1.1 Defining Networks

Traditional communication networks operate over circuit-switched network configuration.

In circuit-switched networks, the route resources between a source-destination pair are reserved

over the transmission medium to guarantee a certain level of performance. The concept of

reserving network resources limits the number of simultaneous active source nodes as well

as the allocated bandwidth per node. Additionally, a certain amount of bandwidth must be

reserved at all times for a node whether it is active or not. To increase the number of nodes that

can transmit data over a network, as well as the bandwidth allocated per node, packet-switched

networks are deployed to replace circuit-switched networks. An example of a circuit-switched

network can be seen in Figure 1.1 1.

Figure 1.1: A Simple Circuit-Switched Network with Four Links and Four Routers

1The defined number of links is for illustrative purposes.

1.2. Motivation - Network Congestion 3

Packet-switched networks do not provide any service guarantees. These types of networks

are designed to allocate route resources for a source-destination pair on demand. Consequently,

packet switched networks are known as best-effort networks.

In such networks, messages generated by a source node are encapsulated into packets where

they experience the full link speed when transmitted. Nevertheless, a packet will experience

different types of delays throughout its journey, including transmission, propagation, queuing,

and processing delay. An example of a packet-switched network can be seen in Figure 1.2.

The Internet is a complex example of a heavily used packet-switched network. The de-

vices connected to this network, such as end-hosts and routers, are physically and logically

connected together, as a result of which information can be exchanged. The exchanged infor-

mation includes data generated by real-time and traditional applications.

To successfully exchange data over packet switched networks, communication protocols

that exchange messages with certain commands and formats are used. Indeed, there is a mul-

titude of different protocols available for use to accomplish various tasks. A few examples of

these protocols include congestion-control, routing data, and electronic mail protocol [5].

Today, societies rely on best-effort networks for different services although they are known

for not providing any guarantees on packet delivery or QoS. Within such networks, it is com-

mon to have dropped packets, packets utilizing different routes between a source-destination

pair, and congestion [9]. Due to the importance of these networks, it is necessary to improve

the condition of a communication session.

In this thesis, the focus will be on network congestion as described in the following section.

1.2 Motivation - Network Congestion

Congestion occurs when the incoming rate of packets exceeds the nodal processing rate.

As a result, packet loss as well as service degradation will occur. The reason behind the packet

loss is the finite memory size of the intermediate nodes of a network. Additionally, the lost

4 Chapter 1. Introduction

packets may require retransmission and consequently the network latency may increase while

the QoS decreases. An example of network congestion can be seen in Figure 1.2.

Figure 1.2: A Simple Packet-Switched Network Suffering from Congestion

Precisely, the buffer of an intermediate node will be able to hold a finite number of packets,

resulting in excess packets being dropped. Additionally, increasing the size of the memory of

an intermediate node will not solve the problem but rather will induce further congestion. The

increase in memory size will allow a larger queue of packets to form. The larger queue will

result in packets being queued for a longer period of time. If the packets are queued for long

enough to time out, a retransmission will be required [8]. Therefore the congestion problem

must be mitigated in a different manner.

The following section contains a brief introduction to the proposed solutions.

1.3 Proposed Solutions

To mitigate the congestion problem, two compression techniques are proposed. Both tech-

niques are designed to be adaptive to network conditions to ensure a higher performance. The

following subsections contain information about the proposed compression schemes.

1.4. Thesis Organization and Contribution 5

1.3.1 Adaptive Compression and Decompression Scheme Based on Real-

Time Network Feedback

An adaptive compression scheme is proposed where the compression and decompression

processes occur within the end-hosts. In this scheme, the end-hosts determine whether to

enable or disable the compression process based on a certain network value known as round-

trip time (RTT). In simple terms, the RTT value is continuously observed and compared to

another value. Once the RTT value exceeds the other value by a certain threshold, the source

end-host will activate the compression scheme and commence the process of encoding data.

1.3.2 Adaptive Distributed Compression and Decompression Scheme Uti-

lizing Intermediate Network Nodes

An adaptive compression scheme is proposed where the compression and decompression

processes take place within the intermediate nodes2 of the network. The intermediate nodes,

routing data from one node to another, are responsible for compressing packets’ payloads ac-

cording to the network condition. The network condition is determined by calculating certain

values, such as the average waiting time of a packet in the queue of an intermediate node,

based on certain queuing theory models. In this compression and decompression scheme, the

source-destination pairs are alleviated from the processes of encoding and decoding data.

1.4 Thesis Organization and Contribution

The main contribution of this thesis is the design and validation of the proposed compres-

sion schemes over networks utilizing the IEEE 802.3 standard for packet transmission in local

and wide area networks. The testing and validation process of the proposed schemes is com-

pleted using a popular open source simulation platform known as Network Simulator 3 (NS3).

2A router is a type of an intermediate node within a network. Any node within the network responsible for
moving packets from one link to the other is an intermediate node.

6 Chapter 1. Introduction

There are many advantages of using NS3, such as allowing the user to rapidly implement and

prototype a network design as well as allowing the user to apply any necessary changes to the

platform.

The following points briefly outline the main contributions contained within:

• A novel compression and decompression scheme is proposed where it operates within the

end-hosts and employs lossless compression algorithms to maintain data integrity. Also,

the proposed scheme contains three different subschemes that are designed for different

network types. Additionally, this scheme utilizes a multi-layer feedback value known as

the RTT to determine when to activate compression.

• A novel distributed compression and decompression scheme is proposed. The proposed

scheme operates by compressing and decompressing packets within the intermediate

nodes of a given network. Using queuing theory models and techniques, the intermediate

nodes within the network are capable of activating the compression and decompression

processes when necessary.

• The proposed schemes reduce network congestion. The reduced network congestion

yields lower end-to-end delays and number of packet drops as well as a smoother com-

munication session.

• The proposed schemes are seamless and transparent to the source-destination pairs as

they are designed to enhance communication sessions.

The remainder of the thesis is organized as follows:

• Chapter 2 provides a brief description of the Internet protocol stack, i.e., necessary pro-

tocols to initiate and complete transmission sessions on IP networks using the IEEE

802.3 standard. Additionally, the different types of delays as well as the compression

algorithms are briefly discussed.

1.4. Thesis Organization and Contribution 7

• Chapter 3 is the literature review of the other compression techniques available. A brief

summary of each existing and relative compression technique is given.

• Chapter 4 describes the design and validation of the RTT based compression technique.

Additionally, the algorithm for each of the subschemes is described and presented. Also,

the results and discussion of the conducted simulations for all of the sub-schemes are

included.

• Chapter 5 describes the design and validation of the distributed compression technique as

well as the queuing theory principles used. The results and discussion of the conducted

simulations under different network loads are included.

• Chapter 6 is the conclusion of the thesis and primarily consisting of the summary of the

accomplished work as well as a discussion of possible future work.

Chapter 2

Background Study on the Internet
Protocol Stack, Network Delays,
Compression Algorithms, and Modes of
Compression

An understanding of the Internet protocol stack and the different types of network delays

is essential to mitigating congestion in data networks. Every packet traversing within a data

network experiences different types of delays as a result of using the Internet protocol stack as

a model to achieve end-to-end communication. Although these delays can be minimized, they

are inevitable.

The types of delays are easily categorized as nodal and transmission delays. The network

delays are used to calculate important values, including the RTT and several buffer sizes of

network devices. It is therefore important to utilize and understand the collected information

from the network delays.

In this chapter, an overview of the Internet protocol stack and the delays experienced by a

packet is given. The lossless compression algorithms used in this thesis are reviewed. Finally,

a brief discussion regarding the concept of the minimum acceptable size of packets is included.

8

2.1. Internet Protocol StackModel Overview 9

2.1 Internet Protocol Stack Model Overview

The Internet protocol stack is a multi-layered network architecture consisting of at least

5 layers, used to provide end-to-end connectivity between source-destination pairs. Each of

the 5 layers performs a set of well-defined services and functions to ensure the connectivity

between end-hosts. These services and functions include data formatting, addressing, routing,

and transmission, among others.

This communication model is hierarchical; the lower layers provide services for the higher

layers. When two end-devices are communicating with each other, the transferred data passes

through all of the layers. Depending on the application performing the transmission and the re-

quired service type, the relevant protocols are used to initiate and complete the communication

session.

For the source, data is generated by an application at the highest layer. The generated data is

passed down to the lower layers, where each layer adds a header. The headers contain sensitive

information, such as addresses, ports, and sequence numbers of the data being transmitted.

The lowest layer, i.e., the physical layer, is responsible for the transmission of the data. At the

destination, the received data moves upwards through the layers in order, where the headers

are removed as the data progresses [10]. An abstract representation of a functioning Internet

protocol stack can be seen in Figure 2.1.

2.2 Internet Protocol Stack Layer Usage

In any given network, communication devices must follow certain protocols to successfully

exchange messages. Different network entities and applications demand different types of pro-

tocols for various reasons, including: QoS provisioning, congestion control, delay sensitivity,

etc. Combining all of the available protocols creates the protocol stack [5].

The Internet protocol stack, starting from top to bottom, consists of at least 5 layers: appli-

cation, transport, network, data-link, and physical. Each layer provides different services and

10 Chapter 2. Background Study

Payload

Payload

Payload

Payload

H4

H4H4H3

H4H3H2 T2

Payload

Payload

Payload

Payload

H4

H4H4H3

H4H3H2 T2

Source Destination

5

4

3

2

1

Layer

Figure 2.1: Vertical Representation on the Usage of the Internet Protocol Stack

protocols for network entities to use. The Internet protocol stack can be seen in Figure 2.2.

Application Layer

Transport Layer

Network Layer

Data-Link Layer

Physical Layer

Figure 2.2: The Internet Protocol Stack Layers Reference Model

When a source sends a message, the message is encapsulated with different headers from

2.3. Application Layer 11

different layers in order for the message to reach its destination. At various points throughout

the network, such as routers and switches, some headers are stripped and new ones are attached

prior to the message reaching its destination. Each header of the different layers contains

information about the message including: application, source address, destination address,

source port number, destination port number, payload size, etc. [5].

The following sections discuss the different layers of the Internet protocol stack in detail,

starting with the uppermost layer.

2.3 Application Layer

Internet applications such as voice-over-Internet-protocol (VoIP), peer-to-peer (P2P) file

sharing, emails, World Wide Web (WWW), and multi-player online gaming are the motivating

force behind the expansion of the Internet. Internet applications are built to run on end-hosts;

the user therefore does not have to write any software for the routers and switches within the

network in order for the application data to reach its destination [11].

One of the main kinds of application architectures is known as client-server architecture.

In this architecture, a fixed, dedicated, and always available server with a static, known IP

address is responsible to service requests from clients. Additionally, clients do not directly

communicate with each other; the server is responsible for transferring data between the clients.

Moreover, such that they can respond to a large number of requests efficiently, servers are

usually housed in large data centers [11].

The client and server exchange requests and messages over the network using sockets.

A socket is the application programming interference (API) between the application layer,

transport layer, and network. A socket allows hosts and processes to exchange messages over

a network by identifying each other using IP addresses and port numbers, respectively [11].

The structure of the exchanged messages between the client-server applications is defined

by an application layer protocol. In some cases, the application layer protocol will add its

12 Chapter 2. Background Study

own header to the generated data. An example of an application layer protocol is HyperText

Transfer Protocol (HTTP), which is widely used by the WWW [11][12].

Application Layer
App Layer
 Header Data

Figure 2.3: Application Layer Message Formulation by Header Encapsulation of Data

2.4 Transport Layer

Underneath the application layer lies the transport layer. The primary purpose of this layer

is to provide logical, efficient, end-to-end communication services between the application

layer processes of different end-hosts [13]. To achieve end-to-end communication, the transport

layer provides two main protocols.

Two distinct protocols with different properties are present in the transport layer and they

are used for transferring segments of data. The first protocol is known as User Datagram

Protocol (UDP) and the second one is Transmission Control Protocol (TCP). It is known that

UDP is unreliable and connectionless whereas TCP is known to be connection oriented and

full duplex. Furthermore, UDP and TCP provide data integrity check by including a pre-

transmission error detection header field known as the checksum [14].

2.4.1 TCP Operation

The services provided by the TCP protocol include flow control, reliable data transfer,

transmission flow multiplexing, retransmission of packets, and security measures. The TCP

protocol pushes and forwards data when necessary while assuring the sending and receiving

parties that the transmitted data is not damaged, lost, duplicated, or delivered out of order.

To provide the aforementioned services, TCP uses a segment sequence numbering system as

well as an acknowledgement (ACK) mechanism where the receiving end ACKs the received

segments [15].

2.4. Transport Layer 13

To initiate a TCP connection, a three-way handshake process takes place, as shown in

Figure 2.4. This is done by the client setting the SYN field in the TCP header to 1 and sending

the SYN segment to the server. Once the server receives the SYN segment, the server allocates

the receiving buffer and replies to the client with a SYNACK segment. Finally, the client

allocates a receiving buffer and sends an ACK segment to the server. A similar process is used

to terminate the connection, however the FIN field is used rather than the SYN field [15]. The

TCP header structure is shown in Figure 2.5.

Client Server

Time Time

SYN = 1

SYN ACK

ACK

Figure 2.4: TCP Three-Way Handshake Process

While using TCP, the receiver organizes segments, ACKs data, and discards duplicates

according to the segments’ sequence numbers. Furthermore, the receiver uses a checksum

mechanism to identify damaged segments. Precisely, the receiver verifies the checksum field

in the TCP header by computing the checksum value [15].

The ACK messages are also used for flow control by informing the sending party of the

receiver’s buffer size. Along with the ACK message, the receiver’s buffer window size is

returned to the sender whilst indicating the next acceptable packet sequence number [15]. This

is the receiver’s method of informing the sender which packet is expected.

The sequence number assigned to segments and their ACKs work together to provide re-

liable data transfer. There are header fields specifically dedicated to sequence numbering and

14 Chapter 2. Background Study

32 bits

8 bits 8 bits 8 bits 8 bits

Source Port Destination Port

Sequence Number

Acknowledgement Number

Header
Length
Field

Unused
Field

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Checksum Urgent Pointer

Options Field

Upper Layer Data

Figure 2.5: TCP Header Structure

ACKing of segments. The sequence numbering field assigns numbers to the first byte in each

transmitted segment. For example, if the data size is 10,000 bytes whereas the maximum seg-

ment size (MSS) is 1000 bytes, the first segment is assigned a sequence number of 0, the second

segment is assigned a sequence number of 1000, and so on. The ACK field is defined by the

receiver and its value is set to be the sequence number of the next expected byte. For example,

if the receiving end-host received all bytes from 0 to 999, the receiver will set the ACK field to

1000 and send it back to the sending end-host. Using ACKs and sequence numbers, the sender

can identify which packet is lost or damaged and perform a retransmission if necessary [16].

When data is transmitted over a network using TCP, the receiver has a buffer window where

the application will read the data from. The application does not necessarily read the data in

the buffer instantaneously. However, to prevent the possibility of overflowing the buffer, TCP

provides a flow-control service where the speed of the application reading the buffer is matched

to the speed of the data being received. This is accomplished by having the sender maintain a

receive window value, which is used to indicate the free buffer space available at the receiving

end-host. The receiving window is defined by equation (2.1).

2.4. Transport Layer 15

rwnd = RcvdBS − [LBRead − LBRcvd], (2.1)

where rwnd is the receive window size, RcvdBS is the allocated receiving buffer size, LBRead

is the number of the last byte read by the application in the buffer, and LBRcvd is the number

of the last byte received by the buffer.

On the other side of the flow, the receiver keeps track of the last byte sent and the last byte

ACKed. By keeping the difference of these two variables less than rwnd, the sender will not

overflow the receiver’s buffer [16]. The relationship of the variables is defined by equation

(2.2):

LBS ent − LBACKed ≤ rwnd. (2.2)

Along with keeping track of the rwnd size, the sender keeps track of another variable that

defines the congestion widow size, also known as cwnd. The cwnd value is defined by the

sender as the perceived network congestion where network congestion refers to the buffers

of the intermediate nodes, such as routers and switches. The value of the cwnd affects the

protocol’s transmission rate, that is whether the sender should increase or decrease the rate

[16]. Equation (2.3) defines the allowed amount of unacknowledged data with respect to the

size of cwnd and rwnd.

LBS ent − LBACKed ≤ min{cwnd, rwnd} (2.3)

In order for the TCP protocol to accomplish the aforementioned services, a header is at-

tached to the upper layer data and the packet will be referred to as a segment, as shown in

Figure 2.6.

16 Chapter 2. Background Study

Transport Layer
TCP

Header
Upper Layer's

Data
Segment

Figure 2.6: Transport Layer Segment Formulation by Header Encapsulation of Upper Layer’s Data

2.4.2 UDP Operation

The UDP protocol is a much simpler protocol when compared to TCP. It is a connectionless

protocol with a very small overhead. It does not provide any congestion control, ACKing

methods, sequence numbering, or retransmissions and it assumes that the IP provided by the

networking layer is used.

32 bits

16 bits 16 bits

Source Port Destination Port

Length Checksum

Upper Layer Data

Figure 2.7: UDP Layer Header Structure

2.4.3 TCP and UDP Checksum

Both TCP and UDP have an error detection mechanism known as verifying the checksum.

The checksum field holds a 16-bit value and is used to detect errors such as any changes to

the header segment as the segment moves from the source to the destination. The value of the

checksum is calculated at the sender by adding all 16-bit words in the UDP or TCP header, such

as the source and destination port numbers, followed by calculating the sum’s 1s complement.

Therefore, the 1s complement will be the value in the checksum field. On the receiving end,

the receiver will verify the checksum by adding all of the 16-bit words in the header as well

as the received checksum value. If there are no errors, the sum at the receiver’s side should be

2.5. Network Layer 17

1111111111111111.

2.5 Network Layer

The application and transport layers rely on the forwarding and routing services of the

network layer to provide communication means between hosts. The forwarding function is

used by routers to direct incoming packets on to the appropriate output path using forwarding

tables. A routing function is used to determine the path taken by packets while traversing

between a source-destination pair [17].

The network layer provides the IP protocol as service for the upper layers. When an upper

layer segment is encapsulated with IP version 4 (IPv4) header, it is known as an IPv4 datagram

[18]. Figure 2.8 shows the network layer encapsulation of data passed from the transport layer.

Network Layer
IP

Header
Uppler Layers'

Data Datagram

Figure 2.8: Network Layer Datagram Formulation by Header Encapsulation of Upper Layers’ Data

The contents of the IPv4 header are shown in Figure 2.9. It can be seen in the IP header

that there are some important fields directly related to the size of the data. These fields are:

total length, datagram fragmentation related fields, and header checksum.

The total length field is a 16-bit field that includes the entire datagram length. The header

length field is specific to the size of the IP header [17]. According to equation (2.4):

TotalLength − HeaderLength = Data, (2.4)

where subtracting the header length field from the total length returns the data size. Since the

total length field is 16 bits, theoretically the maximum datagram size is 65,535 bytes [17].

18 Chapter 2. Background Study

32 Bits

8 Bits 8 bits 8 Bits 8 Bis

Version Header
Length

Type of Service Total Length

Indetifier D
F

M
F

Fragment Offset

Time-To-Live Protocol Header Checksum

Source Address

Destination Adress

Options

Upper Layers' Data

Figure 2.9: IPv4 - Network Layer Header Structure

The fragmentation related fields are: identifier, flag fields, and fragment offset. The data-

gram is fragmented because the data-link layer frames have a maximum transmission unit

(MTU) of 1500 bytes. Therefore, large payloads must be fragmented and identified using

the 16-bit identifier field. The sender increments the value of the field with every transmitted

packet. Furthermore the receiver uses the identifier, flag, and fragment offset fields to reassem-

ble datagrams [18].

There are two 3-bit flag fields available for use. From Figure 2.9, the DF and MF fields

are known as do not f ragment and more f ragments, respectively. If the DF field bits are set

to 0, it indicates that the datagram is not fragmented. If the packet cannot be fragmented, the

intermediate routers will discard it where a reply message is sent to the sender stating that

fragmentation is needed. If the MF field bits are set to 1, it indicates that more fragments are

expected. The receiver expects to receive packet fragments until the MF field bits are set to 0

[18].

Finally, fragment offset is a 13-bit field used to identify where the fragment belongs when

considering the entire datagram. The offset is considered from the header of the original data-

gram in chunks of 8 bytes [18].

2.6. Data-Link Layer 19

2.6 Data-Link Layer

The primary purpose of the data-link layer is to frame datagrams received from the network

layer by adding a header and a trailer. The data-link layer is also used to establish a virtual link

for the network layer of the source end-host to the network layer of the destination end-host.

When a datagram reaches the data-link layer from the network layer, the datagram is framed

by concatenating a header to the beginning of the datagram as well as a trailer to the end of the

datagram, thus forming a frame. The newly formed frame is now transmitted over a physical

medium via the physical layer [19] [20].

Data-Link Layer
MAC/LLC

Header
Upper Layers'

Data FrameFCS

Figure 2.10: Data-Link Layer Frame Formulation by Header and Trailer Encapsulation of Upper Layers’
Data

8 Bytes 6 Bytes 6 Bytes 2 Bytes 46 to 1500 Bytes 4 Bytes

Preamble Dest. Address Src. Address EtherType Data FCS

Figure 2.11: Data-Link Layer Frame Structure

The data field in Figure 2.11 contains the datagram from the layer above where the MTU is

1500 bytes. Therefore, if the data size is greater than 1500 bytes, the data is fragmented. Fur-

thermore if the data is less than 64 bytes, the data is padded with zeros [19]. The encapsulated

data in the data field is checked for errors by a receiver using the frame check sequence (FCS)

value in the FCS field. The FCS is a calculated value based on the bits in the data field [21].

20 Chapter 2. Background Study

2.7 Physical Layer

The final layer in the Internet protocol stack is the physical layer. It is responsible for

physically moving transmitted data, bit-by-bit, across a link, from a network device to another.

This is achieved by varying the voltage or current across the transmission medium.

There are network devices that only use the physical layer, such as repeaters and hubs. The

job of such low-layer devices is to accept incoming bits and forward them to the right output

[22] [23].

Physical Layer 01010101110101 Bits

Figure 2.12: Physical Layer Encoding and Transmitting Data in the Form of Bits

2.8 Network Delays

In any packet-switched network, all of the transmitted packets suffer from primarily four

types of delays including: nodal processing delay, queuing delay, transmission delay, and prop-

agation delay. These delays are inevitable, and each packet experiences all of these delays at

every node along its journey from a source to a destination. Such delays are summed together

and referred to as the total nodal delay.

• Nodal Processing Delay:

As previously mentioned, every packet has a header and a payload that are attached

together and transmitted as a whole. For an intermediate node, such as a router or a

switch, to determine the path the packet will take, the node must process and examine

the packet’s header. In certain situations, other processing takes place, such as error

checks. The time needed to examine and process the packet is known as the processing

delay [5].

2.8. Network Delays 21

• Queuing Delay:

Intermediate nodes have the capability of buffering packets in case the network is con-

gested. If a packet is queued, the time the packet waits until it is placed on the link is

known as the queuing delay. The time that the packet waits in the queue depends on the

number of packets that are located within the queue. If the queue is empty, the queuing

delay will be minimal, however, if the queue has a substantial number of packets, the

queuing delay will be large [5].

• Transmission Delay:

Transmission delay is time needed to transmit or push a packet into a link. This type of

delay is directly proportional to the size of the packet as well as the speed of the link.

The delay is defined according to equation (2.5).

Ttrans =
L
R
, (2.5)

where L is the size of the packet in bits and R is the transmission speed of the link from

one node to another [5].

• Propagation Delay:

Propagation delay is defined by the physical distance a bit must travel from one node to

another. Depending on the medium used to transmit the data, such as fiber optics cable

or twisted pair copper wire, the propagation speed will differ. The propagation speed will

range from approximately 2 ∗ 108 to 3 ∗ 108 meters per second. The propagation delay is

defined according to equation (2.6).

Tprop = d/s, (2.6)

where d is the distance between two nodes and s is the propagation speed of the bit [5].

22 Chapter 2. Background Study

• Nodal Delay:

Thus, the total delay for a packet traveling from one node to another is defined according

to the following equation:

Tnodal = Tproc + Tqueue + Ttrans + Tprop, (2.7)

where Tproc and Tqueue are usually neglected due to their minute effect on the total delay

[5].

• Round-Trip Time (RTT):

RTT is the total time needed for a packet to travel from a source node to a destination

node and back to the source node [6]. However in this thesis, the definition of RTT will

be slightly changed to the total time needed for a packet to travel from a source node to

a destination node in addition to the length of time needed for an ACK to travel from the

destination node to the source node.

• Latency:

Latency is the length of time it takes a packet to travel from the source to the destination

node [7]. Table 2.1 contains sample latency values for a 1500 bytes packet. The queuing

and processing delays are ignored due to their minute effect on the total time. The prop-

agation speed considered was 2/3 ∗ 3 ∗ 108 = 2 ∗ 108 m/s. To calculate the latency for

the different scenarios, the following equation was used:

Latency = Ttrans + Tprop. (2.8)

2.9. Compression Algorithms 23

Distance Propagation Delay Link Speed Transmission Delay Latency

1 km 5 µs
1 Mbps 12 ms 12.005 ms

10 Mbps 1.2 ms 1.205 ms
100 Mbps 0.12 ms 0.125 ms

10 km 50 µs
1 Mbps 12 ms 12.05 ms

10 Mbps 1.2 ms 1.25 ms
100 Mbps 0.12 ms 0.17 ms

100 km 500 µs
1 Mbps 12 ms 12.5 ms

10 Mbps 1.2 ms 1.7 ms
100 Mbps 0.12 ms 0.62 ms

Table 2.1: Sample Latency Values for Different Networks of Various Speeds and Distances. The Size of
Each Packet is 1500 bytes.

2.9 Compression Algorithms

There are two primary types of data compression, particularly, lossless and lossy algo-

rithms. In lossy compression, it is acceptable to have an encoded output file that is slightly

different than the input. Furthermore, lossy compression algorithms are primarily used with

audio and video files where the quality of the image or video is directly affected by the com-

pression level. Usually, higher quality images have a lower compression level.

In lossless compression, the purpose of the algorithm is to reduce the number of bits re-

quired to represent information through different means of encoding and decoding. Further-

more, lossless compression guarantees the integrity of the original information, thus when the

encoded data is decoded, the decoded data is an exact replica of the original data [24].

In this work, all of the algorithms used are lossless compression algorithms. The com-

pression algorithms used are Lempel-Ziv-Oberhumer (LZO) and ZLIB. LZO is a lossless

compression algorithm based upon the original Lempel-Ziv (LZ77) compression algorithm.

LZO is also known to be an algorithm that favors speed over compression ratio whereas ZLIB

prefers compression ratio over speed [25]. Moreover, compression ratio is defined according

to equation (2.9).

24 Chapter 2. Background Study

C =
CDS

UCDS
, (2.9)

where CDS is the compressed data size and UCDS is the uncompressed data size [26].

The following subsections provide a brief overview of each algorithm.

2.9.1 Lempel-Ziv Compression Algorithm

Lempel-Ziv is a universal lossless compression algorithm developed in 1977 by Abraham

Lempel and Jacob Ziv. This algorithm does not rely on any prior knowledge of the source

statistics and depends on a learning process for discrete source characteristics [27].

LZ77

The LZ77 is a lossless dictionary-based compression algorithm that utilizes the longest

matching string concept and a sliding window approach to encode data [25]. The algorithm

treats an input string of bytes as two main parts where the large part consists of decoded data

and the smaller part consists of a lookahead buffer.

The decoded data is used as a dictionary for the lookahead buffer, where the algorithm

looks for matches between the two parts. Once matches are found, output tokens are created

pointing to the location, length, and the first character seen in the lookahead buffer [24]. In

other words, the algorithm reads and analyses a string of data where redundant information is

replaced by tokens containing information on how to retrieve the original information from the

encoded data.

There are important terms one must know to understand how compression works. These

terms include: input string, coding position indicator (CPI), lookahead buffer, window, and

output. The following is the list of the terms with their respective definitions.

• Input string:

The input string is the string of bytes that is going to be encoded.

2.9. Compression Algorithms 25

......ABABABAAAA AAAA....

Input String Lookahead Buffer

Coding Position

Figure 2.13: LZ77 Sample of a Window and Lookahead Buffer Separated by a Coding Position Indicator

• CPI:

CPI is the point where the lookahead buffer begins. The coding position indicator can be

seen in Figure 2.13.

• Lookahead buffer:

The lookahead buffer contains bytes from the input data located after the CPI.

• Window:

The size of the window is used to indicate the number of bytes considered prior to the

coding position indicator. The window is empty at the beginning of the compression pro-

cess. As the input string is processed, the window will grow in size until reaching a size

of w. When the window is of size w, the sliding window approach occurs. The window

will slide according to number of bits encoded from the lookahead buffer, placing the

coding position indicator in a new location.

• Output:

The output of the encoding process is mainly a pointer in the format of (LB, L) with a

terminating character C(c). The output is represented by (LB, L)C(c), however, it is not

necessary to always include C(c).

The LB term is a value indicating the number of bytes the decoder should go back in the

window. The L value is the number of bytes the decoder should copy after reaching the

26 Chapter 2. Background Study

position indicated by LB. The terminating character C(c) indicates the first byte in the

lookahead buffer located after the match indicated by the pointer.

In the event of no matches being found between the lookahead buffer and the sliding

window, the output is a null pointer concatenated with C(c).

The following is an example of encoding a string of data using LZ77 approach. The string

of data is shown in Table 2.2.

Position 1 2 3 4 5 6 7 8 9
Byte A A B C B B A B C

Table 2.2: LZ77 Example - Sample Input String

The encoding process begins by reading the input string of bytes from Table 2.2. The

coding position indicator is placed at the first location, position 1, and is continuously moved. If

there are no matches, the output will be a null pointer with the terminating character; however,

if a match is found, the output will be a pointer with the terminating character. Table 2.3 shows

the output of the encoding process.

Step Position Match Terminating Character Output
1 1 – A (0,0)C(A)
2 2 A – (1,1)
3 3 – B (0,0)C(B)
4 4 – C (0,0)C(C)
5 5 B – (2,1)
6 6 B – (1,1)
7 7 ABC – (5,3)

Table 2.3: Encoding Process of the Input String Resulting in An Output of Tokens Indicating Matches
Within the Original String

The decoder processes the output of the encoder and appends the bytes together in order.

More precisely, the output pointer and terminating character of the encoding process are now

used as an input for the decoder to retrieve the original data from the encoded data. Table

2.9. Compression Algorithms 27

2.4 shows the process of decoding data and how the output of Table 2.3 is used as an input to

retrieve the original string.

Step Input Append Bytes Output String
1 (0,0)C(A) A A
2 (1,1) A A A
3 (0,0)C(B) B A A B
4 (0,0)C(C) C A A B C
5 (2,1) B A A B C B
6 (1,1) B A A B C B B
7 (5,3) ABC A A B C B B A B C

Table 2.4: Decoding Process where the Output of the Encoder is Treated as an Input

As seen from Tables 2.3 and 2.4, an input string was encoded using the sliding window and

longest matching string approach. The output of the encoder was a series of pointers indicating

the matches, if any, and the terminating character. The decoder processed the output of the

encoder to retrieve the original string [28]. It can be seen that the retrieved string from Table

2.4 was an exact replica of the input string presented in Table 2.2.

2.9.2 ZLIB

The ZLIB compression algorithm is a lossless algorithm that uses the DEFLATE com-

pressed data format for compressing an input string of data. More precisely, the DEFLATE

algorithm utilizes a combination of the LZ77 algorithm and Huffman encoding [29], thusly

achieving a high compression ratio, when compared to LZO [31]. Furthermore, the algorithm

functions by dividing the input string into blocks and processing each block separately. Having

the blocks processed separately results in each one having its own independent series of Huff-

man trees. However, the LZ77 algorithm will search for matches between the current block

and previously encoded blocks.

The output of the compression algorithm consists of encoded blocks where each block has

two main parts. The main parts are two Huffman code trees, which are used to provide details

28 Chapter 2. Background Study

about the encoded data as well as the actual encoded data. The encoded data has a similar

structure as that of LZ77, where pointers are used to indicate matching and non-matching

strings. To be precise, the pointers are in the format of (L, LB), where L is the length of the

match and LB is the backward distance the decoder has to move to locate the match. A Huffman

code tree is allocated to provide details about the unmatched strings as well as L whereas the

other tree is used to provide information about LB [29].

Prefix coding is used to assign each symbol from a given alphabet a sequence of bits to use

as means of representation. The sequence of bits, also known as codes, are unique per symbol

where the decoder may parse the the encoded symbols by analyzing the bits from the encoded

input. One may think of this procedure as shown in Figure 2.14 .

 / \
 0 1
 / \
 / \ B

 0 1

 / \
 A / \
 0 1
 / \
 D C

Symbols Code

A 00

B 1

C 011

D 010

Figure 2.14: Simple Prefix Coding of Four Symbols

Huffman coding allows the construction of the optimal prefix code tree if the symbol fre-

quency of a given alphabet is known. The optimal tree is constructed by allocating the shortest

codes for the symbols with the highest frequency of occurrence. Additionally, bit sequences

of the same length are in lexicographical order. Furthermore, shorter bit sequences lexico-

graphically precede longer codes. Thus, the example shown in Figure 2.14 can be rearranged,

2.9. Compression Algorithms 29

as shown in Table 2.5. From Table 2.5, one can see that 110 and 111 are lexicographically

consecutive.

Symbol Code
A 10
B 0
C 110
D 111

Table 2.5: An Example of Rearranging the Codes of Symbols

Based on the lexicographical ordering rules, the Huffman codes for an alphabet are defined

by using the lengths of the codes for each symbol, thus the lengths of the codes in Table 2.5 are

(2,1,3,3). Once the lengths of the codes are given to the Huffman algorithm, the algorithm will

proceed by counting the number of codes of the same length. Subsequently, the algorithm will

compute the smallest numerical value for each code length. Finally, the algorithm will assign

consecutive numerical values for all the codes of the same length starting with the smallest

determined value from the previous step.

The following is an example of assigning codes to symbols.

• Assume an alphabet ABCDEFGH with bit lengths (3,3,3,3,3,2,4,4). The algorithm will

start by counting how many symbols are represented by a certain number of bits.

Number of Bits Count
2 1
3 5
4 2

• The algorithm will now calculate the lowest values of the given code lengths.

Number of Bits Lowest Value
2 0
3 2
4 14

30 Chapter 2. Background Study

Symbol Length Code
A 3 010
B 3 011
C 3 100
D 3 101
E 3 110
F 2 00
G 4 1110

• Finally, the algorithm will assign values to all the symbols.

After the construction of the Huffman trees, the encoded blocks containing the Huffman

trees as well as the encoded data are formed. Each block has a 3-bit header specifying whether

the current block is the last block or not, as well as whether the block is compressed or not.

2.10 Modes of Compression

The ability to compress an input string using different approaches enables the user to

achieve different levels of compression. There are primarily four different approaches to com-

pressing a string of data. Each approach has certain advantages and disadvantages, however,

the proper approach must be used to achieve the desired results. The four approaches of com-

pression are: stateless, streaming, offline, and block compression.

2.10.1 Stateless Compression

The stateless compression approach is when packets are compressed and decompressed

independently, with absolutely no relationship to any other packet. Stateless compression is

also known as packet-by-packet compression where the receiver may perform a decompression

process on each packet independently. This approach of compression and decompression is

beneficial when packets arrive out of order at the receiving end.

2.10. Modes of Compression 31

2.10.2 Streaming Compression

The streaming compression approach, also known as continuous compression, is an attrac-

tive approach when reliable means of communication are available. Whilst using streaming

compression, packets are compressed and decompressed with a degree of interdependence.

Each packet is compressed using the history of the previously compressed packets as well as

the data within the current packet. Consequently, the receiver must decompress packets in

successive order [3].

Since the receiver must decompress packets in successive order, dropped packets will in-

duce a high latency 1 as the receiver waits for their arrival. Furthermore, the receiver must

have a rather large buffer, as it may need to store a hefty number of packets until all necessary

packets arrive to perform the decompression process [3].

2.10.3 Offline Compression

The offline compression approach is used when compression is performed at the end-hosts

rather than the intermediate nodes of the network. This approach takes place at the higher

layers of the Internet protocol stack and is capable of achieving higher compression ratios

when compared to the other approaches.

In this approach, data is compressed as a complete unit, in blocks, rather than in small

chunks. Furthermore, the receiver is not required to store all of the packets in a buffer to per-

form the decompression process; instead, the receiver will forward the packet to the higher

layers for further processing. Finally, it would be redundant for intermediate nodes to perform

any sort of compression on the packets’ payloads since the payloads are already compressed

[3].

1Latency in this scenario refers to the total time required to receive and process the data.

32 Chapter 2. Background Study

2.10.4 Block Compression

The term block compression refers to a conglomerate of data being compressed at once.

A lossless compression algorithm with an excellent compression ratio is considered, such as

ZLIB, to better explain the difference between block and packet-by-packet compression. When

using ZLIB as a compression algorithm, payload compression in blocks will provide a better

compression ratio due to the availability of a longer stream of data, which in turn provides

better matches of duplicate strings [30]. However, when transmitting the compressed data that

is originally compressed as a block, the receiver must wait for the entire stream of data to arrive

before processing it.

If the receiver holds on to data before processing it, two major problems arise. The first

problem is that the receiver must have a rather large buffer to store the received packets. The

second problem is the possibility of dropped packets, which will result in a significant delay

[3]. This delay is broken down to processing, decompression, and transmission delays. The

dropped packets must be retransmitted or the received data will be rendered useless. Also

holding the packets in the buffer while waiting for a retransmitted packet may result in other

packets being dropped due to a full buffer.

2.11 Minimum Size for Performing Compression

From [3], packets with a larger payload produce a better compression ratio since the com-

pression algorithm has a longer input string to find matches. To determine the minimum and

maximum size of a packet, one must consider two important aspects. The first aspect is the

collision detection mechanism where a minimum frame length is needed to determine whether

a collision occurred or not. The minimum frame length needed for collision detection depends

on the speed of the link as well as the length of the link. The second aspect is the desired

compression ratio where if a higher compression ratio is needed, the required size of packet

must increase before going through the compression process [32].

Chapter 3

Literature Review on Compression Based
Network Congestion Mitigation Solutions

3.1 Introduction

In this chapter, wide and local area network congestion control techniques via compression

are discussed. There is a variety of literature available on techniques that perform compression

within and outside the network. The following is a review of selected literature.

3.2 Compressing Packets Adaptively Inside the Network

In [26], the authors discussed mitigating induced traffic congestion over IP networks us-

ing an adaptive lossless compression technique. This technique was deployed within a given

network rather than at the end-nodes to achieve greater compression efficiency and enhance

the performance of the network as a whole. Moreover, the authors state that the intermedi-

ate relay nodes used to achieve compression within the network were capable of performing

advanced computational functions such as packet storage and processing as well as the tradi-

tional forwarding function. Furthermore, the authors state that in a non-congested network,

data compression may be redundant and there may be a slight risk of performance degradation

rather than enhancement.

To avoid the creation of a bottleneck situation within the network, the authors in [26] pro-

33

34 Chapter 3. Literature Review

pose three conditions designed to achieve an effective compression technique.

• All packets from all source nodes are compressed within the intermediate nodes unless

the packet has been compressed prior to arriving to the next intermediate node.

• If a packet is eligible for compression, it will only be compressed after meeting a certain

criteria.

• Packets are compressed individually, rather than in a block.

The criteria under which a packet is compressed is if an intermediate node receives a packet

with a regular sized payload, the intermediate node will calculate the waiting time of the packet

in the queue. If the waiting time is greater than a certain instantaneously calculated threshold,

the node will compress the packet’s payload.

W ≥ C − (1 − R) ∗ S/B, (3.1)

where W is the waiting time of a packet within the relay queue of an intermediate node, C is

the time required to perform the compression process of a packet, S is the packet size, B is the

bandwidth of the intermediate node’s output link, and R is the compression ratio.

If equation 3.1 and the aforementioned conditions are satisfied, the intermediate node will

compress the packet, otherwise it will not and it will forward the packet without additional

processing.

The proof of concept was conducted on the Network Simulator 2 (NS2) platform with

certain necessary and valid assumptions. Additionally, the network topology used was the

parking lot topology, as shown in Figure 3.1.

The simulation assumptions were:

• All packets were of equal size, 500 bytes.

• All packets were transferred using UDP.

3.3. Adaptive On-the-Fly Compression 35

Figure 3.1: Parking Lot Topology

• The compression ratio was constant for all packets.

• The decompression process was ignored due to how insignificant it was in regards to

time since LZO was used.

The results of the simulation show that this adaptive compression technique where packets are

selectively compressed did indeed improve the network performance by reducing end-to-end

packet delay as well as the packet loss rate. However, the authors do not show the optimal

number of compressing nodes within the network.

3.3 Adaptive On-the-Fly Compression

In [31], the authors present a novel compression system to improve network performance.

The proposed compression system, known as the Adaptive Compression Environment (ACE),

harvests and utilizes network information and statistics, such as network bandwidth and CPU

load, to predict if compression is worthwhile and to determine the appropriate compression

technique to be applied. Once the proper compression technique is chosen based on the gath-

ered network information, the communication between the end-hosts is intercepted where data

is seamlessly and adaptively compressed.

To harvest network information, ACE utilizes a network forecasting toolkit to predict

whether applying compression is worthwhile or not. The network forecasting toolkit is known

as Network Weather Service (NWS) where the output of this toolkit is coupled with ACE to

36 Chapter 3. Literature Review

help determine if compression will be used and, if so, which lossless compression algorithm

will be used.

To intercept communication between end-hosts and apply the proper compression tech-

nique, ACE extended the Open Runtime Platform (ORP) developed by Intel Microprocessor

Research Lab with a module capable of performing the aforementioned tasks. The ORP mod-

ule is capable of seamlessly intercepting TCP/IP communication at the socket level.

The procedure that ACE follows begins with intercepting the transmission socket of an

end-host. Once a large enough block of data is being sent (i.e., 32 KB block) ACE determines

if the compression is profitable in terms of improvement in transfer performance. To identify

whether a packet is compressed or not and which lossless compression algorithm was used,

ACE appends a 4-byte header to each 32 KB block.

To determine whether the compression of data will be profitable or not, ACE uses a pre-

diction system to forecast whether to apply compression or not. The prediction system used

by ACE is capable of predicting the compression time, compression ratio, and decompression

time. Based on the attained values, the transfer time is computed and compared to the transfer

time when the data is left uncompressed.

The process of predicting the compression ratio depends on the previous history of the

intercepted socket. ACE will use the compression ratio of the previous block as an indicator

of the compression ratio of the new block of data. In the case where ACE does not have

any history on the compression ratio of the previous block, ACE will consider the CPU loads

and overall network performance to determine if compression will occur. Furthermore, the

authors generated a linear regression model comparing compression and decompression ratios

with compression and decompression time. The linear regression model will be used by ACE

to predict the necessary time to perform a compression or decompression process on a given

block of data.

To evaluate the effectiveness of the proposed system, ACE was implemented on two dis-

tinct networks, fast and slow networks, where the available resources, such as CPU load and

3.4. IPzip: A Stream-Aware IP Compression Algorithm 37

bandwidth, in each network varied. The CPU load of the end-hosts was affected by the number

of processes running. As the number of processes increases, the CPU load increased. Addi-

tionally, the bandwidth of each network was affected by having dummy packet generators send

data across the given networks. As the number of packet generators increased, the available

bandwidth for data transmission decreased.

The results of the experiments show that ACE is capable of improving network performance

in different networks as well as under various network conditions. The authors claim that ACE

improves network performance by 8-93% when compared to other compression algorithms.

Furthermore, in worst-case scenarios, ACE is capable of improving network performance by

50-90%.

Despite all of the improvements and network enhancement shown by ACE, the proposed

technique suffers from one problem: the data is compressed in a block-like fashion. This may

induce congestion at the receiver’s end when packets are lost within the network. The receiver

must wait until the lost packets are retransmitted and received to perform the decompression

process.

3.4 IPzip: A Stream-Aware IP Compression Algorithm

In [33], the authors target not only congestion in IP networks but also the process of storing

data. The authors propose a novel compression algorithm known as IPzip that is capable of per-

forming compression for improving network transmission as well as increasing the available

storage space on end-hosts. Other features of IPzip include capability of providing different

compression plans to meet the changes of the network and maintain a certain level of perfor-

mance.

The process of improving network transmission is referred to by the authors as online com-

pression; furthermore, the process of performing compression to increase storage space is re-

ferred to as offline compression. The online compression process is designed to reduce network

38 Chapter 3. Literature Review

congestion when sending data from one point to another whereas the offline compression pro-

cess is designed to reduce the required storage space, if need be.

The two processes have different requirements to achieve what they are designed for. To be

precise, the online compression process is designed to be seamlessly applied to a data stream by

having a rapid compression time and requiring a small memory space. Due to these stringent

requirements, the proposed online compression process will not achieve good compression

ratios.

The offline compression process has the complete opposite requirements than that of the

online compression process. The offline compression process must be able to achieve good

compression ratios, thus short compression time and available memory must not be an issue.

The authors of [33] view network data as a 2-tuple ordered pair of structured and unstruc-

tured data where the header of the packet is the structured component of the data while the

payload is the unstructured component. The compression of the structured component will be

done separately from the unstructured component. Finally, IPzip will identify header and pay-

load correlations as well as reorganize the given data to fully exploit the identified correlations.

The compression plan exploiting the correlations is then passed to a compressor known as Gzip

to compress the stream of data.

The compression ratio achieved by IPzip is much better than the compression ratio achieved

by Gzip alone. However, the problem with this technique is that it compresses data in blocks.

Compressing data in blocks may result in performance degradation due to the possibility of

packets being dropped within the network. If the receiving end-host does not receive all the

necessary components of a compressed block, then the data cannot be decompressed. Thus,

the data within the buffer will be wasting resources such as memory space. Furthermore, if

packets that contain a component of a compressed block are dropped within the network, the

latency of the network will increase due to the receiver waiting for the dropped packets to be

retransmitted and received successfully.

3.5. Delayed-Dictionary Compression for Packet Networks 39

3.5 Delayed-Dictionary Compression for Packet Networks

The authors of [3] propose a delayed-dictionary compression (DDC) algorithm for packet

networks suffering from congestion. The algorithm compresses packets’ payload on a packet-

per-packet basis to avoid any decompression-induced latency due to dropped packets. Further-

more, the algorithm creates a dictionary for decompressing the encoded string with a delay of

δ units, thus, the decompression process does not depend on the previous δ packets. This de-

lay in the construction of the dictionary diminishes any decompression induced latency while

maintaining a relatively acceptable compression ratio.

The proposed algorithm is capable of being tunable to achieve different compression ratios

and decoding latencies. This is done by selecting the appropriate parameters for the dictionary

delay, δ. Therefore, DDC is capable of achieving a compression ratio that is relatively close to

that of a streaming compression and a decoding latency that is relatively close to zero.

Additionally, the process of compression occurs on intermediate network nodes, known as

network processors, capable of performing the compression process. The authors set-up the

compression scheme in a manner where the packets are compressed at the intermediate node,

after the source end-host, whereas the decompression process occurs at the intermediate node

prior to the destination end-host, thus achieving end-to-end compression.

The dictionary of the proposed algorithm, as mentioned before, is updated in a delay of δ

units where δ is either a unit of characters or packets. In the case where DDC was combined

with LZ77, the LZ77 dictionary is shifted in such a way that the compressed string will depend

on the characters that precede the last δ characters. In other words, a packet’s payload is

compressed using older strings that are δ units old. The DDC combined with LZ77 can be seen

in Figure 3.2.

Despite a significant improvement in network conditions, the authors do not mention enough

details about the network processors. There is a bottleneck situation that may occur at the in-

termediate node performing the compression process. The bottleneck may occur if the packet

generation rate of the source end-host is much higher than the processing rate of the encoder.

40 Chapter 3. Literature Review

ABCBBA ABCBBB

Window Delay Δ Currently
Encoded
Packet

Pointer

Coding Position

Figure 3.2: DDC Combined with LZ77 with a Delay of δ Units

3.6 Adaptive Online Data Compression

In [4], the authors present an application layer compression technique where both the

communication and compression processes communicate indirectly with each other using two

threads with independent queues. The size of the queues in the threads are used to determine

certain operational methods and compression parameters. The most important component of

the proposed technique is the output queue where data is stored prior to sending it.

This technique adaptively selects the level of compression based on the length of the out-

put queue. As the compression level increases, the size of the transmitted data decreases and

vice versa. Furthermore, as the queue size increases, the compression level selected by the

compression algorithm increases. On the contrary, if the size of the queue decreases, the com-

pression level selected by the compression algorithm decreases. There is a special case when

high compression levels are used to compress blocks of data prior to sending them that occurs

when the output of the compression process is adequately faster than the sending process.

The algorithm operates by reading files and data prior to the sending process and inserting

the data into a compression process, if need be. The compression process forwards the com-

pressed data to a FIFO queue where the compressed packets are stored until it is time to send

them. Finally, a communication process is responsible for reading the FIFO queue and sending

3.7. IP Payload Compression Protocol - IPComp 41

the data.

It is the length of the FIFO queue that determines the compression level for the next chunk

of data to be sent rather than the allocated memory size of the queue. The authors developed

the system to continuously monitor the FIFO queue length for changes. The length of the

queue is used to directly measure the speed of the network. On one hand, if the queue length

is continuously shrinking, it means that the communication process reading the FIFO queue

is much faster than the compression process writing to the queue, thus the compression level

is continuously reduced. It is possible that the communication process is much faster than the

compression process where data compression is no longer necessary. On the other hand, if the

queue length is rapidly growing, the compression level is increased.

The proposed algorithm does indeed reduce the time needed to transfer large amounts of

data, however the algorithm works by compressing chunks of data rather than individual pack-

ets. When chunks of data are being compressed at once and then transmitted, there is the

possibility of creating a delay induced by dropped packets. Thus to avoid the possibility of

inducing such a delay, one must perform compression on a packet-per-packet basis.

3.7 IP Payload Compression Protocol - IPComp

In [34], the authors propose a compression technique for IP payloads. The purpose of

the proposed technique is to increase the overall communication performance between nodes.

Furthermore, the authors categorize the compression process into two distinct phases. The

first phase is the compression of outgoing packets’ payload whereas the second phase is the

decompression of incoming packets’ payload. Additionally, the authors suggest only using

lossless compression algorithms such as DEFLATE or LZ to ensure the integrity of the trans-

mitted data. Furthermore, in the case where the size of the compressed packet is larger than the

original packet, the original non-compressed packet must be sent.

When using the IPComp protocol, compression is performed on a packet-per-packet basis

42 Chapter 3. Literature Review

rather than in chunks to avoid the possibility of inducing delays due to lost packets and their

retransmissions. Moreover, the nodes receiving inbound packets with compressed payloads

must be capable of processing non-compressed packets as well.

Besides sending the non-compressed packet in the event of an unsuccessful compression,

packets must be of a certain size in order to be considered for compression. According to

[34], small packets are likely to increase in size rather than decrease after passing through a

compression process, thus a threshold of packet size must be chosen. The threshold used in

determining the packet size is application dependent.

There are certain features in IPComp that, if implemented, will save time and prevent any

delays related to compression. The features suggested by the authors include that if the pay-

load has been compressed by the application layer, the algorithm should skip the compressed

payload and forward the data as is. In the case where multiple packets are skipped rather than

compressed, the algorithm will decide to skip a certain number of packets without attempting

any compression. After a number of packets are skipped, the algorithm will try to compress the

payload, if successful; IPComp will no longer skip any packets and will resume compression.

The proposed algorithm inserts a custom IPComp header prior to the compressed payload

and modifies the original IPv4 header. The custom IPcomp header is shown in Figure 3.3.

Figure 3.3: IPComp Header Structure

From Figure 3.3, the IPComp header has 3 major fields, namely Next Header field, Flags

field, and Compression Parameter Index (CPI).

3.8. Summary 43

The purpose of the fields are:

• Next Header:

Next Header field is an 8-bit field used to store the next protocol header. Since IPcomp

does not compress the header of the payload, the original IPv4 header is stored.

• Flags:

The Flags field is an 8-bit field set to zero. Currently it is not in use and is reserved for

the future. The receiver will ignore this field.

• CPI:

CPI is a 16-bit field where each range of bits has a well-defined meaning, as shown in

Table 3.1.

Bits Definition
0-63 are used to identify well-known compression algorithms.

64-255 are reserved for future use.
256 -
61439

are used between communicating nodes to define session attributes, such as whether to use
IPComp or not.

61440 -
65535

are for reserved for private use between nodes where the decompressing node
chooses the CPI value of the session. The chosen CPI value from one decompressing
node is independent of the CPI value chosen by the other decompressing node.

Table 3.1: CPI Values and Their Representation

The IPComp protocol may be applied when using different compression algorithms. One may

refer to [35] and [36] to see IPComp combined with DEFLATE and LempelZivStac (LZS),

respectively.

3.8 Summary

It can be seen from this chapter that there are many compression schemes and techniques

available for use to mitigate network congestion. The aforementioned techniques do improve

44 Chapter 3. Literature Review

network performance as they all have one common feature, which is reducing the size of pack-

ets’ payloads adaptively. However there are different problems in the mentioned techniques,

such as performing compression on blocks of data rather than on a packet-per-packet basis

and possible bottleneck situations. In this thesis, the proposed compression techniques avoid

the problems found in literature while achieving comparable results as seen in the following

chapters.

Chapter 4

An Adaptive Compression Technique
Based on Real-Time Network Feedback

4.1 Introduction

In this chapter, the focus will be on the design and validation of adaptive payload com-

pression techniques where the compression and decompression processes take place at the

end-hosts, as shown in Figure 4.1. The purpose of these techniques is to reduce network

congestion as well as delays, thus improving communication conditions for real-time and tra-

ditional applications. Furthermore, the proposed techniques compress packets’ payloads in a

packet-by-packet fashion using lossless compression algorithms to ensure the integrity of the

data.

It is important to compress packets’ payloads in an adaptive manner rather than constantly

to avoid the slight possibility of increasing the overall transmission time. Such an event may

occur if the compression algorithm is unsuccessful in finding an adequate amount of matches in

the input data stream. Furthermore, if compression and decompression processes are enabled,

extra CPU cycles are required at the end-hosts. Hence, the proposed techniques are adaptive

and active when needed.

The proposed techniques are characterized as three different modes, which are passive,

intermediate and active modes. These modes use real-time RTT feedback to decide whether

to be active or inactive. Each mode utilizes the RTT values to trigger a sequence of events

45

46 Chapter 4. Adaptive Compression Technique

that involve payload compression. The RTT values are observed during a transmission session

where they are used to trigger payload compression, thus improving the condition of a given

network. In the event where payload compression is not triggered, the transmission session

will remain as is. To identify whether a payload is compressed or not, a flag in the header of

the MAC sub-layer1 is set.

The payload is compressed according to the selected mode where all of the different modes

have an initial phase that precedes the transmission phase. In the passive mode, compression

is applied based on the history of the previous transmissions of the network. While in the in-

termediate mode, compression is applied according to a set of conditions. These conditions

are related to crossing two different thresholds. The first threshold is the instantaneous RTT

(IRTT) crossing the baseline RTT (BLRTT), which is the RTT of the network when it is

congestion-free, and the second threshold is the number of dropped packets exceeding a pre-

defined value. Finally, in active mode, compression is applied when the RTT value crosses the

BLRTT value.

Figure 4.1: Network where the Compression and Decompression of Payloads Occurs Within the End-
hosts.

1Medium access control (MAC) sub-layer is located within the data-link layer.

4.2. Compressed and Non-compressed Packet Identification 47

4.2 Compressed and Non-compressed Packet Identification

The receiver will be able to identify whether the packet’s payload is compressed or not by

identifying and using the value of the EtherType header field, which is located in the MAC

sub-layer of the data-link layer header. The value of the header field indicates the condition of

the payload, as shown in Figure 4.2.

The decision tree shown in Figure 4.2 helps the receiver identify the type of compression,

if any, that is present. A header will be added to the beginning of a payload, which will include

two identification bits. More precisely, the added header will contain the value 00 if the payload

is not compressed, and if it is compressed using LZO or ZLIB, it will contain 10 or 11 bits.

NC

Compressed
NC

LZO

Compressed
00

11

ZLIB

00 1

0 1

8 Bytes 8 Bytes 2 Bytes 46-1500 Bytes 4 Bytes

D MAC S MAC EtherType Data CRC

Figure 4.2: Decision Tree to Identify a Packet’s Compression Status

The EtherType field is an Ethernet protocol parameter that is used by communicating par-

ties as a means of indicating the type of protocol being used in a communication session. For

example, the EtherType field may contain values to indicate that IPv4 or Internet protocol

version 6 (IPv6) are being used. The EtherType field is 2 bytes large and located after the

destination and source MAC addresses [39]. Table 4.1 contains sample EtherType values.

48 Chapter 4. Adaptive Compression Technique

Vlaues Referenced Protocol
0x0800 Internet Protocol Version 4 (IPv4)
0x0806 Address Resolution Protocol (ARP)
0x0808 Frame Relay ARP
0x86DD Internet Protocol Version 6 (IPv6)
0x880B Point-to-Point Protocol (PPP)
0x8847 Multiprotocol Label Switching

Table 4.1: Sample EtherType Values

Table 4.1 contains sample EtherType values that are currently in use [39]. The suggested

values of 11 or 00 are simply used for illustrative purposes.

4.3 Flow of Operations

The proposed techniques follow different rules and paths for making a decision about

whether to compress the payloads of packets or not and which compression algorithm must

be used. The following subsections are each accompanied by a flowchart referred to as Figure

4.3, Figure 4.4, and Figure 4.5, respectively. Each figure shows the the behavior of one of the

three modes. The purpose of these flow charts is to show the motion of the different modes

while transitioning from the initial testing phase to the data transmission phase.

4.3.1 Passive Mode

The passive mode, as shown in Figure 4.3, is a history-based technique in which certain

network data is stored and utilized for future transmissions. Knowing the network history gives

the future transmissions the necessary edge to improve the communication sessions. Only a

fraction of the total data is necessary for this mode.

4.3. Flow of Operations 49

Initial phase

Send Test Packets Begin Tx
NC mode

Calculate
Instantaneous RTT

Compare RTT
Values

Continue as is
and keep comparing

Transmission Phase

Calculate
IRTTcurrent

(median value)

Set BLRTT =
IRTTcurrent

Apply Compression
If

IRTT=<BLRTT

If
IRTT>BLRTT

(beyond threshold)

A

B

C

D

E

F

G

H

I

J

(A) Is the stage responsible for creating history to be used for calculating the BLRTT reference point.
(B) The gathered history is used to calculate IRTTcurrent, which is the average of RTT values. (C) The
BLRTT value is set as IRTTcurrent. This value will be used in the transmission phase in the comparison
block, block F. (D) The transmission of actual data begins here. (E) The IRTT value is monitored
here and compared to the BLRTT value in block F. (F) Is the place where the monitored IRTT value is
compared to the BLRTT value from the initial phase. (G) and (I) are the possible outcomes of (F). If
(G) is true, the transmission will continue without compression. If (I) is true, compression is applied,
either LZO or ZLIB, to compress packets’ payloads.

Figure 4.3: Passive Mode’s Logic and Method of Operation Flow Chart.

50 Chapter 4. Adaptive Compression Technique

When the passive mode is employed to optimize the conditions of a network, the transmitter

is required to do the following:

• Store transmission history:

The history of the network during a regular transmission or test session is observed and

utilized in the future.

• Include early RTT values:

The history considered is the RTT values of the network from the beginning of the trans-

mission session.

• Demand a large amount of data:

The history considered, which is used as a sample of the entire transmission session,

must be of substantial quantity, otherwise a bigger sample is required.

In order to find out when to apply compression, a new BLRTT value must be set. Figure 4.3

clearly shows that during the initial phase, the BLRTT value is calculated based on observed

network history. In the initial phase, multiple test packets are sent over the simulated network.

Once the history is observed, the RTT values are stored within an IRTTarray where the values

are sorted in ascending order. Only 10% - 15% of the entire array values are used to calculate

the required IRTTcurrent value.

The new BLRTT value is equal to the calculated IRTTcurrent. In the centre of Figure

4.3, there is a comparator that continuously compares the newly defined BLRTT value against

the IRTT value, for which there are two possible outcomes. If the IRTT value is greater than

BLRTT, a compression algorithm is employed before transmission, however, if the IRTT value

is less than or equal to BLRTT, the algorithm jumps back to the comparison block. In algorithm

(1), the relationship between the observed history and BLRTT can be seen.

4.3. Flow of Operations 51

Algorithm 1 Calculate BLRTT
1: Create IRTTarray from history
2: Sort IRTTarray from min to max
3: Consider 15% of sorted data
4: Find IRTTcurrent=median(sorted IRTTarray)
5: Set BLRTT=IRTTcurrent

The reason why only 10% to 15% of the entire IRTTarray was considered was because

of an observed phenomenon while testing the technique: regardless of the number of packets

transmitted, the behavior of the network was consistent.

4.3.2 Intermediate Mode

The intermediate mode, as shown in Figure 4.4, is composed of combining both compres-

sion algorithms, LZO and ZLIB, in two different methods. The first method merges the mode’s

conditions similar to an AND logic gate, as in both conditions must be true before any ad-

vanced action is taken. The second method merges the mode’s conditions similar to an OR

logic gate, as in one condition must be true before any advanced action is taken. Both of these

combinational methods shall be known as the AND/OR method.

The mode’s conditions are watched for after an initial BLRTT is crossed by a certain thresh-

old. As shown in Figure 4.4, the first BLRTT is calculated to be the network’s congestion-free

RTT value. Once again, the comparison block continuously compares the IRTT value against

the initial BLRTT value. If the initial BLRTT is crossed, the LZO compression algorithm is ap-

plied to the payload of the packets before transmission. Afterwards, a new BLRTT (NBLRTT)

is set, and based on the conditions below, the ZLIB compression algorithm is applied to the

payload. In the case where the number of dropped packets is greater than a decided value at the

same time that the IRTT value is below the initial BLRTT, the ZLIB compression algorithm is

applied and the conditions below are ignored.

52 Chapter 4. Adaptive Compression Technique

Initial phase

Send Test Packets

Calculate
Baseline RTT

(Congestion-free Network)

Begin Tx
NC mode

Calculate
Instantaneous RTT

Compare RTT
Values

Continue as is
and keep comparing

Apply LZO

Transmission Phase

Apply ZLIB

Keep track of # of
packets dropped.

If
IRTT=<BLRTT

If
IRTT>BLRTT

(beyond threshold)

If IRTT =< BLRTT
&& # of dropped

packets>=1

If IRTT>NBLRTT
 ||

dropped packets >= 1

If IRTT>NBLRTT
&&

dropped packets>= 1

A

B

C

D

E

F

G

The initial phase and transmission phase of the intermediate mode perform the same operations as that of
the passive mode with additional functionalities. (A) Is the block responsible for monitoring the number
of dropped packets. (B) Is the condition that determines if LZO compression should be applied. (C) At
this point, all data is compressed with LZO and NBLRTT is defined. (D) and (E) are checking if the
conditions, IRTT greater than NBLRTT and the number of dropped packet is greater than a threshold,
are met. In (D) the conditions are treated in a manner similar to an OR gate where if one condition is
met, ZLIB compression is activated. In (E) the conditions are treated in a manner similar to an AND
gate where both conditions must be met for ZLIB compression to be activated. (F) ZLIB compression
is applied when this block is reached.

Figure 4.4: Intermediate Mode’s Logic and Method of Operation Flow Chart.

4.3. Flow of Operations 53

The conditions of the AND/OR combinations are respectively:

First IRTT > NBLRTT

AND / OR,

Second The number of packets dropped > certain decided value.

The method that this mode follows is based on progressive stages that are in a ladder-like

fashion. The initial phase sets the BLRTT to the value of the RTT of the congestion-free

network. Once this value is crossed by a certain threshold, the LZO compression algorithm is

applied to the payload of the packets. As the transmission continues, a NBLRTT is configured.

This value is based upon the previous history of the network or an arbitrary value.

Depending on the network load, available bandwidth, type of data being transmitted, and

payload size, the combinational mode is chosen. On one hand, if there is a network with a large

amount of bandwidth available, the AND mode is preferred. On the other hand, if there is a

network with a very limited bandwidth, the OR mode is preferred. In fact, in small bandwidth

networks, the likelihood of crossing either the BLRTT threshold or the accepted number of

dropped packets is higher than a network with a large bandwidth due to the network’s minimal

tolerance.

4.3.3 Active Mode

The active mode, as shown in Figure 4.5, is the simplest of the proposed techniques. It

does not have any tolerance or threshold before activating compression. The mode is initial-

ized by calculating and defining the BLRTT of a congestion-free network or by defining the

BLRTT in a similar manner as the passive mode. As the packet transmission begins, the IRTT

value is continuously compared to the BLRTT value. If the IRTT value exceeds the BLRTT,

compression is immediately activated, otherwise, the transmission session will continue as is.

54 Chapter 4. Adaptive Compression Technique

Initial phase

Send Test Packets Begin Tx
NC mode

Calculate
Instantaneous RTT

Compare RTT
Values

Continue as is
and keep comparing

Transmission Phase

Calculate
IRTTcurrent

(median value)

Set BLRTT =
IRTTcurrent

Apply Compression
If

IRTT=<BLRTT

If
IRTT>BLRTT

A

(A) Unlike passive mode, there is no threshold. Compression is activated as soon as IRTT is greater
than BLRTT.

Figure 4.5: Active Mode’s Logic and Method of Operation Flow Chart.

4.4. Implementation 55

4.4 Implementation

There are different approaches to implementing the aforementioned compression and de-

compression schemes. These approaches include software methods, hardware methods or a

mixture of the two. The presented approaches are suitable for a range of network types, hard-

ware operating within a network, and link speeds.

4.4.1 Software Implementation

Any of the aforementioned schemes can be implemented using any conventional program-

ming language, such as C or Python. The software method of operation requires the implemen-

tation of the proposed compression and decompression scheme to intercept the communication

sessions of different applications at the socket level, as shown in Figure 4.6.

Application Layer

Transport Layer

Network Layer

Data-Link Layer

Physical Layer

Socket API Scheme's Point of
Packet Interception

Figure 4.6: The Location where the Implemented Scheme will Intercept Communications to Perform
the Compression or Decompression Process

By intercepting the communication sessions of different applications at the socket level, the

employed compression and decompression scheme is capable of manipulating the generated or

received packets’ payloads seamlessly. The scheme process function will be able to compress

or decompress the generated or received packets’ payloads prior to their transmission or upon

their arrival.

In the case where packets are being generated, the employed scheme will compress the

packet’s payload accordingly. Subsequent to the compression process, the packet headers are

56 Chapter 4. Adaptive Compression Technique

formed based on the newly compressed payload. Additionally, a small header is inserted at the

beginning of the payload to indicate that the payload went through the compression process and

the type of compression algorithm used. Finally, a header field, EtherType, is used to indicate

the type of protocol being utilized and is set prior to the transmission process.

Headers Payload CRC

Headers CRCEtherType = 11C = 10 Payload

A)

B)

Figure 4.7: A) Is the Packet Structure of a Regular Packet In a System Without Any Compression
Scheme. B) Is the Packet Structure After Performing the Compression Operation.

From Figure 4.7, the packet structure of a regular packet and a compressed packet are

shown. The difference between Figure 4.7 A and B is the value of the EtherType field and the

inserted payload header, C.

In the case where the packets are intercepted subsequent to entering the end-host from the

network, the scheme will inspect the incoming packet to see if the decompression process is

necessary. The scheme will make this determination based on the query results of the status

of the EtherType field. After obtaining the query results, the end-host will further inspect the

inserted header by the end-host that performed the compression process, if need be.

If the query results indicate that the payload requires the decompression process prior to

reaching the target application, the scheme will proceed by decompressing the payload. Sub-

sequently, the scheme will update the headers of the packet accordingly followed by removing

the header inserted by the source end-host.

The software approach is preferably used with end-hosts that have the ability and the free-

dom to forfeit CPU cycles to perform the compression and decompression processes. Addition-

ally, this type of approach is better suited in networks where the end-hosts are not generating

or receiving an extraordinarily high amount of packets. Such networks may be referred to as

4.4. Implementation 57

slow or medium speed networks. If the end-hosts are expected to handle a large amount of

packets, another approach, such as the hardware approach described in the following section,

is preferred.

4.4.2 Hardware Implementation

The hardware implementation of the proposed schemes is similar to the software approach.

However, dedicated hardware is used to perform the compression and decompression pro-

cesses. In this scenario, the scheme’s point of packet interception will be executed by the

dedicated hardware. There are many benefits to using dedicated hardware to perform the de-

sired processes, including higher efficiency, reducing end-host CPU load, faster compression

and decompression speeds, and the added ability to process a large amount of data, among

others. However, the one major disadvantage of this approach is its cost.

The hardware approach is preferably used with end-hosts that are connected to a fast net-

work(s) where data is being exchanged in extremely high volumes. This approach can be used

with slower networks, however, such computing power may seem unnecessary. In fast net-

works, the CPU of an end-host does not have the ability or the freedom to forfeit any CPU

cycles for the compression or decompression processes, therefore, dedicated hardware is nec-

essary to perform the desired processes.

If the software approach is used in fast networks, a bottleneck situation will occur, resulting

in a performance degradation of the communication session. The bottleneck will occur due to

the software approach not being fast enough to intercept packets at a high rate and perform the

necessary compression and decompression processes.

4.4.3 End-hosts Mutual Agreement and Mode Selection

End-hosts establishing a communication session must determine whether to use any of the

compression and decompression schemes or not. To establish a communication session, the

end-hosts must perform a three-way handshake similar to that of initiating a TCP communi-

58 Chapter 4. Adaptive Compression Technique

cation session. The primary difference rests in the header and payload fields of the SYN and

ACK packets. The three-way handshake process can be seen in Figure 4.8.

End-host A End-host B

Time Time

SYN

SYN+ACK

ACK

Figure 4.8: Three-way Handshake Process Between End-hosts to Agree Whether to Use Any of the
Proposed Compression Schemes

The SYN and ACK packets used in the three-way handshake will contain a value in the

EtherType field indicating the type of communication protocol that will be used. To be precise,

the field will contain a value indicating that the end-host is capable of performing any of the

compression and decompression schemes. Additionally, the payload of the ACK will contain

values indicating the accessible lossless compression algorithms by that specific end-host. The

ACK packet structure can be seen in Figure 4.9. The SYN packet structure is similar to that of

the ACK packet, however, the payload does not necessarily need to contain any information.

Headers EtherType = 11 C = 10 and C = 11

ACK Header ACK Payload

CRC

Figure 4.9: ACK Packet Structure

In Figure 4.9, the EtherType field is set to 11 and the payload field contains two consecutive

4.4. Implementation 59

values, 10 and 11. The definition of the values in the EtherType field and the payload are given

in Figure 4.2. These values are used by the ACK packet in the three-way handshake process

to indicate that the end-host sending the said ACK packet is capable of performing any of the

compression schemes and utilize any of the available lossless compression algorithms, be it

LZO or ZLIB. If the end-host is only capable of using one lossless compression algorithm,

such as LZO, the ACK’s payload will only contain one defined value, such as C = 10. If the

end-host is not capable of utilizing any of the compression schemes, the EtherType field will

contain a default value, such as the one indicating that IPv4 is being used.

The three-way handshake procedure begins by either end-host A or end-host B sending the

other end-host(s) a SYN message. The SYN message EtherType field is set to 11, indicating the

desire to initiate a communication session that may need to compress and decompress packets’

payloads when necessary. The answering end-host replies to the initiating end-host with SYN-

ACK packet. The SYN-ACK packet will have the EtherType field either set to 11, as a positive

response, or a default value, as a negative response. In the event of a positive response, the

end-host will include a payload in the SYN-ACK message, indicating which compression al-

gorithms the end-host is capable of using. Once the initiating end-host receives the SYN-ACK

message, it will respond with an ACK message. The ACK message will contain an EtherType

value of 11 and a payload indicating the lossless compression algorithms it will be utilizing

throughout the transmission session. When an end-host wants to terminate a communication

session, the end-host will perform a process similar to the three-way handshake, however, with

a FIN packet rather than a SYN packet.

In the event where an end-host responds with an EtherType value other than 11, the ini-

tiating end-host will terminate the handshake with a FIN message. Subsequent to the FIN

message, the initiating end-host is capable of establishing a new communication session where

the EtherType field of the SYN and ACK messages will contain a default value, such as a value

indicating the use of IPv4.

Subsequent to the three-way handshake process, the end-hosts begin exchanging data. The

60 Chapter 4. Adaptive Compression Technique

method of operation followed by the end-hosts is described in Figure 4.10. It begins with the

end-hosts verifying if the communication session between the involved parties is under mutual

agreement to utilize lossless compression algorithms. If the end-hosts are in agreement, the

compression scheme process will intercept the packets at the socket layer, otherwise it will not.

Once the packets are intercepted, the payloads are subject to compression or decompression,

depending on whether the packets are inbound or outbound.

Are the End-hosts in Agreement?

Intercept Packets Resume Normal
Communications

Is the Packet
In/Outbound?

Does the Packet
Require

Decompression?

YES NO

Inbound

Are the Compression
Conditions Met?

Outbound

Perform the
Decompression

Process

Forward to
Target

Application

YES

Perform the
Compression

Process

Forward as is

NO
YES NO

Was the Compression
Process Successful

Forward
Compressed

Packet

Forward
Original
Packet

YES NO

Figure 4.10: Routine Followed By End-hosts While Using the Compression Enabled Protocol

4.4. Implementation 61

Inbound traffic will be inspected for the necessity of decompression before being passed to

the application layer. This process is done by querying the EtherType field value followed by

inspecting the beginning of the payload for a header indicating the compression algorithm used

by the source end-host. The payload will then be decompressed, if need be, and forwarded to

the target application.

Outbound traffic will be compressed after being generated by the application layer. The

headers of the outgoing traffic are then made and attached to the payload. In the process

of attaching the headers, the EtherType field is triggered by the compression process to be a

desired value. The desired value will indicate if the payload is compressed or otherwise.

4.4.4 Compression Scheme Selection

In this chapter, three different compression and decompression schemes were proposed.

The end-hosts do not necessarily have to operate under the same schemes when in mutual

agreement. Each end-host can use the preferable or optimal scheme from their perspective.

From the three available schemes, the passive mode is the most adaptive compression

method that can be used with any type of network, whether slow or fast. This is purely due

to the scheme being dependent on network history and previous transmissions. The lossless

compression algorithm employed while using passive mode is arbitrary and can be chosen by

the user.

The intermediate mode is compromised of two different mechanisms that perform the com-

pression process once certain conditions are met. The AND method of the intermediate mode

is preferably used by networks that are considered to be of medium speed. This is due to the

AND method having to act like an AND logic gate before activating the ZLIB compression

library. The compression method behaving like an AND gate requires the network to have a

large amount of bandwidth to tolerate minimal lossless before activating the advanced stages

of the scheme.

62 Chapter 4. Adaptive Compression Technique

The OR method of the intermediate mode is preferably used by slow networks. This is due

to the OR method acting like an OR gate before activating the ZLIB compression library. In

slow networks, there is less available bandwidth and a much higher probability of meeting the

necessary conditions, such as crossing the BLRTT value or the threshold of lost packets, to

proceed to the advanced stages of the scheme.

The simplest of all schemes, the active mode, is preferably used by fast networks. This

is because the scheme lacks any threshold to tolerate losses. Once the BLRTT is value is

exceeded, the compression scheme is immediately activated.

4.5 Simulation Model

In order to test and analyze the proposed techniques on a valid network model, a simulation

is conducted on an infamous platform. This platform is known as NS3, which is installed and

operated on a Linux machine.

The network model used for proof of concept was known as a parking lot topology network,

as shown in Figure 3.1. All of the proposed techniques were tested on the same model. Indeed,

the proposed techniques were very efficient in a simple network topology, however, it proved

the possibility of using these techniques efficiently in highly complex networks.

In this network, node 0 and node 4 are the packet senders and node 3 and node 5 are the

packet receivers. Stream 1, which is node 4 sending packets to node 5, will be observed and

analyzed. The packets are transmitted at a constant rate of 0.6 Mbps and the link speeds are

1.0 Mbps. All packet transmission delays in the network are set to 0 ms.

Each packet sent used TCP for the reliability provided by the protocol and IPv4 for ad-

dressing. The size of each non-compressed packet payload was 500 bytes. The total number

of packets sent by each sending node was 1500.

4.5. SimulationModel 63

4.5.1 Performance Metrics and Results

There are different ways of measuring the efficiency and the QoS of a TCP transmission

session. For this proposed technique, a number of different attributes will be considered such

as: number of dropped packets, average IRTT, TCP efficiency, and duration of recovery.

The number of dropped packets shows how many packets were lost during the overall

transmission session, which indicates the reliability of data transfer. There are some cases in

which dropped packets may be ignored if the application is loss-tolerant, such as VoIP and

video transmission. However, other applications, such as banking services, cannot risk having

any dropped packets. Therefore reducing the number of dropped packets is necessary and a

valid step of improving network conditions [37].

The average of IRTT indicates the overall response time of the network. Lower RTT values

are generally better since they indicate a lower end-to-end delay, however it does not necessar-

ily mean the network condition is at its best. Even though the average IRTT may be low, there

is still the possibility of a high number of dropped packets and the necessity of retransmitting

these packets. Also, there are cases where the IRTT is high, however the number of packets

dropped is lower [38]. The following equations, equations (4.1) and (4.2), are used to calculate

the average IRTT.

AvgIRTT =
TotalRTT

Trans f er time
, (4.1)

RTT = TT P + TT A, (4.2)

where the term known as TT P is the total time it takes to transmit the packet with a payload

from the sender to the receiver and the term known as TT A is the time it takes to transmit the

acknowledgement from the receiver to the sender. The TCP efficiency percentage is an impor-

tant ratio to calculate. This ratio indicates the amount of bytes that are transmitted successfully.

In general the higher the TCP efficiency ratio, the lower the number of packets dropped, which

64 Chapter 4. Adaptive Compression Technique

means the network is less congested [38].

TCPE f f (%) =
(T xD − ReT xD)

T xD
∗ 100. (4.3)

The TCP efficiency equation has two important variables, which are T xD and ReT xD. The

T xD variable is the total transmitted data during a session where ReT xD is the retransmitted

data during the same session.

Finally, the duration of recovery is the period in which the transmission of the sender is

throttled, due to a lost segment or duplicate ACKs, until the sender’s transmission rate is re-

covered.

DurationO f Recovery = trec − ttout. (4.4)

In equation (4.4), trec is the time variable where the sender recovers from being throttled and

ttout is the time variable where the sender is throttled.

The results of simulating the network whilst using the different modes are shown in Figures

4.11 to 4.13 where the quantitative analysis is done in Tables 4.2 to 4.7. These items are

discussed in the following section.

Passive Mode

NC LZO ZLIB

Attributes
Packets dropped: 35 Packets dropped: 24 Packets dropped: 19

Time: 12.00 seconds Time: 11.20 seconds Time: 11.17 seconds

Table 4.2: Internal Network Values for Passive Mode

4.5. SimulationModel 65

Passive Mode

Stream 1 AVG RTT(ms) TCP Efficiency (%) Recovery (s)

NC 280.8 97.7 3.4

LZO 263.3 98.4 2.7

ZLIB 251.5 98.7 2.5

Table 4.3: Calculated Network Values for Passive Mode

Intermediate Mode

NC AND OR

Attributes
Packets dropped: 35 Packets dropped: 29 Packets dropped: 19

Time: 12.00 seconds Time: 11.54 seconds Time: 11.52 seconds

Table 4.4: Internal Network Values for Intermediate Node

Intermediate Mode

Stream 1 AVG RTT(ms) TCP Efficiency (%) Recovery (s)

NC 280.8 97.7 3.4

AND 253.7 98.1 3.0

OR 250.1 98.7 2.5

Table 4.5: Calculated Network Values for Intermediate Mode

Active Mode

NC LZO ZLIB

Attributes
Packets dropped: 35 Packets dropped: 30 Packets dropped: 19

Time: 12.0 seconds Time: 11.51 seconds Time: 11.15 seconds

Table 4.6: Internal Network Values for Active Mode

66 Chapter 4. Adaptive Compression Technique

Active Mode

Stream 1 AVG RTT(ms) TCP Efficiency (%) Recovery (s)

NC 280.8 97.7 3.4

LZO 263.8 98.0 2.9

ZLIB 234.1 98.7 2.5

Table 4.7: Calculated Network Values for Active Mode

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Elapsed Time

R
T

T

Stream 2 (TCP)

NC LZO ZLIB

Figure 4.11: Passive Mode Simulation Results

4.5. SimulationModel 67

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Elapsed Time (s)

R
T

T
 (

s)

NC AND OR

Figure 4.12: Intermediate Mode Simulation Results

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Elapsed Time (s)

R
T

T
 (

s)

NC LZO ZLIB

Figure 4.13: Active Mode Simulation Results

68 Chapter 4. Adaptive Compression Technique

4.5.2 Analysis

To test the passive mode, the initial step was to calculate the BLRTT value. The initial

BLRTT value was calculated to be 13.10 ms. Once the transmission session began, the IRTT

value was continuously compared to the BLRTT value. When the IRTT value was greater

than the BLRTT by a certain threshold, which was randomly determined 2, compression was

applied, be it the LZO or ZLIB algorithm. In the case where the IRTT value was not greater

than the BLRTT value, the transmission session continued without involving any compression

algorithm.

The NC line in Figure 4.11 represented the behavior of sending non-compressed packet

payloads and receiving an ACK in return. The NC session of Stream 1 and Stream 2 lost a

total of 35 packets where Stream 1 was responsible for dropping 34 of the 35 packets. This

was the highest number of packet drops when compared to any of the conducted simulations.

Therefore, the NC line was used as a reference point to show how the proposed compression

techniques improved the transmission session.

The average RTT of the NC session was approximately 280.8 ms, which was much higher

than the calculated BLRTT. The high value of the RTT indicated severe network congestion.

However, the average RTT value whilst using the passive mode decreased to 263.3 ms when

LZO was used and further decreased to 251.5 ms when ZLIB was used. The decrease in RTT

values indicated a reduction in the end-to-end delays.

Furthermore, the TCP efficiency was only 97.7 % due to being directly related to the num-

ber of packets dropped. It shows that 97.7% of the entire data stream was successfully trans-

mitted. If the network congestion was reduced, the TCP efficiency had to increase, indicating

a transmission session with a higher packet delivery success rate.

When the passive mode was activated where the LZO algorithm was employed, Stream 1

and Stream 2 lost a total of 24 packets where Stream 1 was responsible for dropping 23 of the

24 packets. The decrease in packet drops indicated the reduction of data congestion within the

2The ideal way of defining the threshold is by choosing it as a multiple of BLRTT.

4.5. SimulationModel 69

network. The decrease in data congestion was directly reflected on the TCP efficiency percent-

age, which increased by 0.7%. This indicated that a higher number of successful transmissions

were made while using the LZO algorithm to decrease the size of the packets.

When the passive mode was activated where the ZLIB algorithm was employed, Stream 1

lost a total of 19 packets. There was a massive decrease in the number of packet drops, which

indicated a less congested network. The decrease in network congestion was directly reflected

in the TCP efficiency percentage. The number did increase by 1.0%, indicating a higher rate of

successful transmissions.

Considering the recovery time for the 3 different cases in passive mode, it is clear that there

was a sharp decrease from the NC session to the LZO session. The recovery time for the NC

session was 3.4 s whereas during the sessions where LZO and ZLIB were used, the recovery

time was 2.7 s and 2.5 s, respectively. The decrease was a positive implication of transmission

recovery indicating that the congestion window was no longer throttling the sender’s transmis-

sion speed.

To test the intermediate mode, the initial step involved calculating the BLRTT value of the

network. The BLRTT value happened to be equal to the value calculated to test the passive

mode. Once the IRTT value crossed the BLRTT value by a certain threshold, the LZO com-

pression algorithm was employed and a new BLRTT value was chosen to determine whether

the compression technique would move forward and use ZLIB to perform payload compres-

sion.

From Figure 4.12, the AND method of the intermediate mode went through two distinct

stages. The first stage was activating LZO compression after the IRTT value crossed the initial

BLRTT value by a certain threshold. The second stage was activating the ZLIB compression

algorithm after meeting both conditions where the IRTT value crossed the NBLRTT value as

well as the number of dropped packets was above a certain threshold. The AND method had a

total of 29 packets dropped from both Stream 1 and Stream 2.

The reason for having a high number of dropped packets after employing the AND method

70 Chapter 4. Adaptive Compression Technique

was due to setting the threshold for the number of dropped packets too high. This high num-

ber of dropped packets may have been avoided if the threshold of dropped packets had been

reduced. In this situation, the AND conditions would have been met earlier where ZLIB com-

pression would have been activated at earlier stages.

Nevertheless, the average RTT of the transmission session whilst using the AND method

was 253.7 ms. This RTT value was much higher than the BLRTT value of the network, how-

ever it was less than the NC average RTT. Such values were a direct indication of network

improvement, showing that less time was needed for packets to be transmitted and receive an

ACK. This means that the end-to-end delay sharply decreased.

Furthermore, the average RTT of the AND method was less than the average RTT of LZO

compression in passive mode. This was due to the AND method using both LZO and ZLIB

throughout the transmission session. However, the TCP efficiency was only 0.4 % higher than

the NC TCP efficiency, but 0.3 % less than the TCP efficiency of the LZO compression of the

passive method.

The reason behind a lower TCP efficiency value of the AND method when compared to

the passive mode’s LZO session was due to setting the number of dropped packets threshold

too high. The high dropped packet threshold resulted in an increase in the number of dropped

packets and, as a consequence, a lower TCP efficiency. This was an example where the average

RTT in one transmission session was lower when compared to another transmission session,

however the number of dropped packets was higher.

The recovery time for the AND method was substantially smaller than that of the NC sess-

sion. The decrease in the recovery time was 0.4 s, which indicates a network with less con-

gestion. Furthermore, the decrease in the recovery time was directly related to the congestion

window where a smaller recovery time indicates a shorter period of transmission throttling;

consequently, the transmission may have occurred at higher speeds for longer periods of time.

The OR method of the intermediate mode achieved better results than the AND method.

This was due to employing the ZLIB compression algorithm at an earlier stage in the transmis-

4.5. SimulationModel 71

sion session. The reason behind activating the ZLIB compression algorithm at an earlier stage

was due to needing to meet only one of the two conditions. Either the IRTT value was greater

than the NBLRTT value or the threshold of dropped packets was exceeded.

The lowest average RTT of the intermediate mode and the passive mode was achieved by

the OR method. This decrease in average RTT indicated a drastic improvement in network

conditions. Furthermore, the improvement in network conditions may be seen in the reduced

number of dropped packets as well as the increase in TCP efficiency. The OR method had a

total of 19 dropped packets, causing the TCP efficiency to increase by 1.00 %. Additionally,

the recovery time was 0.9 s smaller than that of the NC transmission session.

To test the active mode, the initial BLRTT value of the network was calculated and was

equal to the previously calculated value. The technique worked in an active approach where as

soon as the IRTT value crossed the BLRTT value, compression was activated. The technique

was used with both LZO and ZLIB compression algorithms where ZLIB achieved better results

than LZO as shown in Figure 4.13.

When the active mode was employed and LZO was used, 30 packets were dropped from

Stream 1 and Stream 2. The number of dropped packets was less than that of the NC trans-

mission session, however it was greater than the number of dropped packets when LZO was

employed in passive mode. This was due to the active mode lacking the adaptive nature of the

passive mode.

Furthermore, the average RTT achieved whilst using the LZO compression algorithm in

the active mode was 263.8 ms, which was 0.5 ms higher than that of LZO in passive mode.

Additionally, the TCP efficiency was higher than NC’s TCP efficiency but lower than LZO in

passive mode’s efficiency. The lower efficiency was due to the increase in number of dropped

packets. Hence, one can see the importance of being adaptive whilst using LZO compression

algorithm as better results were achieved.

The recovery time of the LZO in active mode was 2.9 s, which was 0.5 s less than NC

mode, however, it was 0.2 s larger than the recovery time of LZO in passive mode. Therefore

72 Chapter 4. Adaptive Compression Technique

the network conditions did improve, as the transmission was throttled for a smaller window of

time. Indeed, the network conditions did improve whilst using LZO in active mode, however,

LZO in passive mode achieved a greater improvement.

Finally, when the active mode was employed and ZLIB was used, 19 packets were dropped.

The low number of dropped packets rendered the TCP efficiency value to be 98.7%. Addition-

ally, the average RTT was 234.1 ms, which was by far the smallest achieved value. The reason

behind such a small average RTT was due to activating the ZLIB compression algorithm at a

very early stage in the transmission. Furthermore, the reason behind the great success of ZLIB

in active mode was the exceptionally small post-compression packet size. Finally, the TCP

efficiency value and recovery time were equal to that of ZLIB in passive mode.

The major difference between all of the previous scenarios is the packet payload size. Dur-

ing the original non-compressed transmission, the packet payload was 500 bytes. As LZO and

ZLIB were used to compress the data, the payload size was 483 bytes and 444 bytes, respec-

tively. This is a clear indication that the number of packet drops and network congestion are

directly related to the packet size. As the payload size decreased, the network was less con-

gested, resulting in fewer packet drops. It was not a linear relationship, however they were

directly correlated.

Finally, it is important to know that the time to compress and decompress a packet’s payload

while using LZO was approximately 30 us and 20 us, respectively. The time to compress and

decompress a packets’ payload using ZLIB was approximately 100 us and 30 us, respectively.

Clearly the time spent to compress and decompress a payload is worth spending due to the

improved transmission results.

4.6 Summary

In this chapter, an adaptive compression technique with 3 different modes was employed to

improve the condition of a given network suffering from congestion. The different compression

modes were the passive, intermediate, and active modes. The passive mode depended on the

4.6. Summary 73

history of the network to define values for certain technique parameters where the intermediate

mode treated the perceived values from the network, such as number of packet drops and

RTT in AND/OR gate fashion to determine whether to move to the advanced stage of the

compression technique. Finally, the active mode was the simplest of all, as compression was

activated in the least adaptive manner.

To test and validate the proposed compression technique, NS3 was used to simulate the

network. The three different modes were tested on the same network set-up suffering from the

same congestion problems. All of the results were compared to a transmission session where

no compression was being used.

All of the proposed modes did improve the network conditions by reducing the number of

packet drops, increasing the TCP efficiency of the transmission session, reducing the time of

recovery, and finally reducing the end-to-end delay. The reduced number of dropped packets

increased the TCP efficiency, as a lower number of packets required a retransmission. Further-

more, a reduction of the end-to-end delay was observed and indicated by the lower average

RTT values gathered from the network.

Chapter 5

Adaptive Distributed Compression and
Decompression Scheme Utilizing
Intermediate Network Nodes

5.1 Introduction

In this chapter, the focus will be on the design and validation of the process of compres-

sion and decompression on the payloads of packets within the intermediate nodes of a given

network as means of reducing congestion as shown in Figure 5.1. The compression and de-

compression processes are performed on a packet-per-packet basis to prevent and reduce high

network latency. In this scenario, the end-hosts are liberated from performing the compression

and decompression processes. Additionally, only one lossless compression algorithm, LZO,

will be used in the proposed scheme, due to it having high compression and decompression

speeds.

The advantage of compressing payload data inside the network is the packets’ payloads

are subject to compression, regardless of the application transmitting the data. However, to

perform any advanced packet processing, such as payload compression within the network, ad-

vanced intermediate nodes1 are required. The advanced intermediate nodes should be capable

of performing traditional packet forwarding functions as well as payload processing.

1Advanced intermediate nodes are intermediate nodes, such as routers or switches or firewalls, capable of
performing traditional and advanced packet processing functions.

74

5.1. Introduction 75

Figure 5.1: Sample Network where the Compression and Decompression Processes Occur Within the
Intermediate Nodes of the Network.

The intermediate nodes have a better sense of the network condition, whether it is congested

or otherwise. Therefore, these nodes have a clearer view of the necessity of compression at a

given time [26]. It is known that packet queuing occurs at the intermediate nodes when the

incoming rate of packets is greater than the nodal processing rate. If queuing occurs, the

network is considered to be congested [43].

The proposed scheme suggests that the queues of the intermediate nodes are defined ac-

cording to an M/D/1 queue. When using an M/D/1 queue to represent a node, it is understood

that the incoming packet rate is defined according to a stochastic process and the nodal pro-

cessing rate is fixed. Therefore, it is possible to calculate the average waiting time for each

packet in the queue of an intermediate node using equation (5.3).

In this chapter, the proposed scheme compresses packets’ payloads only if they are in the

intermediate nodes where the average waiting time of each packet is greater than the necessary

time to compress the payload of that particular packet. Additionally, each packet experiences

compression once throughout its journey within the network.

As mentioned earlier, the packet generation process is defined according to a stochastic

process, such as the Poisson Process of arrival. Each source node has a packet generation rate

of λ where the rate is a fraction of the maximum forwarding rate of the intermediate nodes.

Different λ rates are simulated to represent different loads within the network. As the value of

76 Chapter 5. Adaptive Distributed Compression Technique

λ increases, the congestion state of the network will increase.

5.2 Queueing Model for the Network

The network topology considered is shown in Figure 5.2. In this topology, the source nodes

are marked as S i and the destination nodes marked as Di. Most importantly, the intermediate

nodes are represented as Ni. The intermediate nodes are similar in all aspects, such as queue

size and average service time. Furthermore, the intermediate nodes are represented using a

queuing model, as shown in Figure 5.3.

S0 N0 N1 N2 N3 N4 D4

S1

D0

S2

D1

S3

D2

S4

D3

Figure 5.2: Parking Lot Topology With Intermediate Nodes Capable of Advanced Data Processing

λ
o

μ λ
i

μ λ
i+1

μ

Figure 5.3: Queue View From the Intermediate Nodes’ Perspective

According to the M/D/1 queuing model 2, the intermediate nodes perceive a certain stochas-

tic external arrival rate and have a deterministic service rate. The perceived external arrival rate

2Queue lengths according to this model are infinitely large. However, in practice, intermediate nodes have a
limited buffer space.

5.3. Packet Generation Rate 77

is directly related to the packet generation rate, λi, at the source nodes. The packets are gener-

ated at a rate defined by the Poisson Process of arrival. Furthermore, the service rate, µi, is a

fixed and defined processing rate of the intermediate nodes.

The service rate of each packet depends on how fast the intermediate nodes service the

arriving packets. In a wired network without any packet collision detection or data retransmis-

sion, the service rate will be defined as in equation (5.1) [41].

Tµ =
L
R
, (5.1)

where L is the size of the data to be transmitted and R is the bandwidth. Therefore, the service

frequency of each intermediate node is defined as shown in equation (5.2)

µ =
1
Tµ

. (5.2)

Since the service time is identical for all packets, the expected packet waiting time in a

queue is defined according to the Pollaczek − Khinchin (P-K) formula, as shown in equation

(5.3) [42].

W =
ρ

(2 ∗ µ ∗ (1 − ρ))
, (5.3)

where ρ is known as the utilization factor and defined as,

ρ =
λ

µ
. (5.4)

5.3 Packet Generation Rate

The source nodes have a packet generation rate defined according to a Poisson Process of

arrival 3. The network was designed where the intermediate nodes see a packet generation rate

of λ from each source node. Furthermore, the value of λ was chosen to be a fraction of the

3The source nodes considered are generating compressible strings of data.

78 Chapter 5. Adaptive Distributed Compression Technique

maximum number of packets a forwarding node can handle. The maximum number of packets

a forwarding node can handle was defined as shown in equation (5.5).

NF =
Rlink

Lpacket size
, (5.5)

where the Rlink variable is the bandwidth (BW) of the link and Lpacket size is the size of the

incoming packet.

Assume a case where there are multiple S source nodes, with equal packet generation rates,

connected to a forwarding node with a packet forwarding rate of NF . In such a case, the total

generation rate is λt = λ1 + λ2 + ... + λS = S ∗ λ, where congestion will occur if λt > NF ,

ultimately leading to dropped packets and a higher latency. Therefore, to avoid congestion,

λ < NF
S . However, in this chapter, the ratio for two scenarios was chosen to be slightly larger

than 1/S , where λ
NF
> NF

S , thereby simulating a network suffering from congestion.

Furthermore, the average number of packets in a queue is defined as,

NQ =
ρ2

2 ∗ (1 − ρ)
, (5.6)

where NQ → ∞ as ρ → 1 [42]. This can be shown in Figure 5.4 where, as λ increases and

approaches the value of µ, the number of dropped packets will increase. This is due to the queue

of the intermediate node being capable of holding a finite number of packets. The increase in

the dropped number of packets is a direct reflection of the stress placed upon the network.

5.3. Packet Generation Rate 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50

ρ

A
ve

ra
ge

N

um
be

r
of

 P
ac

ke
ts

 in
 Q

ue
ue

Figure 5.4: Average Number of Packets in a Queue of an Intermediate Node as a Function of ρ

80 Chapter 5. Adaptive Distributed Compression Technique

5.4 Compressed and Non-compressed Packet Identification

An intermediate node will be able to identify whether a packet is compressed or not by

analyzing the value in the EtherType header field. If a packet’s payload was compressed

in the Ni node, then node Ni+1 will not perform the compression process due to unnecessary

redundancy. The value of the header field indicates the condition of the payload, as shown in

Figure 5.5 .

NC Compressed

00

11

8 Bytes 8 Bytes 2 Bytes 46-1500 Bytes 4 Bytes

D MAC S MAC EtherType Data CRC

Figure 5.5: Identifying if the Payload is Compressed or Otherwise

5.5 Implementation

The implementation of the proposed adaptive distributed compression and decompression

scheme requires the intermediate nodes of a network to be capable of performing traditional

routing functions and advanced packet processing mechanisms. Any intermediate node ca-

pable of performing additional packet processing within its queue is known as an advanced

intermediate node.

According to [26], the advanced intermediate node must have dedicated hardware to per-

form the compression and decompression processes. The dedicated hardware is necessary to

ensure that the processes are carried out in a timely manner, without degrading the QoS while

avoiding bottleneck situations.

5.5. Implementation 81

Prior to discussing the implementation of an advanced intermediate node, the details and

make-up of a generic intermediate node, such as an L3 router, are briefly reviewed in the

sections to follow.

5.5.1 Generic/Traditional Routers

An abstract view of a generic L3 router is shown in Figure 5.6. From this figure, it can

be seen that there are two major function planes, software and hardware, and four major

components to be considered when analysing routers. The four major components include

input ports, output ports, switching f abric, and routing processor. Each component has

a set of well defined functions that are executed harmoniously to stimulate seamless packet

handling [40].

Software and Hardware Planes

From Figure 5.6, it can be seen that the router functions on two different planes. The soft-

ware plane is known as the router control plane where router control functions are executed by

the routing processor. These functions are implemented in software and they include executing

routing protocols, maintaining routing tables, and other network management operations.

The hardware plane is referred to as the router forwarding plane and it is responsible for

executing the router forwarding functions. The collective of the router’s input ports, output

ports, and switching fabric constitutes the forwarding function of the router. They are exclu-

sively implemented in hardware for timing constraints.

Input Ports

The input port is the first segment of the router an incoming packet experiences. As shown

in Figure 5.7, the input port begins with a physical layer function known as line termination.

This function terminates an incoming physical link at a router. Following the physical layer

82 Chapter 5. Adaptive Distributed Compression Technique

S
w

itch
F

abric

R
outing

P
rocessor

Input P
orts

O
utput P

orts

R
outing, M

anagem
ent

C
ontrol P

lane (softw
are)

F
orw

arding D
ata

P
lane (hardw

are)

Figure
5.6:A

bstractV
iew

ofL
3

R
outerA

rchitecture

5.5. Implementation 83

functions, the router performs data-link layer processes to interoperate with the data-link layer

at the other end of the line.

Line
Termination

Lookup, Forwarding,
Queuing

Data-Link
Processing
(protocol

decapsulation)

Switching
Fabric

Figure 5.7: Input Port Stages Experienced by Packets

The most important function performed by the input port is determining the correct out-

put port using the lookup function. The router utilizes the switching fabric to move a packet

from the input port to the output port, however, this occurs after consulting the routing table

fabricated by the routing processor.

The routing processor continuously computes and updates the forwarding table where a

copy is stored at each input port. The lookup function will perform the necessary steps, such

as searching through the forwarding table, to determine the output port of a packet.

Switching Fabric

The switching fabric is responsible for moving packets from the input ports to the output

ports. This process occurs after the lookup function in the input port performs a search in the

forwarding table to determine the output port. There are a few methods currently in use by

switching fabrics, such as switching via memory or switching via an input-output shared bus.

Output Ports

The output port of the router is responsible for handling the packets received from the

switching fabric as shown in Figure 5.8. The output port will queue the incoming packets and

84 Chapter 5. Adaptive Distributed Compression Technique

then perform the necessary data-link and physical layer functions to successfully transmit the

packet.

Line
Termination

Queuing(buffer
management)

Data-Link
Processing
(protocol

encapsulation)

Switching
Fabric

Figure 5.8: Output Port Stages Experienced by Packets

The queue of the output port is responsible for packet loss in many networks. To further

understand how, assume a router with N input and N output ports connected to identical links

with identical transmission speeds, Rline pps. Furthermore, assume that the switching fabric’s

transfer rate is Rswitch = N ∗ Rline to minimize the queue at the input port. Additionally, assume

that all packets received by the router are of identical size. In the worst case scenario, when all

N input ports receive packets destined to the same output port, designing Rswitch to be N ∗ Rline,

will clear all packets through the switching fabric before a new set of packets arrives.

Since the output port is operating at Rline, a queue will form since the switching fabric is

operating at a higher rate. Eventually, the memory of the output port will be exhausted due to

forming a large queue. Once a large queue is formed, new incoming packets are dropped due

to the lack of space.

Routing Processor

The routing processor is responsible for executing different routing control functions in-

cluding the execution of the correct routing protocols, maintaining and updating the routing

table, maintaining the status of the attached links, maintaining and computing the forwarding

table of the router, and performing network management functions.

5.5. Implementation 85

5.5.2 Hardware Implementation

To implement the proposed scheme, an advanced router or intermediate node is required.

The advanced node contains additional hardware and software that allow the node to behave in

a desired way. The following sections describe the structure of an advanced intermediate node.

5.5.3 Anatomy of An Advanced Intermediate Node/Advanced L3 Router

The differences between a traditional and an advanced router primarily rest in the function-

ality of the router and then in the physical hardware, as shown in Figure 5.9. The advanced

router can not only perform traditional routing functions, it is also capable of executing pro-

cesses and services that are typically not available in a traditional router. The added functions

are present in both the software and hardware planes. Furthermore, there is an increased level

of cooperation between the two planes. The following subsections will describe the added

functionalities and hardware to each major component of a traditional router.

Software and Hardware Planes

The software or the router control plane of an advanced router is similar to a traditional

router but with added processes for the routing processor to execute. Additionally, the routing

processor is now involved in triggering advanced functions in the hardware plane. The in-

creased cooperation between both planes allows seamless operation of the proposed compres-

sion and decompression scheme. The hardware plane of an advanced router is significantly

different than the traditional router due to the added hardware. The added hardware is capable

of performing header inspections, decisions regarding whether a packet payload requires com-

pression or decompression, and perform the compression or decompression processes seam-

lessly.

86 Chapter 5. Adaptive Distributed Compression Technique

L
in

e
Term

ina
tion

D
a

ta
-Link

P
roce

ssin
g

(p
ro

toco
l

de
cap

sulatio
n

a
nd

h

e
ad

ers
in

spe
ction

)

L
in

e
Term

ina
tion

L
oo

ku
p, F

o
rw

a
rd

ing
,

Q
u

eu
in

g

S
w

itchin
g

F
a

b
ric

Q
u

e
uin

g
,

C
o

m
pre

ssion
/D

ecom
p

ressio
n

D
a

ta-Link
P

ro
ce

ssing
(p

roto
col

e
n

cap
sulatio

n)

Lin
e

Te
rm

ina
tio

n

L
in

e
Term

ina
tion

D
a

ta
-Link

P
roce

ssin
g

(p
ro

toco
l

de
cap

sulatio
n

a
nd

E

th
erTyp

e fie
ld

in
spe

ction
)

L
in

e
Term

ina
tion

L
oo

ku
p, F

o
rw

a
rd

ing
,

Q
u

eu
in

g
Q

u
e

uin
g

,
C

o
m

pre
ssion

/D
ecom

p
ressio

n

D
a

ta-Link
P

ro
ce

ssing
(p

roto
col

e
n

cap
sulatio

n)

Lin
e

Te
rm

ina
tio

n

In
pu

t P
o

rts
O

utp
ut P

orts

R
o

u
ting

P
roce

ssor

Monitor Incoming
Rate of Packets

Monitor Processing
Rate of Packets

Clock
(De)Compression

Process Time

R
ou

tin
g, M

a
n

ag
em

en
t

C
on

tro
l P

lan
e (softw

a
re

)

F
o

rw
a

rd
ing

 a
nd

C

om
pre

ssion
/D

eco
m

p
re

ssio
n

O
f D

a
ta P

lan
e

 (ha
rdw

a
re

)

Update Time
Condition Status

Figure
5.9:A

dvanced
L

3
R

outerA
rchitecture

5.5. Implementation 87

Input Ports

The input ports of an advanced router will perform the physical and data-link layer func-

tions of a traditional router, however, a header inspection function is added. This function will

examine the EtherType field to determine whether the packet is compressed or not. Addition-

ally, the routing processor will inform the hardware performing the header inspection whether

the timing condition, if the average expected waiting time is greater than the time required to

perform the compression process, is met.

Furthermore, the input ports will have three distinct queues, as shown in Figure 5.10, in-

cluding: f or− compression−queue, f or−decompression−queue, and f or− transmission−

queue. Incoming packets are queued in one of the three queues based on the header inspection

and lookup table results. The switching fabric is responsible for moving the packets from their

respective queues to the desired queue or function located in the output ports.

Line
Termination

Data-Link
Processing
(protocol

decapsulation
and

headers
inspection)

Switching
Fabric

for-transmission-queue

for-decompression-queue

for-compression-queue

Lookup, Forwading, Queuing

Figure 5.10: Input Ports With Advanced Functionality and Three Distinct Queues

In the case where the header inspection function returns a value from the EtherType field

indicating that the payload is compressed, the packet is then forwarded to one of the three input

port queues. The location of the packet will depend on the results of the lookup function. If the

lookup function determines that the packet is heading towards its destination, the packet will

be enqueued in the f or − decompression − queue. However, if the packet is heading towards

another advanced intermediate node, the packet will enqueued in the f or − transmission −

queue.

In cases where the header inspection function returns a value from the EtherType filed

indicating that the payload is not compressed, the packet will be forwarded to one of the three

88 Chapter 5. Adaptive Distributed Compression Technique

input queues. Initially, the lookup function is consulted to determine whether the next hop is

the packet’s final destination or not. If the next hop is indeed the packet’s final destination,

the packet will be queued in the f or − transmission − queue. However, if the lookup function

determines otherwise, the packet will be placed in the f or− compression−queue if the timing

condition is met.

Switching Fabric

The switching fabric will perform identical operations to that of a traditional router, that is

move a packet from the input port to the correct output port based on the results of the lookup

function. When the switching fabric moves a packet to the correct output port, depending on

the queue origin of the packet, the switching fabric will move the packet to their respective

queues. For example, if the packet is in the f or − compression − queue in the input port,

subsequent to determining the correct output port, the switching fabric will place the packet in

the f or − compression − queue of the compression thread in the output port.

Output Ports

The output port of the advanced router is similar to the traditional router, however, there

is extra hardware responsible for performing the compression or decompression process when

necessary. The hardware knows which process to execute by monitoring the compression and

decompression thread queues. These queues are filled by the switching fabric as it enqueues

packets in the compression − thread − queue or decompression − thread − queue or f or −

transmission − queue, depending on the originating queue from the input port. If packets

are enqueued in the compression or decompression queues, subsequent to the processes, the

resulting packets are enqueued in the f or − transmission − queue, as shown in Figure 5.11.

5.5. Implementation 89

Line
Termination

Data-Link
Processing
(protocol

encapsulation)

Switching
Fabric

for-transmission-queue

D
ecom

pressi on
-thread-qu eue

C
om

pre
ssion -thre

ad-queu e

Figure 5.11: Output Ports With Advanced Functionality to Perform the Required Compression and
Decompression Processes

Routing Processor

The routing processor of an advanced router performs the functions of a generic router and

more. It is capable of:

• Monitoring the incoming rates of packets for all input ports.

• Monitoring the number of packets in the input ports queues.

• Monitoring outgoing rates of packets for all output ports.

• Monitoring the number of packets in the output port queues.

• Clocking the compression and decompression processes carried out by the dedicated

hardware.

• Monitoring the outputs of the compression and decompression processes for successful

and failed outcomes.

• Calculating the P − K equation instantaneously and continuously.

• Performing the inequality/timing condition check and forwarding the values to the hard-

ware responsible for inspecting the headers of the incoming packets.

90 Chapter 5. Adaptive Distributed Compression Technique

For the routing processor to perform the traditional and advanced functions, the processor

must either be much more powerful than the processor of a generic router or dedicated hardware

can be used to perform the advanced functions.

5.5.4 Heuristic Algorithm

A different approach to how the advanced intermediate node operates is presented in Figure

5.12. In this figure, a flowchart representing a simplified heuristic algorithm is presented. The

purpose of this flowchart is to show how the scheme operates on a high level without diving

into the structure of an advanced intermediate node.

When the advanced intermediate node receives a packet, the node begins by determining

if the current node is the last advanced node the packet will encounter prior to reaching its

destination. Based on the nodes analysis of a packet’s route, the node will decide the fate of

the packet.

If the current node is the packet’s final advanced node prior to reaching the destination,

the node will investigate if the packet is required to pass through the decompression process.

Based on the results of the investigation, the packet is either decompressed and then forwarded

to the destination or simply just forwarded to the destination.

If the current node is not the last advanced node a packet will encounter prior to its desti-

nation, the node will subject the payload of the packet to the compression process if necessary

and if the timing conditions are met. If the timing conditions are not met, the packet is queued

and forwarded as is. However, if a packet is subjected to the compression process, i.e. the

timing conditions are met, the packet is compressed prior to forwarding it to the next node.

5.5. Implementation 91

Fi
gu

re
5.

12
:S

im
pl

ifi
ed

A
lg

or
ith

m
fo

rt
he

Pr
op

os
ed

Sc
he

m
e

92 Chapter 5. Adaptive Distributed Compression Technique

5.6 Simulation Model

To test and analyze network performance with middle nodes executing compression and

decompression processes, a simulation was conducted using NS3. The network topology used

was a parking lot topology as shown in Figure 5.13.

0 1 2 3 4 5 6

7

8

9

10

11

12

13

14

Figure 5.13: Network Topology Used for the Simulation

In this network, nodes 0,7,9,11, and 13 are packet senders while nodes 6,8,10,12, and 14

are packet sinks. The source-destination pair, node 0 to node 6, will be referred to as Stream 1.

Stream 1 will be primarily observed and analyzed in the following sections.

Multiple simulations were conducted to show the performance of the compression tech-

nique under various network loads. The network loads were determined by controlling the

packet generation rate. The first simulation conducted was designed to have all source nodes

have a packet generation rate, λ, equivalent to 50% of the maximum forwarding rate. The

second simulation was designed such that the source nodes had a packet generation rate equiv-

alent to 60% of the maximum forwarding rate. The final simulation was designed to have each

source node generate packets at a rate equivalent to 80% of the maximum packet forwarding

rate.

All of the flows generated packets according to Table 5.1 and the link speeds were 1.0

5.7. PerformanceMetrics and Results 93

Mbps. Each packet transmitted had a 500-byte payload. Furthermore, each packet used UDP

as well as IPv4 protocol for addressing.

λ pps NF pps Packet Generation Rate Mbps
Simulation 1 50% ∗ NF = 117.93 NF = 235.85 0.5
Simulation 2 60% ∗ NF = 141.51 NF = 235.85 0.6
Simulation 3 80% ∗ NF = 188.68 NF = 235.85 0.8

Table 5.1: Packet Generation Rate of Each Source Node as a Function of the Intermediate Node’s
Forwarding Rate

5.7 Performance Metrics and Results

The network performance and efficiency values are indicators of the network’s overall QoS.

The values are quantified using the following different metrics: number of dropped packets,

throughput, average number of packets in queue, average latency, and system efficiency.

The number of dropped packets is the number of packets lost during a transmission session.

There are situations where intermediate nodes enqueue packets from different flows into the

same buffer. This occurs when the node’s rate of incoming packets is greater than the node’s

rate of outgoing packets. Therefore, in such an event, packets are dropped once the node’s

queue is full. Furthermore, this situation is a clear indicator of network congestion [43]. The

ideal situation would be a transmission session with a minimal number of dropped packets.

Throughput is the total amount of data sent across the network over a given transmission

period [43]. A higher throughput is highly desirable as it indicates relatively better performance

of the network. Furthermore, certain applications may desire a certain throughput of x bytes

per second [11]. In equation (5.7), the definition throughput is given.

Throughput =
TS
TT

, (5.7)

where the term TS is known as the transfer size that defines the amount of data transferred in

bytes. Furthermore, the term TT is the total time of the transmission session in seconds.

94 Chapter 5. Adaptive Distributed Compression Technique

According to Little Law, the average queue length, L, of a node is defined by the average

service time of a packet, W, as well as the average arrival rate of packets, λ, per unit time [45].

In equation (5.8), the definition of Little Law is given.

L = λ ∗W, (5.8)

where λ is the average arrival rate in packets per second (pps) and W is the service time in

seconds (s) per packet.

The ideal case involves a very small W and a very large λ to maximize the number of pack-

ets serviced per node. In this case, the network congestion will decrease drastically, resulting

in a highly efficient network.

An extremely important network performance metric is the one-way latency of a given

stream. It is the measure of time, in seconds and on a per packet basis, of how long it takes

a packet to travel from the source to the destination. In this chapter, propagation delay was

ignored and only transmission and average queueing delay were accounted for. The following

equation describes the latency of each packet as it propagates through the network [44].

Latency = Td + Qd, (5.9)

Td =
ps
ls
, (5.10)

where Td is the transmission delay of each packet defined as a function of packet size (ps) and

link speed (ls). Furthermore, Qd is the queueing delay, which is a variable number that depends

on how busy the node is servicing other packets.

Finally, the system improvement metric is a ratio indicating the improvement of a system

in terms of dropped packets.

SYSImp =
(PDPC − PDAC)

PDPC
∗ 100. (5.11)

5.7. PerformanceMetrics and Results 95

The system improvement equation has two important variables, which are PDPC and PDAC.

The PDPC variable is the total number of packets dropped in a network prior to compression

where the PDAC variable is the number of dropped packets in a network post compression.

The results of simulating the network under different loads are shown in Figure 5.14. Fur-

thermore, the quantitative results are shown in Tables 5.2 to 5.7.

Stream 1 2 3 4 5
Packets Dropped 0 0 0 0 0

Average Latency (s) 0.344 0.184 0.096 0.057 0.037
Nodes 1 2 3 4 5

Throughput (Bytes/s) 124958 187437 187437 187437 124958
Average Queue Length 39.90 19.70 10.35 5.68 0.0

Table 5.2: Simulation Results with the Source Node Generation Rate of λ = 50% in the Absence of the
Compression Scheme

Stream 1 2 3 4 5
Packets Dropped 0 0 0 0 0

Average Latency (s) 0.023 0.015 0.013 0.014 0.013
Nodes 1 2 3 4 5

Throughput (Bytes/s) 125380 188070 188070 188070 125380
Average Queue Length 0.50 0.0 0.35 0.13 0.0

Table 5.3: Simulation Results with the Source Node Generation Rate of λ = 50% in the Presence of
the Compression Scheme

Stream 1 2 3 4 5
Packets Dropped 4710 4770 0 0 0

Average Latency (s) 1.242 0.428 0.425 0.261 0.163
Nodes 1 2 3 4 5

Throughput (Bytes/s) 124645 174731 199837 199837 124962
Average Queue Length 97.55 96.87 58.38 35.35 0.0

Table 5.4: Simulation Results with the Source Node Generation Rate of λ = 60% in the Absence of the
Compression Scheme

96 Chapter 5. Adaptive Distributed Compression Technique

Stream 1 2 3 4 5
Packets Dropped 0 0 0 0 0

Average Latency (s) 0.031 0.017 0.013 0.013 0.013
Nodes 1 2 3 4 5

Throughput (Bytes/s) 150996 226493 226493 226493 150996
Average Queue Length 1.25 0.38 0.64 0.65 0.0

Table 5.5: Simulation Results with the Source Node Generation Rate of λ = 60% in the Presence of
the Compression Scheme

Stream 1 2 3 4 5
Packets Dropped 14223 14303 0 0 0

Average Latency (s) 1.443 0.430 0.432 0.349 0.283
Nodes 1 2 3 4 5

Throughput (Bytes/s) 124545 149630 224848 224848 124967
Average Queue Length 98.44 98.45 78.94 63.43 0.0

Table 5.6: Simulation Results with the Source Node Generation Rate of λ = 80% in the Absence of the
Compression Scheme

Stream 1 2 3 4 5
Packets Dropped 8686 8751 0 0 0

Average Latency (s) 1.051 0.349 0.348 0.230 0.155
Nodes 1 2 3 4 5

Throughput (Bytes/s) 154047 208357 254469 254469 154390
Average Queue Length 98.19 98.87 63.74 41.55 0.0

Table 5.7: Simulation Results with the Source Node Generation Rate of λ = 80% in the Presence of
the Compression Scheme

5.8. Analysis 97

0 20 40 60 80 100 120
0

0.5

1

1.5

Elapsed Time (s)

D
el

ay
 (

s)

λ at 50% without compression
λ at 50% with compression
λ at 60% without compression
λ at 60% with compression
λ at 80% without compression
λ at 80% with compression

Figure 5.14: Simulation Results in the Absence and Presence of the Compression Scheme Under Dif-
ferent Network Loads

5.8 Analysis

In this section, Stream 1 will be primarily analyzed. Tables 5.2 to 5.7 show the results

of the simulation, with and without compression, under different network loads. Each table

represents the results of the system when the source nodes are generating packets at a rate that

is a fraction of the maximum number of packets a forwarding node can handle.

When the source nodes were generating packets at a rate of λ = 50%, the network was

performing relatively well due to the lack of congestion. From Table 5.2, one can see that the

number of dropped packets by all streams was 0 prior to compression. Additionally, the aver-

age latency as well as the queue length size were relatively small. After enabling compression,

the size of the average queue length and latency became smaller. Therefore, enabling compres-

sion in a non-congested network was beneficial, though unnecessary, due to the small gain in

benefits. The reason that the network did not drop any packets was that the source nodes had a

packet generation rate that was equivalent to the forwarding nodes.

Consider the case of a slightly congested network where λ = 60%. From Table 5.4 and 5.5,

it was clearly shown that the number of dropped packets by Stream 1 decreased dramatically

after enabling compression. Prior to compression, the number of dropped packets by Stream 1

98 Chapter 5. Adaptive Distributed Compression Technique

was 4, 710. Further, the total number of packets dropped by the network was 9, 480. However,

after compressing and decompressing packets in the middle nodes using LZO as a compression

algorithm, the number of dropped packets by Stream 1 was 0. Furthermore, the total number

of packets dropped by the network was reduced to 0. Using the system efficiency equation, the

network was 100.0% more efficient after enabling compression due to the sharp decrease in

number of dropped packets.

The average latency for Stream 1 prior to compressing packets within the network was

1.242 s. However, after compressing packets within the network, the average latency decreased

to 0.031 s, which is equivalent to a 97.50% decrease. When comparing the average queue

length of intermediate nodes prior and post compression, it is shown that there was a drastic

decrease in values. The lower queue length values show that the intermediate nodes were able

to forward packets rapidly due to their smaller size.

Moreover, the decrease in the number of dropped packets and the decrease in the average

latency indicates a drastic improvement in the performance of the network. The improvement

is a direct reflection of a successful packet payload compression rendering the network to be

truly non-congested.

Looking at the intermediate nodes, Table 5.5 shows that post compression, the throughput

of nodes 1,2,3,4, and 5 increased significantly. The reason behind the significant increase in

throughput values was purely due to the definition of throughput using equation (5.7). Equation

(5.7) defines throughput as a function of transmission time and packet size. As the packet

size and transmission time decrease in value, the output of the throughput equation increased.

Taking into account the other values, such as average latency or number of dropped packets, it

is clear that a higher throughput is more desirable as it indicates a healthier and highly efficient

network.

Finally, as mentioned before, the value of the average latency, average queue length, and

number of dropped packets sharply decreased rendering the network to be in a non-congested

state and as such comparable to the performance of the network when λ = 50%. Thus the

5.8. Analysis 99

benefits of compression in a slightly congested network are quite large.

In a heavily congested network where λ = 80%, the compression technique slightly im-

proved network performance. Prior to compression, Stream 1 dropped 14, 223 packets and had

an average latency of 1.443 s. However, after compression, the number of dropped packets

decreased to 8, 686 and the average latency decreased to 1.051 s. Using the system efficiency

equation, the network was 40.0% more efficient due to the slight decrease in the number of

dropped packets. Furthermore, the average latency decreased by 27.2%.

The average queue lengths remained relatively the same, though the throughput of the

intermediate nodes slightly increased. The increase in throughput was due to the decrease

in the size of the packets as well as the transmission time of each packet. Therefore, if one

considers all of the attributes of the heavily congested network post compression, one will find

that the network performance slightly improves and is comparable to the network when slightly

congested where λ = 60%.

The major difference between the packets prior to and post after enabling compression and

decompression within the network was the packet’s payload size. The original payload size of

a packet was 500 bytes; however, after compressing the payloads with LZO, the payload of the

packet decreased to 399 bytes. Using equation (2.9), the payload of the packet was reduced by

approximately 20%.

Even though the size of the payload was slightly reduced, the number of dropped packets

and latency decreased dramatically. The decrease in values was a reflection of lower network

congestion. Therefore, performing payload compression and decompression within the net-

work was an effective way of mitigating congestion. Finally, it is important to note that the

time spent to compress and decompress a packet’s payload using the LZO compression algo-

rithm was approximately 30 us and 20 us, respectively. Based on the results of the simulation,

the time spent compressing and decompressing payloads is worth investing in due to the re-

duced network congestion and other aforementioned benefits.

100 Chapter 5. Adaptive Distributed Compression Technique

5.9 Summary

In this chapter, high latency and high packet loss rates were mitigated through enabling

packets’ payload compression and decompression within the intermediate nodes of the net-

work. The proposed technique used queuing theory principles, such as modeling an inter-

mediate node as an M/D/1 queue. The model helped calculate the average waiting time for

each packet in the queue of an intermediate node. This was accomplished by knowing that

the generated traffic was modelled after a stochastic process and the intermediate nodes had a

deterministic service time.

Source nodes generated packets according to a Poisson Process of arrival where the packet

generation rate, λ, was designed to be a fraction of the maximum forwarding rate, NF, of the

intermediate nodes. To be precise, different λ values represented different levels of stress on

the network.

The compression of packets was performed if the average waiting time of a packet in the

queue was larger than the time required to perform compression. Each packet experienced

compression once throughout its journey within the network. Additionally, a lossless compres-

sion algorithm, LZO, was used in the proposed scheme to ensure the integrity of the data, as

well as high compression speed to avoid negatively affecting the network condition.

Chapter 6

Conclusion

6.1 Conclusion

Data networks suffer from induced congestion due to the dynamic nature of traffic as well as

the incoming rate of packets exceeding the available processing resources. Given this conges-

tion, networks may experience high end-to-end delays, high packet loss rates, low bandwidth

utilization efficiency, and low throughput values. To mitigate these congestion problems, vari-

ous compression techniques have been proposed.

The proposed compression techniques are adaptive in nature and manifest in different

forms. Additionally, the proposed techniques utilize compression algorithms that are loss-

less and so the integrity of the data is maintained. The proposed techniques operate by com-

pressing and decompressing the packets’ payloads at the source-destination pair or within the

network. The compression operation is done in a packet-by-packet fashion to prevent any la-

tency induced by decompression. When packets are compressed in this fashion, the receiver

can process and decompress each packet as soon as it is received instead of holding it in the

buffer until a dropped packet is retransmitted.

The first compression technique proposed is the adaptive technique based on real-time RTT

feedback. In this technique, three different modes utilize the RTT values in different ways to

activate the compression and decompression processes for the packets. These three modes are

known as passive, intermediate, and active.

101

102 Chapter 6. Conclusion

In passive mode, the network utilizes performance history to define a BLRTT. The his-

tory is gathered from the initial stage of deployment where the BLRTT is the average of the

gathered RTT values. Once the BLRTT is defined, the transmission phase begins. During the

transmission phase, the RTT values are continuously monitored and compared to the BLRTT

value. If the monitored RTT value exceeds the BLRTT by a certain threshold, compression

is activated, either LZO or ZLIB. However, if the monitored RTT value does not exceed the

BLRTT, transmission will continue as is.

In the intermediate mode, the lossless compression algorithms, LZO and ZLIB, are com-

bined together in a manner similar to using AND or OR logic gates. Firstly, an initial BLRTT

value is defined. Once the transmission process commences, the IRTT value is continuously

monitored. If the IRTT value crosses the BLRTT value by a certain threshold, LZO compres-

sion is activated; otherwise normal transmission will continue.

After activating the LZO compression, the intermediate mode starts to define itself. While

using the AND method, two conditions are monitored and must be true before activating ZLIB

compression, i.e. moving into the advanced stages of the intermediate mode. To move to the

advanced stage after activating the LZO compression algorithm, a newBLRTT and a threshold

for an acceptable number of dropped packets must both be defined. Once the IRTT value

crosses the newBLRTT value AND the number of dropped packets exceeds the acceptable

limit, ZLIB compression is activated.

However, if the OR method is selected, at the stage post activating LZO compression, a

newBLRTT and the threshold of an acceptable number of dropped packets are defined. The

activation of the advanced stages, i.e. ZLIB compression, depends on whether the IRTT value

crosses the newBLRTT value OR the number of dropped packets exceeds the acceptable thresh-

old. In other words, ZLIB compression is active as soon as either condition is met.

The simplest of all modes that utilize RTT as a measure of whether to activate compression

or not is the active mode. The active mode lacks any tolerance in comparison to the other

modes. It operates by initially defining a BLRTT value. Once the packet transmission begins,

6.1. Conclusion 103

the IRTT value is continuously monitored and compared to the BLRTT value. As soon as the

IRTT value exceeds the BLRTT value, compression is activated.

The performance metrics used to evaluate each mode are the number of dropped packets,

average RTT values, TCP efficiency, and duration of recovery. The number of dropped packets

is the total lost packets in the transmission session. As the number of dropped packets de-

creases, the network is considered to be less congested. The average RTT is a mild indicator

of whether the network is performing better or not. It does not necessarily mean the efficiency

of the network increased if the RTT value decreased. In addition, TCP efficiency is the ratio

that indicates the number of successfully transmitted packets, and duration of recovery is the

length of time the transmission requires to return to a normal state.

In passive mode, the number of dropped packets decreased from 35 packets, when the net-

work did not use any compression, to 24 packets while using LZO algorithm, and 19 when

utilizing ZLIB. This dramatic decrease in the number of dropped packets indicates a less con-

gested network. Furthermore the average RTT value decreased, which indicates a decrease in

the end-to-end delays. Additionally, the TCP efficiency increased, indicating a lower number

of retransmission due to a lower number of dropped packets. Finally the duration of recovery

decreased by 0.5 s when using LZO and 0.9 s when utilizing ZLIB.

In intermediate mode, the number of dropped packets decreased from 35 packets, when

the network did not use any compression, to 29 while using the AND method, and further

decreased to 19 while using the OR method. The OR method had a lower number of dropped

packets because it activated ZLIB compression at an earlier stage as only one condition is

required to be met to activate the ZLIB compression algorithm. The average RTT values for

both AND or OR methods were much lower than the RTT values of the session without any

compression, thus indicating a lower end-to-end delay. In addition, the TCP efficiency values

increased and the duration of recovery time decreased.

For the active mode, the number of dropped packets while using LZO was 30, which was

higher than any other scheme. This is due to the active mode not being adaptive to the network

104 Chapter 6. Conclusion

behavior. However, when ZLIB was used, the number of dropped packets was 19. This was

due to using ZLIB compression algorithm at an early stage, which resulted in extremely small

packets for transmission. Finally, the lowest RTT value was achieved when ZLIB was used in

active mode. This low value indicates the severe decrease in the end-to-end delay within the

network.

The second proposed compression technique is the distributed technique where the com-

pression and decompression processes occur in the intermediate nodes along the path between

the source-destination pair. This technique uses LZO to perform the compression and decom-

pression processes due to the algorithm’s lossless property. Furthermore, each packet experi-

ences the compression and decompression processes once throughout its journey.

For the second compression technique, the network is modelled using queuing theory tech-

niques as an M/D/1 queue. In such a model, the expected average waiting time of a packet

in the queue of an intermediate node may be calculated using the P − K equation. The time

a packet waits in the system is compared to the time necessary to compress the payload. If

the waiting time is greater than the time needed to perform compression then the payload of

the packet is compressed. The payload of the packet will be decompressed at the intermediate

node prior to the destination.

In this proposed system, packets were compressed in a packet-by-packet fashion to pre-

vent the possible decompression induced latency, as previously mentioned. The performance

metrics used to measure the efficiency of the proposed technique were the number of dropped

packets, the value of the throughput, the number of packets in the queue of intermediate nodes,

the average latency, and the improvement in system behavior based on the reduced number of

dropped packets.

To test the proposed technique under different conditions, the arrival rate of packets at the

intermediate nodes was modeled according to a Poisson Process. The arrival rate was set at

different values where each rate corresponded to a ratio of the link speeds of the intermediate

nodes. For an arrival rate of λ = 50%, the packet arrival rate, i.e., generation rate, corresponded

6.1. Conclusion 105

to 0.5 Mbps.

When λ = 50%, the number of dropped packets prior to and after compression was zero

packets. Even though the number of dropped packets was zero before and after compression,

the latency severely decreased. For Stream 1, the average latency decreased from 0.344 s to

0.023 s. Furthermore, the average throughput slightly increased for the intermediate nodes

as the packet size decreased. Finally, the queue length of the intermediate nodes drastically

decreased after compression due to the increase of throughput.

When λ = 60%, the packet generation rate occupied 120% of the link’s bandwidth, i.e. the

processing rate of the intermediate nodes. The lack of bandwidth resulted in packet drops due

to a full buffer at the intermediate nodes. The number of dropped packets was 9480 from both

Stream 1 and Stream 2. However, once the compression technique was activated, the number

of dropped packets decreased dramatically to 0 packets. The average latency decreased from

1.242s to 0.031s. Furthermore, the throughput increased by a great margin, which made the

length of the queues decrease.

At the point when the packet generation rate was increased to λ = 80%, the incoming

packet rate exceeded the available bandwidth by 60%. The lack of available bandwidth resulted

in approximately 28,500 packets being dropped, which was reduced to 17,437 after activating

the compression scheme. Furthermore, the average latency for Stream 1 decreased from 1.443s

to 1.051s. Finally the throughput of the intermediate nodes slightly increased and the average

queue lengths remained relatively the same.

It can be seen from the previous three cases that the adaptive compression technique en-

hanced the performance of the network. To be precise, the number of dropped packets, the

average latency, and the average queue length decreased and finally the throughput of the in-

termediate nodes increased, thereby proving the effectiveness of the compression technique at

the intermediate nodes.

In both adaptive compression techniques, the major change within the network when they

were active was the packet size. The slight decrease in packet size made the network process

106 Chapter 6. Conclusion

the data more quickly. Therefore the network congestion slightly decreased, which resulted in

a decrease in the average latency.

6.2 Future Work

Several additions to the proposed work can be considered as future work. These additions

are considered modifications to the current operational method of the adaptive compression

technique within the network.

6.2.1 First Set of Additions

The first set of additions includes two new measures to assess which packets to compress

and how to handle the compression level as the utilization factor, ρ, changes. The goal of the

first new measure is to prioritize the packets for compression according to size or application

or both. For example, packets of larger sizes are compressed prior to packets of smaller sizes.

The goal of the second measure is to change the compression level according to the value of ρ.

For example, if ρ increases, the compression level should be increased to further decrease the

size of the packets.

The ideal way of implementing the said measures is by having two or more separate, yet

cooperative, threads to perform the compression process. For example, one thread would be

dedicated to compressing packets of a relatively large size when compared to the other packets

in the queue.

If all of the above additions were activated, one must prevent a possible congestion col-

lapse from happening. A congestion collapse occurs when the buffer of the intermediate nodes

becomes too large, resulting in a large queue. The queue would be so large that some packets

will time-out before leaving the queue, consequently a retransmission from the source node is

required. Unfortunately, the retransmitted packet will suffer from the same fate as the original

packet [46].

6.2. FutureWork 107

If a packet is compressed within the network, the packet header must be manipulated to

indicate that a change occurred. To perform the header update, the intermediate node must be

capable of processing the header accordingly. However, the intermediate node should com-

pare the size of the packet prior to and after compression; if the packet increases in size after

compression then the intermediate node should send the original packet.

Another important addition is an algorithm to calculate the minimum size of packets to

compress and the minimum size the packet can be after going through a compression process.

The minimum size of packets is important for the Carrier Sense Multiple Access/Collision

Detection (CSMA/CD). If the packet is too small, a padding mechanism should be included to

increase the overall size.

Finally, an efficient mechanism must be developed such that packet compression and en-

cryption within the network can coexist. One proposed method is the exchange of symmet-

ric/asymmetric encryption keys between the source-destination pairs with the intermediate

nodes. Another method would be using hardware encryption and decryption schemes where

only specific hardware with a certain identification marker can encrypt and decrypt the data.

6.2.2 Second Set of Additions

The second set of additions includes Software Defined Networking (SDN) techniques to

control the process of compression. A controller would instruct the intermediate nodes whether

to compress the incoming packets or not. Furthermore, the controller would know the type of

data being transmitted and whether the compression would be successful or otherwise. Using

this coordination, the controller would save the intermediate nodes from compressing packets

where compression would be redundant.

6.2.3 Simulation and Implementation

The first action must be simulating the adaptive compression techniques with aforemen-

tioned additions. If the results show an improvement in network conditions, the said additions

108 Chapter 6. Conclusion

must be included into the final version of the adaptive compression scheme. The next item on

the agenda would be implementing the compression scheme on a hardware platform such as a

Field-Programmable Gate Array (FPGA) board.

Bibliography

[1] W. Liu, L. Parziale, and C. Mathews, “Chapter 8: Quality of Service,” in TCP/IP Tutorial
and Technical Overview, 6th ed., Vervante, 2006, pp. 287-289.

[2] R. Braden, D. Clark, and S. Shenker, RFC 1633: Integrated Services in the Internet Archi-
tecture: an Overview, RFC EDITOR, 1994.

[3] Y. Matias and R. Refua, “Delayed-dictionary compression for packet networks,” in Annual
Joint Conference of the IEEE Computer and Communications Societies, 2005, pp.1443-
1454.

[4] E. Jeannot, B. Knutsson, and M. Bjorkman, “Adaptive Online Data Compression,” in IEEE
High Performance Distributed Computing (HPDC11), pp. 379-388, Edinburgh, Scotland,
July 2002.

[5] J. Kurose and K. Ross, “Chapter 1: Computer Networks and the Internet,” in Computer
Networking: A Top-Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012,
pp. 1-60.

[6] J. Kurose and K. Ross, “Chapter 2: Application Layer,” in Computer Networking: A Top-
Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012, pp. 101-102.

[7] P. Larry and D. Bruce, “Chapter 1: Foundation,” in Computer Networks ISE: A Systems
Approach, 4th ed., Morgan Kaufmann Publishers Inc., 2007, pp. 41-42.

[8] A. Tanenbaum and D. Wetherall, “Chapter 5: THE NETWORK LAYER ,” in Computer
Networks, 5th ed., Prentice Hall, 2011, pp. 392-404.

[9] M. Welzl, “Chapter 2: Congestion Control Principles,” in Network Congestion Control:
Managing Internet Traffic, John Wiley & Sons, 2005, pp. 7-10.

[10] A. Tanenbaum and D. Wetherall, “Chapter 1: Introduction ,” in Computer Networks, 5th
ed., Prentice Hall, 2011, pp. 29-40.

[11] J. Kurose and K. Ross, “Chapter 2: Application Layer ,” in Computer Networking: A
Top-Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012, pp. 83-168.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
RFC 2616: Hypertext Transfer Protocol – HTTP/1.1, RFC Editor, 1999.

109

110 BIBLIOGRAPHY

[13] A. Tanenbaum and D. Wetherall, “Chapter 6: THE TRANSPORT LAYER,” in Computer
Networks, 5th ed., Prentice Hall, 2011, pp. 496-498.

[14] A. Tanenbaum and D. Wetherall,“Chapter 7: THE APPLICATION LAYER,” in Com-
puter Networks, 5th ed., Prentice Hall, 2011, pp. 646-683.

[15] J. Postel, RFC 793: Transmission Control Protocol, RFC EDITOR, 1981.

[16] J. Kurose and K. Ross, “Chapter 3: Transport Layer,” in Computer Networking: A Top-
Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012, pp. 185-283.

[17] J. Kurose and K. Ross, “Chapter 4: The Network Layer,” in Computer Networking: A
Top-Down Approach, 6th ed., Addison-Wesley Publishing Company, p. 305-412, 2012.

[18] M. Arregoces and P. Maurizio, “Chapter 7: IP, TCP, UDP,” in Data Center Fundamentals,
Cisco Press, 2003, pp. 241-306.

[19] M. Arregoces and P. Maurizio, “Chapter 12: Layer 2 Protocol Essentials,” in Data Center
Fundamentals, Cisco Press, 2003,pp. 479-500.

[20] A. Tanenbaum and D. Wetherall, “Chapter 3: THE DATA LINK LAYER,” in Computer
Networks, 5th ed., Prentice Hall, 2011, pp. 194-197.

[21] J. Kurose and K. Ross, “Chapter 5: The Link Layer: Links, Access Networks, and LANs,”
in Computer Networking: A Top-Down Approach, 6th ed., Addison-Wesley Publishing
Company, 2012, pp. 433-500.

[22] C. Kozierok, “Chapter 6: OSI Reference Model Layers,” in The TCP/IP Guide: A Com-
prehensive, Illustrated Internet Protocols Reference, No Starch Press, 2005, pp. 102-113.

[23] A. Tanenbaum and D. Wetherall, “Chapter 2: THE PHYSICAL LAYER,” Computer Net-
works, Prentice Hall, 2011, pp. 90-95.

[24] M. Nelson, The Data Compression Book, Prentice Hall, 1991, pp. 1-172.

[25] R. Gallager, Course materials for 6.450 Principles of Digital Communications I, Mas-
sachusetts Institute of Technology OpenCourseWare, 2006.

[26] M. Shimamura, T. Ikenaga, and M. Tsuru, “Compressing Packets Adaptively Inside Net-
works,” in Ninth Annual International Symposium on Applications and the Internet, 2009,
pp.92-99.

[27] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data Compression, IEEE
Trans. Information Theory, vol. 23, no. 3, pp. 337-343, May 1977.

[28] LZ77 Compression Algorithm, Microsoft Developer Network, 2015.

[29] P. Deutsch and J.-L. Gailly, RFC 1950: ZLIB Compressed Data Format Specification
version 3.3, RFC Editor, 1996.

BIBLIOGRAPHY 111

[30] Deutsch, P., RFC 1951: DEFLATE Compressed Data Format Specification version 1.3,
RFC EDITOR, May 1996.

[31] C. Krintz and S. Sucu, “Adaptive on-the-fly compression,” in IEEE Transactions on Par-
allel and Distributed Systems, vol.17, no.1, pp.15-24, 2006.

[32] A. Tanenbaum and D. Wetherall, “ Chapter 4: THE MEDIUM ACCESS CONTROL
SUBLAYER,” in Computer Networks, 5th ed., Prentice Hall, 2011, pp. 290-296.

[33] S. Chen, S. Ranjan, and A. Nucci, IPzip: A stream-aware IP compression algorithm,
Proceedings of IEEE Data Compression Conference, March 2008, pp. 182-191.

[34] A. Shacham, B. Monsour, R. Pereira, and M. Thomas, IP Payload Compression Protocol
(IPComp), RFC 3173, 2001.

[35] R. Pereira, RFC 2394: IP Payload Compression Using DEFLATE, RFC EDITOR, Nov
1998.

[36] R. Friend and R. Monsour, IP payload compression using LZS, IETF, RFC 2395, 1998.

[37] J. Kurose and K. Ross, “Chapter 7: Multimedia Networking ,” in Computer Networking:
A Top-Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012, pp. 592-593.

[38] B. Constantine, G. Forget, R. Geib, and R. Schrage, RFC 6349: Framework for TCP
Throughput Testing, RFC EDITOR, 2011.

[39] D. Eastlake 3rd and J. Abley, RFC 7042: IANA Considerations and IETF Protocol and
Documentation Usage for IEEE 802 Parameters, RFC EDITOR, 2013.

[40] J. Kurose and K. Ross, “Chapter 4: The Network Layer ,” in Computer Networking: A
Top-Down Approach, 6th ed., Addison-Wesley Publishing Company, 2012, pp. 320-331.

[41] D. Xi and Y. Yuanyuan, “On-line adaptive compression in delay sensitive wireless sensor
networks,” in Mobile Adhoc and Sensor Systems (MASS), 2010 IEEE 7th International
Conference on, 2010, pp. 452-461

[42] D. Bertsekas and R. Gallager, “Chapter 3: Delay Models in Data Networks,” in Data
Networks, PrenticeHall, 1987, pp. 187-188.

[43] P. Larry and D. Bruce, “Chapter 1: Foundation,” in Computer Networks ISE: A Systems
Approach, 4th ed., Morgan Kaufmann Publishers Inc., 2007, pp. 13-17.

[44] P. Larry and D. Bruce, “Chapter 1: Foundation,” in Computer Networks ISE: A Systems
Approach, 4th ed., Morgan Kaufmann Publishers Inc., 2007, pp. 41-47.

[45] R. Serfozo, “Chapter 5: Little Law,” in Introduction to Stochastic Networks, Springer,
1999, pp. 135-152.

[46] A. Tanenbaum and D. Wetherall, “Chapter 5: THE NETWORK LAYER,” in Computer
Networks, 5th ed., Prentice Hall, 2011, pp. 393-394.

Curriculum Vitae

Name: Fuad Shamieh

Post-Secondary 2013-2015, Candidate, Master of Engineering Science
Education and The University of Western Ontario
Degrees: London, Ontario, Canada

Honours and 2013, Won IBM workshop - DAPS Trophy Award.
Awards: 2013, Dean’s Honours List at the University of Western Ontario.

2013, Graduated Bachelor’s Degree with Distinction.

Related Work Teaching Assistant
Experience: The University of Western Ontario

2013 - 2015

Publications:

F. Shamieh, A. Refaey, and X. Wang, “An adaptive compression technique based on real-
time RTT feedback,” in Proc. IEEE CCECE 2014.

112

	Advanced Compression and Latency Reduction Techniques Over Data Networks
	Recommended Citation

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Defining Networks
	Motivation - Network Congestion
	Proposed Solutions
	Adaptive Compression and Decompression Scheme Based on Real-Time Network Feedback
	Adaptive Distributed Compression and Decompression Scheme Utilizing Intermediate Network Nodes

	Thesis Organization and Contribution

	Background Study on the Internet Protocol Stack, Network Delays, Compression Algorithms, and Modes of Compression
	Internet Protocol Stack Model Overview
	Internet Protocol Stack Layer Usage
	Application Layer
	Transport Layer
	TCP Operation
	UDP Operation
	TCP and UDP Checksum

	Network Layer
	Data-Link Layer
	Physical Layer
	Network Delays
	Compression Algorithms
	Lempel-Ziv Compression Algorithm
	LZ77

	ZLIB

	Modes of Compression
	Stateless Compression
	Streaming Compression
	Offline Compression
	Block Compression

	Minimum Size for Performing Compression

	Literature Review on Compression Based Network Congestion Mitigation Solutions
	Introduction
	Compressing Packets Adaptively Inside the Network
	Adaptive On-the-Fly Compression
	IPzip: A Stream-Aware IP Compression Algorithm
	Delayed-Dictionary Compression for Packet Networks
	Adaptive Online Data Compression
	IP Payload Compression Protocol - IPComp
	Summary

	An Adaptive Compression Technique Based on Real-Time Network Feedback
	Introduction
	Compressed and Non-compressed Packet Identification
	Flow of Operations
	Passive Mode
	Intermediate Mode
	Active Mode

	Implementation
	Software Implementation
	Hardware Implementation
	End-hosts Mutual Agreement and Mode Selection
	Compression Scheme Selection

	Simulation Model
	Performance Metrics and Results
	Analysis

	Summary

	Adaptive Distributed Compression and Decompression Scheme Utilizing Intermediate Network Nodes
	Introduction
	Queueing Model for the Network
	Packet Generation Rate
	Compressed and Non-compressed Packet Identification
	Implementation
	Generic/Traditional Routers
	Software and Hardware Planes
	Input Ports
	Switching Fabric
	Output Ports
	Routing Processor

	Hardware Implementation
	Anatomy of An Advanced Intermediate Node/Advanced L3 Router
	Software and Hardware Planes
	Input Ports
	Switching Fabric
	Output Ports
	Routing Processor

	Heuristic Algorithm

	Simulation Model
	Performance Metrics and Results
	Analysis
	Summary

	Conclusion
	Conclusion
	Future Work
	First Set of Additions
	Second Set of Additions
	Simulation and Implementation

	Bibliography
	Curriculum Vitae

