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Abstract 

Concerns about declining non-renewable fossil resources, energy security, climate change 

and sustainability are increasing worldwide. This has resulted in an increased interest in the 

development of alternatives to fossil resources not only for energy, but particularly for 

chemical production on a global level. There are a number of promising alternatives to fossil 

resources, however, lignocellulosic biomass such as forestry residues and wood waste (bark, 

sawdust, etc.) seem to be the most promising. They are widely available, renewable and a 

non-food resource. Therefore woody biomass holds the promise of being a sustainable re-

source for both energy and chemical production. 

The lignin component of woody biomass is of particular interest as it comprises the world's 

largest natural source of aromatic compounds and is produced in large quantities as a by-

product of pulp and paper processing. The main challenge in lignin utilization for fuels and 

chemicals is that it is composed of very large molecules with low heating values (due to high 

oxygen content) and low reactivity. Accordingly, the overall objective of this work is the 

production of chemicals and fuels by the catalytic hydroprocessing of lignin and lignin-

derived bio-oils aiming to reduce their molecular weights and oxygen contents. 

This work investigated the catalytic hydrotreatment (hydroprocessing) of a number of differ-

ent lignins as well as depolymerized hydrolysis lignin for the production of fuels and chemi-

cals. Several supported metal hydrogenation catalysts were investigated for the depolymeri-

zation, deoxygenation and desulfurization of Kraft lignin (KL) organosolv lignin (OL) and 

hydrolysis lignin (HL) under hydrogen atmospheres to produce depolymerized lignins. All of 

the catalysts tested were effective in depolymerizing the lignin feedstocks, however, the alu-

mina-supported catalysts and the carbon-supported Ni catalyst did not perform as well as the 

carbon-supported Ru catalyst and FHUDS-2 (an industrial HDS catalyst). The molecular 

weights of the depolymerized lignins using these last two catalysts at 300 °C were markedly 

lower than the OL and KL feeds (~1,000 vs. 2,600 and 10,200 g/mol, respectively). In addi-

tion, the sulfur contents of the depolymerized Kraft lignins were drastically reduced. 

Targeting the development of effective and inexpensive catalysts for the hydrotreatment of 

lignin and lignin-derived bio-oils to produce chemicals and fuels, screening of catalysts was 
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performed using guaiacol as model compound. The most effective catalyst under the condi-

tions tested was found to be 1 wt.% Mo-doped 5 wt.% Ru supported on activated charcoal 

(MoRu/AC). The selected catalyst proved to be very effective for hydrotreatment of or-

ganosolv lignin (MW ≈ 2,600 g/mol) into a liquid product comprising >85% phenolic com-

pounds with a MW of 460 g/mol at ~70% yield at 340 °C. This catalyst was also successfully 

employed in the hydroprocessing of hydrolysis lignin (HL) and depolymerized hydrolysis 

lignin (DHL). 

 

Keywords 

Hydrotreatment, hydroprocessing, catalysts, carbon-supported catalyst, MoRu, Kraft lignin, 

organosolv lignin, hydrolysis lignin, depolymerized lignin, fuels, chemicals  
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Chapter 1 

1 General Introduction 

1.1 Introduction 

The main objective of this project was to investigate and develop effective carbon-supported 

hydroprocessing catalysts for the depolymerization of lignin as well as the upgrading of lig-

nin-derived bio-oil. The chemical and physical properties of the resulting products were ana-

lyzed to demonstrate the effectiveness of these catalysts. 

 

1.2 Background 

Over the past century a majority of the world’s energy demands was met by fossil fuels, 

comprising: 30% petroleum, 23% natural gas, 22% coal, 6% nuclear, and 19% renewable 

(Song, 2002). Chemical industries and energy production based on fossil fuel resources are 

expected to gradually phase out over the course of the 21st century due to the depletion of the 

fossil resources that these industries rely on (Okkerse and Van Bekkum, 1999). Biomass 

feedstocks such as agricultural/forestry residues and wood wastes (harvest residues, slash, 

sawdust, bark, etc.) have the potential to be a large source for energy, fuels, chemicals and 

materials (Karagoz et al., 2005; Ogi and Yokohama, 1993). Many countries have legislation 

set in place to promote the use of biomass energy and bio-fuels. For example, the Canadian 

federal government has enacted a target of 5% ethanol in gasoline by 2010, which will re-

quire the production of more than 300 million litres of cellulosic ethanol per year to meet this 

target. The European Union has set an objective to substitute conventional fuels with bio-

mass-derived fuels (bio-fuels) in the transport sector with a market share of 5.75% by the end 

of 2010 (EU Directive 2003/30/EC). In December 2007, then President Bush of the U.S.A. 

signed into law a Renewable Fuels Standard (RFS) that called for at least 36 billion gallons 

of ethanol and other bio-fuels to be used nationwide by 2022, including a minimum of 9 bil-

lion gallons in 2008, and 20.5 billion gallons by 2015 or about 15% replacement of the 

U.S.A.’s gasoline consumption. 
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Bio-energy is a blanket term that refers to all forms of renewable energy that are derived 

from biomass feedstocks. Biomass feedstocks typically have a heating value comparable to 

that of low rank coal (lignite and sub-bituminous coals). The heating values range from 8 

MJ/kg for green matter to between 17-23 MJ/kg for dry plant matter. The Earth’s natural 

biomass of 150 billion metric tonnes of dry biomass replacement represents an energy supply 

of around 3000 EJ (310
21

 J) per year, or about 6 times the world’s total energy consump-

tion. Although these resources are renewable, carbon-neutral, and remarkably abundant, they 

are also very bulky and difficult to transport, handle, and store. In order to make use of these 

resources it is, therefore, necessary to develop cost-effective technologies to convert them 

into liquid bio-fuels of a higher energy density and other valuable chemicals (Yamazaki et 

al., 2006). 

Biomass conversion technologies may be classified into two major categories: bio-chemical 

processes and thermo-chemical processes (Sharma and Bakshi, 1991; Bridgwater, 1991; Holt 

and Van der Burgt, 1998). Biologically-based technologies use acid/engineered enzymes to 

break down lignocellulosic materials with the aim of hydrolyzing the cellulose into glucose 

that can be fermented into ethanol or other chemicals. The development of new enzymes is 

still at the research stage, and most of the enzymes and the microorganisms that have been 

developed are strongly dependent on the chemical composition of the feedstocks, and are 

therefore applicable only to specific homogenous feedstocks. In addition, enzymatic proc-

esses are quite slow. As a result, current fermentation-based technology does not make the 

cellulosic ethanol production economically viable. In addition, the blending of high ratios of 

fuel alcohol into gasoline would require the modification of existing engines and delivery 

systems (Holt and Van der Burgt, 1998). 

Thermo-chemical processes for the production of liquid bio-fuels include indirect liquefac-

tion processes e.g. gasification combined with various catalytic processes for production of 

synthetic fuels (e.g., methanol, ethanol and high quality diesel), and direct liquefaction tech-

nologies mainly pyrolysis and high pressure liquefaction processes. 

Direct liquefaction of biomass followed by upgrading and refining is regarded as a promising 

approach in addition to indirect liquefaction processes such as the MTG (Mobil methanol to 

gasoline) and the SMDS (Shell middle distillate synthesis) processes currently under devel-
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opment. Direct liquefaction of biomass for the production of bio-oil/bio-crude has attracted 

increasing interest in recent years due to increasing crude oil price and increasing concerns 

over greenhouse gas emissions. The bio-oil/bio-crude products from direct liquefaction can 

be upgraded into high quality liquid transportation fuels (Sharma and Bakshi, 1991). 

Fast pyrolysis (operating at low pressures of 0.1-0.5 MPa but high temperatures >500 °C) is 

currently the only industrially realized technology for production of bio-oils from biomass. 

However, pyrolysis oils have high oxygen and water contents and only about half the caloric 

content of petroleum (<20 MJ/kg). 

High-pressure liquefaction technology, on the other hand, normally operates at moderate 

temperatures (<400 °C) but higher pressures of 5-20 MPa in the presence of suitable solvents 

(water or organics) with or without catalysts and has the potential for producing liquid oils 

(also called bio-oils or bio-crudes) with much higher caloric values (25-35 MJ/kg) (Yama-

zaki et al., 2006; Xu and Etcheverry, 2008). 

Two typical technologies for upgrading of bio-oils include catalytic cracking and catalytic 

hydrotreating. Note that the term 'hydrotreatment' has a specific meaning in petroleum proc-

essing operations: namely it is a blanket term for the removal of heteroatoms (specifically S, 

N and metals) from petroleum feeds using hydrogen. This term has carried over to bio-oil 

upgrading and refers to the HDO and hydrogenation of bio-oil (as well as the HDS of sulfur-

containing lignins and bio-oils derived from these feeds). Some researchers have instead used 

the term 'hydroprocessing' to differentiate these processes from those found in petroleum op-

erations. In this work, the terms are used interchangeably. 

Catalytic cracking processes, using cracking catalysts (zeolites, silica-alumina and molecular 

sieves), are performed at or near atmospheric pressure without the addition of hydrogen. The 

advantages of low-pressure operation without the need of hydrogen, i.e. lower equipment 

costs and lack of expensive hydrogen, have attracted much interest in the literature on the 

upgrading of bio-oils (Adjave and Bakhshi, 1995a and 1995b; Katikaneni et al., 1995; Wil-

liams and Horne, 1995; Adjave et al., 1996; Graça et al., 2011). However, the yield of hy-

drocarbon oils is very low because of high yields of both char/coke and tars. In addition, the 

deposition of these undesirable products on the catalyst results in gradual catalyst deactiva-

tion and necessitates periodical or continual regeneration of the catalysts. In contrast, cata-
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lytic hydrotreating processes operate at high pressures under a hydrogen atmosphere and/or 

in the presence of hydrogen donor solvents (Craig and Coxworth, 1987; Maggi and Delmon, 

1993; Baker and Elliott, 1996; Kleinert et al., 2009; Li et al., 2012; Huang et al., 2014). Over 

the past 30 years, significant efforts have been made in hydrodeoxygenation (HDO) of bio-

mass-derived oils. Research into the catalytic chemistry and kinetics of the hydroprocessing 

of various model compounds containing oxygen, such as phenolic compounds and aromatic 

ethers, have been reviewed by Furimsky (2000) and Elliott (2007). 

The bio-oils/bio-crudes produced by the pyrolysis or liquefaction of biomass are a complex 

mixture of oxygen-containing compounds in the form of phenol and benzene derivatives, hy-

droxyketones, carboxylic acids and esters, and aliphatic and aromatic alcohols which all con-

tribute to the oxygen content of the oil (Appell et al., 1969; Minowa et al., 1998; Qu et al., 

2003). In addition, water originating from both the moisture originally present in the feed-

stock as well as water produced during the pyrolysis and direct liquefaction processes adds to 

the oxygen content in bio-oil or bio-crude (Bridgwater, 2003; Czernik and Bridgwater, 

2004). The total oxygen content of bio-oils can be as high as 40-50 wt.% for pyrolysis oils 

and 20-30 wt.% for bio-crudes from high-pressure liquefaction processes, depending on the 

origin of the biomass and the process conditions, e.g. temperature, residence time, heating 

rate and the catalysts used (Bridgwater, 1994; Furimsky, 2000). The presence of high levels 

of oxygen in bio-oils is a limitation in their use as liquid transportation fuels since high oxy-

gen contents result in high viscosity, low heating value, poor thermal and chemical stability, 

corrosivity (due to organic acids present) and immiscibility with hydrocarbon fuels (Bridg-

water, 2003; Czernik and Bridgwater, 2004; Yaman, 2004). The bio-crudes/bio-oils must 

therefore be upgraded by reducing or completely eliminating their oxygen content (Bridgwa-

ter, 1994; Bridgwater, 1996).  

A potentially more profitable exercise is the production of chemicals from only the lignin 

component of biomass. Biomass is, for the most part, composed of cellulose, hemicelluloses 

and lignin with very small amounts of other components such as ash and extractives. The 

typical composition of woody biomass is shown in Figure 1.1 below. 
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Figure 1.1 Typical composition of woody biomass 

 

Currently the lignin component in biomass is mainly utilized for process heat by direct com-

bustion. The large amounts of lignin produced in pulp mills are problematic in that the recov-

ery boilers present a bottleneck. A recent study by FPInnovations determined that a signifi-

cant fraction of the lignin produced in a pulp mill could be removed without unduly affecting 

the unit's material and energy balances. It was calculated that, on average, North American 

pulp mills could produce 30 tonnes/day of lignin and that for each tonne of lignin removed 

from the process, a mill could process an additional tonne of pulp. 

Lignin is an amorphous polymer (Figure 1.2) comprised of three types of phenyl propane de-

rivatives: guaiacyl alcohol, syringyl alcohol, and p-coumaryl alcohol (Mohan et al. 2006). It 

provides support and rigidity to the cell walls and is more resistant to most forms of biologi-

cal attack in comparison with cellulose and other polysaccharides (Akin and Benner, 1988; 

Baurhoo et al., 2008; Kirk, 1971) and is the largest natural source of aromatic compounds. 

lignin, 27.5% 

cellulose, 

35% 

hemicellulose

, 35% 

extractives, 

2.5% 
ash, 2.5% 
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Figure 1.2 Structure of lignin 

 

Due to its chemical composition, lignin is a promising source for chemicals and fuels such as 

phenols and aromatics via thermochemical and/or catalytic decomposition of the lignin mac-

romolecule into mono-lignols and other compounds followed by hydroprocessing to remove 

oxygen. While the removal of oxygen is necessary to minimize re-condensation of the de-

polymerized lignin and to decrease acidity, the hydrodeoxygenation and hydrogenation of 

lignin and lignin-derived bio-oils under less severe conditions than those required to upgrade 

whole biomass-derived bio-oil can produce both high value oxygenated and deoxygenated 

compounds from the lignin precursor. 

 

1.3 Research Objectives 

As discussed above, biomass is an abundant and renewable resource that can be exploited for 

the production of aromatic compounds and fuels. However, effective utilization of this re-

source is complicated by the presence of the carbohydrate fraction of biomass which decom-

poses into oxygen-rich compounds upon thermal degradation. Lignin is produced in mass 

quantity by pulp and paper manufacturing, as well as by solvolytic and enzymatic extraction. 
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It comprises the world's largest natural source of aromatic compounds. Effective utilization 

of this resource by depolymerization and hydroprocessing, thus avoid the challenges of 

whole biomass degradation, is one way of reducing our dependence on dwindling petroleum 

reserves for aromatics as well as increasing the economics of the pulp mills as well as the 

development of extractive lignin processes. Accordingly, the overall objective of this work is 

the production of chemicals and fuels by the catalytic hydroprocessing of lignin and lignin-

derived bio-oils. 

 

1.4 Approaches and Methodology 

Technical lignin is a complex polymer with a high average molecular weight and some types 

of lignin such as Kraft lignin and hydrolysis lignin are not soluble in common organic sol-

vents, which prevents their direct use as a substitute for petroleum-based chemicals in the 

synthesis of bio-based polymer materials, e.g., PF and epoxy resins. Therefore, samples of 

these lignins including organosolv lignin, Kraft lignin and hydrolysis lignin were depolymer-

ized into the lower molecular weight products. 

The depolymerization was conducted concurrently with hydrogenation/hydrodeoxygenation 

of the lignins and the overall process has been termed hydroprocessing instead of hy-

drotreatment to avoid confusion, as hydrotreatment has a specific meaning in the petroleum 

industry. The hydroprocessing reactions were conducted in several different reactors. The 

depolymerization of larger quantities of lignin was carried out in a 500 mL Parr stirred auto-

clave reactor. Subsequent reactions were conducted in both a 100 mL Parr stirred autoclave 

reactor and a mini-reactor constructed in-house with an effective volume of 13 mL (Figure 

1.3). The lignins and depolymerized lignins were reacted in the presence of various catalysts 

under hydrogen at different temperatures, pressures and reaction times. 

Where possible, the chemical and physical structure of the catalysts, feed and depolymerized 

products was measured. Typical analyses included: BET, XRD and TGA for the fresh and 

spent catalysts; GPC, GC/MS, CHNS, 
1
H-NMR, and FTIR for the lignin and depolymerized 

lignin products and Micro-GC for the gaseous products. The product separation scheme is 

shown in Figure 1.4. 
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Figure 1.3 Schematic and photos of the mini-reactor system 

 

 

 

Scheme 1.1 Product separation scheme 
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1.5 Thesis Overview 

Chapter 1 provides a general introduction to the importance of the use of lignin derived from 

biomass as a feedstock for fuels and aromatic compounds rather than using whole biomass, 

highlighting the economic and environmental potential of this abundant and renewable re-

source. The research objectives, approach and methodology and thesis structure are outlined. 

Chapter 2 presents a detailed overview of the available literature on the production of lignin 

and the various technologies used in the production of bio-oil from both whole biomass and 

lignin. The technologies and methods used to upgrade and hydroprocess these bio-oils are 

also discussed along with the effects of process variables (e.g. reaction environment, tem-

perature and time, catalyst metals and support materials, solvents and promoters).  

Chapter 3 details the investigation of the depolymerization of Kraft and organosolv lignin 

under reducing conditions using a number of different catalysts. The effects of catalyst load-

ing, reaction temperature and time were studied and the properties of the reaction products 

were compared to the feed. 

Chapter 4 presents results of a study on the effectiveness of MoRu carbon-supported cata-

lysts in the hydroprocessing of guaiacol as a model compound for lignin. Catalysts supported 

by different carbon materials were prepared and their effectiveness in guaiacol conversion 

was evaluated. Process parameters were adjusted to determine the optimum reaction condi-

tions. 

Chapter 5 focuses on the hydroprocessing of organosolv lignin using MoRu carbon-

supported catalysts. The effects of reaction time and reaction temperature were investigated 

to determine the most effective depolymerization conditions. 

Chapter 6 describes the hydroprocessing of hydrolysis lignin using carbon-supported MoRu 

catalysts. The effects of reaction time and temperature on depolymerization effectiveness 

were examined. 

Chapter 7 describes the hydroprocessing of depolymerized hydrolysis lignin using carbon-

supported MoRu catalysts. The effects of reaction time and temperature on upgrading effec-

tiveness were examined. 
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Chapter 8 presents the main conclusions obtained from the present research and suggests fu-

ture work. 
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Chapter 2  

2 Literature Review 

Direct liquefaction of biomass for the production of bio-oil/bio-crude has attracted increasing 

interest in recent years due to rising crude oil prices, diminishing supply and increasing con-

cerns over greenhouse gas emissions as well as energy security. Pyrolysis and high pressure 

liquefaction are the two main thermo-chemical technologies that have been developed for the 

direct liquefaction of biomass into bio-oil or bio-crude products. Fast pyrolysis (operated at a 

moderate pressures of 0.1-0.5 MPa and temperatures >500 °C) is, so far, the only industrially 

realized technology for production of bio-oils from biomass. However, pyrolysis oils contain 

high levels of oxygenated compounds and water and therefore have only about half of the 

caloric value (<20 MJ/kg) of petroleum. High-pressure liquefaction technology with a suit-

able solvent (water or organic) plus catalyst, operating at moderate temperatures (<400 °C) 

but higher pressures of 5-20 MPa, has the potential to produce liquid oils (also called bio-oils 

or bio-crudes) with much higher caloric values (25-35 MJ/kg). 

Pyrolysis oils and bio-oils/bio-crudes are composed of a complex mixture of oxygen-

containing compounds in the form of phenol and benzene derivatives, hydroxyketones, car-

boxylic acids and esters, aldehydes as well as aliphatic and aromatic alcohols. These com-

pounds contribute to the high oxygen content of bio-oil (up to 30-50 wt.%), and result in not 

only a lower calorific value, but increased viscosity, poor thermal and chemical stability, cor-

rosivity (due to organic acids) and immiscibility with hydrocarbon fuels. To produce high-

quality bio-oils for use as liquid transportation fuels, pyrolysis oils/bio-crudes must be up-

graded by various means to reduce their oxygen content. 

The objective of this review is to provide an overview of direct thermo-chemical liquefaction 

technologies used in the production of bio-oils/bio-crudes from biomass, the development of 

the upgrading technologies to produce high quality liquid transport fuels and chemicals from 

bio-oils/bio-crudes, as well as the current research into the utilization of lignin as a feedstock 

for the production of chemicals and fuels. 
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2.1 Thermochemical Conversion of Biomass 

Thermochemical conversion of biomass into liquid fuels and valuable chemicals can be 

achieved by either pyrolysis or high-pressure liquefaction (Demirbas, 2000; Molton et al., 

1978). 

 

2.1.1 Fast Pyrolysis 

Pyrolysis of biomass is performed in an inert atmosphere at high temperatures, typically 400-

800°C, and at low pressures around 0.1-0.5 MPa without the addition of any catalyst. At 

these high temperatures, solid lignocellulosic materials thermally decompose into smaller 

fragments which combine to produce oily compounds, yielding about 50-75 wt.% liquid 

products (pyrolysis oil or bio-oil). As a side note, the yield of bio-oil (or other liquid or solid 

products) is usually presented as wt.%, i.e. mass of product as a fraction of the mass of feed-

stock. In the case of gaseous products, the yield is usually expressed as mol%. Heat is usually 

added indirectly, although partial gasification and combustion of the feedstock may be em-

ployed to give direct heating. Gas and char are produced in addition to the liquid products. 

The relative proportions of gas, liquid and solid products depend on the pyrolysis parameters 

specifically heating rate and final temperature. Fast or flash pyrolysis (with a high heating 

rate and short vapour residence time) is used to maximize liquid products (Bridgwater, 

1991). Flash pyrolysis produces liquid yields up to 75 wt.% at relatively low temperatures, 

typically 500 °C but less than 650 °C, and at very high heating rates of 1,000 °C/s, or even 

10,000 °C/s, and very short residence times of typically less than 1 s. The rapid heating and 

rapid quenching in fast pyrolysis processes produces intermediate liquid products, which 

condense to form liquid oil products before they are further broken down into gaseous prod-

ucts. The high heating rates also minimize char formation, and no char is formed under some 

conditions (Demirbas, 2005). Increasing flash pyrolysis temperature above 700°C leads to 

still higher heating and reaction rates but results in very high gas product yields of up to 80 

wt.% (Bridgwater, 1992). 

Over the past thirty years, research into fast or flash pyrolysis has shown that high yields of 

liquid and gas products, including valuable chemicals or chemical intermediates and fuels, 
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can be obtained from various biomass feedstocks including agricultural/forest residues and 

waste streams (Bridgwater et al., 2001). Fast pyrolysis bio-oils are complex mixtures of 

compounds derived from the depolymerization and degradation of cellulose, hemi-cellulose 

and lignin (Czernik and Bridgwater, 2004; Zhang et al., 2007; Oasmaa et al., 2010). The 

typical properties of pyrolysis bio-oils and of a petroleum-based heavy fuel oil are shown in 

Table 2-1. 

 

Table 2.1 Typical properties of pyrolysis bio-oil (before upgrading) and of a petroleum-based 

heavy fuel oil (Czernik and Bridgwater, 2004) 

Physical property Bio-oil Heavy fuel oil 

Moisture content (wt.%) 15-30 0.1 

pH 2.5 - 

Specific gravity 1.2 0.94 

Viscosity (cP , at 50 
o
C)  40-100 180 

Elemental composition (wt.%) 

C 54-58 85 

H 5.5-7.0 11 

O 35-40 1.0 

N 0-0.2 0.3 

Ash 0-0.2 0.1 

HHV (MJ/kg) 16-19 40 

 

Bio-oil from fast pyrolysis is a complex mixture composed of acids, alcohols, aldehydes, es-

ters, furans, guaiacols, ketones, sugars, syringols, lignin-derived phenols and extractible ter-

penes (Guo et al., 2001). Zhang et al. (2001) separated the bio-oil into four fractions: ali-

phatic, aromatic, and polar compounds as well as non-volatiles by using solvent extraction 

and liquid chromatography on an aluminum column. Analysis of the fractions indicated the 

presence of high levels of acetic acid and hydroxyacetones in the aqueous phase, with aro-

matic hydrocarbons and less polar components in the oil phase. In general, fast pyrolysis bio-



18 

 

oils are a complex mixture of highly oxygenated compounds with a broad distribution of 

oxygenated organics, such as esters, ethers, aldehydes, ketones, phenols, carboxylic acids and 

alcohols (Peng and Wu, 2000). 

Fast pyrolysis is, so far, the only industrially realized technology for the production of bio-

oils from biomass. A fast pyrolysis process employing circulating fluidized beds, originally 

developed at the University of Western Ontario, is now commercialized by Ensyn Technolo-

gies in Renfrew, Ontario (RTP, rapid thermal processing). Also in Canada, another fast pyro-

lysis technology based on a fluidized bed has been commercialized by Dynamotive Energy 

Systems Corp., which has a demonstration project at Erie Flooring and Wood Products in 

Ontario. However, pyrolysis oils contain high levels of oxygen/water and therefore have a 

caloric value only about half of that of petroleum (<20 MJ/kg). In addition, the presence of 

organic acids makes them strongly acidic and corrosive. As a result, pyrolysis oils are not 

regarded as an ideal liquid fuel for heat or power generation, and without upgrading, cannot 

be used as a liquid transportation fuels. 

The water content of bio-oil can be as high as 15-30 wt.% and comes from moisture initially 

present in the feedstock and also as the product of dehydration reactions during pyrolysis and 

later storage. The presence of water decreases the heating value of the oil as well as the com-

bustion flame temperature of the fuel (Scholze and Meier, 2001). The removal of water from 

pyrolysis oil by evaporation is problematic, because heating bio-oil results in the rapid po-

lymerization of components in the bio-oil and an associated increase in viscosity. 

It is the presence of high levels of oxygen in bio-oils that is the principal difference between 

bio-oils and hydrocarbon fuels. The high oxygen content of bio-oil results in its lower energy 

density compared to conventional fossil fuels and is responsible for its immiscibility with 

hydrocarbon fuels. In addition, the presence of substantial amounts of carboxylic acids, such 

as formic and acetic acid, contributes to bio-oil pH values as low as 2-3 (Sipilae et al., 1998). 

This makes bio-oils corrosive and the problem is exacerbated at elevated temperatures. This 

imposes more stringent requirements in the choice of construction materials of bio-oil storage 

vessels and necessitates significant upgrading before it can be used as a transportation fuel 

(Zhang et al., 2007).  

 



19 

 

2.1.2 High-pressure Liquefaction 

In contrast to fast pyrolysis, high-pressure liquefaction is performed under an inert or, pref-

erably, a reducing atmosphere at moderate temperatures less than 400°C, but higher pressures 

ranging between 5 and 20 MPa. In high-pressure liquefaction processes, the macro-molecular 

compounds in the feedstock are decomposed into small fragments in the presence of suitable 

solvent(s) (i.e. water, alcohols, alkanes, phenols, or tetralin, etc.) and a catalyst. The molecu-

lar fragments produced in the reaction are unstable and reactive, and tend to re-polymerize 

into oily compounds having various molecular weights (Molten, 1983). The presence of a 

suitable solvent is critical for a direct liquefaction process as the solvent can act a diluting 

agent for the products formed and/or as a fragment stabilization agent to prevent re-

polymerization/condensation reactions from forming char or a heavy residuum. 

High-pressure liquefaction is a superior direct liquefaction technology compared with fast 

pyrolysis, in that it produces higher quality bio-oil with more desirable chemical and physical 

properties. High-pressure liquefaction technology also has the potential for producing heavy 

liquid oils or bio-crudes with increased heating values and a range of other value-added 

chemicals including vanillin, phenols, aldehydes, and acetic acid etc. Research at the Pitts-

burgh Energy Technology Center (PETC) reported effective high-pressure liquefaction of a 

variety of lignocellulosic materials into oily products in water at an elevated temperature in 

the presence of a CO atmosphere and Na2CO3 catalyst (Appell et al., 1971). The PETC’s re-

search into direct liquefaction of biomass was further advanced by the research group at the 

Pacific Northwest National Laboratory (PNNL) in the U.S.A. led by Dr. D. Elliott. During 

the 1980’s, much work on scaling up the pioneer work by Appell et al. and on utilizing the 

direct liquefaction oil products was done at PNNL. (Elliott, 1980; Schirmer et al., 1984) 

High-pressure direct liquefaction processes are normally operated at moderate temperatures 

(200-450 °C), pressures greater than 1 MPa and using longer residence times (10-60 min) in 

hot compressed water (Boocock et al., 1979; Yokohama et al., 1984; Minowa et al., 1998; 

Qu et al., 2003; Karagoz et al., 2004; Nguyen et al., 2014) or organic solvents such as an-

thracene oil (Appell et al., 1969; Crofcheck et al., 2005), alcohols (methanol, ethanol, propa-

nol and butanol) and acetone, etc. (Miller et al., 1999; Cemek and Kucuk, 2001; EU Direc-

tive 2003/30/EC; Tang et al., 2010; Song et al., 2013; Warner et al., 2014). Typical yields of 
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liquid products for high-pressure liquefaction processes are in the range of 20-60 wt.%. Al-

though high-pressure liquefaction processes produce lower yields of heavy oil (bio-crude) 

compared with fast pyrolysis processes (which yield 40-75 wt.% bio-oil with a HHV of about 

20 MJ/kg), the bio-crude products have much higher caloric values (HHV= ~30 MJ/kg) (Mi-

nowa et al., 1998; Qu et al., 2003). Higher heating value (HHV) is also known as the gross 

calorific value or gross energy of a fuel. It is defined as the amount of heat released by a 

specified quantity of fuel (initially at 25 °C) once it is combusted and the products have re-

turned to a temperature of 25°C. This takes into account the latent heat of vaporization of any 

water that is produced during combustion. When comparing the gross energy yield (oil yield 

 HHV), the two types of direct liquefaction processes are comparable. The yields of bio-

crude depend on many operating parameters including reaction temperature, pressure, resi-

dence time, type of solvents and the catalysts employed. 

Yan et al. (2008) reported by that pine and birch wood can be effectively degraded in hot-

compressed water at 200 °C for 4 h under 4 MPa (cold pressure) H2 in the presence of car-

bon-supported Pt or Ru catalysts. The products were a mixture of phenolic monomers of 

guaiacyl propane, guaiacyl propanol, syringyl propane and syringyl propanol. Yields of 

mono-phenolic compounds were as high as 45% of the total number of C9 units in the lignin 

were obtained in a 50:50 wt.% mixture of dioxane/H2O (1:1 wt/wt) with 1 wt.% H3PO4 and 

in the presence of Pt/C catalyst (5 wt.% of the sawdust). 

 

2.2 Bio-oil Upgrading 

Biomass-derived oils are very different from crude oils obtained from petroleum sources; the 

sulfur and nitrogen content of bio-crudes is negligible, but they are rich in oxygen-containing 

molecules (see Table 2-2). (Georget et al., 1999; Şenol, 2007a,b)  Bio-oils/bio-crudes are 

comprised of a complex mixture of oxygen-containing compounds in the form of phenol and 

benzene derivatives, hydroxyketones, carboxylic acids and esters, and aliphatic and aromatic 

alcohols (Xu and Lad, 2008; Yang et al., 2009a). These compounds contribute to the oxygen 

content of the oil. In addition, water originating from both moisture initially present in the 

feedstock and as a pyrolytic product in pyrolysis and direct liquefaction processes adds to the 

oxygen content in bio-oil or bio-crude (Bridgwater, 2003; Czernik and Bridgwater, 2004). 
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The total oxygen content of bio-crudes can be as high as 40-50 wt.% for pyrolysis oils, and 

20-30 wt.% for heavy oils from high-pressure direct liquefaction process, depending on the 

origin of the biomass and liquefaction conditions, e.g. temperature, residence time, heating 

rate and different catalysts used (Bridgwater, 1994; Furimsky, 2000). The high oxygen con-

tent is a limitation in the utilization of bio-crude as liquid transportation fuel since the high 

oxygen content of the oils causes high viscosity, poor thermal and chemical stability, corro-

sivity (due to the organic acids present) and immiscibility with hydrocarbon fuels (Bridgwa-

ter, 2003; Czernik and Bridgwater, 2004; Yaman, 2004). 

 

Table 2.2 Elemental composition of bio-oil from wood and of a heavy fuel oil (Şenol, 2007b) 

Composition 

(wt.%) 

Bio-crude/Bio-oil Heavy Fuel Oil 

High-pressure lique-

faction 

Pyrolysis 

Carbon 74.8 45.3 85.0 

Hydrogen 8.0 7.5 11.0 

Oxygen 16.6 46.9 1.0 

Nitrogen <0.1 <0.1 0.3 

Sulfur <0.1 <0.1 0.5-3.0 

HHV (MJ/kg) ~30 ~20 ~40 

 

Bio-crude/bio-oils therefore need to be upgraded by reducing their oxygen content (Bridgwa-

ter, 1994; Bridgwater, 1996). 

Technologies for upgrading of bio-oils for fuel applications include physical and chemi-

cal/catalytic approaches (Czernik et al., 2002; Zhang et al., 2007). Techniques, such as emul-

sification and solvent extraction are physical methods in which bio-oils are mixed with diesel 

oil and solvents, respectively, to extract lower oxygen-containing components from the 

original bio-oil (Czernik et al., 2002). Although the physical mixing of bio-oils with diesel 

fuel directly, aided by the addition of a surfactant, may be the simplest way to use bio-oil as a 

liquid transportation fuel, the associated problem of corrosion to the engine and related com-
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ponents limits its application. 

Currently, two main chemical approaches have been proposed and tested for the upgrading of 

both pyrolysis oils and bio-crudes from high-pressure direct liquefaction processes. These are 

catalytic cracking and catalytic hydrotreating and are analogous to the upgrading of heavy 

oils in a petroleum refinery. 

Catalytic cracking processes, using various cracking catalysts (e.g. zeolites, silica-alumina 

and molecular sieves), are performed at atmospheric pressure without the requirement of 

added hydrogen. The advantages of low-pressure operation without the need of hydrogen 

have attracted much interest of studies on upgrading of bio-oils as reported in the literature 

(Adjave and Bakhshi, 1995; Katikaneni et al., 1995; Williams and Horne, 1995; Adjave et 

al., 1996; Gerber, 2007; Yoshikawa et al., 2013). The yield of desired fuel hydrocarbons 

however is typically very low because of the high yields of char/coke and tar. Deposition of 

these undesired products on the catalyst results in the serious problem of rapid catalyst deac-

tivation. As a result, periodic or continual regeneration of the catalysts becomes necessary. 

In contrast to catalytic cracking, catalytic hydroprocessing processes operate at high pres-

sures in the presence of hydrogen and/or hydrogen donor solvents (Craig and Coxworth, 

1987; Baker and Elliott, 1988; Maggi and Delmon, 1993; Kleinert et al., 2008; Huang et al., 

2014). 

Significant efforts have been made over the past 20 years to study the hydrodeoxygenation 

(HDO) of biomass-derived oils. The catalysts used in the hydrotreatment (hydroprocessing) 

of bio-oils have been studied extensively and fall into two general categories: Al2O3-

supported catalysts, typically loaded with NiMo or CoMo, (Baker and Elliott, 1988; Sheu et 

al., 1988; Gevert et al., 1990; Sharma and Bakshi, 1993; Jongerius et al., 2013) or noble 

metals (Lee et al., 2012) and zeolite catalysts (e.g. H-ZSM-5) (Baker and Elliott, 1988; Fur-

rer and Bakshi, 1988; Sharma and Bakshi, 1991; Li et al., 2012). The supported metal cata-

lysts are more active in hydrogenation and deoxygenation reactions while the zeolite and 

similar acidic catalysts are used to enhance cracking reactions (Pindoria et al., 1998). 
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2.3 Hydroprocessing of Model Compounds 

Review of research efforts to study the catalytic chemistry and kinetics of hydroprocessing 

have focused on various model compounds containing oxygen, such as phenolic compounds 

and aromatic ethers, as well as various bio-oils (fast pyrolysis oils and bio-crudes from high-

pressure liquefaction processes) (Furimsky, 2000; Elliott 2007). Pacific Northwest National 

Laboratory (PNL/PNNL) employed a batch reactor to test hydrotreating of phenolic model 

compounds with various catalysts (Elliott, 1983). Some key results are summarized as fol-

lows: commercially available catalysts (Al2O3-supported CoMo, NiMo, NiW, Ni, Co, Pd, 

and CuCrO) were used to hydrogenate phenol at 300 °C or 400 °C for 1 h. Of the catalysts 

tested, the sulfided form of CoMo was found to be most active, producing a product contain-

ing 33.8% benzene and 3.6% cyclohexane at 400°C, while the sulfided Ni catalyst produced 

8.0% cyclohexane but only 0.4% benzene. On the basis of other model compound studies 

involving o-cresol and naphthalene, Elliott, et al. (1995) concluded that NiMo with a phos-

phated alumina support was the most active for oxygen removal and hydrogen addition, but 

CoMo catalyst should be considered if hydrodeoxygenation is the main goal due to its much 

higher selectivity.  

The addition of a small amount of phosphorus to sulfided NiMo/Al2O3 catalyst has been 

shown to enhance both hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activi-

ties, with less susceptibility to coke formation (DeCanio et al., 1991). The presence of phos-

phorus was found to induce the formation of new Brönsted and Lewis acid sites with inter-

mediate strength as was evidenced by FTIR analysis (Ferdous et al., 2004). 

One of the key parameters determining the hydrodeoxygenation (HDO) activity of Mo, 

CoMo or NiMo catalysts is the type of support material used. The most common and conven-

tional support is solid acid Al2O3, which has been widely used in hydrotreating catalysts on 

an industrial scale (Zdrazil, 2003). Extensive studies have been undertaken on CoMo and 

NiMo catalysts supported on alternative materials such as SiO2, activated carbon, TiO2, ZrO2, 

zeolites and various mixed oxides (Breyesse et al., 1991; Luck, 1991; Topsøe et al., 1996; 

Vasudevan and Fierro, 1996; Radovic and Rodriguez-Reinoso, 1997). Centeno, et al. (1995) 

compared the hydroprocessing abilities with carbon-supported and alumina-supported CoMo 

and NiMo catalysts using various oxygen-containing and phenolic model compounds includ-
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ing guaiacol, catechol, phenol, 4-methyl acetophenone and para-cresol, in a para-xylene me-

dium. Their studies showed that coke formation was an important cause of catalyst deactiva-

tion where alumina supports are used, especially with compounds containing two oxygen at-

oms such as guaiacols or catechols.  

The use of MgO as a basic support material has attracted much less attention. Basic supports 

however are interesting for two main reasons as stated by Klicpera and Zdrazil (2002). First, 

the acid-base interaction between acidic MoO3 and a basic support in the oxide precursors of 

the sulfided catalyst may promote dispersion of the Mo species in the catalyst. Second, the 

basic character of the support may inhibit coking which is rather intensive for conventional 

Al2O3-supported catalysts. It was not until recently that MgO-supported catalysts have been 

used to upgrade bio-oil. Sulfided MgO-supported CoMoP catalyst was used to successfully 

upgrade both phenol (as a model compound) and bio-oil in supercritical hexane. After 1 h at 

optimum reaction conditions of 450 °C and 5.0 MPa hydrogen, the phenol had been con-

verted to reduced products comprising ~65 wt.% benzene and >10 wt.% cyclohexyl com-

pounds (Yang et al., 2009b). 

 

2.4 Hydroprocessing of Bio-oils  

Studies on the hydroprocessing of bio-oils have mostly focused on conventional petroleum 

hydrotreating catalysts, i.e., sulfided CoMo and NiMo. Elliott and Baker (1984) and Soltes et 

al. (1987) examined hydrocatalytic reactions of bio-oils obtained from a high-pressure lique-

faction process using a continuously fed fixed bed reactors. Their results showed the sulfided 

form of the CoMo catalyst to be much more active than the oxide form. The sulfided nickel 

catalyst exhibited similar activity to the sulfided CoMo catalyst except that the nickel catalyst 

led to a much higher gas yield and much greater hydrogen consumption. More than 95% 

oxygen removal from the wood-derived bio-crude, initially containing about 15 wt.% O, was 

achieved with the sulfided CoMo/Al2O3 catalyst at 573 K (Gevert, 1988). Using the same 

bio-oil, Gevert et al. (1990) studied the effect of pore diameter of a sulfided CoMo/Al2O3 

catalyst on the overall hydroprocessing. The best performance was achieved at 623 K for a 

catalyst with narrow pores. A two-step hydroprocessing process for upgrading of pyrolysis 

oils developed was developed at the PNNL (Elliott and Neuenschwander, 1996; Elliott et al., 
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1988; Elliot and Oasmaa, 1991). The first step involves a low temperature and high pressure 

(270 °C, 136 atm) catalytic treatment that hydrogenates the thermally unstable bio-oil com-

pounds. The second step involves catalytic hydrogenation at higher temperature and the same 

pressure (400 °C, 136 atm). The same catalyst, a sulfided CoMo/Al2O3 or sulfided 

NiMo/Al2O3, was used for both steps. This process produced 40 wt.% yields of refined oil 

containing less than 1 wt.% oxygen from raw pyrolysis oil. Catalyst deactivation and gum 

formation in the lines were found to be the major process challenges. Churin et al. (1988 and 

1989) conducted upgrading experiments on pyrolysis oil produced from olive oil. The au-

thors reported that using sulfided NiMo or CoMo catalysts on alumina or silica-alumina sup-

ports perform better than noble metal catalysts which were found to be more readily deacti-

vated by poisoning, sintering, and fouling. The use of a hydrogen donor solvent (e.g. tetrahy-

dronaphthalene also known as tetralin) was found to lead to a marked improvement in the 

quality of the hydrotreated product and a reduction in catalyst deactivation by coke deposi-

tion. Zhang et al. (2005) hydrotreated a pyrolysis oil using sulfided CoMoP/γ-Al2O3, in 

tetralin under the optimum conditions of 360 °C and 2 MPa of cold hydrogen pressure. The 

oxygen content of the oil was reduced from 41.8 wt.% for the crude oil to 3 wt.% for the up-

graded product. A pyrolytic lignin, extracted from softwood fast pyrolysis bio-oil, was cata-

lytic hydrotreated by Piskorz et al (1989) using pelletized sulfided CoMo catalyst. The proc-

ess produced a light organic oil with 0.46% oxygen content. 

Soltes et al. (1987) and Sheu et al. (1988) upgraded pyrolytic oils obtained from pine. 

Twenty catalyst formulations were tested in a batch reactor and an alumina-supported Pd 

catalyst was determined to be most effective with the highest yield of liquid oil at 400 °C for 

1 h. Alumina-supported Pt or Re catalyst were found to produce higher gas yields, while Ru 

and Rh were found to be most active in gas formation. Sulfided CoMo, NiMo, and NiW cata-

lysts were found to be of much lower activity for bio-oil hydrotreating compared to the pre-

cious metal catalysts, and the Pt catalyst was found to be the most active for oxygen removal.  

Although sulfided CoMo and NiMo catalysts are traditionally used in petroleum and bio-oil 

hydrotreatment and have received much of the focus in hydroprocessing processes, other 

types of catalysts, including solid acids, solid bases and precious metal catalysts, have also 

been used. Upgrading of fast pyrolysis oil using solid acid (40SiO2/TiO2-SO4
2-

) and solid 

base (30K2CO3/Al2O3-NaOH) catalysts at 50 °C for 5 h was investigated by Zhang et al. 
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(2006) in which the dynamic viscosity of the bio-oil was markedly decreased. The density of 

the upgraded bio-oil was decreased from 1,240 to 960 kg/m
3
, and the gross calorific value 

increased by 50% from 16 MJ/kg for the original bio-oil to 24 MJ/kg for the upgraded bio-

oil. The results of GC/MS analysis showed that decarboxylation of the bio-oil was promoted 

by both the solid acid and solid base catalysts.  

A longstanding problem for hydroprocessing of bio-oils was associated with catalyst deacti-

vation due to coke formation, particularly for alumina-supported catalysts. Gagnon and 

Kaliaguine (1988) reported that bio-oil polymerization occurred during the upgrading of the 

vacuum pyrolysis bio-oil. The polymerization was more evident during bio-oil upgrading in 

the presence of NiWO/Al2O3 catalyst at 598 K and about 18 MPa H2, although significant 

oxygen removal was achieved. 

The development of highly active and stable catalysts for the hydroprocessing of bio-oils/ 

bio-crudes will continue to be the great challenge in the advancement of bio-oils and the fo-

cus of much future study. 

Regardless of which process is used to decompose biomass and upgrade the resulting bio-oil, 

the issue remains that the presence of cellulose and hemicelluloses is undesirable since they 

are the precursors to the water and many of the oxygenated compounds found in conven-

tional bio-oil which decrease the heating value of the bio-oil, can cause corrosion problems 

due to the formation of organic acids. They also present problems of long-term stability and 

miscibility with conventional fuels. Thus the use of lignin alone as a feedstock for bio-oil 

production would be an improvement over the use of whole biomass as it avoids many of the 

challenges that are encountered in the utilization of conventional bio-oil. 

 

2.5 Lignin 

Lignin is a complex amorphous polymer composed of phenyl propane units that comprises 

~25-30% of wood by weight. Three related compounds make up the polymer. These are 

guaiacyl alcohol, syringyl alcohol, and p-coumaryl alcohol. The ratio of these units within 

the lignin polymer varies depending on the source of the lignin. For example, softwood lignin 
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is composed almost entirely of guaiacyl units derived from coniferyl alcohol while hardwood 

lignins are comprised of different ratios of guaiacyl and syringyl units (Rohella et al., 1997). 

In contrast, lignin from grassy biomass is a mixture of all three types of monomers. 

To complicate matters, the different monomers making up the structure of lignin are linked 

via a number of different types of chemical bonds comprising -O-4 aryl ether, -O-4 aryl 

ether, 4-O-5 diaryl ether, 5-5 biphenyl, -5 phenylcoumaran, --(resinol) and -1-(1,2-

diaryl-propane) linkages. The numbers and types of these bonds in a particular sample of lig-

nin depend on the source of the lignin (hardwood vs. softwood) as well as environmental fac-

tors including stresses experienced by the trees as they grew. Thus the structure and chemical 

composition of lignin can vary significantly even within the same tree (Pandey and Kim, 

2011). 

 

2.5.1 Lignin Production 

Crude lignin is generated in large amounts as a by-product of the pulp and paper industry. 

This lignin is currently utilized mainly by direct combustion in the recovery boilers for heat 

generation. Over the past 30 years there has been increasing interest in the production of po-

tentially higher value chemicals and fuels from lignin. 

The lignin produced from lignocellulosic materials can be classified into two categories: sul-

fur-containing lignins and sulfur-free lignins. The sulfur-containing lignins, Kraft lignin and 

lignosulfonates, are produced as by-products of the Kraft and sulfonate pulping processes. 

Sulfur-free lignins include soda, organosolv, steam-explosion, oxygen delignification and 

hydrolysis lignins. Approximately 80% of lignins come from the widely used Kraft process, 

which is known for air/water pollution and the odour issues related to sulfur. Furthermore, 

extraction of the lignin from the black liquor is necessary in order to maintain a closed cycle 

of pulping chemicals within the pulp mills. Olivares et al. (1988) proposed a lignin extraction 

procedure involving a 2-stage acidification followed by filtration to produce high quality lig-

nin from Kraft black liquor with the added benefit of recycling the Na and sulfate-rich fil-

trates back into the process. A fraction of the sulfur in the Kraft pulping process ends up in 

the lignin. 
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The α- and β-ether linkages in the lignin polymer are easily cleaved, but the 5-5 biphenyl-

type bonds and aromatic ring structures are much more stable and resistant to chemical deg-

radation. The ether linkages make up 56-72% of the bonds in lignin depending on the source 

(Pandey & Kim, 2011). Therefore a significant portion of the bonds in lignin are refractory to 

degradation. In addition, the recombination of highly reactive radicals obtained from the deg-

radation these bonds can result in the production of condensed structures or coke. 

The recent increase in the conversion of agricultural residues into bio-ethanol, functional 

polysaccharides or bio-gas by means of enzymatic conversion has attracted much attention in 

many countries and increased the availability of sulfur-free lignins. (Champagne, 2007; 

Demirbas et al., 2006) One such lignin comprises the solid residues remaining after the enzy-

matic hydrolysis of lignocellulosic feedstocks and is known as hydrolysis lignin (HL) or hydro-

lyzed wood biomass. It is composed of unreacted cellulose, mono and oligosaccharides, and lig-

nin, with lignin comprising 50 to 55% of the mass. (Dahlman et al., 2000; Santos et al., 2012) 

Hydrolysis lignin is expected to be produced in large quantities as projects producing cellulosic 

sugar-based chemicals or ethanol are realized. For now, it is mainly utilized as a low-value fuel 

and large-scale development of these biomass conversion projects is limited by the high cost of 

cellulose enzymes and process equipment. (Jin et al., 2011) Finding effective ways to make full 

use of the lignin present in the process residues for value-added energy and chemical products is 

critical in improving bio-ethanol process economics. 

 

2.6 Lignin Decomposition 

A review of available literature shows that much research has been done on degradation of 

lignin into aromatic and other compounds. In addition, many more papers have been pub-

lished on the use of phenol as a model compound for lignin degradation/upgrading. The use 

of guaiacol, veratrole, 2,6-dimethoxyphenol, 1,2,3-trimethoxybenzene, guaiacol-β-guaiacol, 

diphenyl ether, biphenyl and similar chemicals as model compounds has been reported less 

often and few papers have been published on the upgrading of degraded lignin itself. In addi-

tion, most of these studies have investigated the reactions of these model compounds in the 

gas phase. 
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2.6.1 Lignin Pyrolysis 

Pyrolysis is the most studied method for the conversion of biomass to lower-molecular-

weight liquid or gaseous products. Pyrolysis is the rapid heating an organic substance in the 

absence of air so that the large macromolecular structure is broken down into smaller units 

(thermolysis). The absence of air limits the amount of oxygen that is available for combus-

tion. The resulting products from the pyrolysis of biomass or lignin depend on the reaction 

temperature and time. As might be expected, lower temperatures and shorter reaction times 

produce more liquid products and higher temperatures tend to produce more gaseous prod-

ucts. In addition, increasing the severity of the treatment results in the formation of simpler 

lower-molecular-weight components (Barth and Kleinert, 2008). The pyrolysis of lignin is 

highly complex and is affected by several factors including: type of lignin, reaction tempera-

ture, heating rate, catalysts etc. (Ferdous et al., 2002; Várhegyi et al., 1997) It is further com-

plicated by the tendency of lignin to form a foam during heating. (Palmisano et al., 2012) 

The major products of lignin pyrolysis include gaseous hydrocarbons along with carbon 

monoxide and carbon dioxide, volatile liquids such as methanol, acetone, and acetaldehyde, 

phenolic compounds including phenol, guaiacol, syringol, and catechol and other substituted 

phenols such as lignols. A fraction of lignin is converted to thermally stable products called 

char. Char yields are higher at lower pyrolysis temperatures (Sharma et al., 2004). At high 

temperatures, gasification of lignin yields hydrogen (by cracking of aromatic rings), CO2 (by 

reformation of C=O and COOH functional groups), CO (by cracking of C-O-C and C=O 

functional groups), and CH4 (by cracking of methoxy groups) (Yang et al., 2007). 

Lignin pyrolysis covers a rather wide range of temperatures in comparison to cellulose pyro-

lysis (Yang et al., 2007). At lower temperatures the weaker bonds in lignin are cleaved. As 

the temperature increases progressively stronger bonds are broken and at significantly high 

temperature (>500 °C), aromatic ring cracking and condensation occur, releasing hydrogen. 

In the first step (120-300 °C), typical products include formic acid, formaldehyde, CO2, CO, 

and water. The water is produced by the cleavage of OH functional groups linked to b or c 

carbons in aliphatic side chains, while formaldehyde is released by the breaking of the b-c 

carbon bonds in alkyl side chains. Aryl ether linkages (α- or β-O-4-bonds) are also relatively 

easy to break. Ether linkages at c-carbons are relatively more resistant, and methoxy groups 

are even more resistant to thermal treatment. Although the general trend in degradation is 
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similar, the yield of particular products and the specific temperature for bond breakage varies 

according to the lignin type (Ferdous et al., 2002). 

Liu et al. (2008) analyzed the pyrolysis products of lignin from birch and fir using a thermo-

gravimetric analyzer along with Fourier transform infrared spectrometry (TGA-FTIR). H2O 

and CO2 were the primary products produced at temperatures around 100 °C. At around 225 

°C, the presence of CO, aldehydes, formic acid, and phenols was observed. The presence of 

CO2 was more obvious in the birch lignin decomposition products. The presence of mono-

meric phenol indicated the breaking of ether linkages at these temperatures. At temperatures 

around 425 °C for fir and 375 °C for birch, gaseous products such as CO, CO2, and hydro-

carbons (mainly methane) became dominant. Significant amounts of methanol were also ob-

served. Ferdous et al. (2002) studied the pyrolysis of Alcell lignin (a type of organosolv lig-

nin) and Kraft lignin (produced using a sulfate pulping process) at different heating rates and 

temperatures of up to 800 °C using a fixed-bed micro reactor. At 800 °C, the gaseous prod-

ucts were mainly H2, CO, CO2, CH4, and C2+. Overall conversion was observed to increase 

with increasing temperature. At lower temperatures, conversion was higher at lower heating 

rates. However, as the pyrolysis temperature increased, conversion started to level off and, 

eventually, at temperatures above ∼700 °C, conversion was higher at higher heating rates. 

For example, the conversion of Alcell and Kraft lignin increased to 65 and 57 wt.% from 56 

and 52 wt.%, respectively, when the heating rate was increased from 5 to 15 °C min
-1

 at 800 

°C. Fast pyrolysis of various technical lignins by Windt et al. (2009) also showed that fast 

pyrolysis results in higher conversion than lower heating rates because lower temperatures 

and longer residence times favor the formation of coke and char. 

 

2.6.2 Lignin Hydrogenolysis 

Hydrogenation of the radical compounds produced by the decomposition of lignin is one so-

lution to prevent recondensation reactions. Kleinert’s work (2008) suggests that hydrogena-

tion leads to higher yields of monomeric phenols and less char formation. The reactive hy-

drogen can be obtained from the liquefaction solvent(s) or gaseous hydrogen in combination 

with suitable catalysts. 
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Pyrolysis of neat lignin is not ideal for converting lignin into liquid fuels or chemicals since it 

results mainly in the production of solid coke and gas (Kleinert and Barth, 2008). Pyrolysis 

may be performed in the presence of hydrogen rather than nitrogen, resulting in hydrogena-

tion or hydrogenolysis. In addition, the addition of suitable solvents and catalysts can speed 

up the reaction and increase the product yield (Okuda et al., 2004). Pyrolytic oils contain a 

significant fraction of lignin-derived oligomers. Catalytic hydroprocessing can convert them 

to more useful and stable lower-molecular-weight monomeric compounds (Tang et al., 

2010). Hydrogenolysis is one of the most promising methods for producing phenols from 

lignin. Compared to pyrolysis (thermolysis), or pyrolysis in the presence of a solvent, hydro-

genolysis leads to higher net conversion, higher yields of monophenols, and less char forma-

tion (Windt et al., 2009; Connors et al., 1980). Microwave and ultrasound pre-treatment 

methods prior to hydrogenolysis lead to higher conversion and oil yields (Gonçalves and 

Schuchardt, 2002). In addition, the reaction temperature required is in the range of 300-600 

°C, which is lower than the temperature typical of thermolysis (Dorrestijin et al., 2000). 

Hydrogenation is performed either by reacting lignin in the presence an active hydrogen-

donating solvent, such as tetralin (Connors et al., 1980; Davoudzadeh et al., 1985; Vuori and 

Bredenberg, 1988; Kudsy et al., 1995; Thring et al., 2003, Sales et al., 2006) or formic acid 

(Kleinert and Barth, 2008; Huang et al. 2014), or in the presence of gaseous (molecular) hy-

drogen and a catalyst (Piskorz et al., 1989; Meier et al., 1992; Elliott et al., 2009; Joshi and 

Lawal, 2012). 

A lignin hydroprocessing system in a packed-bed catalytic reactor supplied with a constant 

flow of hydrogen was proposed by Piskorz et al., (1989). Experiments with pyrolytic lignin 

resulted in high conversion with a light organic liquid yield of 65 wt.% and a total liquid 

yield of around 85 wt.%. Meier et al. (1992) studied catalytic hydrogenolysis of lignin in the 

presence of a NiMo aluminosilica catalyst and obtained a liquid oil yield of around 65 wt.%. 

The partial pressure of hydrogen had a significant influence on the conversion. Similar re-

sults were obtained during hydroprocessing of organocell lignin. The yield of light oil in-

creased from 20 to 57 wt.% accompanied by an almost doubling of the phenolic fraction 

from 7 to 12.3wt.%, when the hydrogen pressure was increased from 5 to 14 MPa (Meier et 

al., 1994). Oasmaa and Johansson (1993) achieved an oil yield of 61 wt.% during the hydro-

processing of Kraft lignin at 10 MPa hydrogen and in the presence of a water-soluble molyb-



32 

 

denum catalyst. Experiments without the catalyst produced a condensed coke-like product 

instead of oil.  

Wild et al. (2009) hydrotreated pyrolytic oil produced by the pyrolytic depolymerization of 

lignin as separate processes. The pyrolytic oil was reacted with molecular hydrogen at 350 

°C and 10 MPa for 1 h in the presence of a Ru/C catalyst. GC-MS and NMR analysis showed 

that the hydroprocessing oil differed significantly from the pyrolytic oil feed, comprising 

mainly cycloalkanes and alkyl-substituted cyclohexanols.  

The presence of hydrogen appears to suppress the formation of char. Thring and Breau 

(1996) observed that the addition of hydrogen up to a pressure of 1MPa increased the net 

conversion, and significantly reduced solid residue yield from 40 to 11 wt.%. Meier et al. 

(2004) obtained an even greater reduction in char yield (from 32 to 1.9 wt.%) after increasing 

the pressure from 5 to 14 MPa. 

 

2.6.3 Lignin Oxidation 

Due to the presence of numerous hydroxyl groups, lignin can be oxidized or undergo oxida-

tive cracking. Oxidative cracking involves the cleavage of the aromatic ring structures, aryl 

ether bonds and other linkages within the lignin. The oxidation of lignin has been achieved 

using nitrobenzene, metal oxides, and hydrogen peroxide as oxidants for lignin. A cheaper 

alternative is catalytic oxidation with gaseous oxygen. Work at the University of Ottawa, 

Canada, has investigated the aerobic oxidation of lignin and lignin model compounds using 

copper and oxovanadium catalysts. (Sedai et al., 2011; Sedai et al., 2013) The products of 

lignin oxidation range from aromatic aldehydes to carboxylic acids, depending on the sever-

ity of the reaction conditions (Xiang and Lee, 2001). Oxidation of softwood lignin under al-

kaline conditions produces vanillin and vanillic acid while syringaldehyde and syringic acid 

are obtained from hardwood lignin. Vanillin is, in fact, one of the few low-molecular-weight 

chemicals that has been produced industrially in large quantities from lignin by alkaline oxi-

dation in air. As late as the mid 1980s, a single pulp mill employing the soda pulping process 

in Thorold, ON, Canada produced ~60% of the world's artificial vanillin. The production of 

acetic acid by wet oxidation of lignin has been studied using model compounds. (Suzuki et 
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al., 2006) However, the wet oxidation of guaiacol, syringol, and phenol as lignin model 

compounds resulted in low yields of acetic acid.  

 

2.7 Catalysts 

Catalysis is an important technology in biomass and lignin conversion. Catalysts are used in 

lignin depolymerization to promote high conversion and suppress char formation and con-

densation reactions. In many cases, catalysts participate in selective bond cleavage, thus in-

creasing the yields of particular compounds or types of compounds. Many types of catalysts 

have been tested for different processes and substrates including both model compounds and 

various types of lignin. Zakzeski et al. (2010) have published an exhaustive review of cata-

lytic lignin valorization. Typically, zeolite and amorphous silica-alumina catalysts have been 

employed in the cracking of lignin (Thring and Breau, 1996; Li et al., 2012) and upgrading 

of pyrolysis oils (Sheu et al., 1988; Sharma and Bakhshi, 1993; Joshi and Lawal, 2012). H-

ZSM-5 zeolite has been found to be more selective for aromatic hydrocarbons while amor-

phous silica-alumina catalysts favour the production of aliphatic hydrocarbons (Adjave and 

Bakhshi, 1995). Alkaline catalysts such as KOH and NaOH have been found to be effective 

in the hydrolysis of lignin in a process known as base-catalyzed decomposition or depoly-

merization (BCD) (Shabtai et al., 1999; Miller et al., 1999; Watanabe et al., 2003; Nenkova 

et al., 2008). 

The use of catalysts in the hydroprocessing of lignin increases product yields and promotes 

hydrodeoxygenation (Oasmaa and Johansson, 1993). Commonly studied hydrogenation cata-

lysts are typically composed of transition metals (e.g. cobalt, nickel and molybdenum) or no-

ble metals (e.g. palladium). (Thring and Breau, 1996) The most studied catalysts have been 

cobalt- or nickel-promoted molybdenum (Ratcliff et al., 1988; Meier, et al., 1992; Meier et 

al., 1994; Shabtai et al., 1999; Okuda et al., 2004; Matsumura et al., 2006; Tang et al., 2010; 

Jongerius et al., 2012; Yoshikawa et al., 2013).  

Oasmaa and Johansson (1993) reported high yields of lignin oils from the hydroprocessing of 

Kraft lignin in the presence of a water-soluble molybdenum catalyst. Other catalysts used in 

the hydroprocessing of lignin include Ni-W (Thring and Breau, 1996), carbon-supported Pd 



34 

 

and Ru catalysts (Wild et al., 2009; Yan et al., 2008) and Ru(PPh3)3Cl2 (Nagy et al., 2009). 

Catalysts have been found to increase the yield of aldehydes during oxidation under both 

acidic and alkaline conditions (Xiang and Lee, 2001). The catalysts used in lignin oxidation 

range from metal-supported alumina catalysts such as Pd/Al2O3 (Sales et al., 2006) and Cu-

Ni/Al2O3 (Bhargava et al., 2007) to a wide variety of homogenous catalysts (Voitl and von 

Rohr, 2010; Chen et al., 2003). Lignin oxidation using molecular oxygen as the oxidant has 

been most frequently reported using metal salt-based catalysts such as CuO, CuSO4, FeCl3, 

and MnSO4 (Xiang and Lee, 2001; Partenheimer, 2009) 

Other catalysts used in the hydroprocessing of lignin and lignin model compounds belong to 

the family of catalysts used in the petrochemical industry. Typically these comprise Mo and 

Co, usually in sulfide form. Yang et al., (2008) for example, reported on the HDO activity of 

exfoliated and crystalline MoS2, using phenol, 4-methylphenol and 4-methoxyphenol. They 

found that hydrogenolysis of the C-OH bond of 4-methylphenol was favored over MoS2 with 

a lower degree of stacking, while aromatic ring hydrogenation of phenol was favored over 

MoS2 with a higher degree of stacking (exfoliated MoS2). 

 

2.7.1 Acid Catalysts 

Most catalysts used in the hydroprocessing of lignin and its model compounds are supported 

by acid materials such as alumina (e.g. alumina-supported NiMo and CoMo), silica, and 

more recently, zeolites. Bui et al., (2011a) hydrotreated guaiacol over alumina-supported and 

unsupported MoS2 and CoMoS catalysts. The presence of Co was found to greatly increase 

the direct deoxygenation pathway in guaiacol conversion, similar to the well-known increase 

of direct desulfurization of refractory sulfur compounds over cobalt promoted molybdenum 

sulfide catalysts of in the hydrodesulfurization (HDS). Guaiacol hydroprocessing using the 

same metals but supported on zirconia (ZrO2) (Bui et al., 2011b) was very effective but dif-

ferent spectrum of products indicating that the support material can have a great effect on 

product selectivity. 

The same group also studied the co- processing of guaiacol, as an oxygenated molecule rep-

resentative of pyrolytic bio oils, with a straight run gas oil (Bui et al., 2009). The presence of 
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guaiacol was found to decrease the HDS performance of a reference CoMo/Al2O3 catalyst at 

low temperatures, but above 320 °C, HDS could proceed without any further inhibition. 

Similarly, Graca et al. (2011) found that the presence of guaiacol had a negative impact on 

the conversion of both n-heptane and gasoil in a simulated fluid catalyzed cracking (FCC) 

operation using HY, HZSM-5 and an industrial FCC equilibrium catalyst (E-CAT). This was 

found to be due to deposition of condensed material on the catalyst surface and was more 

pronounced with HZSM-5. This phenomenon was also observed by Graca et al., (2009; 

2010) who investigated the effects of phenol on the FCC of n-heptane and methylcyclohex-

ane over an HY zeolite. Phenol was found to deactivate the zeolite by adsorbing onto the 

Brönsted and Lewis acid sites of the zeolite along with coke molecules from condensation of 

the reaction intermediates. Higher temperatures decreased phenol adsorption but did not pre-

vent it. 

Olcese et al., (2010) investigated catalytic hydrodeoxygenation (HDO) of guaiacol, a model 

for lignin pyrolysis vapours, over Fe/SiO2. They found that the Fe catalyst produced less 

methane than the reference Co catalyst with a good selectivity for benzene and toluene. 

Temperature and reaction time were found to influence the aromatic carbon-oxygen bond 

hydrogenolysis reaction whereas hydrogen partial pressure had a minor influence. 

Gas phase hydrodeoxygenation (HDO) of guaiacol, as a model compound for pyrolysis oil, 

was tested on a series of transition metal phosphides which included Ni2P/SiO2, Fe2P/SiO2, 

MoP/SiO2, Co2P/SiO2 and WP/SiO2 (Zhao et al., 2011). A commercial CoMoS/Al2O3 deac-

tivated quickly and showed little activity for the HDO of guaiacol at the conditions tested 

while the most active phosphides were able to produce benzene and phenol with a small 

amount of methoxybenzene. A commercial catalyst 5% Pd/Al2O3 was more active than the 

metal phosphides. 

Popov et al. (2011) studied the details of phenol adsorption on various catalysts and support 

materials. On silica, phenol was found to mainly interact via hydrogen-bonding while on 

alumina it was found to dissociate on the acid-base pairs leading to the formation of strongly 

adsorbed phenolate species. Similarly, phenol dissociates on alumina-supported sulfided 

CoMo but does not interact strongly with the sulfide phase. The adsorption of the phenolate 

was found to decreases the accessibility of reactive catalyst sites and they proposed that de-
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creasing the number or strength of the acid-base paired sites of the support should be a way 

to limit catalyst deactivation. 

 

2.7.2 Alkali-Catalyzed Depolymerization 

As mentioned previously, one means of depolymerizing lignin is to use alkali as a catalyst. 

Shabtai et al. (1999) proposed a three-step process for converting lignin into reformulated 

gasoline which involves base-catalyzed depolymerization (BCD) followed by hydrodeoxy-

genation and hydrocracking steps. The BCD process uses a catalyst-solvent system of an al-

kali hydroxide e.g. NaOH and a supercritical alcohol such as methanol or ethanol and is per-

formed at a temperature of about 270 °C. The reaction produces a pressure of around 140 bar  

after ~5 min and results in depolymerized lignin with about a 50% decrease in oxygen con-

tent as compared to the lignin feed. In the second step of the process, the depolymerized lig-

nin was subjected to hydrodeoxygenation (HDO) in the presence of sulfided CoMo/Al2O3. 

Phenolic chemicals can be extracted from the product stream after this step if they are de-

sired. The final step involved mild catalytic hydrocracking resulting in partial ring hydro-

genation and a final product comparable to reformulated gasoline. These experiments were 

performed on three different types of lignin including Kraft lignin, organosolv lignin, and 

National Renewable Energy Laboratory (NREL) ethanol lignin. The lignins produced a wide 

range of compounds with little difference between the feed stocks and only small differences 

in reactivity were observed. The hydroprocessing of base-catalyzed depolymerized Kraft lig-

nin yielded 73.5 wt.% of alkylated phenols and methoxyphenols. 

In other work, Shabtai et al. (2001) proposed a different three-step process for converting 

lignin into partially oxygenated gasoline additives. The first stage of this process was also 

base-catalyzed depolymerization but was followed by selective hydrocracking using a super-

acid catalyst rather than HDO. This produced a depolymerized lignin product with a higher 

oxygen content and composed mainly of alkylated phenols, alkylated alkoxyphenols, and al-

kyl benzenes. In a final step, the depolymerized lignin underwent etherification and partial 

ring hydrogenation, producing a reformulated, partially oxygenated/etherified gasoline. 

An enhanced catalytic lignin to liquid bio-fuels process involving BCD has been proposed by 
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Zmierczak and Miller (2006). This method involves a similar three-step conversion process 

resulting in the production of either gasoline or aromatic ethers. An alternative one-step 

method to convert lignin into liquid fuels was also proposed. 

Miller et al. (1999) also studied BCD of both lignin and lignin model compounds in a micro 

reactor. The lignin model compounds included anisole, guaiacol, phenyl ether, biphenyl, and 

benzyl phenyl ether. These compounds and lignin were depolymerized in a fluidized-bed re-

actor at 290 °C for up to 1 h using 10% KOH and an ethanol or methanol solvent. Kinetic 

studies showed that BCD occurs rapidly within 15 min. Ethanol was a better solvent than 

methanol and organosolv lignin resulted in the highest conversion. It was also observed that 

the excess amounts of alkali catalyst are required to achieve the greatest conversion. As has 

been reported in other literature, the analysis of model compound decomposition products 

revealed that phenyl ether linkages were relatively easily broken during BCD but the carbon-

carbon linkages were more refractory. The ethanol solvent was found to react with phenyl 

ethers to form phenols and ethyl ethers as well as to participate in the alkylation of phenols 

and catechols. 

More recent work by Nguyen (2014), investigated the depolymerization of a Kraft lignin 

slurry dispersed in aqueous K2CO3 and phenol and decomposed over ZrO2 in a fixed-bed re-

actor at near critical conditions. A large fraction of the product stream was recycled to pre-

heat the feed. The process produces an aqueous phase containing phenolics and a bio-oil 

phase exhibiting an increased heating value around 32 MJ/kg. The monoaromatic compounds 

produced consisted mainly of anisoles, alkyl phenols, guaiacols and catechols, with yields 

increasing (from 17 to 27%) with increased K2CO3 concentration. 

 

2.8 Solvents 

2.8.1 Hydrogen-donating Solvents 

Hydrogen-donor solvents such as tetralin, 9,10-dihydroanthracene (AnH2) and their deriva-

tives and 1,4,5,8,9,10-hexahydroanthracene, have proven to be effective hydrogen donors for 

the liquefaction of coal. It was found that the quantity of hydrogen transferred from the sol-

vent to the coal had a significant effect on the liquefaction reactions (Arends and Mulder, 
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1996). 

Thring et al. (1993) reacted hardwood solvolytic lignin in the presence of tetralin and studied 

the effects of process severity on lignin conversion. Upon dehydrogenation at hydrocracking 

temperatures and pressures, tetralin was found to readily release four hydrogen atoms and 

was converted primarily to naphthalene. The hydrogen that was released was able to cap the 

highly reactive allyl- and vinyl-substituted intermediates resulting from lignin depolymeriza-

tion. Conversion was found to increase monotonically with increased process severity and 

char formation was low under all reaction conditions. A maximum conversion of ~68% was 

observed and was essentially constant at low concentrations of lignin in tetralin. Conversion 

decreased with higher concentrations of lignin. The decomposition products resulting from 

neat pyrolysis of the lignin feed showed a similar trend: at low severity, syringols, guaiacols, 

and aromatic ketones were the most common products. With increased process severity, fur-

ther decomposition of lignin into phenol and alkyl derivatives of phenol was observed. 

Davoudzadeh et al. (1985) performed lignin hydrogenolysis using tetralin with phenol as a 

solvent. They observed an increase in liquid yield compared to neat pyrolysis. Vuori and 

Bredenberg (1988) reported a maximum yield of phenol around 20 wt.% for lignin pyrolysis 

under hydrogen in the presence of tetralin and m-cresol solvents. The presence of tetralin at 

longer reaction times was found to decrease guaiacol yield considerably while increasing the 

yields of phenol and their derivatives (Jegers and Klein, 1985). Kudsy et al. (1995) analyzed 

the role of tetralin in hydrogenolysis. The addition of tetralin was found to increase the yield 

of phenolic compounds but did not have a significant effect on gas yield. 

Although these solvents are effective in increasing the hydrogenation of lignin they are rela-

tive expensive and hard to recover. There is another family of solvents such as formic acid 

and 2-propanol, which are thermally unstable and will decompose to give hydrogen upon be-

ing heated at elevated temperatures. For example, formic acid decomposes completely into 

hydrogen and carbon dioxide, and 2-propanol can decompose into hydrogen and acetone 

upon heating. Recently, these types of hydrogen-donating solvents have found special appli-

cations in the hydroprocessing of both biomass and lignin. 

As reported by Kleinert et al. (2008), formic acid and 2-propanol were used as hydrogen do-

nor solvents in the depolymerization and hydrogenation of lignin. The solvolysis products of 
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weak acid hydrolysis lignin (WAHL), strong acid hydrolysis lignin (SAHL), and enzymatic 

hydrolysis lignin (EHL) were analyzed for the presence of phenolic compounds. A well-

separated mixture of an organic top layer and an aqueous bottom layer with a total liquid 

yield of up to 90 wt.% was obtained. The GC-MS spectrum of the liquid organic fraction 

clearly showed a significant presence of phenols, although their yield varied considerably 

depending on the feed. In general, the yield of the isolated phenolic fraction was reported to 

be within 25-35 wt.% of the lignin feedstock and was composed exclusively of monoaro-

matic phenols with alkylation ranging from C1-C7 in the side chain(s), in a one-step conver-

sion of lignin to oxygen-depleted bio-fuels and phenols using a co-solvent mixture of formic 

acid and ethanol at about 400°C. The yield was 2 or 3 times that of an earlier work by Dor-

restijn et al. (1999) using AnH2 for de-polymerization of wood lignin at 352°C.  

Kleinert and Barth (2008) performed solvolysis of steam explosion lignin, organosolv lignin, 

and hydrolysis lignin using formic acid in a non-stirred batch reactor. A reaction temperature 

around 380 °C was maintained for reaction times up to 17 h. Satisfactory conversion was 

achieved at temperatures of 350 °C and above with a minimum reaction time of 3-4 h. 

Analysis of the products revealed predominantly alkyl chains, although lignin monomers 

were still present. More recently, the results of a study on a one-step alternative for the con-

version of lignin into low-oxygen content fuel and monomeric phenols have been published 

(Huang et al., 2014). The proposed novel solvolytic method involves thermal treatment of 

lignin in a high pressure reactor with formic acid as an active hydrogen donor and wa-

ter/ethanol as the solvent. On heating, formic acid decomposes completely into CO2 and ac-

tive hydrogen, which combines with oxygen from the methoxy groups of lignin to form wa-

ter. Since both depolymerization and hydrodeoxygenation occur simultaneously, such sol-

volytic reactions can result in monomers with low oxygen contents in a single step. 

A detailed analysis of characteristic properties of the solvolysis product oils from different 

sources of lignin by Gellerstedt et al. (2008) has shown similarities in composition, with 

nearly the same O/C and H/C ratios. FTIR analysis of lignin oil showed strong signals around 

1200 and 1710 cm
-1

, indicating the presence of isopropyl and/or tert-butyl groups and car-

boxyl groups, respectively. Characteristic peaks indicating the hydroxyl group and the aro-

matic ring were also observed. The strong presence of phenolic structures was confirmed by 

the signal cluster at 150 ppm in 
13

C-NMR analysis. A peak mass weight of around 300 mass 
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units was calculated from size exclusion chromatography (SEC). Determination of optimum 

process conditions with a high yield of the desired chemicals, with a minimum use of sol-

vents as well as acceptable ranges of temperature and pressure in the solvolysis reaction is 

very important for the method to be technologically acceptable. This, however, is very com-

plex due to the interactions between the different parameters. Optimizing experiments show 

that high-pressure conditions give high yields. In addition, for high yield, the liquid loading 

of the reactor should be increased while keeping the amount of lignin and formic acid low 

(Kleinert et al., 2009). 

 

2.8.2 Supercritical Solvents 

Supercritical solvents have also been used in the depolymerization of lignin. Supercriticality 

is a unique phase of matter wherein there is no differentiation between the liquid and gas 

phases of a solvent. Solvents in the supercritical state, that is, above their critical temperature 

and pressure, exhibit gas-like diffusivity, which facilitates mass transfer, at liquid-like densi-

ties, which facilitates heat transfer. Many researchers have studied the conversion of bio-

mass, lignin, and lignin model compounds in supercritical water (Tc = 374.15 °C and Pc = 

22.1 MPa). These studies have shown that hydrolysis in supercritical water is a viable means 

of lignin depolymerization. However, the yields of phenolic monomers are not as high as in 

other methods, likely due to the re-polymerization of reactive intermediates forming char. 

Aida et al., (2002) suggested that the presence of phenol in could minimize the formation of 

char. 

In related research, Saisu et al. (2003) depolymerized organosolv lignin in supercritical water 

in a stainless-steel tube reactor at 400 °C, with and without phenol. A comparison of the 

yields of tetrahydrofuran-soluble and -insoluble fractions of the depolymerized lignin dem-

onstrated that the insoluble fraction increased with increased reaction time. Conversely, the 

THF-insoluble fraction decreased with increasing phenol/lignin ratio. The mechanism of the 

decomposition of lignin in supercritical water was proposed to be hydrolysis followed by 

dealkylation, yielding low-molecular-weight fragments and that cross-linking reactions be-

tween the depolymerized fragments gives rise to higher-molecular-weight fragments that de-

posit as char. The presence of phenol prevents the cross-linking reactions by interacting with 
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reactive sites of the decomposed fragments and so capping the molecules. In the presence of 

sufficient phenol, the formation of char can be significantly reduced. Okuda et al., (2004b) 

obtained residual solid yields of ~1 wt.% when depolymerizing lignin a 1:1.4 (v/v) mixture 

of water and phenol. Similar experiments using p-cresol and water as the solvent in super-

critical conditions also resulted in very low yields of solid residue. In addition, the molecular 

weight distribution shifted to remarkably lower values as compared to the original lignin 

feedstock (Okuda et al., 2004a). A study of the depolymerization of lignin in a supercritical 

water/phenol mixture by Fang et al. (2008) also confirmed that addition of phenol inhibits 

repolymerization reactions. Lignin depolymerization in the presence of supercritical metha-

nol instead of water was studied by Saka and his group. Their experiments using lignin 

model compounds showed that depolymerization of lignin in a batch reactor at 270 °C pro-

ceeds rapidly due to the cleavage of -O-4 linkages (Tsujino et al., 2003). 

 

2.9 Summary 

1. Fast pyrolysis is the only industrially realized technology for production of bio-oils from 

biomass. However, pyrolysis oils contain high levels of oxygenated compounds and wa-

ter, and therefore have lower caloric values than petroleum oils. 

2. High-pressure liquefaction technology which uses moderate temperatures <400 °C but 

higher pressures of 5-20 MPa has the potential to produce superior quality bio-oils with 

much higher caloric values (25-35 MJ/kg).  

3. The bio-oils/bio-crudes produced by biomass liquefaction are composed of a complex 

mixture of oxygen-containing compounds in the form of phenol and benzene deriva-

tives, hydroxyketones, carboxylic acids and esters, and aliphatic and aromatic alcohols. 

The high oxygen content of the bio-oils limits their usefulness as liquid transportation 

fuels since the high oxygen content results in increased viscosity, poor thermal and 

chemical stability, corrosivity (due to the organic acids present) and immiscibility with 

hydrocarbon fuels. Pyrolysis oils/bio-crudes, therefore, need to be upgraded to reduce 

their oxygen content in order to convert them into useful fuels. 
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4. Catalytic cracking and catalytic hydrotreating are the two typical technologies used in 

the upgrading of bio-oils for fuel applications. Catalytic cracking processes, which use 

cracking catalysts (e.g. zeolites, silica-alumina and molecular sieves), operate at atmos-

pheric pressure without the requirement of additional hydrogen. In contrast, catalytic 

hydrotreating processes operate at higher pressures (2-20 MPa) in the presence of hy-

drogen and/or in the presence of hydrogen donor solvents. 

5. Commercially available sulfided catalysts (Al2O3-supported CoMo, NiMo, NiW, Ni, Co, 

Pd, and CuCrO) have been widely used for hydrodeoxygenation (HDO) of both bio-oils 

and model compounds. Alumina-supported Pd catalysts have been found to be the most 

effective catalysts, producing higher bio-oil yields than conventional Mo-based cata-

lysts. Catalyst deactivation due to the formation of coke and tars has been identified as 

the major issue with the conventional alumina-supported catalysts. 

6. Lignin can be extracted from woody biomass thereby reducing the amount of oxygen 

that needs to be removed from the resulting bio-oil since the oxygen-containing cellu-

lose breakdown products are not present. 

7. Some of the chemical bonds in lignin are more refractive to hydroprocessing than others. 

8. Kraft lignin (alkali lignin) is widely available. However it presents a challenge in proc-

essing. During degradation, the sulfur present in the alkali lignin can become incorpo-

rated into the degradation products (as sulfides and thiols). The sulfur present will also, 

over time, poison any catalysts used. As a side note, the presence of sulfur also imparts a 

very strong unpleasant odour to the bio-oil, further limiting its utility. 

9. Organosolv and hydrolysis lignin are an alternative to Kraft lignin, though they are not 

available in as large abundance. They are extracted without the use of sulfur compounds 

and are therefore sulfur-free. As such, the degradation of these lignins produces sulfur-

free bio-oil - a benefit in terms of catalyst longevity (due to the absence of catalytic poi-

sons) and odour during processing. 

10. Lignin can by degraded by various means including; cracking or hydrolysis reactions, 

catalytic reduction reactions, and catalytic oxidation reactions. 
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11. Much literature has been published on whole bio-oil and lignin model compound up-

grading (hydroprocessing) rather than the upgrading of lignin and degraded lignin. 

12. Lignin degradation is complicated by the different types of bonds that make up the 

polymer. 

 

2.9.1 Model Compounds 

13. Model compounds allow researchers to determine reaction mechanisms and kinetics in 

simpler systems. 

14. Phenol and guaiacol are the most studied lignin model compounds. 

15. Guaiacol, and other di-oxygenates, are susceptible to coke formation and can be used to 

determine the ratio of coke (on the catalyst) to char (re-polymerization solids) produc-

tion. 

16. A large fraction of the model compound studies have investigated gas phase hydrode-

oxygenation rather than liquid phase reactions. 

 

2.9.2 Catalysts 

17. Noble metals (e.g. Pt, Re, Rh) are effective hydroprocessing catalysts but are very ex-

pensive especially if they have are subjected to conditions where they have a short life-

time and cannot be regenerated effectively. 

18. Transition metals are also active in bio-oil and model compound hydroprocessing but 

are generally not as active as noble metals catalysts. 

19. The effectiveness of transition metal catalysts can be increased by the addition of pro-

moters and/or additives. 

20. Transition metal catalysts are usually used in reduced or sulfided forms. 
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21. Much research has been reported on hydroprocessing using sulfided catalysts (e.g. 

CoMo/alumina) similar to those used in petroleum processing 

22. Conventional sulfided hydrodeoxygenation catalysts can give rise to products incorpo-

rating sulfur, are subject to rapid deactivation by coke formation, and can potentially be-

come poisoning by water produced as a by-product of oxygen removal. 

23. Ru/C may be too active a catalyst for the conversion of pyrolytic lignin oil to low mo-

lecular weight phenolics, but may be suitable for the production of fuels. 

 

2.9.3 Catalyst Support 

24. Acidic support materials such as alumina and zeolites are known to catalyze condensa-

tion reactions and quickly become deactivated by coke deposition. 

25. Some of the catalyst deactivation observed in bio-oil upgrading using zeolites is due to 

adsorption of phenolic compounds on both Brönsted and Lewis acid sites 

26. Catalyst supports also affect model compound adsorption mechanisms. 

27. Support materials influence the selectivity of hydroprocessing products. 

28. Catalyst morphology can affect hydroprocessing product selectivity as well. 

 

2.9.4 Solvents 

29. Solvents can enhance the hydroprocessing of bio-oils and model compounds either by 

dilution of the reactive coke precursors or by actively participating in the reactions as 

hydrogen donors. 

30. Hydrogen donor solvents include isopropanol and formic acid which decompose upon 

heating while tetralin and similar compounds which have been used in coal liquefaction. 

31. Hydrogen donor solvents produce reactive hydrogen species that cap highly reactive in-
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termediates 

32. The use of co-solvents can improve product yields. 

33. Supercritical solvents including water, CO2, and alcohols have been used to produce and 

upgrade bio-oil. 
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Chapter 3  

3 Reductive depolymerization of Kraft and organosolv lignin 

for aromatic chemicals and materials 

3.1 Introduction 

Due to rapid deletion of available petroleum reserves, one of the major priorities of 21
st
 cen-

tury is to find new resources for fuel and chemicals to replace the fossil deposits as they be-

come exhausted. In this regard, biomass, as an abundant and renewable resource, is certainly 

the most feasible choice. Lignin is the second most abundant naturally synthesized polymer 

after cellulose comprising 25-40 % of dry wood and a majority of crop stems. (Tejado et al., 

2007)  About 70 million tons of Kraft lignin (KL) is generated annually as a by-product in 

the pulp and paper industry in the form of “black liquor”. Up to now, it has been utilized pre-

dominantly as a low-energy content fuel in pulp/paper mill recovery boilers for generation of 

heat and pulping chemical regeneration. However, in many Kraft mills, the recovery boilers 

present a bottleneck in the pulping process due to the sheer amounts of lignin produced. In 

addition, large volumes of organosolv lignin (OL) from the pre-treatment processes in cellu-

losic ethanol plants are expected to become available as the bio-ethanol industry expands in 

the near future. (Champagne, 2007) With the increasing interest in developing cellulose-

based biodegradable materials and composites, new technologies, such as ionic liquid 

(Pinkert et al., 2011; Hart and Aldous, 2015; van Spronsen et al., 2014) and organic acid 

(Vasquez et al., 1995; Hirose et al., 2001) approaches, are being developed to separate lignin 

from cellulose. All of these methods produce OL. 

As a natural polymer of substituted phenyl-propanols, lignin contains many polar hydroxyl 

groups attached to the polymer chains, making it incompatible with most synthetic polymers 

due to its high polarity, high degree of crystallinity and wide range of glass transition tem-

peratures. (Chakar and Ragauskas, 2004) In addition, due to its branched structure and natu-

rally limited molecular weight, lignin does not have enough strength to be used as a structural 

material on its own. However, lignin’s molecular weight is too high and its energy content is 

too low for fuel applications (due to its high oxygen content). It is commonly accepted that 

modification of lignin (e.g. via esterification or depolymerization) is needed for utilization of 

lignin for fuels or chemicals. Most of the research on the applications of lignin has concen-
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trated on converting lignin into chemicals and fuels via hydrolytic, (Nadji et al., 2005) oxida-

tive, (El Mansouri et al., 2011) and reductive depolymerization (Doumel et al., 1988) and 

pyrolysis (Sigoillot et al., 2012) approaches. Most of these destructive approaches suffer 

from the drawbacks of high energy input, low yields and difficulty in product separation. To 

overcome these disadvantages, a viable strategy for lignin application might be to perform 

molecular reconstruction of high molecular weight, low reactivity lignin into moderate mo-

lecular weight (e.g. in the range of 1,000-2000 g/mol or lower), more reactive feedstocks 

through depolymerization then introducing curable functional groups for use in the produc-

tion of various types of bio-materials. Since lignin contains abundant ether linkages and ali-

phatic and phenolic hydroxyl groups, depolymerized lignin of moderate molecular weight 

may directly replace petroleum-based polyether polyols in the synthesis of polyurethane (PU) 

materials and petroleum-derived phenol (or polyphenol) in the synthesis of phenol-

formaldehyde (PF) resins (Mahmood et al., 2013; Liu and Wilson, 2013) or epoxy resins. 

(Zhang et al., 2011; Yuan et al., 2010) The hydroxyl groups can also undergo a variety of 

reactions such as oxypropylation (Cateto et al., 2009, Song et al., 2013; Chen and Falconer, 

1994) for the synthesis of lignin-based polyols for use as surfactants and PU raw materials, 

grafting of amines for use as catalysts, (Mahmood et al., 2013) grafting of epichlorohydrin 

followed by reaction with diethanolamine for use as a surfactant for cement construction ma-

terials, and grafting of vinyl monomers for the synthesis of radical curable resins. The above 

proposed chemical reactions for lignin valorization are shown in Scheme 1. 

The original molecular weights of KL and OL, generally >10,000 g/mol and >2,600 g/mol, 

respectively, are too high for the above applications. Fortunately, the relatively weaker C-O 

bonds connecting the phenyl-propanol monomers in lignin can be cleaved, resulting in 

smaller molecules. Fungal bio-depolymerization of lignin has also been investigated inten-

sively, but these biological processes are slow and capital intensive. Hydrolytic depolymeri-

zation has shown some promise, but the process leads to low de-polymerized lignin (DL) 

yields. Recently, reductive depolymerization of lignin in the presence of hydrogen and metal 

catalysts, especially late 3d and 4d transition metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) has 

been studied (Jin et al., 2014). Laskar et al. (2014), used noble-metal (Pt, Ru, Rh) catalysts to 

hydroprocess lignin into aromatic hydrocarbons for fuel with about 50% yield.  
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Scheme 3.1 Routes of lignin valorization 

 

To economically utilize lignin and build a sustainable bio-based economy, we are attempting 

to depolymerize lignin into oligomers of moderate molecular weight at a high yield and re-

duced sulfur content (sulfur is a detrimental element in fuel applications) by hydrotreatment 

under milder conditions.  

Thus, in this work, several supported metal hydrogenation catalysts were investigated for the 

depolymerization and desulfurization of KL and OL under hydrogen atmospheres for appli-

cations such as fuel additives and intermediates for chemicals and materials. 
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3.2 Experimental 

3.2.1 Materials 

The organosolv lignin used in these experiments was provided by Lignol, Canada while the 

Kraft lignin was provided by FPInnovations, Canada. The activated carbon-supported Ru 

catalyst was purchased from Sigma-Aldrich. Hydrogen (99.99%) was purchased from Prax-

air. The solvents (acetone, reagent grade) and ethanol (denatured, reagent grade) were pur-

chased from Caledon Canada. FHUDS-2 (NiMoW-based) catalyst was provided by 

SINOPEC Fushun Research Institute of Petroleum and Petrochemicals. The activated car-

bon- and  γ-alumina-supported Ni catalysts and the γ-alumina-supported Ru catalyst were 

prepared by incipient impregnation. All the materials were used as received.  

 

3.2.2 Experimental apparatus and procedure 

Lignin depolymerization was conducted in a 500 mL Parr autoclave reactor. In a typical run, 

30.0 g lignin, 1.5 g catalyst, and 120 g (150 mL) acetone were added to the reactor. The reac-

tor was evacuated and purged with nitrogen twice, then evacuated and purged with hydrogen 

twice and finally pressurized with 100 bar hydrogen. After a leak check, the reactor was then 

heated under stirring to the set temperature (approximately 1 h) and the reaction was contin-

ued for 1 h after reaching the set temperature. After the set time had elapsed, the reactor was 

quenched by cooling the reaction mixture to room temperature by running water through the 

cooling coil in the reactor. After cooling, the pressure in the reactor was typically in the range 

of 50-55 bar, suggesting significant hydrogen consumption during the hydroprocessing proc-

ess. The reaction mixture was rinsed from the reactor with acetone and filtered through a pre-

weighed Whatman #5 filter paper to isolate the solid residue and spent catalyst. The solids 

were then dried in vacuum oven under 50 °C to remove volatile components. Solids yields 

were calculated by the mass difference between spent catalysts and catalyst loaded into the 

reactor. An aliquot of the filtrate was taken for GC-MS analysis. The remaining liquid was 

evaporated under reduced pressure in a rotary evaporator to remove the solvent and obtain 

depolymerized lignin (DKL and DOL) as the final product. The yields (wt.%) of depolymer-
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ized lignin (DKL or DOL) and SR were calculated by weight of DKL, DOL and SR relative 

to the weight of KL or OL loaded. 

 

3.2.3 Product Characterization 

The relative molecular weights and their distributions of the original and de-polymerized lig-

nin samples were measured with a Waters Breeze GPC-HPLC (gel permeation chromatogra-

phy-high performance liquid chromatography) instrument (1525 binary pump, UV detector at 

270 nm; Waters Styrylgel HR1 column at a column temperature of 40 °C) using THF as the 

eluant at a flow rate of 1 mL/min. Linear polystyrene standards were used to generate a cali-

bration curve for molecular weight estimation. 
1
H NMR spectra were obtained on a 500 MHz 

Unity Inova NMR instrument at room temperature, wherein DMSO-d6 was used as solvent. 

FT-IR spectra were collected on a Bruker Tensor 37 FTIR spectrophotometer in the range of 

550-4000 cm
-1

 with ATR accessory. The volatile components of the DOL and DAL were 

identified by GC-MS (HP 6890 GC and HP 5972 MS) using a silicon column with tempera-

ture programming from an initial temperature of 50 °C for 2 min hold at 10 °C/min to a final 

temperature of 280 °C for 2 min hold. Elemental analysis of CHNS (carbon, hydrogen, nitro-

gen, and sulfur) was conducted on a Flash EA 1112 Series elemental Analyzer. The BET sur-

face area analysis was performed on a Micrometrics ASAP 2010 instrument. The samples 

were degassed at 150 °C until a stable static vacuum of less than 5×10
-3

 Torr was achieved 

prior to analysis. 

 

3.3 Results and discussion 

3.3.1 Effect of catalyst 

Ru/C (5%), Ru/Al2O3 (5%), Ni/Al2O3 (10%), Ni/C (10%), FHUDS-2 were used in catalyst 

screening test for the hydroprocessing of Kraft lignin (KL) and organosolv lignin (OL) with 

relative weight average molecular weights (MW, all molecular weights were based on linear 

polystyrene standards) of 10,200 and 2,600 g/mol, respectively. The objective of the hydro-

processing was to depolymerize the lignin feedstocks into low molecular weight compounds 
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with high yields of products and low yields of solid residual. The results of the experiments 

are presented in Table 3.1. 

 

Table 3.1 Catalyst screening 

Feed Catalyst Catalyst (g) DL 

(wt.%) 

SR Yield 

(wt.%) 

Mw 

(g/mol) 

Mw/Mn 

KL Original KL    10,200 4.18 

KL None  70.3 28.0 21,400 4.73 

KL Ru/C (5%) 1.5 95.2 1.7 5,300 4.34 

KL Ru/C (5%) 3.0 94.7 3.8 5,200 3.56 

KL Ru/Al2O3 (5%) 1.5 94.3 5.9 7,300 5.15 

KL Ni/Al2O3 (10%) 1.5 94.5 5.3 8,210 5.03 

KL Ni/C (10%) 1.5 95.0 4.5 6,860 4.55 

KL FHUDS-2 3 97.9 2.3 5,150 4.35 

OL None  102 2.0 6,910 5.43 

OL Ru/C 3 96.9 1.9 1,470 2.61 

OL Ru/C 1.5 103 1.0 1,400 2.66 

OL* Ru/C 1.5 100 1.8 1,730 2.06 

OL Ru/Al2O3 1.5 96.8 2.5 2,460 4.06 

OL Ni/C (10%) 1.5 98.8 1.5 1,620 2.81 

OL FHUDS-2 3 98.6 2.3 1,480 3.01 

* Ethanol as the solvent 

 

The results for the depolymerization of AL and OL at 300 °C under 100 bar hydrogen using 

different catalysts are presented in Figures 3.1 and 3.2, showing the molecular weights (Fig-

ure 3.1) and yields of DKL, DOL and solid residual (SR) (Figure 3.2). The yields (wt.%) of 

depolymerized lignin (DAL and DOL) were calculated by dividing the weight of acetone-

soluble products by the weight of lignin feed, multiplied by 100%. The yields of char (or 

solid residual) were calculated by dividing the increased weight of the spent catalyst by the 
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weight of lignin feed. It is obvious that the catalysts used played a key role in the depoly-

merization of both types of lignin. Without catalyst, after 1 h treatment under H2 at 300 °C, 

the MW of both types of lignin dramatically increased, being more than double of that of the 

original lignin. A possible mechanism for this increase in MW is Fridel-Craft condensation 

between the aliphatic hydroxyl groups and the ortho positions of the phenolic rings in lignin 

under heating. 

 

 

Figure 3.1 Molecular weight of depolymerized lignin using different catalysts 

Reaction conditions: 30.0 g lignin, 120 g (150 mL) acetone, initial H2 pressure 100 bar, reaction time 1 h at 300 

°C, the amount of catalysts were 1.5 g except 3.0 g for FHUDS-2 (cheaper with lower metal contents). Catalysts 

named with percentage of metal on support 

 

The yield of depolymerized KL (DKL) without catalyst was about 70 wt.% with 28 wt.% 

solid residue or char formation. This may be due to the higher initial MW of the KL. Thus, 

when the molecular weight further increased through condensation, the solubility of the 

higher molecular weight compounds decreased causing some of the lignin precipitate, which 

greatly increased the local concentration of lignin and expedited condensation and the cross-

linking reactions that promote char formation. 
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Figure 3.2 Yields of depolymerized product and solid residue for Kraft lignin (a) 

and organosolv lignin (b) 

Reaction conditions: 30.0 g lignin, 120 g (150 mL) acetone, initial H2 pressure 100 bar, reaction time 1 h at 300 

°C, the amount of catalysts were 1.5 g except 3.0 g for FHUDS-2 (cheaper with lower metal contents). Catalysts 

named with percentage of metal on support. 
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Two competitive reactions occur in lignin in the presence of catalysts: condensation reactions 

which increase molecular weight and depolymerization reactions acting on the ether bonds 

which reduce molecular size. When an effective catalyst was used, depolymerization reac-

tions were dominant, which allowed the depolymerized lignin to dissolve. Therefore all the 

catalysts gave very good yields of DKL, mostly over 95 wt.%. 

 

Since the MW of OL was much lower to begin with, even without catalyst, the yield was still 

very high (close 100%). When Ru/C was used, the molecular weights were significantly re-

duced to 5,300 g/mol for KL and to 1,400 g/mol for OL. When Ru was supported on Al2O3 

(5%), catalyst effectiveness was much lower. One reason for this could be that the surface 

area of Ru/C (over 1200 m
2
/g, as measured by BET) was several times higher than the sur-

face area (230 m
2
/g) of Ru/Al2O3. This would increase the distribution of the Ru over the sur-

face of the support, resulting in more active sites. Another reason could be due to the acidic 

properties of alumina which are known to promote condensation reactions. The Ni-based 

catalysts have proven to be effective catalysts for the hydrogenation of the ether bonds in lig-

nin. However, even though the Ni/Al2O3 (10%), and Ni/C (10%) also reduced the molecular 

weight of KL and OL, they were not as effective as Ru/C. FHUDS-2 is a NiMoW-based 

commercial hydrodesulfurization catalyst. When FHUDS-2 was used, the molecular weights 

of the lignins were reduced to 5,150 and 1,480 g/mol for DKL and DOL, respectively. Al-

though surface area of the FHUDS-2 catalyst (220 m
2
/g) was close to that of the alumina-

supported Ru catalyst, its much higher activity indicates that the three metal combination of 

Ni, Mo, and W has a synergistic effect. Thus, among the catalysts tested, Ru/C and FHUDS-

2 were chosen for further evaluation of reaction condition optimization. 

 

3.3.2 Effect of catalyst loading 

The results with 1.5 g and 3.0 g Ru/C catalyst (entry 3 and 4 in Table 3.1) at 300 °C for both 

DKL and DOL show that at a set reaction time, doubling the amount of catalyst used had lit-

tle difference on the MW of the DL products and only a small decrease in the amount of char 

(SR) produced with the DKL. Considering the cost of Ru/C catalyst, using a smaller amount 

of catalyst in the treatment is more economically viable. 
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3.3.3 Effect of reaction temperature 

The temperature effect on KL and OL depolymerization using Ru/C as a catalyst for 1 h reac-

tion was investigated. The yields of depolymerized product and solid residue are presented in 

Table 3.2 and Figure 3.3. 

Table 3.2 Temperature effect on yield and MW 

Lignin Temp 

(°C) 

Time 

(h) 

DL yield 

(%) 

Char 

(%) 

Mw 

(g/mol) 

PDI 

KL 250 1 73.3 26.9 5530 3.27 

KL 275 1 91.4 7.1 5460 6.41 

KL 300 1 94.7 3.8 5260 4.55 

KL 325 1 97.3 1.6 1980 4.73 

KL 350 1 97.7 1.5 1020 2.34 

KL 350 0.5 97.2 1.4 1570 2.78 

KL 350 1 97.7 1.5 1020 2.34 

KL 350 2 95.4 0.93 966 2.24 

KL 350 3 96.1 1.23 890 2.24 

OL 250 1 96.8 1.9 1970 2.59 

OL 275 1 97.3 1.8 1630 2.40 

OL 300 1 103 1.0 1400 2.66 

OL 325 1 99.7 1.6 1320 2.45 

OL 350 1 98.0 1.5 850 2.28 

 

At 250 °C, with Ru/C catalyst, the yield of soluble DKL product was only about 73 wt.% 

with 27 wt.% solid residue (SR), similar with the results without catalyst at 300 °C, indicat-

ing that catalyst activity is not very high at 250 °C. As the reaction temperature was in-

creased to 275 °C the DKL yield improved to greater than 95 wt.%, likely due to increasing 

lignin solubility and depolymerization reactions counteracting the cross-linking reactions 

evidenced at 250 °C. The yields of char for OL were much lower than those of KL, likely 

because the initial MW of OL was lower and the fact that OL is more soluble in acetone than 

the KL, therefore the char formation for OL is much less severe. 



73 

 

 

Figure 3.3 Effect of temperature on DKL and DOL yields 

Reaction condition: 30.0 g lignin, 120 g (150 mL) acetone, 1.5 g Ru/C, H2 pressure 100 bar, reaction time 1 h. 

The effects of temperature on the Mw’s of DKL and DOL using Ru/C catalyst are presented 

on Figure 3.4. The results show that temperature plays a more important role in product mo-

lecular weight than product yields. The Mw’s of the DOL decreased monotonically from 

1,970 to 850 g/mol over a temperature range of 250 to 350 °C without drastic change due to 

the initial low Mw of the OL. In contrast, the Mw’s of the DKL decreased slightly from 

5,530 g/mol at 250 °C to 5,260 g/mol at 300 °C. However, at 325 °C the MW of the DKL 

decreased dramatically to 1,980 g/mol and reached 1,020 g/mol at 350 °C. As mentioned 

previously, two main reactions are involved in the process. The energy barrier for condensa-

tion reactions is lower than for the depolymerization reactions. Therefore, at a lower tem-

peratures, condensation reactions are dominant leading to products with an increased molecu-

lar weight. In contrast, at higher temperatures, condensation reactions are energetically unfa-

vourable since they result in the joining of two large molecules together. In addition, the 

breaking of ether bonds which results in smaller molecules is favoured at higher temperatures 

leading to greater conversions. Thus it is possible that 300 °C represents the energy barrier 

(activation energy) required for ether bond cleavage to occur. 
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Figure 3.4 Effect of temperature on DKL and DOL MW using Ru catalyst 

Reaction condition: 30.0 g lignin, 120 g (150 mL) acetone, 1.5 g Ru/C, initial H2 pressure 100 bar, reaction time 

1 h. 

During heating, the reactor pressure was found to increase quickly between 250-300 °C, but 

the pressure increase slowed at temperatures above 300 °C, suggesting that significant hy-

drogen consumption was occurring. Thus, the rate of hydrogenation increased slowly at tem-

peratures up to 300 °C and but more rapidly above 300 °C, as evidenced by the decreased 

Mw’s of DKL and DOL in Figure 3.4 as the reaction temperature increased above 300 °C. 

The temperature effects for FHUDS-2 catalyst were also investigated from 300 °C to 350 °C. 

The MW’s of DKL and DOL using this catalyst are shown in Figure 3.5. The MW’s of DKL 

drastically decreased from 5,150 g/mol at 300 °C to 2,170 and 1,150 g/mol at 325 °C and 350 

°C, respectively. Similarly, though not as great, the Mw’s of DOL decreased from 2,200 

g/mol at 300 °C to 1,980 and 1,020 g/mol at 325 and 350 °C, respectively. The product yields 

were all greater than 95 wt.% and SR yields were all less than 2 wt.%. 
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Figure 3.5 Effect of temperature on DKL and DOL MW using FHUDS-2 catalyst 

Reaction conditions: 30.0 g lignin, 120 g (150 mL) acetone, 3.0 g FHUDS-2, initial H2 pressure 100 bar, reac-

tion time 1 h. 

 

 

3.3.4 Effect of reaction time 

The effect of reaction time on product molecular weight was also investigated for the de-

polymerization of KL using Ru/C as catalyst at 350 °C. Figure 3.6 shows that there was a 

significant decrease in molecular weight (from 1,570 g/mol to 1,020 g/mol) as reaction time 

was increased from 0.5 h to 1 h. As the reaction time was increased to 2 h and then 3 h, the 

molecular weight continued to decrease (to 966 and 890 g/mol, respectively), but the effect 

was not as great as was seen earlier. Comparing these results with the effect of temperature, it 

seems that under these conditions there is a limit of around 900 g/mol, beyond which lignin 

cannot be depolymerized under the conditions used here. When the depolymerization reached 

a molecular weight of 1,000 g/mol, whether increasing reaction temperature or reaction time, 

the molecular weight cannot be further reduced. This phenomenon was also found in previ-

ous work for catalytic lignin depolymerization in water solution either in the presence of 
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phenol as capping agent or without capping agent. This is probably because the hydrodeoxy-

genation reactions occur mostly on the ether linkages, especially β-O-4 structures (Chakar 

and Ragauskas, 2004). Once these linkages are broken, further reduction in molecular weight 

requires the breaking of more resistant chemical bonds. 

 
Figure 3.6 Effect of reaction time on DKL MW 

Reaction conditions: Ru/C catalyst, 350 °C, 100 bar H2 

 

3.3.5 Effect of solvent 

In addition to acetone, ethanol was also tested for OL hydroprocessing. The results as seen in 

Table 3.1 above showed that ethanol was not as effective a solvent as acetone, producing 

lower yields of higher MW products. This is likely due to the OL lignin being less soluble in 

ethanol as compared to acetone as well as the possibility of the OH groups of the solvent par-

ticipating in condensation reactions with the OL. 

 

3.4 Product characterization 

The relative molecular weights of original KL and OL as well as product DKLs and DOLs 

were measured by gel permeation chromatography (GPC). The GPC curves for KL and OL 
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depolymerization with Ru/C catalyst at different treatment conditions are shown in Figures 

3.7 and 3.8. 

 

Figure 3.7 GPC curves of the original and depolymerized lignin products from KL 

 

Figure 3.8 GPC curves of the original and depolymerized lignin products from OL 

Reaction conditions: 30.0 g lignin, 120 g (150 mL) acetone, initial H2 pressure 100 bar, 1.5 g 5%Ru/C catalyst. 
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It can be seen that a new peak at high molecular weight region (low elution volume) appears 

for the un-catalyzed products of both of DKL and DOL because of condensation reactions. 

The GPC curves also give a clear illustration of the temperature effects on lignin depolymeri-

zation. A new peak in the high molecular region for both DKL and DOL appears on the 

curves for lignin depolymerization at 250 °C and the peak intensity becomes weaker at a 

higher temperature and disappears in DOL at 300 °C and in DKL at 350 °C. This again can 

be explained by lower temperatures favouring condensation reactions while higher tempera-

tures favour depolymerization reactions. 

The volatile components (yields below 2% by difference through subtracting 100% with the 

yield of DL and solid residue) of the reaction mixture were analyzed by GC-MS. The identi-

fied compounds are mainly substituted phenolic compounds and aromatic hydrocarbons. 

A comparison of the IR spectra of the KL feed and DKL are presented in Figure 3.9. As ex-

pected, the spectra are very similar except for relatively stronger absorption in the OH region 

for the DKL which may attributed to the newly generated OH group from hydrogenation of 

the ether linkages in the lignin. Similar observations were obtained for the OL and DOL. 

 

 
Figure 3.9 IR spectra of KL and DKL 
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Since lignin has large numbers of OH groups it is a potential feedstock for replacing petro-

leum-based bisphenol A in the synthesis of epoxy resin and a potential polyol substitute in 

the synthesis of polyurethane materials. Phenolic hydroxyl groups are more active in the syn-

thesis of epoxy resin while aliphatic hydroxyl groups are more reactive in the synthesis of 

polyurethane. Furthermore, phenolic hydroxyl groups can easily be modified to aliphatic hy-

droxyl groups, for use in PU synthesis for example, by oxypropylation using propylene ox-

ide. The average number of hydroxyl groups per lignin monomer unit (supposing the unit 

molecular weight is 180 g/mol) can be estimated by 1H-NMR (Figure 3.10) through acetyla-

tion with acetic anhydride in the presence of pyridine. Dibromomethane was used as an in-

ternal standard for the quantification.  

 

 

Figure 3.10 NMR spectrum of acetylated DKL 

 

The chemical shifts of the methyl groups on the aliphatic hydroxyl acetyl esters and phenolic 

hydroxyl acetyl esters appear at 1.6-2.2 and 2.2-2.6 ppm, respectively. The methyl group of 

methyl-aromatic ethers appears at 3.7 ppm. Table 3.3 shows the estimated number of OH 

groups per lignin unit for DKL hydroprocessed with FHUDS-2 catalyst at 300 °C and 350 °C 

for 1h. The average aliphatic and aromatic (phenolic) hydroxyl groups per lignin unit 

changed from 1.16 and 0.81 of original KL to 0.77 and 0.91 for DKL of 300 °C and 0.54 and 

0.99 for DKL of 350 °C. There was almost no change in the number of methyl phenyl ether 

bonds. The increased phenolic OH was from the cleavage of β-O-4 ether linkage producing a 

phenolic OH and an alkane, which is the main reaction of lignin depolymerization. The de-

crease in aliphatic OH groups indicates that dehydration (hydrodeoxygenation) of the ali-

CHCl3                      CH3                                CH3COOH 

 

                                               COCH3 
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phatic OH groups is easier than for phenolic OH groups, which was the main contribution to 

the overall decrease in oxygen content. This is because phenolic C-OH bonds, with carbon 

sp
2
 hybridization, are much stronger than aliphatic C-OH bonds. 

 

Table 3.3 KL and DKL hydroxyl groups 

Sample OH group/lignin unit OMe/lignin 

unit 
Aliphatic Aromatic 

KL 1.16 0.81 0.69 

DKL, 300 °C 0.77 0.91 0.68 

DKL, 350 °C 0.54 0.99 0.65 

 

Lignin is viewed as low energy content fuel due to high oxygen content. KL, incorporating 

sulfur from the pulping process, is even more unsuitable as a fuel. One of the purposes of 

lignin hydroprocessing is to reduce oxygen and sulfur contents for further upgrading to fuel. 

Table 3.4 shows the results of elemental analysis for KL and DKL treated with Ru/C and 

FHUDS-2 catalysts at 300 °C and 350 °C for 1 h. After depolymerization, oxygen contents 

were reduced by 20-30% for both OL and KL. The sulfur contents of the KL were reduced 

by 92-96%. Deoxygenation was achieved through dehydration of the hydroxyl groups pre-

sent. Desulfurization was achieved by rupturing C-S bond to produce hydrogen sulfide and 

other sulfur compounds which was evidenced by the foul smell of the resulting reaction mix-

ture. As a desulfurization catalyst, FHUDS-2 is also effective in deoxygenation reactions. As 

a hydrogenation catalyst, Ru/C also has very good activity in deoxygenation and desulfuriza-

tion. It is interesting to observe that the sulfur in KL did not appear to poison the Ru/C cata-

lyst. The spent Ru/C and FHUDS-2 catalysts could be reused at least two times without ob-

vious decrease their catalytic activity. 
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Table 3.4 Elemental analysis (CHNSO) of KL and DKL 

 C H S O* 

KL 64.1 5.60 4.40 25.9 

Ru/C, 300 °C 71.6 7.13 0.33 20.9 

Ru/C, 350 °C 74.1 7.08 0.29 18.5 

FHUDS-2, 300 °C 73.4 7.09 0.30 19.2 

FHUDS-2, 350 °C 74.5 7.24 0.18 18.1 

Reaction conditions: 30.0 g lignin, 1.5 g catalyst, initial H2 pressure 100 bar, 120 g acetone. 

* determined by mass difference 

 

3.5 Conclusions 

All of the catalysts tested were effective in depolymerizing the lignin feedstocks, however, 

the alumina-supported catalysts and the carbon-supported Ni catalyst did not perform as well 

as the carbon-supported Ru and FHUDS-2 catalysts. The molecular weights of the depoly-

merized lignins using these last two catalysts were markedly lower than the lignin feeds 

(~1,000 vs. 2,600 and 10,000 g/mol). It should be noted that the molecular weight of or-

ganosolv lignin decreased monotonically with increased temperature but for Kraft lignin, 

temperatures greater than 300 °C were required to materially decrease molecular weight. In 

addition, the sulfur contents of the depolymerized Kraft lignins were drastically reduced (by 

92-96%), although the foul odour of the products indicated that the organosulfur compounds 

remaining present an issue even at low concentrations. Given the effectiveness of sulfur re-

moval, it is somewhat surprising that these catalysts were not particularly effective in deoxy-

genating the lignin (reduction of 20-30%). This is perhaps due to the strength of C-O bonds 

(358 kJ/mol) relative to C-S bonds (272 kJ/mol) in addition to difference in bond strength 

between aromatic and aliphatic C-OH bonds. 
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Chapter 4  

4 Catalyst screening for the hydrotreatment of lignin using 

guaiacol as a model compound 

4.1 Introduction 

The depletion of fossil fuel reserves coupled with increased consumption from rising econo-

mies such as China and India in the 21
st
 century, has intensified the interest in the production 

of chemicals and fuels from alternative resources. Biomass, such as agricultural and forestry 

wastes, is generally regarded as the most feasible alternative as it is widely available, renew-

able and generally carbon-neutral. 

Lignin is the second most abundant naturally synthesized polymer after cellulose and com-

prises 25-40 % of dry wood and crop stems. (Tejado et al., 2007) In addition, it is the most 

abundant natural source of aromatic compounds. About 50 million tons of Kraft lignin (KL) 

in the form of black liquor is generated annually as a by-product in the pulp and paper indus-

try where it has historically been viewed as a waste material or a low value by-product. Con-

sequently, it has been predominantly used as a low-energy content fuel in the recovery boil-

ers of pulp/paper mills. However, the recovery boilers represent a bottleneck in the many 

pulping plants in North America. 

In addition to Kraft lignin, due to the recent increase and projected growth of bio-ethanol 

production, it is expected that large quantities of organosolv lignin (OL) and hydrolysis lig-

nin (HL), as by-products of pre-treatment processes in these cellulosic ethanol plants, will 

become available in the near future. 

As an amorphous natural polymer of substituted propyl-phenols, lignin contains many polar 

hydroxyl groups, making it incompatible with most synthetic polymers due to its high polar-

ity and broad glass transition temperature. (Chakar and Ragauskas, 2004) Since lignin con-

tains abundant ether (e.g. -O-4) linkages and aliphatic and phenolic hydroxyl groups, lignin 

depolymerization products of moderate molecular weight could be good candidates for raw 

materials to replace petroleum-based polyether polyols for the synthesis of polyurethane 

(PU) materials and replace petroleum phenol for the synthesis of phenol-formaldehyde (PF) 
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(Wang et al., 2009; Vasquez et al., 1995) and epoxy resins. (Hirose et al., 2001; Sasaki et al., 

2013) 

Consequently, most of the research on the application of lignin is concentrated on converting 

lignin into chemicals and fuels via hydrolytic, oxidative and reductive depolymerization and 

pyrolysis. Most of these destructive methods suffer from the drawbacks of high energy input, 

low yields and difficulty in product separation. Fungal biodegradation of lignin has been in-

tensively investigated, (Zhang et al., 2011) but this process is slow and time consuming. Hy-

drolytic depolymerization has also been investigated,(Yuan et al., 2010) but the yield is usu-

ally very low. To overcome these disadvantages, a more viable strategy might be moderate 

depolymerization of lignin under mild conditions to convert the lignin to oxygenated fuel ad-

ditives and feedstock for various types of bio-materials.  

As evidenced by the previous chapter (Chapter 3), lignin in both its untreated form and the 

depolymerized lignins (DL) derived from the hydrotreatment of lignin, are still highly 

branched structures with intermediate molecular weight (Mw ≈ 1000-3000) and abundant 

oxygen in the form of hydroxyl and ether bonds. Thus to make them useful sources for fuels 

and chemicals, further reduction of MW and oxygen content, through catalytic hydroprocess-

ing or hydrodeoxygenation, is needed. 

The majority of the catalysts studied for the hydrotreatment of both lignin and biomass-

derived bio-oils, and subsequently lignin model compounds, have been either noble metals 

(e.g. Pt, Pd, Ru etc.) or Co- or Ni-promoted Mo sulfide catalysts borrowed from petroleum 

processing operations.(Zakzeski et al., 2010) Ru catalysts, in particular, have been shown to 

be very active in the hydrodeoxygenation and hydrogenation of model compounds (e.g. phe-

nol) as well as bio-oils. (Elliott and Hart, 2009; Gutierrez et al., 2009; Lee et al., 2012; 

Chang et al., 2013) Mo has been the focus of much study, perhaps due to its use in petroleum 

hydrotreating operations. Although a few studies have investigated Mo in its reduced state as 

well as in oxide and even nitride forms, it has been mostly used in a sulfided stated and in 

combination with Co or Ni and typically supported on alumina. (Senol et al., 2007; Romero 

et al., 2010; Saidi et al., 2014) More recently, reductive depolymerization of lignin in the 

presence of hydrogen and metal catalysts especially late 3d and 4d transition metals (Fe, Co, 

Ni, Cu, Ru, Rh, Pd, and Ag) has been proposed. (Cateto et al., 2009; Li et al., 2011; Zhao et 
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al., 2011; Jin, 2014) A review of the literature also reveals that mixed noble metal-transition 

metal catalysts (e.g. Ru-Co, Rh-Cu and Rh-Ag) have been used, although not in the hy-

drotreatment of bio-oils. (Rouco and Haller, 1981; Zauwen et al., 1989; Moura et al., 2012) 

Although alumina-supported catalysts are active in HDO reactions and catalyze methyl group 

transfer,(Gutierrez et al., 2009) they also increase catalyst deactivation by promoting the 

formation and deposition of coke on the catalyst surface.(Centeno et al., 1995; Prochazkova 

et al., 2007; Elliott and Hart, 2009; Wildschutt et al., 2009; Lin et al., 2011) Centeno et al. 

(1995) proposed that it is the weak Lewis acid sites present in the alumina that promote the 

condensation reactions leading to coke formation. This effect was further seen in a compari-

son of Pt loaded onto alumina and acidified zeolite by Nimmanwudipong et al. (2011) who 

also found that the acidified support limited oxygen removal. 

In order to avoid this phenomenon, researchers have investigated less-acidic support materi-

als such as activated carbon and SiO2 (Furimsky and Massoth, 1999; Reddy and Khan, 2005; 

Kersten et al., 2007) as well as other less common supports e.g. ZrO2 and MgO.(Senol et al., 

2007; Bui et al., 2011) Yang et al. (2014) found that using carbon-supported catalysts re-

sulted in yields equivalent to those of alumina-supported catalysts, but with lower propor-

tions of oxygenated compounds. 

The use of model compounds allows for the rapid determination of catalyst effectiveness. 

Most studies investigating lignin have used phenol as a model compound, (Popov et al., 

2011; Gandarias et al., 2008) however the results of these studies may not be representative 

of lignin as a whole due to the presence of only one reactive oxygen group in phenol. In con-

trast, lignin contains much oxygen and research has shown that di-oxygenates such as 

guaiacol are more likely to undergo condensation reactions leading to coke formation and 

catalyst deactivation. (Asmadi et al., 2011) 

Therefore the performance of the metal catalysts varies significantly with the metal species 

and the support material used (Cateto et al., 2009), as was evidenced in our previous chapter, 

and lignin hydroprocessing catalysts in particular need to be optimized in terms of their ef-

fectiveness in reduction of molecular weight and oxygen contents. 
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Thus, in this work, the hydrotreatment of guaiacol was investigated in the presence of several 

carbon-supported noble metal, transition metal and mixed noble metal-transition metal cata-

lysts under hydrogen atmospheres for applications such as fuel additives and intermediates 

for chemicals and materials. 

 

4.2 Experimental 

4.2.1 Materials 

Guaiacol, purchased from Sigma Aldrich, was used as a model compound for lignin or de-

polymerized lignin or lignin-derived bio-oil and was used as received. The ruthenium and 

molybdenum compounds, i.e. ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO3)3) and 

ammonium molybdate tetrahydrate ((NH4)6Mo7O244H2O), and phosphoric acid were ACS 

reagent grade and purchased from Sigma Aldrich as well. The solvents (e.g., methanol, ace-

tone, etc.) used in the experiments were reagent grade and purchased from Canadawide Sci-

entific. Activated carbon (AC) used as reference catalyst support and  Ru/C catalyst used in 

this study as a reference catalyst were both purchased from Sigma-Aldrich and used as re-

ceived. 

For comparison, an in-house prepared biomass-derived activated charcoal (denoted as BAC-

P) was prepared according to the following procedure: White pine sawdust was first sus-

pended in distilled water with 2 wt.% phosphorus added as phosphoric acid. The suspension 

was stirred for 24 h after which the treated sawdust was dewatered and dried in an oven at 

105 °C. After drying, the sawdust was carbonized in a muffle furnace at 550°C for 30 min 

and immediately placed in a desiccator under nitrogen to cool. 

The other carbon-supported metal catalysts were prepared in-house by incipient wetness im-

pregnation using AC or BAC-P as supports, ruthenium(III) nitrosyl nitrate solution 

(Ru(NO)(NO3)3) and ammonium molybdate tetrahydrate ((NH4)6Mo7O244H2O), as follows. 

The required amounts of the ruthenium compound and/or molybdenum salt dissolved in dis-

tilled water were added to a suspension of a carbon support in a 50% solution of methanol 

and distilled water. The mixture was agitated for more than 12 h and then dewatered by 

evaporation under vacuum. The dewatered catalysts were dried in air at 105 °C overnight and 
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cooled before storage. The catalysts were reduced at 550 °C for 5 h under 50 mL/min hydro-

gen. The cooled reduced catalysts were passivated by immersion in methanol before drying 

and storage. The following carbon-supported catalysts were prepared and tested in this study: 

Ru/C (reference catalyst), Ru/C(R) that was reduced under hydrogen at 550 °C for 5 h, 

Ru/BAC-P, Ru/AC, MoRu/AC, Mo/AC, and MoRu/BAC-P. The metal loading values 

(wt.%) in all catalysts, as well as their textural properties, are presented in Table 4.1. All of 

the catalysts were tested in the raw state without prior calcination or reduction, unless stated 

otherwise. 

 

4.2.2 Experimental apparatus and procedure 

The experiments were carried out batch-wise in a mini-reactor constructed from SS 316L 

stainless steel consisting of 5/8 inch Swagelok capped tubing, with an effective volume of 

~12 mL. The guaiacol substrate and catalyst were added to the reactor which was then sealed. 

The air in the headspace was purged by repeated vacuuming and filling with high-purity ni-

trogen. After purging, the reactor was filled with 9 MPa high-purity hydrogen. The filled re-

actor was immersed in a fluidized sand bath set to the reaction temperature, which enabled 

rapid heating of the reactor to the specified reaction temperature. The reactor was affixed to a 

shaker arm operating at ~120 Hz to provide agitation. After the required reaction time had 

elapsed the reactor was removed from the sand bath and cooled in water to quench the reac-

tion. After cooling, the gases in the reactor were collected in a sampling cylinder with a vol-

ume of 2.8 L. In order to facilitate micro-GC analysis, the pressure in the cylinder was 

brought to 1.2 bar with the injection of high purity nitrogen. The reactor contents were de-

canted from the reactor and combined with acetone wash solvent used to recover any catalyst 

and product remaining in the reactor. The catalyst and any solid products were separated 

from the liquid products by vacuum filtration through a Whatman #5 filter paper. The total 

mass of the filtrate was recorded and weighed samples were taken for later analysis. Each 

experiment was performed a minimum of two times to reduce the experimental error to ±5%. 

Gas product composition was measured with Agilent 3000 Micro-GC equipped with dual 

(Molecular Sieve and PLOT-Q) columns and thermal conductivity detectors. The system en-

abled analysis of gas species up to C3, including O2, N2, H2, CO, CO2, CH4, C2H4, C2H6, 

C3H8, and C3H6. The concentration of the major liquid products (methanol, cyclohexane, 
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phenol, benzene and methyl phenol) was analyzed by GC/FID (Shimadzu GCMS-QP2010 

plus, equipped with an auto sampler/injector) using a 30 m  0.25 mm  0.25 μm RTX-1701 

column with a temperature program as follows: hold at 45 °C for 3 min followed by a 5 

°C/min ramp to 220 
o
C followed by a 30 °C/min ramp to 250 °C with a 3 min hold. The 

peaks areas were integrated and compared to calibration curves constructed by the injection 

of standards of known concentrations. The XRD analyses were performed using a PANalyti-

cal X’Pert PRO X-ray diffractometer using Cu-K radiation with a wavelength of 1.54187 

Å. The thermal gravimetric analysis was performed using a TA Instruments TGA 2050 ther-

mogravimetric analyzer. Approximately 10 mg of sample was placed in a platinum pan and 

heated to 900 
o
C at 10 

o
C/min in a flow of 50 mL/min air. 

 

4.3 Results and Discussion 

4.3.1 Fresh catalyst characterization 

The textural analysis of the fresh catalysts used in this study is presented in Table 4.1. The 

two carbon support materials without metals loaded (AC and BAC-P) are presented for com-

parison. The BET specific surface areas, total pore volume and volumes of micro/meso-pores 

of the supported metal catalysts are generally lower than the respective support material 

likely due to the deposition of metal cations inside the pores. The BAC-P-supported catalysts 

exhibit higher surface area, which was expected given the greater surface area of the support 

material to begin with. The BAC-P also had a smaller average pore diameter due to a greater 

number of micropores (i.e. pores <2 nm). This is evident in the difference in the volume of 

the micropores (0.392 cm
3
) as compared to the volume of mesopores (0.236 cm

3
) which have 

a diameter of 2-50 nm. 
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Table 4.1 Textural analysis of fresh catalysts 

Catalyst Metal (wt.%) BET S. 

Area (m
2
/g) 

Tot. Pore 

Vol. (cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores       

2-50 nm (cm
3
) 

Avg. Pore 

Dia. (nm) Mo Ru 

Ru/C  5 837 0.691 0.190 0.423 3.30 

Ru/C (R)  5 881 0.725 0.180 0.462 3.29 

Ru/BAC-P  5 1127 0.537 0.355 0.181 1.91 

Ru/AC  5 861 0.677 0.206 0.387 3.14 

MoRu/AC 1 5 683 0.569 0.143 0.348 3.33 

MoRu/BAC-P 1 5 1035 0.551 0.337 0.203 1.92 

Mo/AC 10  678 0.546 0.127 0.384 3.36 

AC support   977 0.749 0.224 0.428 3.11 

BAC-P support   1303 0.63 0.392 0.236 1.90 

 

4.3.2 Catalyst screening 

Hydroprocessing of lignin or depolymerized lignin was investigated using neat guaiacol as a 

model compound in order to screen the performance of various carbon-supported catalysts. 

These new catalysts were tested in comparison to the commercial catalyst (Ru/C catalyst 

from Sigma Aldrich) that has been widely employed in literature. 

The standard testing conditions for these runs were: 3 g guaiacol, 0.6 g catalyst (20 wt.% 

catalyst loading), 9 MPa cold hydrogen pressure, 350°C, 2 h reaction time. Two different 

carbon supports were tested relative to the reference catalyst - commercially available; acti-

vated carbon (AC) and a biomass-derived activated charcoal (BAC-P) prepared in-lab from 

sawdust and activated using H3PO4 prior to carbonization. The AC and BAC-P has a specific 

surface area of 975 m
2
/g and 1300 m

2
/g, respectively, as shown in Table 4.1. Ru is a very ex-

pensive catalyst metal, thus to investigate the effectiveness of cheaper catalysts, Mo was used 

as a co-catalyst with Ru or as a substitute for Ru in this study. Guaiacol conversion was cal-

culated by determining the concentration of the feedstock in the solution obtained after rins-

ing the reactor. This value was compared to the concentration of the guaiacol loaded into the 

reactor. These results are presented in Figure 4.1. As is evident, the Ru/BAC-P catalyst re-

sulted in much higher guaiacol conversion (almost 17 % greater) than the reference catalyst 

(Ru/C), while the Ru/AC resulted in very similar guaiacol conversion (approx. 70 %) to that 

of the reference catalyst. 
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The addition of 1 wt.% Mo to the Ru/AC catalyst as a co-catalyst was also found to drasti-

cally increase guaiacol conversion by 23% attaining 92% conversion as compared to the 

~70% conversion achieved with Ru/C. In contrast to these results, adding 1 wt.% Mo to the 

Ru/BAC-P catalyst did not further affect guaiacol conversion perhaps because the guaiacol 

conversion with the Ru/BAC-P catalyst was already very high (84.1%). The Mo/AC catalyst 

led to similar guaiacol conversion as compared to the 5% Ru/BAC-P catalyst despite the fact 

that the former catalyst exhibited a lower surface area (743 m
2
/g vs. 1127 m

2
/g). 

 

 

Figure 4.1 Conversion of guaiacol during hydroprocessing at 9 MPa cold hydrogen pressure, 

350 °C, and 2 h reaction time 

 

The performance of various carbon-supported catalysts is shown in Table 4.2. 
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Table 4.2 Guaiacol conversion and product yields from the guaiacol hydroprocessing ex-

periments with various catalysts (2 h, 350°C with neat guaiacol, 9 MPa H2) 

 Blank Ru/C Ru/C (R) Ru/ 

BAC-P 

Ru/AC MoRu/ 

AC 

Mo/AC MoRu/ 

BAC-P 

GUA Conver-

sion (%) 

23.3 1.4 69.7 3.4 74.9 1.2 84.1 2.6 69.4 2.5 92.4 2.4 92.0 2.8 84.0 2.3 

Coke yield 

(wt.%) 

0.133 

0.052 

0.851 

0.18 

0.731 

0.18 

1.61 

0.21 

0.263 

0.068 

0.692 

0.11 

0.977 

0.20 

1.75 

0.27 

Gas yield 

(wt.%) 

1.23 

0.15 

14.83 

0.66 

15.37 

0.78 

8.89 

0.39 

13.94 

0.68 

12.82 

0.39 

1.58 

0.13 

6.60 

0.35 

Methanol 4.6 14.8 4.9 11.3 12.3 10.7 8.67 12.3 

Cyclohexane n/d 2.99 24.2 1.13 8.86 6.59 n/d n/d 

Benzene  n/d 1.97 2.28 6.57 1.09 8.93 n/d 11.3 

Phenol  6.03 15.1 16.4 15.6 14.9 34.4 24.9 21.1 

Methyl Phenol  3.07 3.43 3.06 3.86 4.30 3.17 7.48 5.28 

Unidentified  12.7 26.6 14.7 31.3 18.82 16.87 44.9 25.0 

H2 Consumed 

(mol/kg GUA)  

2.0 0.42 10.6 

1.05 

10.8 

0.60 

10.6 

0.71 

10.0 

0.89 

10.7 

0.86 

5.5 0.53 9.7 0.59 

 

As can be seen, the main upgraded products from guaiacol are cyclohexane, benzene, phenol, 

methyl phenol and methanol as well as significant yield of unidentified compounds (ranging 

from 16-45% depending on the type of catalyst). The compounds identified are expected 

products of guaiacol deoxygenation and hydrogenation. The cumulative products that are 

listed as unidentified were not completely unknown, rather they were not definitively identi-

fied at >85% confidence using the GC/MS database. 

The Ru/BAC-P catalyst significantly increased benzene yield while greatly decreasing cyclo-

hexane yield relative to the Ru/C (reference catalyst) indicating that it was more active in de-

oxygenation as compared to hydrogenation. In contrast, even though the conversion of 

guaiacol in the presence of the Ru/AC catalyst was the same as for the reference catalyst, it 

resulted in significantly increased cyclohexane yield, accompanied with a decrease in ben-

zene yield relative to the Ru/C, suggesting better activity of Ru/AC catalyst for hydrogena-

tion, possibly due to the age of the catalyst. Partial reduction of Ru/C resulted in markedly 

higher cyclohexane and a significant drop in methanol yield. Thus, pre-reduction of the sup-
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ported metal catalyst appears to improve its activity for hydrogenation rather than deoxy-

genation. The addition of Mo to the Ru/AC catalyst and Ru/BAC-P catalyst resulted in much 

higher benzene and phenol yields but a markedly decreased yield of cyclohexane. Thus, the 

addition of Mo co-catalyst enhances the hydrodeoxygenation activity of Ru catalyst rather 

than hydrogenation activity. In contrast, the Mo/AC catalyst produced mostly phenol and 

methyl phenol with no benzene or cyclohexane. This indicates that the Mo in very effective 

at oxygen removal, but only via scission of the aryl-O ether bond. Evidence of this can be 

seen in the increased phenol yields seen with the other two Mo-containing catalysts. 

The above results suggest that the type of carbon support and the catalyst metals used exhibit 

significant but complex effects on both guaiacol conversion and product yields. As a general 

summary, catalyst reduction enhanced guaiacol conversion and markedly increased the cata-

lyst’s hydrogenation effects (leading to a higher cyclohexane yield) while addition of Mo to 

Ru catalysts generally increased the guaiacol conversion and more evidently enhanced 

guaiacol hydrodeoxygenation effects (producing more benzene and phenol compounds), 

rather than hydrogenation activity. To the best of the author's knowledge, the use of Mo-

doped Ru catalysts has not been reported in the literature. 

The cumulative molar yields of the liquid products resulting from the hydroprocessing of 

guaiacol are presented in Figure 4.2. The most striking result is that the Mo and Mo-doped 

Ru catalysts exhibit the equivalent or higher conversions of guaiacol than the best Ru catalyst 

as seen by how little unreacted guaiacol was detected by GC analysis. 
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Figure 4.2 Molar yield of the liquid products after guaiacol hydroprocessing at 9 MPa cold 

hydrogen pressure, 350°C, and 2 h reaction time 

 

Micro-GC gas analysis of the products showed that the major gaseous products of guaiacol 

hydroprocessing are CH4 and CO2 with much smaller quantities of, in order of decreasing 

prevalence, C2H6, CO, C3 and C2H4 gases. The molar yields of the main gas species and total 

molar C yield in gas from the guaiacol hydroprocessing experiments (2 h, 350°C with neat 

guaiacol, 9 MPa H2) are presented in Table 4.3. Generally CH4 was present in greater amount 

than CO2 (mol ratio in the range of 0.92-2.0) 
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Table 4.3 Molar yields of main gas species and total molar C yield in gas from the guaiacol 

hydroprocessing experiments 

 Blank Ru/C Ru/C (R) Ru/ 

BAC-P 

Ru/AC MoRu/  

AC 

Mo/AC MoRu/ 

BAC-P 

Gas yield (wt.%) 1.23 

0.15 

13.9 

0.68 

14.8 

0.66 

15.4 

0.78 

8.89 

0.39 

12.8 

0.39 

1.58 

0.13 

6.60 

0.35 

Molar yields of gas species (mol/kg GUA) 

CH4 0.68 5.1 5.4 5.7 2.7 3.9 0.76 1.9 

CO  n.d. 0.23 n.d. 0.0011 n.d. n.d. 0.023 n.d. 

CO2 0.009 2.1 2.4 2.4 2.1 2.8 0.095 1.7 

C2H4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

C2H6 0.001 0.46 0.51 0.56 0.23 0.46 0.009 0.13 

C3H6  n.d. 0.015 0.11 0.017 0.013 0.018 n.d. 0.006 

C3H8  n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Total molar C 

yield in gas (%) 

0.6 14.9 15.5 8.9 13.9 12.8 6.6 1.2 

 

Hydrogen consumption values during guaiacol hydroprocessing under 9 MPa cold hydrogen 

pressure, 350°C, and 2 h reaction are presented in Figure 4.3. As clearly shown in this Fig-

ure, the hydrogen consumption was almost constant around 10 mol H2/kg-GUA for all of the 

catalysts except for Mo/AC which consumed about half as much hydrogen (5.5 mol H2/kg-

GUA) and the blank which consumed 2 mol H2/kg-GUA. This result is not unexpected as Ru 

is known to be a hydrogenation catalyst. The lack of hydrogenation activity, as seen in the 

absence of cyclohexane in the products of guaiacol hydroprocessing with the Mo/AC cata-

lyst, is in agreement with this finding. 
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Figure 4.3 Hydrogen consumption during guaiacol hydroprocessing at 9 MPa cold hydrogen 

pressure, 350°C, and 2 h reaction time 

 

The combined analyses of the solid, liquid and gaseous products allowed for determination of 

carbon balances for the catalysts tested. The mass of carbon in the solids was approximately 

calculated by assuming that all of the increase in mass of the catalyst was due to the deposi-

tion of pure carbon. The carbon present in the gases could be calculated by the ideal gas law, 

as the volume (2.8 L), pressure (1.2 bar) and temperature (25 °C) of the sample cylinder were 

known. The carbon in the liquid products was calculated based on the concentration of the 

liquid products in the diluted product stream. The carbon in the unknowns was approximated 

assuming that they contain seven carbons per mole and exhibit a similar FID response factor 

to guaiacol. The sum of these values was compared to the amount of carbon in the guaiacol 

loaded into the reactor. The cumulative carbon balances are presented in Figure 4.4, which 

clearly shows that there was generally good carbon recovery in all tests (~84-99%). 
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Figure 4.4 Cumulative carbon balances for the guaiacol hydroprocessing tests with various 

catalysts (2 h, 350°C, 9 MPa H2) 
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Given that it produced the highest guaiacol conversion, the MoRu/AC catalyst was initially 

chosen for the optimization study. However, for ease of catalyst preparation, this was 

changed to MoRu/C based on the similarity of the activity of the Ru/C and Ru/AC catalysts 

as discussed in the previous section. Thus, for simplicity 1 wt.% Mo was added to the com-

mercially available Ru/C. After drying, the MoRu/C catalyst was reduced at 550°C for 4 h 

under flowing H2 ~50 mL/min to maximize the availability of hydrogen for reaction with the 

guaiacol. 
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greater-than-stoichiometric hydrogen into the system. The different conditions were per-

formed in a random order in order to avoid introducing a bias. GC/MS analyses from the first 

set of experiments completed indicated the presence of numerous compounds, but only a few 

(e.g. guaiacol, phenol, benzene) were identified with a high degree of confidence. 

Figure 4.5 illustrates guaiacol conversion as a function of reaction time, temperature and ini-

tial H2 pressure with MoRu/C catalyst. As can be clearly seen in the Figure, that at 30 min, 

guaiacol conversion ranges from a low of 46% at 3 MPa, 30 min, 300°C to as high as 98% at 

9 MPa, 240 min, and 400°C. The curves for the runs at 3, 6, and 9 MPa initial hydrogen pres-

sure show a remarkably solid trend, with guaiacol conversion appearing to plateau as reaction 

time reaches 240 min. However, extending the reaction time for the 3 MPa, 300°C condition 

to 240 min only increased conversion to ~63%, which was equivalent to the conversion at 3 

MPa, at 350 °C and 30 min. At 400 °C, conversion at 3 MPa and 30 min was ~87%.Thus 

temperature and H2 pressure appear to have a much greater effect on guaiacol conversion 

than does reaction time. Surprisingly, there was no difference in the conversion of guaiacol at 

less-than- and greater-than-stoichiometric concentrations of hydrogen. Rather, the difference 

was seen in the increased amount of coke deposited on the catalyst at low hydrogen pressure 

as well as an increase in the amount of unidentified compounds present in the liquid product. 

Based on these results, it appears that longer reaction times may not be necessary provided 

that the experiments are performed at higher temperatures. The deceased duration may offset 

the higher energy cost. The yields of main liquid products (determined by GC/FID), solid 

residue and gas products along with guaiacol conversion from the above optimization tests 

are summarized in Table 4.4.  

As can be seen, coke yields are low at lower temperatures and shorter reaction times regard-

less of hydrogen pressure. However, increased reaction times and temperatures result in in-

creased coking, with more coking evident at high temperatures and lower hydrogen pressure. 

In the absence of sufficient hydrogen to cap reactive intermediates, these reactions are more 

likely to result in condensed products that deposit on the catalyst as coke. Extended reaction 

times greatly increased the amount of coke deposited on the catalyst (1.1 vs. 9.9 wt.%) even 

in the presence of greater-than-stoichiometric hydrogen. This is likely due to low reactivity 

of the molecular hydrogen.(Gosselink et al., 2012) The amount and number of unknown 
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compounds also increased with extended reaction time from 6.8 to 18.6% owing to the in-

creased residence time. 

 

 

Figure 4.5 Guaiacol conversion as a function of reaction time, temperature and initial H2 

pressure with MoRu/C catalyst 

 

The major gaseous products from the experiments were CH4 and CO2 with much smaller 

quantities of, in order of decreasing prevalence, C2H6, CO, C3 and C2H4 gases. Generally, 

CH4 was present in greater amount than CO2 (mol ratio in the range of 0.92-2.0). Coke for-

mation was generally negligible at lower temperatures and higher pressures but increased 

with increasing temperature and decreased hydrogen pressure. Hydrogen consumption varied 

from a low of 1.7 mol/kg-GUA to a high of 16.1 mol/kg-GUA.  
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Table 4.4 Guaiacol conversion and product yields from the guaiacol hydroprocessing experiments with MoRu/C catalyst at selected 

conditions 

Reaction conditions Guaiacol 

conv. (%) 

Coke yield 

(wt.%) 

Liquid Product Yield (wt.%) mol H2/kg 

GUA Temp. Time H2 Pressure Methanol Cyclohexane Benzene Phenol Methyl phenol Unidentified 

(°C) (min) (MPa) 

300 30 3 44.9 4.0 0.2 0.02 2.62 1.61 2.18 8.41 0.78 2.28 1.7 0.34 

300 30 6 59.0 2.7 0.3 0.06 4.52 2.79 3.76 14.53 1.34 3.01 2.4 0.33 

300 30 9 76.2 3.2 0.2 0.04 7.54 4.65 6.27 24.23 2.23 3.87 3.5 0.21 

300 30 3 44.9 4.0 0.2 0.12 2.62 1.61 2.18 8.41 0.78 2.28 1.7 0.34 

300 120 3 56.1 2.9 1.0 0.21 4.08 2.52 3.39 13.12 1.21 3.50 4.1 0.28 

300 240 3 62.5 3.9 1.4 0.27 5.07 3.13 4.22 16.30 1.50 4.64 6.5 0.30 

300 30 3 44.9 4.0 0.2 0.12 2.62 1.61 2.18 8.41 0.78 2.28 1.7 0.34 

350 30 3 63.6 3.8 7.7 1.3 5.24 3.24 4.36 16.86 1.55 4.22 3.8 0.22 

400 30 3 86.0 3.4 12.4 1.3 9.59 5.92 7.98 30.84 2.84 4.97 6.7 0.47 

400 30 9 93.8 3.2 1.1 0.29 11.40 7.03 9.48 36.66 3.38 6.83 9.9 0.72 

400 240 9 96.6 3.8 9.9 1.1 11.75 7.25 9.77 37.76 3.48 18.60 16.1 1.3 
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4.3.4 Spent catalyst characterization 

The results of TGA analysis are illustrated in Figures 4.6a and 4.6b. The analysis was per-

formed on the fresh and spent Ru/AC and MoRu/AC catalysts heated from room temperature 

to 900C in flowing air to evaluate the deposition of coke on the catalyst. 

 

 
Figure 4.6 TGA plots for fresh (a) and spent (b) Ru/AC and MoRu/AC catalysts from the 

guaiacol hydroprocessing tests (2 h, 350°C, 9 MPa H2) 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 100 200 300 400 500 600 700 800 900 

%
 M

a
ss

 

Temperature (°C) 

Fresh 

MoRu/AC 

Fresh 

Ru/AC 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 100 200 300 400 500 600 700 800 900 

%
 M

a
ss

 

Temperature (°C) 

Spent 

MoRu/AC 

Spent 

Ru/AC 

a) 

b) 



102 

 

It was noted that, unlike for mineral-supported catalysts like alumina, the carbon support ma-

terial would also burn, thus necessitating a comparison between the fresh and spent catalyst. 

Figure 4.6b shows more mass decrease events in the TGA curves for the spent catalysts as 

compared to the fresh catalysts (Figure 4.6a), indicating the deposition of carbonaceous ma-

terial on the spent catalysts. As was expected for both catalysts (MoRu/AC and Ru/AC), the 

fraction of mass remaining after burning of the fresh catalyst was unchanged and corresponds 

to the formation of metal oxides from the supported metals in these catalysts. The decreased 

mass of material remaining for the Ru/C catalyst in Figure 4.6b indicates that the metal ox-

ides which remained after burning comprised a smaller fraction of the overall mass of the 

sample, indicating that this catalyst experienced increased coke deposition as compared to 

the MoRu/AC catalyst. 

The dTGA curves presented in Figure 4.7 were constructed by taking the first derivative of 

the TGA plots, to evaluate the thermal stability of the carbonaceous materials (including the 

carbon support and the carbon deposits formed during the reactions). As is obviously shown 

in this Figure, the onset of two rapid mass loss peaks at around 250-350C and 350-500C, 

respectively, shifts to lower temperatures for the spent catalysts as compared to the fresh 

catalysts. This suggests deposition of carbonaceous materials (commonly called coke) during 

guaiacol hydroprocessing.  
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Figure 4.7 dTGA plots for fresh and spent Ru/AC and MoRu/AC catalysts from the guaiacol 

hydroprocessing tests (2 h, 350°C, 9 MPa H2) 
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The XRD spectra of selected fresh and spent catalysts are presented in Figure 4.8. The cata-

lysts all exhibit a broad peak centred on 22° and a smaller broad peak centred on 42° that are 

characteristic of amorphous carbon (Rajan et al., 2014). The sharp peak at 26.5° is character-

istic of the (002) plane of graphite. (Peng et al., 2013) The smaller peak at ~23° may be at-

tributed to the diffraction of the sample holder used in the XRD measurements. No XRD 

lines attributed to any metal species were detectable, likely due to the low metal loading (<= 

5 wt.%), or owing to the high dispersion states of the metals in the carbon supports (with a 

very high surface area and porosity. 

 

 

Figure 4.8 XRD spectra of selected fresh and spent catalysts 
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4.4 Conclusions 

In this work, catalyst screening for the hydroprocessing of lignin or depolymerized lignin 

was investigated using guaiacol as a model compound. This study has demonstrated that the 

type of carbon support used to prepare Ru catalysts is an important factor in guaiacol conver-

sion. The BAC-P-supported Ru catalyst exhibited ~14% greater conversion of guaiacol than 

the reference Ru catalyst. Catalyst reduction enhanced guaiacol conversion and markedly in-

creased the catalyst’s hydrogenation effects (leading to a higher cyclohexane yield) while the 

addition of Mo to Ru catalysts generally increased guaiacol conversion and more evidently 

enhanced guaiacol hydrodeoxygenation effectiveness (producing more benzene and phenol 

compounds), rather than hydrogenation activity. In addition, hydrogen consumption using 

Mo/AC catalyst was about half that of the catalysts containing Ru, indicating that Mo is not 

as efficient in hydrogenating guaiacol as the Ru catalysts. The increased conversion was, 

therefore, largely directed towards compounds of unknown composition. To the best of the 

author's knowledge, the use of Mo-doped Ru catalysts has not been reported in the literature.  

The optimization study revealed that temperature and initial hydrogen pressure have a much 

greater effect on guaiacol conversion than does reaction time. For example, the conversion of 

guaiacol at 3 MPa, 240 min, and 300 °C was equivalent to the conversion at 3 MPa, 30 min 

and 350 °C. Thus longer reaction times may not be necessary provided that hydroprocessing 

is performed at higher temperatures (the decreased duration may offset the higher energy 

cost). The combination of high temperature (400 °C) and 9 MPa initial hydrogen pressure 

was even more effective, with conversion of ~94% after a reaction time of only 30 min. Coke 

formation was found to be negligible at lower reaction temperatures and short reaction times 

and increased at high reaction temperature, long reaction times and low initial hydrogen pres-

sure. 
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Chapter 5  

5 Hydrotreatment of organosolv lignin for aromatic chemicals 

and materials using carbon-based catalysts 

5.1 Introduction 

The depletion of fossil fuel reserves is an issue that has come to prominence in recent dec-

ades. Coupled with increased consumption from rising economies such as China and India, 

this has prompted an increased interest in the production of chemicals and fuels from alterna-

tive resources and is one of the major priorities of the 21
st
 century. 

Biomass is generally regarded as the most feasible alternative in this regard as it is widely 

available, renewable and generally carbon-neutral. Although it is possible to produce chemi-

cals from crops such as corn etc., it is preferable to produce bio-products from non-food re-

sources such as agricultural and forestry residues. 

Of particular interest is lignin, which is the second most abundant naturally synthesized 

polymer after cellulose, comprising 25-40 % of dry wood and crop stems. (Tejado et al., 

2007) In addition, it is the most abundant natural source of aromatic compounds. More than 

50 million tons of lignin in the form of Kraft lignin (KL) is generated annually as a by-

product in the pulp and paper industry where it has historically been viewed as a waste mate-

rial or a low value by-product. Consequently, it has been predominantly used as a low-energy 

content fuel in the recovery boilers of pulp/paper mills. However, the recovery boilers repre-

sent a bottleneck in a majority of the pulp/paper mills in North America. In addition to Kraft 

lignin, due to the recent increase and projected growth of bio-ethanol production, it is ex-

pected that large quantities of organosolv lignin (OL) and hydrolysis lignin (HL), as by-

products of pre-treatment processes in cellulosic ethanol plants, will become available in the 

near future. 

As an amorphous natural polymer of substituted propyl-phenols, lignin contains many polar 

hydroxyl groups, making it incompatible with most synthetic polymers due to its high polar-

ity and broad glass transition temperature. (Chakar and Ragauskas, 2004) In addition, due to 

its highly branched structure and intermediate molecular weight, lignin alone is not strong 
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enough to be used as a structural material. Conversely, lignin's molecular weight is too high 

for it to be incorporated directly into fuel applications, not to mention its low energy content 

due to the abundance of oxygen in the polymer. Since lignin contains abundant ether linkages 

and aliphatic and phenolic hydroxyl groups, lignin depolymerization products of moderate 

molecular weight could be good candidates for raw material to replace petroleum based 

polyether polyols for the synthesis of polyurethane (PU) materials and replace petroleum 

phenol for the synthesis of phenol-formaldehyde (PF) (Vasquez et al., 1995; Wang et al., 

2009) and epoxy resins. (Hirose et al., 2001; Sasaki et al., 2013)  

Consequently, most of the research on the application of lignin is concentrated on converting 

lignin into chemicals and fuels via hydrolytic, oxidative and reductive depolymerization and 

pyrolysis. Most of these destructive methods suffer from the drawbacks of high energy input, 

low yields and difficulty in product separation. Fungal biodegradation of lignin has been in-

tensively investigated, (Zhang et al., 2011) but this process is slow and time consuming. Hy-

drolytic depolymerization has also been investigated, (Yuan et al., 2010) but the yield is usu-

ally very low. To overcome these disadvantages, a more viable strategy might be moderate 

depolymerization of lignin under mild conditions to convert the lignin to oxygenated fuel ad-

ditives and feedstock for various types of bio-materials. 

Hydrogenation reactions are typically performed in the presence of noble metal catalysts. Ru 

catalysts, in particular, have been shown to be very active in the hydrogenation and hydrode-

oxygenation of model compounds (e.g. phenol and guaiacol) as well as bio-oils.(Elliott and 

Hart, 2009; Gutierrez et al., 2009; Lee et al., 2012; Chang et al., 2013) Co- or Ni-promoted 

Mo sulfide catalysts, typically supported on alumina, and borrowed from petroleum process-

ing operations have also been used in the hydrotreatment of lignin and biomass-derived bio-

oils. (Senol et al., 2007; Romero et al., 2010; Zakzeski et al., 2010; Saidi et al., 2014) More 

recently, reductive depolymerization of lignin in the presence of hydrogen and metal cata-

lysts especially other late 3d and 4d transition metal (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) has 

been proposed.(Cateto et al., 2009; Li et al., 2011; Zhao et al., 2011; Jin, 2014) A review of 

the literature also reveals that mixed noble metal-transition metal catalysts (e.g. Ru-Co, Rh-

Cu and Rh-Ag) have been used, although not in the hydroprocessing of bio-oils.(Rouco and 

Haller, 1981; Zauwen et al., 1989; Moura et al., 2012) 
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Although alumina-supported catalysts are active in HDO reactions and catalyze methyl group 

transfer, (Gutierrez et al., 2009) they also increase catalyst deactivation by promoting the 

formation and deposition of coke on the catalyst surface. (Centeno et al., 1995; Prochazkova 

et al., 2007; Elliott and Hart, 2009; Wildschutt et al., 2009; Lin et al., 2011) Centeno et al. 

(1995) proposed that it is the weak Lewis acid sites present in the alumina that promote the 

condensation reactions leading to coke formation.  

In order to avoid coke formation, researchers have investigated less acidic supports such as 

activated carbon and SiO2 (Furimsky and Massoth, 1999; Reddy and Khan, 2005; Kersten et 

al., 2007) as well as other less common supports e.g. ZrO2 and MgO. (Senol et al., 2007; Bui 

et al., 2011) Yang et al. (2014) found that using carbon-supported catalysts resulted in yields 

equivalent to those of alumina-supported catalysts, but with lower proportions of oxygenated 

compounds. 

Previous work in our group has shown that Ru-based catalysts are effective in lignin depoly-

merization and that the addition of Mo to Ru catalysts increases catalyst effectiveness. In this 

work, several carbon-supported Mo-Ru catalysts, chosen based on the catalyst screening 

study reported in a previous chapter, were investigated for the hydroprocessing or reductive 

depolymerization of OL under hydrogen atmosphere for applications such as fuel additives 

and intermediates for chemicals and materials. 

To the best of the author's knowledge, the investigation of lignin depolymerization via hy-

droprocessing using a mixed noble metal/transition metal catalyst has not been reported in 

the literature. 

 

5.2 Experimental 

5.2.1 Materials 

The organosolv lignin (OL) used in this research was provided by Lignol, Canada and had a 

weight average molecular weight (Mw) of ~2,600 g/mol.   



112 

 

Different carbon-supported catalysts: Mo0.01Ru0.05/AC (denoted as MoRu/AC), 

Mo0.01Ru0.05/AC-P (MoRu/ACP), Mo0.01Ru0.05/C (MoRu/C), Mo0.1/AC (Mo/AC) catalysts 

and the reference commercial catalyst Ru0.05/C (Ru/C), were used in this work. The names 

and textural analysis of these carbon-supported catalysts are shown later in Table 5.1. 

The Ru/C reference catalyst was purchased from Sigma-Aldrich and used as provided, and 

carbon-supported MoRu catalysts were prepared in-house by incipient wetness impregnation 

of activated carbon with ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO3)3) and ammo-

nium molybdate tetrahydrate ((NH4)6Mo7O244H2O). Solvents used included acetone and 

methanol. All were reagent grade and purchased from Sigma-Aldrich. 

As an example, the MoRu/AC catalyst was prepared by suspending activated charcoal in a 

50% solution of water and methanol. The calculated volume of the Ru solution was added to 

this solution. The Mo was added by dissolving the required amount of the Mo compound in 

some distilled water and adding the solution to the suspension. The suspension was then 

stirred for 24 h at ambient temperature. The catalyst was then dewatered by rotary evapora-

tion under vacuum at 85 °C and then dried overnight in an oven at 105 °C. The catalyst was 

then loaded into a tube reactor and reduced under a flow of 50 mL/min hydrogen at 500 °C 

for 4 h. The evolution of a brown gas at a temperature of ~300 °C was evidence of the reduc-

tion taking place. After cooling to ambient temperature under nitrogen, the catalyst was de-

canted into a beaker of methanol, also under nitrogen, for passivation. After evaporation of 

the methanol at 65°C and cooling back to ambient, the catalyst was stored in an air-tight plas-

tic bag before use. 

To prepare MoRu/ACP catalyst, phosphorated activated charcoal was prepared. Briefly, the 

required amount of phosphoric acid was added to a suspension of activated charcoal in 50% 

water/methanol. The suspension was stirred for 24 h and then dewatered by rotary evapora-

tion under vacuum at 85°C. The phosphorated support was then dried at 105°C overnight and 

stored after cooling, and used as a support to prepare MoRu/ACP catalyst in a similar method 

as described above for MoRu/AC. 

In addition, MoRu/C catalyst was prepared by adding the calculated amount of the Mo com-

pound dissolved in distilled water to a suspension of the reference Ru/C catalyst in 50:50 
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methanol/water. The remaining procedure was the same as for the MoRu/AC catalyst as ex-

plain above.  

 

5.2.2 Experimental apparatus and procedure 

The hydroprocessing/depolymerization of OL was carried out in a 100 mL stainless-steel 

autoclave reactor equipped with a stirrer. In a typical run, the reactor was loaded with 5 g of 

OL, 0.5 g of catalyst and 25 g of acetone. The reactor was sealed, purged with nitrogen and 

was subsequently pressurized to 5 MPa with hydrogen. The reactor was heated to the reac-

tion temperature while stirring and kept at the desired temperature for 120 min before cool-

ing. Once the reactor had cooled to room temperature, the gaseous products were sampled for 

analysis. The liquid products and solid residue (SR) were rinsed from the reactor with ace-

tone and the resulting suspension was filtered under vacuum through a pre-weighed 

Whatman No. 5 filter paper. The SR, catalyst and filter paper were dried at 105 °C for 24 h 

before weighing. After a GC-MS sample was taken, the acetone (and maybe water formed 

during the hydroprocessing) was removed from the liquid product by rotary evaporation un-

der vacuum at 40-50 °C. The yields of depolymerized OL (DOL) and SR were calculated 

relative to the mass of the OL loaded into the reactor. Each experiment was repeated to re-

duce the experimental error to ± 5%. 

The relative molecular weights and their distributions of the OL feed and the hydroprocessed 

DOL were measured with a Waters Breeze GPC-HPLC (gel permeation chromatography-

high performance liquid chromatography) instrument (1525 binary pump, UV detector at 270 

nm; Waters Styrylgel HR1 column at a column temperature of 40 °C) using THF as the 

eluant at a flow rate of 1 mL/min. Linear polystyrene standards were used to generate a cali-

bration curve for molecular weight estimation. H
1
 NMR spectra were obtained on a 500 MHz 

Unity Inova NMR instrument at room temperature, wherein d6-dimethylsulfoxide was used 

as solvent. FT-IR spectra were collected on a Bruker Tensor 37 FTIR spectrophotometer in 

the range of 550-4000 cm
-1

 with ATR accessory. The volatile components of the DOLs were 

identified by GC-MS (HP 6890 GC and HP 5972 MS) using a silicon column with tempera-

ture programming from an initial temperature of 50 °C for 2 min hold at 10 °C/min to a final 

temperature of 280 °C for 2 min hold. CHNS (carbon, hydrogen, nitrogen, and sulfur) ele-
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mental analysis was conducted on a Flash EA 1112 Series elemental Analyzer. The BET sur-

face area analysis was performed on a Micrometrics ASAP 2010 instrument. The samples 

were degassed at 150 °C until a stable static vacuum of less than 5×10
-3

 Torr was achieved 

prior to analysis. The gas composition was measured on an Agilent 3000 Micro-GC equipped 

with dual columns (Molecular Sieve and PLOT-Q) and thermal conductivity detectors. The 

GC system employed in this work enabled analysis of gas species up to C3, including O2, N2, 

H2, CO, CO2, CH4, C2H4, C2H6, C3H8, and C3H6. 

 

5.3 Results and Discussion 

5.3.1 Catalyst characterization 

The textural analysis of all catalysts prepared is presented in Table 5.1. There was no great 

difference in the surface areas, pore volumes and pore diameters of the catalysts, therefore 

the differences in catalyst performance must be due to the supported metals. 

 

Table 5.1 Textural analysis of the carbon-supported catalysts 

Catalyst Metal cont. (wt.%) BET S. Area 

(m
2
/g) 

Tot. Pore 

Vol. (cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores 

2-50 nm (cm
3
) 

Avg. pore 

dia. (nm) Mo Ru 

Ru/C 0 5 893 0.852 0.034 0.507 3.61 

MoRu/C 1 5 865 0.826 0.045 0.514 3.62 

MoRu/AC 1 5 875 0.786 0.034 0.442 3.58 

MoRu/ACP 1 5 771 0.704 0.032 0.405 3.67 

Mo/AC 10  678 0.656 0.027 0.400 3.62 

 

5.3.2 DOL Yields 

The OL was depolymerized at standard reaction conditions of 5 g OL dissolved in 25 g ace-

tone, 0.5 g catalyst, 5 MPa initial hydrogen pressure and 1 h reaction time at 300 C unless 

otherwise noted. The yields of DOL at different temperatures are presented in Figure 5.1. 
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Figure 5.1 Yield of DOL as a function of reaction temperature 

 

The DOL yields for all four Ru-based catalysts were very high (<95 wt.%) at 250 °C but 

were found to decrease with increased temperature. The yield of DOL for MoRu/AC catalyst 

at 300 °C was still ~95 wt.% but the other catalysts exhibited marked decreases. At 340 °C, 

the DOL yields with all catalysts were <70 wt.% due to increased char (solid residue, SR) 

formation.  

It is interesting to note that the yield of DOL for the Mo/AC catalyst at 300 °C was equiva-

lent to that of the Ru/C reference catalyst. Due to this poor showing, further tests with this 

catalyst were not performed. 

The yields of DOL, solid residue (SR or char), and gas are presented in Table 5.2 and Figure 

5.2. As can be seen, the amount of SR obtained increases with increasing temperature. This is 

reasonable, as increased fragmentation of the lignin macromolecule presents greater opportu-

nity for reactive moieties to recombine and form solid residue/char. As expected, the amount 
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gas products from the hydroprocessing of OL also increased with increasing temperature. 

The yield of water, produced as a consequence of hydrodeoxygenation reactions, was ob-

tained simply based on mass difference. As clearly shown in Table 5.2, the formation of wa-

ter was not very evident at lower temperatures but became more evident at higher tempera-

tures as the more refractive C-O bonds began to break. 

 

Table 5.2 DOL and product yields 

Catalyst Temp. 

(°C) 

DOL (wt.%) Char (wt.%) Gas (wt.%) Water* 

(wt.%) 

Sum 

(wt.%) 

MoRu/ACP 250 98.6 2.2 1.2 0.4 0.04 0.2 0.16 100.0 

300 74.4 2.7 25.5 0.73 0.30 0.03 0.0 100.2 

MoRu/AC 250 99.2 3.1 1.5 0.29 1.8 0.08 0.0 102.5 

300 94.7 3.6 1.5 0.12 6.1 0.21 0.0 102.3 

340 68.6 1.4 15.7 0.73 8.3 0.42 7.4 100 

MoRu/C 250 98.6 1.0 1.9 0.22 1.7 0.07 0.0 102.2 

300 86 2.3 6.4 0.48 6.5 0.30 1.1 100 

340 58.1 2.8 27.7 0.87 7.8 0.44 6.4 100 

Ru/C 250 96.6 3.1 3.1 0.27 1.1 0.09 0.0 100.8 

300 61.7 2.8 31.4 0.76 5.5 0.64 1.4 100 

340 49.8 2.4 30.8 0.97 15.7 0.69 3.7 100 

Mo/AC 300 62.0 36.4 2.4 0.0 100.8 

Reaction Conditions: 5 g OL:25 g acetone, 0.5 g catalyst, 5 MPa cold hydrogen, 1 h reaction 

time at temperature 

* Values determined by mass difference. 
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Figure 5.2 Cumulative DOL Product Yields 

 

MoRu/ACP catalyst was not tested at elevated temperature due to the drastically reduced 

yield of DOL at 300 °C accompanied by a sharp increase in char formation. In addition, the 

DOL product obtained with MoRu/ACP catalyst at 300 °C was of poor quality: it was a brit-

tle solid, whereas the DOL products with other catalysts at 300 °C were viscous liquids. This 

difference was confirmed by GPC as will be examined later. 

The decrease in DOL yields with increasing temperature is likely due to the deactivation of 

the catalyst at a higher temperature caused by carbon/coke deposition, leading to drastically 

decreased surface area of the catalyst. A comparison of the textural properties of the fresh 

and spent MoRu/AC catalysts is given in Table 5.3. Taking MoRu/AC catalyst as an exam-

ple, the surface area of the spent catalysts decreases greatly with increasing temperature. This 

indicates that solid residue produced by condensation reactions at elevated temperatures was 

deposited on the catalyst surface, deactivating the active sites on the surface and preventing 

access to active sites in the interior of the catalyst by blocking pores. 
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Table 5.3 Comparison of textural properties of MoRu/AC catalyst after reaction at different 

temperatures 

Reaction tem-

perature (°C) 

BET  S. 

Area (m
2
/g) 

Tot. Pore Vol. 

(cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores 

2-50 nm (cm
3
) 

Avg. pore 

dia. (nm) 

fresh 875 0.786 0.034 0.442 3.58 

250 209 0.275 0.010 0.191 3.63 

300 128 0.162 0.004 0.107 3.56 

340 14.8 0.019 0.0004 0.008 3.54 

 

More generally, Table 5.4 displays comparison of textural properties of fresh and spent cata-

lysts at 300 °C, from which there seems to exhibit a strong correlation between the DOL 

yield and the textural properties (e.g., specific surface area and pore volume) of the spent 

catalysts. The MoRu/AC, which produced the highest yield of DOL, has the largest remain-

ing surface area and pore volume. The surface area of the reference Ru/C catalyst, producing 

the lowest yields of DOL at 300 °C, was reduced to only 13.6 m
2
/g. Similarly, the pore vol-

ume of this catalyst was also greatly reduced. 

 

Table 5.4 Comparison of textural properties of fresh and spent catalysts at 300 °C 

Catalyst  and 

reaction condition 
BET S. Area 

(m
2
/g) 

Tot. Pore 

Vol. (cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores   

2-50 nm (cm
3
) 

Avg. pore dia. 

(nm) 
MoRu/AC fresh 875 0.786 0.034 0.442 3.58 

MoRu/AC 300 158 0.162 0.004 0.107 3.60 

Ru/C fresh 893 0.852 0.034 0.507 3.61 

Ru/C 300 13.6 0.013 0.001 0.008 3.65 

MoRu/C fresh 865 0.826 0.045 0.514 3.62 

MoRu/C 300 128 0.151 0.005 0.091 3.56 

MoRu/ACP fresh 771 0.704 0.032 0.405 3.67 

MoRu/ACP 300 40.4 0.045 0.002 0.024 3.57 

 

The gases produced during the reactions were analyzed by Micro-GC. The volume of the gas 

produced was accurately determined using a 2.8 L gas cylinder equipped with a pressure 
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gauge. The product gas compositions are presented in Table 5.5. As expected, the amounts of 

gaseous product increased with increasing temperature. The most obvious trend is the in-

crease in methane concentration. The formation of methane from lignin hydroprocessing is 

believed to be due to the decomposition/cleaving of the methoxy linkages in the lignin (Chat-

terjee, et al., 2013; He et al., 2014) or from methanation of C, CO or CO2 (e.g. C + H2  

CH4; CO (or CO2) + H2  CH4 + H2O). The amount of CO and CO2 produced also increased 

with increasing temperature as can be seen with the reference catalyst, suggesting a greater 

extent of gasification reactions  (e.g. C + H2O  CO + H2; CO + H2O   H2 + CO2) occur-

ring. Surprisingly, for the MoRu/AC and MoRu/C catalysts, the amount of CO2 at 340 °C 

decreased when compared with that at 300 °C. This result is perhaps indicative of increased 

methanation of CO2 (CO2 + 4 H2  CH4 + 2 H2O) in the presence of the mixed Mo/Ru cata-

lysts at elevated temperatures as compared to the catalyst composed of only Ru. 

 

Table 5.5 Composition of gaseous products (vol. %) from OL hydroprocessing with different 

catalysts and at different temperatures 

Catalyst MoRu/ACP MoRu/AC MoRu/C Ru/C 

Temp. (C) 250 300 250 300 340 250 300 340 250 300 340 

CH4  2.0 9.2 4.0 11.7 21.4 4.1 11.2 20.1 3.9 11.3 36.2 

CO  0.3 1.0 0.1 0.2 0.3 0.1 0.2 0.4 0.7 2.3 4.0 

CO2  0.4 7.0 1.4 6.2 1.1 1.0 6.0 1.1 1.0 4.8 9.9 

C2H4  - - - - - - - 0.001 - - 0.002 

C2H6  0.1 1.5 0.3 1.3 2.6 0.3 1.2 2.5 0.1 0.8 2.6 

C3H8  - 0.3 - 0.1 0.2 - 0.1 0.2 - - 0.2 

Propylene  0.0 - 0.08 0.3 0.5 0.1 0.3 0.4 0.03 0.06 0.1 

1,2-Propadiene  - - - - 0.2 - - - - - - 

Methyl 

Acetylene  

- 0.1 - - - - 0.19 - - - 0.16 

 

Quantification of the different gaseous products allowed for determination of the amount of 

OL that was gasified. Based on the ideal gas law, with known volume, pressure and tempera-

ture of the gas, the number of moles of each gas species was calculated. The number of 



120 

 

moles of each carbon species present in the gas was multiplied by the number of carbon at-

oms in each molecule to determine the total number of moles of carbon present in the gas, 

and hence the mass of carbon in the gas. The sum of these values was compared to the mass 

of carbon present in the OL feed (as determined by CHNS analysis) which in turn allowed 

for the calculation of the amount of OL that was converted into gaseous species, assuming 

negligible gasification of the carbon support or the solvent during the hydroprocessing proc-

ess. The results are presented in Table 5.6. 

As expected, and in agreement with the composition of the gaseous products (Table 5.5), 

very little OL was gasified at low temperatures and the amount gasified increased with in-

creased reaction temperature. This was especially evident with the reference catalyst. Ru/C is 

well known as a gasification catalyst and consequently resulted in greater gasification of the 

feed, especially at a high temperature (i.e. 340 °C). 

 

Table 5.6 Gasification of OL 

 MoRu/ACP MoRu/AC MoRu/C Ru/C 

Temp. (C) 250 300 250 300 340 250 300 340 250 300 340 

mol C in gas 0.003 0.025 0.007 0.025 0.034 0.007 0.024 0.032 0.005 0.023 0.065 

mass C in gas 0.041 0.296 0.087 0.303 0.413 0.081 0.289 0.386 0.054 0.277 0.785 

% C gasified 1.1 8.3 2.4 8.5 11.5 2.3 8.1 10.8 1.5 7.7 21.9 

% OL gasified 0.82 5.92 1.73 6.06 8.25 1.63 5.78 7.72 1.08 5.54 15.70 

 

5.3.3 Hydrogen consumption during OL hydroprocessing 

Micro-GC analysis also allowed for the calculation of amount of hydrogen that was con-

sumed during the hydroprocessing operation. The amount of hydrogen introduced into the 

reactor as determined based on the volume of head space above the reaction mixture and the 

initial pressure of hydrogen (5 MPa), which was confirmed by Micro-GC analysis of gas 

sampled prior to reaction and determined to be greater than stoichiometric. Therefore the hy-

drogenation and hydrodeoxygenation of the OL is not hydrogen-limited. 

The hydrogen consumption during hydroprocessing of OL with different catalysts and vari-

ous temperatures is presented in Figure 5.3. For three of the MoRu catalysts (MoRu/AC, 
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MoRu/C and MoRu/ACP), ~20 mol/kg OL of hydrogen was consumed regardless of the re-

action temperature, implying that the OL hydrogenation/hydrodeoxygenation reactions do 

not appear to require elevated temperatures and proceed to a constant extent. Surprisingly, 

the amount of hydrogen consumed in the reactions with the Ru/C catalyst is much lower than 

with the MoRu catalysts. This is likely due to the fact that Ru/C is a gasification catalyst and 

could produce hydrogen (Barati et al., 2014), which would balance the hydrogen consumed 

in the OL hydrogenation/hydrodeoxygenation reactions. The increased consumption at ele-

vated temperature indicates that hydrogen consumption increases relative to production. This 

is evident in the increased amount of CH4, CO and CO2 present in the gas phase. 

 

 

Figure 5.3 Hydrogen consumption during OL hydroprocessing 

 

5.3.4 DOL product characterization  

The molecular weights of the DOL products as presented in Table 5.7 and Figures 5.4 and 
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solid. The molecular weight of the DOL was actually higher than the OL feed (2,770 vs. 

2,600 g/mol). This is consistent with other work that was performed in our group which de-

termined that condensation reactions occur at lower temperatures than do hydrogena-

tion/hydrodeoxygenation reactions. (Chen and Falconer, 1994; Mahmood et al., 2013) This 

increase in molecular weight was only observed with the MoRu/ACP catalyst, indicating that 

the addition of phosphorus, which has been seen to decrease char yields in the hydroprocess-

ing of model compounds (DeCanio et al., 1991;Yang et al., 2009) had a detrimental effect in 

the presence of a more complex feed. It is possible that residual phosphoric acid was present 

and since acidity is known to promote condensation reactions, this resulted in the increase in 

molecular weight. The molecular weights of DOL produced at 250 °C with the other cata-

lysts were reduced from 2600 g/mol to ~1900-2100 g/mol. At 300 °C, the DOL products 

showed a marked decrease in molecular weight.  Again, MoRu/ACP performed poorly with a 

molecular weight ~60% greater than the most effective catalyst. Due to these results, further 

tests with MoRu/ACP were not performed. The molecular weight of the DOL obtained from 

the Mo/AC catalyst was equivalent to that of the reference Ru/C catalyst. 

 

Table 5.7 DOL molecular weight as a function of catalyst and reaction temperature 

OL Feed 

(g/mol) 

MoRu/ACP MoRu/AC MoRu/C Ru/C Mo/AC 

Temp (°C) Temp (°C) Temp (°C) Temp (°C) Temp (°C) 

250 300 250 300 340 250 300 340 250 300 340 300 

Mn 750 700 390 580 330 230 620 350 240 700 330 230 300 

Mw 2600 2770 1175 1870 730 460 1930 810 516 2110 910 540 907 

PDI 3.47 3.96 2.33 3.22 2.21 2.00 3.11 2.31 2.25 3.01 2.91 2.24 3.02 

 

The molecular weights for the DOL products obtained with MoRu catalysts at 300 °C (730 

g/mol for MoRu/AC and 810 g/mol for MoRu/C)  are lower than the molecular weight ob-

tained with Ru/C or Mo/AC catalysts (910 and 907 g/mol), suggesting a synergistic effect of 

the presence of the Mo and Ru in depolymerization of OL. Further increasing the reaction 

temperature to 340 °C resulted in DOL products with a very low Mw (460-540 g/mol) that 

were much less viscous than the products produced at 300 °C, with the MoRu/AC, MoRu/C 

and Ru/C catalysts producing liquid DOL that remained fluid at temperatures below 0 °C. 
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The viscosity of these DOLs at 340 °C was measured to be 29, 31 and 32 cP, respectively. 

The GPC curves for the DOL obtained using different catalysts at 300 °C are presented in 

Figure 5.4. Although the peaks for all curves occur at relatively the same elution volume, the 

shapes of the curves account for the differences in molecular weight. 

 

 

Figure 5.4 GPC curves for DOL obtained at 300 °C using different catalysts 

 

The effect of reaction temperature on DOL molecular weight can be more clearly seen in 

Figure 5.5. The shift of the GPC peaks to the right at a higher temperature with both 

MoRu/AC (Figure 5.5a) or Ru/C catalyst (Figure 5.5b) indicates reduced molecular weight. 
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Figure 5.5 GPC curves for DOL obtained at different temperatures using MoRu/AC (a) and 

Ru/C (b) 
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Elemental analysis performed on the DOL products showed that catalysts used in this study 
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The Ru/C catalyst performed poorly and was only able to remove ~25% of the oxygen pre-

sent. A similar trend was observed with the increase in hydrogen content of the DOL product 

although the differences between various catalysts were not significant. Again, MoRu/AC 

performed the best with a ~40% increase in H content. 

 

Table 5.8 Elemental analysis of DOL produced using different catalysts at 300 °C 

  C H N S O* % increase 

in H 

% decrease 

in O OL Feed 64.3 5.60 0.15 0.01 29.9 

MoRu/AC 72.6 7.81 0.01 0.00 19.6 39.5 34.4 

Ru/C 69.8 7.66 0.01 0.00 22.5 36.8 24.8 

MoRu/C 71.6 7.78 0.02 0.00 20.6 39.0 31.0 

MoRu/ACP 71.4 7.68 0.00 0.00 21.0 37.1 30.0 

Mo/AC 70.9 7.74 0.13 0.00 21.3 38.3 29.0 

 

The van Krevelen plot for these values is illustrated in Figure 5.6, from which it is shown 

that DOL products with various catalysts have similar H/C ratio of ~1.3 and O/C ratio of 

~0.23, compared with H/C ratio of ~1.05 and O/C ratio of ~0.35 for the OL feed. 

 

 

Figure 5.6 Van Krevelen plot for DOL produced by different catalysts at 300 °C 
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Elemental composition of the DOL products obtained at different temperatures is compared 

in Table 5.9 and presented graphically in Figure 5.7. As expected, the effectiveness of O re-

moval and H addition increased with increasing temperature. Although the reference Ru/C 

catalyst and MoRu/AC catalysts performed approximately equally well in terms of hydrogen 

addition at 300 °C, the Ru/C performed much better at 340 °C, increasing H content by 50% 

as compared to ~42% (MoRu/AC). However, the MoRu/AC catalyst was more effective in 

oxygen removal than Ru/C (~38% vs. ~25% at 340 °C). 

 

Table 5.9 Elemental analysis of DOL produced at different temperatures using different cata-

lysts 

  
OL Feed MoRu/AC MoRu/C Ru/C 

250 300 340 250 300 340 250 300 340 

H 5.60 7.19 7.81 7.93 6.73 7.78 7.93 6.81 7.66 8.41 

N 0.15 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.01 0.02 

C 64.30 69.00 72.55 73.44 66.59 71.55 71.75 68.04 69.81 69.13 

S 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 

O* 29.94 23.81 19.63 18.61 26.68 20.65 20.30 25.14 22.53 22.43 

% decrease in O 20.5 34.4 37.8 10.9 31.0 32.2 16.0 24.8 25.1 

% increase in H 28.3 39.5 41.6 20.1 39.0 41.7 21.6 36.8 50.2 

* Value determined by mass difference 

 

The trends in these data can be better presented in a van Krevelen plot as seen in Figure 5.7. 

At 250 °C (red markers), the MoRu/AC catalyst was the most effective in both hydrogen ad-

dition and oxygen removal. Increasing the temperature to 300 °C (green markers) resulted in 

a further decrease in the O content for all three catalysts, with MoRu/AC being the most ef-

fective, but the increase in H content for MoRu/C and Ru/C improved relative to the 

MoRu/AC. When further increasing the temperature to 340 °C (blue markers), there was only 

a slight improvement in the removal of O and in H addition for the DOL with MoRu/AC as 

compared to 300 °C. A similar trend was observed in the O removal for the MoRu/C or Ru/C 

catalysts. However, the level of hydrogen addition increased markedly with increasing tem-

perature for the Ru/C catalyst, likely owing to the fact that Ru/C is a hydrogenation catalyst. 

(Kluson and Cerveny, 1995; Genet, 2003) These results indicate that there appears to be a 

significant fraction of C-O bonds that are refractory to the action of Ru/C catalyst even at 



127 

 

elevated temperatures. The addition of Mo to the Ru catalyst increased the extent of O re-

moval (decreased O/C ratio), but also decreased the extent of hydrogenation (decreased H/C 

ratio) of the DOL product at higher temperature. Thus, as mentioned previously, there are 

still a number of oxygen bonds that these catalysts are unable to sever, although the MoRu 

catalyst is able to break more of these bonds than the Ru catalyst alone. In addition, Mo ap-

pears to hinder the hydrogenation efficiency of the Ru catalyst. 

 

 

Figure 5.7 Van Krevelen plot for DOL produced by different catalysts at different tempera-

tures 
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The volatile components of the DOL products were analyzed by GC-MS. The identified 
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pounds detected in the DOL products at 340 °C are generally less-oxygenated than the com-

pounds present in the DOL products at lower temperatures e.g. cresol vs. creosol, 2-methyl-

3-ethyl phenol and 2-propyl phenol vs. 4-ethyl-2-methoxy phenol, 2-methoxy-4-propyl phe-

nol and 2,6-dimethoxyphenol. These results are consistent with results reported in the litera-

ture, that at elevated temperatures, the ether bonds can be cleaved more easily, forming less-

oxygenated compounds (Chakar and Ragauskas, 2004). Although there are differences in the 

yields and deoxygenation/hydrogenation performance of the MoRu/AC and Ru/C catalysts, 

as presented previously, the compounds present in the DOL with these catalysts are similar 

regardless of the reaction temperature and the type of catalyst used. A plot of the GC/Ms 

spectra showing the differences in volatile components with respect to reaction temperature 

is presented in Figure 5.8  

 

Table 5.10 Comparison of compounds found in DOL with MoRu/AC and Ru/C at different 

temperatures 

RT 

(min) 

250 °C 300 °C 340 °C 

MoRu/AC Ru/C MoRu/AC Ru/C MoRu/AC Ru/C 

2.37 Methyl Isobutyl Ketone 

3.22 3-Hexen-2-one 3-Penten-2-one, 4-methyl- 

4.13 2-Pentanone, 4-hydroxy-4-methyl- 

7.86         Phenol 

8.62         Phenol, 2-methyl- 

8.69     Phenol, 2-methoxy- 

9.05     p-Cresol 

9.67      Phenol, 2,4-dimethyl- 

9.84 Creosol 

10.01         Phenol, 3-ethyl- 

10.61 Phenol, 4-ethyl-2-methoxy- 

10.76         Phenol, 2-propyl- 

11.13     1,2-Benzenediol, 3-methoxy- 

11.28 Phenol, 2-methoxy-4-propyl- 

11.62 Phenol, 2,6-dimethoxy- 

11.81       Phenol, 3,4-dimethoxy- 

12.22 1,2,3-Trimethoxybenzene 

12.65         4-Ethylbiphenyl 

12.67 2-Methoxybenzyl al-

cohol 

Benzene, 1,2,3-trimethoxy-

5-methyl- 

5-tert-Butylpyrogallol 

13.13 4-Propyl-1,1'-diphenyl 
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Figure 5.8 GC/MS plots for DOL obtained at 250 °C (bottom), 300 °C (middle) and 340 °C 

(top) 

 

5.3.7 FTIR analysis of DOL 

FTIR analysis was performed on the DOL products to elucidate the changes in functional 

groups. Figure 5.9 compares the FTIR spectra of OL feed and DOL products obtained with 

MoRu/AC at different temperatures. Immediately evident is the relative increase in absorp-

tion in the OH region (3,500-3,000 cm
-1

) which may be attributed to newly formed OH 

groups resulting from the scission of the ether bonds present in the OL. Also evident is in-

creased -CH3 bend which could be the result of the cleavage of methylene bridges followed 

by hydrogenation. The peaks at 1200, 1100 and 1025 cm
-1

, indicative of phenolic or acyl C-O 

and ether C-O bonds, respectively, show that these bonds were relatively unaffected by the 

hydroprocessing at  temperatures < 300 °C. Similarly, the response of carbonyl bonds at 

1700 cm
-1

 decreased in all DOL products suggesting deoxygenation of the OL, in particular 

at 340 °C. These results combined with the results of the elemental analysis, indicate that de-

oxygenation of the OL feed increased with increasing temperature.  
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Figure 5.9 FTIR spectra of OL feed and DOL products obtained at different temperatures 

with MoRu/AC and the expanded fingerprint region (top). 

 

The appearance of the peaks at ~690-820 cm
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 at 340 °C is indicative of mono- and di-
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5.3.8 NMR analysis of DOL 

The changes in composition of DOL as a result of hydrogenation/hydrodeoxygenation can 

also be revealed by H-NMR spectroscopy. Figure 5.10 illustrates the NMR spectra for OL 

feed (bottom) and MoRu/AC DOL at 300 °C (middle) and 340 °C (top). It should be noted 

that DOL is not a pure compound, but rather a complex mixture of many related compounds; 

therefore it is very difficult to assign peaks to a single species with a high degree of certainty. 

It is more convenient to discuss the changes in broad rather than specific terms. The peak at 

2.5 ppm is due to the deuterated dimethylsulfoxide solvent. The three NMR spectra in this 

Figure reveal a number of interesting changes. The peaks in the range of 9-10 ppm, which 

correspond to aldehydic C-H bonds, virtually disappear at elevated reaction temperature. 

This agrees with the decrease in carbonyl bonds observed in the FTIR spectra. The number 

and intensity of the peaks in the range of 6-8 ppm, corresponding to aromatic C-H bonds, are 

higher in DOL products than for the OL feed. A similar trend is observed in the range of 0.5-

2 ppm which corresponds to the response due to C-H present in the form of sp
3
 bonds. The 

response in this region shifts to the left according to the sequence CH>CH2>CH3. As can be 

seen, at a reaction temperature of 300 °C, the number of -CH2 groups that are present in-

creases compared to the OL feed and as the temperature increases to 340 °C, both the number 

and intensity of the peaks in this region increase and shift to the right, indicating a greater 

abundance of -CH3 groups. The signals corresponding to the proton in alcohol -OH groups 

can appear over a broad range of 1-5 ppm. The peaks present in the range of 2.0-2.5 ppm 

may be due to -OH groups that form from the cleavage of ether bonds followed by hydro-

genation of the oxygen.  
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Figure 5.10 NMR spectra for OL feed (bottom) and MoRu/AC DOL at 300 °C (middle) and 

340 °C (top) 
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5.4 Conclusions 

All of the catalysts tested were effective in the depolymerization and hydrotreatment of or-

ganosolv lignin. However, the presence of phosphorus in the catalyst, which is known to de-

crease solid residue and improve product yields in previous studies using model compounds, 

was found to inhibit the depolymerization of the organosolv lignin, perhaps due to residual 

acidity. The catalysts tested were able to greatly decrease the molecular weight of the OL 

feed from ~2600 to 460 g/mol at 340C with the most effective MoRu/AC catalyst. The 

MoRu/C and reference Ru/C catalysts resulted in DOL with molecular weights of 516 and 

540 g/mol at the same condition, respectively. All three of these DOL products obtained from 

the hydroprocessing at 340C remained liquid even at temperatures below 0 °C. The oxygen 

content of DOL obtained with MoRu/AC at 340 °C was found to have decreased by ~38% as 

compared to ~25% for Ru/C, indicating that the presence of Mo in Ru catalysts has a syner-

gistic effect in oxygen removal. At the same temperature, the hydrogen content of the DOL 

with Ru/C catalyst was found to increase by ~50% as compared to 42% with the MoRu/AC. 

The addition of Mo to carbon-supported Ru catalysts therefore produced a more effective 

catalyst for the reductive depolymerization of OL under hydrogen atmosphere for applica-

tions such as fuel additives and intermediates for chemicals and materials. More work needs 

to be done to develop MoRu catalysts capable of further increasing oxygen removal and 

maintaining the hydrogenation efficiency of the Ru catalyst. 
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Chapter 6 

6 Reductive depolymerization of hydrolysis lignin for aro-

matic chemicals and fuels 

6.1 Introduction 

As our society starts to focus more and more on environmental and economical sustainabil-

ity, renewable bio-energy and bio-materials from non-food resources, especially wood, are 

drawing increasing attention from consumers, governments, industries, and research insti-

tutes (Li and Ragauskas, 2012). Agricultural residues such as cornstalks, wheat straw, and 

corn and nut shells are abundant and renewable, as are forestry residues, from logging and 

pulp and paper manufacturing. Furthermore, they are produced in mass quantities in many 

countries, especially in Canada, Russia, China, India and Brazil. 

The main components of these residues are cellulose, hemicellulose and lignin (Xu et al., 

2012). Lignin represents 30% of all non-fossil organic carbon on Earth and its availability 

exceeds 300 billion tons (Smolarski, 2012). Thus large quantities of lignin are available from 

the numerous pulping mills and bio-refinery industries (such as cellulosic ethanol plants). In 

pulp and paper mills, most of the residues (lignin) is burned directly or discarded. These ap-

proaches not only waste precious bioresources, but also cause air pollution. 

Recently, transforming agricultural residues into bio-ethanol, functional polysaccharides or 

bio-gas by means of enzymatic conversion has attracted much attention in many countries 

(Demirbas et al., 2006; Champagne, 2007). In these conversion processes, most of cellulose 

is fully utilized, leaving behind hydrolysis lignin (HL) - a by-product from the pre-treatment 

processes such as in cellulosic ethanol plants, which is mainly utilized as a low-value fuel. 

But large-scale development of these biomass conversion projects is limited by the high cost 

of cellulose enzymes and process equipment.(Jin et al., 2011)  Finding effective ways to 

make full use of the lignin present in the process residues for value-added energy and chemi-

cal products is critical in improving the process economics. 

HL is expected to become more widely available and in large quantities as projects producing 

cellulosic sugar-based chemicals or ethanol are realized. HL is a solid residue from the en-



138 

 

zymatic hydrolysis of lignocellulosic biomass and is composed mainly of lignin (~60 wt.% or 

higher), unreacted cellulose and mono & oligosaccharides.(Sazanov et al., 2010) Compared 

with sulfur-containing Kraft lignin, the by-product of most wood pulping operations, HL is 

sulfur-free and therefore a much easier biomass to work with. As a consequence of process-

ing conditions, hydrolysis lignin has undergone extensive acid condensation reactions and 

therefore is insoluble in water. Extensive research was undertaken in the former Soviet Union 

to find uses for this material. After extensive modification, the uses developed ranged from 

soil additives to dispersants, i.e. environment protection, soil quality improvement, crop 

farming, live stock farming, leather processing, recycling of valuable chemicals by waste wa-

ter treatment etc. The majority of the hydrolysis lignin was disposed of because the required 

modifications were either too expensive or the material did not function well enough in ap-

plication. These are the same problems facing today’s researchers who are looking for a use 

for hydrolysis lignin (Monica, 2005). Thus, further research into the effective and efficient 

utilization of HL is needed. 

Due to its aromatic components, HL is a potential source of phenol and other aromatic com-

pounds. One means of making use of this resource is to depolymerize the macromolecular 

HL into oligomers and monomers via hydrothermal depolymerization. This will dissociate 

the lignin and carbohydrates and partially cleave the primary and secondary ether bonds in 

both lignin and high molecular weight carbohydrates (cellulose and hemicellulose) into lower 

molecular weight compounds and, depending on the process parameters used, decreased 

oxygen content.(Xu et al., 2012) As a result, the solid lignocellulosic biomass (e.g. HL) can 

be converted into a product which can potentially be used as fuel and/or chemicals. 

The hydrotreatment of lignin has typically been performed in the presence of sulfided Co- or 

Ni-promoted Mo catalysts, typically supported on alumina, borrowed from petroleum proc-

essing operations.(Senol et al., 2007; Romero et al., 2010; Zakzeski et al., 2010; Saidi et al., 

2014) Noble metal catalysts have also been used in the hydroprocessing of lignin and bio-

mass-derived bio-oils. Ru catalysts, in particular, have been shown to be very active in the 

hydrogenation and hydrodeoxygenation of model compounds (e.g. phenol and guaiacol) as 

well as bio-oils. (Elliott and Hart, 2009; Gutierrez et al., 2009; Lee et al., 2012; Chang et al., 

2013) More recently, reductive depolymerization of lignin in the presence of hydrogen and 

other late 3d and 4d transition metals (e.g. Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) has been pro-
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posed.(Cateto et al., 2009; Li et al., 2011; Zhao et al., 2011; Jin, 2014) A review of the litera-

ture also reveals that mixed noble metal-transition metal catalysts (e.g. Ru-Co, Rh-Cu and 

Rh-Ag) have been used, although not in the hydroprocessing of bio-oils.(Rouco and Haller, 

1981; Zauwen et al., 1989; Moura et al., 2012) 

Although alumina-supported catalysts have been found to be active in HDO, they also in-

crease catalyst deactivation by promoting the formation and deposition of coke on the cata-

lyst surface.(Centeno et al., 1995; Prochazkova et al., 2007; Elliott and Hart, 2009; Wild-

schutt et al., 2009; Lin et al., 2011)  Centeno et al. (1995) proposed that it is the weak Lewis 

acid sites present in the alumina that promote the condensation reactions leading to coke 

formation.  

In order to avoid coke formation, researchers have investigated less-acidic supports such as 

activated carbon and SiO2 (Furimsky and Massoth, 1999; Reddy and Khan, 2005; Kersten et 

al., 2007) as well as other less common supports e.g. ZrO2 and MgO.(Senol et al., 2007; Bui 

et al., 2011) Yang et al. (2009) found that using carbon-supported catalysts in the hy-

drotreatment of phenol as a lignin model compound resulted in yields equivalent to those of 

alumina-supported catalysts, but with lower proportions of oxygenated compounds. 

Horáček et al. (2012) investigated direct conversion of HL into chemicals in a semi-

continuous process using high loadings (C/L = 0.25-1.0) of sulfided NiMo (30% metal load-

ing) and NiMoP (20% metal loading) catalyst supported on -Al2O3. They produced a binary 

phase product composed mainly of aromatics, naphthenes and phenols but experienced high 

gas and char production. More recently, Mahmood et al. (2013) performed a comparative 

study on the depolymerization of HL under acid, basic and neutral conditions employing wa-

ter, ethanol, and water-ethanol mixtures.  

The objective of this study was the reductive depolymerization (i.e. depolymerization and 

hydrotreatment) of hydrolysis lignin in supercritical acetone and in the presence of 

MoRu/AC catalyst under a hydrogen atmosphere to obtain low molecular weight compounds. 

Acetone was chosen as the solvent because both the aromatic components of HL (as evi-

denced by the solubility of both organosolv and Kraft lignin in acetone) as well as the ali-

phatic compounds produced are expected to be soluble in acetone. The catalysts used in this 
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study (Ru/C, Mo/AC and MoRu/AC) have been shown to be effective in the hydroprocessing 

of organosolv lignin as seen in the author’s own research reported in the previous chapter. To 

the best of the author's knowledge, the depolymerization and hydroprocessing of HL in the 

presence of a mixed noble/transition metal catalyst has not been reported in the literature. 

 

6.2 Experimental 

6.2.1 Materials 

The hydrolysis lignin (HL) used in this study, derived from hardwood, was provided by 

FPInnovations, and contains 56.7 wt.% lignin, 29.8 wt.% carbohydrates, 1.2 wt.% ash and 

12.3 wt.% unknowns. The HL’s chemical and elemental composition is provided in Table 

6.1. The HL was insoluble in THF and several other common organic solvents including 

ethanol, methanol and acetone etc. due to the cross-linking between cellulose and lignin in 

the structure. Therefore, it was not possible to determine the weight average molecular 

weight (Mw) of the HL by GPC-UV. (Yuan et al., 2012) The molecular weight of original 

HL is believed to be >20,000 g/mol, and its pH was neutral. 

 

Table 6.1 Chemical and elemental composition (d.a.f) of hydrolysis lignin (HL) 

Component 
Mass fraction 

(%) 

Lignin
1
 56.7 

Carbohydrates
1
 29.8 

Ash
1
 1.2 

Others
3
 12.3 

Elemental analysis (wt.%)
2
 

Carbon 49.8 

Hydrogen 7.1 

Nitrogen 0.58 

Others 42.5 

1
 On a dry basis; 

2
 On a dry and ash-free basis (d.a.f.); 

3
 by difference 
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The reference catalyst used in this study was Ru/C, a commercial catalyst containing 5 wt.% 

Ru supported on activated carbon, purchased from Sigma-Aldrich and used as provided. The 

MoRu/AC (containing 1 wt.% Mo and 5 wt.% Ru) and Mo/AC (containing 10 wt.% Mo) 

catalysts were prepared in-house by incipient wetness impregnation from activated charcoal 

(AC), ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO3)3) and/or ammonium molybdate 

tetrahydrate ((NH4)6Mo7O244H2O). These chemicals and the solvents used (acetone and 

methanol) were reagent grade and purchased from Sigma-Aldrich. 

The MoRu/AC catalyst was prepared by suspending the activated charcoal in a 50% solution 

of deionized water and methanol. The required volume of the Ru(NO)(NO3)3 solution was 

added to the suspension. The Mo was added by dissolving the required amount of the Mo 

compound in some distilled water and adding the solution to the suspension. The suspension 

was then stirred for 24 h at ambient temperature. The catalyst was then dewatered by rotary 

evaporation under vacuum at 85 °C. The catalyst was dried overnight in an oven at 105 °C. 

The catalyst was then loaded into a tube reactor and reduced under a flow of 50 mL/min hy-

drogen at 500 °C for 4 h. The evolution of a brown gas at a temperature of ~300 °C followed 

by the evolution of ammonia was evidence of reduction taking place. After cooling to ambi-

ent temperature under nitrogen, the catalyst was decanted into a beaker of methanol, also un-

der nitrogen, for passivation. After evaporation of the methanol at 65 °C and cooling back to 

ambient, the catalyst was stored in an air-tight plastic bag before use. The Mo/AC catalyst 

was prepared according to the same procedure as the MoRu/AC catalyst. 

The textural properties of the catalysts used in this study are presented in Table 6.2 below 

along with the textural analysis of the AC support, for comparison. The addition of the cata-

lyst metals does not appear to have greatly decreased the surface area except in the case of 

the Mo/AC catalyst which was loaded with 10 wt.% of the metal. The volume of micropores 

however was greatly reduced (~85%) due to the deposition of metal(s). In contrast, the vol-

ume of mesopores was relatively unchanged indicating that the metal loading blocked the 

very smallest pores mainly. This is confirmed by the ~15% increase in average pore diame-

ter. This change in pore size and volume did not affect the reaction due to the large size of 

the component compounds comprising the HL, which are too large to enter the micropore 

structure of the catalyst. 
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Table 6.2 Textural properties of the carbon-supported catalysts and activated charcoal sup-

port 

Catalyst Metal Load-

ing (wt.%) 

BET S. 

Area (m
2
/g) 

Tot. Pore 

Vol. (cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores 

2-50 nm (cm
3
) 

Avg. pore 

dia. (nm) 

Mo Ru 

Ru/C  5 893 0.852 0.034 0.507 3.61 

MoRu/AC 1 5 875 0.786 0.034 0.442 3.58 

Mo/AC 10  678 0.656 0.027 0.400 3.62 

AC support   963 0.749 0.224 0.405 3.11 

 

6.2.2 Method and apparatus 

The hydroprocessing of HL was carried out in a 100 mL stainless-steel autoclave reactor 

equipped with a stirrer. Unless otherwise noted, the following conditions were used for all of 

these reactions. In a typical run, the reactor was loaded with 5 g of HL, 0.5 g of catalyst and 

25 g of acetone. The reactor was sealed, purged with hydrogen three times and was subse-

quently pressurized to 5 MPa with hydrogen. The reactor was heated to the reaction tempera-

ture while stirring and kept at the desired temperature for 60 min before cooling. Once the 

reactor had cooled to room temperature, the gaseous products were collected for analysis in a 

2.8 L gas cylinder equipped with a pressure gauge. The liquid products and solid residue 

(SR) were rinsed from the reactor with acetone and the resulting suspension was filtered un-

der vacuum through a pre-weighed Whatman No. 5 filter paper. The SR, catalyst and filter 

paper were dried at 105 °C for 24 h before weighing. After a GC-MS sample was taken, the 

acetone was removed from the liquid product by rotary evaporation under vacuum at 45 °C. 

The yields of DHL and SR were calculated relative to the mass of the HL loaded into the re-

actor. Each experiment was performed a minimum of two times to reduce the experimental 

error to ±5%.  

The relative molecular weights and their distributions of the original and de-polymerized lig-

nin samples were measured with a Waters Breeze GPC-HPLC (gel permeation chromatogra-

phy-high performance liquid chromatography) instrument (1525 binary pump, UV detector at 

270 nm; Waters Styrylgel HR1 column at a column temperature of 40 °C) using THF as the 

eluant at a flow rate of 1 mL/min. Linear polystyrene standards were used to generate a cali-

bration curve for molecular weight estimation. H1 NMR spectra were obtained on a 500 
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MHz Unity Inova NMR instrument at room temperature, wherein chloroform-d was used as 

solvent. FT-IR spectra were collected on a Bruker Tensor 37 FTIR spectrophotometer in the 

range of 550-4000 cm
-1

 with ATR accessory. The volatile components of the DOL and DAL 

were identified by GC-MS (HP 6890 GC and HP 5972 MS) using a silicon column with tem-

perature programming from an initial temperature of 50 °C for 2 min hold at 10 °C/min to a 

final temperature of 280 °C for 2 min hold. Elemental analysis of CHNS (carbon, hydrogen, 

nitrogen, and sulfur) was conducted on a Flash EA 1112 Series elemental Analyzer. The BET 

surface area analysis was performed on a Micrometrics ASAP 2010 instrument. The samples 

were degassed at 150 °C until a stable static vacuum of less than 5×10
-3

 Torr was achieved 

prior to analysis. 

 

6.3 Results and Discussion 

Hydrolysis lignin was successfully depolymerized into a liquid bio-oil under the conditions 

outlined above. All of the bio-oils were clear amber liquids that remained liquid even when 

stored at temperatures below freezing. The viscosity of the oils was measured and found to 

be in the range of 14-19 cP at 50 °C. 

 

6.3.1 Effect of catalyst and temperature on HL bio-oil yields 

The effects of temperature and catalyst on the yield of HL bio-oil are presented in Figure 6.1. 

At 200 °C and after 1 h reaction time in the presence of MoRu/AC catalyst, the yield of bio-

oil was ~34 wt.% and increased monotonically to ~84 wt.% at 300 °C. Increasing the tem-

perature to 350 °C only increased the yield to ~88 wt.%.  
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Figure 6.1 HL bio-oil yields as a function of temperature 

 

A similar trend was observed with the Ru/C catalyst indicating that the two catalysts exhib-

ited approximately equivalent activity in HL depolymerization/liquefaction.  

The data points in the figure indicated with asterisks were obtained with MoRu/AC catalyst 

in experiments which were purposely stopped as soon as the reactor reached the reaction 

temperature. Comparing these results to those obtained at the same reaction temperatures 

(300 and 340 °C), but after 60 min reaction time at temperature, shows that the extended soak 

did not increase the yields much, suggesting that the liquefaction of HL occurs rapidly under 

the conditions tested and that extended reaction times are not required to obtain adequate bio-

oil yields. In contrast, in the work of Horáček et al. (2012), after 4 h online, they obtained oil 

yields of ~3-6 wt.% with an aqueous phase comprising 25-30 wt.% of the HL. 

The effects of reaction time on bio-oil yields are shown in Figure 6.2. As can be seen, at 300 

°C the yield of bio-oil obtained after the ~30 min heating time was ~70 wt.% indicating that 

the decomposition of HL into bio-oil occurs very rapidly and at lower temperatures. 
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Figure 6.2 HL bio-oil yields as a function of soaking time at reaction temperature 

 

The extended runs at 300 °C did not improve the yield of bio-oil. A similar experiment per-

formed at 340 °C revealed that the yield of HL bio-oil was ~76 wt.% after heating to reaction 

temperature and had increased to ~85 wt.% after only 30 min reaction time. This yield is very 

similar to the yield of bio-oil of ~88 wt.% obtained after 60 min. Therefore at elevated tem-

perature, even 60 min reaction time may not be necessary to obtain maximum bio-oil yields. 

Consistent with the increasing yields of bio-oil, the amount of solid residue remaining after 

reaction decreased with increased reaction time (5.6, 4.8 and 3.7 wt.% at 300 °C respectively 

and 3.2, 1.9 and 1.8 wt.% at 340 °C). 

In comparison, the conversion of HL by Horáček et al. (2012) at 320 °C resulted in an oil 

yield of ~7 wt.%, aqueous phase yield of ~16 wt.%, gas yield of around 30 wt.%, and a char 

yield of ~43 wt.%. At elevated temperature (380 °C), the yields of oil and aqueous phase in-

creased to ~11 and ~29 wt.%, respectively, and char yield decreased to ~25 wt.% with gas 

formation unchanged. 

Figure 6.3 shows the cumulative product yields for the hydrothermal liquefaction of HL. As 
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very high, but decreased drastically with increased temperature and is negligible at 340 °C. It 

should be noted here that only at 340 °C can the SR actually be considered char. At lower 

temperatures, the SR was a fluffy mass of unreacted HL mixed with the catalyst as shown in 

Figure 6.4. 

 

  

Figure 6.3 Cumulative product yields as a function of reaction temperature and catalyst 

 

Water can be produced by dehydration reactions that occur during HL depolymerization. The 

yield of water, as presented in Figure 6.3, was calculated by difference. As is also evident, 

formation of water was negligible at 200 °C, but became substantial (12 and 19 wt.% with 

MoRu/AC and Ru/C, respectively) at 250 °C, indicating that dehydration reactions were oc-

curring to a great extent at these temperatures. Increasing the reaction temperature further 

resulted in decreased water content but increased gas yields, which might be due to the rea-

tion of some of the water to produce gaseous compounds at elevated temperatures. As is 

clearly shown in the figure, at 340°C the water yield was negligible.  
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Figure 6.4 Photographs of solid residue from HL depolymerization at 200 °C with MoRu/AC 

catalyst (left) and HL feed before reaction (right) 

 

6.3.2 Elemental analysis of HL bio-oils 

Elemental analysis was performed on the bio-oil samples, and the results are presented in 

Table 6.3 and Figures 6.5-6.7. The results reveal that deoxygenation of the HL is possible at 

very low temperatures using MoRu/AC catalyst. For instance, the oxygen content of the bio-

oil produced with MoRu/AC at 200 °C contained ~14% less O than the HL feed. This was 

accompanied by a modest 2.2% increase in hydrogen content. Increasing reaction tempera-

ture drastically increased the hydrogen content of the bio-oils relative to the feed, owing to 

enhanced hydrogenation reactions at higher temperatures and, at 340 °C, the H content with 

MoRu/AC catalyst increased by ~50%. This was accompanied by a large (~44%) decrease in 

O content. The MoRu/AC catalyst generally performed similarly to the Ru/C reference cata-

lyst. However, at 340 °C, the MoRu/AC catalyst produced a bio-oil with greatly increased 

hydrogen content (~50% increase compared to ~30% increase in H with Ru/C), suggesting 

better hydrogenation/hydrodeoxygenation activity of the MoRu/AC. As also shown in Table 

6.3, the Mo/AC catalyst exhibited good hydrogenation/hydrodeoxygenation activity as well, 

leading to an increase in H content by 28.5% at 340 °C. The above results suggest that Mo on 

its own is an effective hydrogenation/deoxygenation catalyst of HL under the conditions 

tested. The use of Mo catalysts in HDO of bio-oils has been widely reported by other re-

searchers in literature, but usually in sulfided form. (Meier, et al., 1992; Ryymin et al., 2009) 

or promoted form. (Yang et al., 2008; Shabtai et al., 1999) The combination of Mo and Ru 
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exhibits a synergistic effect in this regard, as was also observed in the studies reported in 

previous chapters. The extent of oxygen removal at 340 °C was approximately the same for 

all three catalysts, as also clearly displayed by O/C molar ratios of all bio-oils presented in 

van Krevelen plots in Figures 6.6 and 6.7. The extent of hydrogenation however was largely 

dependent on the catalyst used, leading to 28.5, 30 and 50% increases in H content with 

Mo/AC, Ru/C and MoRu/AC, respectively (Table 6.3 and Figure 6.5). 

 

Table 6.3 Elemental composition of HL-derived bio-oils 

Sample Temp.(°C) % N % C % H %O* Increase 

in %H 

Decrease 

in %O HL Feed 
 

0.58 49.8 7.1 42.5 

MoRu/AC 200 0.46 55.6 7.3 36.6 2.2 13.8 

MoRu/AC 250 0.47 58.9 7.6 33.0 7.1 22.3 

MoRu/AC 300 0.53 62.5 8.5 28.5 20.0 33.0 

MoRu/AC 340 0.54 65.0 10.6 23.9 49.6 43.9 

Ru/C 250 0.54 61.6 7.4 30.4 4.7 28.4 

Ru/C 300 0.5 63.7 8.7 27.1 22.9 36.2 

Ru/C 340 0.5 65.2 9.2 25.0 30.1 41.1 

Mo/AC 340 0.47 66.3 9.1 24.1 28.5 43.3 

* determined by mass difference 

 

 

Figure 6.5 Hydrogen and oxygen contents in HL bio-oils produced at different temperatures 
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Van Krevelen plots, illustrated in Figures 6.6 and 6.7, reveal interesting trends in the per-

formance of the different catalysts in deoxygenation and hydrogenation of the HL at various 

temperatures. Figure 6.6 compares the O/C and H/C molar ratios for bio-oils obtained at 340 

°C using different catalysts. As discussed previously, all three catalysts were approximately 

equally effective in reducing the O/C ratio of the bio-oils relative to the HL feed. However, 

the H/C ratios reveal a different trend. The H/C ratios for the Mo/AC actually decreased with 

respect to the HL feed, suggesting condensation reactions, e.g. dehydration reactions forming 

condensed products and water (as evidenced in Figure 6.3), as has been reported in many 

bio-oil HDO studies.(Mortensen et al., 2011; Wildschut, et al. 2009) Only the MoRu/AC 

catalyst exhibited superior activity in the hydrogenation of HL, producing bio-oils with a 

substantially increased H/C ratio.  

Figure 6.7 plots the O/C vs. H/C ratios for bio-oils obtained at different temperatures. In all 

experiments, the O/C ratios decreased relative to the HL, as expected owing to the HDO ef-

fects of the catalysts. However, in most of the experiments (except for those with MoRu/AC 

catalyst at 340C),  the H/C ratios decreased relative to the feed, even though the hydrogen 

content of the bio-oils increased, possibly due to condensation reactions, e.g. dehydration re-

actions forming condensed products and water (as evidenced in Figure 6.3).  

 

Figure 6.6 van Krevelen plot for HL bio-oils obtained at 340 °C 
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Figure 6.7 van Krevelen plot for HL bio-oils obtained at different temperatures 

 

6.3.3 Formation of gaseous products and hydrogen consumption during HL 

hydroprocessing 

The gaseous products of HL liquefaction were collected and analyzed by GC-TCD. The con-

centration of the carbonaceous gases produced from experiments with different catalysts and 

temperatures is shown in Table 6.4. As is evident, and was expected, the amounts of the 

methane and CO2 increased with increasing temperature. Moreover, the MoRu/AC catalyst 

produced over 50% more methane than the reference Ru/C catalyst at 340 °C. This result im-

plies that the Mo acts as a promoter for Ru/AC, enhancing the activity of the catalyst in lig-

nin demethanation and methanation of CO/CO2 at higher temperatures according to the fol-

lowing reaction: 

CO (and CO2) + H2  CH4 + H2O 

The above mechanism is likely supported by the variation of CO concentration with tempera-
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The work of Horáček et al. (2012) showed that they obtained ~30-35 wt.% gasification of the 

HL. The major gaseous product evolved during their reactions was CO2 (15-35 wt.% depend-

ing on reaction temperature) accompanied by approximately equal amounts of CO and CH4 

(maximum ~8 wt.%). 

 

Table 6.4 Composition of gaseous products (vol.%) from experiments with different catalysts 

and temperatures 

Catalyst MoRu/AC Ru/C Mo/AC 

Temp. (°C) 200 250 300 340 250 300 340 340 

CH4  0.21 3.24 7.67 16.1 4.79 10.8 10.8 3.09 

CO  0.12 1.45 0.87 0.45 3.96 3.67 1.30 1.49 

CO2  0.254 3.51 8.57 13.4 2.76 8.43 10.28 3.04 

C2H4  - 0.001 - - 0.001 0.001 0.002 0.039 

C2H6  0.023 0.383 0.95 1.89 0.344 0.866 0.838 0.274 

C3H8  - 0.046 0.051 0.095 0.032 0.083 0.205 0.15 

Propylene  - 0.020 0.061 0.147 0.007 0.035 0.039 0.072 

Tot. mol C in gas 0.0007 0.0105 0.0222 0.0396 0.0141 0.0288 0.0285 0.0102 

Mass C in gas 0.0087 0.1263 0.2668 0.4753 0.1698 0.3451 0.3421 0.1229 

% C gasified 0.3 5.1 10.7 19.1 6.8 13.9 13.7 4.9 

% HL gasified 0.17 2.5 5.3 9.5 3.4 6.9 6.8 2.5 

 

Hydrogen consumption was also determined by GC-TCD analysis. The amount of hydrogen 

initially present before reaction was calculated based on the free headspace in the reactor af-

ter it was loaded with the solvent, catalyst and feed. The volume of the headspace was calcu-

lated by subtracting the volume of solvent and feed from the total volume of the reactor when 

empty. Figure 6.8 shows hydrogen consumption in hydroprocessing of with various catalysts 

and catalysts. 

Hydrogen consumed generally increased with increasing temperature but not as much as 

might be expected given the increasing amount of methane that was observed (due to 

methanation reactions) (Table 6.4). However, the hydrogen consumption values are all in a 

narrow range of 15-20 mol/kg, irrespective of temperature and the type of catalyst. A possi-

ble reason for this is the generation of hydrogen during the water-gas shift reaction offsetting 

the hydrogen consumed by hydrogenation and HDO reactions, as discussed previously. 
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Figure 6.8 HL hydrogen consumption vs. temperature 

 

The hydrogen consumption from the hydroprocessing of HL with MoRu/AC catalyst for ex-

tended reaction times is presented in Figure 6.9. An extended reaction time increases hydro-

gen consumption slightly, but levelled off at approx. 60 min, which follows the similar trends 

observed in the bio-oil yields vs. reaction time (Figure 6.2). After 60 min, the hydrogen con-

sumption slightly dropped with further increasing time, which might also be accounted for by 

the trade-off between hydrogen consumed and hydrogen generated due to water-gas shift re-

action. 
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Figure 6.9 Hydrogen consumption vs. reaction time and temperature during hydroprocessing 

of HL with MoRu/AC catalyst 
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GPC analysis was performed to determine the molecular weights of the various bio-oils. The 
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different catalysts are presented in Figure 6.10. The plots reveal all of metal catalysts pro-
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Figure 6.10 GPC curves for bio-oils obtained at 340 °C and different catalysts 

 

The GPC curves in Figure 6.11 show the effect of reaction temperature on the molecular 

weight of the bio-oils. At 200 °C, the weight-average molecular weight (Mw) of the bio-oil is 

~560 g/mol and this value increases to ~630 g/mol at 250 °C.  

 

 

Figure 6.11 GPC curves for HL at different reaction times 
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This is perhaps due to the scission of bonds that are easily cleaved which released larger 

components into solution. The lower temperatures did not provide enough energy to break 

the more resistant bonds as indicated by the lower molecular weights obtained at higher tem-

peratures. 

The changes in molecular weight due to reaction time are presented in Table 6.5. As is rea-

sonably expected, the molecular weight of the bio-oils was found to decrease with increased 

reaction time. At 300 °C and 60 min reaction time, there was sufficient energy and time for 

the resistant bonds to break, decreasing the molecular weight of the bio-oil. Extended reac-

tion time did not materially affect the molecular weight, indicating that under these condi-

tions, it is not possible to break the remaining bonds and further decrease bio-oil molecular 

weight. 

At higher temperature, 340 °C, sufficient energy was applied to the reaction system to ther-

modynamically promote depolymerization reactions: Increasing the reaction time resulted in 

a further decrease in bio-oil molecular weight, reaching 380 g/mol at 60 min reaction time.  

 

Table 6.5 Effects of reaction time and temperature on molecular weight and distribution of 

bio-oils from the hydroprocessing of HL in the presence of MoRu/AC catalyst 

Reaction 

Temperature (°C) 

Reaction Time 

(min) 

Mw 

(g/mol) 

Mn 

(g/mol) 

PDI 

300 0 698 233 2.99 

60 489 190 2.58 

120 477 204 2.34 

340 0 478 208 2.29 

30 429 177 2.42 

60 380 154 2.47 
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6.3.5 FTIR analysis of HL bio-oils 

FTIR analysis was performed on the HL-derived bio-oils to determine how the functional 

groups present were affected by the catalysts used as well as the reaction conditions. 

Figure 6.12 presents the FTIR spectra of bio-oils obtained after 1 h reaction time at different 

temperatures using MoRu/AC catalyst. The spectra have been normalized with respect to the 

aromatic peak at 1620 cm
-1

. It is immediately evident that the response the -OH region 

(3,600-3,000 cm
-1

) decreases with increasing temperature, indicating that the number of OH 

bonds present in the bio-oils was greatly reduced when subjected to increased temperatures. 

A possible reason for this decrease in -OH groups, in addition to the loss of oxygen in the 

form of CO and CO2, is hydrodeoxygenation reactions affecting the carbohydrate fraction of 

the HL which form water as a product. 

Looking at the expanded fingerprint region, there is an increase in response around 1700 

cm
-1

, indicative of C=O stretch, which is unexpected given that the reactions took place un-

der a reducing atmosphere. However, given that a large fraction of the HL is composed of 

carbohydrates, it is possible that the associated OH groups could have reacted to form car-

bonyl groups. The peak at ~1680 cm
-1

 can be attributed to the formation of quinone struc-

tures. 

The peaks between 1520 and 1450 cm
-1

, which are due to aromatic stretch, exhibit a de-

creased response at elevated temperatures, possibly due to hydrogenation of the aromatic 

ring.  

It is interesting to note that the decrease in response in this region was not uniform. The peak 

at 1520 cm
-1

 did not decrease until the reaction temperature was 340 °C, whereas the peaks at 

~1460 and 1425 cm
-1

 decreased in step as the temperature increased. This indicates that the 

amount of energy required to affect the structures responsible for the response at 1520 cm
-1

 

was greater than those at the smaller wavenumber. The peak at 1375 cm
-1

 (sp
3
 CH bend) de-

creased when the temperature increased from 200 to 250 °C but did not decrease further, in-

dicating that some of the structures with CH3 bonds were easily cleaved even at lower tem-

peratures. 
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Figure 6.12 Normalized FTIR spectra for HL bio-oils as a function of reaction temperature 

with the fingerprint region expanded 
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fected until 340 °C indicating that these structures required greater energy to break. The ap-

pearance of peaks in the range of 690-590 cm
-1

 at 340 °C is indicative of the presence of sub-

stituted benzene rings, indicating that higher temperatures were required to cleave the struc-

tures bonded to the aromatic rings leaving behind simpler mono- and di-substituted com-

pounds. 

The expanded fingerprint region of the FTIR spectra for bio-oils obtained using the different 

catalysts at 340 °C is presented in Figure 6.13. Similarly, the spectra have been normalized 

with respect to the aromatic peak at 1620 cm
-1

. Generally the IR spectra were not affected by 

type of catalyst and the IR response in the -OH region (3,600-3,000 cm
-1

) for all catalysts 

(not shown in this figure) was approximately the same, indicating that the bio-oils obtained 

from the catalytic depolymerization of HL at a same temperature (340 °C) are all similar in 

chemical structure. 

 

 

 

Figure 6.13 Normalized FTIR spectra (expanded fingerprint region) for HL-derived bio-oils 

obtained at 340 °C with different catalysts 
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6.3.6 GC/MS analysis of HL bio-oils 

The analysis of HL-derived bio-oil by GC/MS elucidated the volatile compounds present in 

the bio-oil. Peaks with small areas and low confidence were omitted from the analysis. Fig-

ure 6.14 and Table 6.6 present the GC chromatograms and composition of the bio-oils ob-

tained at 340 °C for 1 h reaction with different catalysts. Again, all oils at the same tempera-

ture although obtained with different catalysts have similar composition, as evidenced previ-

ously by the FTIR analysis. 

As shown in Table 6.6, the first few compounds that eluted are ketones that can form from 

the dimerization of the acetone solvent as well as decomposition of the hydrocarbon compo-

nent of HL. As expected, compounds that were identified by GC/MS are primarily phenolic 

compounds derived from lignin, indicating that de-polymerization/de-gradation of the lignin 

present in the HL was readily achieved at 340°C. Note that the shaded cells indicate that no 

compounds were evident at a particular retention time and catalyst/temperature condition. 

 

 

Figure 6.14 GC/MS plots for HL bio-oils produced at 340 °C with different catalysts 
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Table 6.6 Composition of HL bio-oils produced at 340 °C with different catalysts 

RT (min) Catalyst 

MoRu/AC Mo/AC Ru/C 

3.1 3-Penten-2-one, 4-methyl-/3-Hexen-2-one 

3.4 Cyclopentanone 2-Cyclohexen-1-one, 3,5-

dimethyl- 
Cyclopentanone 

3.6 2-Hexanone, 4-methyl- Cyclopentanone 2-Hexanone, 5-methyl- 

4.0 Cyclopentanone, 2-methyl- 

5.0 Mesitylene/Benzene, 1,2,4-trimethyl- 

7.5 2-Cyclohexen-1-one, 4,5-

dimethyl-/ 
2-Cyclohexen-1-one, 3,6-

dimethyl-6-(1-

methylethyl)- 

2,5,5-

Trimethylcyclohex-2-

enone 
8.3 Creosol 

8.4 Phenol, 3-ethyl- Phenol, 3,5-dimethyl-  

9.1 Phenol, 4-ethyl-2-methoxy- 

9.2 Phenol, 2-propyl- Phenol, 3-propyl- 

9.9 Phenol, 2-methoxy-4-propyl- 

10.3 Phenol, 2,6-dimethoxy- 

11.0 1,2,4-Trimethoxybenzene 

11.5 1,1'-Biphenyl, 2-ethyl- 5-tert-Butylpyrogallol 

12.1 4-Propyl-1,1'-diphenyl 

 

The composition of the HL-derived bio-oil obtained after 1 h reaction with MoRu/AC cata-

lyst at different temperatures was analyzed by GC/MS, and the results are presented in Figure 

6.15 and Table 6.7. The results show that increasing reaction temperature results in an in-

crease in the variety of compounds present in the bio-oils, as is expected, and that the abun-

dance of the compounds detected (mainly phenolics) depended strongly on temperature. At 

lower temperatures, these compounds are more oxygenated and even contain double bonds 

e.g. 2,6-dimethoxy-4-(2-propenyl)-phenol. At increased temperatures, the compounds con-

taining double bonds are reduced while alkyl-substituted phenolic compounds increase and 

some completely deoxygenated aromatics e.g. 2-ethyl-1,1'-biphenyl form. 
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Figure 6.15 GC/MS plots for HL bio-oils produced with MoRu/AC catalyst at different tem-

peratures 
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The HL-derived bio-oils obtained at 340 °C after different lengths of reaction time were also 

analyzed, although the results are not presented here. As shown previously, the compounds in 

all of the oils are largely phenolics. Similar to what observed with increasing temperature, 

increasing reaction time allowed for the hydrogenation of the double bonds present in the 

phenolics. Similar results were observed for bio-oils obtained with extended reaction times at 

300 °C. 

 

6.3.7 NMR analysis of HL-derived bio-oils 

NMR analysis was performed to help elucidate the changes that occurred during reaction and 

NMR spectra of HL bio-oils after 1 h reaction using MoRu/AC at 200 °C and 340 °C are il-

lustrated in Figure 6.16. Several differences are evident between the two spectra shown in 

this Figure. In the oil obtained at a higher temperature, there is a decrease in intensity in the 

region of 5-3.3 ppm which corresponds to protons associated with ether bonds, accompanied 

by a corresponding increase in intensity in the region of 2.6-1.5 ppm, corresponding to the 

hydroxyl proton. As is commonly agreed upon, ether bonds can be cleaved readily by H2 

scission during the hydroprocessing operation (Lin et al., 2001; Ryymin et al., 2009). If the 

ether O is capped with hydrogen, an alcohol is produced. As is seen in the Figure, the peak 

at ~1.2 ppm decreases and the peak at 0.9 ppm increases. This indicates that the abundance of 

CH2 moieties in the bio-oils decreases with increased temperature, accompanied by more 

CH3 groups, as would be expected as ether and other functional groups are cleaved and are 

hydrogenated. 
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Figure 6.16 H-NMR spectra of HL bio-oil obtained after 1 h reaction using MoRu/AC at 200 

°C (top) and 340 °C (bottom) 
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6.4 Conclusions 

Hydrolysis lignin was successfully depolymerized (or liquefied) in the presence of hydrogen, 

a carbon-supported metal catalyst and acetone solvent, producing low molecular weight bio-

oils (as low as 380 g/mol) with high yields around 85 wt.%. The HL-derived bio-oils re-

mained liquid at temperatures slightly below freezing. At 340 °C and with MoRu/AC cata-

lyst, the yield of solid residue was less than 2 wt.%. Deoxygenation of HL was found to be 

largely thermally driven - the yields and Mw as well as chemical composition of the bio-oils 

are strongly dependent on the reaction temperature. Hydrogenation highly promoted by the 

presence of the MoRu/AC catalyst at 340 °C, resulting in a bio-oil with a remarkable 50% 

increase in hydrogen content relative to the HL feed. GC/MS analysis of the bio-oils revealed 

that in addition to the presence of ketones from the decomposition of the carbohydrates pre-

sent in the HL feed, the bio-oils were largely composed of phenolic compounds. This indi-

cates that the lignin component of HL can easily be depolymerized or liquefied at tempera-

tures between 200 and 340 °C. 
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Chapter 7  

7 Hydrotreatment of depolymerized hydrolysis lignin 

7.1 Introduction 

The awareness of the impending depletion of fossil fuel resources in recent decades has re-

sulted in the growth of interest into the effective utilization of biomass resources as alterna-

tive feedstocks for bio-chemicals and bio-materials (Cheng et al., 2010). The use of biomass 

has the advantages of: (1) being renewable and widely available, (2) containing negligible 

sulfur and other detrimental elements, and (3) it can be regarded as a carbon-neutral resource 

as the utilization of biomass does not result in a net increase in the CO2 concentration in the 

atmosphere (Tymchyshyn and Xu, 2010). 

Lignocellulosic biomass consists of three major components: cellulose, hemicelluloses and 

lignin. Cellulose is a homo-polymer of D-glucose units, joined by β-O-4 glycosidic linkages 

and comprises from 30-50% of biomass (MacLellan, 2010). Polysaccharides, i.e. cellulose 

and different hemicelluloses, are the primary constituents of wood and wood pulps. Hemicel-

luloses are heteroglycans containing several different types of neutral (pentose and hexose) 

and acidic (uronic acid) monosaccharides as structural elements. 

A well-established approach to obtain chemicals from lignocellulosic biomass is enzymatic 

hydrolysis of wood and pulps. During hydrolysis, enzymes break down the polysaccharides 

in the woody biomass into simpler molecules. Thus, the reaction is generally not hindered by 

the presence of either lignin or lipophilic extractives. This allows for the removal of most of 

the lignin and extractives from the fibers and enhances the swelling and porosity of the fi-

bers. The cellulose and hemicelluloses in these chemical pulps can then be effectively hydro-

lyzed into their monosaccharide components by the enzymes. In some cases however, delig-

nification or acid pre-hydrolysis may be required in order for the enzymes to access the de-

gradable cellulosic components. If enzymatic hydrolysis is performed without such pre-

treatment, then much of the lignin remains in the hydrolyzed product. The solid residues 

which remain after the enzymatic hydrolysis of wood are known as hydrolysis lignin (HL) or 

hydrolyzed wood biomass and are composed of unreacted cellulose, mono and oligosaccha-

rides, and lignin, with lignin comprising 50 to 55% of the mass. (Dahlman et al., 2000; San-
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tos et al., 2012) 

Conventionally, lignin is regarded as a low value waste product and is used to produce heat 

via direct combustion. However, due to its structure, lignin is a promising source of phenols 

and aromatics. Lignin is a complex aromatic biopolymer composed of three basic phenyl-

propanol building blocks, i.e., p-hydroxyl-phenyl propanol, guaiacyl-propanol and syringyl-

propanol (Tejado et al., 2007). These phenyl-propanols are linked mainly by two types of 

linkages: condensed linkages such as 5-5 and β-1 linkages and ether bonds such as α-O-4 and 

β-O-4 linkages. The ether linkages are more reactive and, under proper reaction conditions, 

are more easily cleaved than the more stable C-C bonds,(Chakar and Ragauskas, 2004) and 

as a result, solid lignin can be converted into a product which can potentially be used as fuels 

and/or chemicals. 

Typically, the hydroprocessing of lignin-derived bio-oils (to remove oxygen and hydrogenate 

the product) has been performed in the presence of noble metal catalysts. Ru catalysts, in par-

ticular, have been shown to be very active in the hydrogenation and hydrodeoxygenation of 

model compounds (e.g. phenol and guaiacol) as well as bio-oils. (Elliott and Hart, 2009; 

Gutierrez et al., 2009; Lee et al., 2012; Chang et al., 2013) Co- or Ni-promoted Mo sulfide 

catalysts, typically supported on alumina, borrowed from the petroleum industry have also 

been used in the hydroprocessing of lignin and biomass-derived bio-oils, especially from 

Kraft lignin.(Senol et al., 2007; Romero et al., 2010; Zakzeski et al., 2010; Saidi et al., 2014) 

More recently, reductive depolymerization of lignin in the presence of hydrogen and metal 

catalysts especially other late 3d and 4d transition metal (e.g. Fe, Co, Ni, Cu, Ru, Rh, Pd, and 

Ag) has been proposed.(Cateto et al., 2009; Li et al., 2011; Zhao et al., 2011; Jin, 2014) A 

review of the literature also reveals that mixed noble metal/transition metal catalysts (e.g. 

Ru-Co, Rh-Cu and Rh-Ag) have been used, although not in the hydroprocessing of bio-oils. 

(Rouco and Haller, 1981; Zauwen et al., 1989; Moura et al., 2012) 

Although the typical alumina-supported catalysts have been found to be active in HDO, they 

also increase catalyst deactivation by promoting the formation and deposition of coke on the 

catalyst surface.(Centeno et al., 1995; Prochazkova et al., 2007; Elliott and Hart, 2009; Wild-

schutt et al., 2009; Lin et al., 2011)  Centeno et al. (1995) proposed that it is the weak Lewis 

acid sites present in the alumina that promote the condensation reactions leading to coke 
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formation.  

In order to avoid coke formation, researchers have investigated less-acidic supports such as 

activated carbon and SiO2 (Furimsky and Massoth, 1999; Reddy and Khan, 2005; Kersten et 

al., 2007) as well as other less common supports e.g. ZrO2 and MgO. (Senol et al., 2007; Bui 

et al., 2011) Yang et al. (2009) found that using carbon-supported catalysts resulted in yields 

equivalent to those of alumina-supported catalysts, but with lower proportions of oxygenated 

compounds. 

The major objective of this work was the catalytic hydrotreatment of depolymerized hydroly-

sis lignin (DHL) - obtained by the depolymerization of hydrolysis lignin, itself a by-product 

from pre-treatment processes in cellulosic ethanol plants, in super-critical acetone and inves-

tigating the effects of reaction temperature and time on process yields. To the best of the au-

thor’s knowledge no systematic study of the catalytic hydroprocessing of DHL has been re-

ported in the literature. 

 

7.2 Experimental 

7.2.1 Materials 

The hydrolysis lignin (HL) used in this study was provided by FPInnovations and was in-

soluble in THF and several other common organic solvents including ethanol, methanol and 

acetone due to the cross-linking between cellulose and lignin present in the material. There-

fore, it was not possible to determine the weight average molecular weight (Mw) of the HL by 

GPC-UV.(Yuan et al., 2012) The pH value of original hydrolysis lignin was neutral. 

This hydrolysis lignin was depolymerized via a proprietary process at 150-300 °C for 30-120 

min under operating pressure of ~300 psig at a substrate concentration of 5-30 wt.%. The 

process resulted in a moderately high yield of DHL (~70 wt.%) with a solid residues (SR) 

yield of ~ 10 wt.%. The detailed operating conditions are protected due to a patent applica-

tion. This depolymerized material was precipitated from solution, neutralized to a pH greater 

than 5.5, filtered, rinsed and dried before use. 

The Ru/C catalyst used in this study was purchased from Sigma-Aldrich and used as pro-
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vided. The MoRu/AC catalyst was prepared in house by incipient wetness impregnation from 

activated charcoal, ruthenium (III) nitrosyl nitrate solution (Ru(NO)(NO3)3) and ammonium 

molybdate tetrahydrate ((NH4)6Mo7O244H2O). Solvents included acetone and methanol. All 

were reagent grade and purchased from Sigma-Aldrich. 

To prepare the MoRu catalyst activated charcoal was suspended in a 50% solution of water 

and methanol. The calculated volume of the Ru nitrate solution was added to this solution. 

The Mo was added by dissolving the required amount of the Mo compound in some distilled 

water and adding the solution to the suspension. The suspension was then stirred for 24 h at 

ambient temperature. The catalyst was then dewatered under vacuum and rotary evaporation 

at 85 °C. The catalyst was then dried overnight in an oven at 105 °C. The catalyst was then 

loaded into a tube reactor and reduced under a flow of 50 mL/min hydrogen at 500°C for 4 h. 

The evolution of a brown gas at a temperature of ~300°C and ammonia was evidence of the 

reduction taking place. After cooling to ambient temperature under nitrogen, the catalyst was 

decanted into a beaker of methanol, also under nitrogen, for passivation. After evaporation of 

the methanol at 65°C and cooling back to ambient, the catalyst was stored in an air-tight con-

tainer. 

 

7.2.2 Method and apparatus 

The hydroprocessing of the DHL was carried out in a 100 mL stainless-steel autoclave reac-

tor equipped with a stirrer. In a typical run, the reactor was loaded with 5 g of DHL, 0.5 g of 

catalyst and 25 g of acetone. The reactor was sealed, purged with hydrogen three times and 

was subsequently pressurized to >5 MPa hydrogen. After a 5 min leak check, the reactor 

pressure was vented to obtain 5 MPa. The reactor was heated to the reaction temperature 

while stirring and kept at the desired temperature for 60 min before cooling. Once the reactor 

had cooled to room temperature, the gaseous products were sampled for analysis. The liquid 

products and solid residue (SR) were rinsed from the reactor with acetone and the resulting 

suspension was filtered under vacuum through a pre-weighed Whatman No. 5 filter paper. 

The SR, catalyst and filter paper were dried at 105 °C for 24 h before weighing. After a GC-

MS sample was taken, the acetone was removed from the liquid product by rotary evapora-

tion under vacuum at 45 °C. The yields of the hydroprocessed DHL and SR were calculated 
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relative to the mass of the DHL loaded into the reactor. Each experiment was performed a 

minimum of two times to reduce the experimental error to ± 5%. 

The relative molecular weights and their distributions of the DHL feed and resulting bio-oils 

were measured with a Waters Breeze GPC-HPLC (gel permeation chromatography-high per-

formance liquid chromatography) instrument (1525 binary pump, UV detector at 270 nm; 

Waters Styrylgel HR1 column at a column temperature of 40 °C) using THF as the eluant at 

a flow rate of 1 mL/min. Linear polystyrene standards were used to generate a calibration 

curve for molecular weight estimation. H
1
 NMR spectra were obtained on a 500 MHz Unity 

Inova NMR instrument at room temperature, wherein chloroform-d was used as solvent. FT-

IR spectra were collected on a Bruker Tensor 37 FTIR spectrophotometer in the range of 

550-4000 cm
-1

 with ATR accessory. The volatile components of the DHL bio-oils were iden-

tified by GC-MS (HP 6890 GC and HP 5972 MS) using a silicon column with temperature 

programming from an initial temperature of 50 °C for 2 min hold at 10 °C/min to a final 

temperature of 280 °C for 2 min hold. CHNS (carbon, hydrogen, nitrogen, and sulfur) ele-

mental analysis was conducted on a Flash EA 1112 Series elemental Analyzer. The BET sur-

face area analysis was performed on a Micrometrics ASAP 2010 instrument. The samples 

were degassed at 150 °C until a stable static vacuum of less than 5×10
-3

 Torr was achieved 

prior to analysis. 

 

7.3 Results and Discussion 

7.3.1 Catalyst characterization 

The textural analysis of these catalysts is presented in Table 7.1. There was no great differ-

ence in the surface areas, pore volumes and pore diameters of the catalysts, therefore the dif-

ferences in catalyst performance must be due to the catalyst metals. 
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Table 7.1 Catalyst textural properties 

Catalyst Metal 

Loading 

(wt.%) 

BET Surface 

Area (m
2
/g) 

Tot. Pore 

Vol. (cm
3
) 

Vol. of pores 

<2 nm (cm
3
) 

Vol. of pores 

2-50 nm (cm
3
) 

Avg. pore 

dia. (nm) 

Mo Ru 

Ru/C  5 893 0.852 0.034 0.507 3.61 

MoRu/AC 1 5 875 0.786 0.034 0.442 3.58 

 

7.3.2 Effect of catalyst and temperature 

The DHL was hydrotreated at standard reaction conditions of 5 g DHL dissolved in 25 g ace-

tone, 0.5 g catalyst, 5 MPa initial hydrogen pressure and 1 h reaction time unless otherwise 

noted. The bio-oils produced as a result of these experiments were thick and viscous. It was 

not possible to measure their viscosity even at 80 °C. Evidence of the nature of the bio-oils 

was observed during the removal of the char and catalyst by filtration, where the filtration of 

~250 mL of suspension required more than 2 hours under vacuum. 

The yields of hydrotreated DHL (referred to as bio-oil for convenience) are presented in Fig-

ure 7.1. As can be seen, the yields of bio-oil started at a maximum of ~83 wt.% and de-

creased with increasing reaction temperature to a low of ~40 wt.% due to increasing char 

(solid residue) formation. A similar trend was seen in work performed in our group using 

these catalysts to hydroprocess organosolv lignin, and reported in previous chapters, but not 

to the same extent. The MoRu/AC catalyst performed better than the reference Ru/C catalyst 

by ~12 wt.% regardless of reaction temperature. At shorter reaction times, the yields of hy-

droprocessed DHL were smaller than at 60 min, however, the differences were not signifi-

cant. 
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Figure 7.1 Yields of DHL bio-oil vs. temperature and catalyst 

 

The cumulative product yields for these experiments are presented in Table 7.2 and Figure 

7.2. As is evident, the decrease in bio-oil yield is accompanied by an increase in the amount 

of solid residue (char) that was produced. Gasification of the DHL feed was not a significant 

factor in the yields being less than 4 wt.% for all conditions tested. 

Although unexpected, the large amount of char that formed can be explained by the fact that 

the DHL feed had previously been processed at 250 °C in the presence of H2SO4. Reaction 

with such a strong acid would have greatly reduced the number of reactive (e.g. ether) bonds 

present in the DHL, leaving behind the more refractory bonds. Thus, when the DHL feed was 

subjected to further hydrothermal treatment, a portion of the fragments of the macromolecule 

were able to combine and condense into acetone-insoluble compounds. Increased reaction 

times were found to slightly reduce the amount of char present, but not significantly. This is 

likely due to hydrogenation of the condensed products. As reported in previous chapters, the 

formation of char leads to decreased bio-oil yields by deposition of carbon on the catalyst, 

thus decreasing the catalyst surface area due to deactivation of active sites on the catalyst sur-

face as well as preventing access to active sites in the interior of the catalyst by blocking 

pores. 
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The formation of water during the reactions was insignificant. 

Table 7.2 DHL hydrotreatment product yields 

Catalyst Temperature (°C) Bio-Oil (wt.%) Char (wt.%) Gas (wt.%) Sum 

MoRu/AC 250* 79.3 3.0 21.4 2.4 0.1 0.01 100.8 

250 82.6 1.7 18.2 2.1 0.2 0.03 101. 1 

300* 55.0 4.7 47.2 3.9 1.0 0.08 103.2 

300 59.5 3.1 41.2 4.1 1.7 0.09 102.4 

340 52.7 2.8 48.5 4.3 3.7 0.13 104.9 

Ru/C 250 70.4 2.6 30.2 3.5 0.2 0.03 100.7 

300 47.6 1.8 50.5 4.6 1.8 0.08 99. 9 

340 40.7 2.1 53.9 4.2 4.0 0.15 98.6 

Reaction Conditions: 5 g OL:25 g acetone, 0.5 g catalyst, 5 MPa cold hydrogen, 1 h reaction 

time at temperature 

* indicates abbreviated runs where the reaction was stopped upon reaching the set temperature. 

 

 

 

Figure 7.2 Cumulative product yields for hydroprocessed DHL 
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7.3.3 DHL gasification 

The formation of gas during lignin depolymerization reactions is due to the cleavage of the 

aliphatic propane chain and removal of ring substituents (Gosselink et al., 2012). The typical 

composition of the gases produced is presented in Table 7.3. The values in the table show 

that the amount of carbon gases present increased with increasing temperature, as is ex-

pected, with methane comprising the bulk of the gas. The methane is due to the decomposi-

tion/cleaving of the methoxy linkages in DHL  (Chatterjee, et al., 2013; He et al., 2014) or 

from the methanation of C, CO or CO2 (C+ H2  CH4; CO (or CO2) + H2  CH4 + H2O).  

The gasification of DHL was calculated using the mol fraction of the various carbon species 

in the gas to determine the amount of gasified carbon present. This was possible because the 

gases were collected in a sample cylinder of known volume and pressure. Using the ideal gas 

law, it was possible to determine the total mol of gas in the sample. The mass of the carbon 

in the gases was then compared to the mass of carbon fed into the reactor with the DHL, as 

determined by CHNS analysis and assuming negligible gasification of the carbon support or 

the solvent during the hydrotreatment process. These results are presented in Table 7.4 and 

Figure 7.3. 

As expected, and in agreement with the composition of the gaseous products (Table 7.3), 

very little DHL was gasified at low temperatures and the amount gasified increased with in-

creased reaction temperature. 

Table 7.3 Typical DHL hydroprocessing gas composition (mol%) vs. temperature and cata-

lyst 

Catalyst MoRu/AC Ru/C 

Temp. (°C) 250 300 340 250* 300* 250 300 340 

CH4  0.3 3.1 7.2 0.1 1.9 0.3 3.5 8.1 

CO  0.15 0.9 1.6 0.1 0.7 0.1 0.6 1.3 

CO2  0.2 1.0 2.3 0.1 0.6 0.4 1.5 2.7 

C2H4  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

C2H6  0.0 0.3 0.7 0.0 0.1 0.0 0.3 0.8 

C3H8  0.0 0.2 0.3 0.0 0.1 0.0 0.1 0.15 

Propylene  0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.05 

* indicates abbreviated runs stopped as soon as the reaction reached the specified temperature. 
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Table 7.4 DHL gasification during hydroprocessing vs. temperature and catalyst 

Catalyst MoRu/AC Ru/C 

Temp. 250 300 340 250* 300* 250 300 340 

CH4 (mol) 0.0003 0.0036 0.0082 0.0001 0.0022 0.0003 0.0041 0.0094 

CO  0.0002 0.001 0.0018 8E-05 0.0009 0.0001 0.0007 0.0014 

CO2  0.0002 0.0011 0.0026 0.0001 0.0007 0.0004 0.0017 0.0031 

C2H4  3E-06 2E-05 2E-05 1E-06 2E-05 5E-06 2E-05 3E-05 

C2H6  4E-05 0.0003 0.0008 2E-05 0.0002 3E-05 0.0003 0.0009 

C3H8  3E-06 0.0002 0.0004 0 8E-05 0 7E-05 0.0002 

Propylene  2E-05 2E-05 4E-05 0 5E-06 0 9E-06 5E-05 

mol C in gases 0.0009 0.007 0.0156 0.0004 0.0044 0.0009 0.0073 0.0165 

mass C in gases 0.0106 0.0837 0.1869 0.0043 0.0523 0.0114 0.0878 0.1977 

% C gasified 0.3 2.4 5.3 0.1 1.5 0.3 2.5 5.6 

wt.% DHL gasified 0.21 1.67 3.74 0.09 1.05 0.23 1.76 3.95 

* indicates abbreviated runs stopped as soon as the reaction reached the specified temperature. 

 

 

Figure 7.3 DHL gasification during hydroprocessing 

* indicates abbreviated runs stopped when the reaction mixture reached the reaction temperature. 
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headspace over the reaction mixture and the initial pressure of the hydrogen (5 MPa). The 

calculated amount of hydrogen introduced into the reactor was confirmed by Micro-GC 

analysis. 

The hydrogen consumption is presented in Figure 7.4. As can be seen, the hydrogen con-

sumed increased with increasing reaction time, as expected. Also evident is that hydrogen 

consumption was much greater for the MoRu/AC catalyst than for the Ru/C catalyst. Other 

work with this catalyst has revealed that Mo-doped Ru catalysts are more active, therefore it 

is expected that more hydrogen would be consumed during hydroprocessing reactions. Ru/C 

is also known as a hydrogenation catalyst and can therefore produce hydrogen (Barati et al., 

2014). Thus, the decreased hydrogen consumption could be the result of hydrogen production 

during the depolymerization.  

 

 

Figure 7.4 Hydrogen consumption during DHL hydroprocessing vs. reaction temperature and 

time 

* indicates abbreviated runs stopped when the reaction mixture reached the reaction temperature. 
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Hydrogen consumption for the abbreviated runs was about half that for the runs that ran for 

60 min, indicating that insufficient time has elapsed to allow the hydrogen consuming reac-

tions to occur to the same extent as after 60 min reaction time. That being said, the extended 

reaction time resulted in only a doubling of the hydrogen consumed. The hydrogenation reac-

tions must therefore begin occur as the reaction mass is heating up. 

 

7.3.5 Elemental analysis of hydroprocessed DHL 

The elemental composition of the bio-oils was determined by CHNS analysis and is shown in 

Table 7.5. The small amount of sulfur present in the DHL bio-oils was due to residual sulfate 

present in the feed material as a consequence of the depolymerization process that was used 

and was evident by the sulfurous odour of the bio-oils. As can be seen, hydrogenation of the 

DHL was moderately effective. The H content of the DHL feed was ~6% and, as expected, 

the hydrogen contents of the bio-oils increased with increased reaction time and temperature. 

This is in agreement with the fact that Ru/C is a hydrogenation catalyst. (Genet, 2003; Klu-

son and Cerveny, 1995) 

Unexpectedly, the O content of the bio-oils produced at 250 °C were greater than that of the 

DHL feed. The only source of oxygen in the system was the acetone solvent and, as seen 

with these catalysts in previous chapters, acetone can react to form dimers. Therefore, in or-

der for the increase in O content to have occurred, the intermediates of acetone must have 

reacted with the DHL feed. This was confirmed by FTIR analysis as will be discussed later. 

This may also explain, in part, the increase in H content of the bio-oils, as acetone is ~10% H 

by mass. The slight decrease in hydrogen content between runs at 300 and 340 °C may be 

due to the removal of grafted acetone fragments at higher temperature. To the best of the au-

thor's knowledge, acetone grafting to DHL has not been reported in the literature. 

The presence of free acetone in the bio-oils was ruled out as the bio-oils had been isolated by 

rotary evaporation at -0.8 bar vacuum and 45 °C. The boiling point of acetone at -0.8 bar 

vacuum (~150 mmHg) is ~18 °C. Most of the water present would also have been removed 

during solvent evaporation but to ensure that no residual water was present, the mostly dry 

bio-oils were further dried over night in a vacuum oven at 55 °C. 



180 

 

Table 7.5 Elemental composition of DHL and DHL-derived bio-oils 

Sample Elemental Analysis (mass %) % 

Increase 

in H 

% 

Increase 

in O 
C H S N O* 

DHL feed 69.1 6.03 0.21 0.57 24.1 

MoRu/AC, 250 °C* 67.7 6.40 0.17 0.40 25.3 6.09 5.15 

MoRu/AC, 250 °C 64.2 6.83 0.11 0.40 28.4 13.3 18.2 

MoRu/AC, 300 °C* 67.1 7.08 0.11 0.45 25.3 17.3 5.20 

MoRu/AC, 300 °C 69.3 7.20 0.17 0.48 22.9 19.3 -4.97 

MoRu/AC, 340 °C 72.4 7.55 0.15 0.47 19.5 25.2 -19.0 

Ru/C, 250 °C 66.3 6.92 0.10 0.36 26.3 14.7 9.34 

Ru/C, 300 °C 69.1 7.77 0.11 0.38 22.6 28.9 -6.03 

Ru/C, 340 °C 71.7 7.74 0.25 0.47 19.9 28.4 -17.3 
* indicates abbreviated runs stopped when the reaction mixture reached the reaction temperature. 

 

A closer look at the oxygen contents of the bio-oils shows that the O content of the abbrevi-

ated MoRu/AC run at 250 °C increased by ~5%. Since the O content of the bio-oil produced 

after 60 minutes using the same catalyst and temperature had an O content of ~18%, this in-

dicates that the low value is due simply in insufficient residence time. Increasing the reaction 

temperature to 300 °C resulted in a similar O content for the abbreviated run. However, ex-

tended reaction time at 300 °C resulted in a decrease in O content of ~5%. This change in 

behaviour can be explained by thermodynamics. At lower temperatures, condensation reac-

tions are favoured and involved acetone. But at higher temperatures, smaller molecules are 

more energetically favourable, thus hydrogenation reactions leading to depolymerization and 

deoxygenation become more dominant. Further evidence for this is that the O content of the 

DHL bio-oil resulting from 60 min reaction at 340 °C had decreased by 19%. It is believed 

that reaction at still higher temperatures would have further reduced the oxygen content. It is 

also believed that extended reaction time would also result in decreased O content. 

 

The differences in DHL bio-oil can be better visualized in a van Krevelen plot as presented in 

Figure 7.5. The figure clearly shows that the molar hydrogen/carbon ratio of the DHL bio-

oils increased relative to the DHL feed. The larger increase at 250 °C is due to the large frac-

tion of oxygen present in that sample which decreased the relative amount of carbon present 

and so skewed the point to the right (increased H/C). Also clearly seen is the decrease in O 

content relative to carbon content with increased temperature. 
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Figure 7.5 van Krevelen plot of DHL hydroprocessed at different temperatures 

* indicates abbreviated runs stopped when the reaction mixture reached the reaction temperature. 

 

At 250 °C the Ru/C catalyst also produced bio-oils with increased O content, but increase 

was only half that seen with the MoRu/AC catalyst (9.3 vs. ~18.2%). At 300 °C, the O con-

tent of the bio-oil had decreased by ~6% as compared to ~5%, and at elevated temperature  

the O content had decreased by ~17% as compared to 19%. This indicates that at lower tem-

peratures, the addition of Mo to the Ru catalyst resulted in increased incorporation of O into 

the bio-oil (possibly due to increased activation and grafting of acetone). With increased re-

action temperature, this effect was negated and possibly reversed at still higher reaction tem-

perature. 

These differences can be seen in the van Krevelen plot presented in Figure 7.6. The shift of 

the points to the right shows that all of the bio-oils exhibited increased H content relative to 

the DHL feed. The increased O content at lower temperature is evident by the vertically dis-

placed points in red. At 300 °C, the O content of the bio-oils is only slightly lower than that 

of the feed, and the increased hydrogenation activity of the Ru/C can be seen by the greater 

shift to the right as compared to the MoRu/AC catalyst. This difference in hydrogen content 

between the two catalysts is diminished at 340 °C. The smaller O/C values at this tempera-

ture are evidence that deoxygenation of DHL requires higher energy. 
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Despite consistently higher yields, the MoRu/AC catalyst was slightly less effective in hy-

drogenating the DHL than the reference Ru/C catalyst. It is possible that optimization of the 

ratio of Mo to Ru could improve the hydroprocessing efficiency of the MoRu/AC catalyst. 

 

 

Figure 7.6 van Krevelen plot of DHL and DHL hydroprocessed with different catalysts 

 

7.3.6 GPC analysis of hydroprocessed DHL 

The relative molecular weights of the DHL bio-oils as well as the DHL feed were measured 
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Table 7.6 Hydroprocessed DHL molecular weights 

Catalyst Temp. (°C) Mw (g/mol) 

MoRu/AC 250* 1,560 

250 1,820 

300* 940 

300 808 

340 631 

Ru/C 250 1784 

300 775 

340 577 

DHL Feed 1,695 

* indicates abbreviated runs stopped when the reaction mixture reached the reaction temperature. 

 

This is despite the fact that the O content of the bio-oils had increased significantly as dis-

cussed previously. In contrast, the molecular weight of the abbreviated run decreased relative 

to the feed (1,560 g/mol). This is an indication that residence time had a minor effect on the 

extent of condensation at low temperature. In comparison, the abbreviated run at 300 °C ex-

hibited a marked lower molecular weight of 940 g/mol. Thus the depolymerization of the 

DHL into smaller molecules is dominant over the condensation reactions at elevated tem-

perature (Chen and Falconer, 1994; Mahmood et al., 2013).  

A possible reason for the initial increase in molecular weight could be the presence of resid-

ual acid in the DHL feed. As was explained in the materials section, the DHL was produced 

by treating hydrolysis lignin with sulfuric acid. As is well known, acidity catalyzes condensa-

tion reactions. Thus, it is possible that insufficient time was given during the neutralization 

step for the residual acid adsorbed in the DHL to be neutralized before the solution was fil-

tered to obtain the DHL. Any residual acid present would have acted as a condensation cata-

lyst and this would explain the unexpected increase in molecular weight after reaction at 250 

°C. Due to the small amount of acid residual, its effect would be limited and hydrogenation 

reactions would come to dominate at higher temperatures. 
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Figure 7.7 GPC curves for DHL at different reaction temperatures for Ru/C (top) and 

MoRu/AC catalyst (bottom) 
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ther decrease in molecular weight to 577 and 631 g/mol, respectively. Despite these rela-
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not flow well. This in sharp contrast to work done in our group with these catalyst (to be 

submitted for publication) where organosolv lignin (Mw = ~2,600 g/mol) was depolymerized 

into bio-oil of similar molecular weight but which was much less viscous and flowed at tem-

peratures below freezing. This difference between the previous bio-oils and the bio-oils in 

this study must be due to the composition and functional groups present in these bio-oils. 

Further evidence that the depolymerization reactions were occurring as the reaction tempera-

ture was increased can be seen in Figure 7.7. The molecular weight of the bio-oil obtained 

after quenching the reaction immediately upon reaching temperature exhibits a greatly re-

duced molecular weight (940 vs. ~1700 g/mol). Extended reaction time only decreased the 

molecular weight to ~810 g/mol. Therefore, extended reaction times do decrease molecular 

weight, but likely only to a certain point. Higher reaction temperature has a greater effect in 

reducing molecular weight. Unfortunately it was not possible to investigate this due to tem-

perature limitations of the reactor used. 

 

 

 

Figure 7.8 GPC curves of MoRu/AC-derived DHL bio-oil at different reaction times 
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7.3.7 GC/MS analysis of hydroprocessed DHL 

The volatile components of the bio-oils obtained from the hydroprocessing of DHL were 

analyzed by GC/MS. Note that the samples analyzed were taken before the solvent was re-

moved from the bio-oils. The plot of the MoRu/AC bio-oils after 60 min reaction at different 

temperatures is presented in Figure 7.8. The plots for the bio-oils obtained with the reference 

Ru/C catalyst were nearly identical. 

As can clearly be seen, very few volatile compounds are evident in the plot for 250 °C. This 

is consistent with the absence of depolymerization/hydrogenation reactions occurring and the 

large molecular weight of these bio-oils. The two peaks at 3.1 and 3.9 min retention time 

were identified as 4-methyl-3-penten-2-one and 2-4-hydroxy-4-methyl-pentanone. These are 

dimers of acetone and are present in all of the bio-oils. Analysis of the recovered solvent (not 

presented) revealed that several more dimers of acetone are present in addition to trace 

amounts of phenol and lighter phenolic compounds. 

 

 

Figure 7.9 Comparison of the GC spectra for hydroprocessed DHL obtained with MoRu/AC 

catalyst at different temperatures 
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Increased reaction temperature to 300 °C increased the number of volatile compounds pre-

sent and this effect was enhanced at 340 °C. Table 7.7 presents an abridged list of the com-

pounds in the bio-oils. Only those compounds identified with greater than 85% certainty and 

peak areas greater than 2% are included. The shaded cells indicate that no compounds were 

evident at a particular retention time and catalyst/temperature condition. As can be seen, al-

most all of the compounds are phenolic in nature. This is expected as the DHL feed had been 

processed to remove a majority of the carbohydrates initially present. Despite the difference 

in bio-oil yields between the catalysts, the compounds present in the Ru/C bio-oils are almost 

exactly the same as listed here, indicating that there virtually is no difference in product se-

lectivity between them. 

 

Table 7.7 Comparison of hydroprocessed DHL composition vs. temperature 

RT 

(min) 

MoRu/AC 

250 °C 300 °C 340 °C 

3.1 3-Penten-2-one, 4-methyl- 3-Hexen-2-one 3-Penten-2-one, 4-methyl- 

3.9 2-Pentanone, 4-hydroxy-4-methyl- 

5.0 

 

Benzene, 1,2,3-trimethyl- Mesitylene 

7.5 

  

Ethanone, 1-(1-cyclohexen-

1-yl)- 

10.3 

 

Phenol, 2,6-dimethoxy- 

10.4 

 

Phenol, 3,4-dimethoxy- 

11.0 

 

4-Methoxy-2-methyl-1-(methylthio)benzene? 

11.3 

  

Dodecanoic acid?? 

11.5 

 

5-tert-Butylpyrogallol 

13.3 

 

4-Hydroxy-1-methyloctahydro-2(1H)-quinolinone 

 

7.3.8 FTIR analysis of hydroprocessed DHL 

FTIR analysis was performed on the DHL bio-oils to determine how the functional groups 

present were affected by the catalysts used as well as the reaction conditions. It should be 

noted that these bio-oils are complex mixtures of many compounds and therefore exhibit 

many more peaks and broader peaks than would be present in the spectra of pure compounds. 

This makes analysis of these spectra more difficult. 
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Figure 7.9 presents the FTIR spectra of bio-oils obtained at different temperatures using 

MoRu/AC catalyst. The spectra have been normalized with respect to the aromatic peak at 

1610 cm
-1

 and are virtually identical to the spectra obtained with the Ru/C catalyst except as 

noted.  

 

 

Figure 7.10 FTIR spectra of DHL bio-oils obtained using MoRu/C catalyst at different tem-

peratures 
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It is immediately evident from the response in the -OH region (3,600-3,000 cm
-1

) that the 

number of OH bonds in the bio-oils has increased relative to the DHL feed. This is consistent 

with the increased O content of the bio-oils as determined by elemental analysis. Increasing 

reaction temperature decreased the number of OH bonds. The loss of oxygen corresponds 

with the increased in oxygen-containing gaseous species (CO and CO2) as well as any traces 

of water that may have been carried over with the acetone solvent during solvent removal 

under vacuum. The response at 3,000-2,850 cm
-1

 assigned to -CH stretch increased, as would 

be expected if acetone has been incorporated into the structure of the bio-oil. 

Looking at the expanded fingerprint region, there is a large increase in response around 1700  

cm
-1

, indicative of C=O stretch, at 250 °C which is again expected if acetone were to have 

reacted with the DHL feed. The decrease in response with increased temperature is in agree-

ment with the decreased O content at 300 and 340 °C. The peaks between 1520 and 1450 

cm
-1

, which are due to aromatic stretch, exhibit a decreased response with increasing tem-

perature, possibly due to hydrogenation of the aromatic rings. The peak at 1375 cm
-1

 (due to 

sp
3
 CH bend) increased markedly at 250 °C and is consistent with grafted acetone introduc-

ing methyl groups into the bio-oil structure. At increased temperature, this peak decreased, 

possibly indicating that the acetone fragments had decomposed and partitioned into the gas 

or solid phase. The response in the range 1225-1000 cm
-1

, indicative of C-O stretch, indicates 

that these bonds were present in the DHL feed. No change was observed in the peak at 1220 

cm
-1

 at 250 °C, but rather at increased temperature, indicating that these bonds required more 

energy to break, as is consistent with aromatic C-O bonds (Chakar and Ragauskas, 2004). In 

contrast, the peaks at 1120 and 1030 cm
-1

, which are indicative of aliphatic C-O bonds, de-

creased in intensity even at low temperature, indicating that these C-O bonds were more eas-

ily broken than the C-O bonds at 1220 cm
-1

. The peaks at 950 and 815 cm
-1

 are due to alkene 

C-H bend and tri-substituted alkene C-H bend, respectively, and appear after reaction at 250 

°C. Increased temperature led to the disruption of the alkene bonds and resulted in decreased 

response. It is interesting to note that these peaks are absent in the spectrum of bio-oil pro-

duced using Ru/C at 250 °C, but appeared at elevated temperatures. 

The appearance of peaks in the range of 750-690 cm
-1

 at 300 and 340 °C is indicative of the 

presence of substituted benzene rings, indicating that higher temperatures were required to 
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cleave the structures bonded to the aromatic rings leaving behind simpler mono- and di-

substituted compounds. 

 

7.3.9 NMR analysis of hydroprocessed DHL 

NMR analysis was performed to help elucidate the changes that occurred during reaction and 

are presented in Figure 7.10. Several differences are evident between the three plots. Moving 

from left to right, the first difference that can be seen is the great increase in the peaks in the 

8-6 ppm range between the bio-oil produced at 340 °C (top) and the bio-oil produced and 

250 °C (middle) and the DHL feed (bottom). These peaks can be attributed to aromatic pro-

tons and indicate that reaction at elevated temperature has greatly increased the number of 

free aromatic sites on the ring structures that are present in the bio-oil. The region between 5 

and 3.3 ppm corresponds to the protons associated with ether bonds, but also overlaps the 

region attributed to alcoholic protons (5.2-1.5 ppm). Regardless, the peaks in this region ap-

pear to decrease slightly after reaction at lower temperature but increase greatly after reaction 

at elevated temperatures. There is a corresponding increase in intensity in the region of 3-2 

ppm. This region is representative of both hydroxyl protons, benzylic and alpha carbonyl 

protons, and allylic protons. In concert with the other analyses, it is possible to eliminate hy-

droxyl protons as being responsible for this increase in response as the oxygen content of the 

bio-oils was found to decrease with increasing reaction temperature (confirmed by FTIR 

analysis). Thus this response must be due to protons associated with benzylic, carbonyl and 

allylic bonds. The peak at ~2.35 ppm, which decreases with increasing temperature, is more 

likely to be due to hydroxyl protons.  Similarly, the response in the region of 2.0-0.5 ppm, 

which corresponds to sp
3
 C-H bonds, changes in both intensity and chemical shift. The 

change in chemical shift depends on the number of hydrogen atoms bonded to the carbon 

atom. As the number of hydrogen atoms increases, the shift decreases and follows the trend 

CH>CH2>CH3. As is seen in the figure, the peaks at ~1.2 ppm and especially at 0.9 ppm in-

crease with increased reaction temperature. This indicates that the abundance of both CH2 

and CH3 moieties in the bio-oils increases with increased reaction temperature. The peak at 

0.1 ppm could not be indentified but can be seen to have decreased greatly after reaction at 

low temperature and almost completely disappears after reaction at high temperature. Not 
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surprisingly, due to prior processing, there was no evidence of aldehydic protons in the spec-

trum of the DHL feed. 
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Figure 7.11 H-NMR spectra of DHL (bottom) and DHL bio-oils obtained at 250 (middle) 

and 340 °C (top) 
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7.4 Conclusions 

DHL was successfully depolymerized into lower molecular weight bio-oils after reaction 

with MoRu/AC and Ru/C catalysts under hydrogen. The yields were reasonably high (83 

wt.%) at lower temperatures (250 °C) but decreased with increasing temperature. Hy-

drotreatment with the MoRu/AC catalyst resulted in consistently greater yields of bio-oil than 

the reference Ru/C catalyst (by ~12 wt.%) regardless of reaction temperature. Gasification of 

the DHL feed was found not to be significant, amounting to less than 4 wt.% at most. The 

yield of solid residue or char was high and increased in step with the decrease in bio-oil 

yields. Elemental analysis revealed that the acetone solvent was reacting with the DHL feed 

and increasing the oxygen content of the bio-oils. Despite the decreased yields of bio-oil that 

were obtained after reaction at higher temperatures, the molecular weights of the resulting 

bio-oils were found to have decreased by ~65% relative to the DHL (600 vs. 1700 g/mol). 

Despite the decrease in molecular weight, these bio-oils were very viscous, and even though 

the present catalysts were able to effect a promising reduction in molecular weight, the poor 

yields of bio-oil and high yields of char indicate that more work needs to be done to obtain 

useful bio-oils from DHL. 
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Chapter 8  

8 Conclusions and Future Work 

8.1 Conclusions 

The aim of this work was to investigate the depolymerization and hydroprocessing of several 

different types of lignin (Kraft lignin, organosolv lignin, and hydrolysis lignin) in the pres-

ence of catalysts and supercritical acetone to obtain lower molecular weight and deoxygen-

ated compounds suitable for use as substitutes for fuels and chemicals from fossil resources. 

In the first study, a number of different metal catalysts and support materials were success-

fully employed in the depolymerization and hydroprocessing of Kraft and organosolv lignin. 

Carbon-supported catalysts were found to outperform catalysts supported on alumina. 

The effectiveness of novel mixed noble metal/transition metal MoRu catalysts was investi-

gated using guaiacol as a model compound for lignin. Guaiacol conversion was most effec-

tive in the presence of activated carbon-supported MoRu catalyst. Based on this work, the 

depolymerization and hydroprocessing of organosolv lignin using these MoRu catalysts was 

investigated. OL was successfully hydroprocessed and depolymerized into DOLs composed 

of aromatic compounds with increased hydrogen contents, decreased oxygen contents and 

greatly decreased molecular weights. 

Further work investigated the effectiveness of the mixed noble metal/transition metal MoRu 

catalyst on the hydroprocessing and depolymerization of hydrolysis lignin and resulted in 

bio-oils composed of aromatic compounds with increased hydrogen contents, decreased oxy-

gen contents and greatly reduced molecular weights. Continuing this work, the hydroprocess-

ing of depolymerized hydrolysis lignin (hydrolysis lignin that had been hydrolyzed in the 

presence of a strong acid) was moderately successful in producing bio-oils of reduced mo-

lecular weight. 

The following detailed conclusions can be drawn from this work: 

(1) Ru metal is a much more effective catalyst in the hydroprocessing of Kraft lignin 

(KL) and organosolv lignin (OL) in supercritical acetone than Ni metal. Additionally, 
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the carbon-supported Ru (and NiMoW-based FHUDS-2) catalyst performed better 

than alumina-supported Ru catalyst. This difference may be due to the acidic nature 

of the alumina support. The molecular weights of the hydroprocessed DKL and DOL 

were markedly lower than the lignin feeds (~1,000 vs. 2,600 and 10,200 g/mol for OL 

and KL, respectively). The molecular weight of organosolv lignin decreased mono-

tonically with increased temperature but temperatures greater than 300 °C were re-

quired to materially decrease the molecular weight of Kraft lignin. In addition, after 

hydroprocessing, the sulfur content of the DKL was found to have decreased by 

~95% relative to the KL feed. The modest decrease in oxygen content of 20-30% may 

be due to the difference in strength of C-O bonds (358 kJ/mol) relative to C-S bonds 

(272 kJ/mol) in addition to difference in bond strength between aromatic and aliphatic 

C-OH bonds. 

 

(2) A systematic study of the effectiveness of carbon-supported Ru and novel noble 

metal/transition metal MoRu catalysts on the hydroprocessing of guaiacol revealed 

that activated carbon-supported MoRu and Mo catalyst were more effective than the 

reference Ru/C catalyst, exhibiting greater than 90% guaiacol conversion. However, 

the Mo catalyst produced fewer deoxygenated compounds and more unidentified 

compounds. The MoRu catalyst also exhibited greater gasification of the guaiacol 

feed. 

Based on these findings MoRu catalyst was used for further optimization work. Hy-

droprocessing temperature and initial hydrogen pressure were found to have a much 

greater effect on guaiacol conversion than reaction duration. Thus, longer reaction 

times may not be necessary provided that hydroprocessing is performed at higher 

temperatures: the decreased duration may offset the higher energy cost. 

 

(3) All of the catalysts tested in the depolymerization and hydroprocessing of organosolv 

lignin in supercritical acetone were effective. However, the presence of phosphorus in 

the catalyst, which is known to decrease solid residue and improve product yields in 
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model compounds, was found to inhibit the depolymerization of the organosolv lig-

nin, perhaps due to residual acidity. The yields of depolymerized organosolv lignin 

were found to decrease with increasing reaction temperature, in contrast to previous 

work. At 250 °C, the yields were equivalent to work presented a previous chapter 

(>96 wt.%), however, at 300 °C, while the yields with the MoRu/AC catalyst re-

mained high (~93 wt.%), only ~62 wt.% of DOL was produced using the reference 

Ru/C catalyst. At 340 °C, the yield of Ru/C DOL had decreased further to ~50 wt.%, 

and the DOL yield with MoRu/AC catalyst experienced a large decrease to ~62 wt.%. 

It is believed that this difference is due mainly to the difference in initial hydrogen 

pressure (5 MPa in this study vs. 9 MPa in the previous work) as well as differences 

in heat and mass transfer effects between the different autoclave reactors that were 

used (100 vs. 500 mL). 

The catalysts tested resulted in DOL products with greatly decreased molecular 

weights. The molecular weight of DOL hydroprocessed at 340 °C in the presence of 

the most effective MoRu/AC catalyst was reduced from ~2,600 g/mol for the OL feed 

to 460 g/mol. Under similar reaction conditions, the MoRu/C and reference Ru/C 

catalysts produced DOLs with molecular weights of 516 and 540 g/mol, respectively. 

All three of these DOL products remained liquid even at temperatures below 0 °C. 

GC/MS analysis of the DOL revealed the presence of a large variety of substituted 

phenolic and benzene compounds, consistent with the depolymerization of the aro-

matic structures of OL. Unexpectedly, the acetone solvent was found to have reacted 

and formed a number of dimers. 

The oxygen content of the DOL obtained with MoRu/AC catalyst at 340 °C was 

found to have decreased by ~38% as compared to ~25% for Ru/C, indicating that the 

addition of Mo to the Ru catalyst had a synergistic effect in oxygen removal. In con-

trast, the Ru/C catalyst was found to have increased hydrogen content by ~50% as 

compared to ~42% for the MoRu/AC. The addition of Mo to carbon-supported Ru 

catalysts was therefore an effective means of increasing the yield of DOL and im-

proving its quality. 
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(4) Hydrolysis lignin (HL) was successfully depolymerized (liquefied) in the presence of 

hydrogen, carbon-supported mixed noble metal/transition metal catalysts and super-

critical acetone solvent, producing low molecular weight bio-oils (as low as 380 

g/mol) with high yields around 85 wt.%, that remained liquid at temperatures below 

freezing. The yields of HL bio-oil were found to increase with increasing tempera-

ture. At 340 °C and with MoRu/AC catalyst, the yield of solid residue was less than 2 

wt.%. 

Deoxygenation of HL was found to be largely thermally driven - the yields and MW as 

well as the chemical composition of the bio-oils were strongly dependent on the reac-

tion temperature. Hydrogenation was highly promoted by the presence of the 

MoRu/AC catalyst at 340 °C, resulting in a bio-oil with a remarkable 50% increase in 

hydrogen content relative to the HL feed. GC/MS analysis of the bio-oils revealed 

that in addition to the presence of ketones from the decomposition of the carbohy-

drates present in the HL feed, the bio-oils were largely composed of phenolic com-

pounds. This indicates that, in the presence of the MoRu catalyst, the lignin compo-

nent of HL can easily be depolymerized at temperatures between 200 and 340 °C. 

 

(5) Depolymerized hydrolysis lignin (DHL), produced by processing HL in the presence 

of ethylene glycol and H2SO4, was successfully hydroprocessed and further depoly-

merized into lower molecular weight products after reaction with MoRu/AC and 

Ru/C catalysts in supercritical acetone under hydrogen. The yields were reasonably 

high (~83 wt.%) at lower temperatures (250 °C) but decreased with increasing tem-

perature. Hydroprocessing with the MoRu/AC catalyst resulted in consistently greater 

yields of bio-oil than with the reference Ru/C catalyst (by ~12 wt.%) regardless of re-

action temperature. The yield of solid residue, or char, was high and increased in step 

with the decrease in bio-oil yields. Gasification of the DHL feed was found not to be 

significant, amounting to less than 4 wt.% at most.  

Elemental analysis of the hydroprocessed DHL revealed an increase in oxygen con-

tent at 250 °C that was attributed to the acetone solvent reacting with the DHL feed. 

The increase in O content decreased with increased reaction temperature indicating 
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that the reaction between the acetone and DHL occurred very rapidly and at lower 

temperatures. Despite the decreased yields of bio-oil that were obtained after reaction 

at higher temperatures, the molecular weights of the resulting bio-oils were found to 

have decreased by ~65% relative to the DHL feed (~600 vs. ~1,700 g/mol). However, 

despite the decrease in molecular weight, these bio-oils were very viscous and unsuit-

able for use without further processing. 

 

8.2 Future Work 

(1) Carbon-supported Ru catalysts were found to be very effective in the hydroprocessing 

of various lignins, and the addition of 1 wt.% Mo to 5 wt.% Ru catalyst resulted in 

improved catalytic performance. However, at 5 wt.% Ru, this is a very expensive 

catalyst. More work needs to be done in order to determine the most effective combi-

nation of Mo and Ru and reduce the cost of the catalyst. This has to be done without 

sacrificing catalyst effectiveness in terms of lignin depolymerization as well as de-

oxygenation and hydrogenation. The effectiveness of additional promoters, e.g. Co, 

should also be investigated. 

(2) Hydroprocessing of Kraft lignin (KL) should be investigated with the MoRu/AC cata-

lyst to determine if this catalyst retains its excellent performance, as seen with OL. 

This work should be performed in a high-pressure reactor with OL as well as KL, as 

this would determine if the differences in catalyst performance that were observed are 

indeed due to higher initial hydrogen pressure. 

(3) The hydroprocessing of hydrolysis lignin (HL) resulted in very high yields of low 

molecular weight bio-oils. It would be interesting to see if optimization of process 

conditions could further reduce HL bio-oil molecular weight and oxygen content. 

(4) Despite the promising reduction in molecular weight obtained with the MoRu/AC 

catalyst, the poor yields of product from the DHL feed and high yields of char indi-

cate that more work needs to be done to obtain useful products from the hydroproc-

essing of DHL. Ensuring that residual acidity from the initial hydrolysis step is vital, 
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as acidity is well known for promoting condensation reactions. The trends in DHL 

deoxygenation indicate that O removal improves with increased temperature. There-

fore, further hydroprocessing studies of DHL should be performed in a reactor capa-

ble of withstanding elevated temperatures and the correspondingly higher pressures. 

A corollary to this study would be hydroprocessing of DHL at higher initial hydrogen 

pressures and lower temperatures. 

(5) The purpose of producing DHL was to convert HL into a product with reduced mo-

lecular weight for use as a substitute for the polyol feed in the production of bio-

polyurethane foams. However, the solid DHL product had to be oxypropylated in or-

der to be used. In contrast, the hydroprocessing of HL in this work resulted in very 

low molecular weight bio-oils that remained liquid at temperatures below freezing. It 

would be interesting to investigate if these bio-oils could serve as a viable substitute 

for oxypropylated DHL in the production of bio-polyurethane foams. 

(6) Most industrial processes run on a continuous or semi-continuous basis, therefore the 

hydroprocessing of lignin using the MoRu/Ac catalyst used in these experiments 

should be investigated under continuous or semi-continuous conditions to facilitate 

scale-up.  
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