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Abstract

Superspaces are an extension of classical spaces that include certain (non-commutative)

supervariables. Super differential equations are differential equations defined on super-

spaces, which arise in certain popular mathematical physics models. Supersymmetries

of such models are superspace transformations which leave their sets of solutions invari-

ant. They are important generalization of classical Lie symmetry groups of differential

equations.

In this thesis, we consider finite-dimensional Lie supersymmetry groups of super dif-

ferential equations. Such supergroups are locally uniquely determined by their associated

Lie superalgebras, and in particular by the structure constants of those algebras. The

main work of this thesis is providing an algorithmic method for finding the structure

constants of such Lie superalgebras. The traditional method uses heuristic integrations

to determine such structure constants. Two typical examples are used to demonstrate

our algorithm for determining structure constants.

We also apply our method to a large class of super Lagrangians in 1 + 1 dimensional

space time. The supersymmetry classification of such a large class is impossible for hand

calculation since it requires analysis of thousands of cases. We will show how to find

hidden supersymmetry for such a class of super differential equations by our algorithms

and the Physics, DEtools, PDEtools packages of Maple 17.
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Chapter 1

Introduction

Symmetry methods provide powerful analytic tools for solving differential equations,

especially nonlinear partial differential equations for which few analytic solution methods

exist. Simply speaking, a symmetry is a transformation which maps solution manifolds to

solution manifolds. Finite dimensional Lie symmetry groups are transformation groups

that depend on finitely many parameters. They were initially developed in the works

of Sophus Lie [1, 2, 3] in late nineteenth century. Lie also applied them to differential

equations. For example by introducing invariants the number of independent variables

in a PDE can be reduced. Locally a Lie group is characterized by its Lie algebra, which

in fact is characterized by its structure constants. Indeed if the structure constants

determine that an n-order ODE has n-dimensional solvable Lie algebra of symmetries,

then it can be reduced to an (n− r)-th order ODE.

Supersymmetry yields analogous results. For example, it transforms solution super-

manifolds to solution supermanifolds. Over recent decades, researchers have extended

many (Lie) symmetry properties to (Lie) supersymmetries. Supersymmetry originally

arose from quantum field theory in 1960s and 1970s. In 1966, Miyazawa [4, 5] was the

first physicist to use supersymmetry to relate mesons and baryons. In 1971, Gervais

and Sakita [6] independently rediscovered supersymmetry with a consistent Lie algebraic

graded structure arising in quantum field theory. Over a half century, supersymmetry

has been prominent in physics. Various particle physics models have been developed
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that predict new super particles under the action of supersymmetry. However, the Large

Hadron Collider (LHC) has eliminated some popular supersymmetric models. Despite

this, supersymmetry has been proved to be a powerful tool in simplifying the analyt-

ical solution of various well-established models, including classical models in quantum

mechanics. For example, the non-commutative variables arising in such calculations are

operators where components are complex functions.

In this thesis, supersymmetry is studied using symbolic computation. Our goal is

to algorithmically determine the Lie superalgebra structure of the (maximal) group of

supersymmetries of super differential equations. It is the generalization of Lie algebra

structure determination methods invented by Reid [9, 10, 11], Lisle [12, 24], Boulton

Wittkopf [12] in the 1990s. Moreover, using these techniques and symbolic algorithms in

Maple we have determined new supersymmetries of a large class of physics models.

Next, we give a brief review of existing approaches and outline the contents of each

chapter of this thesis.

1.1 Lie’s infinitesimal symmetry method

Lie’s profound discovery was that nonlinear analytic symmetry group transformations are

uniquely locally determined by their linearized (infinitesimal) transformations. The infin-

tesimal transformations satisfy a linear homogeneous system of PDE called the defining

or determining system for the symmetries.

The infinitesimal method for generating the defining system is introduced in this

section for both classical (non-super) and super differential equations.

1.1.1 Lie’s infinitesimal method for classical DEs

Olver has given a complete and detailed presentation of Lie’s infinitesimal method and

its applications to the differential equations in his book Applications of Lie Groups to

Differential Equations [13]. Here we only concentrate on material for Lie’s infinitesimal

method for generating the symmetry defining system of differential equations whose solu-



3

tions determine the unknown Lie symmetries. Note that our notation is slightly changed

from that in Olver [13] in order to later consistently generalize the same approach to

super differential equations.

Consider a k-th order system of s differential equations

∆ν(X,A
(k)) = 0, ν = 1, . . . , s, (1.1)

where X = (x1, . . . , xm) are the independent variables and A = (A1, . . . , Aq) are the

dependent variables. We will denote the system (1.1) by ∆ = 0.

In Lie theory, a one parameter local transformation has the form

X̂ = Ω1
ε(X,A), (1.2)

Â = Ω2
ε(X,A). (1.3)

Expanding each relations of (1.2) and (1.3) around the identity ε = 0, one can generate

the following infinitesimal (linearized) transformations.

x̂i = xi + εΞi(X,A) +O(ε2), i = 1, . . . ,m,

Âr = Ar + εΦr(X,A) +O(ε2), r = 1, . . . , q,

where the functions Ξi and Φr are the infinitesimals corresponding to the transformations

for the independent variables xi and dependent variables Ar.

A basis for corresponding symmetry algebra H is denoted by the vector fields

V =
m∑
i=1

Ξi ∂

∂xi
+

q∑
r=1

Φr ∂

∂Ar
. (1.4)

The action of a symmetry on (X,A) can be extended to the derivatives appearing in a

differential equation ∆ν = 0 by the process of prolongation (see Olver [13] for a detailed
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description). The resulting prolonged system is

pr(k)V∆ν = 0, v = 1, ..., s, (1.5)

where the k-th prolongation of the vector field (1.4) is given by

pr(k)V = V +

q∑
r=1

∑
J

Φr
J

∂

∂ArJ
. (1.6)

Here J = (j1, . . . , jβ), 1 ≤ jβ ≤ m and 1 ≤ β ≤ m is multi-index notation for differentia-

tions with respect to xi’s. The coefficients Φr
J are given by

Φr
J = DJ

(
Φr −

m∑
i=1

ΞiAri

)
+

m∑
i=1

ΞiArJi, (1.7)

where Ari = ∂Ar/∂xi.

In addition we can further decompose the system of s equations by computing the

coefficients of the monomials of Ar and its derivatives and equating these coefficients to

zero. These expressions are the defining equations for symmetries. The defining system

involves the infinitesimals Ξi,Φr and their partial derivatives with respect to xi’s and

Ar’s.

1.1.2 Lie’s infinitesimal method for super DEs

Fortunately Lie’s infinitesimal method is easily extended to super differential equations

by methods that are very similar to those in Section 1.1.1. Ayari and Hussin used this

method in their paper [20] in 1997. The main difference is to accommodate odd or

non-commutative variables.

A super analytic system of Grassmann-valued differential equations or superequations

of s equations of order k = (k1; k2) is given by

∆ν(X,Θ, A
(k1), Q(k2)) = 0, ν = 1, . . . , s, (1.8)
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with m independent even variables X = (x1, . . . , xm), n independent odd variables Θ =

(θ1, . . . , θn), q even dependent variables A = (A1, . . . , Aq) and p odd dependent variables

Q = (Q1, . . . , Qp).

Lie’s infinitesimal method for the defining system of super differential equations uses

a similar procedure to the classical case. A brief verbal description is as follows.

1. Reduce to invariance under one-parameter Lie super transformation about the iden-

tity.

2. Apply the super prolongation formula to the super differential equations.

3. Simplify the results of Step 2.

4. Compute the coefficients of monomials of the dependent variables and their deriva-

tives.

5. The determining equations for supersymmetries are the equations from Step 4.

More information on this procedure will be given in Chapter 3.

1.2 Existing supersymmetry related packages

Lie’s infinitesimal method for generating the symmetry defining system of super differen-

tial equations has been implemented in Maple language by Ayari and Hussin [20]. They

developed a Maple program GLie which can generate defining systems for Grassmann-

valued partial differential equations. They also provided applications of GLie to a variety

of models. The super KdV example used in this thesis is from Ayari’s PhD thesis [19].

He found the Lie superalgebra structure by direct integration of the defining system. We

will develop a new algorithm for determining the Lie superalgebra structure for super-

symmetry without using integration.

Maple has its own built-in symmetry determining system generator DeterminingPDE

as part of PDEtools package implemented by Cheb-Terrab based on Cheb-Terrab and
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Bulow [15]. In 2011, Cheb-Terrab extended DeterminingPDE to work with anticommu-

tative variables as part of Physics package. The commands in these packages will be

frequently used in my study of supersymmetric Lagrangian models.

There are also other symbolic computer languages which can handle anticommuta-

tive calculations. For example, Wolf [21, 22, 23, 25, 29] has made a powerful extension

of his package CRACK in the computer algebra language REDUCE. CRACK can be

used to find first order and higher order supersymmetry for polynomial super differential

equations.

1.3 The rifsimp algorithm

In 1996, the rifsimp algorithm was introduced by Reid, Boulton and Wittkopf [16]

and is part of distributed Maple since 2001. It is a powerful simplifier of systems of

overdetermined DE. It can assist the determination of Lie point symmetry of ODE or

PDE. In this thesis, we use rifsimp to help us simplify overdetermined super differential

equations. In fact, rifsimp was designed only for commutative calculation. To able to

apply rifsimp, we modify our super differential equations in order to apply rifsimp to

the non-commutative case.

1.4 Existing algorithms for determining structure con-

stants

Using the existence and uniqueness theorem [18], Lisle and Reid [24] developed algo-

rithms for finding the structure constants for Lie symmetry of classical PDE. Briefly the

existence and uniqueness theorem determines initial data. That uniquely determines the

dimension d of the Lie algebra, and consequently that there exist d Lie supersymmetry

operators L1, ..., Ld. The existence and uniqueness theorem then determines initial data

that uniquely determines each Lj. Finally initial data of the commutator uniquely deter-

mines the commutator [Li, Lj] and specifically its structure constants. Most importantly,
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this method does not depend on constructing solutions and so is algorithmic. Largely

inspired by their methods, I am able to develop our algorithm for determine the structure

constants for Lie superalgebra.

1.5 Outline of thesis

The fundamental mathematic definitions and computational rules are introduced in

Chapter 2. We will give the definitions of superspace, superalgebra, Lie superalgebra,

Grassmann algebra, super differential equations and differential rules for super differen-

tial equations. The main work in later chapters will be built on the concepts defined in

Chapter 2.

The theory for the Lie infinitesimal method or the Lie supersymmetry method will

be given in Chapter 3. Then we apply this method to two super differential equation

examples to generate super defining system for their supersymmetry groups. Note that

in Chapter 3, 4 and 5, for brevity we use the abbreviation defining system instead of

super defining system. The first example is a simple super ordinary differential equation

and the second example is well-known model, the super KdV equation, which is a super

partial differential equation. After we obtain the defining system for these two examples,

we will show how to find the Lie superalgebra structure or supercommutator table by

integration. This is a heuristic process unlike the algorithmic method we will develop

later.

In Chapter 4, we develop a new algorithm - the structure constant algorithm for

finding Lie superalgebra structure. We introduce the concept of regular super differential

equations, ones that can be solved for their highest derivatives. A technical difficulty

for irregular super differential equations is addressed in this chapter. Moreover, we will

show using existence and uniqueness theory, that the structure constants can be uniquely

determined. We illustrate the new algorithm by applying it to our previous examples.

In Chapter 5, we apply supersymmetry analysis to a large class of super Lagrangians

with general potential. The determination of hidden supersymmetry is executed for two

extreme cases. One extreme case is with zero potential F = 0 and is easily solved. The
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other extreme case is to incorporate maximum nonlinearity in F by letting the third

order derivative of the coefficient of the leading term of F to be nonzero. By adding this

constraint to F , we find a hidden non-trivial supersymmetry. Invariants corresponding

to this supersymmetry are determined which reduce the Euler-Lagrange PDE system to

an ODE system. During the demanding computations, we used Maple to help us to get

the defining system of the Euler-Lagrange system of the input super Lagrangian. Then

we sent the reduced defining system to rifsimp with the option casesplit to do the

case analysis. Thousands of cases resulted from this step.

The last chapter is devoted to discussion and future work. In summary, three main

contributions are made in this thesis. The first contribution is a method for getting the

Lie superalgebra structure by integration. The second contribution shows how to get

Lie superalgebra structure of the supersymmetry by an algorithms that avoids integra-

tion. The last contribution is an experimental search of hidden supersymmetry with the

assistance of Maple.

At the end of this thesis, we list some Maple procedures in Appendix A.
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Chapter 2

Background

Super spaces, variables, transformations etc, are fundamental objects in this thesis. In

particle physics, there are two basic classes of elementary particles: bosons and fermions

which are considered as even quantities and odd quantities.

Super objects posses a Z2-grading, and consist of either even (0-graded) objects or

odd (1-graded) objects. These quantities obey the following rules:

even · even = even,

even · odd = odd,

odd · odd = even.

Every super concept, such as supervector, superspace, supersymmetry and superalgebra,

admits its even partner as well as its odd partner. The even partners are just the usual

vector space, and symmetry algebras etc, over R or C. Such super generalizations are

often nontrivial, and certain crucial properties in the even case may be lost. They are of

considerable interest to both physicists and mathematicians.

In this thesis we assume that the reader is familiar with manifolds, algebras, differen-

tial equations, symmetry groups and so on. We are working on superspace, superalgebra,

super differential equations and supersymmetry groups. Simply speaking, these super

concepts are the generalizations of those basic concepts in a ‘super’ sense by including
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their super partners. The goal of this chapter is to introduce the mathematical definitions

of superspace, superalgebra and super differential equations, as well as some necessary

computation rules of super differential calculus. These ‘super’ concepts and rules are

the important foundation of this thesis. More detailed explanation of odd variables,

Grassmann algebra, Lie superalgebra and super differential equations can be found in

Buchbinder and Kuzenko’s book [14] and Ayari’s PhD thesis [19].

2.1 Superspaces and superalgebras

2.1.1 Even and odd

This thesis is concerned with various super objects such as superspaces, superalgebras

and supergroups. The essential feature of all of these is that they are graded. The

simplest example of a graded structure is provided by the integers, each of which is either

even or odd and:

even integer + even integer = even integer,

even integer + odd integer = odd integer, (2.1)

odd integer + odd integer = even integer.

The operation of addition can be regarded as the group ‘product’ of the additive group of

integers. Denoting this product by · , the above addition rules (2.1) can be re-expressed

as

even integer · even integer = even integer,

even integer · odd integer = odd integer,

odd integer · odd integer = even integer.
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Generally speaking, super objects obey the same rule as the integers

even · even = even,

even · odd = odd, (2.2)

odd · odd = even.

The first stage in applying the idea of grading to linear algebra is to define the concept

of a graded vector space. To do this, suppose that V is a real or complex vector space

of dimension m + n, where m and n are any two positive integers, and suppose that

{a1, a2, . . . , am+n} is a basis for V . Then any element a of V can be written in the form

a =
m+n∑
j=1

µjaj,

where the coefficients µj are real or complex numbers (as appropriate). A grading for

this space is given by supposing that every element of the form

a =
m∑
j=1

µjaj,

is even, while every element of the form

a =
m+n∑
j=m+1

µjaj,

is said to be odd.

Definition 2.1.1 (Homogeneous). Any element a ∈ V that is either even or odd is said

to be homogeneous.

The degree (or parity) of such elements is defined by

deg a =

 0, if a is even,

1, if a is odd.
(2.3)
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Definition 2.1.2 (Superspace). The set of even elements of V form a subspace of V that

is the even subspace and which will be denoted by V0. Similarly, the odd elements of V

form the odd subspace V1. Clearly V is the direct sum of V0 and V1, that is,

V = V0 + V1,

which is called a Z2-graded space or superspace.

2.1.2 Superalgebras and Lie superalgebras

A superspace is a Z2-graded space V = V0 ⊕ V1. A superalgebra is a Z2-graded algebra

A = A0 ⊕A1 with a bilinear multiplication A×A → A such that

AiAj ⊆ Ai+j,

where the integers i, j are taken module 2. A superalgebra is said to be supercommutative,

if

ab = (−1)deg(a)deg(b)ba

for all homogeneous a and b in the superalgebra; that is, if

ab =

 −ba, if both a and b are odd,

ba, otherwise.
(2.4)

Definition 2.1.3 (Lie superalgebra). Let L be a real or complex graded vector space,

with L0 and L1 being its even and odd subspaces, which are assumed to have dimension

m and n respectively (where m ≥ 0, n ≥ 0 and m+ n ≥ 1). Suppose that for all a, b ∈ L

there exists a generalized Lie bracket (Lie superbracket or supercommutator) [a, b] with

the following properties:

(i) [a, b] ∈ L, for all a, b ∈ L.
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(ii) For all a, b, c ∈ L and any real or complex numbers α and β

[αa+ βb, c] = α[a, c] + β[b, c]. (2.5)

(iii) If a and b are homogeneous elements of L then [a, b] is also a homogeneous element

of L whose degree is (deg(a) + deg(b)) mod 2. So [a, b] is odd if either a or b is

odd. Also [a, b] is even if a and b are both even or if a and b are both odd.

(iv) For any two homogeneous elements a and b of L

[a, b] = −(−1)deg(a)deg(b)[b, a]. (2.6)

(v) For any three homogeneous elements a, b and c of L

[a, [b, c]](−1)deg(a)deg(c) + [b, [c, a]](−1)deg(b)deg(a) + [c, [a, b]](−1)deg(c)deg(b) = 0. (2.7)

Then L is said to be a real or complex Lie superalgebra with even dimension m and odd

dimension n.

Therefore a Lie algebra is a Lie superalgebra with trivial odd part. The most obvious

example of a Lie superalgebra is that of linear maps on a Z2-graded vector space.

Example 2.1.4. Let V = V0 ⊕ V1 be a Z2-graded vector space. Consider the associative

algebra gl(V ) of endomorphism of V . It has a natural Z2-grading:

gl(V )0 = {f ∈ gl(V ) : f(V0) ⊆ V0 and f(V1) ⊆ V1}, (2.8)

gl(V )1 = {f ∈ gl(V ) : f(V0) ⊆ V1 and f(V1) ⊆ V0}. (2.9)

The Lie superbracket is defined as follows:

[a, b] = ab− (−1)deg(a)deg(b)ba, (2.10)
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or equivalently,

[a, b] =

 ab− ba, if a or b ∈ gl(V )0,

ab+ ba, if a, b ∈ gl(V )1.

2.2 Grassmann algebras

Definition 2.2.1 (Associative superalgebra). Suppose that V is a graded vector space.

(i) For every pair of elements a and b in V , there exists a product ab that is also in V ,

and this product satisfies the grading multiplication rule.

(ii) For all a, b, a′, b′ ∈ V and µ, λ, µ′, λ′ of the field of V (R or C),

(µa+ µ′a′)(λb+ λ′b′) = µλ(ab) + µλ′(ab′) + µ′λ(a′b) + µ′λ′(a′b′).

(iii) For all a, b, c ∈ V ,

(ab)c = a(bc).

Then V is called an associative superalgebra.

Grassmann algebras are particular examples of associative algebras that will play a

very important part in the developments of this thesis.

Definition 2.2.2 (Grassmann algebra). Consider a set of N generators θ1, θ2, . . . , θN ,

which are assumed to have products θiθj such that

(i) For all i, j, k = 1, ..., N ,

(θiθj)θk = θi(θjθk). (2.11)

(ii) For all i, j = 1, ..., N ,

θiθj = −θjθi. (2.12)

(iii) Each non-zero product

θj1θj2 · · · θjr
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involving r generators is linearly independent of products involving less than r gen-

erators.

It should be noted that (2.12) implies that

θiθi = θ2
i = 0 (2.13)

for all i = 1, ..., N .

This set of generators and products may be supplemented by introducing an identity,

which is denoted by 1, and which is assumed to be such that

11 = 1 (2.14)

and

1θj = θj1 = θj (2.15)

for all i = 1, ..., N . It follows that

1(θj1θj2 · · · θjr) = (θj1θj2 · · · θjr)1 = θj1θj2 · · · θjr (2.16)

for any product of generators.

The product θiθj is sometimes written in the literature as the wedge product θi ∧ θj.

The resulting algebras are sometimes called exterior algebras.

Example 2.2.3. For N = 3 there are three generators θ1, θ2 and θ3. By (2.13), (θ1)2 =

0, (θ2)2 = 0 and (θ3)2 = 0. With the identity included, the independent products of

generators are

1, θ1, θ2, θ3, θ1θ2, θ1θ3, θ2θ3, θ1θ2θ3. (2.17)

It leads to a 8-dimensional Grassmann algebra. Note that N generators lead to a finite-

dimensional Grassmann algebra of dimension 2N .

Remark 2.2.4. There also exist infinite dimensional Grassmann algebras which are gen-

erated by infinitely many generators. In this thesis, we only consider the finite dimen-
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sional Grassmann algebras (i.e. Grassmann algebras generated by finitely many genera-

tors).

For a fixed value of N , let σ be an index set that contains N(σ) different integers

with value between 1 and N inclusive. Thus

σ = {j1, j2, ..., jN(σ)},

where the integers j1, j2, ..., jN(σ) are assumed to be ordered in such a way that

1 ≤ j1 < j2 < j3 < · · · < jN(σ) ≤ N.

Define θσ by

θσ = θj1θj1 · · · θN(σ). (2.18)

Hence any element in the Grassmann algebra which is generated by θσ and 1 can be

written as

B =
∑
σ

Bσθσ, (2.19)

where the coefficients Bσ are either real or complex numbers. In this thesis the vector

space is real. This structure is a real associative superalgebra which is known as a

real Grassmann algebra. It is denoted by RBN and has dimension 2N . The subset of

even elements of RBN and the subset of odd elements of RBN both form real vector

spaces of dimension 2N−1. They will be denoted by RBN0 and RBN1 respectively. Hence

RBN = RBN0 ⊕ RBN1 .

2.3 The superspace RBm,n
N

As a Grassmann generalization of Rm, consider the space RBm,n
N , which is defined to

consist of m copies of the even space RBN0 of the real Grassmann algebra RBN and

n copies of the odd space RBN0 of RBN . The m copies of RBN0 will be denoted by

x1, x2, ..., xm and the n copies of RBN1 will be indicated by θ1, θ2, ..., θn. It is convenient
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to make the notation more concise by regarding x1, x2, ..., xm as elements of m-component

quantity X, and θ1, θ2, ..., θn as elements of a n-component quantity Θ. Then, (X; Θ), a

typical element of RBm,n
N , is defined by

(X; Θ) = (x1, x2, ..., xm, θ1, θ2, ..., θn).

As RBN0 and RBN1 are both 2N−1 dimensional real vector spaces, RBm,n
N is a real vector

space of dimension (m+ n)2N−1.

To allow analysis to be performed on the space RBm,n
N , it has to be provided with a

metric. Let B be any element of RBN of the form

B =
∑
µ

Bµθµ.

We define the norm as

‖B‖ =
∑
µ

|Bµ|. (2.20)

For RBm,n
N , the norm corresponding to (2.20) may be defined by

‖(X; Θ)‖ =
m∑
j=1

∑
µ

|xjµ|+
n∑
k=1

∑
µ

|θkµ| (2.21)

The metric d associated with the norm (2.21) is

d((X; Θ), (X ′; Θ′)) = ‖(X; Θ)− (X ′; Θ′)‖ (2.22)

for any (X; Θ) and (X ′; Θ′) in RBm,n
N . It immediately follows that d satisfies

(i) For all (X; Θ) and (X ′; Θ′) in RBm,n
N ,

d((X; Θ), (X ′; Θ′)) = d((X ′; Θ′), (X; Θ)).
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(ii) For all (X; Θ) in RBm,n
N ,

d((X; Θ), (X; Θ)) = 0.

(iii) If (X; Θ) 6= (X ′; Θ′),

d((X; Θ), (X ′; Θ′)) > 0.

(iv) If (X; Θ), (X ′; Θ′) and (X ′′; Θ′′) are any three points in RBm,n
N then

d((X; Θ), (X ′′; Θ′′)) ≤ d((X; Θ), (X ′; Θ′)) + d((X ′; Θ′), (X ′′; Θ′′)).

For metric d an open sphere of radius r centered at the point (X ′; Θ′) is defined to

be the set of points (X; Θ) of RBm,n
N such that

d((X; Θ), (X ′; Θ′)) < r.

A set of points U of RBm,n
N is said to form an open set of RBm,n

N if for every point (X ′; Θ′)

of U there exists an open sphere centered on (X ′; Θ′) of some radius r (which may depend

on (X ′; Θ′)) that is completely contained in U .

2.4 Differential functions on RBm,n
N

Two types of Grassmann-valued functions will now be discussed. One is defined on

an open set of Rm, the other on an open set of RBm,n
N . Although the latter is more

important in applications to Lie supergroups, the former will be considered first as it is

more straightforward.

A Grassmann-valued function F can be defined on an open set V of Rm by assigning

to each element X = (x1, ..., xm) of V an element F(X) of the Grassmann algebra RBN .
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Such a function can be expanded in the form

F(X) =
∑
µ

Fµ(X)θµ, (2.23)

where the Fµ(X) are all real-valued functions of X in V and the sum is over all index

sets µ. Fµ(X) is said to be even if only the even basis elements θµ of RBN appear in this

expansion, and to be odd if only odd θµ appear. So every Grassmann-valued function

F(X) can be written as the sum of an even and an odd function.

This idea can be generalized immediately to a Grassmann-valued function defined on

an open set of RBm,n
N rather than Rm. Such a function may be defined by assigning to

each point (X; Θ) = (x1, x2, ..., xm, θ1, θ2, ...θn) in an open set U of RBm,n
N an element

F (X; Θ) of the Grassmann algebra RBN . The analogue of (2.23) is

F(X; Θ) =
∑
µ

Fµ(X; Θ)θµ, (2.24)

where each of the Fµ(X; Θ) is a real-valued function of (X; Θ) in U and the sum is over

all index sets µ. Again F (X; Θ) is said to be even if only the even basis θµ of RBN appear

in this expansion, and to be odd if only odd θµ appear. Thus every Grassmann-valued

function F (X; Θ) on U can again be written as the sum of an even and an odd function.

Definition 2.4.1 (Continuous super function). The function F (X; Θ) defined on the

open set U of RBm,n
N is said to be continuous at a point (X ′; Θ′) of U if F (X; Θ) →

F (X ′; Θ′) as (X; Θ)→ (X ′; Θ′).

This can be expressed more precisely in terms of the metric for RBm,n
N that was

introduced above. In particular, F is continuous at (X ′; Θ′) for any real number ε > 0

there exists a real number δ > 0 such that

d(F (X; Θ), F (X ′; Θ′)) < ε

for all (X; Θ) ∈ U for which d((X; Θ), (X ′; Θ′)) < δ.
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The concept of differentiability for a function defined on RBm,n
N is more subtle, and

requires careful definition and discussion. The difficulty is that it involves dividing the

Grassmann-valued quantity F (X ′) − F (X) by the real number xj − x′j. Division of the

corresponding quantity F (X ′; Θ′) − F (X; Θ) by an element (X ′; Θ′) − (X; Θ) of RBm,n
N

is not defined. The following definition was first given by Rogers (1980).

Definition 2.4.2 (Differential super function). Let F (X; Θ) be a continuous function

that takes values in RBN and is defined on an open set U of RBm,n
N . Let j = 1, 2, ...,m

and k = 1, 2, ..., n. Suppose that there exist m functions ∂F (X; Θ)/∂xj and n functions

∂F (X; Θ)/∂θk that all have values in RBN , and are defined for all (X; Θ) in U and are

such that

F (X + Y ; Θ + Ψ) = F (X; Θ) +
m∑
j=1

Y j ∂F (X; Θ)

∂xj

+
n∑
k=1

Ψk ∂F (X; Θ)

∂θk
+ ‖(Y ; Ψ)‖η(Y ; Ψ). (2.25)

In (2.25), (X; Θ) and (X + Y ; Θ + Ψ) are points in U , and η(Y ; Ψ) is a function defined

on RBm,n
N with values in RBN :

‖η(Y ; Ψ)‖ → 0 as ‖(Y ; Ψ)‖ → 0. (2.26)

Then the function F (X; Θ) is said to be differentiable in U and the quantities ∂F (X; Θ)/∂xj

and ∂F (X; Θ)/∂θk are called its partial derivatives.

One immediate consequence of Definition 2.4.2 is that if F (X; Θ) is an even function

then its derivatives ∂F (X; Θ)/∂xj are all even and its derivatives ∂F (X; Θ)/∂θk are all

odd. In contrast, if F (X; Θ) is an odd function then the ∂F (X; Θ)/∂xj are all odd and

the ∂F (X; Θ)/∂θk are all even. Note that

∂θj
∂θi

= δij =

 1, if i = j,

0, if i 6= j.
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2.5 Basic differential rules for superdifferentiable func-

tions

Given two superfunctions F (X; Θ), G(X; Θ) ∈ RBm,n
N , for j = 1, 2, ...,m and k =

1, 2, ..., n, we have:

Rule 1

∂(F (X; Θ) +G(X; Θ))

∂xj
=

∂F (X; Θ)

∂xj
+
∂G(X; Θ)

∂xj
;

∂(F (X; Θ) +G(X; Θ))

∂θk
=

∂F (X; Θ)

∂θk
+
∂G(X; Θ)

∂θk
.

Rule 2

∂

∂xi
(F (X; Θ)G(X; Θ)) =

∂F (X; Θ)

∂xi
G(X; Θ) + F (X; Θ)

∂G(X; Θ)

∂xi
;

∂

∂θk
(F (X; Θ)G(X; Θ)) =

∂F (X; Θ)

∂θk
G(X; Θ) + (−1)deg(F (X;Θ))F (X; Θ)

∂G(X; Θ)

∂θk
,

if F (X; Θ) is homogenous.

Rule 3 For any real number λ,

∂(λF (X; Θ))

∂xj
= λ

∂F (X; Θ)

∂xj
;

∂(λF (X; Θ))

∂θk
= λ

∂F (X; Θ)

∂θk
.

Next we deal with higher derivatives of superdifferentiable function. For j, j′ ∈

{1, 2, ...,m} and k, k′ ∈ {1, 2, ..., } with k 6= k′, we have:

Rule 1
∂

∂xj

∂

∂xj′
F (X; Θ) =

∂

∂xj′

∂

∂xj
F (X; Θ).

Rule 2
∂

∂xj

∂

∂θk
F (X; Θ) =

∂

∂θk

∂

∂xj
F (X; Θ).
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Rule 3
∂

∂θk

∂

∂θk
F (X; Θ) = 0,

and
∂

∂θk

∂

∂θk′
F (X; Θ) = − ∂

∂θk′

∂

∂θk
F (X; Θ).

Rule 4 Note that every superfunction F (X; Θ) can be written in the form

F (X; Θ) =
∑

Λ

FΛ(X)ΘΛ, (2.27)

where Λ = {k1, k2, ..., kN(Λ)} with 1 ≤ k1 < k2 < · · · < kN(Λ) ≤ n and ΘΛ is a

product of θk factors of the form

ΘΛ = θk1θk2 · · · θkN(Λ)
.

With the expansion (2.27) for F (X; Θ)

∂

∂θn

∂

∂θn−1

· · · ∂
∂θ2

∂

∂θ1

F (X; Θ) = (−1)ndeg(F (1,2,...,n−1,n))F (1,2,...,n−1,n)(X).

The above calculation rules happen on every step of the calculation which involves

odd quantities. The degree of both even and odd quantities may not be shown in the

future calculation, but the parity of them is taken into account carefully in every step.
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Chapter 3

Symmetrygroups of

Grassmann-valued differential

equations

The symmetry group of a system of differential equations is the local group of transfor-

mations acting on the independent and dependent variables of the system with property

that it transforms solutions of the system to other solutions. See the book by Olver [13]

for background on symmetry groups for differential equations. In particular [13] is our

main source on Lie theory and infinitesimal techniques to get the determining system of

the symmetry group of a system of differential equations. Other good references for this

material are the books by Bluman and Cole [7] and Bluman, Cheviakov and Anco [26].

In this thesis, we say that this is how one gets the determining system in the usual case.

For us, the good news is that the procedure of getting the determining system of

the supersymmetry group of a system of super differential equations (super case) is very

similar to the usual case. Both cases follow the same steps to get the determining system.

1. Reduce to one-parameter Lie (super) transformations about the identity.

2. Apply the (super) prolongation formula to the (super) differential equations.

3. Replace the highest derivatives in the system from Step 2.
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4. Compute the coefficients of independent monomials of the dependent variables and

their derivatives.

5. The coefficients from Step 4 are determining equations for supersymmetries.

In this chapter, we will introduce Lie’s infinitesimal method for generating the defining

system of super differential equations. We apply this method to two typical example

super differential equations. For each example, the determination of structure constants

of the Lie superalgebra of supersymmetries will be done by the traditional method which

uses heuristic integration. Note that, later in Chapter 4, we will develop an alternative

method to find the Lie supercommutator table that is algorithmic and avoids heuristic

integration.

3.1 Supersymmetry group of super differential equa-

tions

The symmetry group of a system of Grassmann-valued differential equations is the local

group of transformations acting on the independent and dependent variables of the system

with property that it transforms solutions of the system to other solutions.

Let us consider the general case of a nonlinear system of Grassmann-valued differential

equations or superequations of s equations of order k = (k1; k2) denoted by

∆ν(X,Θ, A
(k1), Q(k2)) = 0, ν = 1, . . . , s, (3.1)

with m independent even variables X = (x1, . . . , xm), n independent odd variables Θ =

{θ1, . . . , θn}, q dependent even variables A = (A1, . . . , Aq) and p dependent odd variables

Q = (Q1, . . . , Qp).
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In the spirit of Lie theory, a one parameter ε local transformation has the form

X = Ω1
ε(X,Θ, A,Q),

Θ = Ω2
ε(X,Θ, A,Q),

A = Ω3
ε(X,Θ, A,Q),

Q = Ω4
ε(X,Θ, A,Q), (3.2)

where ε is an homogeneous Grassmann variable and denotes the supergroup parameter.

The supervector valued functions Ωi
ε, i = 1, . . . , 4 depend only on the variables X,Θ, A

and Q (and not on the derivatives of A and Q). The supersymmetry group of a system

of Grassmann-valued differential equations is the maximal supergroup of transformations

leaving (3.1) invariant.

Expanding each relations in (3.3) around the identity ε = 0, one can generate the

following infinitesimal transformations

xi = xi + εΞi(X,Θ, A,Q) +O(ε2), i = 1, . . . ,m,

θj = θl + εΓj(X,Θ, A,Q) +O(ε2), j = 1, . . . , n,

A
r

= Ar + εΦr(X,Θ, A,Q) +O(ε2), r = 1, . . . , q,

Q
l

= Ql + εΛl(X,Θ, A,Q) +O(ε2), l = 1, . . . , p,

where the functions Ξi,Γj,Φl and Λl are the infinitesimals of the transformations for the

independent and dependent (even and odd) variables.

A basis for the corresponding symmetry superalgebra H is given in terms of super-

vector fields

V =
m∑
i=1

Ξi ∂

∂xi
+

n∑
j=1

Γj
∂

∂θj
+

q∑
r=1

Φr ∂

∂Ar
+

p∑
l=1

Λl ∂

∂Ql
. (3.3)

Thus, the infinitesimal criterion for the invariance of (3.1) under the superalgebra H may

be expressed as

pr(k)V∆ν |∆=0 = 0, (3.4)
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where the k = (k1; k2)-th superprolongation of the vector field (3.3) is given by

pr(k)V = V +

q∑
r=1

∑
J

Φr
J

∂

∂ArJ
+

p∑
l=1

∑
K

Λl
K

∂

∂Ql
K

. (3.5)

In (3.5) J = (J1; J2) = (j1
1 , . . . , j

1
α; j2

1 , . . . , j
2
µ), K = (K1;K2) = (k1

1, . . . , k
1
β; k2

1, . . . , k
2
ν)

and 1 ≤ j1
α, j

2
µ, k

1
β, k

2
ν ≤ m + n are the multi-indices notations for differentiations with

respect to the xi and θj variables. Additional explanation of multi-indices notation is

given in Section 3.1.1. The coefficients Φr
J and Λl

K are given by

Φr
J = DJ

(
Φr −

m∑
i=1

ΞiAri −
n∑
j=1

ΓjArj

)
+

m∑
i=1

ΞiArJ,i +
n∑
j=1

ΓjArJ,j (3.6)

and

Λl
K = DK

(
Λl −

m∑
i=1

ΞiQl
i −

n∑
j=1

ΓjQl
j

)
+

m∑
i=1

ΞiQl
K,i +

n∑
j=1

ΓjQl
K,j, (3.7)

where Aki = ∂Ar/∂xi, A
r
j = ∂Ar/∂θj, Q

l
i = ∂Ql/∂xi and Ql

j = ∂Ql/∂θj.

Since the input equation (3.1) must be satisfied everywhere, the infinitesimal criterion

equation (3.4) is simplified with respect to (3.1). Then the dependencies on derivatives

of Ar and Ql are eliminatied by decomposition into coefficients of the monomials of the

derivatives of Ar and Ql. Equating these coefficients to zero forms the symmetry defining

system. In Section 3.2, instead of trying to exactly solve the defining system, we will

algorithmically find the structure constants without using integrations.

3.1.1 Multi-index notation

In the superprolongation formula (3.5) and the coefficient formulae (3.6) and (3.7), the

even dependent variables Φr and odd dependent variables Λl can be differentiated with

respect to any of the independent variables (x, θ). Hence we need multi-index notation

to denote the differentiations. The multi-index notation may look complicated, however,

the following small example will help the reader to easily understand formulae expressed

in this notation.
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Example 3.1.1. Consider a super differential equation with 1 even independent vari-

able x, 1 odd independent variable θ, 1 even dependent variable A and 1 odd dependent

variable. The corresponding infinitesimals are Ξ,Γ,Φ and Λ, respectively.

Then the supervector field is

V = Ξ
∂

∂x
+ Γ

∂

∂θ
+ Φ

∂

∂A
+ Λ

∂

∂Q
.

If this is a first order super differential equation, then we need the first order super-

prolongation of V

pr(1)V = V + Φx ∂

∂Ax
+ Φθ ∂

∂Aθ
+ Λx ∂

∂Qx

+ Λθ ∂

∂Λθ

,

where

Φx = Dx(Φ− ΞAx − ΓAθ) + ΞAxx + ΓAxθ,

Φθ = Dθ(Φ− ΞAx − ΓAθ) + ΞAθx + ΓAθθ,

Λx = Dx(Λ− ΞQx − ΓQθ) + ΞQxx + ΓQxθ,

Λθ = Dθ(Λ− ΞQx − ΓQθ) + ΞQθx + ΓQθθ.

Obviously, ΓAθθ and ΓQθθ vanish.

Remark 3.1.2. Here we follow Olver’s notation [13] to avoid numeric indices, replacing

these with superscripts or subscripts (x, θ, etc). Throughout this thesis, the lower subscript

with variables such as Axx means the usual derivative. We use superscript to denote the

coefficient notation to distinguish from our derivative subscript notation.

If we are considering a second order super differential equation, then we need the
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second order superprolongation of V which is given by

pr(2)V = V + Φx ∂

∂Ax
+ Φθ ∂

∂Aθ
+ Λx ∂

∂Qx

+ Λθ ∂

∂Λθ

+Φxx ∂

∂Axx
+ Φxθ ∂

∂Axθ
+ Φθθ ∂

∂Aθθ

+Λxx ∂

∂Qxx

+ Λxθ ∂

∂Qxθ

+ Λθθ ∂

∂Qθθ

,

where Φθθ = 0 and Λθθ = 0. The coefficients Φx, Φθ, Λx and Λθ are already known. The

remaining coefficients are

Φxx = (Dx)
2(Φ− ΞAx − ΓAθ) + ΞAxxx + ΓAxxθ,

φxθ = DxDθ(Φ− ΞAx − ΓAθ) + ΞAxθx + ΓAxθθ,

Λxx = (Dx)
2(Λ− ΞQx − ΓQθ) + ΞQxxx + ΓQxxθ,

Λxθ = DxDθ(Λ− ΞQx − ΓQθ) + ΞQxθx + ΓQxθθ,

where ΓAxθθ and ΓQxθθ vanish.

3.2 Finding structure constants using integration

We will use two examples to illustrate how to get the symmetry determining system and

how to find the structure constants in the traditional way - using heuristic integrations.

The first example is the simple and easily solved second order super differential equa-

tion

Qxx = 0, (3.8)

where x is the even dependent variable and Q is the odd dependent variable. We will use

this as our simplest illustrative example.

Our second and more complicated example is a well-known model, the super KdV

equation,

Qt = Qxxx − aθQQxx + aQQθx + (6− 3a)QθQx, (3.9)
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which is integrable when a = 3. It has two even independent variables, x and t, one

odd independent variable θ, and one odd dependent variable Q. The reader is especially

directed to the thesis of Ayari [19], where its supersymmetries are determined. In Chapter

4, we will use it to illustrate and address a difficulty that can occur in the algorithmic

determination of supersymmetries.

3.2.1 Supersymmetries of Qxx = 0

We determine the supersymmetry group of the first example (3.8) using the approach of

Section 3.1.

Let

V = Ξ(x,Q)
∂

∂x
+ Λ(x,Q)

∂

∂Q

be the supervector field on X×Q. We wish to determine all possible coefficient functions

Ξ(x,Q) and Λ(x,Q) so that the corresponding one-parameter group exp(εV ) is a (super)

symmetry group of the second order super differential equation. Hence we need to know

the second superprolongation. Recall the superprolongation formula (3.5) which is

pr(k)V = V +

q∑
r=1

∑
J

Φr
J

∂

∂ArJ
+

p∑
l=1

∑
K

Λl
K

∂

∂Ql
K

.

For this example, there is only one odd dependent variable. Hence, in this superprolon-

gation formula, there is no middle term and p = 1. The multi-index K = {(1; ), (2; )}.

Then the second order superprolongation is

pr(2)V = V + Λx ∂

∂Qx

+ Λxx ∂

∂Qxx

,

where

Λx = Dx(Λ− ΞQx) + ΞQxx

and

Λxx = Dxx(Λ− ΞQx) + ΞQxxx, (3.10)
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by the coefficient formula (3.7).

Applying pr(2)V to both sides of (3.8) yields

Λxx = 0.

Hence we have

Dxx(Λ− ΞQx) + ΞQxxx = 0 (3.11)

by equation (3.10). Expanding (3.11), one has

Λxx + (2ΛxQ − Ξxx)Qx = 0 (3.12)

Equating the coefficients of the monomial Qx and 1 to zero decomposes (3.12) into the

equivalent system  Λxx = 0,

2ΛxQ − Ξxx = 0.
(3.13)

Also, two other determining equations

ΞQQ = 0, and ΛQQ = 0

hold since Q is an odd variable. The defining system for (3.8) is

Λxx = 0,

2ΛxQ − Ξxx = 0,

ΞQQ = 0,

ΛQQ = 0.

(3.14)

The next goal is to find the Lie superalgebra structure resulting from the solution space

of the defining system (3.14).

The Gauss-like (or differential Gröbner) reduction procedure we apply to (3.14) re-

quires that we define an ordering on all derivatives of the infinitesimals Ξ and Λ.

To illustrate general features of such orderings, let ∆1 = Ξ and ∆2 = Λ. Setting
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α = (α1, α2) and β = (β1, β2) ∈ Z2
≥0, the first entry of α or β is the order of the derivatives

of ∆1 or ∆2 with respect to x. The second entry is the order of the derivatives of ∆1 and

∆2 with respect to Q. For example, the derivative Λxx is denoted by ∆2
(2,0) and ΞxQ is

denoted by ∆1
(1,1).

Now define a total ordering on all the ∆i
α, i = 1, 2. There are two cases |α| = |β| and

|α| < |β|. If |α| = |β| then

∆i
α ≺ ∆i

β ⇔ α ≺lex β, i = 1, 2

If |α| < |β| then

∆i
α ≺ ∆j

β, i, j = 1, 2.

Applying this to our simple example (3.8) yields the ordering

Ξ ≺ Λ ≺ Ξx ≺ ΞQ ≺ Λx ≺ ΛQ ≺ Ξxx ≺ ΞxQ ≺ ΞQQ ≺ Λxx ≺ ΛxQ ≺ ΛQQ ≺ · · · . (3.15)

This ordering is a particular case of the class of lex orderings given in the following

definition.

Definition 3.2.1 (Lexicographic Order). Let α = (α1, ..., αn) and β = (β1, ..., βn) ∈ Zn≥0.

We say α �lex β if, in the vector difference α − β ∈ Zn≥0, the most left nonzero entry is

positive.

Here are some examples:

a. (1, 2, 0) �lex (0, 3, 4) since α− β = (1,−1,−4);

b. (3, 2, 4) �lex (3, 2, 1) since α− β = (0, 0, 3);

c. for n-tuples, (1, 0, ..., 0) �lex (0, 1, 0, ..., 0) �lex · · · �lex (0, ..., 0, 1).

Returning to example (3.8), let us solve its the defining system (3.14). For this

defining system, we use the ordering (3.15). In the second equation

2ΛxQ − Ξxx = 0



32

ΛxQ � Ξxx so rewriting this equation in solved form with respect to the ordering (3.15)

yields

ΛxQ =
1

2
Ξxx, (3.16)

where ΛxQ is called the leading term of (3.16). We cancel the leading terms of the

equations via integrability conditions as follows Λxx = 0,

ΛxQ = 1
2
Ξxx,

⇒

 ΛxxQ = 0,

ΛxQx = 1
2
Ξxxx,

⇒ Ξxxx = 0,

and  ΛxQ = 1
2
Ξxx,

ΛQQ = 0,
⇒

 ΛxQQ = 1
2
ΞxxQ,

ΛxQQ = 0,
⇒ ΞxxQ = 0.

We get two new equations

Ξxxx = 0,

ΞxxQ = 0.

By adjoining these two equations to the defining system (3.14) , we finally get all 6

determining equations 

Λxx = 0,

ΛxQ = 1
2
Ξxx,

ΞQQ = 0,

ΛQQ = 0,

Ξxxx = 0,

ΞxxQ = 0.

(3.17)

The solution of the system by integration is elementary. First, the equations ΞQQ = 0

and ΛQQ = 0 show that Λ and Ξ are linear in the variable Q. Suppose that

Λ = f1(x)Q+ f2(x) (3.18)



33

and

Ξ = g1(x)Q+ g2(x), (3.19)

where f1(x), g2(x) are even functions with respect to x and f2(x), g1(x) are odd functions

with respect to x which are all to be determined. The equation Λxx = 0 implies

f ′′1 (x)Q+ f ′′2 (x) = 0

which requires

f ′′1 (x) = 0 and f ′′2 (x) = 0.

Thus

f1(x) = c1x+ c2 and f2(x) = α1x+ α2,

where c1, c2 are two even constants and α1, α2 are odd constants. Hence we have

Λ = (c1x+ c2)Q+ α1x+ α2

which implies

ΛxQ = c1.

The second equation ΛxQ = 1
2
Ξxx in (3.17) requires that

g′′1(x)Q+ g′′2(x) = 2c1

and

g′′1(x) = 0 and g′′2(x) = 2c1.

Then

g1(x) = α3x+ α4 and g2(x) = c1x
2 + c3x+ c4,

where α3, α4 are two odd constants and c3, c4 are two even constants. We conclude that

the most general infinitesimal symmetry of the second order super differential equation
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has vector field coefficient functions

Λ = (c1x+ c2)Q+ α1x+ α2,

Ξ = (α3x+ α4)Q+ c1x
2 + c3x+ c4,

where c1, ..., c4 are arbitrary even constants and α1, ..., α4 are arbitrary odd constants.

Thus the Lie superalgebra of infinitesimal symmetries of the (3.8) is spanned by the eight

basis generators

L1 = ∂x,

L2 = x∂x,

L3 = Q∂Q,

L4 = x2∂x + xQ∂Q,

L5 = ∂Q,

L6 = x∂Q,

L7 = Q∂x,

L8 = xQ∂x,

where L1, ..., L4 are four even basis generators and L5, ..., L8 are four odd basis generators.

Suppose that H = H0 +H1. The the even basis L1, ..., L4 generate the Lie algebra H0.

As is well-known, it is a natural subalgebra of H and the commutator table of Lie algebra

is anti-symmetric and the diagonal entries are zero. The resulting supercommutators



35

[Li, Lj], where i ≤ j and i = 1, ..., 4, j = 2, ..., 4 are

[L1, L2] = ∂x(x∂x)− (−1)0·0x∂x(∂x) = ∂x = L1,

[L1, L3] = ∂x(Q∂Q)− (−1)0·0Q∂Q(∂x) = 0,

[L1, L4] = [∂x, x
2∂x + xQ∂Q] = [∂x, x

2∂x] + [∂x, xQ∂Q]

= ∂x(x
2∂x)− (−1)0·0x2∂x(∂x) + ∂x(xQ∂Q)− (−1)0·0xQ∂Q(∂x)

= 2x∂x +Q∂Q = 2L2 + L3,

[L2, L3] = x∂x(Q∂Q)− (−1)0·0Q∂Q(x∂x) = 0,

[L2, L4] = [x∂x, x
2∂x + xQ∂Q] = [x∂x, x

2∂x] + [x∂x, xQ∂Q]

= x∂x(x
2∂x)− (−1)0·0x2∂x(x∂x) + x∂x(xQ∂Q)− (−1)0·0xQ∂Q(x∂x)

= x2∂x + xQ∂Q = L4,

[L3, L4] = [Q∂Q, x
2∂x + xQ∂Q] = [Q∂Q, x

2∂x] + [Q∂Q, xQ∂Q]

= Q∂Q(x2)∂x − (−1)0·0x2∂x(Q)∂Q +Q∂Q(xQ)∂Q − (−1)0·0xQ∂Q(Q∂Q)

= Qx∂Q −Qx∂Q = 0.

It is easy to see that [H0,H0] ⊆ H0 which is just the left-upper part of the Table 3.2.1.
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Then one computes [H0,H1],

[L1, L5] = ∂x(∂Q)− (−1)0·1∂Q(∂x) = 0,

[L1, L6] = ∂x(x∂Q)− (−1)0·1x∂Q(∂x) = ∂Q = L5,

[L1, L7] = ∂x(Q∂x)− (−1)0·1Q∂x(∂x) = 0,

[L1, L8] = ∂x(xQ∂x)− (−1)0·1xQ∂x(∂x) = Q∂x = L7,

[L2, L5] = x∂x(∂Q)− (−1)0·1∂Q(x∂x) = 0,

[L2, L6] = x∂x(x∂Q)− (−1)0·1x∂Q(x∂x) = x∂Q = L6,

[L2, L7] = x∂x(Q∂x)− (−1)0·1Q∂x(x∂x) = −Q∂x = −L7,

[L2, L8] = x∂x(xQ)∂x − (−1)0·1xQ∂x(x)∂x

= xQ∂x − xQ∂x = 0,

[L3, L5] = Q∂Q(1)∂Q − (−1)0·1∂Q(Q)∂Q = −Q∂Q = −L5,

[L3, L6] = Q∂Q(x)∂Q − (−1)0·1x∂Q(Q)∂Q = −x∂Q = −L6,

[L3, L7] = Q∂Q(Q)∂x − (−1)0·1Q∂x(Q)∂Q = Q∂x = L7,

[L3, L8] = Q∂Q(xQ)∂x − (−1)0·1xQ∂x(Q)∂Q

= Qx∂x = xQ∂x = L8,

[L4, L5] = [x2∂x + xQ∂Q, ∂Q] = [x2∂x, ∂Q] + [xQ∂Q, ∂Q]

= x2∂x(1)∂Q − (−1)0·1∂Q(x2)∂x + xQ∂Q(1)∂Q − (−1)0·1∂Q(xQ)∂Q

= −x∂Q = −L6,

[L4, L6] = [x2∂x + xQ∂Q, x∂Q] = [x2∂x, x∂Q] + [xQ∂Q, x∂Q]

= x2∂x(x)∂Q − (−1)0·1x∂Q(x2)∂x + xQ∂Q(x)∂Q − (−1)0·1x∂Q(xQ)∂Q

= x2∂Q − x2∂Q = 0,

[L4, L7] = [x2∂x + xQ∂Q, Q∂x] = [x2∂x, Q∂x] + [xQ∂Q, Q∂x]

= x2∂x(Q)∂x − (−1)0·1Q∂x(x
2)∂x + xQ∂Q(Q)∂x − (−1)0·1Q∂x(xQ)∂Q

= −2Qx∂x + xQ∂x = −xQ∂x = −L8,

[L4, L8] = [x2∂x + xQ∂Q, Q∂x] = [x2∂x, Q∂x] + [xQ∂Q, Q∂x]

= x2∂x(Q)∂x − (−1)0·1Q∂x(x
2)∂x + xQ∂Q(Q)∂x − (−1)0·1Q∂x(xQ)∂Q

= −2Qx∂x + xQ∂x = −xQ∂x = −L8.
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This implies [H0,H1] ⊆ H1. This is the right-upper part of the Table 3.2.1. The left-

lower part of Table 3.2.1 is obtained by anti-symmetry. The last part is determined by

computing [H1,H1]. This yields the commutators:

[L5, L5] = ∂Q(1)∂Q − (−1)1·1∂Q(1)∂Q = 0,

[L5, L6] = ∂Q(x)∂Q − (−1)1·1x∂Q(1)∂Q = 0,

[L5, L7] = ∂Q(Q)∂x − (−1)1·1Q∂x(1)∂Q = ∂x = L1,

[L5, L8] = ∂Q(xQ)∂x − (−1)1·1xQ∂x(1)∂Q = x∂x = L2,

[L6, L6] = x∂Q(x)∂Q − (−1)1·1x∂Q(x)∂Q = 0,

[L6, L7] = x∂Q(Q)∂x − (−1)1·1Q∂x(x)∂Q

= x∂x +Q∂Q = L2 + L3,

[L6, L8] = x∂Q(xQ)∂x − (−1)1·1xQ∂x(x)∂Q

= x2∂x + xQ∂Q = L4,

[L7, L7] = Q∂x(Q)∂x − (−1)1·1Q∂x(Q)∂x = 0,

[L7, L8] = Q∂x(xQ)∂x − (−1)1·1xQ∂x(Q)∂x = 0,

[L8, L8] = xQ∂x(xQ)∂x − (−1)1·1xQ∂x(xQ)∂x = 0.

The above commutators are consistent with the property of Lie superalgebra, [H1,H1] ⊆

H0. Note that the Lie superbracket of same odd operator is not necessarily zero. Hence,

for this example, one needs to compute [Li, Li], where i = 5, ..., 8.

Finally, the complete list of supercommutation relations is given by Table 3.2.1.

3.2.2 Supersymmetries of Super KdV equation

This work is concerned with the study of the supersymmetric Korteweg-de Vries (sKdV)

equation:

Qt = Qxxx − aθQQxx + aQQθx + (6− 3a)QθQx, (3.20)
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L1 L2 L3 L4 L5 L6 L7 L8

L1 0 L1 0 2L2 + L3 0 L5 0 L7

L2 −L1 0 0 L4 0 L6 −L7 0

L3 0 0 0 0 −L5 −L6 L7 L8

L4 −2L2 − L3 −L4 0 0 −L6 0 −L8 0

L5 0 0 L5 L6 0 0 L1 L2

L6 −L5 −L6 L6 0 0 0 L2 + L3 L4

L7 0 L7 −L7 L8 L1 L2 + L3 0 0

L8 −L7 0 −L8 0 L2 L4 0 0

.

Table 3.2.1: Supercommutator table of the defining system of Qxx = 0.

which is integrable when a = 3. Notice that there are two even independent variables, x

and t, one odd independent variable, θ, and one odd dependent variable, Q.

We consider the following infinitesimals

x = x+ εΞ1(x, t, θ,Q) +O(ε2),

t = t+ εΞ2(x, t, θ,Q) +O(ε2),

θ = θ + εΓ(x, t, θ,Q) +O(ε2),

Q = Q+ εΛ(x, t, θ,Q) +O(ε2),

where Ξ1(x, t, θ,Q) and Ξ2(x, t, θ,Q) are even functions, while Γ(x, t, θ, Q) and Λ(x, t, θ, Q)

are odd functions.

Let

v = Ξ1(x, t, θ,Q)
∂

∂x
+ Ξ2(x, t, θ,Q)

∂

∂t
+ Γ1(x, t, θ, Q)

∂

∂θ
+ Λ1(x, t, θ,Q)

∂

∂Q
.

We wish to determine all possible vector field coefficient functions Ξ1(x, t, θ, Q), Ξ2(x, t, θ,Q),
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Γ(x, t, θ, Q) and Λ(x, t, θ,Q) so that the corresponding one-parameter group is a super-

symmetry group of the super KdV equation. Compute the third prolongation

pr(3)v = v + Λx ∂

∂Qx

+ Λt ∂

∂Qt

+ Λθ ∂

∂Qθ

+Λxx ∂

∂Qxx

+ Λxt ∂

∂Qxt

+ Λxθ ∂

∂Qxθ

+Λtt ∂

∂Qtt

+ Λtθ ∂

∂Qtθ

+ Λθθ ∂

∂Qθθ

+Λxxx ∂

∂Qxxx

+ Λxxt ∂

∂Qxxt

+ Λxxθ ∂

∂Qxxθ

+Λxtt ∂

∂Qxtt

+ Λxtθ ∂

∂Qxtθ

+ Λxθθ ∂

∂Qxθθ

+Λttt ∂

∂Qttt

+ Λttθ ∂

∂Qttθ

+ Λtθθ ∂

∂Qtθθ

+ Λθθθ ∂

∂Qθθθ

.

Applying pr(3)v on both sides of (3.9) yields

Λt = Λxxx−aΓQQxx−aθΛQxx−aθQΛxx+aΛQθx+aQΛθx+(6−3a)(ΛθQx+QθΛ
x). (3.21)

Here

Λx = Dx(Λ− Ξ1Qx − Ξ2Qt − ΓQθ) + Ξ1Qxx + Ξ2Qxt + ΓQxθ,

Λxx = (Dx)
2(Λ− Ξ1Qx − Ξ2Qt − ΓQθ) + Ξ1Qxxx + Ξ2Qxxt + ΓQxxθ,

Λxxx = (Dx)
3(Λ− Ξ1Qx − Ξ2Qt − ΓQθ) + Ξ1Qxxxx + Ξ2Qxxxt + ΓQxxxθ,

Λt = Dt(Λ− Ξ1Qx − Ξ2Qt − ΓQθ) + Ξ1Qtx + Ξ2Qtt + ΓQtθ,

Λθx = DxDθ(Λ− Ξ1Qx − Ξ2Qt − ΓQθ) + Ξ1Qθxx + Ξ2Qθxt + ΓQθxθ.

Plugging Λx,Λxx,Λxxx,Λt, and Λθx into (3.21) and then replacing Qxxx by

Qt + aθQQxx − aQQθx − (6− 3a)QθQx

yields a large symmetry defining system.

Equating the coefficients of the various monomials in the first, second and third order
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partial derivatives of Q to zero, we find 28 determining equations for the symmetry group

of super KdV equation which are shown in Table 3.2.2.

After simplifying those 28 determining equations, we get a simpler equivalent system

of 7 determining equations

Λt − Λxxx − aQΛxθ + aθQΛxx = 0, (3.22)

Γt + aQΛxQ − (3a− 6)Λx = 0, (3.23)

3Ξ1
x − Ξ2

t = 0, (3.24)

2aQΞ1
x − aQΓθ + aΛ = 0, (3.25)

aθQΞ1
x − aQΓ + aθΛ + 3Ξ1

xx − 3ΛxQ + aQΞθ = 0, (3.26)

(3a− 6)Λθ + 2aθQΛxQ − aθQΞ1
xx − Ξ1

t − 3ΛxxQ + Ξ1
xxx + aQΛθQ + aQΞ1

xθ = 0, (3.27)

(3a− 6)ΛQ − (3a− 6)Γθ + (6a− 12)Ξ1
x = 0, (3.28)

where Ξ1 = Ξ1(x, t, θ),Ξ2 = Ξ2(t),Γ = Γ(t, θ), and Λ = Λ(x, t, θ, Q).

The solution of the determining equations is elementary. First, (3.24) implies

Ξ1
xx = 0.

So suppose that

Ξ1 = f1(t, θ)x+ f2(t, θ). (3.29)

Substituting (3.29) into (3.24) yields

f1(t, θ) =
1

3
Ξ2
t (t),

which implies that f1 does not depend on θ. Hence we have

Ξ1 =
1

3
Ξ2
t (t)x+ f2(t, θ). (3.30)
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Suppose

Γ(t, θ) = h1(t)θ + h2(t) (3.31)

and

Λ(x, t, θ,Q) = g1(x, t, θ)Q+ g2(x, t, θ). (3.32)

By multiplying Q to both sides of (3.25) with Q, we have

QΛ = 0. (3.33)

By substituting (3.32) into (3.33), this yields g2(x, t, θ) = 0. Hence

Λ(x, t, θ,Q) = g1(x, t, θ)Q. (3.34)

By substituting (3.30), (3.31) and (3.34) into (3.25), we get g1(x, t, θ) = h1(t) − 2
3
Ξ2
t (t).

Hence we have

Λ(x, t, θ,Q) =
(
h1(t)− 2

3
Ξ2
t (t)
)
Q, (3.35)

which means that Λ(x, t, θ,Q) does not depend on x and θ. Hence (3.22) requires that

Λt = 0, which implies that Λ(x, t, θ,Q) only depends on Q. Therefore let h1(t) be an

even constant c1 and Ξ2
t (t) = c2. Also, (3.23) requires Γt = 0, which implies that Γ is a

function of t only. Hence Γ = c1θ + α1 where α1 is an odd constant. So far we have

Ξ1 =
1

3
c2x+ f2(t, θ), (3.36)

Ξ2 = c2t+ c3, (3.37)

where c3 is an arbitrary even constant, and

Γ = c1θ + α1, (3.38)

Λ =
(
c1 −

2

3
c2

)
Q. (3.39)

Equation (3.27) requires that Ξ1
t = 0 which implies that Ξ1 dose not depend on t. Hence
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f2(t, θ) = α2θ + c4, where α2 is an arbitrary odd constant and c4 is an arbitrary even

constant. Rewrite

Ξ1 =
1

3
c2x+ α2θ + c4. (3.40)

Substituting (3.40), (3.38), and (3.39) into (3.26) yields c1 = 1
6
c2 and α2 = −α1. Hence

the infinitesimals are

Ξ1 =
1

3
c2x− α1θ + c4, (3.41)

Ξ2 = c2t+ c3, (3.42)

Γ =
1

6
c2θ + α1, (3.43)

Λ = −1

2
c2Q. (3.44)

The above solutions of Ξ1, Ξ2, Γ and Λ give us

v =
(1

3
c2x− α1θ + c4

) ∂
∂x

+ (c2t+ c3)
∂

∂t
+
(1

6
c2θ + α1

) ∂
∂θ

+
(
− 1

2
c2Q

) ∂

∂Q

= c2

(1

3
x
∂

∂x
+ t

∂

∂t
+

1

6
θ
∂

∂θ
− 1

2
Q
∂

∂Q

)
+ c3

∂

∂t
+ c4

∂

∂x
+ α1

(
− θ ∂

∂x
+

∂

∂θ

)
,

which leads a (3|1)-dimensional superalgebra. This means that it is generated by 3 even

generator L1, L2, L3 and one odd generator L4 given by

L1 = ∂x,

L2 = ∂t,

L3 =
1

3
x∂x + t∂t +

1

6
θ∂θ −

1

2
Q∂Q,

L4 = ∂θ − θ∂x.
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By the definition of Lie superbracket (2.10), we have

[L1, L2] = ∂x(1)∂t − (−1)0·0∂t(1)∂x = 0,

[L1, L3] = [∂x,
1

3
x∂x + t∂t +

1

6
θ∂θ −

1

2
Q∂Q]

=
1

3
[∂x, x∂x] + [∂x, t∂t] +

1

6
[∂x, θ∂θ] +−1

2
[∂x, Q∂Q]

=
1

3
(∂x(x)∂x − (−1)0·0x∂x(1)∂x) + ∂x(1)∂t − (−1)0·0∂t(1)∂x

+
1

6
(∂x(θ)∂θ − (−1)0·0θ∂θ(1)∂x)−

1

2
(∂x(Q)∂Q − (−1)0·0Q∂Q(1)∂x)

=
1

3
∂x =

1

3
L1

[L1, L4] = [∂x, ∂θ − θ∂x] = [∂x, ∂θ]− [∂x, θ∂x]

= ∂x(1)∂θ − (−1)0·1∂θ(1)∂x + ∂x(θ)∂x − (−1)0·1θ∂x(1)∂x = 0,

[L4, L4] = [∂θ − θ∂x, ∂θ − θ∂x]

= [∂θ, ∂θ]− [∂θ, θ∂x]− [θ∂x, ∂θ] + [θ∂x, θ∂x]

= ∂x(1)∂t − (−1)1·1∂t(1)∂x − (∂θ(θ)∂x − (−1)1·1θ∂x(1)∂θ)

= −(θ∂x(1)∂θ − (−1)1·1∂θ(θ)∂x) + (θ∂x(θ)∂x − (−1)1·1θ∂x(θ)∂x)

= −∂x − ∂x = −2L1.

In summary, the supercommutator table of the Lie superalgebra is given by Table

3.2.3.
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Monomials Coefficient

QxθQx −2aθQΓQ + 6ΓxQ = 0

QθQx −2aθQΓxQ + (3a− 6)ΛQ − (3a− 6)Γθ

+(6a− 12)Ξ1
x + aQΞ1

xQ − aQΓθQ + 3ΓxxQ = 0

Qx (3a− 6)Λθ + 2aθQΛxQ − aθQΞ1
xx − Ξ1

t

−3ΛxxQ + Ξ1
xxx + aQΛθQ + aQΞ1

xθ = 0

Qθ (3a− 6)Λθ − aθQΓxx − Γt + Γxxx − aQΛxQ + aQΓxθ = 0

QxxθQx 3ΓQ = 0

QxQxx −3Ξ1
xQ − aθQΞ1

Q = 0

QxθQxx 3ΓQ = 0

QtQx 3Ξ2
xxQ − 2aθQΞ2

xQ − (3a− 6)Ξ2
θ + aQΞ2

θQ + 3Ξ1
Q = 0

1 −aQΛxθ − Λxxx + Λt + aθQΛxx = 0

QtQxx 3Ξ2
xQ = 0

QxQtx 2aθQΞ2
Q − 6Ξ2

xQ = 0

(Qθ)
2Qx (3a− 6)Γθ = 0

QθQtQx −(3a− 6)Ξ2
Q = 0

Qxθ 2aQΞ1
Q − 2aθQΓx + 3Γxx − 2aQΞ1

x + aQΓθ − aΛ = 0

Qxx aθQΞ1
x − aQΓ + aθΛ + 3Ξ1

xx − 3ΛxQ + aQΞ1
θ = 0

Qt −aθQΞ2
xx + Ξ1

x − Ξ2
t + Ξ2

xxx + aQΞ2
xθ = 0

Qtx −2aθQΞ2
x + 3Ξ2

xx + aQΞ2
θ = 0

QθQxx aQΞ1
Q + 3ΓxQ = 0

QθQt aQΞ2
xQ − (3a− 6)Ξ2

x = 0

QtθQx aQΞ2
Q = 0

QθQtx aQΞ2
Q = 0

QθQxθ aQΓQ = 0

(Qθ)
2 (3a− 6)Γx − aQΓxQ = 0

QxxQtx 3Ξ2
Q = 0

Qtxx 3Ξ2
x = 0

Qxxθ 3Γx = 0

Qtθ aQΞ2
x = 0

QxQtxx 3Ξ2
Q = 0

.

Table 3.2.2: Unsimplified determining system of 28 equations for the super KdV.
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L1 L2 L3 L4

L1 0 0 1
3
L1 0

L2 0 0 L2 0

L3 −1
3
L1 −L2 0 −1

6
L4

L4 0 0 1
6
L4 −2L1

.

Table 3.2.3: Supercommutator table of the defining system of the super KdV.
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Chapter 4

Algorithmic determination of

structure of supersymmetry algebras

of super DEs

The main results of this thesis will be given in this chapter, which are two theorems

and two algorithms. The theorems are the Existence and Uniqueness Theorem in Section

4.4.2 and Structure Constants Theorem 4.5.1 and its proof in Section 4.5. The algorithms

are the MONO Expansion Algorithm 4.2.3 in Section 4.2 and the Structure Constants

Algorithm 4.5.2 in Section 4.5. Both algorithms are illustrated by application to simple

example Qxx = 0 and to more complicated example of the super KdV equation.

In Chapter 3, we determine the structure constants for both these examples by inte-

grating their defining equations. But solving differential equations and super differential

equations by integration is not guaranteed to always be successful. Reid and his collab-

orators developed a method to find the structure constants without integrations for the

usual non-Grassmannian case. In this chapter, inspired by their method, we will develop

an algorithm to find structure constants for finite-dimensional supersymmetries without

integrations.
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4.1 Regular super differential equations

The definition of super differential equation has been introduced in Chapter 2. Now we

give the definition of a regular/irregular super differential equations and a regular/irreg-

ular system of super differential equations.

Definition 4.1.1. Suppose that φ = 0 is a super differential equation which has highest

derivative v with respect to a ranking �. Then φ is regular with respect � if ∂φ
∂v

is even.

Otherwise φ is called an irregular differential equation with respect to �.

Definition 4.1.2. Suppose that � is a ranking. If a super differential equation system

does not contain any irregular super differential equations with respect to �, then it is

a regular system of super differential equations with respect to �. Otherwise, it is an

irregular system of super differential equations with respect to �.

Irregular super differential equations are not trivial in super calculations. For example,

consider the super differential equation

φ = Q · v − w = 0,

where v denotes the highest derivative of the super differential equation under a certain

ranking � and Q is odd. Then ∂φ/∂v = Q is odd. By Definition 4.1.1, it is not a regular

differential equation, and it is an irregular super differential equation. It can not be

written in solved form since the coefficient Q can not be divided to the right hand side

of the equation. Although an obvious phenomenon, it is critical to the theory underlying

algorithms which will be constructed later in this chapter. Hence, we need a way to

change irregular super differential equation systems to regular ones. We show how to do

this in the next section.
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4.2 MONO expansion algorithm

4.2.1 MONO expansion

MONO expansion is a method for converting irregular super differential systems into

regular ones.

We define odd variable monomials and then introduce MONO expansion which de-

composes expansions into independent odd variable monomials. For a super function

F (X,Θ), where X = (x1, ..., xm) are even independent variables and Θ = (θ1, ..., θn) are

odd independent variables, the odd variable monomials are all the linearly independent

products consisting of some or all of the θi’s. For example, if n = 2, there are three

odd variable monomials θ1, θ2 and θ1θ2 and they are linearly independent. For n odd

variables, there are 2n − 1 linearly independent odd variable monomials. In fact, when

one decomposes a super function by its odd variable monomials, we actually decompose

the super function by odd variable monomials and the unit 1 ( which is also linearly

independent of odd variable monomials).

The decomposition by odd variable monomials follows from the definition of a Grass-

mann algebra. According to Definition 2.2.2, two independent odd variables θ1 and θ2

generate a 4 - dimensional Grassmann algebra with basis {1, θ1, θ2, θ1θ2}. For example,

if F (x, θ1, θ2) is an even super function then

F (x, θ1, θ2) = f1(x) + g1(x)θ1 + g2(x)θ2 + f2(x)θ1θ2, (4.1)

where the fi(x) are even functions and the gi(x) are odd functions for i = 1, 2. Similarly,

the MONO expansion of an odd super function G(x, θ1, θ2) can be written as

G(x, θ1, θ2) = g̃1(x) + f̃1(x)θ1 + f̃2(x)θ2 + g̃2(x)θ1θ2, (4.2)

where f̃i(x) are even functions and g̃i(x) are odd functions, i = 1, 2. The odd variables
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θ1, θ2 and θ3 generate an 8 - dimensional Grassmann algebra with basis

{1, θ1, θ2, θ3, θ1θ2, θ1θ3, θ2θ3, θ1θ2θ3}.

More generally, consider a super function F (X,Θ), where X = (x1, ..., xm) are even

independent variables and Θ = (θ1, ..., θn) are odd independent variables. Suppose that

ω1, ..., ω2n−1 are the odd variable monomials generated by the odd independent variables

θ1, ..., θn. Then F (X,Θ) can be expanded as

F (X,Θ) = f0(X) +
2n−1∑
i=1

fi(X)ωi, (4.3)

in term of functions fj. This is called the MONO expansion of F .

One of the advantages of MONO expansion is giving the odd dependencies of a super

function explicitly. The other advantage is more important. Substituting the MONO

expansions into the original system and taking coefficients of odd variable monomials

yields a new regular system. The new system does not depend on odd variables. Figure

4.2.1 shows this procedure.
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Input: system of super functions

Compute MONO expansions of the super functions

Substitute MONO expansion expressions into the system

Select coefficients of odd variable monomials

Equate the coefficients to zero

Output equivalent system: regular with no odd independent variables

Figure 4.2.1: The MONO expansion procedure
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4.2.2 Two commutative Maple commands

The MAPLE commands rifsimp and initialdata can be used to simplify overdeter-

mined systems of PDEs or ODEs. They are designed for the commutative case. The

underlying idea of rifsimp is similar to Gröbner bases. Under a given ordering, the

calculation of dividing the coefficient of the leading term and moving it to the right hand

side of the equation is a fundamental operation and is always possible in commutative

case. But in our case, if the coefficient of the leading term is odd, we can not divide by it.

So we need certain assumptions to be able to apply the commutative algorithm rifsimp

to non-commutative calculations.

4.2.3 MONO expansion algorithm

MONO is the Maple procedure for exacting the MONO expansion of super functions [

See Appendix A.1].

Algorithm 1 MONO expansion algorithm

Input: Defining system S.

1. Decompose each of the infinitesimals by MONO expansion.

2. Substitute them into the input system S.

3. Equating all the coefficients of independent odd variable monomials to zero
forms the new defining system Sred.

4. Send Sred to the commutative Maple commands rifsimp and initialdata.

Output: Return Sred in rifsimp form and the size of the symmetry algebra.

One immediately has the following observations.

Remark 4.2.1.

1. This algorithm gives the details of the method outlined in Figure 4.2.1.

2. The new system in step 3 is regular and it does not depend on odd variables.
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3. Suppose that H is the supersymmetry algebra. Then

the size of the symmetry algebra output = dimH0 + dimH1.

Definition 4.2.2 (Reduced defining system). The new defining system generated at step

3 in Algorithm 4.2.3 is called the reduced defining system.

As Remark 4.2.1 mentioned, the reduced defining system is regular and has no odd

independent variables. For calculational convenience, we can assume without loss of

generality that the reduced defining system is monic.

4.3 MONO expansion applications

4.3.1 Applying MONO expansion

We first apply MONO expansion to general super differential equation system. Then we

apply it to specific examples.

For a super differential equation system

∆(X,Θ, A(k1), Q(k2)) = 0,

the corresponding infinitesimals

Ξi(X,Θ, A,Q), Γj(X,Θ, A,Q), Φl(X,Θ, A,Q) and Λk(X,Θ, A,Q)

are the infinitesimals of the transformations for both independent and dependent (even

and odd) variables, X,Θ, A and Q. To solve the determining equations means finding

Ξi, Γj, Φl and Λk. In the last chapter, we solved for the infinitesimals by integration.

In this chapter, we will avoid integration and solve the same determining system by a

new method. We first decompose the unknowns (infinitesimals) by MONO expansion.

In the determining equations, there are n + p odd independent variables θ1, ..., θn and

Q1, ..., Qp. We decompose Ξi, Γj, Φl and Λk with respect to all the monomials of those
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n + p odd independent variables θ1, ..., θn and Q1, ..., Qp. Hence we have 2n+p−1 linearly

independent monomials denoted by ω1, ..., ωs, where s = 2n+p−1. For convenience in what

follows, we suppose that ω0 = 1. Hence, the decompositions of the infinitesimals are

Ξi = P i
10

(X,A) + P i
11

(X,A)ω1 + ...+ P i
1s(X,A)ωs =

s∑
µ=0

P i
1µωµ,

Γj = P j
20

(X,A) + P j
21

(X,A)ω1 + ...+ P j
2s(X,A)ωs =

s∑
µ=0

P j
2µωµ,

Φl = P l
30

(X,A) + P l
31

(X,A)ω1 + ...+ P l
3s(X,A)ωs =

s∑
µ=0

P j
3µωµ,

Λk = P k
40

(X,A) + P k
41

(X,A)ω1 + ...+ P k
4s(X,A)ωs =

s∑
µ=0

P j
4µωµ,

where P i
1µ(X,A), ..., P k

4µ(X,A) are super functions only depending on even variables X

and A.

Remark 4.3.1. We use P i
1µ(X,A), ..., P k

4µ(X,A) to denote the coefficients of the odd

monomials. In particular expansions, we will use PE’s and PO’s to denote even and odd

coefficients respectively.

We substitute these expansions into the determining system. Then we get a new sys-

tem without any odd independent variables by considering the even or odd parity in each

super differential equation in the determining system. The advantage of MONO expan-

sion is to eliminate dependence on odd variables in the system. This often considerably

simplifies the system. The following example illustrates this simplification.

Example 4.3.2. Let Ξx(x, θ,Q) = 0 be the determining equation, where Ξ is the even

dependant variable which depends on an even independent variable, x, and two odd inde-

pendent variables, θ and Q. The MONO expansion of Ξ(x, θ,Q) is

Ξ(x, θ1, θ2) = PE1(x) + PO1(x)θ1 + PO2(x)θ2 + PE2(x)θ1θ2.
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By substitution, one gets the new system

dPE1(x)

dx
= 0,

dPO1(x)

dx
= 0,

dPO2(x)

dx
= 0,

dPE2(x)

dx
= 0.

Although there are more equations in the system, they are trivially solvable and do not

depend on odd independent variables.

4.3.2 Applying the MONO algorithm to examples

Let us apply MONO to two examples which were introduced in the previous chapter.

Example 4.3.3. Apply the MONO algorithm to Qxx = 0, which was presented in Section

3.2.1.

The input is its defining system (3.13).

Input: Defining system

S =

 Λ(x,Q)xx = 0,

−Ξ(x,Q)xx + 2Λ(x,Q)xQ = 0.
(4.4)

1. The MONO expansion of infinitesimals are Ξ(x,Q) = f1(x) + g1(x) ∗Q,

Λ(x,Q) = g2(x) + f2(x) ∗Q.
(4.5)
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2. Substituting the expansions (4.5) into the input system (4.4), we get g2xx + f2xx ∗Q = 0,

−f1xx +Q ∗ g1xx + 2f2x = 0.
(4.6)

3. Equate the coefficients of odd variable monomials, 1 and Q, to be zero. The

defining system is now

Sred =



g2xx = 0,

f2xx = 0,

f1xx = 2f2x,

g1xx = 0.

(4.7)

4. Send (4.7) to the commutative Maple commands rifsimp and initialdata.

The following figure is the detailded Maple output.

Figure 4.3.1: Maple output of the MONO algorithm applied to Qxx = 0.
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In Figure 4.3.1, the Maple output from initial data yields 8 initial conditions of the

form

PE11(x0) = C1, D(PE11)(x0) = C2, PE21(x0) = C3, D(PE21)(x0) = C4,

PO11(x0) = C5, D(PO1)(x0) = C6, PO21(x0) = C7, D(PO21)(x0) = C8,

so there is an 8-dimensional symmetry group. Since Maple commands, rifsimp and

initialdata are designed for commutative calculations, it treats input as commutative

calculations. In fact, it is a 4 | 4 - dimensional supersymmetry group. The dimension 8

returned by Maple output is the sum of even dimension and odd dimension of a finite

supersymmetry group.

By looking at the following diagram, one can easily graphically determine the dimen-

sion of the supersymmetry group.

f1
x f2

x

g1 x g2 x

Figure 4.3.2: Dimension analysis diagram for the defining system of Qxx = 0.

The number of red dots equal the dimension of the supersymmetry group. The para-

metric derivatives are the set

{f1, f1x, f2, f2x, g1, g1x, g2, g2x}.

In this set, the first four parametric derivatives are even and the other four are odd.

Hence it is a 4 | 4 - dimensional supersymmetry group. For analogous diagrams for

Gröbner bases of polynomials, see [28].
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The input for this example is already regular. In the same way the MONO expan-

sion algorithm can be applied to the reduced defining system and the dimension of its

supersymmetry group obtained. The next example shows the wonderful power of MONO

expansion for irregular systems.

Example 4.3.4. Apply the MONO algorithm to the defining system of the super KdV

equation (3.9).

The second example is the super KdV equation. Let us look at the simplified defining

system of the super KdV equation (3.22-3.28), which is also the input system:

Ξ1
xx = 0,

Ξ1
xθ = 0,

Ξ1
t = 0,

Ξ1
Q = 0,

Ξ2
x = 0,

Ξ2
t = 3Ξ1

x,

Ξ2
θ = 0,

Ξ2
Q = 0,

Γx = 0,

Γt = 0,

Γθ = Λ + 2QΞ1
x,

ΓQ = 0,

Λx = 0,

Λt = 0,

Λθ = 0,

ΛQ = −2Ξ1
x + Γθ

QΞ1
θ = QΓ− θΛ− θQΞ1

x, irregular.
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The last super differential equation of the system above

QΞ1
θ = QΓ− θΛ− θQΞ1

x (4.8)

is irregular if Ξ1
θ is the highest derivative. If one changes the ordering of the super

derivatives to make Ξ1
x the highest derivative, then the coefficient of Ξ1

x is θQ, which is

an even coefficient. They can be written in solved form

Ξ1
x =

1

θQ
(QΓ− θΛ−QΞ1

θ). (4.9)

But there is still no better way to solve (4.9) with a quantity like 1
θQ

. This emphasizes

the advantages of the MONO expansion algorithm which we now apply.

Step 1: The MONO expansions of the infinitesimals are
Ξ1

Ξ2

Γ

Λ

 =


g11 g12 f12

g21 g22 f22

f31 f32 g32

f41 f42 g42


(x,t)


θ

Q

θQ

+


f11

f21

g31

g41


(x,t)

, (4.10)

where f11, f12, f21, f22, f31, f32, f41, f42 are even functions depending on (x, t), and g11, g12,

g21, g22, g31, g32, g41, g42 are odd functions also depending on (x, t).

Step 2 and 3: By substituting the expansion back to the input defining system and

equating the coefficients of odd variable monomials for each equation, one forms the

reduced defining system

(g11)x = (g11)t = g12 = f12 = 0, (f11)x = 2f31, (f11)t = 0;

g21 = g22 = f22 = 0, (f21)x = 0, (f21)t = 6f31;

(f31)x = (f31)t = f32 = g32 = 0, g31 = −g11;

f41 = g42 = 0, f42 = −3f31, g41 = 0.

(4.11)

This reduced defining system is regular. Therefore, it can be sent to the Maple commu-
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tative commands rifsimp and initialdata.

The Maple output shows that the super KdV equation has a 4 - dimensional symmetry

group. Actually it is a 3 | 1 - dimensional supersymmetry group. As in the previous

example, the diagram helps us to determin the dimension of the supersymmetry group

directly.

t

g11 x

t

g12 x

t

f12
x

t

f11
x

t

g21 x

t

g22 x

t

f22
x

t

f21
x

t

f31
x

t

f32
x

t

g32 x

t

g31 x

t

f41
x

t

g42 x

t

f42
x

t

g41 x

Figure 4.3.3: Dimension analysis diagram for the defining system of the super KdV.

It is easy to see that there are four red dots corresponding to 4 parametric derivatives
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implying that it is a 4 dimensional symmetry group. The parametric derivatives are

g11, f11, f21, f31.

Among them, g11 is odd and other three functions are even. Hence, in more detail, the

supersymmetry group is a 3 | 1 - dimensional supersymmetry group.

4.4 Existence and uniqueness theorem

From now on, we are working on the reduced defining system which is the output system

of the MONO expansion algorithm. The reduced defining system is regular (and monic)

and does not have any odd independent variables.

Rust, Reid and Wittkopf [18] have proved the existence and uniqueness theorems for

formal power series solutions of analytic differential systems. We adapt their result to

the non-commutative case.

4.4.1 Super initial data mapping and super Riquier bases

We extend the definition of the initial data mapping in the commutative case [18] to

super initial data mapping sID:

sID : {x} ∪ EvenPar(Sred) → F

OddPar(Sred) → G (Grassmann numbers).

For x0 ∈ Fn, we say that sID is a specification of super initial data at x0 if sID(x) = x0.

For sID(x) = x0, we mean

(sID(x1), sID(x2), ..., sID(xn)) = x0.



61

This is a well-defined mapping. For any f in Sred, evaluating f is

sID(f) = f(sID(X), sID(Par(Sred)),Prin(Sred)).

Riquier bases are the differential analogs of Gröbner bases. Since we are working on

reduced defining systems, the super Riquier bases in this thesis differ from Riquier bases

only in that they involve odd dependent variables.

4.4.2 Existence and uniqueness theorem

Since we have already reduced the system to be regular with no odd independent variables,

the underlying Riquier bases theory is the same as the commutative case. We adapt the

existence and uniqueness theorem in [18] to the non-commutative case as the following:

Theorem 4.4.1. Suppose that M is a super Riquier basis with respect to ranking �.

Fix x0 ∈ Fn. Let sID be a specification of initial data for M at x0 such that sID(f) is

well-defined for all f ∈M. Then there is an unique solution

u(x) ∈ F[[x− x0]]n, if u(x) is even;

u(x) ∈ G[[x− x0]]n, if u(x) is odd,

to M at x0 such that Dαu
i(x0) = sID(δiα) for all δiα ∈ ParM.

4.5 Structure constants algorithm

4.5.1 Structure constants algorithm theorem and proof

Theorem 4.5.1. Suppose that S is a finite defining system with m1 even infinitesimals

and m2 odd infinitesimals. Suppose that Sred is the reduced defining system of S and has

d1(<∞) even parametric derivatives and d2(<∞) odd parametric derivatives. Then the

structure constants can be algorithmically determined.
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Proof : For any finite defining system S, one can write two supervector fields Li and

Lj as:

Li =

m1∑
`1=1

EvenInfi`1∂EvenVar`1
+

m2∑
`2=1

OddInfi`2∂OddVar`2
,

Lj =

m1∑
`1=1

EvenInfj`1∂EvenVar`1
+

m2∑
`2=1

OddInfj`2∂OddVar`2
,

where 1 ≤ i, j ≤ d1 + d2.

On one hand, by computing the Lie superbracket of Li and Lj and by the closure

property of Lie superalgebra, we have

[Li, Lj] =

m1∑
`1=1

A`1∂EvenVar`1
+

m2∑
`2=1

B`2∂OddVar`2
. (4.12)

On the other hand, by the definition of the structure constants, we have

[Li, Lj] =

d1+d2∑
k=1

ckijLk

=

d1+d2∑
k=1

ckij

( m1∑
`1=1

EvenInfk`1∂EvenVar`1
+

m2∑
`2=1

OddInfk`2∂OddVar`2

)
=

m1∑
`1=1

( d1+d2∑
k=1

ckijEvenInfkl1

)
∂EvenVarl1

+

m2∑
l2=1

( d1+d2∑
k=1

ckijOddInfkl2

)
∂OddVarl2

.

(4.13)

By equating the coefficients of the same operators in (4.12) and (4.13), we obtain a system

with m1 +m2 equations of the form

m1 equations


∑d1+d2

k=1 ckijEvenInfk1 = A1,

......,∑d1+d2

k=1 ckijEvenInfkm1
= Am1 ,

(4.14)
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m2 equations


∑d1+d2

k=1 ckijOddInfk1 = B1,

......,∑d1+d2

k=1 ckijOddInfkm2
= Bm2 .

(4.15)

Since Par(S) consists of some (or all) infinitesimals and their derivatives, one can

always differentiate the above systems (4.14) and (4.15) with respect to Par(S). Sup-

pose that Par(S) = {Par1, ..., Pard1+d2}. After differentiation, one gets a new system

consisting of all parametric derivatives of S:
∑d1+d2

k=1 ckijPar
k
1 = C1,

......,∑d1+d2

k=1 ckijPar
k
d1+d2

= Cd1+d2 ,

(4.16)

where C1, ..., Cd1+d2 are the derivatives of some (or all) of the A1, ..., Am1 and B1, ..., B
m2 .

Substituting the MONO expansion expressions for the infinitesimals of S and then com-

puting coefficients of odd variable monomials for each equation, we get a new system con-

taining all the parametric derivatives of Sred. Suppose that Sred = {P̂ ar1, ..., P̂ ard1+d2}.

Then the system (4.25) becomes
∑d1+d2

k=1 ckijP̂ ar
k

1 = Ĉ1,

......,∑d1+d2

k=1 ckijP̂ ar
k

d1+d2
= Ĉd1+d2 .

(4.17)

Next we list all the elements in Par(Sred) = {P̂ ar1, P̂ ar2, ..., P̂ ard1+d2} in a certain

order, say δ, for example,

{EvenP̂ ar1, ...,EvenP̂ ard1 ,OddP̂ ar1, ...,OddP̂ ard2}.

Most importantly, even parameters are listed before odd parameters. Note that according

to convention for Lie superalgebra commutator tables, we always put even parametric

derivatives before odd parametric derivatives. That yields a Lie superalgebra commutator

table with even basis elements listed followed by odd basis elements. Rearranging the
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equations in the system (4.17) in the same order δ, one has



∑m1+m2

k=1 ckijEvenP̂ ar
k

1 = C̃1,

......,∑m1+m2

k=1 ckijEvenP̂ ar
k

d1
= C̃d1 ,∑m1+m2

k=1 ckijOddP̂ ar
k

1 = C̃d1+1.

......,∑m1+m2

k=1 ckijOddP̂ ar
k

d2
= C̃d1+d2 ,

(4.18)

where {C̃1, .., C̃d1+d2} = {Ĉ1, ..., Ĉd1+d2} in sense of sets.

We then simplify C̃1 to C̃d1+d2 modulo the rifsimp form of Sred and denote the simpli-

fied forms with same notation, C̃1 to C̃d1+d2 . Hence, there are only parametric derivatives

of Sred appearing in each expression for C̃1 to C̃d1+d2 . According to the properties of Lie

superbrackets, the parametric derivatives must always appear in bilinear pairs associated

coefficient in F, for example,

a(P̂ ar
i

1P̂ ar
j

2 − P̂ ar
j

1P̂ ar
i

2). (4.19)

By the super Riquier existence and uniqueness theorem, providing initial data for the

parametric derivatives of Sred uniquely determines the structure constants. For exam-

ple, providing two copies of initial data a1, ..., ad1+d2 and b1, ..., bd1+d2 for all parametric

derivatives of Sred of system (4.18), the bilinear pair of parametric derivatives (4.19)

becomes

a(a1b2 − b1a2). (4.20)

Equation (4.20) implies

cj12 = a,

if (4.19) appears in the j-th equation in the system (4.27). Similarly, we are able to read

off all the nonzero structure constants from every initial data pair of form (4.20).
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4.5.2 Structure constant algorithm

Now we put Theorem 4.5.1 and its proof in the previous section into the form of an

algorithm.

Input: S, Par(S), EvenInf(S), OddInf(S); Sred, Par(Sred).

1. Write two supesymmetry vector fields Li, Lj, where

Li =

m1∑
`1=1

Φi
`1
∂X`1 +

m2∑
`2=1

Ψi
`2
∂Y`2

and Lj has the same form.

2. Take their Lie superbracket [Li, Lj] to yield

[Li, Lj] =

m1∑
`1=1

A`1∂X`1 +

m2∑
`2=1

B`2∂Y`2 . (4.21)

3. By the definition of structure constants we have

[Li, Lj] =

d1+d2∑
k=1

ckijLk (4.22)

=

m1∑
`1=1

( d1+d2∑
k=1

ckijΦ
k
`1

)
∂X`1 +

m2∑
`2=1

( d1+d2∑
k=1

ckijΨ
k
`2

)
∂Y`2 .

4. The equations in (4.21) and (4.22) form a linear system withm1+m2 equations.

m1 equations


∑d1+d2

k=1 ckijΦ
k
1 = A1,

...,∑d1+d2

k=1 ckijΦ
k
m1

= Am1 ,

(4.23)

m2 equations


∑d1+d2

k=1 ckijΨ
k
1 = B1,

...,∑d1+d2

k=1 ckijΨ
k
m2

= Bm2 .

(4.24)
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5. Differentiate (4.23) and (4.24) w.r.t. Par(S) = {P1, ..Pd1+d2} to obtain:
∑d1+d2

k=1 ckijP
k
1 = C1,

......,∑d1+d2

k=1 ckijP
k
d1+d2

= Cd1+d2 ,

(4.25)

6. Substitute the MONO expansions of EvenInf(S) and OddInf(S) in step 5 and

equate the coefficients of odd variable monomials to obtain

∑d1+d2

k=1 ckijP̂
k
1 = Ĉ1,

......,

......,∑d1+d2

k=1 ckijP̂
k
d1+d2

= Ĉd1+d2 ,

(4.26)

where Par(Sred) = {P̂1, ..., P̂d1+d2}

7. Select an order δ on the elements of Par(Sred):

{P̃1, ..., P̃d1︸ ︷︷ ︸
even

, P̃d1+1, ..., P̃d1+d2︸ ︷︷ ︸
odd

},

and rearrange (4.26) in the order δ:



∑m1+m2

k=1 ckijP̃
k
1 = C̃1,

......,∑m1+m2

k=1 ckijP̃
k
d1

= C̃d1 ,∑m1+m2

k=1 ckijP̃
k
d1+1 = C̃d1+1,

......,∑m1+m2

k=1 ckijP̃
k
d1+d2

= C̃d1+d2 .

(4.27)

8. Provide two copies of initial data a1, ..ad1+d2 and b1, ..bd1+d2 for the Par(Sred)

in the given order and read-off the nonzero structure constants as coefficients.

Output: Nonzero structure constants ckij’s and the supercommutator table.
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4.5.3 Applications of the structure constants algorithm

We apply the structure constant algorithm to the defining system of the example Qxx = 0

and the super KdV equation.

Example 4.5.2. Apply the structure constant algorithm to example the Qxx = 0. This

example does not contain any irregular super differential equation.

Input: S in standard form

S = {Λxx = 0,ΛxQ =
1

2
Ξxx,ΞQQ = 0,ΛQQ = 0,Ξxxx = 0,ΞxxQ = 0},

m1 = 1,m2 = 1, {Ξ,Ξx,ΛQ,Ξxx,Λ,ΞQ,Λx,ΞxQ}, d1 = 4, d2 = 4.

1. Write two general supersymmetry vector fields Li, Lj,

Li = Ξi∂x + Λi∂Q and Lj = Ξj∂x + Λj∂Q.

2. Take their Lie superbracket

[Li, Lj] = (

A︷ ︸︸ ︷
ΞiΞj

x − ΞjΞi
x + ΛiΞj

Q − ΛjΞi
Q)∂x

+(

B︷ ︸︸ ︷
ΞiΛj

x − ΞjΛi
x + ΛiΛj

Q − ΛjΛi
Q)∂Q.

3. Expand the commutator in terms of structure constants

[Li, Lj] =
8∑

k=1

ckijLk

= (
8∑

k=1

ckijΞ
k)∂x + (

8∑
k=1

ckijΛ
k)∂Q.
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4. The results of step 2 and 3 yield a linear system with 1 + 1 equations:

8∑
k=1

ckijΞ
k = ΞiΞj

x − ΞjΞi
x + ΛiΞj

Q − ΛjΞi
Q, (4.28)

8∑
k=1

ckijΛ
k = ΞiΛj

x − ΞjΛi
x + ΛiΛj

Q − ΛjΛi
Q. (4.29)

5. Arrange the parametric derivatives in the order δ:

{Ξ,Ξx,ΛQ,Ξxx,Λ,ΞQ,Λx,ΞxQ}.

6. Skipped. Since input system is regular, it is not necessary to do the MONO

expansion.

7. Keep differentiating the two equation in step 5 w.r.t. parametric derivatives

until we have 8 equations. Then simplify them with respect to the modulo
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parametric derivatives and arrange them in the order δ,

8∑
k=1

ckijΞ
k = (ΞiΞj

x − ΞjΞi
x) + (ΛiΞj

Q − ΛjΞi
Q),

8∑
k=1

ckijΞ
k
x = (ΞiΞj

xx − ΞjΞj
xx) + (Ξi

QΛj
x − Ξj

QΛi
x) + (ΛiΞj

xQ − ΛjΞi
xQ),

8∑
k=1

ckijΛ
k
Q = (Ξi

QΛj
x − Ξj

QΛi
x) +

1

2
(ΞiΞj

xx − ΞjΞi
xx) + (Λi

QΛj
Q − Λj

QΛi
Q),

8∑
k=1

ckijΞ
k
xx = (Ξi

xΞ
j
xx − Ξj

xΞ
i
xx) + 2(Λi

xΞ
j
xQ − Λj

xΞ
i
xQ),

8∑
k=1

ckijΛ
k = (ΞiΛj

x − ΞjΛi
x) + (ΛiΛj

Q − ΛjΛi
Q),

8∑
k=1

ckijΞ
k
Q = (Ξi

QΞj
x − Ξj

QΞi
x) + (ΞiΞj

xQ − ΞjΞi
xQ) + (Λi

QΞj
Q − Λj

QΞi
Q),

8∑
k=1

ckijΛ
k
x = (Ξi

xΛ
j
x − Ξj

xΛ
i
x) + (Λi

xΛ
j
Q − Λj

xΛ
i
Q) +

1

2
(ΛiΞj

xx − ΛjΞi
xx),

8∑
k=1

ckijΞ
k
xQ = −1

2
(Ξi

xxΞ
j
Q − Ξj

xxΞ
i
Q) + (Λi

QΞj
xQ − Λj

QΞi
xQ).

8. Provide two copies of initial data a1, ..a8 and b1, ..b8 and substitute them in
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step 7,

8∑
k=1

ckijΞ
k = (ΞiΞj

x − ΞjΞi
x)︸ ︷︷ ︸

a1b2−b1a2

+ (ΛiΞj
Q − ΛjΞi

Q)︸ ︷︷ ︸
a5b6−b5a6

−→ c1
12 = 1, c1

56 = 1,
8∑

k=1

ckijΞ
k
x = (ΞiΞj

xx − ΞjΞj
xx)︸ ︷︷ ︸

a1b4−b1a4

+ Ξi
QΛj

x − Ξj
QΛi

x︸ ︷︷ ︸
a6b7−b6a7

+ ΛiΞj
xQ − ΛjΞi

xQ︸ ︷︷ ︸
a5b8−b5a8

−→ c2
14 = 1, c2

67 = 1, c2
58 = 1,

8∑
k=1

ckijΛ
k
Q = (Ξi

QΛj
x − Ξj

QΛi
x)︸ ︷︷ ︸

a6b7−b6a7

+
1

2
(ΞiΞj

xx − ΞjΞi
xx︸ ︷︷ ︸

a1b4−b1a4

)

−→ c3
67 = 1, c3

14 = 1/2,
8∑

k=1

ckijΞ
k
xx = (Ξi

xΞ
j
xx − Ξj

xΞ
i
xx)︸ ︷︷ ︸

a2b4−b2a4

+2 (Λi
xΞ

j
xQ − Λj

xΞ
i
xQ)︸ ︷︷ ︸

a7b8−b7a8

−→ c4
24 = 1, c4

78 = 2,
8∑

k=1

ckijΛ
k = (ΞiΛj

x − ΞjΛi
x)︸ ︷︷ ︸

a1b7−b1a7

+ (ΛiΛj
Q − ΛjΛi

Q)︸ ︷︷ ︸
a5b3−b5a3

,

−→ c5
17 = 1, c5

53 = 1,
8∑

k=1

ckijΞ
k
Q = (Ξi

QΞj
x − Ξj

QΞi
x)︸ ︷︷ ︸

a6b2−b6a2

+ (ΞiΞj
xQ − ΞjΞi

xQ)︸ ︷︷ ︸
a1b8−b1a8

+ (Λi
QΞj

Q − Λj
QΞi

Q)︸ ︷︷ ︸
a3b6−b3a6

,

−→ c6
62 = 1, c6

18 = 1, c6
36 = 1,

8∑
k=1

ckijΛ
k
x = (Ξi

xΛ
j
x − Ξj

xΛ
i
x)︸ ︷︷ ︸

a2b7−b2a7

+ (Λi
xΛ

j
Q − Λj

xΛ
i
Q)︸ ︷︷ ︸

a7b3−b7a3

+
1

2
(ΛiΞj

xx − ΛjΞi
xx)︸ ︷︷ ︸

a5b4−b5a4

,

−→ c7
27 = 1, c7

73 = 1, c7
54 = 1/2,

8∑
k=1

ckijΞ
k
xQ = −1

2
(Ξi

xxΞ
j
Q − Ξj

xxΞ
i
Q)︸ ︷︷ ︸

a4b6−b4a6

+ (Λi
QΞj

xQ − Λj
QΞi

xQ)︸ ︷︷ ︸
a3b8−b3a8

,

−→ c8
46 = −1/2, c8

38 = 1.

Output: Read off the all nonzero structure constansts ckij’ s. They are c1
12 =

1, c1
56 = 1, c2

14 = 1, c2
67 = 1, c2

58 = 1, c3
67 = 1, c3

14 = 1/2, c4
24 = 1, c4

78 = 2, c5
17 = 1, c5

53 =

1, c6
62 = 1, c6

18 = 1, c6
36 = 1, c7

27 = 1, c7
73 = 1, c7

54 = 1/2, c8
46 = −1/2, c8

38 = 1.
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The structure constants computation above implies that

[L1, L2] = c1
12L1 + c2

12L2 + c3
12L3 + c4

12L4 + c5
12L5 + c6

12L6 + c7
12L7 + c8

12L8 = L1,

[L1, L3] = 0,

[L1, L4] = c1
14L1 + c2

14L2 + c3
14L3 + c4

14L4 + c5
14L5 + c6

14L6 + c7
14L7 + c8

14L8

= L2 +
1

2
L3,

[L1, L5] = 0,

[L1, L6] = 0,

[L1, L7] = c1
17L1 + c2

17L2 + c3
17L3 + c4

12L4 + c5
17L5 + c6

17L6 + c7
17L7 + c8

17L8 = L5,

[L1, L8] = c1
18L1 + c2

18L2 + c3
18L3 + c4

18L4 + c5
12L5 + c6

12L6 + c7
12L7 + c8

12L8 = L6,

[L2, L3] = 0,

[L2, L4] = c1
24L1 + c2

24L2 + c3
24L3 + c4

24L4 + c5
24L5 + c6

24L6 + c7
24L7 + c8

24L8 = L4,

[L2, L5] = 0,

[L2, L6] = c1
26L1 + c2

26L2 + c3
26L3 + c4

26L4 + c5
26L5 + c6

26L6 + c7
26L7 + c8

26L8 = −L6,

[L2, L7] = c1
27L1 + c2

27L2 + c3
27L3 + c4

27L4 + c5
27L5 + c6

27L6 + c7
27L7 + c8

27L8 = L7,

[L2, L8] = 0,

[L3, L4] = 0,

[L3, L5] = c1
35L1 + c2

35L2 + c3
35L3 + c4

35L4 + c5
35L5 + c6

35L6 + c7
35L7 + c8

35L8 = −L5,

[L3, L6] = c1
36L1 + c2

36L2 + c3
36L3 + c4

36L4 + c5
36L5 + c6

36L6 + c7
36L7 + c8

36L8 = L6,

[L3, L7] = c1
37L1 + c2

37L2 + c3
37L3 + c4

37L4 + c5
37L5 + c6

37L6 + c7
37L7 + c8

37L8 = −L7,

[L3, L8] = c1
38L1 + c2

38L2 + c3
38L3 + c4

38L4 + c5
38L5 + c6

38L6 + c7
38L7 + c8

38L8 = L8,

[L4, L5] = c1
45L1 + c2

45L2 + c3
45L3 + c4

45L4 + c5
45L5 + c6

45L6 + c7
45L7 + c8

45L8 = −1

2
L7,

[L4, L6] = c1
46L1 + c2

46L2 + c3
46L3 + c4

46L4 + c5
46L5 + c6

46L6 + c7
46L7 + c8

46L8 = −1

2
L8,

[L4, L7] = 0,

[L4, L8] = 0,

[L5, L5] = 0,
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[L5, L6] = c1
56L1 + c2

56L2 + c3
56L3 + c4

56L4 + c5
56L5 + c6

56L6 + c7
56L7 + c8

56L8 = L1,

[L5, L7] = 0,

[L5, L8] = c1
58L1 + c2

58L2 + c3
58L3 + c4

58L4 + c5
58L5 + c6

58L6 + c7
58L7 + c8

58L8 = L2,

[L6, L6] = 0,

[L6, L7] = c1
67L1 + c2

67L2 + c3
67L3 + c4

67L4 + c5
67L5 + c6

67L6 + c7
67L7 + c8

67L8 = L1 + L2,

[L6, L8] = 0,

[L7, L7] = 0,

[L7, L8] = c1
78L1 + c2

78L2 + c3
78L3 + c4

78L4 + c5
78L5 + c6

78L6 + c7
78L7 + c8

78L8 = 2L4,

[L8, L8] = 0.

The supercommutator table is

L1 L2 L3 L4 L5 L6 L7 L8

L1 0 L1 0 L2 + 1/2L3 0 0 L5 L6

L2 −L1 0 0 L4 0 −L6 L7 0

L3 0 0 0 0 −L5 L6 −L7 L8

L4 −L2 − 1/2L3 −L4 0 0 −1/2L7 −1/2L8 0 0

L5 0 0 L5 1/2L7 0 L1 0 L2

L6 0 L6 −L6 1/2L8 L1 0 L2 + L3 0

L7 −L5 −L7 L7 0 0 L2 + L3 0 2L4

L8 −L6 0 −L8 0 L2 0 2L4 0

.

Table 4.5.1: Supercommutator table for the defining system of Qxx = 0.

Secondly, let us find supercommutator table for the defining system of the super KdV

equation by applying the Structure Constants Algorithm.
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Example 4.5.3. Apply the structure constant algorithm to the defining system of the

super KdV equation system.

Recall that in Section 4.3.2 we obtained the reduced defining system of the super KdV

equation (4.11), which is

(g11)x = (g11)t = g12 = f12 = 0, (f11)x = 2f31, (f11)t = 0;

g21 = g22 = f22 = 0, (f21)x = 0, (f21)t = 6f31;

(f31)x = (f31)t = f32 = g32 = 0, g31 = −g11;

f41 = g42 = 0, f42 = −3f31, g41 = 0.

Then we have a simplified version of the infinitesimals Ξ1, Ξ2, Γ, Λ as the following:

Ξ1 = g11θ + f11,

Ξ2 = f21,

Γ = f31θ − g11,

Λ = −3f31Q.

Now we follow the steps of the Structure Constants Algorithm.

Input:

1. Write down two supersymmetry vector fields Li, Lj,

Li = Ξ1i∂x + Ξ2i∂t + Γi∂θ + Λi∂Q,

Lj = Ξ1j∂x + Ξ2j∂t + Γj∂θ + Λj∂Q.

2. Work out their Lie superbracket

[Li, Lj] = [Ξ1i∂x + Ξ2i∂t + Γi∂θ + Λi∂Q,Ξ
1j∂x + Ξ2j∂t + Γj∂θ + Λj∂Q]

= ((gj11f
j
31 − g

j
11f

i
31)θ + 2(f i11f

j
31 − f

j
11f

i
31) + (gi11g

j
11 − g

j
11g

i
11))∂x

+6(f i21f
j
31 − f

j
21f

i
31)∂t − (gi11f

j
31 − g

j
11f

i
31)∂θ.
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3. Expand the supercommutations in terms of structure constants

[Li, Lj] =
4∑

k=1

Ck
ijLk

=
4∑

k=1

Ck
ij(Ξ

1k∂x + Ξ2k∂t + Γk∂θ + Λk∂Q)

=
4∑

k=1

Ck
ij(g

k
11θ + fk11)∂x +

4∑
k=1

Ck
ijf

k
21∂t

+
4∑

k=1

Ck
ij(f

k
31θ − gk11)∂θ +

4∑
k=1

Ck
ij(−3fk31Q)∂Q.

4. Computing and equating the coefficients for the same operator in (4.30) and (4.30)

yields a linear system with 2 + 2 equations:

4∑
k=1

Ck
ij(g

k
11θ + fk11) = (gj11f

j
31 − g

j
11f

i
31)θ

+2(f i11f
j
31 − f

j
11f

i
31) + (gi11g

j
11 − g

j
11g

i
11). (4.30)

4∑
k=1

Ck
ijf

k
21 = 6(f i21f

j
31 − f

j
21f

i
31), (4.31)

4∑
k=1

Ck
ij(f

k
31θ − gk11) = gi11f

j
31 − g

j
11f

i
31, (4.32)

4∑
k=1

Ck
ij(−3fk31Q) = 0. (4.33)

Old variable θ remains in the system (4.31-4.33). Continue to equate coefficients of

odd variable monomials for (4.31) and (4.33) until we get a new system

∑4
k=1C

k
ijg

k
11 = gi11f

j
31 − g

j
11f

i
31,∑4

k=1C
k
ijf

k
11 = 2(f i11f

j
31 − f

j
11f

i
31) + (gi11g

j
11 − g

j
11g

i
11),∑4

k=1C
k
ijf

k
21 = 6(f i21f

j
31 − f

j
21f

i
31),∑4

k=1C
k
ijf

k
31 = 0,

(4.34)

without any odd independent variables.
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5. Skipped. Since the new system (4.35) contains purely parametric derivatives, one

does not need to differentiate it with respect to Par(S).

6. Skipped.

7. Set an order delta for parametric derivatives, {f11, f21, f31, g11} and rearrange the

linear system in the given order delta:

∑4
k=1C

k
ijf

k
11 = 2(f i11f

j
31 − f

j
11f

i
31) + (gi11g

j
11 − g

j
11g

i
11),∑4

k=1C
k
ijf

k
21 = 6(f i21f

j
31 − f

j
21f

i
31),∑4

k=1C
k
ijf

k
31 = 0,∑4

k=1C
k
ijg

k
11 = gi11f

j
31 − g

j
11f

i
31.

(4.35)

8. Provide two copies of initial data {a1, ..., a4} and {b1, ..., b4} to the parametric

derivatives {f11, f21, f31, g11}. All the nonzero structure constants are

4∑
k=1

Ck
ijf

k
11 = 2(f i11f

j
31 − f

j
11f

i
31︸ ︷︷ ︸

a1b3−b1a3

) + (gi11g
j
11 − g

j
11g

i
11︸ ︷︷ ︸

a4b4−b4a4

),

−→ c1
13 = 2, c1

44 = 1,
4∑

k=1

Ck
ijf

k
21 = 6(f i21f

j
31 − f

j
21f

i
31︸ ︷︷ ︸

a2b3−b2a3

),

−→ c2
23 = 6,

4∑
k=1

Ck
ijg

k
11 = gi11f

j
31 − g

j
11f

i
31︸ ︷︷ ︸

a4b3−b4a3

.

−→ c4
43 = 1.

Output: Read off the all nonzero structure constants ckij’ s. They are c1
13 = 2, c1

44 =

1, c2
23 = 6, c4

43 = 1.

Therefore, by the definition of structure constants, one has

[L1, L2] = c1
12L1 + c2

12L2 + c3
12L3 + c4

12L4 = 0,

[L1, L3] = c1
13L1 + c2

13L2 + c3
13L3 + c4

13L4 = 2L1,
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[L1, L4] = c1
14L1 + c2

14L2 + c3
14L3 + c4

14L4 = 0,

[L2, L3] = c1
23L1 + c2

23L2 + c3
23L3 + c4

23L4 = 6L2,

[L2, L4] = c1
24L1 + c2

24L2 + c3
24L3 + c4

24L4 = 0,

[L3, L4] = c1
34L1 + c2

34L2 + c3
34L3 + c4

34L4 = −L4,

[L4, L4] = c1
44L1 + c2

44L2 + c3
44L3 + c4

44L4 = L1,

and the supercommutator table is given by

L1 L2 L3 L4

L1 0 0 2L1 0

L2 0 0 6L2 0

L3 −2L1 −6L2 0 −L4

L4 0 0 L4 L1

.

Table 4.5.2: Supercommutator table for the defining system of the super KdV equation
obtained by the Structure Constant Algorithm.
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Chapter 5

Supersymmetry for a class of super

Lagrangians

In this chapter, we find nontrivial hidden supersymmetry for the Euler-Lagrange equa-

tions of

L =
1

2
φ2
µ +

I

2
(ψ̄γµψµ − ψ̄µγµψ) + F (φ, ψ, ψ̄), µ = 1, ..., d, (5.1)

when the dimension d = 2.

Even though d = 2 has only 2 space variables x1 and x2, hand calculation of the

supersymmetry defining system of the Euler-Lagrange equations is difficult. Edgardo

Cheb-Terrab implemented DeterminingPDE in the PDEtools package in Maple to com-

pute the defining systems satisfied by the infinitesimals of Lie symmetry groups of dif-

ferential equations. In 2011, he upgraded DeterminingPDE to be compatible with the

Physics package to deal with odd quantities.

In this chapter, we use DeterminingPDE to generate the defining system of the Euler-

Lagrange equations of (5.1). Then we apply MONO expansion to those infinitesimals

having odd independent variables. We also apply MONO expansion to the potential super

function F (φ, ψ, ψ̄). By substituting these MONO expansions in the defining system and

taking the coefficients of odd variable monomials, the reduced defining system is formed.

The reduced defining system is then sent to the Maple commutative commands rifsimp,

initialdata and caseplot.
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All cases have the obvious translation symmetry in x1 and x2. One extreme case is

when the potential F (φ, ψ, ψ̄) = 0. This is infinite dimensional supersymmetry group

and is solvable. The other extreme occurs when the potential F (φ, ψ, ψ̄) is nonzero and

its highest order term does not vanish. With the help of rifsimp and one of its features

casesplit, Maple splits this case into thousands of subcases. Digging into such big

data, we classify the subcases into two sets, those with finite dimension and those with

infinite dimension. In particular, we show that the finite cases with nontrivial term in

F (φ, ψ, ψ̄) have supersymmetry groups of maximal finite dimension 5. As a result, we

find a non-trivial hidden supersymmetry for such 5-dimensional cases. We verify that it

leaves the defining system of the Euler-Lagrange equations invariant.

5.1 Lagrangian and Euler-Lagrange equations

We study supersymmetries of a higher dimensional version of a popular Lagrangian model

[8] in supersymmetric quantum mechanics

L =
1

2
ẋ2 +

I

2
(ψ̄ψ̇ − ˙̄ψψ)− 1

2

(dW
dx

)2

+ ψ̄ψ
d2W

dx2
, (5.2)

where x(t) is real scalar field, ψ(t) is complex Grassmann field and ψ̄(t) is its complex

conjugate. These fields are functions of space time coordinates t. The model (5.2) is a

super ODE model.

We want to show how to find the symmetry and invariants which will reduce a super

PDE system to a super ODE system. Hence, we generalize the super ODE model (5.2) to a

super PDE model by generalizing this model to two dimensions x1 and x2. To improve the

possibility of supersymmetries, we provide the new PDE model with a general potential

F (φ, ψ, ψ̄). Our generalization of (5.2) is

L =
1

2
φ2
µ +

I

2
(ψ̄γµψµ − ψ̄µγµψ) + F (φ, ψ, ψ̄), µ = 1, ..., d, (5.3)

where we use the Einstein summation convention over repeated indices, and I =
√
−1.



79

In particular, we focus on the simple case when d = 2 as our main task. Writing this

Lagrangian in detail gives

L =
1

2
(−φ2

x1
+ φ2

x2
)

+
I

2
(ψ1x1

ψ̄2 − ψ2x1
ψ̄1 − ψ1x2

ψ̄2 − ψ2x2
ψ̄1

+ψ̄2x1
ψ1 − ψ̄1x1

ψ2 − ψ̄2x2
ψ1 − ψ̄1x2

ψ2)

+F (φ, ψ1, ψ2, ψ̄1, ψ̄2), (5.4)

where x1, x2 are even independent variables, φ is an even dependent variables, and

ψ1, ψ2, ψ̄1, ψ̄2 are odd dependent variables. Note that xj appearing as a subscripts means

partial derivative with respect to xj.

The Euler-Lagrange equations of the given Lagrangian (5.4) are obtained as

φx2,x2 = φx1,x1 + Fφ,

(ψ1)x2
= (ψ1)x1

+ IFψ̄2
,

(ψ2)x2
= −(ψ2)x1

+ IFψ̄1
, (5.5)

(ψ̄1)x2
= −(ψ̄1)x1

+ IFψ2 ,

(ψ̄2)x2
= (ψ̄2)x1

+ IFψ1 ,

by using the multi-variable Euler-Lagrange formula. We have programmed this formula

as a Maple procedure called EL. Maple code is provided in Appendix A.2. We used EL

to generate the Euler-Lagrange equations of (5.4). These equations are put in the solved

form as is (5.5). So the integrability conditions of the Euler-Lagrange system are satisfied

and no hidden supersymmetries missed. In each equation in (5.5), the partial derivative

of x2 is considered to be the leading derivative.
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5.2 Determining equations generated by Maple

In this section, we will demonstrate how to use the MAPLE command DeterminingPDE

to help us get the determining equations of the supersymmetries.

5.2.1 One problem: the conjugates

Before sending the Euler-Lagrange system to MAPLE, we need some clarification while

dealing with ψj and ψ̄j, where j = 1, 2. In fact, ψj and ψ̄j are related by conjugation.

So the Lagrangian is not a superanalytic functions since it depends on conjugates. But

supersymmetry is a superanalytic theory. So as is usual in the non-Grassmannian case,

we need to embed all non-superanalytic equations in a superanalytic formulation. We do

this simply by introducing new variables ωj to replace ψ̄j, where j = 1, 2,

ψ̄1 → ω1 and ψ̄2 → ω2. (5.6)

We seek superanalytic symmetries as superanalytic transformations of (x1, x2, φ, ψ1, ψ2, ω1, ω2).

5.2.2 Maple demonstration

1. Load Physics, DEtools and PDEtools packages.

with(Physics);

with(PDEtools);

with(DEtools);

2. Declare odd variables.

Physics[Setup](anticommutativeprefix={psi, omega, Lambda, Omega},

mathematicalnontation=true):

Here Lambda and Omega are infinitesimal names corresponding to psi and omega.

Note that once a name, for instance, psi, is declared as an odd variable, the sub-
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scripted quantities such as psi[1] are also considered as odd quantities without

further declaration.

3. Set up the Euler-Lagrangian.

L := -(1/2)*(diff(phi(x[1], x[2]), x[1]))^2

+(1/2)*(diff(phi(x[1], x[2]), x[2]))^2

+I*(diff(psi[1](x[1], x[2]), x[1]))*omega[2](x[1], x[2])*(1/2)

-I*(diff(psi[2](x[1], x[2]), x[1]))*omega[1](x[1], x[2])*(1/2)

-I*(diff(psi[1](x[1], x[2]), x[2]))*omega[2](x[1], x[2])*(1/2)

-I*(diff(psi[2](x[1], x[2]), x[2]))*omega[1](x[1], x[2])*(1/2)

+I*(diff(omega[2](x[1], x[2]), x[1]))*psi[1](x[1], x[2])*(1/2)

-I*(diff(omega[1](x[1], x[2]), x[1]))*psi[2](x[1], x[2])*(1/2)

-I*(diff(omega[2](x[1], x[2]), x[2]))*psi[1](x[1], x[2])*(1/2)

-I*(diff(omega[1](x[1], x[2]), x[2]))*psi[2](x[1], x[2])*(1/2)

+F(phi(x[1], x[2]), psi[1](x[1], x[2]), psi[2](x[1], x[2]),

omega[1](x[1], x[2]), omega[2](x[1], x[2]));

4. Send L to the Maple procedure EL.

DepVars := [phi, psi[1], psi[2], omega[1], omega[2]](x[1], x[2]);

EulerLag := EL(L, [x[1], x[2]], DepVars);

EL needs three inputs, the given Lagrangian L, the independent variables [x[1], x[2]]

and the dependent variables DepVars.

5. Put the Euler-Lagrange system in solved form and define infinitesimal names. Then

send it to DeterminingPDE the get the determining system.

DetPDE := DeterminingPDE(SolvedFormEL, DepVars, InfNames,

integrabilityconditions=false):
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5.2.3 Determining system

By examining the determining system obtained in last section, we can narrow down the

dependencies of the infinitesimals. In the determining system, we have the following

simple PDEs,

(ξ1)φ = 0,

(ξ1)ψ1
= 0,

(ξ1)ψ2
= 0,

(ξ1)ω1
= 0,

(ξ1)ω2
= 0.

This implies that ξ1 does not depend on φ, ψ1, ψ2, ω1, ω2. So ξ1(x1, x2, φ, ψ1, ψ2, ω1, ω2)

can be narrowed down to ξ1(x1, x2). Similarly, we also narrow the dependencies of other

infinitesimals:

ξ2(x1, x2, φ, ψ1, ψ2, ω1, ω2) → ξ2(x1, x2),

Ξ(x1, x2, φ, ψ1, ψ2, ω1, ω2) → Ξ(x1, x2, φ),

Λ1(x1, x2, φ, ψ1, ψ2, ω1, ω2) → Λ1(x1, x2, ψ1, ω2),

Λ2(x1, x2, φ, ψ1, ψ2, ω1, ω2) → Λ2(x1, x2, ψ2, ω1),

Ω1(x1, x2, φ, ψ1, ψ2, ω1, ω2) → Ω1(x1, x2, ψ2, ω1),

Ω2(x1, x2, φ, ψ1, ψ2, ω1, ω2) → Ω2(x1, x2, ψ1, ω2).

The dependencies above simplify the determining system to 13 super differential equa-

tions,

Ξφ,φ = 0,

2(ξ1)x1
− 2(ξ2)x2

= 0,
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2(ξ2)x1
− 2(ξ1)x2

= 0,

2Ξx2,φ + (ξ2)x1,x1
− (ξ2)x2,x2

= 0,

(ξ1)x1,x1
− (ξ1)x2,x2

− 2Ξx1,φ = 0,

(ξ2)x1
− (ξ1)x1

+ (ξ2)x2
− (ξ1)x2

= 0,

(ξ2)x1
+ (ξ1)x1

− (ξ2)x2
− (ξ1)x2

= 0,

ΞφFφ + Fω2,φΩ2 + Fψ1,φΛ1 − 2Fφ(ξ2)x2
+ Fω1,φΩ1 − Ξx1,x1

+Fψ2,φΛ2 + Ξx2,x2 − ΞFφ,φ = 0, (5.7)

−IFψ2,ω2Λ2 − Iξ2x2
Fω2 − (Λ1)x1

+ I(Λ1)ψ1
Fω2 + I(Λ1)ω2

Fψ1

+(Λ1)x2
− IFψ1,ω2Λ1 + IFω2,ω1Ω1 + I(ξ2)x1

Fω2 − IΞFω2,φ = 0,

IFψ1,ω2Ω2 − IFψ2,ψ1Λ2 + I(ξ2)x1
Fψ1 − IΞFψ1,φ + I(Ω2)ω2

Fψ1 − (Ω2)x1

+(Ω2)x2
+ I(Ω2)ψ1

Fω2 + IFψ1,ω1Ω1 − I(ξ2)x1
Fψ1 = 0,

−IΞFψ2,φ + (Ω1)x1
− I(ξ2)x1

Fψ2 + I(Ω1)ψ2
Fω1 − I(ξ2)x2

Fψ2 + (Ω1)x2

+IFψ2,ψ1Λ1 + IFψ2,ω1Ω1 + IFψ2,ω2Ω2 + I(Ω1)ω1
Fψ2 = 0,

−I(ξ2)x1
Fω1 − IFψ2,ω1Λ2 − IΞFω1,φ − IFω2,ω1Ω2 − I(ξ2)x2

Fω1 + I(Λ2)ψ2
Fω1

+(Λ2)x1
+ (Λ2)x2

+ I(Λ2)ω1
Fψ2 − IFψ1,ω1Λ1 = 0.

Note that I =
√
−1.

5.3 Reduced defining system

MONO expansion has been introduced in Section 4.2. To decompose the calculation

which contains odd variables, we apply MONO expansion to decompose the infinitesimals

and potential F in the system (5.8) with respect to their odd variable monomials. Three

even infinitesimals ξ1, ξ2 and φ do not depend on any odd variables. So they do not need

to be decomposed by MONO expansion. We apply MONO expansion to the remaining

odd infinitesimals Λ1,Λ2,Ω1 and Ω2 and obtain

Λ1(x1, x2, ψ1, ω2) = PO11(x1, x2) + ψ1ω2PO12(x1, x2)
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+PE11(x1, x2)ω2 + PE12(x1, x2)ψ1, (5.8)

Λ2(x1, x2, ψ1, ω2) = PO21(x1, x2) + ψ2ω1PO22(x1, x2)

+PE21(x1, x2)ω1 + PE22(x1, x2)ψ2, (5.9)

Ω1(x1, x2, ψ1, ω2) = PO31(x1, x2) + ψ2ω1PO32(x1, x2)

+PE31(x1, x2)ω1 + PE32(x1, x2)ψ2, (5.10)

Ω2(x1, x2, ψ1, ω2) = PO41(x1, x2) + ψ1ω2PO42(x1, x2)

+PE41(x1, x2)ω2 + PE42(x1, x2)ψ1. (5.11)

Applying the same decomposition to F (φ, ψ1, ψ2, ω1, ω2), we obtain its MONO expan-

sions:

F (φ, ψ1, ψ2, ω1, ω2) = PE1(φ) + PE2(φ)ω1ω2 + PE3(φ)ψ2ω2 + PE4(φ)ψ2ω1

+PE5(φ)ψ1ω2 + PE6(φ)ψ1ω1 + PE7(φ)ψ1ψ2

+PE8(φ)ψ1ψ2ω1ω2

+PO1(φ)ω2 + PO2(φ)ω1 + PO3(φ)ψ2 + PO4(φ)ω1ω2ψ2

+PO5(φ)ψ1 + PO6(φ)ω1ω2ψ1 + PO7(φ)ω2ψ1ψ2

+PO8(φ)ω1ψ1ψ2.

Since ψ1, ψ2, ω1 and ω2 always appear in pairs in F , the following assumption is made:

suppose that

POj(φ) = 0, i = 1, ..., 8.

Hence F (φ, ψ1, ψ2, ω1, ω2) has only even components

F (φ, ψ1, ψ2, ω1, ω2) = PE1(φ) + PE2(φ)ω1ω2 + PE3(φ)ψ2ω2 + PE4(φ)ψ2ω1

+PE5(φ)ψ1ω2 + PE6(φ)ψ1ω1 + PE7(φ)ψ1ψ2

+PE8(φ)ψ1ψ2ω1ω2. (5.12)
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Then we substitute the expansions (5.8)-(5.11) and (5.12) back into the simplified deter-

mining system (5.8). Taking all the coefficients of the odd variable monomials forms the

final version of the determining system, that is, the reduced defining system.

In the reduced defining system, the unknowns are

PE11(x1, x2), PE12(x1, x2), PO11(x1, x2), PO12(x1, x2),

PE21(x1, x2), PE22(x1, x2), PO21(x1, x2), PO22(x1, x2),

PE31(x1, x2), PE32(x1, x2), PO31(x1, x2), PO32(x1, x2),

PE41(x1, x2), PE42(x1, x2), PO41(x1, x2), PO42(x1, x2),

and

ξ1(x1, x2), ξ2(x1, x2),Ξ(x1, x2, φ).

Next, we are going to use rifsimp and initialdata to help us to get the all the

supersymmetry cases.

5.4 Supersymmetry analysis

In this section, we will give detailed supersymmetry analysis for two extreme cases. One

is when F = 0. The other one is when F is non-trivial enough.

5.4.1 Generic case

Recall the Euler-Lagrange equations (5.5) ,

φx2,x2 = φx1,x1 + Fφ,

(ψ1)x2
= (ψ1)x1

+ IFψ̄2
,

(ψ2)x2
= −(ψ2)x1

+ IFψ̄1
,

(ψ̄1)x2
= −(ψ̄1)x1

+ IFψ2 ,
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(ψ̄2)x2
= (ψ̄2)x1

+ IFψ1 .

It is easy to see that the Euler-Lagrange system always has two translation symmetries

in x1 and x2 for any form of F . Indeed, there are cases for which there are only these 2

symmetries. This is what we call the generic case. We are interested in looking for other

supersymmetries rather than these two obvious translation symmetries.

5.4.2 Symmetry analysis of F=0 case

When F = 0, the Euler-Lagrange system is

φx2,x2 = φx1,x1 ,

(ψ1)x2
= (ψ1)x1

,

(ψ2)x2
= −(ψ2)x1

,

(ω1)x2
= −(ω1)x1

,

(ω2)x2
= (ω2)x1

.

The general solution of

φ = f(x1 − x2) + g(x1 + x2),

ψ1 = f1(x1 + x2),

ψ2 = f2(x1 − x2),

ω1 = h(x1 − x2),

ω2 = h(x1 + x2),

where f, g are arbitray even analytic functions and f1, f2, h1, h2 are arbitray odd super-

analytic functions. The corresponding determining system is reduced to

Ξφ,φ = 0,
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2(ξ1)x1
− 2(ξ2)x2

= 0,

2(ξ2)x1
− 2(ξ1)x2

= 0,

2Ξx2,φ + (ξ2)x1,x1
− (ξ2)x2,x2

= 0,

(ξ1)x1,x1
− (ξ1)x2,x2

− 2Ξx1,φ = 0,

(ξ2)x1
− (ξ1)x1

+ (ξ2)x2
− (ξ1)x2

= 0,

(ξ2)x1
+ (ξ1)x1

− (ξ2)x2
− (ξ1)x2

= 0,

−Ξx1,x1 + Ξx2,x2 = 0,

−(Λ1)x1
+ (Λ1)x2

= 0,

−(Ω2)x1
+ (Ω2)x2

= 0,

(Ω1)x1
+ (Ω1)x2

= 0,

(Λ2)x1
+ (Λ2)x2

= 0.

The symmetry defining system is easily solved to show that the original Euler-Lagrange

equations admits and ∞-dimensional supersymmetry group. However this is not inter-

esting since the EL system is trivially solvable. We remark that we found many cases

of nontrivial nonlinear F admitting nontrivial ∞-dimensional supersymmetry groups. It

would be interesting to investigate such cases in future research.

5.4.3 Symmetry analysis of one 5-dim case

For the other extreme case, F is as in (5.12). We also add one constraint on F to the

determining system

PE ′′′8 (φ) 6= 0, (5.13)

where PE8(φ) is the coefficient of the highest order nonlinear term ψ1ψ2ω1ω2 in F . The

reason is that we want to find some non-trivial supersymmetry of the defining system

with nontrivial F . Then we send the reduced defining system and the constraint (5.13)

to rifsimp:



88

# FinalDet: the defining system of the input super Euler−Lagrange equations;

# AllInfNames: all infinitesimal functions;

msys2 := rifsimp([op(FinalDet), diff(PE[8](phi), phi, phi, phi) 6= 0],

AllInfNames, casesplit):

caseplot(msys2, AllInfNames):

The Maple output indicates us that there are over 3000 cases. What can we do

about this big data? First of all, we split all the cases into two classes. One class is

the set of all cases with infinite dimensional supersymmetry groups. The other class is

the set of all cases with finite dimensional supersymmetry groups. Out of these, we seek

the ones with maximal dimension since they contain more supersymmetries. We found

that the maximal dimension is 5. We get 32 five dimensional cases with 5 dimensional

supersymmetry groups. In this section, we will pick one of the 32 five dimensional case

and give the supersymmetry results in detail for that case.

Total
3197 cases

2946 finite cases 251 infinite cases

32 5-dim

323 4-dim

1168 3-dim

1423 2-dim

Figure 5.4.1: Case split

The most interesting cases are the ones with more symmetries and in particular those

with maximal dimensional supersymmetry groups. As is shown in Figure 5.4.1, there are

32 5-dimensional cases. Among them, Case 1124 has been selected and analyzed. Note

that the number of cases can vary if the Maple worksheet os re-executed.

For Case 1124, we get the complete solutions of for the supersymmetry infinitesimals:
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ξ1(x1, x2) =
(2 C4 C2− I(x1 + x2)( C1 + C2))C1− I C2(x1 − x2)( C1− C2)

2C1 C2

ξ2(x1, x2) =
(2 C5 C2− I(x1 + x2)( C1 + C2))C1 + I C2(x1 − x2)( C1− C2)

2C1 C2

Ξ(x1, x2, φ) =
I(C1( C1 + C2) + C2( C1− C2))(aφ+ b)

aC1 C2(c2 + d2)

Λ1(x1, x2, ψ1, ω2) =
1

C1 C2(c2 + d2)
((C1 C2 C1(c2 + d2)x1 + C1 C2 C2(c2 + d2)x2

+C1 C2 C3(c2 + d2) + I c2 C1( C1 + C2)

−I d2 C2( C1− C2))ψ1),

Λ2(x1, x2, ψ2, ω1) = − 1

C1 C2(c2 + d2)
((C1 C2 C1(c2 + d2)x1 + C1 C2 C2(c2 + d2)x2

+C1 C2 C3(c2 + d2)− I C1 C2(c2 + d2) + I C2 C2(c2 + d2)

−2I C1( C1 + C2)− 2I C2( C1− C2))ψ2),

Ω1(x1, x2, ψ2, ω1) = ( C1 x1 + C2 x2 + C3)ω1,

Ω2(x1, x2, ψ1, ω2) = − 1

C1 C2(c2 + d2)
((C1 C2 C1(c2 + d2)x1 + C1 C2 C2(c2 + d2)x2

+C1 C2 C3(c2 + d2)− I C1 d2( C1 + C2)− I C2 d2( C1− C2)

−2I C1( C1 + C2)− 2I C2( C1− C2))ω2).

Fot this maximal case we explicitly found F as

F (φ, ψ1, ψ2, ω1, ω2) = C3 + C4
(aφ+ b

a

)c2+d2+2

+d1(aφ+ b)d2ψ1ψ2 + c1(aφ+ b)c2ω1ω2

−C1 ω2ψ1 − C2 ω1ψ2

+
4

(aφ+ b)2
ω1ω2ψ1ψ2.

These solutions were also checked by substituting them back into the determining system.

Consider the supersymmetry vector field

v = ξ1∂x1 + ξ2∂x2 + Ξ∂φ + Λ1∂ψ1 + Λ2∂ψ2 + Ω1∂ω1 + Ω2∂ω2 . (5.14)
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Since this is a 5-dim case with arbitray constants C1, C2, ..., C5, the coefficients of the

five constants yields the basis of the solution space.

By setting ( C1, C2, C3, C4, C5) equal to

(1, 1, 0, 0, 0),

(1,−1, 0, 0, 0),

(0, 0, 1, 0, 0),

(0, 0, 0, 1, 0),

(0, 0, 0, 0, 1).

in (5.14) yields the basis of supersymmetry operators

L1 = ∂x1 ,

L2 = ∂x2 ,

L3 = ψ1∂ψ1 − ψ2∂ψ2 + ω1∂ω1 − ω2∂ω2 ,

L4 = − 1

aC2(c2 + d2)
(I a(c2 + d2)(x1 + x2)∂x1 + I a(c2 + d2)(x1 + x2)∂x2

−2I(aφ+ b)∂φ

−(a C2(c2 + d2)(x1 + x2) + 2I a c2)ψ1∂ψ1

+(a C2(c2 + d2)(x1 + x2)− 4I a)ψ2∂ψ2

−a C2(c2 + d2)(x1 + x2)ω1∂ω1

+(a C2(c2 + d2)(x1 + x2)− 2I a d2− 4I a)ω2∂ω2),

L5 = − 1

a C1(c2 + d2)
(I a(c2 + d2)(x1 − x2)∂x1 − I a(c2 + d2)(x1 − x2)∂x2

−2I(aφ+ b)∂φ

−(a C1(c2 + d2)(x1 − x2)− 2I a d2)ψ1∂ψ1

+(a C1(c2 + d2)(x1 − x2)− 4I a− 2I a d2− 2I a c2)ψ2∂ψ2

−a C1(c2 + d2)(x1 − x2)ω1∂ω1
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+(a C1(c2 + d2)(x1 − x2)− 2I a d2− 4I a)ω2∂ω2).

This yields the commutator table in Table 5.4.1.

L1 L2 L3 L4 L5

L1 0 0 0 −L1+L2

C2
+ L3 −L1−L2

C1
+ L3

L2 0 0 0 −L1+L2

C2
+ L3

L1+L2

C2
− L3

L3 0 0 0 0 0

L4
L1+L2

C2
− L3

L1+L2

C2
− L3 0 0 0

L5
L1−L2

C1
− L3 −L1+L2

C2
+ L3 0 0 0

.

Table 5.4.1: Supercommutator table for the super Lie algebra defining system of Case
1124.

5.4.4 Finding supersymmetries for a sub-class of (5.5)

In the previous Section 5.4.3, we analyzed the case with

F (φ, ψ1, ψ2, ω1, ω2) = C3 + C4
(aφ+ b

a

)c2+d2+2

+d1(aφ+ b)d2ψ1ψ2 + c1(aφ+ b)c2ω1ω2

−C1 ω2ψ1 − C2 ω1ψ2

+
4

(aφ+ b)2
ω1ω2ψ1ψ2.

In this section, our goal is to find at least one non-trivial supersymmetry for the Euler-

Lagrange system (5.5) with a sub-class of F above, which is

F(φ, ψ1, ψ2, ω1, ω2) = C3 + C4 φ2c+2 + d1 φcψ1ψ2 + c1 φcω1ω2

−Cω2ψ1 − Cω1ψ2 +
4

φ2
ω1ω2ψ1ψ2, (5.15)



92

by making the assumptions

a = 1, b = 0, c2 = d2 = c, C1 = C2 = C. (5.16)

The first two assumptions are natural and do not make any essential restriction on F .

The other two assumptions are a normalization of F in some sense. At the same time,

under the assumptions (5.16), the sub-class of the Euler-Lagrange system (5.5) is changed

to

φx2,x2 = φx1,x1 + Fφ,

(ψ1)x2
= (ψ1)x1

+ IFω2 ,

(ψ2)x2
= −(ψ2)x1

+ IFω1 , (5.17)

(ω1)x2
= −(ω1)x1

+ IFψ2 ,

(ω2)x2
= (ω2)x1

+ IFψ1 ,

and the last two most complicated basis generators of the Lie superalgebra in Table 5.4.1

become

L4 = − I

C
((x1 + x2)∂x1 + (x1 + x2)∂x2) +

I

Cc
φ∂φ

(x1 + x2)(ψ1∂ψ1 − ψ2∂ψ2 + ω1∂ω1 − ω2∂ω2)

+
I

C
ψ1∂ψ1 +

2I

Cc
ψ2∂ψ2 +

I(c+ 2)

Cc
ω2∂ω2 ,

and

L5 = − I

C
((x1 − x2)∂x1 − (x1 − x2)∂x2) +

I

Cc
φ∂φ

(x1 − x2)(ψ1∂ψ1 − ψ2∂ψ2 + ω1∂ω1 − ω2∂ω2)

− I
C
ψ1∂ψ1 +

2I(c+ 1)

Cc
ψ2∂ψ2 +

I(c+ 2)

Cc
ω2∂ω2 .
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By adding L4 and L5, a new independent basis is formed

L4 + L5 = −2I

C
x1∂x1 +−2I

C
x2∂x2 +

2I

Cc
φ∂φ

+2x1(ψ1∂ψ1 − ψ2∂ψ2 + ω1∂ω1 − ω2∂ω2)

+
2I(c+ 2)

Cc
(ψ2∂ψ2 + ω2∂ω2).

Then, we can obtain the one parameter supersymmetry differential equations correspond-

ing to L4 + L5:

dx̂1

dε
= −2I

C
x̂1, x̂1(0) = x1; (5.18)

dx̂2

dε
= −2I

C
x̂2, x̂2(0) = x2; (5.19)

dφ̂

dε
=

2I

Cc
φ̂, φ̂(0) = φ; (5.20)

dψ̂1

dε
= 2x̂1ψ̂1, ψ̂1(0) = ψ1; (5.21)

dψ̂2

dε
=

(2I(c+ 2)

Cc
− 2x̂1

)
ψ̂2, ψ̂2(0) = ψ2; (5.22)

dω̂1

dε
= 2x̂1ω̂1, ω̂1(0) = ω1; (5.23)

dω̂2

dε
=

(2I(c+ 2)

Cc
− 2x̂1

)
ω̂2 ψ̂2(0) = ψ2. (5.24)

By solving the above differential equations with their initial conditions, one has

x̂1 = e−
2Iε
C x1,

x̂2 = e−
2Iε
C x2,

φ̂ = e
2Iε
Ccφ,

ψ̂1 = eICx1

(
e
−2Iε
C −1

)
ψ1, (5.25)

ψ̂2 = e
2I(c+2)ε
Cc

+ICx1

(
1−e

−2Iε
C

)
ψ2,

ω̂1 = eICx1

(
e
−2Iε
C −1

)
ω1,

ω̂2 = e
2I(c+2)ε
Cc

+ICx1

(
1−e

−2Iε
C

)
ω2.
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We checked that the supersymmetry (5.25) leaves the system (5.18) invariant by showing

that each of the PDE in (5.18) are left invariant.

We give the details of this check for the first two PDE in (5.18).

a) We show that the supersymmetry (5.25) leaves the first equation in the sub-class

of Euler-Lagrange system (5.18) invariant.

b) We show that the supersymmetry (5.25) leaves the second equation in the sub-class

of Euler-Lagrange system (5.18) invariant.

We now do the details for a). If it does so, one should have

φ̂x̂2,x̂2 = φ̂x̂1,x̂1 + F̂φ̂, (5.26)

where

F̂φ̂ = C4(2c+ 2)φ̂2c+1 + d1 cφ̂c−1ψ̂1ψ̂2 + c1 cφ̂c−1ω̂1ω̂2 −
8

φ̂3
ω̂1ω̂2ψ̂1ψ̂2. (5.27)

The left hand side of (5.26) is

φ̂x̂2,x̂2 = e
2Iε
C e

2Iε
C e

2Iε
Ccφx2,x2 = e

2I(2c+1)ε
Cc φx2,x2 . (5.28)

The first term of the right hand side of (5.26) is

φ̂x̂1,x̂1 = e
2Iε
C e

2Iε
C e

2Iε
Ccφx1,x1 = e

2I(2c+1)ε
Cc φx1,x1 . (5.29)

The second term of the right hand side of (5.26) is

F̂φ̂ = C4(2c+ 2)e
2I(2c+1)ε

Cc φ2c+1

+d1 ce
2Iε
Ccφc−1eICx1

(
e
−2Iε
C −1

)
ψ1e

2I(c+2)ε
Cc

+ICx1

(
1−e

−2Iε
C

)
ψ2

+c1 ce
2Iε
Ccφc−1eICx1

(
e
−2Iε
C −1

)
ω1e

2I(c+2)ε
Cc

+ICx1

(
1−e

−2Iε
C

)
ω2

−e−
6Iε
Cc

8

φ3
e2ICx1

(
e
−2Iε
C −1

)
e

4I(c+2)ε
Cc

+2ICx1

(
1−e

−2Iε
C

)
ω1ω2ψ1ψ2.
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= e
2I(2c+1)ε

Cc (C4(2c+ 2)φ2c+1 + d1 cφc−1ψ1ψ2 + c1 cφc−1ω1ω2 −
8

φ3
ω1ω2ψ1ψ2)

= e
2I(2c+1)ε

Cc Fφ. (5.30)

Therefore, (5.28), (5.29) and (5.30) imply

φx2,x2 = φx1,x1 + Fφ,

which means that the supersymmetry (5.25) leaves the first equation in (5.18) invariant!

Then we show that the supersymmetry (5.25) leaves the second equation in the sub-

class of Euler-Lagrange system (5.18) invariant. We use the same strategy as it in a). If

b) holds, then one has

ψ̂1x̂2
= ψ̂1x̂1

+ IF̂ω̂2 , (5.31)

where

F̂ω̂2 = −c1φ̂cω̂1 − Cψ̂1 −
4

φ̂2
ω̂1ψ̂1ψ̂2. (5.32)

The left hand side of (5.31) is

ψ̂1x̂2
= e

2Iε
C eICx1

(
e
−2Iε
C −1

)
ψ1x2

= e
2Iε
C

+ICx1

(
e
−2Iε
C −1

)
ψ1x2

= Aψ1x2
, (5.33)

where A is supposed to be e
2Iε
C

+ICx1

(
e
−2Iε
C −1

)
. The first term of the right hand side of

(5.31) is

ψ̂1x̂1
= e

2Iε
C

(
eICx1

(
e
−2Iε
C −1

)
ψ1

)
x1

= e
2Iε
C

(
IC
(
e
−2Iε
C − 1

)
eICx1

(
e
−2Iε
C −1

)
ψ1 + eICx1

(
e
−2Iε
C −1

)
ψ1x1

)
= e

2Iε
C

+ICx1

(
e
−2Iε
C −1

)
IC
(
e
−2Iε
C − 1

)
ψ1 + e

2Iε
C

+ICx1

(
e
−2Iε
C −1

)
ψ1x1

= e
2Iε
C

+ICx1

(
e
−2Iε
C −1

)
IC
(
e
−2Iε
C − 1

)
ψ1 + Aψ1x1

. (5.34)
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The second term of the right hand side of (5.31) is

IF̂ω̂2 = −I c1 e
2I ε
C eICx1

(
e
−2Iε
C −1

)
φcω1 − ICeICx1

(
e
−2Iε
C −1

)
ψ1

−I e−
4Iε
Cc e2ICx1

(
e
−2Iε
C −1

)
e

2I(c+2)ε
Cc

+ICx1

(
1−e

−2Iε
C

)
4

φ2
ω1ψ1ψ2

= A(−I c1φ2ω1)− I CeIC x1

(
e
−2Iε
C −1

)
ψ1 + A(−I

4

φ2
ω1ψ1ψ2). (5.35)

By adding (5.34) and (5.35), the right hand side of (5.31) becomes

Aψ1x1
+ A(−I c1φ2ω1) + A(−I Cψ1) + A(−I

4

φ2
ω1ψ1ψ2) = A(ψ1x1

+ IFω2). (5.36)

Then (5.33) and (5.36) imply that

ψ1x2
= ψ1x1

+ IFω2 ,

which means that the supersymmetry (5.25) leaves the second equation in (5.18) invariant!

Similarly, we can verify that the supersymmetry (5.25) also leaves the remaining three

equations in (5.18) invariant. Hence, one can claim that

Theorem 5.4.1. There exists at least one non-trivial supersymmetry that leaves the

Euler-Lagrange system (5.18) invariant.

Next, we are going to find the invariants. By the separation of hat variables and

non-hat variables for each symmetry in (5.25), one has

x̂1

x̂2

=
x1

x2

, (5.37)

x̂1

1
c φ̂ = x

1
c
1 φ; (5.38)

e−ICx̂1ψ̂1 = e−ICx1ψ1, (5.39)

x̂1

c+2
c eICx̂1ψ̂2 = x

c+2
c

1 eICx1ψ2, (5.40)

e−ICx̂1ω̂1 = e−ICx1ω1, (5.41)

x̂1

c+2
c eICx̂1ω̂2 = x

c+2
c

1 eICx1ω2. (5.42)
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For each relation, suppose that

z =
x1

x2

=
x̂1

x̂2

; (5.43)

y(z) = x
1
c
1 φ = x̂1

1
c φ̂; (5.44)

δ1(z) = e−ICx1ψ1 = e−ICx̂1ψ̂1; (5.45)

δ2(z) = x
c+2
c

1 eICx1ψ2 = x̂1

c+2
c eICx̂1ψ̂2; (5.46)

ρ1(z) = e−ICx1ω1 = e−ICx̂1ω̂1; (5.47)

ρ2(z) = x
c+2
c

1 eICx1ω2 = x̂1

c+2
c eICx̂1ω̂2. (5.48)

Therefore, these new variables z, y(z), δ1(z), δ2(z), ρ1(z) and ρ2(z) are the invariants we

were looking for. Note that δ1(z), δ2(z), ρ1(z) and ρ2(z) are odd invariants.

Let us show that they can reduce the original super PDE system (5.18) to super ODE

system.

a) Show that the invariants z, y(z), δ1(z), δ2(z), ρ1(z) and ρ2(z) reduce the first super

PDE

φx2,x2 = φx1,x1 + Fφ (5.49)

to a super ODE.

Substitute the invariants to the left hand side of the super PDE (5.49). By (5.45), we

have

φ = x
− 1
c

1 y(z). (5.50)

Then we have

φx2 = −x1− 1
c

1 x−2
2 y′(z) (5.51)

and

φx2,x2 = x
2− 1

c
1 x−4

2 y′′(z) + 2x
1− 1

c
1 x−3

2 y′(z). (5.52)

Eliminating x2 from (5.56) by the relation x2 = x1z
−1, we have

φx2,x2 = x
− 2c+1

c
1 z4y′′(z) + 2x

− 2c+1
c

1 z3y′(z). (5.53)
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Then substitute the invariants to the first term of the right hand side of the super PDE

(5.49). We have

φx1 = −1

c
x
−1− 1

c
1 y(z) + x

− 1
c

1 x−1
2 y′(z) (5.54)

and

φx1,x1 =
1

c

(1

c
+ 1
)
x
− 2c+1

c
1 y(z)− 2

c
x
−1− 1

c
1 x−1

2 y′(z). (5.55)

By the eliminating x2, we have

φx1,x1 =
1

c

(1

c
+ 1
)
x
− 2c+1

c
1 y(z)− 2

c
x
− 2c+1

c
1 zy′(z). (5.56)

The second term of the right hand side

Fφ = C4(2c+ 2)φ2c+1 + d1 cφc−1ψ1ψ2 + c1 cφc−1ω1ω2 −
8

φ3
ω1ω2ψ1ψ2

= C4(2c+ 2)x
− 2c+1

c
1 y(z)2c+1 + d1 cx

− 2c+1
c

1 y(z)c−1δ1(z)δ2(z)

+c1 cx
− 2c+1

c
1 y(z)c−1ρ1(z)ρ2(z)− x−

2c+1
c

1

8

y3(z)
ρ1(z)ρ2(z)δ1(z)δ2(z).

By the cancelation of the common factor x
− 2c+1

c
1 , we finally obtain the super ODE

(z4 − z2)y′′ + (2z3 +
2

c
z)y′

=
1

c

(1

c
+ 1
)
y + C4(2c+ 2)y2c+1 + d1 cyc−1δ1δ2 + c1 cyc−1ρ1ρ2 −

8

y3
ρ1ρ2δ1δ2,

where y, δ1, δ2, ρ1 and ρ2 are functions of z.

Similarly, the invariants z, y(z), δ1(z), δ2(z), ρ1(z) and ρ2(z) also reduce the other four

super PDE in (5.18)

(ψ1)x2
= (ψ1)x1

+ IFω2 ,

(ψ2)x2
= −(ψ2)x1

+ IFω1 ,

(ω1)x2
= −(ω1)x1

+ IFψ2 ,

(ω2)x2
= (ω2)x1

+ IFψ1 ,



99

to super ODEs

(z2 + z)δ′1 = I c1 ycρ1 +
4 I

y2
ρ1δ1δ2;

(z2 − z)δ′2 = −c+ 2

c
δ2 − I c1 ycρ2 −

4 I

y2
ρ2δ1δ2;

(z2 − z)ρ′1 = I d1 ycδ1 +
4 I

y2
ρ1ρ2δ;

(z2 + z)ρ′2 =
c+ 2

c
ρ2 − I d1 ycδ2 −

4 I

y2
ρ1ρ2δ2;

5.5 Further discussion

The substitution we made in Section 5.2.1 of introducing two new variables ω1 and ω2 to

replace ψ̄1 and ψ̄2 brings us into a bigger space where ψ1, ψ2, ω1 and ω2 are treated as four

independent variables. For this bigger space, we have shown that we could find hidden

superanalytic supersymmetry. The resulting invariants of this supersymmetry reduce the

super PDE system to a super ODE system. Future research involves the consequences

for the original variables ψ̄1, ψ̄2. Also, in future work, it is interesting to investigate the

infinite dimensional supersymmetry groups for the cases with nontrivial potential F .
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Chapter 6

Discussion and future work

The main results of this thesis have been presented in Chapter 3, 4 and 5. A summary

and discussion of the main results will be given. Future work will also be discussed.

6.1 Concluding remarks

Symbolic computation research about supersymmetry is a strong and evolving area. Ayari

[19, 20], Hussin [20] and Cheb-Terrab [15] have their own symbolic implementations in

Maple. Wolf and his collaborators [21, 22, 23, 25, 29] have developed powerful algorithms

in REDUCE for computation of polynomials of supersymmetries.

In order to make this thesis self-contained, we first introduced the infinitesimal method

for getting the defining system of a given super differential equation in Chapter 3. This

method is applied to two examples, the second order super ODE (3.8) and the super

KdV equation (3.9). The first example is relatively easy and the second example is more

complicated. We obtain the defining system for each example and work out the Lie super-

algebra structure ( supercommutator table) by heuristic integrals. Part of these works,

such as the structure constants of Lie supersymmetry of super KdV example by integra-

tion has been done by Ayari [19, 20] Hussin [20]. My work focuses on algorithmic aspects

of the reduction of supersymmetry defining system and the algorithmic determination of

the structure of the Lie supersymmetry algebra without heuristic integration.
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Rather than using heuristic integrals, we contribute an alternative method of the

determination of structure constants of Lie supersymmetry of finite dimensional super

differential equations. The new method is inspired by I. Lisle and G. Reid’s methods

for the determination of the structure constants for non-super differential equations.

They developed a symbolic algorithm of the determination of the structure constants by

inducing a commutator on initial data space, where computations can be done algorith-

mically via the existence uniqueness theorem. Our algorithm follows the same approach.

However, there are technical difficulties that occur in the super case which means the

generalization of Lisle and Reid’s algorithm is not trivial.

For the super case, there are complications. Under a certain ranking of the derivatives,

we define regular super differential equations by the parity of the coefficient of the leading

term of the given super differential equation. If the coefficient of the leading term is even,

then it is a regular super differential equation. A regular super differential equation can

be written in solved form with respect to their leading derivative. But an irregular

super differential equation can not be written in solved form with respect to their leading

derivative since the odd coefficient of the leading derivative is not invertible.

Being able to write a system in solved form is crucial for us. The underlying theory

of the Riquier bases ( the differential analog of Gröbner bases) depends on inverting

coefficients of leading derivatives and computing integrability conditions. We develop

the MONO expansion algorithm to address the difficulty of irregular super differential

equation systems. MONO expansion decomposes super functions by their odd variable

monomials. Figure (4.2.1) outlines the MONO expansion procedure. Irregular super

differential equation systems are converted into regular super differential equation sys-

tems by the MONO expansion of super functions. Then the coefficients of odd variable

monomials are computed for each differential equation in the resulting system. The new

system is formed and called the reduced defining system. That system is regular and

does not depend on odd variables and more important. In Section 4.3.2, we show that

how MONO expansion algorithm reduces the irregular defining system of the super KdV

equation to a regular defining system.
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Once irregular super differential equations are converted to regular equations, the

existence and uniqueness for the non-super case proved by Rust, Reid and Wittkopf [18]

can be applied. Under the assurance of the existence and uniqueness theorem, we develop

a structure constant determination algorithm by using two copies of initial data of the

parametric derivatives. This method of the determination of structure constants is algo-

rithmic and programmable unlike the previous heuristic method based on integrations.

The third contribution shows that how to use the Maple physics package to help

us to find hidden supersymmetry for a certain class of super Lagrangian models with

an unspecified potential function. Firstly, we investigate the defining system of the

Euler-Lagrange equations of the given super Lagrangian. In order to apply rifsimp and

initialdata to the defining system, we apply MONO expansion to the infinitesimals

and potential function to obtain it in reduced form. Two extreme cases are analyzed

in the thesis. One extreme case is the with zero potential. The conclusion is that it is

solvable and admits an infinitely dimensional supersymmetry group. The other extreme

case is when the potential is nontrivial enough. This is imposed by the constraint that

the third order derivative of the coefficient of the highest order term of the potential is

nonzero. With the Maple option of casesplit, this leads to thousands of cases. The

most interesting cases are the maximal finite-dimensional cases. In this thesis, we give

a detailed analysis for one of the maximal finite-dimensional cases. The conclusions

for this particular case are: the infinitesimals and potential are found explicitly; the

supercommutator table is given. For a subclass of this particular case, at least one

hidden supersymmetry has been found explicitly. We show that it leaves the Euler-

Lagrange system invariant and the Euler-Lagrange PDE system can be reduced to ODE

system by this supersymmetry using super invariants.

6.2 Future work

This thesis focuses on finite-dimensional Lie supersymmetry algebras of super differ-

ential equations. The algorithm for the determination of structure constants for the

finite-dimensional supersymmetry groups is a good foundation for research about the
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determination of structure of infinite-dimensional supersymmetry groups. In fact, it is

usually impossible to write each the Lie superalgebra generators of infinite dimensional

Lie superalgebra explicitly. However, our algorithm for the determination of structure

constants does not depend on explicitly obtaining the Lie superalgebra generators. Hence,

our algorithm should give a good direction for the determination of structure of infinite-

dimensional supersymmetry groups of super differential equations.

Also, recall Figure 5.4.1 in Section 5.4. There are 251 infinite cases which have not

been investigate. We will continue our work for finding the interesting hidden supersym-

metries for those infinite-dimensional cases.
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Appendix A

Maple coding

Throughout the thesis, Maple is used as a powerful solving tool for generating the defining

system and finding the symmetry properties of super differential equations. This is

especially ture for large systems which are extremely difficult for hand calculations. We

provide some Maple procedures for calculations in Chapter 4 and Chapter 5.

A.1 MONO code

In Section 4.3, we introduce MONO expansion for decomposing a super function by its

odd variable monomials.

Mono := proc(coeffnameE, coeffnameO, coeffindeps, oddvars)

local T, S, MonoListE, MonoListO, j, k, ff;

T := combinat:-cartprod([seq([0,1], i=1..nops(oddvars))]);

S := NULL;

while not(T[finished]) do

S := S, T[nextvalue]();

end do;

MonoListE := NULL;

for k from 1 to nops([S]) do

if type(add(S[k][i],i=1..nops(S[1])),odd)=false then
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MonoListE:=MonoListE, product(oddvars[i]^(S[k][i]),

i=1..nops(S[1]));

end if;

end do;

userinfo(2, Mono, ‘MonoListE = ‘, MonoListE);

MonoListO := NULL;

for k from 1 to nops([S]) do

if type(add(S[k][i],i=1..nops(S[1])),even)=false then

MonoListO := MonoListO,product(oddvars[i]^(S[k][i]),

i=1..nops(S[1]));

end if;

end do;

userinfo(2, Mono, ‘MonoListO = ‘, MonoListO);

ff := add(coeffnameE[h](op(coeffindeps))

*[MonoListE][h], h = 1 .. nops([MonoListE]))

+

add(coeffnameO[h](op(coeffindeps))

*[MonoListO][h], h = 1 .. nops([MonoListO]));

return(ff);

end proc:

Glossary:

• Mono: the MONO expansion procedure.

• coeffnameE: even coefficient names in the output expansion.

• coeffnameO: odd coefficient names in the output expansion.

• coeffindeps: independences of coeffnameE and coeffnameO.

• oddvars: the odd variables of the given super function.

• MonoListE: odd variable monomials with even parity.
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• MonoListO: odd variable monomials with odd parity.

• ff: the mono expansion of the given super function.

Code examples:

1. Recall that in section 5.3, we need to do MONO expansion for odd infinitesimals

Λ1(x1, x2, ψ1, ω2),Λ2(x1, x2, ψ2, ω1),Ω1(x1, x2, ψ2, ω1) and Ω2(x1, x2, ψ1, ω2). Then

the MONO input is

Lambda[1](x[1], x[2], psi[1], omega[2])

= Mono(PO1, PE1, [x[1], x[2]], [psi[1], omega[2]]);

Lambda[2](x[1], x[2], psi[2], omega[1])

= Mono(PO2, PE2, [x[1], x[2]], [psi[2], omega[1]]);

Omega[1](x[1], x[2], psi[2], omega[1])

= Mono(PO3, PE3, [x[1], x[2]], [psi[2], omega[1]]);

Omega[2](x[1], x[2], psi[1], omega[2])

= Mono(PO4, PE4, [x[1], x[2]], [psi[1], omega[2]]);

Maple returns us:

Λ1(x1, x2, ψ1, ω2) = PO11(x1, x2) + ψ1ω2PO12(x1, x2)

+PE11(x1, x2)ω2 + PE12(x1, x2)ψ1,

Λ2(x1, x2, ψ2, ω1) = PO21(x1, x2) + ψ2ω1PO22(x1, x2)

+PE21(x1, x2)ω1 + PE22(x1, x2)ψ2,

Ω1(x1, x2, ψ2, ω1) = PO31(x1, x2) + ψ2ω1PO32(x1, x2)

+PE31(x1, x2)ω1 + PE32(x1, x2)ψ2,

Ω2(x1, x2, ψ1, ω2) = PO41(x1, x2) + ψ1ω2PO42(x1, x2)

+PE41(x1, x2)ω2 + PE42(x1, x2)ψ1.

2. Also in Section 5.3, the MONO expansion for the protential F (φ, ψ1, ψ2, ω1, ω2) is
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F(phi, psi[1], psi[2], omega[1], omega[2])

= Mono(PE, PO, [phi],

[psi[1], psi[2], omega[1], omega[2]]);

The Maple output is

F (φ, ψ1, ψ2, ω1, ω2) = PE1(φ) + PE2(φ)ω1ω2 + PE3(φ)ψ2ω2 + PE4(φ)ψ2ω1

+PE5(φ)ψ1ω2 + PE6(φ)ψ1ω1 + PE7(φ)ψ1ψ2

+PE8(φ)ψ1ψ2ω1ω2

+PO1(φ)ω2 + PO2(φ)ω1 + PO3(φ)ψ2 + PO4(φ)ω1ω2ψ2

+PO5(φ)ψ1 + PO6(φ)ω1ω2ψ1 + PO7(φ)ω2ψ1ψ2

+PO8(φ)ω1ψ1ψ2.

A.2 Euler-Lagrange code

To generate the Eular-Lagrange equation for a give Lagrangian automatically, we have

written the Maple procedure EL

EL := proc(Lag, t::list, U::list)

local j, ELeqns, Ut, JU, JUt, JLag;

lprint(‘Indep vars = ‘, t, ‘Dep vars = ‘, U);

JU := ToJet(U, U);

lprint(‘Jet form dep vars =JU=‘, JU);

Ut := [seq(diff(U[j],t), j = 1 .. nops(U) )];

JLag:= ToJet(Lag, U);

lprint(‘JLag=‘, JLag);

ELeqns:= NULL;

for j from 1 to nops(U) do

ELeqns := ELeqns,diff(JLag,JU[j]) -

ToJet(add(diff(FromJet(diff(JLag,(JU[j])[t[k]]),U),t[k]),
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k = 1 .. nops(t)),U);

end do;

return [ELeqns];

end proc;

Glossary:

• EL: the name of the Euler-Lagrange equation procedure.

• Lag: the given Lagrangian.

• t::list: the list of independent variables in Lag.

• U::list: the list of dependent variables in Lag.

• JU: the jet notation of U.

• Ut: the derivatives of U.

• JLag: the jet notation of Lag.

• ELeqns: the output Euler-Lagrange equations.

Code example: the input super Lagrangian is

L =
1

2
(−φ2

x1
+ φ2

x2
)

+
i

2
(ψ1x1

ψ̄2 − ψ2x1
ψ̄1 − ψ1x2

ψ̄2 − ψ2x2
ψ̄1 + ψ̄2x1

ψ1 − ψ̄1x1
ψ2 − ψ̄2x2

ψ1 − ψ̄1x2
ψ2)

+F (φ, ψ1, ψ2, ψ̄1, ψ̄2).

Define the set of dependent variables first:

DepVar := [phi, psi[1], psi[2], omega[1], omega[2]](x[1], x[2]);

Then send L to EL:

EularLag := EL(L, [x[1], x[2]), DepVar);

Maple returns us
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EulerLag := [diff(F(phi, psi[1], psi[2], omega[1], omega[2]), phi)

+phi[x[1], x[1]]-phi[x[2], x[2]],

-I*omega[2][x[1]]+I*omega[2][x[2]]

+diff(F(phi, psi[1], psi[2], omega[1], omega[2]), psi[1]),

I*omega[1][x[1]]+I*omega[1][x[2]]

+diff(F(phi, psi[1], psi[2], omega[1], omega[2]), psi[2]),

I*psi[2][x[1]]+I*psi[2][x[2]]

+diff(F(phi, psi[1], psi[2], omega[1], omega[2]), omega[1]),

-I*psi[1][x[1]]+I*psi[1][x[2]]

+diff(F(phi, psi[1], psi[2], omega[1], omega[2]), omega[2])],

which is Euler-Lagrange equation system (5.5) in Section 5.1.
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