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Abstract

Superspaces are an extension of classical spaces that include certain (non-commutative)
supervariables. Super differential equations are differential equations defined on super-
spaces, which arise in certain popular mathematical physics models. Supersymmetries
of such models are superspace transformations which leave their sets of solutions invari-
ant. They are important generalization of classical Lie symmetry groups of differential
equations.

In this thesis, we consider finite-dimensional Lie supersymmetry groups of super dif-
ferential equations. Such supergroups are locally uniquely determined by their associated
Lie superalgebras, and in particular by the structure constants of those algebras. The
main work of this thesis is providing an algorithmic method for finding the structure
constants of such Lie superalgebras. The traditional method uses heuristic integrations
to determine such structure constants. Two typical examples are used to demonstrate
our algorithm for determining structure constants.

We also apply our method to a large class of super Lagrangians in 1 + 1 dimensional
space time. The supersymmetry classification of such a large class is impossible for hand
calculation since it requires analysis of thousands of cases. We will show how to find
hidden supersymmetry for such a class of super differential equations by our algorithms

and the Physics, DEtools, PDEtools packages of Maple 17.
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Chapter 1

Introduction

Symmetry methods provide powerful analytic tools for solving differential equations,
especially nonlinear partial differential equations for which few analytic solution methods
exist. Simply speaking, a symmetry is a transformation which maps solution manifolds to
solution manifolds. Finite dimensional Lie symmetry groups are transformation groups
that depend on finitely many parameters. They were initially developed in the works
of Sophus Lie [1, 2, 3] in late nineteenth century. Lie also applied them to differential
equations. For example by introducing invariants the number of independent variables
in a PDE can be reduced. Locally a Lie group is characterized by its Lie algebra, which
in fact is characterized by its structure constants. Indeed if the structure constants
determine that an n-order ODE has n-dimensional solvable Lie algebra of symmetries,

then it can be reduced to an (n — r)-th order ODE.

Supersymmetry yields analogous results. For example, it transforms solution super-
manifolds to solution supermanifolds. Over recent decades, researchers have extended
many (Lie) symmetry properties to (Lie) supersymmetries. Supersymmetry originally
arose from quantum field theory in 1960s and 1970s. In 1966, Miyazawa [4, 5] was the
first physicist to use supersymmetry to relate mesons and baryons. In 1971, Gervais
and Sakita [6] independently rediscovered supersymmetry with a consistent Lie algebraic
graded structure arising in quantum field theory. Over a half century, supersymmetry

has been prominent in physics. Various particle physics models have been developed



that predict new super particles under the action of supersymmetry. However, the Large
Hadron Collider (LHC) has eliminated some popular supersymmetric models. Despite
this, supersymmetry has been proved to be a powerful tool in simplifying the analyt-
ical solution of various well-established models, including classical models in quantum
mechanics. For example, the non-commutative variables arising in such calculations are
operators where components are complex functions.

In this thesis, supersymmetry is studied using symbolic computation. Our goal is
to algorithmically determine the Lie superalgebra structure of the (maximal) group of
supersymmetries of super differential equations. It is the generalization of Lie algebra
structure determination methods invented by Reid [9, 10, 11}, Lisle [12, 24], Boulton
Wittkopf [12] in the 1990s. Moreover, using these techniques and symbolic algorithms in
Maple we have determined new supersymmetries of a large class of physics models.

Next, we give a brief review of existing approaches and outline the contents of each

chapter of this thesis.

1.1 Lie’s infinitesimal symmetry method

Lie’s profound discovery was that nonlinear analytic symmetry group transformations are
uniquely locally determined by their linearized (infinitesimal) transformations. The infin-
tesimal transformations satisfy a linear homogeneous system of PDE called the defining
or determining system for the symmetries.

The infinitesimal method for generating the defining system is introduced in this

section for both classical (non-super) and super differential equations.

1.1.1 Lie’s infinitesimal method for classical DEs

Olver has given a complete and detailed presentation of Lie’s infinitesimal method and
its applications to the differential equations in his book Applications of Lie Groups to
Differential Equations [13]. Here we only concentrate on material for Lie’s infinitesimal

method for generating the symmetry defining system of differential equations whose solu-



tions determine the unknown Lie symmetries. Note that our notation is slightly changed
from that in Olver [13] in order to later consistently generalize the same approach to

super differential equations.

Consider a k-th order system of s differential equations
A(X, ARy =0, v=1,...,s, (1.1)

where X = (z1,...,7,,) are the independent variables and A = (A',... A9) are the
dependent variables. We will denote the system (1.1) by A = 0.

In Lie theory, a one parameter local transformation has the form

X = QlX,A), (1.2)

>

Q%(X, A). (1.3)

Expanding each relations of (1.2) and (1.3) around the identity ¢ = 0, one can generate

the following infinitesimal (linearized) transformations.

T, = :[;,L—|—EEZ(X7A)—|—O(€2), 1=1,...,m,

A" = A"+ ed"(X,A)+0(), r=1,...,q,

where the functions =Z¢ and ®" are the infinitesimals corresponding to the transformations

for the independent variables z; and dependent variables A".

A basis for corresponding symmetry algebra H is denoted by the vector fields

V—mfia qqfa 1.4
_;H&Bﬁ; G (1.4)

The action of a symmetry on (X, A) can be extended to the derivatives appearing in a

differential equation A, = 0 by the process of prolongation (see Olver [13] for a detailed



description). The resulting prolonged system is
prVA, =0, v=1,..,s, (1.5)

where the k-th prolongation of the vector field (1.4) is given by

q
prV =V + Z Z CDTJaiT . (1.6)
r=1 J J

Here J = (j1,...,78), 1 <jg <mand 1 < g < m is multi-index notation for differentia-

tions with respect to x;’s. The coefficients ®’; are given by

m m

" =D, <<I>’" - ZEZ‘A;‘) +3 =i, (1.7)

i=1 =1

where A = 0A"/0x;.

In addition we can further decompose the system of s equations by computing the
coefficients of the monomials of A™ and its derivatives and equating these coefficients to
zero. These expressions are the defining equations for symmetries. The defining system

involves the infinitesimals =¢, ®" and their partial derivatives with respect to z;’s and

A"’s.

1.1.2 Lie’s infinitesimal method for super DEs

Fortunately Lie’s infinitesimal method is easily extended to super differential equations
by methods that are very similar to those in Section 1.1.1. Ayari and Hussin used this
method in their paper [20] in 1997. The main difference is to accommodate odd or

non-commutative variables.

A super analytic system of Grassmann-valued differential equations or superequations

of s equations of order k = (ky; ko) is given by

A(X,0,AR) QW) =0 p=1 s, (1.8)



with m independent even variables X = (zy,...,2,,), n independent odd variables © =
(61,...,0,), g even dependent variables A = (A!,..., A%) and p odd dependent variables
Q=(Q....Q).

Lie’s infinitesimal method for the defining system of super differential equations uses

a similar procedure to the classical case. A brief verbal description is as follows.

1. Reduce to invariance under one-parameter Lie super transformation about the iden-

tity.
2. Apply the super prolongation formula to the super differential equations.
3. Simplify the results of Step 2.

4. Compute the coefficients of monomials of the dependent variables and their deriva-

tives.
5. The determining equations for supersymmetries are the equations from Step 4.

More information on this procedure will be given in Chapter 3.

1.2 Existing supersymmetry related packages

Lie’s infinitesimal method for generating the symmetry defining system of super differen-
tial equations has been implemented in Maple language by Ayari and Hussin [20]. They
developed a Maple program GLie which can generate defining systems for Grassmann-
valued partial differential equations. They also provided applications of GLie to a variety
of models. The super KdV example used in this thesis is from Ayari’s PhD thesis [19].
He found the Lie superalgebra structure by direct integration of the defining system. We
will develop a new algorithm for determining the Lie superalgebra structure for super-
symmetry without using integration.

Maple has its own built-in symmetry determining system generator DeterminingPDE

as part of PDEtools package implemented by Cheb-Terrab based on Cheb-Terrab and



Bulow [15]. In 2011, Cheb-Terrab extended DeterminingPDE to work with anticommu-
tative variables as part of Physics package. The commands in these packages will be
frequently used in my study of supersymmetric Lagrangian models.

There are also other symbolic computer languages which can handle anticommuta-
tive calculations. For example, Wolf [21, 22, 23, 25, 29] has made a powerful extension
of his package CRACK in the computer algebra language REDUCE. CRACK can be
used to find first order and higher order supersymmetry for polynomial super differential

equations.

1.3 The rifsimp algorithm

In 1996, the rifsimp algorithm was introduced by Reid, Boulton and Wittkopf [16]
and is part of distributed Maple since 2001. It is a powerful simplifier of systems of
overdetermined DE. It can assist the determination of Lie point symmetry of ODE or
PDE. In this thesis, we use rifsimp to help us simplify overdetermined super differential
equations. In fact, rifsimp was designed only for commutative calculation. To able to
apply rifsimp, we modify our super differential equations in order to apply rifsimp to

the non-commutative case.

1.4 Existing algorithms for determining structure con-

stants

Using the existence and uniqueness theorem [18], Lisle and Reid [24] developed algo-
rithms for finding the structure constants for Lie symmetry of classical PDE. Briefly the
existence and uniqueness theorem determines initial data. That uniquely determines the
dimension d of the Lie algebra, and consequently that there exist d Lie supersymmetry
operators L, ..., Ly. The existence and uniqueness theorem then determines initial data
that uniquely determines each L;. Finally initial data of the commutator uniquely deter-

mines the commutator [L;, L;] and specifically its structure constants. Most importantly,



this method does not depend on constructing solutions and so is algorithmic. Largely
inspired by their methods, I am able to develop our algorithm for determine the structure

constants for Lie superalgebra.

1.5 Outline of thesis

The fundamental mathematic definitions and computational rules are introduced in
Chapter 2. We will give the definitions of superspace, superalgebra, Lie superalgebra,
Grassmann algebra, super differential equations and differential rules for super differen-
tial equations. The main work in later chapters will be built on the concepts defined in
Chapter 2.

The theory for the Lie infinitesimal method or the Lie supersymmetry method will
be given in Chapter 3. Then we apply this method to two super differential equation
examples to generate super defining system for their supersymmetry groups. Note that
in Chapter 3, 4 and 5, for brevity we use the abbreviation defining system instead of
super defining system. The first example is a simple super ordinary differential equation
and the second example is well-known model, the super KdV equation, which is a super
partial differential equation. After we obtain the defining system for these two examples,
we will show how to find the Lie superalgebra structure or supercommutator table by
integration. This is a heuristic process unlike the algorithmic method we will develop
later.

In Chapter 4, we develop a new algorithm - the structure constant algorithm for
finding Lie superalgebra structure. We introduce the concept of regular super differential
equations, ones that can be solved for their highest derivatives. A technical difficulty
for irregular super differential equations is addressed in this chapter. Moreover, we will
show using existence and uniqueness theory, that the structure constants can be uniquely
determined. We illustrate the new algorithm by applying it to our previous examples.

In Chapter 5, we apply supersymmetry analysis to a large class of super Lagrangians
with general potential. The determination of hidden supersymmetry is executed for two

extreme cases. One extreme case is with zero potential F' = 0 and is easily solved. The



other extreme case is to incorporate maximum nonlinearity in F' by letting the third
order derivative of the coefficient of the leading term of F' to be nonzero. By adding this
constraint to F', we find a hidden non-trivial supersymmetry. Invariants corresponding
to this supersymmetry are determined which reduce the Euler-Lagrange PDE system to
an ODE system. During the demanding computations, we used Maple to help us to get
the defining system of the Euler-Lagrange system of the input super Lagrangian. Then
we sent the reduced defining system to rifsimp with the option casesplit to do the
case analysis. Thousands of cases resulted from this step.

The last chapter is devoted to discussion and future work. In summary, three main
contributions are made in this thesis. The first contribution is a method for getting the
Lie superalgebra structure by integration. The second contribution shows how to get
Lie superalgebra structure of the supersymmetry by an algorithms that avoids integra-
tion. The last contribution is an experimental search of hidden supersymmetry with the
assistance of Maple.

At the end of this thesis, we list some Maple procedures in Appendix A.



Chapter 2

Background

Super spaces, variables, transformations etc, are fundamental objects in this thesis. In
particle physics, there are two basic classes of elementary particles: bosons and fermions

which are considered as even quantities and odd quantities.

Super objects posses a Zs-grading, and consist of either even (0-graded) objects or

odd (1-graded) objects. These quantities obey the following rules:

even - even = even,
even-odd = odd,
odd -odd = -even.

Every super concept, such as supervector, superspace, supersymmetry and superalgebra,
admits its even partner as well as its odd partner. The even partners are just the usual
vector space, and symmetry algebras etc, over R or C. Such super generalizations are
often nontrivial, and certain crucial properties in the even case may be lost. They are of

considerable interest to both physicists and mathematicians.

In this thesis we assume that the reader is familiar with manifolds, algebras, differen-
tial equations, symmetry groups and so on. We are working on superspace, superalgebra,
super differential equations and supersymmetry groups. Simply speaking, these super

concepts are the generalizations of those basic concepts in a ‘super’ sense by including
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their super partners. The goal of this chapter is to introduce the mathematical definitions
of superspace, superalgebra and super differential equations, as well as some necessary
computation rules of super differential calculus. These ‘super’ concepts and rules are
the important foundation of this thesis. More detailed explanation of odd variables,

Grassmann algebra, Lie superalgebra and super differential equations can be found in

Buchbinder and Kuzenko’s book [14] and Ayari’s PhD thesis [19].

2.1 Superspaces and superalgebras

2.1.1 Even and odd

This thesis is concerned with various super objects such as superspaces, superalgebras
and supergroups. The essential feature of all of these is that they are graded. The
simplest example of a graded structure is provided by the integers, each of which is either

even or odd and:

even integer + even integer = even integer,
even integer 4+ odd integer = odd integer, (2.1)
odd integer 4+ odd integer = even integer.

The operation of addition can be regarded as the group ‘product’ of the additive group of
integers. Denoting this product by -, the above addition rules (2.1) can be re-expressed

as

even integer - even integer = even integer,
even integer - odd integer = odd integer,

odd integer - odd integer = even integer.
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Generally speaking, super objects obey the same rule as the integers

even - even = even,
even -odd = odd, (2.2)
odd-odd = even.

The first stage in applying the idea of grading to linear algebra is to define the concept
of a graded vector space. To do this, suppose that V is a real or complex vector space
of dimension m + n, where m and n are any two positive integers, and suppose that

{a1,as,...,amin} is a basis for V. Then any element a of V' can be written in the form
m+n

a = E HiGs,
j=1

where the coefficients j; are real or complex numbers (as appropriate). A grading for

this space is given by supposing that every element of the form

m
a = E Hia;,
j=1

is even, while every element of the form
m+n
a = Z ,ujaj,
j=m+1
is said to be odd.

Definition 2.1.1 (Homogeneous). Any element a € V' that is either even or odd is said

to be homogeneous.

The degree (or parity) of such elements is defined by

0, if ais even,
deg a = (2.3)
1, if ais odd.
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Definition 2.1.2 (Superspace). The set of even elements of V' form a subspace of V' that
1s the even subspace and which will be denoted by Vy. Similarly, the odd elements of V
form the odd subspace Vy. Clearly V is the direct sum of Vi and Vi, that is,

V=W+V,

which 1s called a Zs-graded space or superspace.

2.1.2 Superalgebras and Lie superalgebras

A superspace is a Zs-graded space V =V @ V;. A superalgebra is a Zs-graded algebra
A= Ay ® A, with a bilinear multiplication A x A — A such that

AiA; C Aiyy,

where the integers 7, j are taken module 2. A superalgebra is said to be supercommutative,
if
ab = (_ 1)deg(a)deg(b) ba

for all homogeneous a and b in the superalgebra; that is, if

—ba, if both a and b are odd,
ab = (2.4)
ba,  otherwise.

Definition 2.1.3 (Lie superalgebra). Let £ be a real or complex graded vector space,
with Lo and Ly being its even and odd subspaces, which are assumed to have dimension
m and n respectively (where m > 0,n >0 and m+n > 1). Suppose that for all a,b € L
there exists a generalized Lie bracket (Lie superbracket or supercommutator) |a,b| with

the following properties:

(i) [a,b] € L, for all a,b € L.



13

(ii) For all a,b,c € L and any real or complex numbers o and (

[aa + b, c] = ala, ] + B[b, . (2.5)

(iii) If a and b are homogeneous elements of L then [a,b] is also a homogeneous element
of L whose degree is (deg(a) + deg(b)) mod 2. So [a,b] is odd if either a or b is

odd. Also |a,b] is even if a and b are both even or if a and b are both odd.

(iv) For any two homogeneous elements a and b of L

[a,b] = —(—1)des(@}de®) ], o], (2.6)

(v) For any three homogeneous elements a,b and ¢ of L

[av [b7 C]](_l)deg(a)deg(C) + [b7 [C’ a]](_l)deg(b)deg(a) + [Cv [av b]](_l)deg(c)deg(b) =0. (27)

Then L is said to be a real or complex Lie superalgebra with even dimension m and odd

dimension n.

Therefore a Lie algebra is a Lie superalgebra with trivial odd part. The most obvious

example of a Lie superalgebra is that of linear maps on a Z,-graded vector space.

Example 2.1.4. Let V =V, & V] be a Zy-graded vector space. Consider the associative
algebra gl(V') of endomorphism of V.. It has a natural Zs-grading:

glV)o = {fegllV): f(Vo) € Vo and f(V1) € Vi}, (2.8)
glV)i = {feglV): f(Vo) € Vi and f(V1) € Vo (2.9)

The Lie superbracket is defined as follows:

[a,b] = ab — (—1)des(@deellpy, (2.10)
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or equivalently,

ab —ba, ifa orb e gl(V)o,

[a,b] =
ab+ba, ifa,be gl(V);.

2.2 Grassmann algebras
Definition 2.2.1 (Associative superalgebra). Suppose that V is a graded vector space.

(i) For every pair of elements a and b in V', there ezists a product ab that is also in 'V,

and this product satisfies the grading multiplication rule.

(ii) For all a,b,a’,t/ € V and pu, \, (', N of the field of V(R or C),

(pa + ('a"Y(Ab + N'b') = pA(ab) + pX (ab") + W' A(a'd) + p' N (a'').

(iii) For all a,b,c €V,
(ab)e = a(bc).

Then V' is called an associative superalgebra.

Grassmann algebras are particular examples of associative algebras that will play a

very important part in the developments of this thesis.

Definition 2.2.2 (Grassmann algebra). Consider a set of N generators 01,05, ...,0N,

which are assumed to have products 0;0; such that

(i) Foralli,j,k=1,...,N,
(0:0;)0r = 0;(0;6). (2.11)

(ii) For alli,j=1,...,N,
0.0, = —0,0,. (2.12)

(iii) Fach non-zero product

00,0,

T
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mwvolving r generators is linearly independent of products involving less than r gen-

erators.

It should be noted that (2.12) implies that

00, =07 =0 (2.13)

7

forall e =1,...,N.
This set of generators and products may be supplemented by introducing an identity,

which is denoted by 1, and which is assumed to be such that

11=1 (2.14)
and
forall 2 =1,..., N. It follows that
1(6,6;, -~ 0;,) = (0,05, -+ 0;,)1 = 0;,0;,---0;, (2.16)

for any product of generators.
The product 6,0; is sometimes written in the literature as the wedge product 6; A 0;.

The resulting algebras are sometimes called exterior algebras.

Example 2.2.3. For N = 3 there are three generators 01,0, and 0s. By (2.13), (01)* =
0,(62)* = 0 and (63)> = 0. With the identity included, the independent products of

generators are

17 017 027 937 91827 91037 82037 919263' (2]‘7>

It leads to a 8-dimensional Grassmann algebra. Note that N generators lead to a finite-

dimensional Grassmann algebra of dimension 2% .

Remark 2.2.4. There also exist infinite dimensional Grassmann algebras which are gen-

erated by infinitely many generators. In this thesis, we only consider the finite dimen-
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sional Grassmann algebras (i.e. Grassmann algebras generated by finitely many genera-

tors).

For a fixed value of N, let o be an index set that contains N (o) different integers

with value between 1 and N inclusive. Thus
o = {J1,J2: -, IN@) }5
where the integers ji, ja, ..., jn(s) are assumed to be ordered in such a way that
I1<j1<ja<js<-<Jnw <N.

Define 6, by
90 - Gjlejl e 9]\[(0). (218)

Hence any element in the Grassmann algebra which is generated by 6, and 1 can be

written as

B =Y B,0,, (2.19)

where the coefficients B, are either real or complex numbers. In this thesis the vector
space is real. This structure is a real associative superalgebra which is known as a
real Grassmann algebra. It is denoted by RBy and has dimension 2. The subset of
even elements of RBy and the subset of odd elements of RBy both form real vector
spaces of dimension 2V~!. They will be denoted by RBy, and RBy, respectively. Hence
RBy = RBy, ® RBy;.

2.3 The superspace RBy™"

As a Grassmann generalization of R™, consider the space RBY", which is defined to
consist of m copies of the even space RBy, of the real Grassmann algebra RBy and
n copies of the odd space RBy, of RBy. The m copies of RBy, will be denoted by

X1, %2, ..., Ty and the n copies of RBy, will be indicated by 6y, 60,, ...,6,. It is convenient
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to make the notation more concise by regarding x1, x», ..., ,, as elements of m-component
quantity X, and 6q,0s, ..., 0, as elements of a n-component quantity ©. Then, (X;0), a
typical element of RBY", is defined by

(X, @) = (.%'1,&32, ...,xm,€1,92, ,Qn)

As RBy, and RBy, are both 2V~ dimensional real vector spaces, RB}" is a real vector

space of dimension (m + n)2V 1.

To allow analysis to be performed on the space RB}y", it has to be provided with a

metric. Let B be any element of RBy of the form

B=Y B,
W

We define the norm as

1Bl =) IB,l. (2.20)

m

For RBY™, the norm corresponding to (2.20) may be defined by

1CGO =D lel+> > 16 (2.21)

Jj=1 n k=1 p

The metric d associated with the norm (2.21) is
d((X;0),(X;6) = [I(X;0) - (X &) (2.22)

for any (X;0) and (X’;0’) in RBY". It immediately follows that d satisfies

(i) For all (X;0) and (X';©’) in RBY™",

d((X;0), (X 0)) = d((X"; 0),(X;0)).
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(i) For all (X;0) in RBY™",
d((X;0),(X;0)) =0.
(i) TF (X; ©) £ (X'; ),
d((X:0),(X";0')) > 0.
(iv) If (X;0),(X’;0) and (X";©") are any three points in RBy™ then

d((X;0), (X", 0")) < d((X;6),(X;0)) + d((X"; &), (X"; 8)).

For metric d an open sphere of radius r centered at the point (X’;©') is defined to

be the set of points (X;©) of RBy™ such that
d((X;©), (X" 0) <.

A set of points U of RBj"" is said to form an open set of RB}," if for every point (X'; ©')
of U there exists an open sphere centered on (X'; ©') of some radius r (which may depend

on (X’;0")) that is completely contained in U.

2.4 Differential functions on RBL™"

Two types of Grassmann-valued functions will now be discussed. One is defined on
an open set of R™, the other on an open set of RBy™. Although the latter is more
important in applications to Lie supergroups, the former will be considered first as it is

more straightforward.

A Grassmann-valued function § can be defined on an open set V' of R™ by assigning

to each element X = (z1,...,2,,) of V an element §(X) of the Grassmann algebra RB).
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Such a function can be expanded in the form
FX) =D Fu(X)b,, (2.23)
o

where the §,(X) are all real-valued functions of X in V' and the sum is over all index
sets 1. §,(X) is said to be even if only the even basis elements 6, of RBy appear in this
expansion, and to be odd if only odd 6, appear. So every Grassmann-valued function
§(X) can be written as the sum of an even and an odd function.

This idea can be generalized immediately to a Grassmann-valued function defined on
an open set of RBY™ rather than R™. Such a function may be defined by assigning to
each point (X;0) = (21,22, ..., Tm, 01,04, ...0,) in an open set U of RBy™ an element

F(X;0) of the Grassmann algebra RBy. The analogue of (2.23) is
§(X;0) = Z F.(X;0)0,, (2.24)
m

where each of the F,(X; 0) is a real-valued function of (X;©) in U and the sum is over
all index sets p. Again F'(X; O) is said to be even if only the even basis §,, of RBy appear
in this expansion, and to be odd if only odd 8, appear. Thus every Grassmann-valued

function F(X;0) on U can again be written as the sum of an even and an odd function.

Definition 2.4.1 (Continuous super function). The function F(X;0) defined on the
open set U of RBY" is said to be continuous at a point (X';0') of U if F(X;0) —
F(X";0) as (X;0) = (X;0).

This can be expressed more precisely in terms of the metric for RBY" that was
introduced above. In particular, F' is continuous at (X’; ©') for any real number ¢ > 0

there exists a real number § > 0 such that
d(F(X;0),F(X;0") <e¢

for all (X;0) € U for which d((X;0),(X";0")) < 4.
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The concept of differentiability for a function defined on RB}" is more subtle, and
requires careful definition and discussion. The difficulty is that it involves dividing the
Grassmann-valued quantity F(X') — F(X) by the real number x; — 2. Division of the
corresponding quantity F(X’;0') — F(X;0) by an element (X';0’) — (X;0) of RBy™"
is not defined. The following definition was first given by Rogers (1980).

Definition 2.4.2 (Differential super function). Let F(X;0) be a continuous function
that takes values in RBy and is defined on an open set U of RBy™. Let j = 1,2,....m
and k =1,2,...,n. Suppose that there exist m functions OF (X;0)/0x; and n functions
OF(X;0)/00y that all have values in RBy, and are defined for all (X;0) in U and are
such that

OF(X;0)

F(X+Y:0+0) = F(X;0) +Zw o
J

Z‘If’“aF XO) v w) i ey, (229)

In (2.25), (X;0) and (X +Y;0+ V) are points in U, and n(Y; V) is a function defined

on RBY" with values in RBy:
(Y5 W) =0 as [[(Y;¥)] = 0. (2.26)

Then the function F(X; ©) is said to be differentiable in U and the quantities OF (X; ©)/0x;
and OF (X;0©)/060x are called its partial derivatives.

One immediate consequence of Definition 2.4.2 is that if F'(X;©) is an even function
then its derivatives 0F(X;©)/0x; are all even and its derivatives 0F(X;©)/00 are all
odd. In contrast, if F(X;0) is an odd function then the 0F(X;©)/0x; are all odd and
the OF (X;0)/00) are all even. Note that
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2.5 Basic differential rules for superdifferentiable func-
tions

Given two superfunctions F(X;0),G(X;0) € RBY", for j = 1,2,...,m and k =

1,2,....,n, we have:

Rule 1
I(F(X;0)+ G(X;0)) OF(X;0)  0G(X;0)
8@- 8@ 8xj
IF(X;0)+G(X;0))  0F(X;0) . 0G(X;0)
00, B D6 00y
Rule 2
0 . ' _ 0F(X;0) . - 0G(X;0)
8 ‘ _ OF(X;0) 1 \deg(F(X:0)) 0G(X;0)
if F(X;0) is homogenous.
Rule 3 For any real number A,
IAF(X;0)) 8F(X 0)
an N 81‘] ’
IAF(X;0)) A&F(X, ©)
00y, B 00,

Next we deal with higher derivatives of superdifferentiable function. For j,j €

{1,2,....,m} and k, k' € {1,2,..., } with k # k', we have:

Rule 1
g 0 o 0
Rule 2
99 pixvioy= 2 9 pixo).

Oz 00y, 00y, Oz
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Rule 3
0 0
——F(X; =
and
J 0 o 0
— _~ F(X: = — —F(X;0).
004, 00,/ (X;0) 00, 00, (X;0)

Rule 4 Note that every superfunction F'(X;©) can be written in the form
F(X;0) =Y F\X)e" (2.27)
A

where A = {kl,kg,...,kN(A)} with 1 < k1 < ky < --- < kN(A) < n and @A is a

product of 6 factors of the form
O™ = 0,04, - Ok ncay -
With the expansion (2.27) for F/(X;0)

=7 L R(X;0) = (—1)ndes®@ 2T p(12,n—1in) (x|

00, 00,1 005 00, ( ) =(=1) (X)
The above calculation rules happen on every step of the calculation which involves
odd quantities. The degree of both even and odd quantities may not be shown in the

future calculation, but the parity of them is taken into account carefully in every step.
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Chapter 3

Symmetrygroups of
Grassmann-valued differential

equations

The symmetry group of a system of differential equations is the local group of transfor-
mations acting on the independent and dependent variables of the system with property
that it transforms solutions of the system to other solutions. See the book by Olver [13]
for background on symmetry groups for differential equations. In particular [13] is our
main source on Lie theory and infinitesimal techniques to get the determining system of
the symmetry group of a system of differential equations. Other good references for this
material are the books by Bluman and Cole [7] and Bluman, Cheviakov and Anco [26].
In this thesis, we say that this is how one gets the determining system in the usual case.

For us, the good news is that the procedure of getting the determining system of
the supersymmetry group of a system of super differential equations (super case) is very

similar to the usual case. Both cases follow the same steps to get the determining system.
1. Reduce to one-parameter Lie (super) transformations about the identity.
2. Apply the (super) prolongation formula to the (super) differential equations.

3. Replace the highest derivatives in the system from Step 2.
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4. Compute the coefficients of independent monomials of the dependent variables and

their derivatives.

5. The coefficients from Step 4 are determining equations for supersymmetries.

In this chapter, we will introduce Lie’s infinitesimal method for generating the defining
system of super differential equations. We apply this method to two typical example
super differential equations. For each example, the determination of structure constants
of the Lie superalgebra of supersymmetries will be done by the traditional method which
uses heuristic integration. Note that, later in Chapter 4, we will develop an alternative
method to find the Lie supercommutator table that is algorithmic and avoids heuristic

integration.

3.1 Supersymmetry group of super differential equa-

tions

The symmetry group of a system of Grassmann-valued differential equations is the local
group of transformations acting on the independent and dependent variables of the system

with property that it transforms solutions of the system to other solutions.

Let us consider the general case of a nonlinear system of Grassmann-valued differential

equations or superequations of s equations of order k = (k1; ko) denoted by
A (X, 0,A%) QW) =0 v =1, s, (3.1)

with m independent even variables X = (z1,...,z,,),n independent odd variables © =

{601,...,0,}, ¢ dependent even variables A = (A', ..., A7) and p dependent odd variables
Q=(Q'...,Q").
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In the spirit of Lie theory, a one parameter ¢ local transformation has the form

X = Q4X,0,4,Q),
0 = 0}X,0,4,Q),
A = Q(X,0,4,Q),
Q = Q24X,0,4,0), (3.2)

where ¢ is an homogeneous Grassmann variable and denotes the supergroup parameter.
The supervector valued functions Q¢,i = 1,...,4 depend only on the variables X, 0, A
and @ (and not on the derivatives of A and Q). The supersymmetry group of a system
of Grassmann-valued differential equations is the maximal supergroup of transformations

leaving (3.1) invariant.

Expanding each relations in (3.3) around the identity ¢ = 0, one can generate the

following infinitesimal transformations

T, = .I’i—f—SEi(X,@,A,Q)—f—O(EQ), izl,...,m,
gj - 81+€Fj(X,@,A7Q)+O(€2>, j:17"‘7n7
A = A" 4+ed(X,0,4,Q)+0(), r=1,...,q,

Q = Q' +:A(X,0,4,Q)+0(?), 1=1,...,p,

where the functions =, I'V, ' and A’ are the infinitesimals of the transformations for the

independent and dependent (even and odd) variables.

A basis for the corresponding symmetry superalgebra H is given in terms of super-

vector fields

N0 om0 0 i~y O
V=>» = I — P" N—. 3.3
2=, +; o, t 2 Y o T 2N ag (33)
Thus, the infinitesimal criterion for the invariance of (3.1) under the superalgebra H may
be expressed as

prVA, [ =0, (3.4)
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where the k = (ky; ko)-th superprolongation of the vector field (3.3) is given by

prPV = V+ZZCI)J3AT+ZZAK5QZ' (3.5)

In (35) J = (Jis o) = (Jis---Jas gty - dn)y K = (K Ka) = (ky,. . kg ki kD)
and 1 < 55,57 ki, k2 < m + n are the multi-indices notations for differentiations with
respect to the x; and 6; variables. Additional explanation of multi-indices notation is

given in Section 3.1.1. The coefficients @7 and Al are given by

DJ( —Z”ZAT ZFJA’“>+Z”’ ’ +ZPJA (3.6)

and

Al :DK<N Z”zQ’ Zrﬂ ) Z“” +ZFJQKJ, (3.7)

where A¥ = A" /0x;, A% = 0A”/00;, Q! = 0Q"/0z; and Q; = 0Q'"/00;.

Since the input equation (3.1) must be satisfied everywhere, the infinitesimal criterion
equation (3.4) is simplified with respect to (3.1). Then the dependencies on derivatives
of A" and Q' are eliminatied by decomposition into coefficients of the monomials of the
derivatives of A" and @'. Equating these coefficients to zero forms the symmetry defining
system. In Section 3.2, instead of trying to exactly solve the defining system, we will

algorithmically find the structure constants without using integrations.

3.1.1 Multi-index notation

In the superprolongation formula (3.5) and the coefficient formulae (3.6) and (3.7), the
even dependent variables ®" and odd dependent variables A! can be differentiated with
respect to any of the independent variables (x,#). Hence we need multi-index notation
to denote the differentiations. The multi-index notation may look complicated, however,
the following small example will help the reader to easily understand formulae expressed

in this notation.
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Example 3.1.1. Consider a super differential equation with 1 even independent vari-
able x, 1 odd independent variable 0, 1 even dependent variable A and 1 odd dependent

variable. The corresponding infinitesimals are =, 1", ® and A, respectively.

Then the supervector field is

0 0 0 0

If this is a first order super differential equation, then we need the first order super-

prolongation of V/

0 g0 0 e g0

WY =V + "
pr oA T e, T a0, T aa,

where

o’ =

S

AT =

S

( )+

o(® —ZA, — T Ay) + =Ag, + ['Agp,
(A= EQ; —TQp) + EQux + I'Quo,
A = Dop(A—ZQ, — I'Qp) + EQpx + I'Qpp-

Obviously, I'Agy and I'Qyy vanish.
Remark 3.1.2. Here we follow Olver’s notation [13] to avoid numeric indices, replacing
these with superscripts or subscripts (x, 0, etc). Throughout this thesis, the lower subscript

with variables such as Az, means the usual derivative. We use superscript to denote the

coefficient notation to distinguish from our derivative subscript notation.

If we are considering a second order super differential equation, then we need the
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second order superprolongation of V' which is given by

prdV = V40" 0 + ¢’ 0 el 0 9

: A
o4, T4, T a0, T an,

0 0 0
@%:ﬂ q)xe @99
e, TV A, Y oAy

0 0 0
+Ax:c + Aa:@ + A90 ’
a@x:p anO 8@09

where ®% = 0 and A% = 0. The coefficients ®*, ®°, A* and A? are already known. The

remaining coefficients are

() R—— (Dw)2 EAI - FAQ EAxxm + FAxI@u

) +
9™ = D,Dy ) + ZAups + T Ao,
EQr — I'Qy) + EQuue + I'Quao,

) +

Ax@ = DmDQ A - EQm - FQQ EQxGm + FQﬁ?G?

(@
(® —ZA, — T Ay
AT = (DA -
(

where I'A, 99 and I'Q) 99 vanish.

3.2 Finding structure constants using integration

We will use two examples to illustrate how to get the symmetry determining system and
how to find the structure constants in the traditional way - using heuristic integrations.

The first example is the simple and easily solved second order super differential equa-
tion

where x is the even dependent variable and @) is the odd dependent variable. We will use

this as our simplest illustrative example.

Our second and more complicated example is a well-known model, the super KdV
equation,

Qt = Qx:ca: - aeQsz + aQQGaf + (6 - 3a)Q9Qx7 (39)
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which is integrable when a = 3. It has two even independent variables, z and ¢, one
odd independent variable 6, and one odd dependent variable (). The reader is especially
directed to the thesis of Ayari [19], where its supersymmetries are determined. In Chapter
4, we will use it to illustrate and address a difficulty that can occur in the algorithmic

determination of supersymmetries.

3.2.1 Supersymmetries of Q.. = 0

We determine the supersymmetry group of the first example (3.8) using the approach of
Section 3.1.

Let
0

9Q

be the supervector field on X x ). We wish to determine all possible coefficient functions

V =2, Q)+ A, Q)

=(z, Q) and A(z, Q) so that the corresponding one-parameter group exp(eV') is a (super)
symmetry group of the second order super differential equation. Hence we need to know

the second superprolongation. Recall the superprolongation formula (3.5) which is

prV = V—I—ZZ(IDJ(,)AT +ZZAK3QZ .

For this example, there is only one odd dependent variable. Hence, in this superprolon-
gation formula, there is no middle term and p = 1. The multi-index K = {(1;),(2;)}.

Then the second order superprolongation is

0 0
(2) — Am Amz
PV =V T s
where
and

A" = Dy (A — 2Q.) + ZQuue, (3.10)
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by the coefficient formula (3.7).
Applying pr®V to both sides of (3.8) yields

A" = 0.

Hence we have

DA —Z2Q;) + EQuzze =0 (3.11)

by equation (3.10). Expanding (3.11), one has

Equating the coefficients of the monomial @, and 1 to zero decomposes (3.12) into the

equivalent system

Amx = 07
(3.13)
20,0 — Z4, = 0.
Also, two other determining equations
EQQ = 0, and AQQ =0
hold since @ is an odd variable. The defining system for (3.8) is
(
Aa:a: = 07
2MN,0 — Z40 =0,
“ (3.14)
ZQQ = 0,

\

The next goal is to find the Lie superalgebra structure resulting from the solution space
of the defining system (3.14).

The Gauss-like (or differential Grobner) reduction procedure we apply to (3.14) re-
quires that we define an ordering on all derivatives of the infinitesimals = and A.

To illustrate general features of such orderings, let A' = = and A? = A. Setting
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a = (a1,az) and B = (B, fa) € ZQZO, the first entry of a or (3 is the order of the derivatives
of Al or A? with respect to x. The second entry is the order of the derivatives of Al and
A? with respect to Q. For example, the derivative A,, is denoted by A%ZO) and Z,q is
denoted by A%Ll)'

Now define a total ordering on all the A? | i = 1,2. There are two cases |a| = |3] and

la| < |B]. If |a| = |B] then
AL <Ay & a < 8, i=1,2
If o < |B] then
AL <AL =12,
Applying this to our simple example (3.8) yields the ordering
E<AN<E B9 <A A9 < Epp <50 <200 < Maw < Aog < Ago < -+ (3.15)
This ordering is a particular case of the class of lex orderings given in the following

definition.

Definition 3.2.1 (Lexicographic Order). Let a = (o, ..., ) and 8 = (B, ..., Bn) € Z2,.
We say a =ic, B if, in the vector difference a — 3 € Z%), the most left nonzero entry is

positive.
Here are some examples:
a. (1,2,0) >ep (0,3,4) since a« — = (1, -1, —4);
b. (3,2,4) > (3,2,1) since a — 5= (0,0, 3);
c. for n-tuples, (1,0,...,0) > (0,1,0,...,0) >z -+ =1ex (0,...,0,1).
Returning to example (3.8), let us solve its the defining system (3.14). For this

defining system, we use the ordering (3.15). In the second equation

2N 0 — Eap = 0
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A,o > Z,, so rewriting this equation in solved form with respect to the ordering (3.15)
yields
AwQ = §Exwa (3.16)

where A, is called the leading term of (3.16). We cancel the leading terms of the

equations via integrability conditions as follows

sz = 07 = Asz = 07 N ngx _ 07
AxQ - %Ewm A(EQ:E - %Ex127

and
AxQ - %Ex:pu N AxQQ — %E:va N EM;Q —0
Ao =0, Awqo =0,

Ewg = 0.

By adjoining these two equations to the defining system (3.14) , we finally get all 6

determining equations

p
Azm = 07
AmQ - %Exm
=00 =0,
oe (3.17)
Ago =0,
Ezmx - 07
L SrxQ = 0.

The solution of the system by integration is elementary. First, the equations Zgg = 0

and Agg = 0 show that A and = are linear in the variable ). Suppose that

A= fi(2)Q + fa(x) (3.18)
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and

(11

= 01(2)Q + g2(), (3.19)

where f1(z), g2(x) are even functions with respect to x and f5(z), g1(x) are odd functions

with respect to x which are all to be determined. The equation A,, = 0 implies
1 (2)Q + f3(z) =0
which requires
J(z)=0 and fj(x)=0.

Thus

filz) =cx+ca and  fo(r) = gz + ay,
where cq, ¢y are two even constants and aq, as are odd constants. Hence we have
A= (cx+c)Q+ agr + az
which implies
ArQ = C1.

The second equation Ao = %Em in (3.17) requires that

91 (2)Q + g5 (x) = 2¢1
and
gi(x) =0 and gj(x) = 2c.

Then

g(z) =asr +ay and  go(z) = c12® + c31 + ¢y,

where a3, ay are two odd constants and cs, ¢4 are two even constants. We conclude that

the most general infinitesimal symmetry of the second order super differential equation
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has vector field coefficient functions

A = (ax+c)Q+ oz + as,

[1]

= (o327 4+ ag)Q + c12? + c31 + ¢y,

where cy, ..., c4 are arbitrary even constants and aq, ..., a4 are arbitrary odd constants.
Thus the Lie superalgebra of infinitesimal symmetries of the (3.8) is spanned by the eight

basis generators

Ll = ax»
L2 == ZL'ax,
L3 = QaQa

L4 = l'2ax+.anQ,

Ly = 0Og,
Ls = z0q,
Ly = Q0,,
Ly = zQ0,,

where L1, ..., Ly are four even basis generators and Ls, ..., Lg are four odd basis generators.

Suppose that H = Hy+H. The the even basis L, ..., L4 generate the Lie algebra H,.
As is well-known, it is a natural subalgebra of H and the commutator table of Lie algebra

is anti-symmetric and the diagonal entries are zero. The resulting supercommutators



35

L;,L;|, where s < jandt=1,...,4,7 = 2,...,4 are
J

L1, L) = 0,(20;) — (=1)*°20,(9,) = 9, = L,

L1, L] = 8:(Q0q) — (=1)*°Q0q(9.) = 0,

(L1, Ly] = [0, 220, + 2Q0g] = [0, ¥°0y) + [0s, vQOg)
= 0,(2%0,) — (=1)*°2%0,(8,) + 0,(2Qdg) — (=1)"°2Q0e(8:)
— 200, + Q0 = 2Ly + Ls,

(L2, L] = 20,(Q0q) — (—1)""Qp(20;) = 0,

(Lo, L] = [20,, 220, + 2Q00] = [w0y, 20,] + (10, 2Qd0)
— 20,(%0,) — (—1)°%20,(20,) + 20, (2Q0) — (—1)*°2Qdg (x0,)
= 220, + 2Q0g = Ly,

L3, Ls] = [Q0q, #°0; + 2Q0g) = [Q0q, 170,] + [Q0q, 1Q0q)
= Q0o(2*)0, — (—1)""2°0,(Q) g + QI (2Q)dq — (—1)"°2Q0o(Q0g)
= Qz0g — Qxdg = 0.

It is easy to see that [Ho, Ho] € Ho which is just the left-upper part of the Table 3.2.1.



Then one computes [Ho, Hi,

Lo, Ls) = 20,(0g) — (=1)"'0g(20,) = 0,
Lo, Lg) = 20,(20g) — (—1)*' 20 (20,) = 29o = Le,
Ly, L7] = 20,(Q0;) — (—1)*'Q0,(29,) = —Q9, = —Lx,
Ly, Ls) = 20, (2Q)8, — (—=1)"'2Q0, ()9,
= 2Q0, — 2Qd, = 0,
Ly, Ls] = Q0o (1) — (—1)*100(Q)dq = —Qdq = —Ls,

T 8Q — (—1)0'1$8Q(Q)8Q = —[BaQ = —Lg,
- QaQ Q)az - (_1)01628;5(@)6@ = Qa’c = L?a

= Qu0, = 2Q0; = Lg,

[Ly, Ls) = [220, + 2Q0q, Og] = [£°0,, D] + [tQDq, o)
= 220, (1) — (—1)*' 0o (2%)0; + 2Qo(1)9g — (—1)* 0o (2Q) g
— —20y = —Lg,

[Ly, Lg) = [#%0, + 1Q0q, 10¢] = [1%0,, 10g] + [vQ0q, v0g)
= 220,(2)0g — (=1)"'20(2*)0, + 2Q0g(2)0g — (—1)*' 20 (Q)dg
= 2709 — 1°0g = 0,

[Ly, L7] = [220, + 2Q0q, Q0] = [2°0,, Q0,] + [1Q0g, QO]
— 220,(Q), — (=1)*1Q8,(+*)3, + 1Q0(Q), — (=1)*1Qd,(xQ)dg
= —2Qx0, + xQ0, = —xQ0, = —Lg,

[La, Ls] = [2°0, + 2Q0q, Q0;] = [4%0,, QD,] + [2Q0q, Q9]
= 2°0,(Q)0: — (—1)"'Q0,(2*)0, + 2Q0g(Q)0: — (—1)"' QD (2Q) g
= —2Qx0, + 2Q0, = —2Q0d, = —Ls.
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This implies [Ho, H1] € Hi. This is the right-upper part of the Table 3.2.1. The left-

lower part of Table 3.2.1 is obtained by anti-symmetry. The last part is determined by

computing [H;, H1]. This yields the commutators:

[Le, L7] = 29q(Q)0x — (=1)""1Q0,(x)dq
=20, + Q09 = Ly + Ls,
(L, Ls] = 200(2Q)0, — (—1)"'2Q0, (+)9g
=220, + Q0 = Ly,
(L7, Lz) = Q0:(Q)0, — (1)1 Q08:(Q)d, = 0,
(L7, Ls] = Q0:(2Q) 8 — (=1)""2Q08,(Q)0, = 0,
Ls, Ls] = Q0 (xQ)0, — (=1)""2Q0,(xQ)0, = 0.

The above commutators are consistent with the property of Lie superalgebra, [H;, H1] C

Ho. Note that the Lie superbracket of same odd operator is not necessarily zero. Hence,

for this example, one needs to compute [L;, L;|, where i =5, ..., 8.

Finally, the complete list of supercommutation relations is given by Table 3.2.1.

3.2.2 Supersymmetries of Super KdV equation

This work is concerned with the study of the supersymmetric Korteweg-de Vries (sKdV)

equation:

Qt = Qx:ca: - aeQsz + aQQGaf + (6 - 3a)Q9Qx7 (320)
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Ly Ly Ls Ly Ls Lg L, Lg
Ly 0 L, 0 2Ly+Ls| O Ls 0 L,
Lo —14 0 0 Ly 0 Lg —L7 0
L 0 0 0 0 —Ls —Lg L, Lg
Ly | —2Ly—Ls —Ly O 0 —Lg 0 —Lg 0
Ls 0 0 Ls Lg 0 0 L, L,
Lg —Ls —Lg Lg 0 0 0 Lo+ Ls Ly
L; 0 L; —L; Lg Ly Lo+ L3 0 0
Lg — L 0 —Lg 0 Ly Ly 0 0

Table 3.2.1: Supercommutator table of the defining system of Q,, = 0.

which is integrable when a = 3. Notice that there are two even independent variables, x

and ¢, one odd independent variable, 8, and one odd dependent variable, ().

We consider the following infinitesimals

T = x+e24z,t,0,Q)+ O(e?),
T = t+e=2(n,t,0,Q) + O(c2),
0 = 0+el(2,t,0,Q) + O(e?),
Q = Q+eln,t,0,Q)+ O(c?),

where Z!(z,t,0, Q) and =Z2(z, ¢, 0, Q) are even functions, while I'(x, ¢, 0, Q) and A(x,t,0, Q)

are odd functions.

Let

0

:E(;pteQ) (xt&Q) +F(:vt9Q) +A1($t9Q)Q

We wish to determine all possible vector field coefficient functions Z(x, ¢, 0, Q), Z*(x,t, 0, Q),
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[(x,t,0,Q) and A(x,t,0,Q) so that the corresponding one-parameter group is a super-
symmetry group of the super KdV equation. Compute the third prolongation

pr®v = v A" ag + Ata%t + A° age
A N g N
+A" 8gtt + AY agw + A% 8399
A N A
A
N A e

Applying pr®v on both sides of (3.9) yields
A = A" — 0T QQ 40 — aOAQ i — aOQA™ +aAQyy +aQA" +(6—3a) (A°Q,+QpA%). (3.21)
Here

A" = Do(A = E'Qr — Z2Q1 — TQp) + Z'Qua + E*Qut + T'Quo,

AT = (Do)*(A = E'Q — Z2Q1 — T'Qp) + E' Quaw + Z*Quat + T Qo
AT = (De) (A = E'Qu — Z2Qr — TQp) + E' Quawe + =*Quaat + P Qoo
A" =Dy(A —Z'Q, —Z°Q: —TQ) + E'Qur + Z°Qu + T'Qu,

A% =D;Dg(A — Z'Q, — Z°Qr — TQp) + ' Qouw + Z° Qo + T'Qouo-

Plugging A*, A** A*** Al and A% into (3.21) and then replacing Q.. b
Qt + G’QQQZEZC - aQQGw - (6 - 3a)Q6’Qac

yields a large symmetry defining system.

Equating the coefficients of the various monomials in the first, second and third order
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partial derivatives of () to zero, we find 28 determining equations for the symmetry group

of super KdV equation which are shown in Table 3.2.2.

After simplifying those 28 determining equations, we get a simpler equivalent system

of 7 determining equations

A — Appw — QAo + abQA,, =0, (3.22)

Iy + aQAM,q — (3a — 6)A, = 0, (3.23)

=l -=2 =0, (3.24)

20Q=! — aQly + aA = 0, (3.25)

afdQZ=L — aQT + afA + 3ZL, — 3A,0 + aQZy = 0, (3.26)

(3a — 6)Ag + 2a0QA,q — alQZL, — =} — 3A,0q + by + aQMpg + aQ=1, =0, (3.27)
(3a — 6)Ag — (3a — 6)Ty + (6a — 12)=L = 0, (3.28)
where 2! = Zl(x,¢,0),2? = Z2(¢),[ = T'(¢,0), and A = A(x,t,0,Q).

The solution of the determining equations is elementary. First, (3.24) implies

=l =0
So suppose that
= fi(t,0)x + fo(t,0). (3.29)

Substituting (3.29) into (3.24) yields

Fit,0) = 3530,

which implies that f; does not depend on . Hence we have

- 1
== ng(t)m + fo(t, 0). (3.30)
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Suppose
['(t,0) = hy(t)0 + ho(t) (3.31)

and

Mz, t,0,Q) = g1(x,1,0)Q + g2(2, ¢, 0). (3.32)

By multiplying @) to both sides of (3.25) with @), we have
OA = 0. (3.33)
By substituting (3.32) into (3.33), this yields ga(z,t,6) = 0. Hence

Az, t,0,Q) = g1(x,t,0)Q. (3.34)

By substituting (3.30), (3.31) and (3.34) into (3.25), we get gi(x,t,0) = hy(t) — 222(¢).
Hence we have

A, 1,0,Q) = (m(r) - 2220) @ (3.35)

which means that A(z,t,0,Q) does not depend on x and 0. Hence (3.22) requires that
A; = 0, which implies that A(z,t,0,Q) only depends on ). Therefore let hq(t) be an
even constant ¢; and ZZ(t) = cy. Also, (3.23) requires I'; = 0, which implies that T is a

function of ¢ only. Hence I' = ¢10 4+ o1 where « is an odd constant. So far we have

1
=l = 0T + fa(t,0), (3.36)
22 = ot + s, (3.37)

where c3 is an arbitrary even constant, and

I = 610+041, (338)
2
A = (c1 - gCQ)Q. (3.39)

Equation (3.27) requires that 2! = 0 which implies that =! dose not depend on . Hence
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fo(t,0) = asf + ¢4, where s is an arbitrary odd constant and ¢4 is an arbitrary even
constant. Rewrite

1
El = §Cg.’1? -+ 0629 + 4. (340)

Substituting (3.40), (3.38), and (3.39) into (3.26) yields ¢; = gc, and as = —ay. Hence

the infinitesimals are

=l = %CQx—a1«9+c4, (3.41)
22 = et +cs, (3.42)
r = é029+a1, (3.43)
A = —%CQQ. (3.44)

The above solutions of =!, =2, I and A give us

Vo= (%Cﬂ_o‘le““)%ﬂ@t“@; <029+0‘1>589 (- Czc))aQ
= (:1), aax+t%+l _9_2Q0Q>+C38+C488 ton( - ea%+%>’

which leads a (3|1)-dimensional superalgebra. This means that it is generated by 3 even

generator Ly, Ly, L3 and one odd generator L, given by

Ll = a:v)

L2 - 8t7

Ly = 13+t8+108—1Q8
3 — 31‘ T t 6 0 92 Q>

Ly, = 0y—00,.
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By the definition of Lie superbracket (2.10), we have

(L1, Ly = 0,(1)0, — (—=1)°°9,(1)0, = 0,

1 1 1
[Ll, Lg] = [am, gxax + tat + 6989 — §Q8Q]

1 1 1
= g[&c,xﬁx] + [0y, t0:] + 6[896, 60p] + —5[89;, Q0]

= 50,0, = (~1)"%20,(1),) + 9.1, — (~1)"*3(1),
500000 — (~1)7°00,(1)0,) — 5(0.(Q) — (~1)"'Q0(1)2.)
1,1,

3 3

(L1, La] = [0, Op — 00,] = [0y, Op] — [0z, 00,]

= 0,(1)0p — (—=1)"195(1)0, + 0,(0)0,, — (—=1)"160,(1)0, = 0,
[Ly, L] = [05 — 00,., 0y — 00,]

= [Dp, Do) — [0, 00, — (00, Do) + [0, 00,]

= 0,(1)0 — (=1)"10,(1)0, — (36(0)0, — (=1)"100,(1)0p)

=—0, — 0, = —2L;.

In summary, the supercommutator table of the Lie superalgebra is given by Table
3.2.3.



Monomials Coeflicient
Q002 —2a0QT'g + 6y =0
Q0Q. —2a0QT .o + (3a — 6)Ag — (3a — 6)Ty
+(6a — 12)Z} + aQ=}, — aQlyg + 3leaqg = 0
Q. (3a — 6)Ag + 2a0QN,q — abQ=L, — =}
—3Nswg + L, + aQNgg + aQ=L, =0
Qo (3a —6)Ag —abQl'y — Tt 4 Ty — aQNyg +aQl g =0
Qu6Qu 30 =0
QrQua —32,o — afQZH =0
QuoQua 30g =0
QiQx 322, — 200QZ2, — (3a — 6)Z3 + aQ=3, + 35, =0
1 —aQNzg — Npgz + Ay +a0QN,, =0
QtQuz Ei@ =0
Q2 Qtz 2a0QF3 — 622, =0
(Q0)* Qe (3a—6)Ty =0
Qo1 —(3a — 6)EQ =0
Quo 20QZ4 — 2a0QT, + 3T — 2aQZL + aQTy — aA =0
Qaa afQZ=L — aQl + abA + 32L, — 3M,0 + aQ=f = 0
Q: —abQ=2, + 2L —EF 4+ 22, +aQ=2, =0
Qi —2a0Q=2 + 3Z2 4+ aQ=%2 =0
QoQur aQZH + 3T =0
QoQ: aQagQ —(3a—6)E2=0
QioQx @Qzé =
QoQts CLQE% =
QoQa0 aQl'g =0
(Qo)? (3a —6)I'; —aQl'zg =0
Qe Qta =5 =0
Qtax =2 =0
Quat 30, =0
Q1o aQ=% =0
Qe Qtax 3522 =0

Table 3.2.2: Unsimplified determining system of 28 equations for the super KdV.



Ly Ly Ly | Ly
Ly| 0 0 3Li| 0
Ly| 0 0 Ly | 0
Ly | —iLy —Ly 0 | —iL,
Ly| 0 0 Li| 2L,

Table 3.2.3: Supercommutator table of the defining system of the super KdV.
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Chapter 4

Algorithmic determination of
structure of supersymmetry algebras

of super DEs

The main results of this thesis will be given in this chapter, which are two theorems
and two algorithms. The theorems are the Existence and Uniqueness Theorem in Section
4.4.2 and Structure Constants Theorem 4.5.1 and its proof in Section 4.5. The algorithms
are the MONO Expansion Algorithm 4.2.3 in Section 4.2 and the Structure Constants
Algorithm 4.5.2 in Section 4.5. Both algorithms are illustrated by application to simple

example )., = 0 and to more complicated example of the super KdV equation.

In Chapter 3, we determine the structure constants for both these examples by inte-
grating their defining equations. But solving differential equations and super differential
equations by integration is not guaranteed to always be successful. Reid and his collab-
orators developed a method to find the structure constants without integrations for the
usual non-Grassmannian case. In this chapter, inspired by their method, we will develop
an algorithm to find structure constants for finite-dimensional supersymmetries without

integrations.
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4.1 Regular super differential equations

The definition of super differential equation has been introduced in Chapter 2. Now we
give the definition of a regular/irregular super differential equations and a regular/irreg-

ular system of super differential equations.

Definition 4.1.1. Suppose that ¢ = 0 is a super differential equation which has highest
. . . . . . 0P -
derivative v with respect to a ranking =. Then ¢ is reqular with respect = if 3= is even.

Otherwise ¢ is called an irregular differential equation with respect to >.

Definition 4.1.2. Suppose that > is a ranking. If a super differential equation system
does not contain any irreqular super differential equations with respect to >, then it is
a reqular system of super differential equations with respect to =. Otherwise, it is an

wrreqular system of super differential equations with respect to >.

Irregular super differential equations are not trivial in super calculations. For example,

consider the super differential equation

QbZQ'U—’lU:O,

where v denotes the highest derivative of the super differential equation under a certain
ranking > and @ is odd. Then d¢/0v = @ is odd. By Definition 4.1.1, it is not a regular
differential equation, and it is an irregular super differential equation. It can not be
written in solved form since the coefficient () can not be divided to the right hand side
of the equation. Although an obvious phenomenon, it is critical to the theory underlying
algorithms which will be constructed later in this chapter. Hence, we need a way to
change irregular super differential equation systems to regular ones. We show how to do

this in the next section.
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4.2 MONO expansion algorithm

4.2.1 MONO expansion

MONO expansion is a method for converting irregular super differential systems into

regular ones.

We define odd variable monomials and then introduce MONO expansion which de-
composes expansions into independent odd variable monomials. For a super function
F(X,0), where X = (x1,...,x,,) are even independent variables and © = (64, ...,0,) are
odd independent variables, the odd variable monomials are all the linearly independent
products consisting of some or all of the 6;’s. For example, if n = 2, there are three
odd variable monomials 6,60, and 6,6, and they are linearly independent. For n odd
variables, there are 2" — 1 linearly independent odd variable monomials. In fact, when
one decomposes a super function by its odd variable monomials, we actually decompose
the super function by odd variable monomials and the unit 1 ( which is also linearly

independent of odd variable monomials).

The decomposition by odd variable monomials follows from the definition of a Grass-
mann algebra. According to Definition 2.2.2, two independent odd variables #; and 6
generate a 4 - dimensional Grassmann algebra with basis {1, 6;,0,,0,02}. For example,

if F(x,01,63) is an even super function then

F(JI, 81, 92) = fl(ZL') + gl(x)Hl + QQ(ZL’)QQ + fg(x)6’102, (41)

where the f;(z) are even functions and the g;(z) are odd functions for ¢ = 1,2. Similarly,

the MONO expansion of an odd super function G(x,6;,65) can be written as
G(2,01,02) = Gi(x) + fi(2)01 + fo(x)0 + Go()0162, (4.2)

where f;(z) are even functions and §;(z) are odd functions, i = 1,2. The odd variables
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01,0, and 05 generate an 8 - dimensional Grassmann algebra with basis
{17 01, 027 937 01027 919:’” 92637 019293}'

More generally, consider a super function F(X,0©), where X = (xy,...,z,,) are even
independent variables and © = (64, ...,0,,) are odd independent variables. Suppose that
W1, ...,won_1 are the odd variable monomials generated by the odd independent variables
01, ...,0,. Then F(X,0) can be expanded as

2" —1

F(X,0) = fo(X) + Z filX)ws, (4.3)

in term of functions f;. This is called the MONO expansion of F'.

One of the advantages of MONO expansion is giving the odd dependencies of a super
function explicitly. The other advantage is more important. Substituting the MONO
expansions into the original system and taking coefficients of odd variable monomials
yields a new regular system. The new system does not depend on odd variables. Figure

4.2.1 shows this procedure.



[ Input: system of super functions ]

[ Compute MONO expansions of the super functions ]

[ Substitute MONO expansion expressions into the system ]

[ Select coefficients of odd variable monomials ]

[ Equate the coefficients to zero ]

[ Output equivalent system: regular with no odd independent variables ]

Figure 4.2.1: The MONO expansion procedure
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4.2.2 Two commutative Maple commands

The MAPLE commands rifsimp and initialdata can be used to simplify overdeter-
mined systems of PDEs or ODEs. They are designed for the commutative case. The
underlying idea of rifsimp is similar to Grobner bases. Under a given ordering, the
calculation of dividing the coefficient of the leading term and moving it to the right hand
side of the equation is a fundamental operation and is always possible in commutative
case. But in our case, if the coefficient of the leading term is odd, we can not divide by it.
So we need certain assumptions to be able to apply the commutative algorithm rifsimp

to non-commutative calculations.

4.2.3 MONO expansion algorithm

MONO is the Maple procedure for exacting the MONO expansion of super functions |
See Appendix A.1].

Algorithm 1 MONO expansion algorithm
Input: Defining system S.

1. Decompose each of the infinitesimals by MONO expansion.
2. Substitute them into the input system S.

3. Equating all the coefficients of independent odd variable monomials to zero
forms the new defining system S;eq.

4. Send S,eq to the commutative Maple commands rifsimp and initialdata.

Output: Return S,q in rifsimp form and the size of the symmetry algebra.

One immediately has the following observations.

Remark 4.2.1.
1. This algorithm gives the details of the method outlined in Figure 4.2.1.

2. The new system in step 3 is reqular and it does not depend on odd variables.
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3. Suppose that H 1is the supersymmetry algebra. Then
the size of the symmetry algebra output = dimHy + dim#H;.

Definition 4.2.2 (Reduced defining system). The new defining system generated at step
3 in Algorithm 4.2.3 is called the reduced defining system.

As Remark 4.2.1 mentioned, the reduced defining system is regular and has no odd
independent variables. For calculational convenience, we can assume without loss of

generality that the reduced defining system is monic.

4.3 MONO expansion applications

4.3.1 Applying MONO expansion

We first apply MONO expansion to general super differential equation system. Then we
apply it to specific examples.

For a super differential equation system
A(X,0, A% Q*k)y = 0,
the corresponding infinitesimals
Z(X,0,4,Q), T'(X,0,4,Q), ¢(X,0,4,Q) and A*(X,0,4,Q)

are the infinitesimals of the transformations for both independent and dependent (even
and odd) variables, X,0, A and (). To solve the determining equations means finding
=i TY, ® and A*. In the last chapter, we solved for the infinitesimals by integration.
In this chapter, we will avoid integration and solve the same determining system by a
new method. We first decompose the unknowns (infinitesimals) by MONO expansion.
In the determining equations, there are n + p odd independent variables 61, ...,6, and

Q',...,Q". We decompose Z¢, IV, ®" and A* with respect to all the monomials of those



53

n + p odd independent variables 61, ..., 0, and Q!, ..., Q”. Hence we have 2""P~1 linearly
independent monomials denoted by wy, ..., w,, where s = 2"*P~1 For convenience in what

follows, we suppose that wg = 1. Hence, the decompositions of the infinitesimals are

[1]
|

"= Pl (X, A)+ P (X, Awi + ... + P(X, Aw ZPl W,
IV = P} (X,A)+ P (X, Aw + ...+ Py (X, Aw ZPg W
o = P (X,A)+ P (X, Awi + ... + Ps (X, Aw ZPg W,

A = P (X, A)+ Pf (X, Aw; + ... + P (X, A)w ZPj W,

where PfH(X JA), PfM (X, A) are super functions only depending on even variables X
and A.

Remark 4.3.1. We use P} (X, A),..., Py (X, A) to denote the coefficients of the odd
monomaials. In particular expansions, we will use PE’s and PO’s to denote even and odd

coefficients respectively.

We substitute these expansions into the determining system. Then we get a new sys-
tem without any odd independent variables by considering the even or odd parity in each
super differential equation in the determining system. The advantage of MONO expan-
sion is to eliminate dependence on odd variables in the system. This often considerably

simplifies the system. The following example illustrates this simplification.

Example 4.3.2. Let =,(x,0,Q) = 0 be the determining equation, where = is the even
dependant variable which depends on an even independent variable, x, and two odd inde-

pendent variables, 0 and Q. The MONO ezpansion of Z(x,0,Q) is

E(l‘, 91, 92) = PE1($) + P01($)91 + POQ(CE’)QQ + PEQ(IL‘)0192
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By substitution, one gets the new system

dx -
dx -
dzx -
dx -

Although there are more equations in the system, they are trivially solvable and do not

depend on odd independent variables.

4.3.2 Applying the MONO algorithm to examples

Let us apply MONO to two examples which were introduced in the previous chapter.

Example 4.3.3. Apply the MONO algorithm to Q.. = 0, which was presented in Section
3.2.1.

The input is its defining system (3.13).

Input: Defining system

—Z(2,Q) 2z + 2A (2, Q)20 = 0.

1. The MONO expansion of infinitesimals are

(4.5)
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2. Substituting the expansions (4.5) into the input system (4.4), we get
9222 + f2xx * Q = 07

flxx+Q*glxx+2f2x =

(4.6)

3. Equate the coefficients of odd variable monomials, 1 and ), to be zero. The
defining system is now

9250 =

Sred = szx -

(4.7)
flmz = 2f23m

gz =
4. Send (4.7) to the commutative Maple commands rifsimp and initialdata

The following figure is the detailded Maple output

read "/Users/liux0578/Documents/ Study/Meeting-4/SymmetryvPrograms/ Oxx Ver Lmpl’

anticommutativeprefiv={A. PO, Q. L}

2

Oix
af )

[@ix)]
o
Yex
[Zix 0 Alx. 0]
A F2 Z,0.+0 (’\._u_Ex) -z 0

0 00
2.

Ty Fyx n

v
- ;o
2 aingy=0-[ L
i

N e
— =[x LJ]|—“
|, dx ]

ntJm Afx, @) ‘
[E0x.Q) = PEL, (x) — Q POI, (x). A{x, @) = POZ, (x) + PE2 [\] 0]

2 (x) )
[0.% 0 PO, (x). Alx, Q). E(x Q). PEI, (x). PEZ, (x), PO, (x), POZ, (x) }

|FEL (). FE2, (x). UL, (x) m}l[\]

Y
20+ (L ) 0
/
|Ft}_’| +PEI,  (0=0-PEI, + t_}}-’t}}'l +2 FE_’I =10]
xx xx xnx xx x
|Ft}.’l =0.FE2  =0,2PEZ —FE." =10, F(J}' =0]
X x xx x x |
& 2 d &2
‘ pe POZ (x) = = PEZ (x}=0,2 \Eh&’ = FUL (1) =
I
tabie| | Sofved = =2| = P}: 2,
L
ram’c( | Infinite = [ ], Fini

Finite = |F‘H|("'c|] =_C1, D(FE‘H](-'.;‘] =_C2Z, PEZ ( ] =

—

2, (x) =0

I

(FI:’ ]( ]— C4, P ( -:|] =_C3, D(H}‘”]('\":n] =_f_l5..Ft}_"|(.\'l:l] = U7 D(FU" ]( ]— [ ]
Figure 4.3.1: Maple output of the MONO algorithm applied to @, =0
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In Figure 4.3.1, the Maple output from initial data yields 8 initial conditions of the

form

PEll(xU) = ,Ol,D(PEll)(.CEo) = 702, PEQl(xU) == ,OS,D(PE21)(.CE0) = 704,

PO1,(wy) = .05, D(POy)(wy) = -C6, PO2, () = -CT, D(PO2,) () = _C8,

so there is an 8-dimensional symmetry group. Since Maple commands, rifsimp and
initialdata are designed for commutative calculations, it treats input as commutative
calculations. In fact, it is a 4 | 4 - dimensional supersymmetry group. The dimension 8
returned by Maple output is the sum of even dimension and odd dimension of a finite
supersymmetry group.

By looking at the following diagram, one can easily graphically determine the dimen-

sion of the supersymmetry group.

N1 L fa X

1 z g2 x

Figure 4.3.2: Dimension analysis diagram for the defining system of )., = 0.

The number of red dots equal the dimension of the supersymmetry group. The para-

metric derivatives are the set

{f17 flxu f27 f2za 91,914, 92, g2:v}

In this set, the first four parametric derivatives are even and the other four are odd.
Hence it is a 4 | 4 - dimensional supersymmetry group. For analogous diagrams for

Grobner bases of polynomials, see [28].
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The input for this example is already regular. In the same way the MONO expan-
sion algorithm can be applied to the reduced defining system and the dimension of its
supersymmetry group obtained. The next example shows the wonderful power of MONO

expansion for irregular systems.

Example 4.3.4. Apply the MONO algorithm to the defining system of the super KdV
equation (3.9).

The second example is the super KdV equation. Let us look at the simplified defining
system of the super KdV equation (3.22-3.28), which is also the input system:

Eglcx = 0,
Eie = 0,
= = 0,
25 = 0,
=2 = 0,
=2 _ =1
—t - —x
=2 = 0,
= = 0,
r, = 0,
r, = 0,

g = 0,
A, = 0,
A= 0,
Ay = 0,
Ag = 221 +4Ty

Z, = QI —0A —0Q=!, irregular.

x’
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The last super differential equation of the system above
5= QI — A — Q=] (4.8)

is irregular if = is the highest derivative. If one changes the ordering of the super

derivatives to make =! the highest derivative, then the coefficient of =! is 6Q, which is

an even coefficient. They can be written in solved form

=1 1

L= 5o(@r - oA - Q=) (4.9)

But there is still no better way to solve (4.9) with a quantity like %. This emphasizes

the advantages of the MONO expansion algorithm which we now apply.

Step 1: The MONO expansions of the infinitesimals are

=! gi1 912 f12 0 f11
=2
= g21 G22  fa2 fo1
= Q + , (4.10)
I fa1 fs2 932 00 gJs31
A fan fi2 92 J41

(z,t) (z,t)

where fi1, fi2, fo1, foz, fa1, fa2, fa1, fao are even functions depending on (z,t), and g11, g12,

921, 922, 931, 932, 91, ga2 are odd functions also depending on (z,1).

Step 2 and 3: By substituting the expansion back to the input defining system and
equating the coefficients of odd variable monomials for each equation, one forms the

reduced defining system

(911)2 = (911)e = g12 = fi2 =0, (f11)2 = 2f51, (f11)e = 0;
921 = 922 = f22 =0, (f21)e = 0, (f21)¢ = 6.fs1;
(f31)e = (f31)e = f32 = 932 = 0, 931 = —g11;
Jin=012=0, fa2 = =3f31,911 = 0.

(4.11)

This reduced defining system is regular. Therefore, it can be sent to the Maple commu-
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tative commands rifsimp and initialdata.
The Maple output shows that the super KdV equation has a 4 - dimensional symmetry
group. Actually it is a 3 | 1 - dimensional supersymmetry group. As in the previous

example, the diagram helps us to determin the dimension of the supersymmetry group

directly.
t t t t
L L
g11 T g12 T Ji2 v Jin z
t t t t
L
g21 x 922 Zz Jo2 v Ja1 z
¢ J t [ t t
fa1 v f32 . 932 z 931 T
t J t t t
L
Ja L G42 z Ja2 r ga T

Figure 4.3.3: Dimension analysis diagram for the defining system of the super KdV.

It is easy to see that there are four red dots corresponding to 4 parametric derivatives
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implying that it is a 4 dimensional symmetry group. The parametric derivatives are

g11, f117 f21, f31-

Among them, ¢;; is odd and other three functions are even. Hence, in more detail, the

supersymmetry group is a 3 | 1 - dimensional supersymmetry group.

4.4 Existence and uniqueness theorem

From now on, we are working on the reduced defining system which is the output system
of the MONO expansion algorithm. The reduced defining system is regular (and monic)

and does not have any odd independent variables.

Rust, Reid and Wittkopf [18] have proved the existence and uniqueness theorems for
formal power series solutions of analytic differential systems. We adapt their result to

the non-commutative case.

4.4.1 Super initial data mapping and super Riquier bases

We extend the definition of the initial data mapping in the commutative case [18] to

super initial data mapping sID:

sID : {z} U EvenPar(S;ea) — F

OddPar(S,e.a) — G (Grassmann numbers).

For z° € F", we say that sID is a specification of super initial data at z° if sID(z) = x°.

For sID(z) = z2°, we mean

(sID(z1),sID(x5), ..., sID(z,,)) = 2°.
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This is a well-defined mapping. For any f in S,eq, evaluating f is
sID(f) = f(sID(X),sID(Par(Syeq)), Prin(S;eq))-

Riquier bases are the differential analogs of Grobner bases. Since we are working on
reduced defining systems, the super Riquier bases in this thesis differ from Riquier bases

only in that they involve odd dependent variables.

4.4.2 Existence and uniqueness theorem

Since we have already reduced the system to be regular with no odd independent variables,
the underlying Riquier bases theory is the same as the commutative case. We adapt the

existence and uniqueness theorem in [18] to the non-commutative case as the following:

Theorem 4.4.1. Suppose that M is a super Riquier basis with respect to ranking .
Fiz 2° € F*. Let sID be a specification of initial data for M at x° such that sID(f) is

well-defined for all f € M. Then there is an unique solution

u(z) € Fllz—2°]", ifu(x) is even;

u(z) € Gz —2°]", ifu(z) is odd,

to M at 2° such that Dyu'(z°) = sID(8Y) for all 6", € ParM.

4.5 Structure constants algorithm

4.5.1 Structure constants algorithm theorem and proof

Theorem 4.5.1. Suppose that S is a finite defining system with my even infinitesimals
and my odd infinitesimals. Suppose that S,eq s the reduced defining system of S and has
di(< 00) even parametric derivatives and dy(< 00) odd parametric derivatives. Then the

structure constants can be algorithmically determined.
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Proof : For any finite defining system S, one can write two supervector fields L; and

L; as:

mi m2
Li = Y Evenlnfy dgyenvar, + 2 0ddInf, d04qvar, -

l1=1 lo=1

mi m2
L, = Z EvenlnfélaEvenVargl + Z OddInféQ(?Oddva%’

l1=1 lo=1

where 1 <i,j < dj + ds.

On one hand, by computing the Lie superbracket of L; and L; and by the closure

property of Lie superalgebra, we have

[Li, L] = Z AﬁlaEvemVam1 + Z B&aOddVarg?' (4.12)

{1=1 lo=1

On the other hand, by the definition of the structure constants, we have

di+da
[Liv L]] = Z CZLk

k=1
di+da mi

= > (Y Bvenintl Opyen v, + Z OddIng, 90 ddVar,, )
k=1 fl 1 ZQ 1
mi di+ds m2 di+d2

=3 (X eyBrentnt} ) Opyenvar, + 3 ( Z e OddInt ) 00 4q v, -
=1 k=1 lo=1 k=1

(4.13)

By equating the coefficients of the same operators in (4.12) and (4.13), we obtain a system

with m; 4+ my equations of the form

St ck.EvenInff = A,
(4.14)

m, equations

di+d
klt 2 kEvenInfk =A™,



63

dtd ok OddInff = BY,

ij

(4.15)

me equations

Soit® ek OddIntf, = B™.

Since Par(S) consists of some (or all) infinitesimals and their derivatives, one can
always differentiate the above systems (4.14) and (4.15) with respect to Par(S). Sup-
pose that Par(S) = {Pary, ..., Parg, +a4,}. After differentiation, one gets a new system

consisting of all parametric derivatives of S:

iidQ cijar]f = (1,
(4.16)

di+da |k k _ d1+da
ket CiParg g, = C ,

where C1, ..., 04142 are the derivatives of some (or all) of the Al ..., A™ and B, ..., B™2.
Substituting the MONO expansion expressions for the infinitesimals of § and then com-
puting coefficients of odd variable monomials for each equation, we get a new system con-
taining all the parametric derivatives of S,eq. Suppose that S,eq = {Igc;”l, e Fc}dﬁdz,}.

Then the system (4.25) becomes

—k ~
Z;dz cijarl =C1,
(4.17)

di+d2

—k A
k _ (vdi+d2
o1 cijPow*a,/ﬁa,/2 =C )

Next we list all the elements in Par(Sieq) = {15;“1, Pars, ..., ]Sc;"lerdQ} in a certain

order, say ¢, for example,
{Even]g(;"b s Evenlgo;’dl, Odd]gc;q, - Oddlgo;’dQ}.

Most importantly, even parameters are listed before odd parameters. Note that according
to convention for Lie superalgebra commutator tables, we always put even parametric
derivatives before odd parametric derivatives. That yields a Lie superalgebra commutator

table with even basis elements listed followed by odd basis elements. Rearranging the
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equations in the system (4.17) in the same order §, one has

Sk EvenPar1 =CH

—k ~
e kEvenPard =C%,

(4.18)
kmlme ck OddPar = Qi+l

—k ~
mi+ma L _ di+ds
| 2k G;OddPary, = C )

where {C1, .., ChTd2} = LCF . CNTd2} in sense of sets.

We then simplify C' to Ch+d2 modulo the rifsimp form of S,eq and denote the simpli-
fied forms with same notation, C* to C4+42, Hence, there are only parametric derivatives
of S,eq appearing in each expression for C* to C+92. According to the properties of Lie
superbrackets, the parametric derivatives must always appear in bilinear pairs associated

coefficient in F, for example,

/\'/\z

a(@i@b Par, Pars). (4.19)

By the super Riquier existence and uniqueness theorem, providing initial data for the
parametric derivatives of S,.q uniquely determines the structure constants. For exam-
ple, providing two copies of initial data ay, ..., a4, +q, and by, ..., bg,+4, for all parametric
derivatives of Seq of system (4.18), the bilinear pair of parametric derivatives (4.19)
becomes

a(albg — blag). (420)

Equation (4.20) implies
6{2 =a,

if (4.19) appears in the j-th equation in the system (4.27). Similarly, we are able to read

off all the nonzero structure constants from every initial data pair of form (4.20).
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4.5.2 Structure constant algorithm

Now we put Theorem 4.5.1 and its proof in the previous section into the form of an

algorithm.
Input: S, Par(S), Evenlnf(S), OddInf(S); Siea, Par(Sieq)-
1. Write two supesymmetry vector fields L;, L;, where
mi A mo A
Li=Y ®,0x, +Y Uy,
6=1 lo=1
and L; has the same form.

2. Take their Lie superbracket [L;, L;] to yield

[Li, L) Z ABox, + Z B"dy,,. (4.21)

l1=1 lo=1

3. By the definition of structure constants we have

di+d2
[Li, L] = ) il (4.22)
m1 di+ds ma d1+d2
- Z ( Z C'Z@?l)aXel + Z ( Z CZ\IJZ)anz'
l1=1 k=1 lo=1 k=1

4. The equations in (4.21) and (4.22) form a linear system with m,+ms equations.

Zd1+d2 k:q)k Al
my equations (4.23)

d1+d2 ok pk m
Z (I) _A )

2] mi

zd1+d2 k \Ifk Bl

me equations < (4.24)

ceey

d1+d2kk mo
| Stk = B,
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5. Differentiate (4.23) and (4.24) w.r.t. Par(S) = {Py,..Py, 14, } to obtain:

Zd1+d2 k Plc Ol,
(4.25)

Zd1 +d2 k Pk

di+d2
di+dy T =C ’

6. Substitute the MONO expansions of EvenInf(S) and OddInf(S) in step 5 and

equate the coefficients of odd variable monomials to obtain

(4.26)
| S, = O,
where Par(Sred) = {Ph a pd1+d2}
7. Select an order ¢ on the elements of Par(S;eq):
{?1, ey de7\Pd1+17 LR Pdl-i-dgl})
ezgn ;Zi
and rearrange (4.26) in the order ¢:
( an;LmQ Ck Pk Crl7
m1+m2 k Pk éd1
2= ’ (4.27)

Zm1+m2 k Pfﬁ-l — Cd1+17

Zm1+m2 k Pd1+d2 — (ditdz

8. Provide two copies of initial data ay,..a4, 14, and by, ..bg, 14, for the Par(S;eq)

in the given order and read-off the nonzero structure constants as coefficients.

Output: Nonzero structure constants cfj’s and the supercommutator table.
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4.5.3 Applications of the structure constants algorithm
We apply the structure constant algorithm to the defining system of the example Q),, = 0

and the super KdV equation.

Example 4.5.2. Apply the structure constant algorithm to example the (Qz, = 0. This

example does not contain any irreqular super differential equation.

Input: S in standard form
1 _ - -
S = {Am = 07 ACUQ - §:$$7 =QQ ~ O7AQQ = 07 Srxr — 07 SrrQ — 0}7

my = 17m2 = ]-7 {E7E$7AQ7 ECB$7A75Q’A$7‘ELI:Q}7d1 = 47d2 = 4.

1. Write two general supersymmetry vector fields L;, L,

Li=Z0,+AN0g and L;=7=09,+ Noy.

2. Take their Lie superbracket

A

[Li,L;] = (2] - 2= + NE, - NE,)0,
B

A

H(EN, — SN+ AAY — M AL)0q.

3. Expand the commutator in terms of structure constants

8
k=1
8

8
= O EN0 + (O diAh)og.
k=1

k=1
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4. The results of step 2 and 3 yield a linear system with 1 4 1 equations:

8
Y bER = Z'E - TEL + NE) - NE, (4.28)
k=1

8 .
Y A = EA - AL+ NN - MA, (4.29)
k=1

5. Arrange the parametric derivatives in the order d:

—_ - —_ —_ —_
{:7 S AQ? Sgx, 4 2Q, Ax; :xQ}~

6. Skipped. Since input system is regular, it is not necessary to do the MONO

expansion.

7. Keep differentiating the two equation in step 5 w.r.t. parametric derivatives

until we have 8 equations. Then simplify them with respect to the modulo
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parametric derivatives and arrange them in the order 6,

—

== — ZE) + (A=, — NE),

T T —Q

8
k —k
Z%‘: =
k=1
8
Y dEE = (F'El, - TEL,) + (EGAN — ELAL) + (NEL, - MEL),
k=1
y kAR =V A= 1 =i =j=i i oAJ J oA
D_cihg = (EoM —EpN) + S(E'EL — FIEL) + (Aghy — ApAY),
k=1
8
dodEh = (EiEL - EiEL) +2(AE, - MEiy).
k=1
8
DochAY = (EIAL - FAL) + (AAG - MAY),
k=1
8
Skl = (EpE - TR + (FElg - TEL) + (453) - MyE),
k=1
8
I . . 1 .. -
Do chAL = (LA - EIAD) + (ALAG — AR + 5 (MEL, — VEL),
k=1
8

k —k — = —F — — —
CiiZzQ T ——2(529555 - ‘:gzaz‘:ZQ) + (Ab:]xQ - Aég:;Q)-
k=1

8. Provide two copies of initial data aq,..ag and by, ..bg and substitute them in
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(B8] — 2921) + (N'E), — ME5)
e e N v

airba—biaz asbg—bsag

1 1
> = 1,056 = 1,

—i=)  _ =i=d =i AJ _ = Al = AJ=
(B'E =5,) +EoA — S/, +£\ Eho — A Ziq

xrxr
v ~"~ ~"~
a1bs—braq agb7—bgazr asbg—bsag
2 2 2
} Cly = 17667 - 17658 - 17
(r:z‘ Aj =] Ai)_l_l(’:i’:‘j _ ==t )
\I_AQ T I_AQ (I)/ 2 — =" =
Vv
agb7—bgar a1bs—biay

—s . =1,c8, =1/2,

Diml _ mimi iz o AIE!
vV
a2bg—bray a7b8:rly7ag

J/

4 4
> Coy = 1, Crg = 2,

(E'A — ZTAL) + (A'AL — MAY),

-

v ~"
a1br—biar asbsz—bsas

5 5
— ¢y = 1,53 =1,

(ELE] — EHE0) + (E'Elp — o) + (ML) — ALy,
Vv Vv Vv

agba—bgaz airbg—bias azbg—bzag

6 _ 6 _ 6 _
— g = 1,093 = 1,36 = 1,

(ELAL — ZIAL) + (LAY, — AIAD) +5 (NE], — NVEL),
~"~ N - ~~
azbr—baz a7b3tb7a3 asbs—bsaq

7 7 7

| R . _
_5 (:‘?vx‘:é) - ‘:‘gc;r:‘ZQ)J—}_\( ZQ‘:‘?EQ LY ‘:‘ZxQ)7

Vv '
agbg—byag azbg—bzas

—s s = —1/2,c5 = 1.

N | —

Output: Read off the all nonzero structure constansts cfj’ s. They are c}, =

12 12— 2 — ] B—1 B — 4 _ 14 9 B 1 B _
=Ly =leg=LlLeagyg=1cp=1c,=1/2c=1c=2c;=10c5=

- 1ac?8 = cha = 17657 = 176;3 = 1vcg4 = 1/2701816 = _1/27628 = 1



The structure constants computation above implies that

(L1, L) = cioLy + Gyl + Ciy Ly + iy Ly + C9Ls + ¢Sy Lg + clo Ly + ¢y Lg

[Lh L3] - 07
(L1, La) = eiu Ly + iy Lo + ¢y Ly + iy L + ¢y Ls + ¢y Lo + iy Ly + §y L
1
=Ly + §L3,
[Lb LS] - 07
[Lh Lﬁ] = 07

[Li, L7] = ej.Ly + 3oLy + ¢ L + ci‘zL4 + 3 Ls + S Lg + cI7L7 + - Lg
(L1, Ls] = e1g Ly + cig Lo + ¢ls Ly + cigLa + iy Ls + o Lg + ¢y Ly + fy L
(Lo, Ls] = 0,
[Lo, Ly] = by Ly + 3 Lo + 3y Ly + 3y Ly + ¢y Ls + Sy Le + chy Ly + ¢34 Lg
[Ly, Ls) = 0,
(Lo, Lg) = cyg Ly + CogLo + CogLis + Cog Ly + s Ls + c5g L + cog L7 + ¢35 Lg
[Lo, L7) = ¢y Ly + Cor Lo + Coy Ly + Cop Ly + 57 Ls + c37Lg + cor Ly + c37 Lg
(Lo, Lg] = 0,

[L37 L4] = 07

[Ls, Ls] = chs Ly + 2Ly + 35 Ly + s Ly + 35 Ls + S Lg + chs Ly + cos Lg =
[Ls, L] = chsLy + c3gLo + cagLs + 3Ly + cgLs + Sl + chg Ly + casLg =
[Ls, L7] = c3;Ly + ¢37La + &3; L3 + 3y Ly + ¢ Ls + 57 L6 + C§7L7 + ¢, Ls =

[Ls, Ls] = c3g L1 + ¢35l + ci3gLs + 3Ly + c3gLs + 35 Le + 5Ly + cigLs =

[Ls, Ls] = ci5 Ly + ¢is Lo + s s + a5 La + s Ls + ¢is Lo + cis Ly + cis Lg
[Ly, L) = cigLy + cagLo + cagLs + cigLy + g Ls + S L + cag Ly + i Lg
(L4, L7] = 0,
[Ly, Lg] = 0,

[Ls, Ls] = 0,

71

- le

= L57

= L67

= L47

- _Lﬁa

- L77

= __L77

= __L87



[Ls, L) = cisLy + c3gLo + cagLs + c3g Ly + c2gLs + cSgLe + cig Ly + cagLg = Ly,

[Ls, L7] =0,

[Ls, Lg] = cig Ly + c2gLio + CogLig 4 CagLy + cigLs + gL + cig Ly + ¢3gLs = Lo,

[L67 LG] = 07

(L6, L7] = cgz L1 + cgr Lo + gz Ls + cgyLa + cgrLs + 3 L6 + ¢y L7 + ¢ Ls = Ly + Lo,

[Le, Ls] = 0,

[L77 L7] = 07

(L7, Lg] = chgLy + c2Lo + gLy + CagLy + c3gLs + SgLg + chg Ly + cigLg = 2Ly,

[Ls, Lg] = 0.

The supercommutator table is

L Ly Ly Ly Ls Lg L, Lg
Ly 0 Li 0 Ly+1/2L4 0 0 Ly  Lg
L, — I 0 0 Ly 0 —Lg L; 0
Ls 0 0 0 0 —Ls Lg —L,  Lg
Ly| —Ly—1/2Ly —L; 0 0 —1/2L; —1/2Lg 0 0
Ls 0 0 Ls 1/2L; 0 Ly 0 Ly
Lg 0 Ls —Ls  1/2Ls L 0 Ly+L; 0
Ly —Ls L, L; 0 0  Lo+1Ls 0 2L,
Ls — L 0 —Lg 0 Ly 0 2L, 0

Table 4.5.1: Supercommutator table for the defining system of @,, = 0.

Secondly, let us find supercommutator table for the defining system of the super KdV

equation by applying the Structure Constants Algorithm.
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Example 4.5.3. Apply the structure constant algorithm to the defining system of the

super KdV equation system.

Recall that in Section 4.3.2 we obtained the reduced defining system of the super KdV

equation (4.11), which is

(911)2 = (911)e = g12 = fi2 =0, (f11)2 = 2f51, (f11)e = 0;
921 = 922 = f22 =0, (f21)2 = 0, (f21)¢ = 6.fs1;
(fa1)e = (f31)e = f32 = 932 = 0, 931 = —g11;
fu =912 =0, fao = =3f31, 90 = 0.

Then we have a simplified version of the infinitesimals Z', =2, T, A as the following:

[1]
|

V' = g1+ fu,

52 = f217
I = f319 — Ji11,
A = =3f30.

Now we follow the steps of the Structure Constants Algorithm.
Input:

1. Write down two supersymmetry vector fields L;, L;,

Li = ZY9,+Z%0, + "0 + N'Og,

2. Work out their Lie superbracket

[Li, L;] = [EY0, +E%0, + 0y + N'0g, 250, + =70, + 170y + N 9g)
((9{1f?{1 - 9{1f§1>9 + 2(ff1f§1 - ff1f§1) + (9319]1‘1 - 9{1931))@

+6(f§1f:§1 - fglfgl)&f - (gilfgl - .Q{Ifi’l;l)a@'
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3. Expand the supercommutations in terms of structure constants

4
2 Cil

[Li7Lj] =

— Z CE(EY0, + 20, + %9y + A*0g)

-y
D

f319 911 )0 + Z

4
CZ (9510 + [0, + Z ijf;at

3f:§1@)862

4. Computing and equating the coefficients for the same operator in (4.30) and (4.30)

yields a linear system with 2 4 2 equations:

4
Z ij(.q’fle + flkl) = (711.f5 — .(J{lfgl)e
k=1

(flllfgl - fflfgl) + (.931.(/{1
Z ¥ Tan = 6(fa1 fi — f31 40),
Z f319 911) = 911f31 g{1f§17

Z

(—3f2Q) =0.

- .9]1'1!131)-

(4.30)

(4.31)

(4.32)

(4.33)

Old variable # remains in the system (4.31-4.33). Continue to equate coefficients of

odd variable monomials for (4.31) and (4.33) until we get a new system

Zk 1 ]gll glﬁfgl - 9{1f§1,
Ek:l ijfll = 2(ff1f3{1 - ff1f§1) + (9319{1
Zi:l Cikijkl = 6(f§1f?{1 - fglf?l;1>7

L Zi:l Oz‘kjf?ﬁ =0,

without any odd independent variables.

— g1d%y),

(4.34)
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5. Skipped. Since the new system (4.35) contains purely parametric derivatives, one

does not need to differentiate it with respect to Par(S).
6. Skipped.

7. Set an order delta for parametric derivatives, {fi1, fo1, f31, 911} and rearrange the

linear system in the given order delta:

( Zi:l ijffl = 2(ff1f?{1 - fljlfgl) + (!]Zil!}]l'l - gjil.qzil)a
Zi:l ijffl = 6(f§1f§1 - fglfél)a
Zi:l Cikjf?fl =0,

L Ei:l ijglﬁ = 9§1f§1 - 9{1f§1-

(4.35)

8. Provide two copies of initial data {ai,...,as} and {bj,...,b4} to the parametric

derivatives {fu, fa1s far, gn}. All the nonzero structure constants are

4
Z ijflkl = Q(fflfgl - ff1f§1) + (9319{1 - 9{1.931)7
k=1 arbs—byas asbs—bsay
— 0%3 = 2,0}14 =1,
4
qujf; = 6(f§1f§1 - f2jlf§1)7
k=1 asbs—baas
— 033 =0,
4
Zcfj.qlfl = gilf?{l - .(J{lfél .
k=1 asbs—baas
— 3 = 1.

Output: Read off the all nonzero structure constants cfj’ s. They are cj; = 2, ¢}, =

1,c3, =6,c15 = 1.
Therefore, by the definition of structure constants, one has

(L1, Ly] = cloLy + oLy + oLy + iy Ly = 0,

(L1, Ls] = cisLy + €5 Lo 4 ¢i5Ls + ¢is Ly = 2Ly,
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[Ly, Ly) = cjyLy + 2 Ly + ¢, Ly + ¢}, Ls = 0,
[Lo, L] = ¢33 Ly + oy Lo + oLz + oz Ly = 6Lo,
(Lo, Ly] = ¢y, Ly + cay Lo + ¢, Ls + ¢y Ly = 0,
[Ls, Ls] = c3Ln + ¢34 Lo + ¢34 Lg + ¢3, Ly = —Lu,

[L4, L4] = C}l4L1 + Ci4L2 + 024[/3 + 034[/4 = Ll,

and the supercommutator table is given by

Ly Ly Lz | Ly

Ly 0 0 2L, 0
Ly 0 0 6Ly | O

Ls | —2Ly —6Ly, 0 | —L4

Ly 0 0 Ly | Ly

Table 4.5.2: Supercommutator table for the defining system of the super KdV equation
obtained by the Structure Constant Algorithm.
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Chapter 5

Supersymmetry for a class of super

Lagrangians

In this chapter, we find nontrivial hidden supersymmetry for the Euler-Lagrange equa-

tions of

I - _ -
L= %¢i+§<wm—m*‘w>+F<¢,w,w>, p=1...4d (5.1)

when the dimension d = 2.

Even though d = 2 has only 2 space variables x; and x5, hand calculation of the
supersymmetry defining system of the Euler-Lagrange equations is difficult. Edgardo
Cheb-Terrab implemented DeterminingPDE in the PDEtools package in Maple to com-
pute the defining systems satisfied by the infinitesimals of Lie symmetry groups of dif-
ferential equations. In 2011, he upgraded DeterminingPDE to be compatible with the
Physics package to deal with odd quantities.

In this chapter, we use DeterminingPDE to generate the defining system of the Euler-
Lagrange equations of (5.1). Then we apply MONO expansion to those infinitesimals
having odd independent variables. We also apply MONO expansion to the potential super
function F(¢,1,1). By substituting these MONO expansions in the defining system and
taking the coefficients of odd variable monomials, the reduced defining system is formed.
The reduced defining system is then sent to the Maple commutative commands rifsimp,

initialdata and caseplot.
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All cases have the obvious translation symmetry in x; and z,. One extreme case is
when the potential F' (qb,w,iZ) = (0. This is infinite dimensional supersymmetry group
and is solvable. The other extreme occurs when the potential F(¢,1),) is nonzero and
its highest order term does not vanish. With the help of rifsimp and one of its features
casesplit, Maple splits this case into thousands of subcases. Digging into such big
data, we classify the subcases into two sets, those with finite dimension and those with
infinite dimension. In particular, we show that the finite cases with nontrivial term in
F(¢,1),v) have supersymmetry groups of maximal finite dimension 5. As a result, we
find a non-trivial hidden supersymmetry for such 5-dimensional cases. We verify that it

leaves the defining system of the Euler-Lagrange equations invariant.

5.1 Lagrangian and Euler-Lagrange equations

We study supersymmetries of a higher dimensional version of a popular Lagrangian model

[8] in supersymmetric quantum mechanics

L= %¢2+é(zﬁ¢—$w)—%(é—f)2+w%, (5:2)
where z(t) is real scalar field, ¥(t) is complex Grassmann field and (t) is its complex
conjugate. These fields are functions of space time coordinates t. The model (5.2) is a
super ODE model.

We want to show how to find the symmetry and invariants which will reduce a super
PDE system to a super ODE system. Hence, we generalize the super ODE model (5.2) to a
super PDE model by generalizing this model to two dimensions x; and x5. To improve the

possibility of supersymmetries, we provide the new PDE model with a general potential

F(¢,,1). Our generalization of (5.2) is

1 I - - -
L= S8+ = 60) + F(6.0,0), = 1.d, (5.3)

where we use the Einstein summation convention over repeated indices, and I = y/—1.
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In particular, we focus on the simple case when d = 2 as our main task. Writing this

Lagrangian in detail gives

P 2
L - 2( 1 + ¢x2)
+%(¢1x1?/;2 — ¢2z11/;1 — ¢1x21/;2 — ¢2x21/;1
+zﬁlew1 - w_lmlwz — 152121@1 — ?P_lm%)

+F(¢7 ¢1,¢2,¢717¢72)7 (54)

where x1,x5 are even independent variables, ¢ is an even dependent variables, and
Y, o, 1,109 are odd dependent variables. Note that x; appearing as a subscripts means

partial derivative with respect to z;.

The Euler-Lagrange equations of the given Lagrangian (5.4) are obtained as

Praws = Puran + Fos

(U1),, = (W), +1Fg,,

(W2),, = —(2),, +1Fy, (5.5)
(1), = —(W),, +1Fy,
(¥2)

e = (), +1F,,

by using the multi-variable Euler-Lagrange formula. We have programmed this formula
as a Maple procedure called EL. Maple code is provided in Appendix A.2. We used EL
to generate the Euler-Lagrange equations of (5.4). These equations are put in the solved
form as is (5.5). So the integrability conditions of the Euler-Lagrange system are satisfied
and no hidden supersymmetries missed. In each equation in (5.5), the partial derivative

of x5 is considered to be the leading derivative.
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5.2 Determining equations generated by Maple

In this section, we will demonstrate how to use the MAPLE command DeterminingPDE

to help us get the determining equations of the supersymmetries.

5.2.1 One problem: the conjugates

Before sending the Euler-Lagrange system to MAPLE, we need some clarification while
dealing with ¢; and 1@, where j = 1,2. In fact, ¢; and z/;j are related by conjugation.
So the Lagrangian is not a superanalytic functions since it depends on conjugates. But
supersymmetry is a superanalytic theory. So as is usual in the non-Grassmannian case,
we need to embed all non-superanalytic equations in a superanalytic formulation. We do

this simply by introducing new variables w; to replace 1@, where j =1, 2,

¢1 — W1 and 7752 — Wsy. (56)

We seek superanalytic symmetries as superanalytic transformations of (1, za, ¢, 11, V2, w1, ws).
5.2.2 Maple demonstration
1. Load Physics, DEtools and PDEtools packages.

with(Physics);
with(PDEtools);

with(DEtools);
2. Declare odd variables.

Physics[Setup] (anticommutativeprefix={psi, omega, Lambda, Omega},

mathematicalnontation=true):

Here Lambda and Omega are infinitesimal names corresponding to psi and omega.

Note that once a name, for instance, psi, is declared as an odd variable, the sub-
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scripted quantities such as psi[1] are also considered as odd quantities without

further declaration.

3. Set up the Euler-Lagrangian.

L := -(1/2)*(diff(phi(x[1], x[2]), x[1]1))"2
+(1/2)*(diff (phi(x[1], x[2]), x[2]))"2
+Ix(diff(psi[1] (x[1], x[2]), x[1]))*omegal2] (x[1], x[2])*(1/2)
-Ix(diff (psil[2] (x[1], x[2]), x[1]))*omegall]l (x[1], x[2])*(1/2)
-Ix(diff (psi[1] (x[1], x[2]), x[2]))*omegal2] (x[1], x[2])*(1/2)
-Ix(diff (psi[2] (x[1], x[2]), x[2]))*omegall]l (x[1], x[2])*(1/2)
+I*x(diff (omega[2] (x[1], x[2]), x[11))*psil[1](x[1], x[2])*(1/2)
-Ix(diff (omegal1] (x[1], x[2]1), x[11))*psil[2] (x[1], x[2])*(1/2)
-Ix(diff (omegal2] (x[1], x[2]1), x[2]))*psil[1] (x[1], x[2])*(1/2)
-Ix(diff (omegal1] (x[1], x[2]1), x[2]))*psil[2] (x[1], x[2])*(1/2)
+F(phi(x[1]1, x[2]), psil1](x[1], x[2]), psil[2] (x[1], x[21),
omegal[1] (x[1], x[2]), omegal2] (x[1], x[21));

4. Send L to the Maple procedure EL.

DepVars := [phi, psil[1], psi[2], omegal[l], omegal[2]](x[1], x[2]);
EulerlLag := EL(L, [x[1], x[2]], DepVars);

EL needs three inputs, the given Lagrangian L, the independent variables [x[1], x[2]]

and the dependent variables DepVars.

5. Put the Euler-Lagrange system in solved form and define infinitesimal names. Then

send it to DeterminingPDE the get the determining system.

DetPDE := DeterminingPDE(SolvedFormEL, DepVars, InfNames,

integrabilityconditions=false):
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5.2.3 Determining system
By examining the determining system obtained in last section, we can narrow down the

dependencies of the infinitesimals. In the determining system, we have the following

simple PDEs,

(&) =0,
(&1)y, =0,
(&1)y, =0,
(&), =0,
(&1),, =0

This implies that & does not depend on ¢, ¥, 9, wi,ws. So &1 (x1, Ta, @, Y1, Ve, wi, ws)
can be narrowed down to & (z1,x2). Similarly, we also narrow the dependencies of other

infinitesimals:

52($1, 902),
E(xla T2, (b)a

Al $17x2a¢law2 )

&2(@1, T2, @, Y1, P2, wi, Wo
E(1, 2, 0, Y1, Y2, Wi, wo
A1 (1, 2, 0,91, P2, Wi, Wo ( )
Ao (1, 2, @, Y1, Y2, i, wo Ao (21, 2, o, wi),
QO (21, 22, @, 11, 2, w1, W Qy (21, 29, P9, w1),

( ( )

Oy (21, 2, P, 91,2, Wi, Wo

)
)
)
)
)
)

Ll

2(T1, 2, Y1, w2).

The dependencies above simplify the determining system to 13 super differential equa-

tions,

Ege =0,
2(&1),, — 2(&2),, =
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2(&),, — 2(&),, =0,

2056 1 (§2) 00 — (§2)ap0y = 0,

(€141 00 = (€)app — 251,06 =0,

(2),, — (§1),, +(&2),, — (§1),, =0,

(&2),, + (&), — (&2),, — (&1),, =0,

EgFy + Flop o + Fyy gM — 2F4(82),, + Floy oS0 — Eay oy
+Fy, oMo + Egy po — EF 4 = 0, (5.7)

—1Fy, Ao — 1€, Pl — (Al)gc1 + I(A1)¢1Fw2 + I(Al)w2F¢1
+(A1),, — Iy A1+ TE, 0, + (&), Flu, — 12F,, 4 =0,

Ly S — LFy, 4 Ao + 1(&2),, Py — IEF, 4 + I(Qz)mel — (),
+(Q2),, +1(Q2)y, Fop + 1y, 0, — (&), Fy, =0,

—IEFy6 + (Ch),, — U&),, Fon + 1)y, Foy — 1(&2),, Fu + (C1),,
FIFyy A1+ TFyy 0, 1+ 1Fy, 0, Q0 + I(Ql)w1 Fy, =0,

—I(@)wlel —1Fy, Ao —12F,, o — 1F,, 0, Q2 — I<§2)22Fw1 + I(A2)¢2le
+(A2),, + (A2),, +1(A2), Fy, —1Fy, A1 = 0.

Note that I = v/—1.

5.3 Reduced defining system

MONO expansion has been introduced in Section 4.2. To decompose the calculation

which contains odd variables, we apply MONO expansion to decompose the infinitesimals

and potential F' in the system (5.8) with respect to their odd variable monomials. Three

even infinitesimals &7, & and ¢ do not depend on any odd variables. So they do not need

to be decomposed by MONO expansion. We apply MONO expansion to the remaining

odd infinitesimals A, Ay, 1 and 25 and obtain

Ay (21,29, Y1, w2) = POLy(21,22) + V1waPOLs(24, 22)



+PFE1(x1, xe)ws + PELy (1, 22)1, (5.8)
Ao(x1, 29,01, wa) = PO2i(x1,23) + howi PO25 (21, x2)

+PE2 (1, x9)w; + PE23(x1, 22)1)9, (5.9)
Qi(w1, 29,1, w2) = PO31(21, 2) + thowi PO32 (71, 29)

+PE31 (21, x9)wy + PE33(x1, 22)1)s, (5.10)
Qo(x1, 29,1, w2) = PO41(x1,22) + V1w PO4s (21, x9)

+PE41($1,$2)W2 + PE42($1,.T2)¢1. (511)

Applying the same decomposition to F'(¢, 1,19, wr,ws), we obtain its MONO expan-

sions:

F(¢, 91,02, w1,w2) = PE\(§) + PEy(¢)wiws + PE3(¢)aws + PEy(§)awr
+PE5(d)rws + PEs(9)rwr + PEz ()11
+PEg(¢)1¢owiws
+PO(¢)wz + POsy(¢)wr + PO3(¢)h2 + POs(¢)wrwaihs
+PO5(0)1 + POg(¢)wnwatr + POr7(¢)wathrt)
+POs(@)wr1t1¢s.

Since 11, Y9, w; and we always appear in pairs in F', the following assumption is made:

suppose that

Hence F'(¢, 11,12, w1, ws) has only even components

F(¢,901,09,w1,w2) = PE(¢) + PEy(¢)wiws + PE3(¢)aws + PE4(¢)hawr
+PE5(¢)1ws + PEg(¢)1wi + PE7(¢)Y1),
+PE8(¢)¢1¢2CU1W2. (512)
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Then we substitute the expansions (5.8)-(5.11) and (5.12) back into the simplified deter-
mining system (5.8). Taking all the coefficients of the odd variable monomials forms the
final version of the determining system, that is, the reduced defining system.

In the reduced defining system, the unknowns are
PEll(ZL‘l, .232), PElQ(.CEl, xg), POll(ﬂfl, .172), POlg(l’l, 1‘2),

PE21(1‘1,232),PE22(£E1,332),P021($1,$2),POQQ(ZEl,ZL‘Q),
PE31($1,£L‘2),PE32(1’1,$2),PO31(ZL‘1,ZE2)7PO32(I’1,I’2),
PE41<I1,I2),PE42($1,I2),PO41(I1,[E2),PO4Q(ZE1,I2),

and

§1(z1,2), &a(71, 72), E(71, T2, ).

Next, we are going to use rifsimp and initialdata to help us to get the all the

supersymmetry cases.

5.4 Supersymmetry analysis

In this section, we will give detailed supersymmetry analysis for two extreme cases. One

is when F' = (0. The other one is when F' is non-trivial enough.

5.4.1 Generic case

Recall the Euler-Lagrange equations (5.5) ,

Puzws = Puro T Fy,

(V1)y, = (1), +1Fy,
(V2)y, = —(¥2),, +1Fy,
W), = —(),, +1Fy,,
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(2),, = (¥2),, +1Fy,.

It is easy to see that the Euler-Lagrange system always has two translation symmetries
in x; and x5 for any form of F'. Indeed, there are cases for which there are only these 2
symmetries. This is what we call the generic case. We are interested in looking for other

supersymmetries rather than these two obvious translation symmetries.

5.4.2 Symmetry analysis of F=0 case

When F' = 0, the Euler-Lagrange system is

Pazw = Puyors
Jor = 1)y,
)ey = —(W2),,;

wl)mg = _(w1>m17
)

o = <w2)11 :

The general solution of

¢ = flar—x2) + g(w1 + 22),
U1 = filzr+22),
Y2 = falz1 — 22),
wy = h(x; — z9),

Wy = h($1+x2),

where f, g are arbitray even analytic functions and fi, fs, b1, he are arbitray odd super-

analytic functions. The corresponding determining system is reduced to

Epe =0,
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2(&1),, —2(&),, =0,

2(&2),, —2(&),, =0,

25050+ (€2) 10y — (§2) 2y 0y = 0,
(€100 = (€ ag 0 — 25016 = 0,
(€2),, — (&1),, +(&2),, — (&1),, =0,
(&2),, + (&), — (&2),, — (1), =0,
—EZer,01 t Zxgze = 0,

—(M),, + (A1),
—(),, + (), =0,
(1), + (1),
(A2),, + (A2),, = 0.

=0,

=0,

The symmetry defining system is easily solved to show that the original Euler-Lagrange
equations admits and oo-dimensional supersymmetry group. However this is not inter-
esting since the EL system is trivially solvable. We remark that we found many cases
of nontrivial nonlinear F' admitting nontrivial co-dimensional supersymmetry groups. It

would be interesting to investigate such cases in future research.

5.4.3 Symmetry analysis of one 5-dim case

For the other extreme case, F' is as in (5.12). We also add one constraint on F' to the

determining system

PE{(¢) # 0, (5.13)

where PEg(¢) is the coefficient of the highest order nonlinear term 19w ws in F'. The
reason is that we want to find some non-trivial supersymmetry of the defining system
with nontrivial F. Then we send the reduced defining system and the constraint (5.13)

to rifsimp:
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# FinalDet: the defining system of the input super Euler—Lagrange equations;

# AllInfNames: all infinitesimal functions;

msys?2 := rifsimp([op(FinalDet), diff(PE[8](phi), phi, phi, phi) # 0],
AllInfNames, casesplit):

caseplot(msys2, AlllInfNames):

The Maple output indicates us that there are over 3000 cases. What can we do
about this big data? First of all, we split all the cases into two classes. One class is
the set of all cases with infinite dimensional supersymmetry groups. The other class is
the set of all cases with finite dimensional supersymmetry groups. Out of these, we seek
the ones with maximal dimension since they contain more supersymmetries. We found
that the maximal dimension is 5. We get 32 five dimensional cases with 5 dimensional

supersymmetry groups. In this section, we will pick one of the 32 five dimensional case

and give the supersymmetry results in detail for that case.

Total
3197 cases

( 2946 finite cases ) ( 251 infinite cases )

>

32 5-dim |

>

323 4-dim |

>

1168 3-dim |

>

1423 2-dim |

Figure 5.4.1: Case split

The most interesting cases are the ones with more symmetries and in particular those
with maximal dimensional supersymmetry groups. As is shown in Figure 5.4.1, there are
32 5-dimensional cases. Among them, Case 1124 has been selected and analyzed. Note
that the number of cases can vary if the Maple worksheet os re-executed.

For Case 1124, we get the complete solutions of for the supersymmetry infinitesimals:



1wy, 22)
a1, 72)
E(z1, 22, 0)

Al('rla T2, 1017602)

A2(x1; T2, 1/)2,601)

91@17 T2, @/)z,wl)
Q2(x1; T2, 1/)1,602)

89

(2.04 C2 — 121 + ) (_C1 + _C2))C1 — 1 C2(z, — 22)(_C1 — C2)

201 C2

2C1 C2
I(CL(_C1 + _C2) + C2(.C1 — _C2))(a¢ + b)

aCl C2(c2 + d2)
C1 C2 Cl(c2+d2)zy + C1 C2-C2(c2 + d2)x

! ((
C1 C2(c2 + d2)
+C1 02 _C3(c2+d2) + 1 2 C1(C1+ C2)

—1d2 C2(.C1 — _C2))y),
1

~C1C2(c2 + d2)

+C1 C2 C3(c24d2) —1 _C1 C2(c2+d2) +1 _C2 C2(c2 + d2)

((C1 C2 C1(c2+ d2)z1 + C1 C2 C2(c2 + d2)z,

=21 C1(_.C1+ _C2) =21 C2(.C1 — _C2))1)s),

(C1lzy+ C2 29+ C3)wy,
1
~C1C2(c2 + d2) ((
+C1 C2 C3(c24d2) —1 C1 d2(.C1+ C2) —1C2 d2(.C1 — _C2)

C1 02 C1(c2+ d2)z1 + C1 C2 C2(c2 + d2)x,

—21 C1(_C1 + _C2) — 21 C2(_.C1 — _C2))w»).

Fot this maximal case we explicitly found F' as

F<¢7wlaw27w1;w2) = C3+C4(

ag + by c2+d2+2
)
+d1(ag + b)Phyahs + cl(ag + b)Pwiw,

—C1 wathy — C2 w1y

+WUJ1W2¢11/12-

These solutions were also checked by substituting them back into the determining system.

Consider the supersymmetry vector field

v = &40y, + €204, + 20y + MOy, + MoBy, + D8, + DO, (5.14)
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Since this is a 5-dim case with arbitray constants C'1, (2, ..., _C'5, the coefficients of the

five constants yields the basis of the solution space.
By setting (_.C'1, .C2, _C3,_C4,_C5) equal to
(1,1,0,0,0),

(1,-1,0,0,0),
(0,0,1,0,0),
(0,0,0,1,0),
(0,0,0,0, 1).

in (5.14) yields the basis of supersymmetry operators

I = 0.
Ly = 0.,
Ls = 110y, — Y20y, + w10, — w20,
L = _m(l a(c2 + d2) (1 + 22)0h, + 1 alc2 + d2)(w1 + 22)05,
_21(a + b)d,
—(a O2(c2 + d2)(z1 + x2) + 2 a 2)¢1 0,
+(a C2(c2 + d2)(z1 + x2) — 41 a)P20y,
—a C2(c2 + d2)(x1 + x2)w1 0.,
+(a C2(c2 + d2)(xy + x2) — 21 a d2 — 41 a)w10,,),
L, — _mG a(c2 + d2)(z1 — 12)0s, — T a(c2 + d2)(x1 — 12)0%,
_2l(ad + )2,
—(a CU(e2 + d2)(21 — 22) — 2T a d2)ih1d,
(a CL(e2+d2)(wy — w2) — 4L a — 2L a d2 — 21 a ¢2)¢hsd,,

—a C1(c2 + d2)(x1 — x2)w10,,
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+(a C1(2 + d2)(z1 — x2) — 21 a d2 — 41 a)wq0,,).

This yields the commutator table in Table 5.4.1.

Ly Ly Lj Ly Ls
Ly 0 0 0 Ll g, Iy,
L, 0 0 0 —ffleyp, Litl [,
Ly 0 0 0 0 0
Ly | B2 -1y Bfla— 1y 0 0 0
Ly | Bzt — [y —Ltle 4 p, 0 0 0

Table 5.4.1: Supercommutator table for the super Lie algebra defining system of Case
1124.

5.4.4 Finding supersymmetries for a sub-class of (5.5)

In the previous Section 5.4.3, we analyzed the case with

+ b\ 2+d2+2
F(¢7¢17¢2,w1,w2) = 03+O4(a¢ >

+d1(ag + b)Ph1ahy + cl(ag + b)Pwiw,
—Cl Wle — 02 wle

4
+(a¢+ b)? w1w2¢1w2

In this section, our goal is to find at least one non-trivial supersymmetry for the Fuler-

Lagrange system (5.5) with a sub-class of F' above, which is

F(p, 1,0, wi,wa) = C3+C4 ¢*? 4 dl ¢c¢11/12 +cl ¢wiwy

—OUJQ'QD:[ - Cwubz + w1w2w11/12, (515)

¢2



by making the assumptions

a=1,0=0,2=d2=¢,C1=C02="C.
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(5.16)

The first two assumptions are natural and do not make any essential restriction on F.

The other two assumptions are a normalization of F' in some sense. At the same time,

under the assumptions (5.16), the sub-class of the Euler-Lagrange system (5.5) is changed

to

Pazzs = Puror T Foo

V1), = (), +1F,,

Va),, = —(¥a),, +1F,
)y = —(W1),, + 1 Fy,,
)

= (u&)zl + Ifwl,

(5.17)

and the last two most complicated basis generators of the Lie superalgebra in Table 5.4.1

become

I I
Ly = —5((931 + 22) 0z, + (1 + 72)0s,) + C—C¢a¢

(Il + xQ)(wladil - ¢28¢2 + wlaw - w28w2)
I(c+2)
Cc

I 21
+5dz18¢1 + 0—01/12(%,2 + w28w2,

and

I I
£5 = —6(((131 — 1'2)8901 — (1'1 — .172)81;2) + a¢a¢

(1 — 22)(V10y; — Y20y, + W10, — w20.y)

2I(c + 1)¢23¢ N I(c+2)

I
_5%8% + Cc Cc

W9 &W .



By adding £4 and L5, a new independent basis is formed

Ly+ Ls

21 21 21
—Efflaxl + _51'28352 -+ C—C¢a¢

—|—21}1 (djladn - ¢25¢2 + wlawl - WQawg)

21(0 + 2)
+T(w28¢2 —+ wgﬁwQ).
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Then, we can obtain the one parameter supersymmetry differential equations correspond-

ing to L4 + Ls:

da;
de
d.fg
de

do

e
i
de
i)y
de
dy
de
dwy
de

By solving the above differential equations with their initial conditions, one has

21 R
—51'1, 1’1(0) = T1,

21 R
_5x27 xg(O) = T2,

21 - n
a¢7 ¢(O) - ¢7
24111, @/;1(0) = 1;

Ac+2) .\~ -
(% - 2551)1/12, 12(0) = 1y;
20101, W1(0) = wy;

Ac+2)  \. -
(% — 2x1>w2 2(0) = s.

2l
= e ¢,

2
= e C .TQ,

= ey,

_ eICxl (eT -1 wl,

(5.18)

(5.19)
(5.20)
(5.21)

(5.22)
(5.23)

(5.24)

(5.25)
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We checked that the supersymmetry (5.25) leaves the system (5.18) invariant by showing

that each of the PDE in (5.18) are left invariant.
We give the details of this check for the first two PDE in (5.18).

a) We show that the supersymmetry (5.25) leaves the first equation in the sub-class

of Euler-Lagrange system (5.18) invariant.

b) We show that the supersymmetry (5.25) leaves the second equation in the sub-class

of Euler-Lagrange system (5.18) invariant.

We now do the details for a). If it does so, one should have
ggafg,afg - qgafl,aﬂ + ﬁAa

where

A I n N n NN 8 AT
Fy = CA(2c+2)6%H + d1 ed™ ity + el ed iy — gwlwm%-

The left hand side of (5.26) is

- 2 2Ae 2le 21(2c+1)e
¢f27952 =ecececcQuyg, =€ Cc T2,T2"

The first term of the right hand side of (5.26) is

- 2 2Me 2le 20(2c+1)e
¢f17951 =ecec eCC¢I17$1 =e ce 1,21 "

The second term of the right hand side of (5.26) is

21(2c+1)e

]:-q; = C4(2c+2)e oo ¢t

+d]. Ce%IZ¢C—leICx1 (e © 71)¢le%+1011(176 C )wz

—2Ie —2Ie
21 _ 2I(c+2)e _
cl Cec—z (bcfleIC'ah (e C 1) e ce +ICzq (1 e C

)i,

—2Ie

=21
_oe 8 210z (e ce—l)e%HICm(l—e ¢
3

)w1w2¢1¢2-

(5.26)

(5.27)

(5.28)

(5.29)
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8

21(2c+1)e

= € Ce (04(20 + 2)¢2c+1 + dl C¢C_1¢1¢2 + cl C¢C_1W1W2 — gwlwgwlﬂ)g)
= G, (5.30)

Therefore, (5.28), (5.29) and (5.30) imply

¢x2,x2 = (bﬂcl,m =+ }—¢>7

which means that the supersymmetry (5.25) leaves the first equation in (5.18) invariant!

Then we show that the supersymmetry (5.25) leaves the second equation in the sub-
class of Euler-Lagrange system (5.18) invariant. We use the same strategy as it in a). If

b) holds, then one has

77[;1952 = @5113 + Iﬁ@, (5.31)
where
Fup = —clgy — Chy — gwﬁbﬂﬂz- (5.32)
The left hand side of (5.31) is
—2Ie
&1@ — e%eIC“(e o -1 ¢1x2

2Ie +IC ( ;(2;[6 1
2le z1 (e _
ec ¢1 T2

= Ay, (5.33)

—2Ie
where A is supposed to be e%ﬂcxl(ET_l). The first term of the right hand side of

(5.31) is

—2Ie
iy = (D)
1

= o (IC’(e_ék — 1)6103“(6%16_1) Wy + e (+7¢ 1) ¢1z1>
— e%e-i-ICxl (e%&—l) 10(672‘16 — 1)% + eLcIVE-HC’xl (e%&—l) wlxl

—2Ie

_ e%ﬂ()zl(eT—l) IC(e_éIE _ 1)@01 + A@blml. (5.34)
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The second term of the right hand side of (5.31) is

~ 2l e 10y (e%le—l) 10z (e%le_l)
IFsy, = —lclece™ P°wy — 1Ce ™! (]
ole . . —2Ie
] o e 2100 (e70 fl)ezl(citz)“a“ (1-e7@ )%wﬂpﬂﬁz

4

—A(=T elgko) =T Gl m (8 1) g 1A g

w1?/11¢2)~ (5'35)

By adding (5.34) and (5.35), the right hand side of (5.31) becomes

4

A¢1m1 + A(—I c1¢2w1) + A(—I Cwl) + A(—I¢2

wl'lbll/JQ) = A<w1x1 + Ifw2)~ (536)

Then (5.33) and (5.36) imply that

wlxg = ¢1m1 + Ifquv

which means that the supersymmetry (5.25) leaves the second equation in (5.18) invariant!
Similarly, we can verify that the supersymmetry (5.25) also leaves the remaining three

equations in (5.18) invariant. Hence, one can claim that

Theorem 5.4.1. There exists at least one non-trivial supersymmetry that leaves the

FEuler-Lagrange system (5.18) invariant.

O
Next, we are going to find the invariants. By the separation of hat variables and

non-hat variables for each symmetry in (5.25), one has

i _ o (5.37)

X T2
BEd = i (5.38)
e_IC‘ﬁiﬁl — o 10my, (5.39)
£ 5200, x%ewm%, (5.40)
e 10f 5 = o T10my, (5.41)
£ 52 0R 5 xlcf 1071y, (5.42)




For each relation, suppose that
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(5.43)

(G2
AN
(G2 NN

—~ ~—~ — —~ —~
¢ or ot o ¢
IS =~
~ »
S— N— N— N— S—

ot
N
(0/0)

Therefore, these new variables z,y(z),01(2), d2(z), p1(z) and pa(z) are the invariants we

were looking for. Note that d1(2),d2(2), p1(2) and ps(2) are odd invariants.

Let us show that they can reduce the original super PDE system (5.18) to super ODE

system.

a) Show that the invariants z,y(z), 01(2), d2(2), p1(2) and pa(z) reduce the first super

PDE
Cbxz,xz - ¢x1,x1 + ]:¢

to a super ODE.

(5.49)

Substitute the invariants to the left hand side of the super PDE (5.49). By (5.45), we

have
¢ =z “y(2).
Then we have
by =~y ‘237 (2)

and

_1 _ 1
Gupn = 1“3y (2) + 20, “a3°y(2).

Eliminating xo from (5.56) by the relation x5 = z;27!, we have

2c+1 2c+1
4,1

gy =, © 27Y"(2) 22, © 2°Y(2).

(5.50)

(5.51)

(5.52)

(5.53)
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Then substitute the invariants to the first term of the right hand side of the super PDE
(5.49). We have

1 -1 -1
boy === y(2) o cwr 'y (2) (5.54)
and
1/1 _2e+l 2 -1
brsarr = - (= + D)oy * y(2) = Zay Tyt (2). (5.55)

By the eliminating x5, we have

L) 20 oy 5.56
Grver = < (2 +1)7r  y(x) = o © w(2). (5.56)
The second term of the right hand side
8
]:¢ = 04(20 + 2)0526“ +dl C¢671¢1¢2 +cl C¢671w1w2 - Ewlwﬂﬂl%
—2ctl 2c+1 —Z2etd e—1
= C4(2c+2)x; © y(2)™" +dl cx; © y(z)" 01(2)d2(2)
_2¢ct1 2c+1

el e T () pu(2)palz) — %m(z)pz(z)él(z)csz(z).

(& yg

_2e+1
By the cancelation of the common factor z; © , we finally obtain the super ODE

2
(2 = 2y + (223 + Ez)y'

1/1 8
= <E + 1>y + C4(2¢ + 2)y2ch1 +dl cy“ 16,65 + cl cyc_lppo — Eplpgdlég,
where y, 01, 02, p1 and py are functions of z.

Similarly, the invariants z,y(2), 01(z), d2(2), p1(z) and p2(2) also reduce the other four

super PDE in (5.18)

wl)xg = (¢1)x1 + 1 Fw,,

¢2)x2 = —(¢2)z1 + Ile’
) = _(wl)xl + I'Flﬁza
)

= (w2>x1 + I‘le7
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to super ODEs

41
(2°+2)0; = Teclypr+ ?P15152§

c+ 2 . 41
(2 —2)0, = — . 0 =T el ypp — ?025152;

41
(z2 —2)p) = Tdly° + ?plpgé;

¢+ 2 4l
(22 +2)phy = o2 Idl yo, — ?010252;

5.5 Further discussion

The substitution we made in Section 5.2.1 of introducing two new variables w; and w, to
replace 1); and 1, brings us into a bigger space where 11, 15, w; and ws are treated as four
independent variables. For this bigger space, we have shown that we could find hidden
superanalytic supersymmetry. The resulting invariants of this supersymmetry reduce the
super PDE system to a super ODE system. Future research involves the consequences
for the original variables 1);, 5. Also, in future work, it is interesting to investigate the

infinite dimensional supersymmetry groups for the cases with nontrivial potential F'.
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Chapter 6

Discussion and future work

The main results of this thesis have been presented in Chapter 3, 4 and 5. A summary

and discussion of the main results will be given. Future work will also be discussed.

6.1 Concluding remarks

Symbolic computation research about supersymmetry is a strong and evolving area. Ayari
[19, 20], Hussin [20] and Cheb-Terrab [15] have their own symbolic implementations in
Maple. Wolf and his collaborators [21, 22, 23, 25, 29] have developed powerful algorithms
in REDUCE for computation of polynomials of supersymmetries.

In order to make this thesis self-contained, we first introduced the infinitesimal method
for getting the defining system of a given super differential equation in Chapter 3. This
method is applied to two examples, the second order super ODE (3.8) and the super
KdV equation (3.9). The first example is relatively easy and the second example is more
complicated. We obtain the defining system for each example and work out the Lie super-
algebra structure ( supercommutator table) by heuristic integrals. Part of these works,
such as the structure constants of Lie supersymmetry of super KdV example by integra-
tion has been done by Ayari [19, 20] Hussin [20]. My work focuses on algorithmic aspects
of the reduction of supersymmetry defining system and the algorithmic determination of

the structure of the Lie supersymmetry algebra without heuristic integration.
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Rather than using heuristic integrals, we contribute an alternative method of the
determination of structure constants of Lie supersymmetry of finite dimensional super
differential equations. The new method is inspired by I. Lisle and G. Reid’s methods
for the determination of the structure constants for non-super differential equations.
They developed a symbolic algorithm of the determination of the structure constants by
inducing a commutator on initial data space, where computations can be done algorith-
mically via the existence uniqueness theorem. Our algorithm follows the same approach.
However, there are technical difficulties that occur in the super case which means the

generalization of Lisle and Reid’s algorithm is not trivial.

For the super case, there are complications. Under a certain ranking of the derivatives,
we define regular super differential equations by the parity of the coefficient of the leading
term of the given super differential equation. If the coefficient of the leading term is even,
then it is a regular super differential equation. A regular super differential equation can
be written in solved form with respect to their leading derivative. But an irregular
super differential equation can not be written in solved form with respect to their leading

derivative since the odd coefficient of the leading derivative is not invertible.

Being able to write a system in solved form is crucial for us. The underlying theory
of the Riquier bases ( the differential analog of Grébner bases) depends on inverting
coefficients of leading derivatives and computing integrability conditions. We develop
the MONO expansion algorithm to address the difficulty of irregular super differential
equation systems. MONO expansion decomposes super functions by their odd variable
monomials. Figure (4.2.1) outlines the MONO expansion procedure. Irregular super
differential equation systems are converted into regular super differential equation sys-
tems by the MONO expansion of super functions. Then the coefficients of odd variable
monomials are computed for each differential equation in the resulting system. The new
system is formed and called the reduced defining system. That system is regular and
does not depend on odd variables and more important. In Section 4.3.2, we show that
how MONO expansion algorithm reduces the irregular defining system of the super KdV

equation to a regular defining system.
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Once irregular super differential equations are converted to regular equations, the
existence and uniqueness for the non-super case proved by Rust, Reid and Wittkopf [18]
can be applied. Under the assurance of the existence and uniqueness theorem, we develop
a structure constant determination algorithm by using two copies of initial data of the
parametric derivatives. This method of the determination of structure constants is algo-
rithmic and programmable unlike the previous heuristic method based on integrations.

The third contribution shows that how to use the Maple physics package to help
us to find hidden supersymmetry for a certain class of super Lagrangian models with
an unspecified potential function. Firstly, we investigate the defining system of the
Euler-Lagrange equations of the given super Lagrangian. In order to apply rifsimp and
initialdata to the defining system, we apply MONO expansion to the infinitesimals
and potential function to obtain it in reduced form. Two extreme cases are analyzed
in the thesis. One extreme case is the with zero potential. The conclusion is that it is
solvable and admits an infinitely dimensional supersymmetry group. The other extreme
case is when the potential is nontrivial enough. This is imposed by the constraint that
the third order derivative of the coefficient of the highest order term of the potential is
nonzero. With the Maple option of casesplit, this leads to thousands of cases. The
most interesting cases are the maximal finite-dimensional cases. In this thesis, we give
a detailed analysis for one of the maximal finite-dimensional cases. The conclusions
for this particular case are: the infinitesimals and potential are found explicitly; the
supercommutator table is given. For a subclass of this particular case, at least one
hidden supersymmetry has been found explicitly. We show that it leaves the Euler-
Lagrange system invariant and the Fuler-Lagrange PDE system can be reduced to ODE

system by this supersymmetry using super invariants.

6.2 Future work

This thesis focuses on finite-dimensional Lie supersymmetry algebras of super differ-
ential equations. The algorithm for the determination of structure constants for the

finite-dimensional supersymmetry groups is a good foundation for research about the
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determination of structure of infinite-dimensional supersymmetry groups. In fact, it is
usually impossible to write each the Lie superalgebra generators of infinite dimensional
Lie superalgebra explicitly. However, our algorithm for the determination of structure
constants does not depend on explicitly obtaining the Lie superalgebra generators. Hence,
our algorithm should give a good direction for the determination of structure of infinite-
dimensional supersymmetry groups of super differential equations.

Also, recall Figure 5.4.1 in Section 5.4. There are 251 infinite cases which have not
been investigate. We will continue our work for finding the interesting hidden supersym-

metries for those infinite-dimensional cases.
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Appendix A

Maple coding

Throughout the thesis, Maple is used as a powerful solving tool for generating the defining
system and finding the symmetry properties of super differential equations. This is
especially ture for large systems which are extremely difficult for hand calculations. We

provide some Maple procedures for calculations in Chapter 4 and Chapter 5.

A.1 MONO code

In Section 4.3, we introduce MONO expansion for decomposing a super function by its

odd variable monomials.

Mono := proc(coeffnameE, coeffnameO, coeffindeps, oddvars)
local T, S, MonolListE, MonolListO, j, k, ff;
T := combinat:-cartprod([seq([0,1], i=1..nops(oddvars))]);
S := NULL;
while not(T[finished]) do
S := S, Tlnextvaluel ();
end do;
MonoListE := NULL;
for k from 1 to nops([S]) do
if type(add(S([k][i],i=1..nops(S[1])),odd)=false then
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MonoListE:=MonolListE, product(oddvars([i]~(S[k][i]),
i=1..nops(S[11));
end if;
end do;
userinfo(2, Mono, ‘MonolListE = ¢, MonoListE);
MonoListO := NULL;
for k from 1 to nops([S]) do
if type(add(S[k][i],i=1..nops(S[1])),even)=false then
MonoListQ := MonoListQ,product(oddvars[i] ~(S[k][i]),
i=1..nops(S[11));
end if;
end do;
userinfo(2, Mono, ‘MonoList0 = ¢, MonoList0);
ff := add(coeffnameE[h] (op(coeffindeps))
* [MonoListE] [h], h = 1 .. nops([MonoListE]))
+
add (coeffname0 [h] (op(coeffindeps))
* [MonoListO] [h], h = 1 .. nops([MonoList0]));
return(ff);

end proc:

Glossary:

e Mono: the MONO expansion procedure.

e coeffnameE: even coefficient names in the output expansion.
e coeffname0: odd coefficient names in the output expansion.
e coeffindeps: independences of coeffnameE and coeffnameOl.
e oddvars: the odd variables of the given super function.

e MonoListE: odd variable monomials with even parity.
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e MonoList0: odd variable monomials with odd parity.

e ff: the mono expansion of the given super function.
Code examples:

1. Recall that in section 5.3, we need to do MONO expansion for odd infinitesimals

A1($1,$27¢1,w2),/\2($17$2,1027001),91@1,9527%,001) and 92(1‘17@7%,002) Then
the MONO input is

Lambda[1] (x[1], x[2], psil[1], omegal[2])

= Mono (P01, PE1, [x[1], x[2]], [psil1], omegal[2]1]);
Lambda[2] (x[1], x[2], psi[2], omegal[1])

= Mono (P02, PE2, [x[1], x[2]1], [psil2], omegal1ll);
Omegal[1] (x[1], x[2], psi[2], omegal[1l])

= Mono (P03, PE3, [x[1], x[2]], [psil[2], omegal1ll]);
Omega[2] (x[1], x[2], psil1], omegal[2])

= Mono (P04, PE4, [x[1], x[2]], [psil[1], omegal2]]);

Maple returns us:

Ay (21,9, ¢01,w2) = POLi(21,22) + P1wa POly(21, 72)
+PE1 (21, 72)ws + PELy(21, 22)71,
Ao(w1, 2,9, w1) = PO21(71,72) + aw1 PO2, (71, 72)
+PE2 (1, x9)w; + PE23(x1, 22)1)9,
Qi (w1, 02,99, w1) = PO31(21,72) + 1aw1 PO3y(1, 72)
+PE3 (21, x2)wi + PE3s (1, 22)1s,
Qo(w1, 12,1, w2) = PO41 (71, 72) + P1wa PO4y (71, 72)

+PE41($1,$2)M2 + PE42(.Z’1,$2)¢1.

2. Also in Section 5.3, the MONO expansion for the protential F(¢, 11, ¥, wq,ws) is
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F(phi, psil1], psi[2], omegal[l], omegal[2])

= Mono(PE, PO, [phi],

The Maple output is

[psil1], psil[2], omegall], omegal[2]]);

F(p,01,¢0,wi,w2) = PE(¢) + PEy(¢)wiws + PE3(¢)haws + PEy(¢)hown

+PE5(¢)rws + PEg(¢)1wr + PE7(9)11)
+PE3(¢)¢11awiwy

+PO1(¢)wz + PO2(¢)wr + PO3(9)¢2 + POs(d)wiwat)
+PO5(¢)¢1 + POgs(¢)wiwathr + PO7(¢)wath1tbe
+POs(¢)with1s.

A.2 Euler-Lagrange code

To generate the Eular-Lagrange equation for a give Lagrangian automatically, we have

written the Maple procedure EL

EL := proc(Lag, t::list, U::list)
local ELegns, Ut, JU, JUt, JLag;
lprint(‘Indep vars = ‘, t, ‘Dep vars = ¢, U);
JU := ToJet(U, U);

lprint(‘Jet form dep vars =JU=‘, JU);

Ut

JLag:

[seq(diff(U[j]1,t), j =1 .. nops(U) )];
ToJet(Lag, U);

lprint(‘JLag=‘, JLag);

Elegns:=

for j from 1 to nops(U) do

:= ELeqns,diff (JLag,JU[j]) -

ToJet (add(diff (FromJet (diff (JLag, (JU[j1) [t[k]11),U),t[k]),
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k =1 .. nops(t)),U);
end do;
return [ELeqns];

end proc;

Glossary:

EL: the name of the Euler-Lagrange equation procedure.

Lag: the given Lagrangian.

e t::1list: the list of independent variables in Lag.

U::list: the list of dependent variables in Lag.

JU: the jet notation of U.

Ut: the derivatives of U.

JLag: the jet notation of Lag.

ELeqgns: the output Euler-Lagrange equations.

Code example: the input super Lagrangian is

ol
+%(7/J1x1152 — 1/12‘%1151 — %m@ — wzfm&l + 752;,;1% — 751;,311?2 — ?/;2;321?1 — 7/;13621?2)
+F (¢, 11,2, U1, o).

Define the set of dependent variables first:

DepVar := [phi, psil[1], psil[2], omegal[1], omega[2]](x[1], x[2]);
Then send L to EL:

EularlLag := EL(L, [x[1], x[2]), DepVar);

Maple returns us



EulerLag := [diff(F(phi, psi[1], psi[2], omegall], omega[2]), phi)
+phi[x[1], x[1]]-phi[x[2], x[2]],

-I*omegal[2] [x[1]]+I*omega[2] [x[2]]

+diff (F(phi, psil[1], psi[2], omega[1l], omega[2]), psil[1]),
Ixomegal[1] [x[1]]+I*omegal1] [x[2]]

+diff (F(phi, psil[1], psil[2], omegal[1], omegal2]), psi[2]),
Ixpsi[2] [x[1]1]1+I*psi[2] [x[2]]

+diff (F(phi, psil[1], psi[2], omega[l], omega[2]), omegalll),
-Ixpsi[1] [x[1]1]1+I*psi[1] [x[2]]

+diff (F(phi, psil[1], psi[2], omegal[l], omegal[2]), omegal2])],

which is Euler-Lagrange equation system (5.5) in Section 5.1

112



Vita

Curriculum Vita

Name: Xuan Liu
Place of birth: Harbin, China
Year of birth: 1982

Post-secondary education and degrees:

The University of Western Ontario, London, Ontario, Canada
Ph.D. of Applied Mathematics (Symbolic Computation), 2009-Present.

Harbin Normal University, Harbin, China
M.Sc. of Pure Mathematics (Lie Algebra), 2005-2008.

Harbin Normal University, Harbin, China
B.Sc. of Information and Computing Science, 2001-2005.

Honors and awards:

Graduate Student Teaching Award,
awarded by Faculty of Science, UWO, May 2011

Related work experience:

113



114

Research Assistant (G.R.A), 2009-2015
The University of Western Ontario
Supervisor: Dr. Greg Reid

Research area: Symbolic Computation

Developed new algorithms for super differential equations by Lie supersymmetry
methods.

Instructor 2015.01-2015.04
The University of Western Ontario
Teaching first year Calculus, Calculus 1000B

Teaching Assistant (G.T.A), 2009-2013

The University of Western Ontario

Various first year and second year Calculus, first year Linear Algebra
Successfully ran lab tutorials for introducing mathematical software Maple
to engineer students in 2011.

Publications:

Wei Bai, Wende Liu, Xuan Liu, Hayk Melikyan,
Maximal Subalgebras for Lie Superalgebras of Cartan Type,
Journal of Applied Algebra, 2014.

Presentations:

“Algorithms for Finding the Lie Superalgebra Structure of Regular Super Differential
Equations.” (Updated), CMS Summer Meeting, Winnipeg, June 6 - 9, 2014.

“Algorithms for Finding the Lie Superalgebra Structure of Regular Super Differential
Equations.” International Conference, Symmetry Methods, Applications, and Related
Fields, PIMS, Vancouver, May 13 - 16, 2014.

“Applying Lie Symmetry to DEs.” 15th International Conference, Application of Com-
puter Algebra, ACA 2009, Montreal, June 25-28, 2009.



	Determination of Lie superalgebras of supersymmetries of super differential equations
	Recommended Citation

	tmp.1432137203.pdf.8VwN5

