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ABSTRACT 

Plant viruses have small and compact genomes whose coding capacity is not sufficient to 

fulfil the viral life cycle. Thus, they are largely dependent on the host by recruiting many 

host components such as proteins and membranes. Many efforts have been made towards 

understanding the role of host factors and recent progress has led to the identification and 

characterization of a number of important host factors recruited for plant virus replication. 

DEAD-box RNA helicases (RHs) have been shown to play multiple roles in RNA 

metabolism, including remodeling RNA structures and promoting RNA-protein 

association/dissociation. During viral replication, RHs are implicated in several key steps 

of the infection process, such as viral genome translation, unwinding double-stranded 

RNA intermediates, and maintaining viral gene integrity by suppression of viral RNA 

recombination. Here, we used Turnip mosaic virus (TuMV), a member of potyviruses, as 

a model virus to explore RHs' role in viral infection. Firstly, we screened Arabidopsis T-

DNA insertion mutants corresponding to RHs and identified three Arabidopsis DEAD-

box RNA helicases (AtRHs) that are associated with TuMV infection. We further 

characterized an Arabidopsis DEAD-box RNA helicase, PRH75, which is required for 

TuMV infection as downregulation of PRH75 in Arabidopsis impedes the viral infection. 

We also found that PRH75 interacts with several viral proteins including TuMV helicase 

CI, RNA-dependent RNA polymerase (RdRP) NIb and viral genome-linked protein VPg. 

In TuMV-infected cells, PRH75 colocalizes with the 6K2-induced viral replication 

complex (VRC) and viral dsRNA. The recruitment of PRH75 to the VRC is possibly 

through its interactions with viral replicase components CI, NIb and VPg. As an RNA 

helicase, PRH75 may assist in unwinding viral RNA duplexes during TuMV replication. 

Moreover, the work here also presents evidence demonstrating that the nuclear transport 

of TuMV viral proteins is mediated by Arabidopsis importin α. Taken together, these data 

suggest that PRH75 is an essential host factor required for TuMV infection. 

Keywords: plant viruses, potyviruses, Turnip mosaic virus (TuMV), viral replication and 

translation, viral replication complex (VRC), recessive resistance, host factor(s), 

Arabidopsis DEAD-box RNA helicase (AtRH), nuclear transport, Arabidopsis importin α. 
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Chapter 1: Introduction 

 An overview of plant viruses  1.1

In the late 19th Century, a tiny infectious agent was found to cause a mosaic disease on 

tobacco plants, which was proven to be irrelevant to bacteria. Unlike bacteria, the 

infectious agent was in fact filterable. Subsequently, the term “virus”, the Latin word 

meaning “slimy liquid” or “poison” was coined to indicate the non-bacterial nature of 

this plant disease and Tobacco mosaic virus (TMV) was shown to be the culprit of the 

tobacco mosaic disease (Beijerinck, 1898). From then on, the concept of a virus as a 

distinct infectious entity has been established, and a lot of plant diseases that have caused 

substantial economic losses in the agriculture community have been found to be 

associated with viruses. Along with the breakthroughs of new biotechnology, numerous 

viral pathogens have been identified. 

In essence, viruses can be regarded as the ultimate and prototypical paradigm of "selfish 

genes". Like all cellular life forms, viruses carry genetic information constructed by 

either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) in a single-stranded or 

double-stranded form (Astier et al., 2001). However, the genetic code carried by viruses, 

which must be decoded by the molecular machinery of the host cell that it infects 

(Wagner et al., 1999), is directed towards only for virus own replication. Besides the 

genetic materials, all viruses have coat proteins (CPs) that function as a shell to protect 

the viral genome from degradation, and some are wrapped by an outer membrane envelop 

that surrounds them during their time outside a cell. The coordinated interactions between 

CPs and viral nucleic acid are essential to regulate virion assembly and disassembly 

(Callaway et al., 2001).  

All viruses are obligate parasites since they can be maintained only inside living cells. 

Most of RNA viruses have a small genome ranging from 4 to 15 kilobases (kb) in length 

and have a very limited coding capacity, encoding a set of proteins that vary from 3 to 

10-15 of the upper limit (Matthews and Hull, 2002). Therefore, viruses have to largely 

depend upon their hosts to complete almost all major steps of their infection process 

(Whitham and Wang, 2004).  
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As for a plant virus, a successful infection begins with the efficient penetration of the 

viral particle into plant cells such as epidermal or mesophyll cells. Then, the viral particle 

undergoes disassembly for translation and replication in the initially infected cell. 

Subsequently, the newly assembled viral particle traffics into the adjacent healthy cells 

via plasmodesmata (PD). Finally, the virus enters the vascular tissue to reach remote sites, 

thus infecting the whole plant (Schoelz et al., 2011) (Figure 1).  

Viruses replicate, evolve and are adapted to the host cells they infect. Viruses are known 

to be able to infect all types of living organisms including eukaryotes (vertebrates, 

invertebrates, plants and fungi) and prokaryotes (bacteria and archaea) (Carter and 

Saunders, 2007). This could be attributed to the fact that viruses themselves are 

extremely adaptable, using different replication strategies and are highly mutable to 

generate genetic variation through mutation and recombination in response to various 

environmental pressures. 

In an infected cell, viruses can cause extensive remodeling of the intracellular 

environment in favor of the replication process (Laliberté and Sanfaçon, 2010). For 

instance, some plant viruses induce the proliferation of endoplasmic reticulum (ER) 

membranes for the formation of membranous vesicles to facilitate the assembly of viral 

replication complexes (Salonen et al., 2005), whereas others may reshape cellular 

organelles such as chloroplasts, mitochondria, or peroxisomes (Wei et al., 2010). 

Plant pathogenic viruses often rely on insect, nematode and/or fungal vectors to gain 

entry into host plants, move from plant to plant and move over distant regions (Thresh, 

2006). In addition, viruses can also be transmitted by human activities such as 

propagation of infected vegetative materials, grafting of infected materials, as well as 

through pollen and seed produced by the infected plants (Andret-Link and Fuchs, 2005).  

As one of the main threats to agricultural production, viruses cause many important plant 

diseases, and are responsible for losses in crop yield and quality all over the world. 

Therefore, a great deal of effort is needed to develop a better comprehension of plant 

virology and the interplay between plants and viruses, in order to develop more potent 

strategies against virus infection. 



3 

 

 

 

 
 

Figure 1  Schematic depiction of potyvirus infection cycle. 

After viral entry into the cell, the virion is disassembled and viral positive-sense RNA 

((+)RNA) is released into the cytoplasm for translation. Newly translated viral proteins 

such as RNA-dependent RNA polymerase (RdRp) and helicase direct the assembly of 

viral replication complex (VRC) and recruit the viral RNA to the VRC for replication. 

Viral negative-sense RNA ((-)RNA) is synthesized and serves as template for 

amplification of viral (+)RNA progeny. The new viral (+)RNA is released from the VRC 

and starts a new cycle of translation and replication or is encapsidated into new progeny 

virions and transport to the adjacent cells. Modified from (Nagy and Pogany, 2011). 
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 Replication of positive-sense RNA viruses 1.1.1

The majority of known plant viruses have positive-sense RNA genomes and most viral 

RNA genomes are made of single-stranded RNA (van Regenmortel et al., 2000). Upon 

entry into the host cell, the viral positive-sense RNA readily serves as a messenger RNA 

(mRNA) to direct biosynthesis of viral proteins for viral genome replication (Khan and 

Dijkstra, 2006). This type of viruses includes many important human and animal viruses, 

such as Hepatitis C virus (HCV), West Nile virus (WNV), Dengue virus (DENV) and 

severe acute respiratory syndrome coronavirus (SARS CoV) (Nagy and Pogany, 2011). 

For plant viruses, the vast majority characterized to date are positive-sense RNA viruses 

as well, and only the viruses classified into the Caulimoviridae, Geminiviridae and 

Nanoviridae families store their genetic information in DNA genomes (Astier et al., 

2001).  

Viral genome replication generally refers to the cellular process by which viral genomic 

nucleic acid is multiplicated. As for a positive-sense RNA virus, the first step of viral 

genome replication is to synthesize the viral proteins required for viral replication. These 

viral proteins include viral RdRp, helicase and other essential viral replicase components, 

and are mainly involved in membrane targeting, template recruitment and amplification 

as well as RNA capping (Novak and Kirkegaard, 1994; Ivanov and Mäkinen, 2012). 

However, since viruses do not encode translation factors or ribosomes, they have to 

hijack the host translational machinery to complete protein synthesis and genome 

replication (Patarroyo et al., 2012). 

Assembly of the viral replication complex (VRC) is a prerequisite for viral genome 

replication, and provides an environment in which viral RNA can be synthesized and 

sheltered from the cytoplasmic environment of the cell to avoid antiviral RNA silencing 

(Laliberté and Sanfaçon, 2010). A growing body of evidence suggests that for all 

positive-sense RNA viruses, viral genome replication occurs on different types of 

intracellular membranes (Belov et al., 2007). Hence, VRCs that contain both viral and 

host components are anchored in a virus-induced membrane compartment. In plants, 

VRCs have been found to target different subcellular organelles, varying considerably 
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among viruses, such as the ER, chloroplast, vacuole, peroxisome, Golgi and mitochondria 

(Salonen et al., 2005). In addition, specific cellular membranes can also be modified by 

different viruses to facilitate their RNA replication. The requirement for membrane 

rearrangements and modifications during viral genome replication indicates that the host 

membranes are essential and functional components of VRCs. Moreover, many viruses 

encode integral membrane proteins that associate with particular intracellular membranes 

and act as anchors for the formation of VRCs (Sanfaçon, 2012). In addition, these 

integral membrane proteins may play a vital role in recruiting other viral proteins and 

host components into VRCs. 

Within VRCs, viral RdRp and helicase are the two most critical components. These two 

proteins are associated with other viral proteins as well as host cellular factors for viral 

genome replication. As noted, all the positive-sense RNA viruses encode viral 

polymerase proteins, which are responsible for catalyzing synthesis of progeny viral 

RNA genomes from the parental viral RNA genome. A complementary negative-sense 

RNA is synthesized by the viral RdRp using the positive-sense RNA as a template. As for 

viral helicase, it functions as a necessary component to help unwind local double-

stranded RNA regions during replication. With its assistance, the newly generated 

negative-sense RNA serves as a template for the synthesis of the progeny positive-sense 

RNA. It is worth mentioning that not all RNA viruses have a helicase function, as only 

those with genomes that exceed 6 kb contain genes encoding helicases (Gorbalenya and 

Koonin, 1993). The progeny positive-sense RNA is synthesized 10 to 100 fold faster than 

the negative-sense RNA, indicating that viruses have evolved sophisticated mechanisms 

for temporal and spatial control of RdRp during negative-sense and positive-sense RNA 

synthesis (Sanfaçon, 2005).  

Importantly, the fact that viral genomes of positive-sense RNA viruses serve both as the 

mRNA for translation and the template for replication raises the possibility that the 

replication process is tightly coupled to translation. Ribosomes travel from 5' to the 3' end 

of the viral RNA during protein translation while viral RdRp travels from the 3' to the 5' 

end of the viral RNA for replication (Ahlquist et al., 2003). As a consequence, successful 
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viral infection depends on the precise execution of regulatory mechanisms to control the 

switch from the translation mode to the replication mode (Sanfaçon, 2005) .  

 Picorna-like plant viruses, Potyviridae 1.1.2

Potyviruses represent the largest group of known plant viruses. They are members of the 

genus Potyvirus in the family Potyviridae. The family contains seven additional genera: 

Brambyvirus, Bymovirus, Ipomovirus, Macluravirus, Poacevirus, Rymovirus, and 

Tritimovirus. Among 176 species in the family, 146 species belong to the Potyvirus 

genus (Fauquet et al., 2005; King et al., 2012). Viruses of the family Potyviridae share 

similarities in genome organization and replication strategies with members of the family 

Picornaviridae of human/animal viruses. Therefore, together with plant bipartite como- 

and nepoviruses in the sub-family Comovirinae, viruses in the family Potyviridae and 

picornaviruses are classified into the Picornavirales (Goldbach, 1987). 

Many of potyviruses are economically important pathogens of agricultural crops. They 

have a broad geographical distribution and can infect a wide range of hosts including 

mono- and dicotyledonous plant species and lead to significant losses in crop yield and 

economy worldwide each year. For example, as the most devastating viral pathogen of 

stone fruit crops, Plum pox virus (PPV) can infect a variety of fruit species including 

peaches, apricots, plums, cherries and almonds, leading to a dramatic reduction of fruit 

yields (Sochor et al., 2012; García et al., 2014). Potato virus Y (PVY), as the type species 

of Potyvirus, is a destructive virus that can cause significant damage to potato, tobacco 

and pepper production. Together with Potato virus A (PVA; genus Potyvirus) and Potato 

leaf roll virus (PLRV; genus Polerovirus), they are three major plant viruses that can 

pose the biggest threat to potato production worldwide. Due to their high biological and 

economic importance, PPV and PVY are considered among the top 10 most important 

plant viruses (Scholthof et al., 2011). 

Most of potyviruses are spread in a non-persistent manner by aphids or via grafting and 

wounding during agricultural practices and some are also seed-transmitted. Potyviruses 

produce non-enveloped, flexuous filamentous particles, about 680-900 nm in length and 

11-13 nm in diameter. Each encapsidated genome contains a positive-sense single-
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stranded RNA of approximately 10,000 nucleotides (Gibbs and Ohshima, 2010). Due to 

their diverse transmission modes and wide host range, it is very difficult to control and 

prevent potyvirus infection in agriculture (Gibbs et al., 2008). 

 Genome organization of potyviruses 1.1.3

The potyviral genome is a positive-sense, single-stranded RNA with a virus-encoded 

protein VPg covalently linked to the 5' end, and a polyadenylated [poly(A)] tail at its 3' 

end. The viral genome contains a single open reading frame (ORF) that is translated into 

a long polyprotein of about 350 kDa. This large polyprotein is ultimately cleaved by three 

different virus-encoded proteases into at least ten multifunctional proteins (from N- to C- 

terminus): P1, helper component protease (HC-Pro), P3, 6K1, cylindrical inclusion (CI) 

protein, 6K2, viral genome-linked protein (VPg), nuclear inclusion a (NIa), nuclear 

inclusion b (NIb), and capsid protein (CP) (Urcuqui-Inchima et al., 2001). In addition to 

the large polyprotein, there is a small ORF called “pretty interesting Potyviridae ORF” 

(PIPO) embedded in the P3 cistron (Chung et al., 2008). PIPO results from a ribosomal 

frameshift during translation and is produced as a translational fusion with the N-

terminus of P3 coding region. The resulting fusion protein is about ~25 kDa, termed 

P3N-PIPO (Wei et al., 2010; Vijayapalani et al., 2012) (Figure 2).  

Unlike many other plant viruses, the Potyviridae family do not regulate expression of 

specific viral genes quantitatively and temporally through synthesis of subgenomic RNAs 

(Sztuba-Solińska et al., 2011). As the result of translational frameshift at P3, three viral 

proteins P1, HC-Pro and P3N-PIPO are theoretically produced more than other eight viral 

proteins, dependent on the frameshift efficiency. However, viral proteins within each of 

these two groups are translated in an equimolar ratio. It is therefore important for 

potyviruses to employ different strategies to dynamically regulate viral protein expression 

during their infection cycle (Ivanov et al., 2014).  

 Functions of potyviral proteins 1.1.4

P1, which is the first protein that is translated, is the most variable potyviral protein. It is 

located at the beginning of the viral genome of potyviruses, as a serine protease which is  
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Figure 2   Potyviral genome organization and polyprotein processing strategy. 

(A) Genome organization of the genus Potyvirus. The genome of potyvirus is the 

(+)ssRNA molecule covalently linked to VPg at the 5' end and poly(A) at the 3' end. The 

VPg is shown in cycle. The poly(A) tail is shown in [A]n. The viral open reading frame is 

depicted as a large box in which individual viral proteins are delineated by vertical lines. 

5' and 3' untranslated regions are indicated as two short horizontal lines, respectively. 

Modified from (Ivanov et al., 2014). 

(B) Schematic representation of potyviral polyprotein processing strategy. The potyviral 

genome is translated into a single polyprotein which is then processed by three virus-

encoded proteases into individual mature proteins. Proteolytic sites are marked with 

arrows. P1 protease is responsible for P1/HC-Pro cleavage site. HC-Pro protease is 

responsible for HC-Pro/P3 cleavage site. NIa-Pro protease is responsible for all other 

cleavage sites. PIPO derived from a frameshift in the P3 cistron is indicated as a short 

grey bar. PIPO fused with the N-terminal portion of P3, termed P3N-PIPO is indicated as 

a red bar. Modified from (Wei et al., 2010). 
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responsible for cis-cleavage of the polyprotein between P1 and HC-Pro (Rohožková and 

Navrátil, 2011). Although it has been well known that the cleavage is carried out by a 

serine protease domain within the C-terminus of P1, no other conserved functional 

domains in P1 have been discovered so far. This is likely due to the fact that P1 is the 

most divergent potyviral protein in terms of both length and amino acid sequence 

(Verchot et al., 1991). Swapping experiments between P1 proteins from PPV and 

Tobacco vein mottling virus (TVMV) suggest that P1 may play a critical role in host 

compatibility and pathogenicity (Salvador et al., 2008). Recently, it has been shown that 

an amino-acid substitution in the P1 cistron could overcome eIF4E-mediated recessive 

resistance against Clover yellow vein virus (ClYVV) in pea (Nakahara et al., 2010). In 

addition, although it has long been known that P1 cleavage is required for viral infectivity, 

the functions of P1 during the virus life cycle remained largely unknown. Over the last 

decade, accumulated evidence suggests that P1 might be able to play a vital role in 

effectively counteracting the antiviral defense mediated by RNA silencing. This notion 

was subsequently strengthened by the findings obtained in Cucumber vein yellowing 

virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the 

Potyviridae family. Unlike the viruses from the genus Potyvirus, CVYV does not contain 

a sequence coding for HC-Pro in its genome, but has two P1 copies organized in tandem. 

It was revealed that P1 can enhance the activity of HC-Pro in members of the genus 

Potyvirus, and, moreover, the second copy (P1b) in CVYV is able to suppress RNA 

silencing in a manner similar to that of HC-Pro from the genus Potyvirus, suggesting that 

P1b is replacing HC-Pro in this function (Valli et al., 2006). From an evolutional angle, 

this finding may suggest that viruses have evolved to counteract RNA silencing by 

similar mechanisms using very different proteins within the Potyviridae family.  

Potyviral HC-Pro is a multifunctional protein that is directly involved in diverse aspects 

of the potyvirus infection process. It is initially known to act as the helper component for 

aphid-mediated plant-to-plant transmission (Govier and Kassanis, 1974). In addition, HC-

Pro has a cysteine protease activity that autocatalytically cleaves at its own C-terminus, 

between HC-Pro and P3. Notably, HC-Pro functions as an RNA-silencing suppressor of 

host antiviral defense mechanism by specifically binding viral 21-nucleotides (nt) small 

RNAs (Shiboleth et al., 2007; Hasiów-Jaroszewska et al., 2014).  
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P3, the third protein, is similar to the P1 in its variability among different potyviruses. 

The roles of P3 involved in symptom development and as a pathogenicity determinant are 

supported by independent studies from several laboratories (Sáenz et al., 2000; Jenner et 

al., 2003; Suehiro et al., 2004; Chowda-Reddy et al., 2011; Wen et al., 2011). Recently, a 

yeast two-hybrid (Y2H) study has provided the evidence that potyviral P3 interacts with 

the subunit of host ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) protein 

and the interaction may contribute to the potyvirus symptom development (Lin et al., 

2011). In addition, subcellular localization studies of Tobacco etch virus (TEV) P3 have 

revealed that P3 localizes to the ER membrane and forms punctate inclusions associated 

with the Golgi apparatus. Moreover, the P3 punctate structure could traffic along the 

actin filaments and colocalize with the replication vesicles, suggesting that the function 

of P3 may be related to viral replication as well (Cui et al., 2010). 

Recent research on P3N-PIPO has indicated that it is essential for potyviral cell-to-cell 

movement (Wei et al., 2010; Wen and Hajimorad, 2010). This capability was attributed 

to the role of P3N-PIPO that modulates targeting of CI to form the conical structure at PD. 

Using a Y2H screen, a host plasma membrane associated cation-binding protein (PCaP1) 

was found to interact with P3N-PIPO. Knockout of PCaP1 in Arabidopsis could confer 

enhanced resistance against Turnip mosaic virus (TuMV) (Vijayapalani et al., 2012), 

suggesting PCaP1 may affect viral intercellular transport through regulation of P3N-PIPO 

function. 

6K1 is a short polypeptide whose function is poorly understood. The analysis of Pea 

seed-borne mosaic virus (PSbMV) 6K1 has suggested that the P3-6k1 region may 

function as a host-specific pathogenicity determinant (Johansen et al., 2001). Recent 

study of one isolate of Soybean mosaic virus (SMV) has provided evidence that 6K1 

protein is likely to play a role in the cell-to-cell movement during potyvirus infection 

(Hong et al., 2007). 

CI is a versatile protein that forms pinwheel-shaped cylindrical cytoplasmic inclusions in 

infected cells. CI processes NTPase and RNA helicase activities, which are involved in 

unfolding of structured RNA duplexes during viral genome replication. Potyviral CI may 
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also contribute to symptom determination and elicitation of dominant resistance 

responses (Zhang et al.; Seo et al., 2009). Additionally, interactions between CI protein 

and host proteins originating from the ER and chloroplast have been pointed out, 

suggesting the presence of CI in virus-induced vesicles (Jiménez et al., 2006). The role of 

CI in potyvirus cell-to-cell movement through PD has been demonstrated by analyzing 

TEV CI-mutants (Carrington et al., 1998). Intriguingly, CI protein that expressed 

transiently in TuMV-infected cells is further targeted to PD, accumulating as spike-like 

structures in proximity to the viral vesicles, in addition to structures penetrating the cell 

wall (Wei et al., 2010). The targeting of CI to PD is mediated by P3N-PIPO (Wei et al., 

2010). Taken together, CI protein acts as an RNA helicase involved in viral genome 

replication inside viral vesicles, and also exhibits different functions, such as facilitating 

virus transport to adjacent cells (Sorel et al., 2014). 

6K2, the second 6 kDa polypeptide, is a putative membrane-anchor protein that plays a 

critical role in anchoring the potyviral VRCs to intracellular membrane structures through 

its highly hydrophobic domain (Restrepo-Hartwig and Carrington, 1992). 6K2 is also 

responsible for membrane modifications and rearrangements of the early secretory 

pathway in infected cells. It can induce the formation of viral vesicles from ER 

membranes in the host cell, leading to the formation of the VRCs that contain all 

components required for viral genome replication (Schaad et al., 1997). Recently, 6K2 

was also found to be involved in intracellular movement of viral vesicles along actin 

microfilaments (Grangeon et al., 2013). In addition, a variety of intermediate polyprotein 

precursors containing the domain for the 6K2 protein, including CI-6K2 and 6K2-NIa, 

have been identified in infected cells through an alternative cleavage of the large viral 

polyprotein.  

Potyviral NIa localizes to the nucleus where nuclear inclusions are induced. NIa is 

processed to yield two viral proteins, VPg and NIa-Pro by its C-terminal protease domain. 

NIa has recently been observed to interact with fibrillain in the nucleus and this 

interaction may play a role in suppression of antiviral gene silencing (Rajamäki and 

Valkonen, 2009). 
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VPg is a virus-encoded protein that is covalently linked to the 5' end of viral genome and 

serves as a protein primer for viral genome replication and a functional equivalent to the 

eukaryotic mRNA cap structure for protection of the viral RNA genome and translational 

initiation (Wittmann et al., 1997). Accordingly, VPg is a versatile protein that controls 

many processes leading to viral proliferation. Various precursor forms of VPg have been 

detected in infected cells resulting from the cleavage of polyprotein and maturation of 

viral proteins. For example, VPg-Pro (NIa) is detected in the cytoplasm and nucleus of 

infected cells (Léonard et al., 2004). 6K2-VPg-Pro is found to be associated with 

intracellular membranes and within vesicular structures derived from the ER (Jiang and 

Laliberté, 2011). VPg is suggested to be a hub protein, interacting with host proteins as 

well as viral proteins during the potyvirus life cycle (Jiang and Laliberté, 2011). VPg can 

bind eukaryotic translation initiation factor 4E (eIF4E) and its isoform eIF(iso)4E 

(Wittmann et al., 1997; Leonard et al., 2000). Knockout of eIF(iso)4E can lead to 

resistance to potyvirus in Arabidopsis (Lellis et al., 2002). Other host factors interacting 

with VPg include a cysteine-rich protein termed potyvirus VPg-interacting protein (PVIP) 

(Dunoyer et al., 2004), AtRH8, an Arabidopsis DEAD-box RNA helicase-like protein 

(Huang et al., 2010), eukaryotic elongation factor eEF1A (Thivierge et al., 2008) and 

poly(A)-binding proteins (PABP) (Dufresne et al., 2008).   

NIa-Pro is located at the C-terminal region of the NIa protein and is responsible for 

cleavage of at least six cleavage sites in the potyviral polyprotein. As a cysteine protease, 

NIa-Pro shares structural similarity with cellular serine protease (Adams et al., 2005). 

The nuclear distribution of NIa-Pro is manifested as a formation of inclusion bodies and 

observed in the late stage of viral infection (Schaad et al., 1996). Since NIa-Pro has non-

substrate-specific DNase activity, it is likely that NIa-Pro may play a role in degradation 

of the host DNA (Anindya and Savithri, 2004). The ability of interacting with viral RdRp 

(NIb) and non-specific binding of RNA suggests that NIa-Pro is involved in the viral 

genome replication process (Li et al., 1997; Guo et al., 2001). A recent study has shown 

that overexpression of NIa-Pro can attract aphid vectors and increase their reproduction 

in order to promote virus transmission (Casteel et al., 2014). 
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Potyviral NIb acts as a viral RdRp and interacts with VPg and NIa-Pro. During viral 

infection, NIb functions in combination with other viral and host factors to catalyze 

synthesis of new viral progeny genomes (Hong and Hunt, 1996). It has been shown that 

the interaction of NIb with 6K2-VPg-Pro is required for the recruitment of NIb into the 

virus-induced membrane-bound vesicles that house VRC (Li et al., 1997). Additionally, 

uridylylation of VPg protein by NIb plays a pivotal role in regulation of viral RNA 

synthesis (Puustinen and Mäkinen, 2004). More recently, SUMOylation of NIb by 

Arabidopsis SCE1 has been demonstrated to be essential for viral infection. It has also 

been proposed that the SUMOylation may directly regulate the function(s) of NIb 

involved in viral replication. Considering that NIb from not only TuMV but also TEV 

and SMV can interact with SCE1, the SUMOylation of NIb within the host cell is most 

likely conserved in the potyvirus replication process (Xiong and Wang, 2013).  

Potyviral CP forms the capsid that mainly functions to encapsidate the potyviral RNA. 

The functions of CP have been related to viral translation, replication and transmission 

(Dolja et al., 1994). Moreover, accumulating evidence indicates that CP can bind HC-Pro, 

and the interaction is essential for efficient virus transmission mediated by aphid (Blanc 

et al., 1997). In addition, based on the similarity of CPs among different potyviruses, the 

amino acid sequence of CP has been used for determination of relationship within 

potyviruses. CP has also been suggested to participate in potyvirus intercellular 

movement, together with HC-Pro, CI and P3N-PIPO (Lucas, 2006; Hofius et al., 2007; 

Wei et al., 2010).  

 Turnip mosaic virus (TuMV) 1.1.5

TuMV is a member of the genus Potyvirus. Historically, TuMV was first reported in the 

USA on Brassica rapa in 1921 (Gardner and Kendrick, 1921), but is now known to occur 

in many regions of the world including the temperate and tropical climate areas of Africa, 

Asia, Europe, Oceania and the Americas (Ohshima et al., 2002). As one of the most 

prevalent viral pathogens, TuMV infects a wide range of plant species, mostly (although 

not exclusively) in the family Brassicaceae (Sánchez et al., 2003). Other non-brassica 

crops (radish, lettuce, endive, escarole, horseradish, peas, and rhubarb) and ornamentals 
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were also found to be naturally susceptible to TuMV infection. By 1991, TuMV had been 

found to infect over 318 species in 156 genera of 43 plant families (Edwardson and 

Christie, 1991). As it causes significant economic losses in many infected vegetable and 

horticultural crops, TuMV was ranked second after Cucumber mosaic virus (CMV, genus 

Cucumovirus) amongst the most damaging plant viruses worldwide (Tomlinson, 1987). 

Given the fact that TuMV is able to infect the model plants Arabidopsis thaliana 

(Arabidopsis) and Nicotiana benthamiana (N. benthamiana), it makes TuMV an ideal 

model to study plant-virus interactions from both plant and virus perspectives (Walsh and 

Jenner, 2002).  

Like other potyviruses, TuMV is transmitted by phloem-feeding insects, such as aphids, 

in a non-persistent manner (Edwardson and Christie, 1986). It has been reported that at 

least 89 species of aphids are able to transport TuMV virions to a healthy plant after 

feeding on the diseased plants (Shukla et al., 1994).  

In general, disease symptoms caused by TuMV infection appear on virtually all parts of 

the infected plants, including leaves, stems, roots, fruits, flowers and seeds. The 

characteristic symptoms of TuMV infection include mosaic, mottling, chlorotic rings on 

leaves or color break on flowers, fruits, and stems. In severe cases, infected plants are 

stunted with leaf distortion and necrosis, fruit and stem malformations, as well as fruit 

drop (Shukla et al., 1994). Basically, symptoms that develop on plants in response to 

TuMV infection are usually regarded as harmful effects on the infected plants.  

 Host factors required for viral infection 1.2

 Host factors 1.2.1

Plant viruses have small and compact genomes whose coding capacity is not sufficient to 

fulfil the viral life cycle. However, as successful pathogens, plant viruses can replicate 

efficiently within host cells. It is very clear that they have evolved with the ability to 

hijack host proteins and reprogram host metabolites to support the infection process 

(Nagy and Pogany, 2011).  
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Many efforts have been made towards understanding the role of host factors and recent 

progress has led to the identification and characterization of a number of important host 

factors recruited for plant virus replication. Different approaches have been employed, 

such as genome-wide screening and proteome-wide screening (Nagy and Pogany, 2010). 

In Saccharomyces cerevisiae (S. cerevisiae), several genome-wide screenings have 

identified approximately 130 genes that affect Tomato bushy stunt virus (TBSV, genus 

Tombusvirus, family Tombusviridae) replication (Panavas et al., 2005; Jiang et al., 2006). 

In the case of Brome mosaic virus (BMV, genus Bromovirus, family Bromoviridae), 

around 100 yeast genes have also been shown to play a role in viral replication (Kushner 

et al., 2003; Gancarz et al., 2011).  

Diverse approaches have also been used to identify host factors from plants required for 

viral infections by several plant viruses including potyviruses (Dufresne et al., 2008; 

Hafrén et al., 2010), Tomato mosaic virus (ToMV, genus Tobamovirus) (Nishikiori et al., 

2006) and TBSV (Serva and Nagy, 2006). An emerging picture from these studies is that 

host factors play versatile roles during plant RNA virus replication, including: 1) 

assistance in the proper assembly of VRCs and cellular membrane remodelling; 2) 

recruitment of viral proteins and template RNA to the VRC; 3) regulation of the switch 

from viral genome translation to replication; 4) participation in the intracellular transport 

of viral proteins and viral RNA; and 5) facilitating folding of viral proteins as protein 

chaperones (Nagy and Pogany, 2011; Hyodo and Okuno, 2014). 

For instance, the potyviral replication factory is associated with intracellular membranous 

structures derived from the ER (Wei et al., 2010) and where a number of host proteins are 

recruited to form the VRC for viral replication (Wang, 2013). These host factors include 

eukaryotic translation initiation factors (eIFs) (Wittmann et al., 1997; Schaad et al., 2000), 

a cysteine-rich protein PVIP (Dunoyer et al., 2004), Heat shock cognate 70-3 (Hsc70-3) 

(Dufresne et al., 2008), PABP (Dufresne et al., 2008), eEF1A (Thivierge et al., 2008), 

DEAD-box RNA helicase (Huang et al., 2010) and DNA-binding protein phosphatase 1 

(DBP1) (Castelló et al., 2010). Among them, eIFs and DEAD-box RNA helicases are 

relatively well characterized.  
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 Eukaryotic translation initiation factors (eIFs) 1.2.2

Translation of the viral genome is fully dependent on the host translation machinery. 

Translation initiation is the highly-regulated and rate-limiting step of protein synthesis 

(Sonenberg and Hinnebusch, 2009). It is initiated by the recruitment of the eIF4F 

complex to the viral RNA (Bushell and Sarnow, 2002). The eIF4F complex is composed 

of factors eIF4E, eIF4G and eIF4A. eIF4E is a cap binding protein that binds to the 5' cap 

structure of mRNA or the viral protein linked to the 5' end of the viral genomic RNA. 

eIF4E is associated with eIF4G, a scaffold protein that interacts with other components of 

the eIF4F complex (Sonenberg and Hinnebusch, 2009; Jackson et al., 2010). eIF4A is 

responsible for recruiting ternary 40S ribosomal complexes and unwinding double-

stranded RNA structures (Rogers et al., 1999).  

Previous studies have shown that potyviruses selectively recruit one of eIF4E and eIF4G 

or their corresponding isoforms for their infection (Nicaise et al., 2007). The recruitment 

of these translation initiation factors occurs through their physical interactions with the 

viral protein VPg or its precursor NIa. Mutations or knockout of eIF4E or eIF4G or their 

isoforms eIF(iso)4E and eIF(iso)4G1 or eIF(iso)4G2, could confer resistance against 

certain potyvirus infection without compromising regular plant growth and development 

(see section 1.4.2) (Gallois et al., 2010). 

 Eukaryotic translation initiation factor 4A, eIF4A 1.2.3

Among eIFs, eIF4A is the prototype of DEAD-box RNA helicases (Rogers et al., 1999). 

It was first characterized through its requirement in translation and was further identified 

as a component of eIF4F complex (Grifo et al., 1982). Together with the central 

scaffolding protein eIF4G and the cap-binding protein eIF4E, eIF4A forms the eIF4F 

complex accompanied by accessory proteins eIF4B and eIF4H (Jackson et al., 2010). The 

eIF4F complex is essential for the translation of most cellular mRNAs and is an 

important target for regulation (Jackson et al., 2010). 

eIF4A possesses both ATP-dependent RNA helicase activity and RNA remodelling 

activity. It is suggested that eIF4A is responsible for unwinding RNA secondary 
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structures in the 5' UTR which would inhibit ribosome scanning (Svitkin et al., 2001). 

eIF4A also facilitates viral translation initiation by exhibiting RNA helicase activities 

(Robaglia and Caranta, 2006). RNA helicase activities of eIF4A are largely dependent on 

stimulation from other translation initiation factors. In the eIF4F complex, the helicase 

activities of eIF4A are increased which suggests that the helicase activity requires the 

recruitment of eIF4A to a specific mRNA, preventing the unwinding of RNA structures 

not targeted by the binding partners (Lu et al., 2014). Hence, the research on eIF4A, as 

one of the first DEAD-box RNA helicases that have been studied extensively, has led to 

the discovery of the fundamental principles underlying the functions of DEAD-box RNA 

helicases (Andreou and Klostermeier, 2013). 

 DEAD-box RNA helicase  1.3

RNA helicases, which function as highly conserved enzymes, can utilize ATP to catalyze 

the separation of RNA duplexes and the structural rearrangement of RNA and 

RNA/protein complexes (ribonucleoprotein (RNP) complexes) in all aspects of RNA 

metabolism, from transcription, mRNA splicing and translation, RNA modification and 

transport, ribosome biogenesis, RNP complex assembly to mRNA degradation (Cordin et 

al., 2006; Pyle, 2008). RNA helicases are present in all eukaryotic cells and many 

bacteria and some viruses also encode one or more helicase proteins (Hilbert et al., 2009).  

Based on sequence and structural features, RNA helicases are classified into five main 

groups, namely superfamily (SF) 1 to SF5 (Gorbalenya and Koonin, 1993). DEAD-box 

RNA helicases belong to the helicase superfamily 2 (SF2), together with DEAH, DExH 

and DExD families, which are commonly referred to as the DExD/H helicase family 

(Fairman-Williams et al., 2010).  

 Structure and functions 1.3.1

DEAD-box RNA helicases represent a large family of proteins which have been shown to 

be involved in almost every step of RNA metabolism (Cordin et al., 2006). The name of 

the family was derived from the highly conserved amino acid sequence D-E-A-D (Asp–

Glu–Ala–Asp) of its motif II (Linder and Jankowsky, 2011).  
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It has been suggested that some DEAD-box RNA helicases may act as RNA chaperones, 

promoting the formation of optimal RNA structures through local RNA unwinding, or as 

RNPases by mediating RNA-protein association/dissociation (Fuller-Pace, 2006). 

DEAD-box RNA helicases play essential roles in regulating cellular RNA metabolism. 

For example, they function as part of the spliceosome complexes and/or the eukaryotic 

translation initiation machinery (Rocak and Linder, 2004). 

DEAD-box RNA helicases are characterized by a set of conserved motifs, namely Q, I, Ia, 

Ib, Ic, II, III, IV, IVa, V, Va, and VI, which contribute to ATP binding and hydrolysis, 

RNA binding and duplex unwinding (Cordin et al., 2006). Motifs Ia, Ib, Ic, IV, IVa and 

V participate in RNA binding, whereas motifs Q, I, II and VI have been implicated in 

ATP binding and hydrolysis (Rocak and Linder, 2004). The motifs III and Va are 

responsible for coupling ATPase and duplex separation (Tanner et al., 2003). These 

characteristic sequence motifs are located within a conserved spatial arrangement in the 

helicase core, which is formed by two recombinase A (RecA)-like domains with flexible 

central regions (Singleton et al., 2007; Linder and Jankowsky, 2011).  

Although DEAD-box RNA helicases share the highly conserved structure of the helicase 

core, they have been associated with a variety of ATP-dependent cellular functions 

(Rocak and Linder, 2004). RNA unwinding activity is the main function performed by 

DEAD-box RNA helicases, and involves ATP-dependent binding and RNA or RNP 

structure remodelling (Pyle, 2008). DEAD-box RNA helicases load directly onto the 

duplex region and then separate the strands apart in an ATP-dependent manner instead of 

translocation on the RNA. This evident unwinding style is termed local strand separation 

(Yang et al., 2007). The highly targeted unwinding process prevents large-scale 

unravelling of exquisite-assembled RNA or RNP structures. Each RNA unwinding event 

utilizes one single ATP molecule through ATP binding and hydrolysis (Chen et al., 2008). 

In addition to ATP-dependent RNA unwinding, DEAD-box RNA helicases may also 

participate in export of mRNA from the nucleus to the cytoplasm. For example, the 

DEAD-box protein Dbp5 has been shown to mediate mRNA export to the cytoplasm 

(Tran et al., 2007). 
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 Association with abiotic stress 1.3.2

Plants are immobile organisms and are subject to a wide range of environmental insults, 

including biotic and abiotic stresses. Abiotic stresses, such as low temperatures, high 

salinity and drought, have an adverse influence on the plant growth, development and 

productivity (Knight and Knight, 2001). Plants respond to abiotic stresses in different 

ways and have evolved a complex variety of strategies to increase their tolerance to 

environmental stresses through physical adaptation and molecular and cellular changes 

(Takken et al., 2006). As part of plant stress responses, plants regulate gene expression in 

order to activate and integrate various tolerance mechanisms. The targeted genes encode 

proteins involved in different biological functions, including nucleic acid metabolism 

(Chinnusamy et al., 2004; Zhu et al., 2007).  

Recent studies have revealed that RNA helicases play a critical role in plant stress 

responses (Owttrim, 2006; Vashisht and Tuteja, 2006). Notably, when exposed to low 

temperatures, RNA molecules form stable non-functional secondary structures, and hence 

require RNA chaperones to perform the proper functions (Lorsch, 2002). It is possible 

that DEAD-box RNA helicases, which can operate as RNA chaperones, are able to 

unwind misfolded RNA structures using energy derived from ATP hydrolysis, thereby 

ensuring correct RNA folding (Vashisht and Tuteja, 2006). 

An Arabidopsis osmotically responsive gene, LOS4 encoding a DEAD-box RNA helicase 

(AtRH38), which has been reported to be crucial for expression of cold-responsive genes 

under conditions of low temperatures. LOS4 functions in cold tolerance through 

regulating mRNA export from the nucleus to the cytoplasm (Gong et al., 2002; Gong et 

al., 2005). Moreover, two Arabidopsis DEAD-box RNA helicase genes, Stress Response 

Suppressor 1 (STRS1) and 2 (STRS2) have been identified to suppress responses to 

abiotic stresses (Kant et al., 2007). Mutations of either STRS1 or STRS2 in Arabidopsis 

led to an increased tolerance to salt, osmotic, and heat stresses, and thus both STRS1 and 

STRS2 appear to play critical roles in response to abiotic stresses by attenuating 

expression of upstream stress signaling components (Kant et al., 2007). Interestingly, in a 

similar study to characterize functional roles of DEAD-box RNA helicases in response to 
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abiotic stresses, AtRH25 (STRS2) was shown to be up-regulated in response to low 

temperature treatment and contribute to enhanced cold tolerance in Arabidopsis by 

exerting RNA chaperone activity (Kim et al., 2008).  

In addition to the functional roles in abiotic stress response, some DEAD-box RNA 

helicases also participate in modulating defence against biotic stresses. For instance, a 

rice gene Oryza sativa BTH-induced RNA helicase 1 (OsBIRH1), encoding a DEAD-box 

RNA helicase, has been implicated in stress response to oxidative stress. Overexpression 

of OsBIRH1 confers enhanced disease resistance against fungal pathogen infection in 

Arabidopsis (Li et al., 2008). 

 Association with viral infection 1.3.3

During the past decade, accumulating evidence suggests that RNA helicases likely play 

several essential roles during viral infection including (i) facilitating viral genomic RNA 

translation, (ii) recruiting viral RNA for replication, (iii) coordinating viral RNA template 

for translation or replication, and (iv) regulating viral RNA stability or degradation 

(Huang et al., 2010). However, detailed studies towards understanding the functions of 

RNA helicases in positive-sense RNA virus life cycle are very limited. 

In a seminal work, Noueiry and colleagues showed that the yeast gene DED1, encoding a 

DEAD-box RNA helicase is required for the translation of BMV, a bromovirus. A point-

mutation in DED1 inhibits BMV RNA replication via disrupting expression of viral-

encoded polymerase protein 2a but not affect yeast growth (Noueiry et al., 2000). 

Coincidentally, through a genome-wide screening of yeast genes, DED1 has also been 

identified as a host gene required for replication of TBSV, a tombusvirus. Down-

regulation of DED1 affects TBSV viral infection by inhibiting the accumulation of virus-

encoded replication proteins (Jiang et al., 2006). Recently, it has been shown that DED1-

encoded protein Ded1p is required for viral replication of TBSV and Flock house virus 

(FHV, genus Alphanodavirus) by binding to the negative-sense viral RNA and promoting 

positive-sense viral RNA synthesis. Ded1p is recruited to TBSV VCR as an important 

host component, and ATPase-defective Ded1p mutant fails to initiate TBSV replication, 

suggesting that helicase activity is required for TBSV replication (Kovalev et al., 2012). 
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Similar to Ded1p, another RNA helicase Dbp2p (the homolog of the human p68 protein) 

also binds to the 3' end of the viral negative-sense RNA of TBSV and unwinds the local 

secondary structure to promote positive-sense RNA replication in yeast (Kovalev et al., 

2012). AtRH20, an RNA helicase in Arabidopsis sharing high sequence similarity with 

DED1, can stimulate TBSV positive-sense RNA synthesis, suggesting RNA helicases in 

plants may assist viral replication in a similar manner (Kovalev et al., 2012). More 

recently, two additional cellular RNA helicases, e.g., the eIF4AIII-like yeast FAL1 and 

the DDX5-like Dbp3 and their orthologs in Arabidopsis, AtRH2 and AtRH5, have been 

shown to be present in the tombusvirus VRCs (Kovalev and Nagy, 2014). They bind to 

the 5' proximal RIII (-) replication enhancer (REN) element in the TBSV negative-sense 

RNA and unwind the dsRNA structure within the RIII(-) REN region (Kovalev and Nagy, 

2014). Coordinated unwinding of the dsRNA at the 5' region by this group of RNA 

helicases and the secondary structure at the 3' terminal region by the DED1/AtRH20 

would bring the 5' and 3' terminal sequence of the negative-sense RNA in close vicinity 

via long-range RNA-RNA base pairing and facilitate asymmetrical viral replication by 

recycling the viral replicase proteins for multiple rounds of positive-sense viral RNA 

synthesis (Kovalev and Nagy, 2014). It is also worth to note that an Arabidopsis DEAD-

box RNA helicase, AtRH8 and a Prunus persica DDX-like protein, PpDDXL, have been 

identified to interact with potyviral VPg. AtRH8 colocalizes with the viral replication 

vesicles, indicating that AtRH8 is necessary for potyvirus infection by facilitating viral 

genome translation and replication (Huang et al., 2010).  

Interestingly, several lines of evidence obtained in recent years indicate that DEAD-box 

RNA helicases play critical roles in human virus replication. It has been demonstrated 

that DEAD-box RNA helicase 1 (DDX1) functions as a Rev cellular co-factor supporting 

Human immunodeficiency virus type 1 (HIV-1) replication. HIV-1 Rev protein is 

responsible for the transport of viral RNA from the nucleus to cytoplasm by remodeling 

VRC and is required for HIV-1 virion assembly (Fang et al., 2004; Fang et al., 2005). In 

addition to DDX1, DEAD-box RNA helicase 3 (DDX3) has also been reported to be 

required for HIV-1 replication. Functioning as a nucleo-cytoplasmic shuttling protein, 

DDX3 is responsible for restructuring viral RNAs and facilitating the translocation 

through the nuclear pore complex. Knockdown of DDX3 suppressed the export of HIV-1 
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viral RNAs from the nucleus (Yedavalli et al., 2004). Intriguingly, HCV also recruits 

DDX3 for viral RNA replication. DDX3 might be associated with HCV assembly and the 

lack of DDX3 would cause a significant decrease of HCV viral RNA accumulation by 95%  

(Ariumi et al., 2007). A very recent study revealed that DDX3 can also interact with the 

viral polymerase of Hepatitis B virus (HBV), a DNA virus whose replication is 

dependent on reverse transcription of the viral genome. DDX3 restricts HBV genome 

replication by inhibition of its reverse transcription (Wang et al., 2009). More recently, 

DEAD-box RNA helicase 56 (DDX56), a nucleolar helicase has been found to interact 

with WNV capsid protein. This observation suggests that DDX56 is required for 

assembly of WNV viral particles. Mutations of DEAD motif of DDX56 would impair the 

function in packaging viral RNA into virions (Xu et al., 2011; Xu and Hobman, 2012). 

Taken together, these studies reinforce the idea that DEAD-box RNA helicases play an 

essential role in viral infection but the functional mechanisms may differ from helicase to 

helicase and from virus to virus. 

 Plant defense responses against viral pathogens 1.4

 Dominant resistance  1.4.1

Plants are constantly exposed to invasion by a multitude of pathogenic microbes, 

including viruses. Over the course of evolution, there has always been an "arms race" 

between plants and plant viruses, in which the viruses evolve mechanisms to survive by 

invading plants to acquire biosynthetic products and energy, while plants evolve ways to 

prevent the invasion. Since plants lack mobile defender cells and an adaptive immune 

system like animals, they rely on an elaborate innate immune system to defend 

themselves against the viral intruders. There are two general types of antiviral strategies 

that plants employ to combat viral infections. The better-characterized mechanism is the 

one mediated by resistance (R) genes (Mandadi and Scholthof, 2013). The other is an 

antiviral RNA silencing pathway, which is triggered by double-stranded RNA, leading to 

the cellular defense against foreign nucleic acids (Soosaar et al., 2005). 
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R-gene mediated resistance pathways are often associated with the hypersensitive 

response (HR) which usually induces programmed cell death (PCD) surrounding the 

infection site. The phenotype of HR is the appearance of necrotic lesions at the site of 

local infection. The HR functions to limit viral proliferation, thus the virus is constrained 

to the lesions and unable to spread to adjacent healthy tissues (Ross, 1961; Moffett, 2009). 

Following HR in the local infection area, R-gene mediated resistance responses could 

also lead to systemic acquired resistance (SAR) in tissues distant from local infected area 

and result in an enhanced resistance to later pathogen attack (Ross, 1961). SAR is 

considered to be a broad-spectrum, long-lasting resistance through the whole plant (Ryals 

et al., 1996). This response is activated by the induction of expression of a set of 

pathogenesis-related genes which encode antimicrobial compounds (Durrant and Dong, 

2004; Kang et al., 2005) and results in the generation of the immune signal molecule 

salicylic acid (SA) (Gaffney et al., 1993). 

R-gene mediated resistance is known to be triggered when a pathogen-encoded 

avirulence factor (Avr) is recognized by a dominant R-gene encoded product in the plant 

(Bent and Mackey, 2007; Moffett, 2009). The classic model of the "gene-for-gene" 

resistance is that the N gene of tobacco plants could confer resistance to TMV (genus 

Tobamovirus) and most tobamoviruses (Erickson et al., 1999). It was first reported by 

F.O. Holmes in 1938 (Holmes, 1938). The N gene product from Nicotiana glutinosa 

specifically recognizes the helicase domain of the TMV replicase protein and triggers the 

HR (Abbink et al., 1998). 

The pathogen is recognized through its conserved structures or proteins associated with 

the pathogen by plant pattern recognition receptors (PRRs), termed pathogen associated 

molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs). The 

induced immunity responses are noted as PAMP-triggered immunity (PTI) response 

(Boller and Felix, 2009). After successful invasion, pathogens deliver specific effector 

molecules into the plant cell to enhance pathogen virulence and impair host defense 

signaling cascade. The effectors employed by the pathogen could interfere with PTI 

response, leading to effector-triggered susceptibility (ETS) (Bent and Mackey, 2007). To 

contribute defense against the pathogen effectors, plant R genes encode a class of 
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nucleotide binding (NB) and leucine rich repeat (LRR) domain (NB-LRR)-containing 

proteins which can directly or indirectly recognize the specific effectors to induce 

effector-triggered immunity (ETI) response (Collier and Moffett, 2009). NB-LRR 

proteins represent the major class of plant R gene products (R proteins) (Moffett, 2009). 

Compared with PTI response, ETI occurs faster and acts as a stronger response usually 

associated with HR at the infection site (Jones and Dangl, 2006; Dodds and Rathjen, 

2010).  

To date, several dominant R genes against plant viruses have been identified. For 

example, an Arabidopsis jacalin-type lectin, restricted TEV movement1 (RTM1), has 

been shown to prevent the systemic spread of several potyviruses (Chisholm et al., 2000). 

In addition to RTM1, RTM2 and RTM3 physically interact with RTM1 and also 

contribute to viral resistance responses (Chisholm et al., 2001; Mandadi and Scholthof, 

2013). Lately, another jacalin-type lectin, JAX1, was shown to confer broad resistance 

against multiple potexviruses including Potato virus X (PVX), Plantago asiatica mosaic 

virus (PlAMV), White clover mosaic virus (WClMV), and Asparagus virus 3 (AV-3), 

suggesting lectins play an important role in plant antiviral immunity (Yamaji et al., 2012). 

JAX1-mediated resistance against PlAMV occurs via inhibition of viral replication 

whereas RTM1 impedes viral movement by interference with viral movement-associated 

proteins (Yamaji et al., 2012). Moreover, tomato (S. hirsutum) resistance gene Tm-1-

encoded protein can bind to the replication protein of ToMV which confers resistance to 

ToMV by inhibiting viral RNA replication (Ishibashi et al., 2007). Potato (Solanum 

tuberosum) resistance genes Rx1 and Rx2 both impart resistance to PVX through 

recognition and interaction with the PVX CP and are required to block virus replication 

(Bendahmane et al., 1999; Bendahmane et al., 2000).   

 Recessive resistance 1.4.2

As discussed above, plant viruses recruit many host factors to complete their life cycle. 

The inability to recruit an essential host component may result in resistance against 

viruses, termed recessive resistance. Genes encoding dysfunctional host factors are 

referred to as recessive resistance genes (Fraser and Van Loon, 1986). 
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Recessive resistance is prevalently found to confer resistance to potyviruses (Kang et al., 

2005). More than half of the recessive resistance genes reported so far are effective 

against potyviruses (Diaz-Pendon et al., 2004). The recessive genes involved in the 

potyvirus-related resistance mainly encode eIF4E and eIF4G or their isoforms (Truniger 

and Aranda, 2009) and are related to the binding capabilities between potyvirus VPg and 

eIF4E/eIF4G and their isoforms (Wittmann et al., 1997; Leonard et al., 2000; Schaad et 

al., 2000). 

eIF4E is a crucial component of the eukaryotic translation initiation machinery that binds 

to 5' cap structure of mRNA to initiate mRNA translation (Sonenberg and Hinnebusch, 

2009). Potyviruses encode the VPg which is covalently linked to the 5' end of the viral 

genomic RNA and allows the translation of viral RNA in a cap-independent manner. 

Potyviral VPg is found to physically associate with eIF4E/eIF4G and their isoforms 

(Wang and Krishnaswamy, 2012). Disrupting or eliminating the interactions between 

VPg and eIF4E/eIF4G proves to be sufficient to prevent potyvirus infection in planta 

(Leonard et al., 2000). In all cases, the resistance phenotypes result from a few amino 

acid changes in the eIF4E or eIF(iso)4E proteins, which are grouped in two regions of the 

eIF4E structure located near the cap binding pocket and at the surface of the protein 

(Robaglia and Caranta, 2006). Different potyviruses may selectively recruit eIF4E or the 

respective isoforms for their replication. Moreover, the same potyvirus may utilize 

different eIF4E or its isoforms for successful infection of different host plants. For 

example, Arabidopsis eif(iso)4e knockout mutants are resistant to TuMV, Lettuce mosaic 

virus (LMV), TEV and PPV, while Arabidopsis eIF4E is required for successful infection 

of ClYVV (Duprat et al., 2002; Lellis et al., 2002; Sato et al., 2005; Decroocq et al., 

2006). In addition, mutations in eIF4G could impart recessive resistance to CMV (genus 

Cucumovirus) and Turnip crinkle virus (TCV, genus Carmovirus) in Arabidopsis (Yoshii 

et al., 2004). Altogether, these data provide the evidence of a conserved relationship 

between plant RNA viruses and the host translation initiation machinery during viral life 

cycle. 
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 RNA silencing and its suppression 1.4.3

Upon viral infection, in addition to the aforementioned dominant R gene- or recessive 

gene-mediated resistance, RNA silencing plays a pivotal role in directing antiviral 

immunity in plants. RNA silencing machinery is a complicated system that recruits 

unique genetic components to perform their functions. There are four conserved classes 

of proteins involved in RNA-based antiviral defense, which include Dicer-like 

ribonucleases (DCLs), Argonaute proteins (AGOs), dsRNA-binding proteins (DRBs), 

and RNA-dependent RNA polymerases (RDRs) (Vaucheret, 2006).  

The RNA silencing pathway is largely mediated by a variety of small RNAs (sRNAs) 

(Rana, 2007). sRNAs are 18 to 25-nt- long noncoding RNA molecules that can regulate 

gene expression either transcriptionally or post-transcriptionally (Ruiz-Ferrer and 

Voinnet, 2009; Katiyar-Agarwal and Jin, 2010). Pathogen-regulated, host endogenous 

microRNAs (miRNAs) and small interfering RNAs (siRNAs) are the most important 

sRNA regulators regarding plant-pathogen interaction (Jin, 2008). RNA silencing is 

considered to be highly specific since it targets mRNA transcripts based on sequence 

complementarity between the sRNAs and its target RNA (Baulcombe, 2004).  

Antiviral RNA silencing is an innate immune response triggered by viral dsRNA, which 

is derived from viral replication intermediates or secondary RNA folding structures. 

Antiviral RNA silencing begins with the activity of DCLs that target viral dsRNA and 

results in the generation of 21-24-nt viral siRNAs, the central components of the RNA 

silencing pathway (Ding and Voinnet, 2007). Processed viral siRNA duplexes are 

unwound and recruited by AGOs, which are the catalytic component of RNA-induced 

silencing complexes (RISCs). RISCs can bind the viral genome and transcripts, and direct 

the cleavage of homologous mRNAs to achieve post-transcriptional silencing (Ding, 

2010). DRBs have been found to modulate the function of DCLs, while RDRs are 

encoded by the host plant to produce viral secondary siRNAs or some of the dsRNA 

precursors that serve as templates for DCLs (Brodersen and Voinnet, 2006).  

The viral siRNAs involved in the RNA silencing pathway share similar features with host 

siRNAs and miRNAs (Sharma et al., 2013). They are classified into two groups. One 
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group, the primary siRNAs, is processed from DCL-mediated cleavage of the initial 

invading viral RNA. The other type of siRNAs, the secondary siRNAs, recruits host 

RDRs for their biogenesis (Ruiz-Ferrer and Voinnet, 2009). The amplification of 

secondary siRNAs has been linked to the long-distance spread of the RNA silencing 

signals, which allows viral siRNAs move from cell-to-cell for effective RNA silencing 

responses to viral infection (Hamilton et al., 2002; Himber et al., 2003).  

The RNA silencing pathways in Arabidopsis have been well characterized and comprise 

four DCLs, six RDRs, ten AGOs and six DRBs that participate in at least four different 

endogenous RNA silencing pathways (Vaucheret, 2006). These components have distinct 

but partially overlapping functions in different RNA silencing pathways. It has been 

reported that all four DCLs perform the antiviral defense activity in plants (Blevins et al., 

2006). Among them, DCL2 and DCL4 are two primary regulators while DCL3 plays a 

minor role and DCL1 acts negatively as it down-regulates DCL2 and DCL4 functions 

(Garcia-Ruiz et al., 2010). Arabidopsis RDRs play an essential role in RNA silencing 

defense by amplifying the majority of viral secondary siRNAs. Disease susceptibility to 

plant RNA viruses was dramatically enhanced in RDR-defective Arabidopsis mutant 

plants (Qu et al., 2005). Accumulating evidence suggests that AGOs which associate 

with siRNAs to guide sequence-specific silencing, are regulated by DNA methylation 

(Mallory and Vaucheret, 2010). AGO1 and AGO2 are the key components of the RNA 

silencing pathways and are recruited for efficient cleavage of viral RNA and processing 

viral secondary siRNAs in a cooperative manner (Cao et al., 2014). RDR2 is required for 

the biogenesis of endogenous 24-nt siRNAs that directs DNA methylation in plants (Xie 

et al., 2004). Moreover, extensive studies have shown that viral siRNA biogenesis is 

facilitated by RDR1, RDR2 and RDR6 (Qi et al., 2009). Compared to the rapid R gene-

mediated defense responses, which can constrain further virus spread within 3-4 days, 

antiviral RNA silencing is a relatively slow process and could not lead to complete 

clearance of viral infection (Ding, 2010).  

Plant viruses have evolved a variety of effective counter-defense strategies to overcome 

the antiviral RNA silencing of the host. One of the best-characterized strategies plant 

viruses employ is to encode RNA silencing suppressors, which are viral proteins that can 



28 

 

 

 

interfere with the components of RNA silencing pathways and inhibit the effectiveness of 

plant defense (Qu and Morris, 2005). Virus-encoded silencing suppressors from different 

virus families are diverse in sequences and structures. They are able to target different 

steps of RNA silencing pathways and utilize various strategies to obstruct host antiviral 

defense (Burgyán and Havelda, 2011). The functions of silencing suppressors can 

partially or completely disable the activities of silencing components but the mechanism 

of the viral suppressors remains to be determined (Levy et al., 2008). There are five 

possible models to describe how viral suppressors of RNA silencing may work: 1) 

inhibition of the biogenesis of viral siRNAs; 2) blocking loading of viral siRNAs into the 

RISC by sequestration of viral siRNAs; 3) manipulation of the formation of components 

of the RISC; 4) inhibition of the AGO-mediated cleavage of viral RNA; and 5) blocking 

silencing by interacting with plant components which are required for the antiviral 

silencing machinery (Katiyar-Agarwal and Jin, 2010). 

For instance, TBSV encodes the P19 protein, which is recognized as a suppressor of 

RNA silencing by a variety of different tombusviruses (Qu and Morris, 2002). P19, 

which targets and directly binds double-stranded siRNAs, preferentially binds 20-22 nt 

duplexes to prevent them from being incorporated into the RISC (Silhavy et al., 2002). 

Given the fact that siRNAs is the key indicator of RNA silencing, the affinity of P19 for 

siRNAs is essential for viral pathogenesis (Hsieh et al., 2009). The protease HC-Pro, 

encoded by different potyviruses is one of the first viral silencing suppressors to be 

characterized. The silencing suppressor function of HC-Pro is likely to act by inhibiting 

the unwinding of siRNA duplexes and RISC assembly (Chapman et al., 2004). As a 

multifunctional protein, HC-Pro is also involved in aphid transmission, viral polyprotein 

processing, and long distance movement (Kasschau et al., 1997). Mutations in HC-Pro 

that abolish its suppressor function could cause the virus to lose the ability to replicate the 

viral genome and move from cell to cell (Kasschau and Carrington, 2001). The 2b protein 

of cucumoviruses is another example of well-studied viral silencing suppressor. It has 

been demonstrated that CMV 2b protein can enhance viral long distance movement and 

interfere with systemic spread of RNA silencing signals (Guo and Ding, 2002). P25 of 

PVX , which was previously shown to be required for cell-to-cell movement of PVX, can 

suppress RNA silencing by blocking the silencing signals from moving systemically 
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between the cells (Azevedo et al., 2010). TCV encodes the P38 protein, which has been 

reported to have the silencing-suppressing function. P38 binds dsRNA of variable lengths 

and competes with DCL4 to prevent from binding viral dsRNA (Deleris et al., 2006). The 

suppressor activity of P38 is further supported by the observed interaction between P38 

and AGO1, which leads to blocking the RNA silencing pathways (Voinnet et al., 2000). 

Since many viral silencing suppressors can bind short dsRNA, it is suggested that binding 

viral siRNAs duplexes might represent an effective silencing suppression strategy 

employed by plant viruses (Mérai et al., 2006). 

 Research objectives and goals 1.5

It is well known that plant viruses pose a major threat to a broad range of plant species in 

agriculture. Genetic resistance is the practical approach to the control of viral diseases. 

Unfortunately, natural genetic resistance is rare. To develop novel genetic resistance, it is 

essential to better understand the viral infection process. Virus infection in plants is a 

complicated process that requires specific interactions between viral and host proteins. 

Due to the complexity of plant genomes and the diversity of plant viruses, identification 

of the host proteins in these interactions has been limited. Towards the development of 

novel viral disease resistance in crops, which is the long term goal of this research, my 

thesis focuses on the molecular isolation of host factors required for viral infection and 

functional characterization of their working mechanisms in viral infection.  

To isolate host factors required for viral infection, I proposed to screen Arabidopsis T-

DNA insertion lines using TuMV as a model virus. Since DEAD-box RNA helicases 

likely play essential and regulatory roles in the viral RNA replication and translation of 

positive-sense RNA viruses, I further selected Arabidopsis T-DNA insertion mutants 

corresponding to this gene family for analysis. Thus, the central hypotheses of this 

research are that (1) Arabidopsis DEAD-box RNA helicases are involved in TuMV 

infection, and (2) down-regulation or mutation of one of these host factors will lead to 

recessive resistance against TuMV infection. The specific objectives of this thesis are: 

(1) To identify AtRHs essential for TuMV infection through a reverse genomic approach 

by screening Arabidopsis atrh T-DNA insertion mutant lines; 
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(2) To functionally characterize the identified candidate AtRHs associated with TuMV 

infection using the model plants Arabidopsis and N. benthamiana; 

(3) To identify TuMV proteins interacting with candidate AtRHs; 

(4) To identify plant proteins involved in the interaction between AtRHs and TuMV 

proteins;  

(5) To study the involvement of the identified AtRHs as host factors required for viral 

replication and/or translation. 
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Chapter 2: Materials and Methods 

 Plant materials and growth conditions 2.1

Arabidopsis (Arabidopsis thaliana) ecotype Col-0 and Nicotiana benthamiana (N. 

benthamiana) were used in this study. Arabidopsis and wild-type N. benthamiana plants 

were maintained in a growth chamber under constant conditions of 60% relative humidity 

and a day/night regime of 16 h in the light at 22ºC followed by 8 h at 18ºC in the dark. 

Plants were watered daily as needed and fertilized (20-8-20 [N-P-K], 0.5g/l) weekly. 

Seeds for Arabidopsis T-DNA insertion mutant lines were obtained from the Arabidopsis 

Biological Resource Center (ABRC) at Ohio State University, Columbus, Ohio, USA. T-

DNA insertion information was obtained from the Salk Institute Genomic Analysis 

Laboratory website (http://signal.salk.edu/).  

 Virus materials 2.2

The pCambiaTunos/GFP plasmid (TuMV-GFP) containing the full-length cDNA of the 

TuMV genome and pCambiaTunos/6KmCherry (TuMV::6K-mCherry) having an 

additional copy of the 6K2-coding sequence tagged with fluorescent protein mCherry 

between P1 and HC-Pro were obtained from Dr. Jean-François Laliberté at the Institut 

Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada 

(Cotton et al., 2009). The recombinant TuMV infectious clone carrying an additional 

copy of the 6K2-coding sequence fused to yellow fluorescent protein (YFP) at the 

junction of P1 and HC-Pro (TuMV::6K-YFP) was described previously (Huang et al., 

2010). 

 Bacterial strains and growth conditions  2.3

Escherichia coli (E. coli) strain DH10B was used for DNA plasmid propagation and 

isolation. E. coli DH10B was grown in Luria-Bertani (LB) liquid medium (tryptone 1%, 

yeast extract 0.5%, NaCl 1%) or on LB solid medium supplemented with 1.5% w/v agar 

at 37ºC. Ampicilin (100 μg/ml) or kanamycin (100 μg/ml) was added to LB liquid and 

agar medium based on the selectable markers of the plasmids used. Agrobacterium 
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tumefaciens (A. tumefaciens) strain GV3101 was employed for plant transformation. 

Agrobacterium strain GV3101 was grown in LB medium containing 100 μg/ml of 

kanamycin, 50 μg/ml of rifamycin and 25 μg/ml of gentamicin at 28ºC. 

 Yeast strains and cell culture  2.4

Yeast strain AH109 was used for Y2H assay. Yeast cells were grown at 30ºC in rich YPD 

medium supplemented with adenine hemisulfate (YPDA) or in minimal synthetic defined 

(SD) base medium (0.17% yeast nitrogen base without amino acids, 2% glucose) 

combined with appropriate dropout (DO) supplement. For SD solid medium, minimal SD 

base medium was supplemented with 1.5% w/v agar. Selective medium for yeast 

transformants was a combination of minimal SD base with -Ade (Adenine)/-His 

(Histidine)/-Leu (Leucine)/-Trp (Tryptophan) DO supplement. 

 Plasmid construction 2.5

Gateway technology (Invitrogen, Burlington, Ontario, Canada) was used to generate all 

the plasmid constructs used in this study except where otherwise stated. Gene sequences 

were amplified by polymerase chain reaction (PCR) using Phusion® High-Fidelity DNA 

Polymerase (New England Biolabs, Pickering, Ontario, Canada) for cloning purposes. 

GoTaq® Flexi DNA Polymerase (Promega, Madison, WI, USA) was employed for 

genotyping and other analysis. 

The full-length P1, HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP coding regions 

of TuMV (GenBank accession NC_002509) were obtained by PCR amplification from 

the pCambiaTunos/GFP infectious clone (Cotton et al., 2009) using the primer sets 

indicated (Table 1). Arabidopsis AtRH9 (AT3G22310), AtRH26 (AT5G08610), PRH75 

(AT5G62190), IMPA1 (AT3G06720), IMPA2 (AT4G16143), eIF(iso)4E (AT5G35620), 

and fibrillarin (AT5G52470) coding sequences were generated using the primer pairs 

listed (Table 2) from cDNA derived from Arabidopsis leaves. The resulting DNA 

fragments were purified and transferred into the entry vector pDONR221 (Invitrogen) by 

recombination using BP Clonase® (Invitrogen) following the standard conditions and 

procedures recommended by the supplier (Karimi et al., 2002). Insertions in the resulting  
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Table 1   Primers used for plasmid construction to express TuMV viral proteins in 

plants. The attB recognition site is underlined. 

Primer Name Primer sequence (5'-3') 

P1-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATGGCAGCAGTTACATTCGCAT 

P1-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCACTAAAGTGCACAATCTTGTGAC 

HC-Pro-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCAGGTGCAGCGGGAGCC 

HC-Pro-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCAACGCGGTAGTGTTTCAAG 

P3-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGAACAGAATGGGAGGACACT 

P3-Gate-R GGGACCACTTTGTACAAGAAAGCTGGGTCTTGATGAACCACCGCCTTTTCT 

6K1-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGAAGAGACAATCCGAGCAA 

6K1-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGATGGTAGACTGTAGGTTCC  

CI-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACTCTCAATGATATAGAGGATGAC 

CI-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGATGGTGAACTGCCTCAAGA 

6K2-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAACACCAGCGACATGAGCAAATT 

6K2-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTTCATGGGTTACGGGTTCG 

VPg-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGAAAGGTAAGAGGCAAAGG 

VPg-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTCGTGGTCCACTGGGACG 

NIa-Pro-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGTAACTCCATGTTCAGAGGGT 

NIa-Pro-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTTGTGCGTAGACTGCCGTGC 

NIb-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACCCAGCAGAATCGGTGGATG 

NIb-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGGTGATAAACACAAGCCTCA 

CP-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCAGGTGAAACGCTTGATGCA 

CP-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCAACCCCTGAACGCCCAGTA 
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Table 2   Primers used for construction of plasmids to express Arabidopsis proteins. 

The attB recognition site is underlined. 

Primer Name Primer sequence (5'-3') 

AtRH9-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATTAGCACAGTACTTCGCCGAT 

AtRH9-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAAGATCTTTTACCATCGTTTGAT 

AtRH26-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCTCGAAGTTCCCTCTCGGT 

AtRH26-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGGTTCTAAGACCAGGAACG 

PRH75-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTTCCCTAATGTTATCTGA 

PRH75-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCATATCTCTGGCCTCTACCACCA 

IMPA1-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCACTGAGACCCAACGCTAAG 

IMPA1-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGCTGAAGTTGAATCCTCCGGATG 

IMPA2-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTTTGAGACCTAACGCTAAG 

IMPA2-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGGAAGTTGAATCCACCTG 

eIF(iso)4E-
Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGACCGATGATGTGAACG 

eIF(iso)4E-
Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCGACAGTGAACCGGCTTCTTC 

fibrillarin-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGAGACCCCCAGTTACAGG 

fibrillarin-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTGAGGCTGGGGTCTTTT 
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pDONR221 clones were verified by DNA sequencing. 

Forward primers PRH75-F, PRH75-115F, PRH75-356F and PRH75-451F (Table 3) were 

designed to amplify regions of Arabidopsis PRH75 starting at amino acids 1, 115, 356 

and 451, respectively. Reverse primers PRH75-R, PRH75-114R, PRH75-355R and 

PRH75-450R were designed to amplify regions of PRH75 ending at amino acids 114, 

355, 450 and 671, respectively. 

To construct vectors for the targeted Y2H assay, inserts of the resulting intermediate 

pDONR221 clones were further transferred into modified Gateway-compatible vectors 

pGADT7-DEST (prey) or pGBKT7-DEST (bait) (Lu et al., 2010) by recombination 

using LR Clonase® (Invitrogen) to yield pGAD-NIb, pGAD-NIa-Pro, pGAD-VPg, 

pGAD-CI, pGAD-IMPA1, pGAD-IMPA2 and pGBK-eIF(iso)4E, pGBK-PRH75, pGBK-

IMPA1, pGBK-IMPA2, respectively.  

For bimolecular fluorescence complementation (BiFC) assay, the coding sequences of 

TuMV NIb, VPg, NIa-Pro, CI and 6K2 cistrons and the full-length coding sequences of 

Arabidopsis AtRH9, PRH75, IMPA1 and IMPA2 were introduced into the BiFC vectors 

pEarleyGate201-YN or pEarleyGate201-YC (Lu et al., 2010) to produce NIb-YN, NIb-

YC, VPg-YN, VPg-YC, NIa-Pro-YN, NIa-Pro-YC, CI-YN, CI-YC, 6K2-YN, IMPA1-

YN, IMPA1-YC, IMPA2-YN, IMPA2-YC, AtRH9-YN, AtRH9-YC, PRH75-YN and 

PRH75-YC, respectively. 

For transient expression analysis in plant cells, the entire NIb, VPg, NIa-Pro and CI 

coding regions of TuMV, the full-length coding sequences of Arabidopsis AtRH9, 

AtRH26 and  PRH75, Arabidopsis fibrillarin, IMPA1, IMPA2 and eIF(iso)4E were 

transferred by recombination into the binary destination vectors pEarleyGate101 or 

pEarleyGate102 (Earley et al., 2006) to generate plant expression vectors for transient 

expression of AtRH9-YFP, PRH75-YFP, NIb-YFP, NIa-Pro-YFP, VPg-YFP, CI-YFP, 

IMPA1-YFP, IMPA2-YFP and eIF(iso)4E-YFP; AtRH26-CFP (cyan fluorescent protein), 

PRH75-CFP and fibrillarin-CFP, respectively.  

For nuclear localization signal (NLS) analysis, PRH75(1-114), PRH75(115-355), PRH75(356- 
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Table 3   Primers used for construction of plasmids for PRH75 domain analysis. The 

attB recognition site is underlined. 

Primer Name Primer sequence (5'-3') 

PRH75-Gate-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTTCCCTAATGTTATCTG 

PRH75-Gate-R GGGGACCACTTTGTACAAGAAAGCTGGGTCATATCTCTGGCCTCTACCA 

PRH75-Gate-
115F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGTATTGAAGCTCTTTTCCCG 

PRH75-Gate-
114R GGGGACCACTTTGTACAAGAAAGCTGGGTCATTCGCCTTAAGCTTCTCCCTCA 

PRH75-Gate-
356F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTTCGCTGAAACTAAAGTTCAAG 

PRH75-Gate-
355R GGGGACCACTTTGTACAAGAAAGCTGGGTCAATAATAGTTTGGCCTCCACTGC 

PRH75-Gate-
451F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGATTCTAGAAAGTCGAGTGTA 

PRH75-Gate-
450R GGGGACCACTTTGTACAAGAAAGCTGGGTCGTAGAGTGTAACCGCAACT 
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450), PRH75(451-671), PRH75(1-355), PRH75(1-450), PRH75(115-450), PRH75(115-671) and 

PRH75(356-671) were transferred by recombination into the binary destination vectors 

pEarleyGate101-GUS to generate plant expression vectors for transient expression of 

PRH75(1-114)-GUS-YFP, PRH75(115-355)-GUS-YFP, PRH75(356-450)-GUS-YFP, PRH75(451-

671)-GUS-YFP, PRH75(1-355)-GUS-YFP, PRH75(1-450)-GUS-YFP, PRH75(115-450)-GUS-

YFP, PRH75(115-671)-GUS-YFP and PRH75(356-671)-GUS-YFP, respectively. The coding 

sequence of β-glucuronidase (GUS) was obtained by PCR from plasmid pENTR-GUS 

(Invitrogen) and ligated into AvrII-restricted pEarleyGate101 to yield GUS-YFP (Xiong 

and Wang, 2013). 

For Tobacco rattle virus (TRV)-based virus induced gene silencing (VIGS), a 110 base-

pair (bp) of AtRH9 fragment and a 125 bp of PRH75 fragment were amplified from 

Arabidopsis cDNA with two pairs of primers that contained an EcoRI and BamHI site 

specific to the 5' and 3' end of the fragments, respectively (AtRH9-EcoRI-F/AtRH9-

BamHI-R and PRH75-EcoRI-F/PRH75-BamHI-R) (Table 4). The amplified fragment 

was digested with EcoRI and BamHI, then ligated into the corresponding sites of EcoRI 

and BamHI-restricted pTRV2 vector (Burch-Smith et al., 2006) to generate the vectors 

pTRV2-AtRH9 and pTRV2-PRH75, respectively. 

 Bacterial transformations  2.6

 E. coli transformation 2.6.1

E. coli strain DH10B competent cells were thawed on ice for 10 min prior to mixing with 

the plasmid DNA. The mixture of competent cells and the recombinant plasmid was 

incubated on ice for 30 min and followed by a heat shock at 42ºC for 90 seconds and then 

cooled on ice. LB medium was added and the transformed cells were incubated at 37°C 

for one hour with agitation to allow expression of antibiotic resistance genes. The 

resulting culture was then spread on LB agar plates containing the appropriate antibiotics 

to select for the transformed bacteria. The plates were incubated overnight at 37°C and 

colonies that were able to form in the presence of antibiotics were counted as successful 

plasmid DNA transformations after 12-16 h. The colonies were checked by colony PCR 

to confirm the presence of plasmid/gene. 
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Table 4   Primers used to amply AtRH9 and PRH75 DNA fragments that are 

inserted into the TRV-based vector. The EcoRI and BamHI sites are underlined. 

Primer Name Primer sequence (5'-3') 

AtRH9-EcoRΙ-F CCGGAATTCTGATGTTGCTGCCCGTGGACT 

AtRH9-BamHΙ-R CGCGGATCCCACGACCAGTTCGCCCCGTT 

PRH75-EcoRΙ-F CCGGAATTCGCCGAACAGGAAGAGCTGGCA 

PRH75-BamHΙ-R CGCGGATCCAGGTTGAGGTGCAGCAAGGTGC 
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 Agrobacterium transformation 2.6.2

Agrobacterium transformation of plasmid DNA was carried out using the electroporation 

following the Bio-Rad E. coli Pulser (Bio-Rad) manual. The plasmid DNA from BP/LR 

reaction or ligation products were mixed with Agrobacterium strain GV3101 competent 

cells on ice for 10 min. The mixture was transferred to a cold 0.1 cm Gene Pulser® 

cuvette (Bio-Rad) and kept on ice for 10 min. A single electric pulse of 1.8 kV voltage 

was applied using a Bio-Rad MicroPulser. Following electroporation, 200 μl of liquid LB 

medium was immediately added to the mixture and incubated at 28ºC with shaking for 2 

h. The resulting culture was spread on LB agar plates containing the appropriate 

antibiotics. The plates were incubated at 28°C for 48 h and colonies were selected for 

further analysis.  

 Plant genomic DNA extraction 2.7

Arabidopsis leaf tissue (200 mg) was collected and ground in liquid nitrogen. Extraction 

buffer (500 μl) [10 mM Tris-HCl, 1.4 M NaCl, 20 mM ethylenediaminetetraacetic acid 

(EDTA), 2% cetyltrimethyl-ammonium bromide (w/v) (CTAB)] (Porebski et al., 1997) 

was added to each sample, then 500 μl of chloroform:isoamyl alcohol (24:1) was added 

and mixed well, followed by a centrifugation at 10,000 rpm for 5 min. The upper aqueous 

phase was transferred to a clean tube and DNA was precipitated by adding 0.7 volume of 

isopropanol. Samples were incubated at -20°C for 1 h, kept on ice for 10 min and then 

centrifuged at 10,000 rpm for 20 min to collect the pellets. After two washes with 500 µl 

70% ethanol and centrifugation, the pellet was air-dried for 20 min at room temperature 

and resuspended in 50 μl of milli-Q water.  

 RNA isolation 2.8

Total RNA was isolated from Arabidopsis leaf tissue using the RNeasy Plant Mini Kit 

(Qiagen) following the manufacturer's instructions. DNase I treatment was performed to 

remove genomic DNA contamination prior to elution in RNase free water (Invitrogen). 

The concentration of total RNA was determined by measuring absorbance at 260 nm/280 

nm using a spectrophotometer (Nanodrop1000, ABI). Reverse transcription was  
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performed by synthesizing first-strand cDNA from 1.5 µg of total RNA (pretreated with 

DNase I) as the template using Superscript III reverse transcriptase (Invitrogen) and an 

oligo(dT)12–18  primer (Invitrogen) following the manufacturer's protocols. 

 Functional analysis of Arabidopsis T-DNA insertion lines of AtRHs 2.9

 Selection of Arabidopsis T-DNA insertion lines of AtRHs 2.9.1

Genebank accession numbers were used to select Arabidopsis T-DNA insertion lines of 

Arabidopsis DEAD-box RNA helicases (AtRHs or RHs). So far, approximately 113 

sequences from Arabidopsis genome have been annotated in the TAIR unigene set as 

putative RNA helicase genes (Umate et al., 2010). Based on their predicted functions, 42 

AtRH genes were selected for this study. These genes encode the proteins that are related 

to eIF4A (Boudet et al., 2001) or have putative functions in stress response regulation. 

Arabidopsis T-DNA insertion mutants were selected for each gene based on their 

availability and genotype, with a preference for T-DNA insertions in the exon or 5' UTR 

regions. Seed stocks of 128 Arabidopsis T-DNA insertion lines corresponding to these 42 

AtRH genes were obtained from the Arabidopsis Biological Resource Center (ABRC). 

Mutant and insertion information was obtained from the Salk Institute Genomic Analysis 

Laboratory website (http://signal.salk.edu/).  

 Screening for homozygous Arabidopsis T-DNA insertion lines of AtRHs 2.9.2

The genotype of each Arabidopsis atrh T-DNA insertion line was confirmed by PCR 

following the protocols suggested by ABRC (http://signal.salk.edu/tdnaprimers.2.html). 

Two sets of primers were used to amplify the target alleles with two gene specific 

primers to detect the wild-type allele or with a gene specific primer and a T-DNA left 

border specific primer (LB) to identify the mutant allele. Primers for genotyping were 

designed using the T-DNA iSect tool (http://signal.salk.edu/tdnaprimers.2.html) and were 

listed in Table 5. The homozygous lines were used for ELISA analysis and gene 

expression analysis.  
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Table 5   Primers used for PCR-screening of homozygous Arabidopsis atrh T-DNA 

insertion lines. 

Primer Name Primer sequence (5'-3') 

LB (LBb1.3) ATTTTGCCGATTTCGGAAC 

SALK_ 035421-LP TCATAAATGGAAGTGGCGAAG 

SALK_ 035421-RP TCTTGTTGCAACTGATGTTGC 

SALK_ 060677-LP TTCTCATCCACGGTCAAGATC 

SALK_ 060677-RP TGTACAAGAACCCGTTCTTGG 

SALK_068401-LP TTCTAATGTCCTTGCCATTGG 

SALK_068401-RP TTAAGCTTCTCCCTCAAAGGC 

SALK_040389-LP CTACAGGTCTGGTCCAGATGG 

SALK_040389-RP TTAAGCTTCTCCCTCAAAGGC 

SALK_106823-LP TGCGTATGCCTATAGGACCTG 

SALK_106823-RP TGGTGTCCCTGTCTACGTTTC 
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 Gene expression analysis of Arabidopsis T-DNA insertion lines of AtRHs 2.9.3

The expression of AtRH gene in different Arabidopsis T-DNA insertion lines was verified 

by RT-PCR with gene specific primers. cDNA was synthesized from total RNA isolated 

from leaf tissue of Arabidopsis T-DNA insertion mutant plants. PCR amplifications were 

carried out as described below (section 2.10.2). 

 Polymerase chain reaction (PCR) 2.10

 Polymerase chain reaction (PCR)  2.10.1

PCR reactions were carried out using a thermocycler (Eppendorf) following the program 

guideline. For a routine PCR using Phusion® High-Fidelity DNA Polymerase, a 

denaturing temperature of 98°C for 30 seconds was followed by an annealing temperature 

of 55°C for 1 min, and primer extension was achieved at 72°C for 30 seconds per 

kilobase (kb) of target DNA to be amplified. These three steps were repeated for a total 

of 30 to 35 cycles, followed by a final extension for 5 min. 

 RT-PCR 2.10.2

To quantify the expression level of AtRH gene in different T-DNA insertion lines, total 

RNA was extracted from leaf tissue of Arabidopsis T-DNA insertion mutants and wild-

type plants (WT) using the RNeasy Plant Mini Kit (Qiagen) and treated with DNase I 

following the manufacturer's instructions (Invitrogen). cDNA was synthesized by reverse 

transcription of RNA samples and used to determine the mRNA expression levels of 

target genes. Primers were designed within the coding region (Table 6) and target genes 

were amplified with annealing temperature at 60ºC for 30 cycles following the same PCR 

procedure as section 2.10.1. Arabidopsis Actin II  (Actin2) was used as an internal control. 

 Real-time quantitative RT-PCR (qRT-PCR) 2.10.3

Real-time qRT-PCR was conducted and analyzed with the CFX96 Real-Time PCR 

Detection System (Bio-Rad) following the manufacturer’s instructions. For each primer 

set, gel electrophoresis and melting curve analysis were carried out to ensure that only a 

single expected PCR product and melting temperature were generated. Each reaction  
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Table 6   Primers for RT-PCR 

Primer Name Primer sequence (5'-3') 

AtRH9-F ATGATTAGCACAGTACTTCGCCGAT 

AtRH9-R TCAGTAAGATCTTTTACCATCGTTTG 

PRH75-F ATGCCTTCCCTAATGTTATCTGA 

PRH75-R TCAATATCTCTGGCCTCTACCA 

AtRH26-F ATGTCCTCGAAGTTCCCTCTCGGT 

AtRH26-R CTACTTGGTTCTAAGACCAGGAACG 

At-Actin2-F GCCATCCAAGCTGTTCTCTC 

At-Actin2-R GAACCACCGATCCAGACACT 
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contained 40 ng of cDNA template, 5 µM of primer mix, and 1X SsoFast™ EvaGreen® 

Supermix (Bio-Rad) in a total volume of 10 µl of reaction solution. qRT-PCR reactions 

were carried out following cycling conditions: initial incubation at 95ºC for 30 seconds 

followed by 40 cycles of  a denaturing temperature at 95ºC for 5 seconds and an 

annealing temperature at 60ºC  for 5 seconds. Melting curve was recorded after 40 

reaction cycles by heating from 65ºC to 95ºC with a ramp speed of 0.5ºC every 2-5 

seconds. Relative transcript abundances were calculated using CFX Manager Software 

(Bio-Rad). The expression of CP gene of TuMV was detected to reflect viral 

accumulation level using primer sets TuMV-CP-F and TuMV-CP-R. qRT-PCR analysis 

was also carried out to detect AtRH gene expression of the corresponding Arabidopsis T-

DNA insertion lines. Gene specific primers were used for gene expression analysis. 

Expression of Arabidopsis Actin II was used as a reference gene to normalize the data 

and to calculate the relative mRNA abundance levels. For each sample analyzed, three 

biological replicates were included and for each biological replicate, three technical 

repeats were carried out. All results are shown as means of biological replicates with 

corresponding standard errors. The primers used for qRT-PCR were listed in Table 7.    

 Gateway-based cloning 2.11

The Gateway cloning technology exploits an in vitro site-specific recombination system 

to clone the gene of interest into an entry vector using the BP reaction. Subsequently, the 

gene of interest from the entry clone was subcloned into various destination vectors using 

the LR reaction to produce expression clones (Karimi et al., 2002). Gateway protocols 

rely essentially on the BP and LR Clonase® reactions (Hartley et al., 2000). PCR primers 

for Gateway cloning system were designed following the manufacturer’s instructions 

(Invitrogen). DNA fragments were amplified from cDNA of Arabidopsis leaf tissue as 

the template and Phusion® High-Fidelity DNA polymerase was used to construct the 

entry clones. A mixture of 1 μl of purified PCR product, 0.5 μl pDONR221 vector and 

0.5 μl BP Clonase®
 (Invitrogen) was set up for BP reaction. After overnight incubation at 

25ºC, 2 μl of BP reaction product was transferred into 100 μl of E. coli DH10B 

competent cells for transformation as described. The entry clones were linearized and the 

insertion fragments were purified before subcloning into destination vectors.  
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Table 7    Primers for real-time quantitative RT-PCR (qRT-PCR) 

Primer Name Primer sequence (5'-3') 

At-Actin2-F GCCATCCAAGCTGTTCTCTC 

At-Actin2-R GAACCACCGATCCAGACACT 

TuMV-CP-F TGGCTGATTACGAACTGACG 

TuMV-CP-R CTGCCTAAATGTGGGTTTGG 

AtRH9-realtime-F TCGTGCTGGAAAGAAAGGAAGCG 

AtRH9-realtime-R TTCCACAGCAATGCTAGGCAGCTC 

PRH75-realtime-F ATCTGGTGGTATGGAAGCTGCTG 

PRH75-realtime-R AGGAATGCAGGAACCACACTGTC 
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A mixture of 1 μl of linearized entry clone plasmid, 1 μl destination vector and 0.5 μl LR 

Clonase®
 (Invitrogen) was set up for LR reaction. After overnight incubation at 25ºC, 2 μl 

of LR reaction product was transferred into E. coli DH10B for transformation as 

described. 

 Yeast transformation 2.12

Yeast cells were transformed following the Yeast Protocols Handbook (Clontech 

Protocol PT3024-1). A 2 ml rich YPD medium with a yeast colony was grown overnight 

at 30°C with shaking, then sub-cultured into 30 ml of fresh YPD medium and continued 

to grow for another 3-4 h until an optical density at 600 nm (OD600) reached 0.6. Yeast 

cells were pelleted by centrifugation, washed in 500 μl distilled H2O and resuspended in 

100 μl of freshly prepared lithium acetate (LiAc) solution (0.1 M LiAc, 10 mM Tris-HCl 

[PH 7.5], 1 mM EDTA). Denatured carrier DNA (10 μl) and 0.1 μg of plasmid DNA 

were added to 100 μl yeast competent cells and mixed well followed by the addition of 

600 μl of 40% PEG 4000 (50% polyethylene glycol 4000) in LiAc solution. After 

incubation at 30ºC for 30 min with shaking at 200 rpm, 70 μl of DMSO was added, 

followed by a 15 min heat shock in a 42°C water bath. Yeast cells were collected by 

centrifugation and resuspended in 100 μl of TE buffer (10 mM Tris-HCl [PH 7.5], 1 mM 

EDTA). The resuspended cells were plated on an appropriately supplemented SD 

medium and the plates were incubated at 30°C until colonies appeared.  

 Yeast two-hybrid assay 2.13

The Y2H assay was performed following the Clontech yeast protocols (Clontech). To 

perform protein-protein interaction assay, the Gateway-compatible vectors pGBKT7-

DEST (bait) and pGADT7-DEST (prey) were used (Lu et al., 2010). The full-length 

coding regions of NIb, NIa-Pro, VPg and CI from TuMV and the full-length coding 

sequences of Arabidopsis PRH75, IMPA1, IMPA2 and eIF(iso)4E were introduced into 

vectors pGAD and pGBK, respectively. Yeast strain AH109 was co-transformed with 

bait and prey constructs using the LiAc transformation method (Schiestl and Gietz, 1989). 

After the bait and prey constructs (in different combinations) were co-transformed into  
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yeast strain AH109, the yeast was plated on selection agar medium lacking leucine and 

tryptophan (SD/-Leu/-Trp) at 30°C for up to 5 days. The selected individual yeast 

transformants were grown in liquid medium and a series of diluted culture were plated 

onto a high-stringency selective medium lacking adenine, histidine, leucine and 

tryptophan (SD/-Ade/-His/-Leu/-Trp) for up to 5 days to assess positive protein-protein 

interactions. The interaction between TuMV VPg and Arabidopsis eIF(iso)4E expressed 

from pGAD-VPg and pGBK-eIF(iso)4E, respectively was used as a positive control, 

whereas the empty pGBK and pGAD vectors (no insert) were used in co-transformation 

as negative controls. 

 Transient expression in N. benthamiana 2.14

For transient expression analysis in N. benthamiana leaves, constructs were generated in 

Gateway-compatible binary vectors and transformed into Agrobacterium strain GV3101 

via electroporation. Four-week-old N. benthamiana plants were used for Agrobacterium-

mediated transient expression.  

For agroinfiltration, Agrobacterium cultures were grown overnight in LB medium with 

appropriate antibiotic selection at 28°C. The Agrobacterium cells were harvested by 

centrifugation, and then resuspended in infiltration buffer (10 mM MgCl2, 10 mM MES, 

and 150 μM acetosyringone). After incubation for 2 h at room temperature, the culture 

was diluted to 0.5-1.0 at OD600 and agroinfiltrated into leaf epidermal cells under gentle 

pressure using a syringe barrel (Sparkes et al., 2006). After agroinfiltration, the plants 

were maintained under normal conditions for observation. 

For subcellular localization, target genes were recombined with pEarleyGate101 or 

pEarleyGate102 to produce transient expression vectors tagged with YFP or CFP, 

respectively. The corresponding vectors were transformed into Agrobacterium GV3101. 

Agrobacterium cultures were agroinfiltrated into N. benthamiana leaves at 0.5-1.0 of 

OD600. For colocalization studies of two proteins, two Agrobacterium cultures were 

mixed with equal volume, and 150 μl of the mixed cultures were agroinfiltrated into N. 

benthamiana leaves.  
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For BiFC assay, Agrobacterium cultures carrying the fusion constructs containing the N-

terminal or C-terminal fragment of YFP were co-agroinfiltrated into N. benthamiana 

leaves. The reconstitution of YFP signals was monitored using a confocal microscopy 2-4 

days after agroinfiltration as described (Wei et al., 2010). For protein pairs showing the 

YFP signals, the YFP signal and bright-field were imaged and overlaid. 

 Confocal microscopy  2.15

Fluorescence was visualized 2-4 days post infiltration using a Leica TCS SP2 inverted 

confocal microscopy (http://www.leica.com/) with an Argon-Krypton laser. Sections 

from agroinfiltrated leaves were excised and placed between two microscopy cover slides 

with a drop of water. YFP signals were imaged using a 63× water immersion objective at 

an excitation wavelength of 514 nm, and emissions were collected between 525 and 575 

nm. Images of CFP fluorescence were obtained using the same microscopy at an 

excitation wavelength of 458 nm and emissions were collected between 470 and 500 nm. 

GFP signal was excited at 488 nm and the emitted light was captured at 505 to 525 nm. 

mCherry fluorescence was excited at 543 nm and the emissions were captured at 590-630 

nm. Light emitted at 630-680 nm was used to record chlorophyll autofluorescence. Data 

for the different color channels were collected simultaneously. The samples were scanned 

at a resolution of 512×512 pixels. Images were collected with a charge-coupled device 

camera and analyzed by Lecia confocal software.  

 Quantification of Fluorescence Resonance Energy Transfer (FRET) 2.16

efficiency by acceptor photobleaching 

The full-length coding regions of NIb, NIa-Pro, VPg and CI of TuMV were PCR 

amplified and recombined into pEarleyGate101 to produce the transient expression 

vectors of NIb-YFP, NIa-Pro-YFP, VPg-YFP and CI-YFP in plants, respectively. The 

full length coding sequence of PRH75 was amplified and cloned into pEarleyGate102 to 

produce the transient expression vector of PRH75-CFP in plants. To quantify FRET 

efficiency, PRH75-CFP and one of NIb-YFP, NIa-Pro-YFP, VPg-YFP or CI-YFP were 

co-agroinfiltrated into four-week-old N. benthamiana leaves. Forty-eight hours after 

infiltration, leaf epidermal cells exhibiting coexpression of YFP- and CFP-tagged 
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proteins were bleached in the acceptor YFP channel with a 514-nm argon laser. The 

change in donor CFP fluorescence intensity was quantified by comparing pre-bleach and 

post-bleach images using a confocal microscopy (TCS SP2, Leica), and FRET efficiency 

was calculated from the formula as follows: E = [(CFP signal after photobleaching – CFP 

signal before photobleaching) / CFP signal after photobleaching ]× 100 (Karpova and 

McNally, 2006; Song et al., 2011). The combination of PRH75-CFP and GUS-YFP was 

used as a negative control. Error bars represent standard deviations from nine 

independent FRET analysis in three independent experiments. 

 dsRNA-binding dependent fluorescence complementation (dRBFC) assay 2.17

The dRBFC assay was performed based on the system developed by our lab (Cheng et al., 

unpublished data). In detail, the dsRNA-binding domain of B2 of FHV (GenBank 

accession X77156) and the dsRNA-binding domain of VP35 of Marburg virus (MARV) 

(GenBank accession GQ433353) were cloned and recombined into Gateway-compatible 

BiFC vectors pEarleyGate201-YN or pEarleyGate201-YC (Lu et al., 2010) to produce 

B2-YN and VP35-YC, respectively.  

For dRBFC assay, Agrobacterium cultures carrying B2-YN and VP35-YC constructs 

were agroinfiltrated into N. benthamiana leaves which were infected with TuMV::6K2-

mCherry. The YFP signals were monitored 48 h after agroinfiltration to label the dsRNA 

intermediates during viral replication, highlighting the dsRNA-containing 6K2-mCherry 

vesicles as described (Wei et al., 2010). 

 TuMV infection assay  2.18

TuMV infection assay was carried out to test the susceptibility of Arabidopsis atrh T-

DNA insertion lines to TuMV infection. The seedlings of Arabidopsis wild-type plants 

(WT) and selected homozygous Arabidopsis T-DNA insertion mutant plants were 

inoculated with TuMV either by mechanical inoculation or using agroinfiltration. Plants 

were inoculated at the five to six leaf stage of development. Virus was applied to the two 

oldest leaves by mechanical inoculation. 

Approximately 1 g TuMV-infected leaf tissue of N. benthamiana was harvested as the  
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source of virus inoculum. The tissue was homogenized using a mortar and pestle in 10 ml 

inoculation buffer (50 mm potassium phosphate buffer, [pH 7.5]). Carborandum powder 

was lightly dusted on plant leaves intended to be inoculated. A gentle rubbing of the 

TuMV-containing inoculum over the leave surface was performed to facilitate virus entry. 

The negative control plants were rubbed with inoculation buffer also as mock 

inoculations. TuMV infection assay was repeated three times for each Arabidopsis atrh 

T-DNA insertion line. Eight plants for each T-DNA insertion line were inoculated with 

the addition of four plants serving as a mock inoculation treatment. The TuMV infectious 

clone pCambiaTunos/GFP (TuMV-GFP) was used for agroinfiltration. Leaf tissue from 

TuMV-infected Arabidopsis T-DNA insertion mutants was harvested for ELISA analysis. 

 Triple-antibody sandwich enzyme-linked immunosorbent assay (TAS-2.19

ELISA) 

After mechanical inoculation or agroinfiltration, TAS-ELISA was performed to quantify 

viral accumulation level of WT plants and Arabidopsis atrh T-DNA insertion mutants at 

the days indicated. The newly-emerged leaves of TuMV-infected mutants and WT plants 

were harvested for ELISA analysis. Leaf tissue was weighted and ground in ELISA 

sample extraction buffer, then TAS-ELISA was conducted with an ELISA kit (Agdia) 

following the manufacturer’s instructions. Absorbances were recorded at 405 nm with an 

iMark microplate reader (Bio-Rad) (Figure 3).  

 TRV-based virus-induced gene silencing (VIGS) 2.20

To suppress expression of AtRH9 and PRH75 in Arabidopsis by VIGS, a TRV-based 

vector was used. To induce silencing, Agrobacterium carrying pTRV1 vector and 

pTRV2-derived vector were combined in a ratio of 1:1(v/v) mixtures and agroinfiltrated 

into Arabidopsis seedlings. For example, pTRV1 and pTRV2-AtRH9 vectors were 

separately introduced into Agrobacterium and co-agroinfiltrated into Arabidopsis at the 

four leaf stage. Similarly, Agrobacterium carrying pTRV1 and pTRV2-PRH75 were co-

agroinfiltrated to silence PRH75 in Arabidopsis. Plants co-agroinfiltrated with pTRV1 

and pTRV2 empty vectors or with pTRV1 and pTRV2-PDS were used as controls. 

Twelve days post-infiltration, treated plants were mechanically inoculated with TuMV. 
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Figure 3  Methodology of triple-antibody sandwich enzyme-linked immunosorbent 

assay (TAS-ELISA). 

Immobilized capture antibody is attached to a soild-phase surface. After adding test 

sample, antibody-analyte binding occurs. Enzyme-labeled analyte-specific detection 

antibody is added to bind to the analyte, forming the "sandwich". Then substrate is added 

and will produce a colored product in the presence of enzyme. 
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 Gene structure and multiple sequence alignments 2.21

Identification and analysis of domain organization and conserved motifs of Arabidopsis 

PRH75 were performed using the specialized BLAST program for conserved domain 

searches at the National Center for Biotechnology Information (NCBI) protein database 

(http://www.ncbi.nlm.nih.gov/cdd). Multiple sequence alignments of PRH75 and DEAD-

box RNA helicase (DDX) proteins from other plant species were obtained using 

ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html).  

 Statistical analysis 2.22

ELISA values and relative fold changes of TuMV accumulation were compared between 

Arabidopsis atrh T-DNA insertion mutants and WT plants using the student’s t-test. All 

statistical analysis were performed using Microsoft Excel software. A p-value of 0.05 or 

less indicates significant difference. 
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Chapter 3: Results 

 Identification of Arabidopsis DEAD-box RNA helicase (AtRH) genes 3.1

essential for TuMV infection 

 Screening for homozygous T-DNA insertion lines of AtRH genes in 3.1.1

Arabidopsis  

Arabidopsis was used as the model host to study the involvement of Arabidopsis DEAD-

box RNA helicase genes (AtRH or RH) in TuMV infection. Previous studies predicted 

that the Arabidopsis genome is composed of 53 AtRH genes (Aubourg et al., 1999; 

Boudet et al., 2001). A recent study has revealed a total of 113 putative helicase genes 

encoded by the Arabidopsis genome (Umate et al., 2010). Based on the presence of the 

conserved DEAD helicase motif and database annotations, a dataset representing AtRH 

genes in the Arabidopsis genome was generated in the Arabidopsis Information Resource 

(TAIR) database (http://www.arabidopsis.org/) (Poole, 2007). The gene dataset was also 

cross-checked with the NCBI database (http://www.ncbi.nlm.nih.gov/) (Appendix I). 

Although a large number of DEAD-box RNA helicases had been identified as 'computer 

predicted putative helicases', only a few of them were experimentally confirmed to have 

helicase activity and their biological functions were not well characterized. To elucidate 

the role of AtRH genes associated with TuMV infection, Arabidopsis T-DNA insertion 

mutants carrying genetic lesions in the corresponding AtRH genes were analyzed.  

Arabidopsis T-DNA insertion lines corresponding to 42 AtRH genes were selected from 

the TAIR database. These genes encode the proteins that are either related to eIF4A or 

have possible functions in PD formation or stress response regulation. Seed stocks of 128 

Arabidopsis T-DNA insertion lines corresponding to these AtRH genes were ordered and 

obtained from ABRC (Table 8). PCR-based genotyping was carried out to screen for 

homozygous lines for the T-DNA insert. Based on the preliminary genotyping result, a 

total of 53 homozygous Arabidopsis T-DNA insertion lines corresponding to 26 AtRH 

genes were identified. Thirty-five Arabidopsis T-DNA insertion lines did not contain T-

DNA inserts at the reported positions and 40 Arabidopsis T-DNA insertion lines were 

heterozygous lines. For example, only heterozygous progeny plants were recovered for  
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Table 8  List of AtRH genes and corresponding Arabidopsis atrh T-DNA insertion 

lines. 

Gene Names Locus Arabidopsis T-DNA insertion lines 
AtRH family (Boudet et al., 2001) 

RH1 AT4G15850  
SALK_049804; SALK_049805; CS839540; 
SALK_049812; SALK_016796 

DRH1 AT3G01540 SALK_063362; CS879140; SALK_073018; 
SALK_109174 

RH2(eIF-4A-III) AT3G19760 CS808417 
RH3 AT5G26742 SALK_005920 

RH4(eIF-4A) AT3G13920  
SALK_135778; SALK_038072; CS833761;  
SALK_072655; SALK_107633; CS849805; 
SALK_123728; CS877175 

RH6 AT2G45810 CS805454; CS837992 
RH8 AT4G00660 SALK_016830 

RH9 AT3G22310 SALK_035421; SALK_060677; CS807388;  
SALK_063973 

RH10 AT5G60990 SALK_001503; CS854587 
RH11 AT3G58510 SALK_122885; SALK_138586; CS381476 

RH12 AT3G61240 
SALK_016921; SALK_024905; CS811341 
SALK_148563 

RH16 AT4G34910 SALK_066621; CS843929; CS852120 
RH17 AT2G40700 SALK_076414; SALK_027066 
RH18 AT5G05450 SALK_027422; SALK_083512; CS801613 

RH20 AT1G55150 
CS871647; SALK_005956; SALK_114853;  
SALK_124308 

RH21 AT2G33730 SALK_100059; CS839970 
RH22 AT1G59990 SALK_065388; SALK_032399; CS856759 

RH24 AT2G47330 
SALK_087182; SALK_144439; CS831825; 
SALK_045730; SALK_079711 

  SALK_022561; SALK_106823; CS846644; 
CS873761; CS836908; SALK_009049 
CS832362 

RH26 AT5G08610 
  
RH28 AT4G16630 SALK_012018; SALK_020556; SALK_082807 
RH29 AT1G77030 SALK_112020 
RH30 AT5G63120 CS848715 
RH31 AT5G63630 SALK_090068 
RH33 AT2G07750 SALK_119034; SALK_017083 
RH34 AT1G51380 CS815277; SALK_068534 
RH37 AT2G42520 SALK_099097 
RH40 AT3G06480 SALK_056041; SALK_117253; CS857553 
RH41 AT3G02065 SALK_020125; CS843411; CS858153 

RH46 AT5G14610 
SALK_068359; SALK_068406; CS852203;  
SALK_086013; SALK_116644 
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RH48 AT1G63250 SALK_013253; SALK_144751; SALK_144971 
RH49 AT1G71370 SALK_140258 
RH52 AT3G58570 SALK_068712; SALK_116448 
RH53 AT3G22330 SALK_056387; SALK_065080 

RH57 AT3G09720 
SALK_019721; SALK_143440; SALK_020854 
SALK_140120; CS823406 

RH58 AT5G19210 CS832329 

PRH75 AT5G62190 
SALK_060686; SALK_068401;SALK_066279; 
SALK_016729; SALK_040389;SALK_040581; 
SALK_018195; SALK_062900 

Increased Size Exclusion Limit (ISE) (Burch-Smith and Zambryski, 2010) 
ISE1(RH47) AT1G12770 CS821051; CS807604; CS802911; CS843211 

ISE2 AT1G70070 
SALK_022088; SALK_117413; CS802933; 
SALK_137857; CS835737; CS848778; 
CS814056; CS16227 

Stress Response Suppressor (STRS) (Kant et al., 2007) 

STRS1(RH5) AT1G31970 CS815216; CS849995; CS851469;  
SALK_062509 

STRS2(RH25) AT5G08620 SALK_140146; SALK_028850 
eIF-4A putative 

eIF-4A-2 AT1G54270 SALK_051038 
eIF-4A-3 AT1G72730 SALK_065267 
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Arabidopsis mutants with T-DNA insertion in eIF4A, Increased Size Exclusion Limit 

(ISE) 1 and ISE2. These results were consistent with the reported embryo-defective 

phenotypes in homozygous Arabidopsis lines corresponding to those genes. eIF4A is 

required for mRNA translation and is essential for plant growth and development. 

Disruption of eIF4A function would cause deleterious effects in plants and its 

homozygote is nonviable (Huang et al., 2010). ISE1 and ISE2 are required for PD 

formation and embryogenesis, and their null mutants are embryo lethal (Kobayashi et al., 

2007).  

 Identification of AtRH genes associated with TuMV infection 3.1.2

Based on the availability of homozygous T-DNA insertion lines, we further selected 41 

T-DNA insertion lines corresponding to 26 AtRH genes, with a preference for T-DNA 

insertions in either an exon or the 5' UTR region. These homozygous mutants and WT 

plants in parallel were evaluated for their susceptibility to TuMV infection by conducting 

a TuMV infection assay (Table 9). Selected Arabidopsis T-DNA insertion lines and wild-

type plants were rub-inoculated with TuMV, followed by observation of disease 

symptoms. Newly-emerged leaves from systemically TuMV-infected T-DNA mutant 

plants and wild-type plants (WT) were sampled and assayed for viral CP accumulation at 

10 dpi (days post inoculation) by ELISA (Figure 4).  

Among these 41 mutant lines, 18 AtRH gene mutant lines, i.e., T-DNA insertion lines of 

DRH1, AtRH11, AtRH16, AtRH18, AtRH20, AtRH21, AtRH24, AtRH30, AtRH31, 

AtRH33, AtRH37, AtRH40, AtRH41, AtRH46, AtRH53, AtRH57, STRS1, and STRS2 

displayed higher CP accumulation compared to WT plants and were consistent with the  

enhanced severity of symptoms caused by TuMV infection. Those mutants exhibited 

more severe phenotypes, including stunted growth, yellowish and curled leaves, chlorotic 

and mosaic lesions and abnormal flower morphology. In contrast, TuMV CP 

accumulation in T-DNA insertion lines of AtRH9, AtRH26 and PRH75 were significantly 

lower than the level observed in WT plants. The attenuated symptoms in the 

systemically-infected plants of those mutant lines indicated that either viral replication or 

long-distance movement were affected. Intriguingly, ELISA results also revealed that  
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Table 9  List of homozygous Arabidopsis atrh T-DNA insertion lines for ELISA 

analysis. 

Gene name Locus Arabidopsis T-DNA insertion lines 
RH1 AT4G15850 SALK_049805; CS839540 

DRH1 AT3G01540 SALK_063362; SALK_073018 

RH9 AT3G22310 SALK_035421; SALK_060677 

RH10 AT5G60990 SALK_001503 

RH11 AT3G58510 SALK_122885; SALK_138586 

RH12 AT3G61240 SALK_024905; SALK_148563 

RH16 AT4G34910 CS852120 

RH18 AT5G05450 SALK_083512 

RH20 AT1G55150 SALK_124308; SALK_114853 

RH21 AT2G33730 SALK_100059; CS839970 

RH22 AT1G59990 SALK_032399; SALK_065388  

RH24 AT2G47330 SALK_087182; SALK_045730 

RH26 AT5G08610 SALK_106823; CS832362 

RH28 AT4G16630 SALK_012018; SALK_082807 

RH30 AT5G63120 CS848715 

RH31 AT5G63630 SALK_090068 

RH33 AT2G07750 SALK_017083; SALK_119034  

RH37 AT2G42520 SALK_099097 

RH40 AT3G06480 SALK_056041 

RH41 AT3G02065 SALK_020125; CS843411 

RH46 AT5G14610 SALK_068359 

RH53 AT3G22330 SALK_056387 

RH57 AT3G09720 SALK_019721; SALK_143440 

PRH75 AT5G62190 SALK_040389; SALK_068401 

STRS1 AT1G31970 SALK_062509 

STRS2 AT5G08620 SALK_028850 
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Figure 4  ELISA analysis of candidate Arabidopsis atrh T-DNA mutants. 

A total of 41 homozygous Arabidopsis T-DNA insertion mutant lines corresponding to 

26 AtRH genes were selected for TuMV infection assay. The Arabidopsis atrh T-DNA 

insertion mutants and WT plants were mechanically inoculated with TuMV. ELISA 

analysis was used to determine the accumulation of TuMV CP in atrh T-DNA mutants 

and WT plants. Extracts from newly-emerged leaves of TuMV-infected individual plants 

were subjected to ELISA using TuMV CP-specific antibody. The y-axis represents 

ELISA values at 10 days post inoculation (dpi). Error bars represent standard deviation (n 

≥ 5). Asterisk indicates significant difference from WT plants (student’s t test, p<0.05). 
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TuMV CP levels were reduced in newly-emerged leaves of T-DNA insertion lines of 

AtRH1, AtRH10, AtRH12, AtRH22 and AtRH28 relative to WT plants. But the reduction 

did not reach significant levels. TuMV-infected wild-type Arabidopsis plants displayed 

symptoms such as mottle and mosaics, leaf distortion, curled bolts and stunting, leaves at 

late infection stages developed necrotic lesions. Compared with WT plants, only mild 

disease symptoms were developed on the Arabidopsis atrh9, atrh26 and prh75 mutant 

plants, suggesting these atrh mutants conferred partial resistance against TuMV infection. 

These data also supported the biological relevance of the genes AtRH9, AtRH26 and 

PRH75 to TuMV infection. Thus, T-DNA insertion lines of AtRH9, AtRH26 and PRH75 

were selected for further analysis.  

 Characterization of Arabidopsis atrh9 T-DNA insertion line 3.2

   Verification of Arabidopsis atrh9 T-DNA insertion line 3.2.1

Two atrh9 T-DNA insertion lines were acquired and analyzed (Figure 5A and 5B). T-

DNA insertion line SALK_035421 contains a T-DNA insertion within Exon 6 of AtRH9, 

which recently has been confirmed to be a true knockout mutant on the basis of a 

Northern blot analysis (Köhler et al., 2010). At3g22310-encoded protein was previously 

designated Putative Mitochondrial RNA Helicase1 (PMH1), and SALK_035421 was 

named pmh1-1 (Matthes et al., 2007). In this thesis, SALK_035421 was designated atrh9 

in consistency of the gene name AtRH9 in the AtRH family (Aubourg et al., 1999). A 

homozygous insertion in atrh9 was identified using two gene-specific primers (LP+RP) 

to detect wild-type genotype and a gene-specific primer (RP) with a T-DNA specific 

primer (LB) to detect T-DNA insertion genotype (Figure 5C). Loss of transcript in atrh9 

was revealed by reverse transcription (RT)-PCR analysis using AtRH9-specific primers 

(Figure 5D). RT-PCR result was consistent with the published data (Köhler et al., 2010). 

Another AtRH9 T-DNA insertion line SALK_060677 with a T-DNA insertion located in 

the 3' untranslated region (UTR), was genotyped as a homozygous line for AtRH9 as well 

(Figure 5E). This mutant line is named atrh9-1. Since the insertion position of the T-

DNA in this mutant was mapped to the 3' untranslated region, which suggested a likely 

knockdown expression, we did not test this mutant further. 
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A.                                                                       
AT3G22310 (AtRH9) 

 
 

B. 

  Gene name Locus Salk line  T-DNA insertion sites 

AtRH9   AT3G22310 
 SALK_035421.56.00.x 
 SALK_060677.54.50.x 

Exon 
3' UTR 
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Figure 5  Genotyping and RT-PCR analysis of Arabidopsis atrh9 T-DNA 

insertion lines. 

(A) Schematic characterization of AtRH9 and T-DNA insertion sites (triangles) in 

Arabidopsis T-DNA insertion mutants. Exons and introns are indicated by boxes and 

lines respectively. 5' and 3' untranslated regions are shown as open boxes.  

(B) A summary of the two Arabidopsis atrh9 T-DNA insertion lines. 

(C) Screening for homozygous atrh9 T-DNA insertion lines. PCR was conducted using 

genomic DNA from atrh9 (SALK_035421) and WT plants. Two gene-specific primers 

(LP+RP) were used to detect wild-type genotype. A T-DNA specific primer and a gene- 

specific primer (LB+RP) were used to amplify a single PCR fragment which represented 

the pattern of homozygous genotype. WT, wild-type Arabidopsis; LP, left genomic 

primer; RP, right genomic primer; LB, Left border primer of the T-DNA insertion.  

(D) RT-PCR analysis of AtRH9 expression in atrh9 mutants and WT plants 

(SALK_035421). RT-PCR was performed using cDNA derived from leaf tissues of 

Arabidopsis atrh9 mutants and WT plants with AtRH9 specific primers. Actin2 (Actin) 

gene was used as an internal control.  

(E) Screening for homozygous atrh9-1 T-DNA insertion line, SALK_060677. A single 

PCR product was amplified using genomic DNA from the mutant using a T-DNA 

specific primer and a gene-specific primer (LB+RP).  
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 The accumulation of TuMV was reduced in atrh9 mutant plants 3.2.2

Under standard growth conditions, atrh9 mutant plants displayed no abnormal 

phenotypes distinguishable from Arabidopsis WT plants. To confirm the partial TuMV 

resistance in the atrh9 mutant plants, three-week-old atrh9 mutants and WT plants were 

agroinfiltrated with a GFP-tagged TuMV infectious clone (TuMV-GFP). To monitor 

TuMV infection in these plants, confocal microscopy was used to observe GFP 

fluorescence intensity. Strong signals of GFP fluorescence were observed in the newly-

emerged leaves of infected WT plants, whereas only weak and scattered GFP 

fluorescence was detected in atrh9 mutant plants at 10 dpi (Figure 6A). Real-time RT-

PCR was carried out to quantify TuMV accumulation. In the atrh9 mutant plants, TuMV 

viral accumulation showed a substantial decrease by 85% with respect to that in WT 

plants at 15 dpi (Figure 6B). In contrast to severe TuMV symptoms such as necrosis, 

chlorotic leaves and dwarfing developed on WT plants, atrh9 mutant plants displayed 

very minor symptoms, such as curled bolts (Figure 6C). Taken together, these results 

suggest that AtRH9 function is required for successful progression of TuMV infection.   

 Knock down of AtRH9 expression in Arabidopsis by VIGS  3.2.3

To further confirm the involvement of AtRH9 in TuMV infection, a TRV-based VIGS 

was used to silence AtRH9 expression in Arabidopsis. A cDNA fragment of AtRH9 was 

cloned into a pTRV2-derived vector to produce pTRV2-AtRH9. Arabidopsis wild-type 

seedlings were co-agroinfiltrated with the vectors pTRV2-AtRH9 and pTRV1. At 12 

days post agroinfiltration, a bleaching phenotype was observed in control plants co-

agroinfiltrated with pTRV2-PDS and pTRV1, indicating VIGS was established. At this 

time point, the TuMV infection assay was applied on AtRH9-downregulated plants 

(treated with pTRV2-AtRH9 and pTRV1) as well as WT plants (treated with buffer) and 

negative control plants (treated with empty pTRV vectors). Real-time RT-PCR was 

performed to evaluate AtRH9 expression and TuMV accumulation at 15 dpi (Figure 7A).  
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Figure 6  TuMV accumulation was reduced in atrh9 mutant plants. 

(A) Three-week-old Arabidopsis atrh9 mutants (SALK_035421) and WT plants were 

agroinfiltrated with TuMV-GFP infectious clone. Newly-emerged leaves were observed 

by confocal microscopy 10 days post infiltration, and representative images are shown. 

Mock, atrh9 mutants and WT plants were agroinfiltrated with buffer. TuMV-GFP, green 

fluorescence emissions; Chl, chloroplast autofluorescence. Bars, 50 µm.  

(B) Relative fold changes of TuMV accumulation in atrh9 mutant plants (SALK_035421) 

by real-time RT-PCR at 15 dpi. RNA was extracted from newly-emerged leaves of 

infected individual plants at 15 dpi. Three independent experiments, each consisting of 

three biological replicates were carried out for quantification analysis. Each value was 

normalized against Actin2 transcripts in the same sample. The values are presented as 

means of fold change relative to WT. Error bars represent standard deviation (n=9). 

Asterisk indicated significant difference from WT plants (student’s t test, p<0.05).  

(C) Phenotypes of TuMV-infected atrh9 mutants and WT plants. Images were taken at 15 

dpi. Mock, inoculated with buffer; TuMV, inoculated with TuMV. 
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The severely reduced level of the AtRH9 transcript in AtRH9-downregulated plants was 

coupled with partial resistance to TuMV infection (Figure 7B). Consistent with the 

results from TuMV infection assays on the atrh9 mutant plants, these data suggest that 

downregulation of AtRH9 effectively inhibits TuMV infection in Arabidopsis. 

 Subcellular localization of Arabidopsis AtRH9 3.2.4

To gain insight into the molecular function of AtRH9 required for TuMV infection, 

subcellular localization analysis was performed. A translational fusion of AtRH9 with 

YFP controlled by the CaMV 35S promoter was transiently expressed in N. benthamiana 

leaf epidermal cells via agroinfiltration. Subcellular localizations of fusion proteins were 

monitored using a Leica TCS SP2 inverted confocal microscopy 48 h post agroinfiltration. 

Consistent with a previous study (Matthes et al., 2007), AtRH9-YFP was observed 

mostly in the cytoplasm (Figure 8).  

 Arabidopsis AtRH9 interacts with TuMV NIa-Pro in planta 3.2.5

To investigate if AtRH9 interacts with TuMV viral proteins in vivo, the BiFC assay was 

employed. The AtRH9 gene and the coding sequence for each of the 11 TuMV viral 

proteins were introduced into BiFC vectors that contained DNA fragments encoding the 

N- or C-terminal half of YFP, respectively, and transiently co-expressed into N. 

benthamiana epidermal cells by co-agroinfiltration. The YFP signal would be emitted 

when split fluorescent protein segments were brought together as a result of positive 

interaction between two tested proteins. YFP signals were detected only when AtRH9 

and NIa-Pro were co-expressed, suggesting AtRH9 interacts with NIa-Pro. The 

interaction was apparent in both the nucleus and cytoplasm, which was consistent with 

the known subcellular localization of NIa-Pro (Restrepo et al., 1990). No YFP signal was 

observed in two negative control experiments (AtRH9-YC and YN, NIa-Pro-YN and YC) 

(Figure 9). 
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Figure 7   Knockdown of AtRH9 expression affects TuMV infection in Arabidopsis. 

(A) Phenotypes of TuMV-infected AtRH9-knockdown plants, empty VIGS vector-

infiltrated plants and Arabidopsis WT plants. pTRV-PDS-TuMV, wild-type Arabidopsis 

plants infiltrated with TRV-based VIGS vectors targeting phytoene desaturase (PDS) to 

silence and then inoculated with TuMV; pTRV-AtRH9-TuMV, WT infiltrated with 

TRV-based VIGS vectors targeting AtRH9 followed by inoculation with TuMV; pTRV-

TuMV, WT infiltrated with empty TRV-based VIGS vectors and then inoculated with 

TuMV; WT-Mock, WT infiltrated with buffer and then inoculated with buffer; WT-

TuMV, WT inoculated with TuMV. Images were taken 15 days post inoculation. TuMV, 

inoculated with TuMV. Mock, inoculated with buffer. 

(B) Relative fold changes in TuMV accumulation and expression level of AtRH9 in 

AtRH9-silenced Arabidopsis plants and WT plants. RNA was extracted from leaf tissues 

for real-time RT-PCR analysis at 15 dpi. Three independent experiments, each consisting 

of three biological replicates were carried out for quantification analysis. Target genes 

were normalized against Actin2 transcripts in each sample. The values are presented as 

means of fold change relative to the WT plants.  Error bars represent standard deviations.  
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Figure 8   Subcellular localization of Arabidopsis AtRH9. 

Transient expression of AtRH9-YFP in N. benthamiana leaf epidermal cells. YFP 

fluorescence was observed using a confocal microscopy 48 h post agroinfiltration. DIC, 

differential interference contrast. Bars, 30 µm.  
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Figure 9  The BiFC assay for detection of the interaction between AtRH9 and 

TuMV NIa-Pro in planta. 

N. benthamiana leaves were co-agroinfiltrated with constructs expressing NIa-Pro and 

AtRH9 fused to the N- and C- terminal half of YFP, respectively. The reconstructed YFP 

fluorescence was recorded 48 h post agroinfiltration using a confocal microscopy. Leaves 

coexpressing with AtRH9-YC and YN or NIa-Pro-YN and YC were shown as negative 

controls. No YFP fluorescence was detected in negative controls. DIC, differential 

interference contrast. Bars, 35 µm. 
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 Characterization of Arabidopsis atrh26 T-DNA insertion line  3.3

 Verification of Arabidopsis atrh26 T-DNA insertion line 3.3.1

To verify the homozygosity of the atrh26 T-DNA insertion line SALK_106823, PCR-

based genotyping and RT-PCR analysis were carried out. The T-DNA insertion in this 

mutant line was located in the promoter region of AtRH26 (Figure 10A). Essentials of  

PCR genotyping as described earlier were conducted to identify the T-DNA insertion 

genotype (Figure 10B). PCR genotyping results were consistent in two generations. 

Therefore, the mutant obtained was confirmed as a homozygous T-DNA insertion line, 

and was named atrh26. RT-PCR of RNA isolated from atrh26 leaf tissue failed to 

amplify the corresponding full-length AtRH26 mRNA using gene-specific primers. This 

result further supports that the atrh26 represents a homozygous knockout mutant line 

(Figure 10C).   

 Arabidopsis AtRH26 is necessary for TuMV infection 3.3.2

Arabidopsis atrh26 mutant plants exhibited normal growth and development under 

standard growth conditions (Figure 10D). The involvement of AtRH26 in TuMV 

infection was evaluated by analyzing the susceptibility of Arabidopsis atrh26 mutants to 

TuMV infection. After inoculation with TuMV, atrh26 mutant plants showed mild 

symptoms compared with the TuMV-infected WT plants (Figure 10E).  

 Subcellular localization of Arabidopsis AtRH26 3.3.3

To localize AtRH26, a plant expression vector containing the coding sequence for 

AtRH26 tagged with the CFP controlled by the CaMV 35S promoter was agroinfiltrated 

into N. benthamiana leaf epidermal cells. AtRH26-CFP signal was visualized by a 

confocal microscopy 48 h post agroinfiltration. AtRH26-CFP was found in the nucleus 

and cytoplasm (Figure 11).  
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Figure 10  Characterization of homozygous Arabidopsis atrh26 T-DNA insertion 

line. 

(A) Schematic characterization of AtRH26 and T-DNA insertion sites (triangles) in 

Arabidopsis T-DNA insertion mutants. Exons and introns are indicated by boxes and 

lines, respectively. 5' and 3' untranslated regions are shown as open boxes. 

(B) Genotyping of Arabidopsis atrh26 T-DNA insertion mutants (SALK_106823). PCR 

was conducted using genomic DNA to amplify a single DNA fragment, which 

corresponds to the homozygous genotype or a single DNA product from WT plant as a 

control.  

(C) RT-PCR analysis of the expression of Arabidopsis AtRH26 in WT and atrh26 T-

DNA insertion line (SALK_106823). RT-PCR was performed using cDNA derived from 

leaf tissues of atrh26 mutants and WT plants with AtRH26 gene-specific primers. Actin2 

(ACT2) gene was used as an internal control. 

(D) Four-week-old of atrh26 T-DNA insertion mutants and WT plants. 

(E) Arabidopsis atrh26 mutants and WT plants inoculated with TuMV or buffer. TuMV, 

inoculated with TuMV. Mock, inoculated with buffer. Photos were taken at 10 dpi. 

 

  



74 

 

 

 

 
 
 
 

Figure 11    Subcellular localization of Arabidopsis AtRH26. 

Transient expression of AtRH26-CFP in N. benthamiana leaf epidermal cells. CFP 

fluorescence was observed using a confocal microscopy 48 h post agroinfiltration. DIC, 

differential interference contrast. Bars, 30 µm.  
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 Characterization of Arabidopsis prh75 T-DNA insertion line 3.4

In a recent published report, PRH75 was shown to be essential for Arabidopsis embryo 

development, implying that there are no knockout T-DNA insertion mutants available for 

PRH75 (Nayak et al., 2013). The T-DNA insertion line SALK_040389 harbors a T-DNA 

insertion in the 5' UTR region of PRH75, 56 bp upstream from the start codon, and was 

named prh75 (Figure 12A and 12B). PCR-based genotyping indicated that the mutant 

line was homozygous (Figure 12C). To determine if this homozygous mutant line is a 

knockout line, RT-PCR was conducted to examine PRH75 expression. Although T-DNA 

insertion did not abolish PRH75 expression, it indeed remarkably reduced PRH75 

expression when compared with WT plants (Figure 12D). Thus, the T-DNA insertion line 

prh75 used in this study is a knockdown mutant line. The down-regulation of PRH75 

expression is likely due to position effect, since T-DNA was inserted in the 5' 

untranslated region. Knockdown of PRH75 expression dose not result in any apparent 

change during plant growth and development, and prh75 mutant plants are 

morphologically indistinguishable from wild-type plants. Another T-DNA insertion line, 

SALK_068401, containing a T-DNA insertion 10 bp upstream of the translation start site 

of PRH75 was also included in TuMV infection assay. The homozygous plants were 

identified by PCR analysis. PCR-based genotyping analysis showed that SALK_068401 

is a homozygous T-DNA insertion line (Figure 12E). RT-PCR analysis revealed that this 

line is also an expression knockdown mutant line (Figure 12F). This mutant line is named 

prh75-1. The T-DNA insertion in both lines was verified by sequencing analysis of 

genomic DNA.  

 PRH75 was required for TuMV infection 3.4.1

To determine if there is a correlation between the lack of PRH75 and debilitation of 

TuMV infection, Arabidopsis prh75 and WT plants were agroinfiltrated with TuMV-GFP. 

Confocal microscopy was employed to observe GFP expression levels in order to validate 

the susceptibility of those mutant plants to TuMV infection. Strong GFP fluorescence 

was observed in the newly-emerged leaves of infected WT plants whereas only weak 

GFP fluorescence was detected in prh75 mutant plants at 10 dpi (Figure 13A).  
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Figure 12   Genotyping and RT-PCR analysis of Arabidopsis prh75 T-DNA 

insertion lines. 

(A) Schematic characterization of PRH75 and T-DNA insertion sites (triangles) in 

Arabidopsis T-DNA insertion mutants. Exons and introns are indicated by boxes and 

lines respectively. 5' and 3' untranslated regions are shown as open boxes. 

(B) A summary of two prh75 T-DNA insertion mutant lines used in this study. 

(C) Screening for the homozygous Arabidopsis prh75 T-DNA insertion lines. PCR was 

conducted using genomic DNA from prh75 (SALK_040389) and WT plants. Two gene- 

specific primers (LP+RP) were used to detect wild-type genotype. A T-DNA specific 

primer and a gene-specific primer (LB+RP) were used to amplify a single PCR product 

which represented the pattern of homozygous genotype. WT, wild-type Arabidopsis; LP, 

left genomic primer; RP, right genomic primer; LB, Left border primer of the T-DNA 

insertion.  

(D) RT-PCR analysis of PRH75 expression in prh75 mutants (SALK_040389) and WT 

plants. RT-PCR was performed using cDNA derived from leaf tissues of Arabidopsis 

prh75 mutants and WT plants with PRH75 specific primers. Actin2 (Actin) was used as 

an internal control.  

(E) Screening for the homozygous Arabidopsis prh75 T-DNA insertion line, 

SALK_068401. A single PCR product was amplified using genomic DNA from leaf 

tissues using a T-DNA specific primer and a gene-specific primer (LB+RP).  

(F) RT-PCR analysis of PRH75 expression in prh75-1 mutants (SALK_068401) and WT 

plants. RT-PCR was performed using cDNA derived from leaf tissues of prh75-1 mutants 

and WT plants with PRH75 specific primers. Actin2 (Actin) was used as an internal 

control. 
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TuMV accumulation in prh75 mutants and WT plants was monitored by real-time RT-

PCR. TuMV viral RNA accumulation decreased significantly in prh75 mutant plants in 

comparison with that in WT plants at 15 dpi (Figure 13B). Consistent with the decreased 

TuMV accumulation, no severe TuMV-induced symptoms developed in prh75 mutant 

plants (Figure 13C). Therefore, knockdown of PRH75 leads to resistance to TuMV 

infection. Altogether, these data strongly indicate that PRH75 is essential for TuMV 

infection in Arabidopsis.  

 Silencing of PRH75 in Arabidopsis by VIGS confers resistance to TuMV 3.4.2

Given that knockout mutants are not available for PRH75, VIGS was employed to knock 

down the expression of PRH75 in Arabidopsis in order to further confirm its requirement 

for TuMV infection. A cDNA fragment of PRH75 was cloned into a pTRV2-derived 

vector, and Arabidopsis WT plants were co-agroinfiltrated with the resulting pTRV2-

PRH75 together with pTRV1. After VIGS was established 12 days post agroinfiltration, 

the infiltrated plants were mechanically inoculated with TuMV. Real-time RT-PCR was 

performed to detect PRH75 mRNA abundance and TuMV accumulation at 15 dpi. The 

amount of PRH75 mRNA in treated plants was greatly reduced when compared with 

negative control plants which were co-agroinfiltrated with empty pTRV2 and pTRV1 

vectors (Figure 14A). PRH75-knockdown Arabidopsis plants showed weak TuMV 

symptoms, such as curled bolts and were slightly shorter in height. In contrast, mock-

treated plants (treated with buffer) and negative control plants (treated with empty pTRV 

vectors) were highly susceptible to TuMV and showed severe typical TuMV infection 

symptoms such as stunted growth and chlorosis and necrosis (Figure 14B). These data 

suggest that silencing of PRH75 confers resistance to TuMV infection, consistent with 

the results that the prh75 mutant is resistant to TuMV infection (Figure 13). 
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Figure 13   Relative TuMV accumulation in prh75 mutant and wild-type plants. 

(A) Confocal images of newly-emerged leaves of TuMV-infiltrated prh75 mutants and 

Arabidopsis WT plants at 10 days post infiltration. TuMV, prh75 mutants and WT plants 

agroinfiltrated with TuMV-GFP. Mock, plants agtoinfiltrated with buffer; TuMV-GFP, 

green fluorescence emissions; Chl, chloroplast autofluorescence. Bars, 50 µm. 

(B) Real-time RT-PCR of TuMV accumulation in prh75 mutants and WT plants. RNA 

was extracted from newly-emerged leaves of infected prh75 mutants (SALK_040389) at 

15 dpi. Three independent experiments, each consisting of three biological replicates, 

were carried out for quantification analysis. TuMV accumulation level was normalized 

against Actin2 transcripts in the same sample and the means of fold change was 

calculated relative to the TuMV level in WT plants. Error bars represent standard 

deviation (n=9). Asterisk indicates significant difference from WT plants (student’s t test, 

p<0.05). 

(C) Phenotypes of TuMV-infected prh75 mutants and WT plants. Images were taken at 

15 dpi. Mock, inoculated with buffer; TuMV, inoculated with TuMV. 
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Figure 14  PRH75-silenced plants exhibit partial resistance to TuMV infection. 

(A) Symptoms of TuMV-infected PRH75-silenced plants, empty VIGS vector-infiltrated 

plants and WT plants. pTRV-PDS-TuMV, Arabidopsis WT plants infiltrated with TRV-

based VIGS vectors targeting PDS to silence and then inoculated with TuMV; pTRV-

PRH75-TuMV, Arabidopsis WT plants infiltrated with TRV-based VIGS vectors 

targeting PRH75 and then inoculated with TuMV; pTRV-TuMV, Arabidopsis WT plants 

infiltrated with empty TRV-based VIGS vectors and then inoculated with TuMV; WT-

Mock, Arabidopsis WT plants infiltrated with buffer then inoculated with buffer; WT-

TuMV, Arabidopsis WT plants inoculated with TuMV. Images were taken at 15 dpi. 

TuMV, inoculated with TuMV; Mock, inoculated with buffer. 

(B) Relative fold changes of TuMV accumulation and PRH75 expression in PRH75-

silenced and WT plants. RNA was extracted 15 days post inoculation for real-time RT-

PCR analysis. Three independent experiments, each consisting of three biological 

replicates, were carried out for quantification analysis. Target genes were normalized 

against ActinII transcripts in each sample. The values are presented as means of fold 

change relative to WT plants. Error bars represent standard deviations.  
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 Molecular characterization of PRH75 and TuMV interactions 3.5

 The DEAD-box RNA helicase PRH75 is conserved in many plants. 3.5.1

PRH75 is a DEAD-box RNA helicase that has been found in many plant species such as 

spinach (Spinacia oleracea) and mung bean (Vigna radiate) (Lorković et al., 1997; Li et 

al., 2001). BLASTX searches of the NCBI database revealed a number of plant proteins 

with sequence and structure similarities to PRH75 of Arabidopsis. The 12 proteins 

showing the highest similarity to PRH75 were from the following species: Capsella 

rubella, Camelina sativa, Brassica rapa, Eutrema salsugineum, Arabis alpine, Brassica 

napus, Tarenaya hassleriana, Vitis vinifera, Jatropha curcas, Eucalyptus grandis, Cicer 

arietinum and Citrus clementina. A multi-sequence alignment of corresponding motifs of 

PRH75 against homologs from different plant species was conducted using the 

CLUSTAL W program. The alignment result demonstrated that PRH75 shares all the 13 

conserved motifs associated with DEAD-box RNA helicases, i.e., motif Q, I, Ia, Ib, Ic, II, 

III, IV, IVa, V, Va, Vb and VI (Figure 15).  

The full-length cDNA of Arabidopsis PRH75 is 2384 bp in length containing an ORF of 

2016 bp which encodes a polypeptide of 671 amino acids (aa), a 94-bp 5' UTR and a 274-

bp 3' UTR (Figure 16A). A conserved domain analysis of Arabidopsis PRH75 using the 

NCBI structure program (http://www.ncbi.nlm.nih.gov/Structure/index.shtml) identified 

the DEAD-box signature (aa 115 to 304), the helicase conserved domain (aa 376 to 441), 

and the GUCT domain that is considered as an RNA-binding domain at the C-terminus 

(aa 530 to 612) (Figure 16B).  

Based on structural and functional similarity of conserved motifs, PRH75 motifs Q, I, II 

and VI are required for ATP binding and hydrolysis, whereas motifs Ia, Ib, Ic, IV, IVa 

and V are suggested to be responsible for RNA-binding (Rocak and Linder, 2004). 

Motifs III and Va are assumed to coordinate ATPase and unwinding activities (Tanner et 

al., 2003) (Figure 16C). Recently, Arabidopsis PRH75 has been demonstrated to exhibit 

the capacity for RNA unwinding with RNA duplexes in an ATP-dependent manner 

(Nayak et al., 2013). 
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                                                                                                                                                                                   Q 
CrDDX          LG--AEDVEVD-------NPNAISKFRISPSLREKLKERGIEALFPIQATTFDMVLDGAD 135 
CsDDX          LG--IEDVEVD-------NPNAVSKFRISAPLREMLKKNGIEALFPIQATTFDMVLDGAD 141 
PRH75          LG--VEDVEVD-------NPNAVSKFRISAPLREKLKANGIEALFPIQASTFDMVLDGAD 135 
BrDDX          LS-VVEDVKVVE------NPNAVSKFRISDPLREKLKEKGIEALFPIQATTFDMVLDGAD 141 
BnDDX          LSSSVEDVKVD-------NPNAVSNFRISDPLKAKLKEKGIEALFPIQATTFDMVLDGAD 126 
EsDDX          LG--VEDVEVD-------NPNAVSRFRISAPLREKLKQKGIEALFPIQAMTFDMVLDGAD 148 
AaDDX          VG--VEDVVVD-------NPNAVSKFRISDPLREQLKKKGIEALFPIQAMTFDMVLDGAD 149 
ThDDX          VD---EEEEEEE------NPNAVTKFRISTPVVNKLKEKGIAALFPIQAMTFDMVLDGSD 148 
VvDDX          EME-EEEGKAE------ENPNALSNFRISEPLREKLKSKGIEALFPIQAMTFDTILDGSD 158 
CcDDX          KVE-PEAGVEEQERGESEHPNAVSRFRISVPLREKLKSKGIESLFPIQAMTFDMVLDGSD 148 
EgDDX          DGD-DEVAQEE-------NPNAVSNFRISDSLRLKLKDNKIEALFPIQAMTFDIVLDGTD 165 
JcDDX          KLDEDEEEEGEREVAKAEDPNATSKFRISLPLREKLKSRGIEALFPIQAMTFNDILDGCD 162 
CaDDX          KVEDDDDEE-EVAVVKKDDPNAVTNFRISEPLKMKLKEKGIEALFPIQAMTFNTILDGSD 144 
 
                                                                      I                                                                                                            Ia 
CrDDX          LVGRARTGQGKTLAFVLPILESLINGPAKSKKKNGYGRPPSVLVLLPTRELAKQVAADFD 195 
CsDDX          LVGRARTGQGKTLAFVLPILESLINGPAKSKKKNGYGRPPSVLVLLPTRELAKQVNADFE 201 
PRH75          LVGRARTGQGKTLAFVLPILESLVNGPAKSKRKMGYGRSPSVLVLLPTRELAKQVAADFD 195 
BrDDX          LVGRARTGQGKTLAFVLPILESLINGPAKNKRKNGYGRPPSVLVLLPTRELAKQVFADFD 201 
BnDDX          LVGRARTGQGKTLAFVLPILESLINGPAKSKRKNGYGRPPSVLVLLPTRELAKQVFADFE 186 
EsDDX          LVGRARTGQGKTLAFVLPILESLINGPAQSKRKNGYGRPPSVLVLLPTRELAKQVFADFE 208 
AaDDX          LVGRARTGQGKTLAFVLPILESLINGPAKSKRKNGYGRPPSVLVLLPTRELAKQVYSDFE 209 
ThDDX          LVGRARTGQGKTLAFVLPILESLTNGPSNASRKTGYGRPPSVLVLLPTRELAKQVFADFD 208 
VvDDX          LVGRARTGQGKTLAFVLPILESLINGPNRGSRKTGYGRPPCVLVLLPTRELATQVYADFD 218 
CcDDX          LVGRARTGQGKTLAFVLPILESLTNGPTKASKKTGYGRAPSVLVLLPTRELAKQVHEDFD 208 
EgDDX          LVGRARTGQGKTLAFVLPLLESLTNGPAKTSRKTGYGRPPSVLVLLPTRELAKQVFSDFE 225 
JcDDX          LVGRARTGQGKTLAFVLPILESLTNGPAKASRKTGYGRPPSVLVLLPTRELACQVYDDFK 222 
CaDDX          LVGRARTGQGKTLAFVLPILESLTNGPAKSVRKTGYGRVPSVLVLLPTRELANQVYADFE 204 
 
 
                                                                                           Ib                                                                Ic                                                      II 
CrDDX          VYGASVGLTSCCLYGGDSYTGQEYKLKRGVDIVVGTPGRIKDHIERQNIDLSHLQFRVLD 255 
CsDDX          TYGLALGLTSCCVYGGEGYSFQQNSLRKGVDIVVGTPGRVKDFINTEKIDLSYLQFRVLD 261 
PRH75          AYGGSLGLSSCCLYGGDSYPVQEGKLKRGVDIVVGTPGRIKDHIERQNLDFSYLQFRVLD 255 
BrDDX          AYGGSVGLTSCCVYGGDPYPPQQQKLKKGVDIVVGTPGRIKDHIERQNLDLTYLQFRVLD 261 
BnDDX          AYGGAVGLASCCVYGGDPYAPQERKLKSGVDIVVGTPGRIKDHIERRNLDLTYLQFRVLD 246 
EsDDX          AYGGAVGLTSCCVYGGDPYQPQEYKLKRGVDIVVGTPGRIKDHIERQNLDLSYLQFRVLD 268 
AaDDX          SYGGSVGLSSCCIYGGDPYAPQEHKLKRGVDIIVGTPGRIKDHLEKGHLDLTYLQFRVLD 269 
ThDDX          VYGGAVGLSSCCLYGGDSYQPQEYKLKRGVDIVVGTPGRIKDHIERGNIDLSFLKFRVLD 268 
VvDDX          VYGGAIGLTSCCLYGGAPYQAQEIKLKRGVDIVVGTPGRIKDHIERGNIDFSSLKFRVLD 278 
CcDDX          VYGGAVGLTSCCLYGGAPYHAQEFKLKKGIDVVIGTPGRIKDHIERGNIDLSSLKFRVLD 268 
EgDDX          VYGGAVGLTSCCLYGGAPYHAQESHLRRGVDIVIGTPGRVKDHIERGNIDLSSLTFRVLD 285 
JcDDX          VYGEALGLTTCCLYGGASYHPQETSLKRGVDVVVGTPGRIKDHIERGNIDLSLLKFRVLD 282 
CaDDX          VYGSSLGLVACAVYGGAPYGAQESKLRRGVDIVIGTPGRVKDHIERGNIDLSHLKFRVLD 264 
 
 
                                           II                                                                                   III 
CrDDX          EADEMLRMGFVEDVELILGKVEDATKVQTLLFSATLPSWVKNISTRFLKRDQKTIDLVGN 315 
CsDDX          EADEMLRMGFVEDVEFILGKVEDATKVQTLLFSATLPQWVQSISRKFLKKDLKTIDLVGN 321 
PRH75          EADEMLRMGFVEDVELILGKVEDSTKVQTLLFSATLPSWVKNISNRFLKRDQKTIDLVGN 315 
BrDDX          EADEMLRMGFVDDVELILGKVEDPKKVQTLLFSATLPSWVQNIASRFLKQDKKTIDLVGN 321 
BnDDX          EADEMLRMGFVDDVELILGKVEDPKKVQTLLFSATLPSWVQTIAARFLKQDKKTIDLVGN 306 
EsDDX          EADEMLRMGFVDDVELILGKVEDPKKVQTLLFSATLPSWVQKIAARFLKPEKKTIDLVGN 328 
AaDDX          EADEMLRMGFVEEVELILGKVEDPKKVQTLLFSATLPTWVKNIAAKFLKPDRELIDLVGN 329 
ThDDX          EADEMLRMGFVEDVELILGKVQDATKVQTLLFSATLPDWVKNISSRFLKPNKKTIDLVGN 328 
VvDDX          EADEMLRMGFVEDVELILGKVEDVSKVQTLLFSATLPGWVKEISSRFLKPTLKTADLVGN 338 
CcDDX          EADEMLRMGFVEDVELILGKVEDANKVQTLLFSATLPSWVKHISTKFLKSDKKTIDLVGN 328 
EgDDX          EADEMLRMGFVEDVELILGKVKDTSKVQTLLFSATLPDWVKGISSRFLKQNKRTIDLVGN 345 
JcDDX          EADEMLRMGFVEDVELILGKVEDVSKVQTLLFSATLPDWVKHISTRFLKPSKKTIDLVGN 342 
CaDDX          EADEMLRMGFVDDVELILGKVQDVTKVQTLLFSATLPSWVKQISSKFLKADKQTADLVGN 324 
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                                                        IV 
CrDDX          DKMKASNSVRHIAIPCNKAAMSRLIPDIISCYSSGGQTIIFTEKKEEASQLSGLLAGSRA 375 
CsDDX          DKMKASNSVRHIAIPCNKAAMPRLIPDIISCYSSGGQTIIFAEKKEEANELSGLLAGSRT 381 
PRH75          DKMKASNSVRHIAIPCNKAAMARLIPDIISCYSSGGQTIIFAETKVQVSELSGLLDGSRA 375 
BrDDX          DKMKASNSVRHIALPCSKQAMSRLIPDIISLYSSGGSTIIFTETKDQASELSGLLPGARA 381 
BnDDX          DKMKASNSVRHIALPCNKQAMSRLIPDIISLYSSGGSTIIFTETKDQASELSGLLPGARA 366 
EsDDX          DKMKASNSVRHICLPCSKQAMSRLIPDIISCYSSGGNTIIFTETKDQASELSGLLPGARP 388 
AaDDX          DKMKASNSVRHIALPCSRQAMSRLIPDIISCYSSAGSTIIFTETKDHASELSGLLPASRA 389 
ThDDX          AKMKASTNVRHIVLPCNKQAMSRLIPDVIRCYSSGGRTIIFTETKDSASELSGLLPGARA 388 
VvDDX          EKMKASTNVRHIVLPCSSSARSQVIPDVIRCYSSGGRTIIFTETKDSASELAGLLPGARA 398 
CcDDX          EKMKASTNVRHIVLPCSSSARSQVIPDIIRCYSSGGRTIIFTETKESASQLADLLPGARA 388 
EgDDX          EKMKASTNVRHIVIPCTSAARPQLIPDIIRCYSSGGRTIIFTETKECASQLSGLLPGARP 405 
JcDDX          EKMKASTNVRHIVLPCSASAISQLIPDIIRCYSSGGRTIIFTEKRESANELAGLLHGARA 402 
CaDDX          EKMKASTNVRHIILPCNSTARAQLIPDIIRCYSSGGRTIIFTEKKESASELAGMLPGARA 384 
 
 
                               IVa                               V                   Va                     Vb                                  VI 
CrDDX          LHGDIQQSQREVTLAGFRNGKFSTLVATNVAARGLDINDVQLIIQCEPPREVEAYIHRSG 435 
CsDDX          LHGDIQQSQREVTLAGFRKGKFSTLVATNVAARGLDINDVQLIIQCEPPRDVESYIHRSG 441 
PRH75          LHGEIPQSQREVTLAGFRNGKFATLVATNVAARGLDINDVQLIIQCEPPREVEAYIHRSG 435 
BrDDX          LHGDIQQSQREITLAGFRKGKFSTLVATNVAARGLDINDVQLIIQCEPPRDVEDYIHRSG 441 
BnDDX          LHGDIQQSQREITLAGFRKGKFSTLVATNVAARGLDINDVQLIIQCEPPRDVEDYIHRSG 426 
EsDDX          LHGDIQQSQREVTLAGFRKGKFSTLVATNVAARGLDINDVQLIIQCEPPRDVEDYIHRSG 448 
AaDDX          LHGDIQQSQREVTLAGFRKGKFNTLVATNVAARGLDINDVQLIIQCEPPRDVEDYIHRSG 449 
ThDDX          LHGDIQQSQREVTLAGFRKGNFSTLVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 448 
VvDDX          LHGDIQQSQREVTLSGFRSGKFMTLVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 458 
CcDDX          LHGDIQQSQREVTLAGFRSGKFMTLVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 448 
EgDDX          LHGDIQQSQREVTLAGFRSGKFMILVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 465 
JcDDX          LHGEIQQSQREVTLSGFRSGKFMTLVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 462 
CaDDX          LHGDIQQSQREITLKGFRSGKFMTLVATNVAARGLDINDVQLIIQCEPPRDVEAYIHRSG 444 
 
 
                 VI 
CrDDX           RTGRAGNTGVAVTLYDS 452 
CsDDX           RTGRAGNTGVAVTLYES 458 
PRH75           RTGRAGNTGVAVTLYDS 452 
BrDDX           RTGRAGNTGVAVMLYDS 458 
BnDDX           RTGRAGNTGVAVMLYDS 443 
EsDDX           RTGRAGNTGIAVMLYDS 465 
AaDDX           RTGRAGNSGVAVTLYES 466 
ThDDX           RTGRAGNTGVAVMLYDS 465 
VvDDX           RTGRAGNSGVAVMLFDP 475 
CcDDX           RTGRAGNTGVAVMLYDP 465 
EgDDX           RTGRAGNTGVAVMLYDP 482 
JcDDX           RTGRAGNTGVAVMLYDP 479 
CaDDX           RTGRAGNTGVAVMLYDP 461 
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Figure 15   Multi-sequence alignment of PRH75 amino acid sequence with 

corresponding domains from different plant species. 

Multiple sequences were aligned using the CLUSTAL W program. All the 13 conserved 

motifs of DEAD-box RNA helicase were shown in boxes with the motif acronym and a 

solid black line above the amino acids representing the motif. The accession numbers of 

the aligned protein sequences are Capsella rubella (CrDDX, XP_006279587), Camelina 

sativa (CsDDX, XP_010458375), Brassica rapa (BrDDX, XP_009130201), Eutrema 

salsugineum (EsDDX, XP_006394423), Arabis alpina (AaDDX, KFK27951), Brassica 

napus (BnDDX, CDX87236), Tarenaya hassleriana (ThDDX, XP_010555319), Vitis 

vinifera (VvDDX, XP_002269873), Jatropha curcas (JcDDX, KDP22369), Eucalyptus 

grandis (EgDDX, XP_010034995), Cicer arietinum (CaDDX, XP_004506292), Citrus 

clementina (CcDDX, XP_006421777 ). 
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Figure 16  Characterization of Arabidopsis PRH75. 

(A) Schematic representation of Arabidopsis PRH75 cDNA.  

(B) Schematic representation of Arabidopsis PRH75 protein. The functional domains are 

indicated in boxes. Conserved signatures were obtained based on the NCBI conserved 

domain database.  

(C) Conserved motifs of Arabidopsis PRH75. The 13 characteristic motifs of DEAD-box 

RNA helicase are highlighted in boxes in different colors. The numbers above the boxes 

indicate the positions of the first amino acid of each motif. 
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 PRH75 is a nuclear protein 3.5.2

To explore the role of PRH75 associated with TuMV infection, a transient expression 

assay was conducted to establish the subcellular localization of PRH75 in plant cells. 

PRH75 tagged with YFP (PRH75-YFP) was expressed in N. benthamiana leaf epidermal 

cells by agroinfiltration. Consistent with a previous report where PRH75 localization was 

found in the nucleus using a tobacco protoplast expression system (Lorković et al., 1997), 

the YFP signal was observed predominantly in the nucleus, particularly in the nucleolar 

region (Figure 17). This observation indicated that PRH75 is a nuclear protein with 

preferred localization to the nucleolus. Upon TuMV infection, subcellular localization of 

PRH75 was altered. This result will be described in section 3.5.6. Distinct from many 

other AtRHs such as AtRH9 and AtRH26 that are localized to both the nucleus and 

cytoplasm, the nuclear localization of PRH75 might indicate a specific role of this protein 

in TuMV infection.  

Plasmids containing a series of PRH75 deletion mutants were constructed to determine 

the region responsible for nuclear targeting. PRH75 was divided into four fragments: N-

terminus (corresponding to aa 1-114), DEAD domain (aa 115-355), Helicase domain (aa 

356-450) and GUCT domain (aa 451-671) (Figure 18A). The truncated PRH75 

derivatives containing one or more of these fragments were fused to a modified 

pEarleyGate101 vector containing the GUS coding region upstream of YFP. The 

resulting plasmids were agroinfiltrated into N. benthamiana epidermal cells to express 

PRH75 derivatives fused with GUS-YFP. The localization pattern of truncated PRH75 

derivatives indicated that the N-terminal fragment (aa 1-114) was required for nuclear 

targeting (Figure 18B), which is in agreement with previously published results 

(Lorković et al., 1997).  

 PRH75 directly interacts with multiple TuMV viral replicase proteins 3.5.3

To examine whether Arabidopsis PRH75 interacts with TuMV proteins, I screened the 11 

TuMV proteins using the BiFC assay. The full-length coding region for each of the 11 

TuMV proteins and PRH75 were fused to N- and C- terminus of YFP, respectively. The 

functional reconstituted YFP signal was examined under a confocal microscopy when  
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Figure 17   PRH75 is localized in the nucleus. 

(A) Transient expression of PRH75-YFP in N. benthamiana leaf epidermal cells. YFP 

fluorescence was observed using a confocal microscopy 48 h post agroinfiltration. DIC, 

differential interference contrast. Bars, 50 µm.  

(B) Transient expression of PRH75-YFP with fibrillarin-CFP, a nucleolus marker protein 

in N. benthamiana leaf epidermal cells (Koroleva et al., 2009). PRH75-YFP and 

fibrillarin-CFP were co-expressed in N. benthamiana leaves via agroinfiltration. Images 

were taken using a confocal microscopy 48 h post agroinfiltration. DIC, differential 

interference contrast. Bars, 15 µm. 
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Figure 18    Analysis of truncated PRH75 proteins. 

(A) Schematic diagram of truncated PRH75 proteins. The positions of the first and last 

amino acid residues of truncated proteins are indicated in parentheses.  

(B) Subcellular localization of truncated PRH75 proteins tagged with GUS-YFP in planta. 

Transient expression of truncated PRH75 proteins tagged with GUS-YFP in N. 

benthamiana leaf epidermal cells. YFP fluorescence was observed using a confocal 

microscopy 48 h post agroinfiltration. DIC, differential interference contrast. Bars, 30 µm. 
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viral fusion proteins and PRH75 fusion protein were co-expressed in plant cells following 

the same strategy as described previously. The results showed that PRH75 interacted with 

viral replicase proteins NIb, NIa-Pro, VPg and CI (Figure 19) but no detectable 

interactions were found with other viral proteins (Data not shown). For positive 

interactions, YFP signals were observed predominately in the nucleus with a small 

amount of signal detected in the cytoplasm. No YFP signal was detected in the negative 

controls (Appendix II). A targeted Y2H was performed to confirm interactions between 

PRH75 and TuMV viral proteins. Cotransformants of PRH75 and each viral protein were 

grown and selected on synthetic defined plates (SD/-Ade/-His/-Leu/-Trp). Yeast colonies 

co-transformed with PRH75 and each of NIb, VPg and CI, respectively, showed normal 

growth on the selective plates (SD/-Ade/-His/-Leu/-Trp). Controls, i.e., cotransformants 

of empty bait and prey vectors, PRH75 and the empty prey vector, or NIb, VPg and CI 

with bait only, did not grow (Figure 20). Inconsistent with the BiFC data, no positive 

interaction was found in yeast cells co-transformed with PRH75 and NIa-Pro.  

To further confirm the interaction between PRH75 and viral proteins, a fluorescence 

resonance energy transfer (FRET) assay was conducted. Based on high spatial resolution, 

FRET analysis provides a powerful tool to detect protein-protein interactions in living 

cells. Translational fusion of PRH75 tagged with CFP was co-expressed with each of NIb, 

NIa-Pro, VPg and CI tagged with YFP in N. benthamiana leaf epidermal cells. Protein-

protein interactions were examined by confocal microscopy. The change in increased 

intensity of CFP signal after photobleaching of YFP was determined as FRET efficiency, 

which indicated the positive interaction between two proteins. The results suggested a 

positive interaction between PRH75 and NIb with a FRET efficiency of 34.98%, as well 

as between PRH75 and NIa-Pro with a FRET efficiency of 37.49%. The FRET efficiency 

between PRH75 and VPg was 29.96% whereas between PRH75 and CI was 33.52%, 

respectively. The FRET efficiency between PRH75-CFP and GUS-YFP, as a negative 

control, was negligible (Figure 21). Taken together, PRH75 showed positive interactions 

with TuMV NIb, NIa-Pro, VPg and CI, respectively. 
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Figure 19  The BiFC assay for detection of the interactions between PRH75 and 

TuMV viral proteins in planta. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express viral 

proteins and PRH75: (A) NIb and PRH75 fused with the N- and C- terminal moiety of 

YFP (YN and YC), respectively, (B) NIa-Pro-YN and PRH75-YC, (C) VPg-YN and 

PRH75-YC, (D) CI-YN and PRH75-YC, and (E) 6K2-YN and PRH75-YC. The 

reconstructed YFP fluorescence was recorded 48 h post agroinfiltration using a confocal 

microscopy. Bars, 50 µm.  
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Figure 20   The yeast two-hybrid assay for detection of the interactions between 

PRH75 and TuMV viral proteins. 

Positive interactions between PRH75 and TuMV NIb, VPg or CI were evident in yeast. A 

series of 10 µl aliquots of 10x yeast dilutions co-transformed with bait and prey were 

spotted onto synthetic defined (SD) selection plates and incubated for 2- 4 days at 30°C. 

Yeast cultures were plated on SD/-Leu/-Trp or SD/-Ade/-His/-Leu/-Trp dropout medium 

to observe yeast growth and to identify positive interactions, respectively. Co-

transformation of the pGAD empty vector (prey) with pGBK-PRH75 (bait), and co-

transformation of the pGBK empty vectors (bait) with pGAD-VPg (prey), pGAD-NIb 

(prey) and pGAD-CI (prey), respectively, were used as negative controls, and co-

transformation of pGAD-VPg with pGBK-eIF(iso)4E as the positive control. 

Representative results were obtained in three independent experiments.  
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Figure 21   Quantification of FRET efficiency between PRH75 and TuMV viral 
proteins. 

FRET efficiencies were calculated using the formula: FRET efficiency = [(CFP signal 

after photobleaching-CFP signal before photobleaching) /CFP signal after photobleaching] 

×100. Error bars represent standard deviations for nine independent FRET analysis in 

three independent experiments. (A) FRET efficiency between PRH75-CFP and NIb-YFP, 

(B) FRET efficiency between PRH75-CFP and NIa-Pro-YFP, (C) FRET efficiency 

between PRH75-CFP and VPg-YFP, and (D) FRET efficiency between PRH75-CFP and 

CI-YFP. The combination of PRH75-CFP and GUS-YFP was used as a negative control. 
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 Arabidopsis importin α interacts with PRH75 and TuMV viral replicase 3.5.4

proteins 

The nuclear localization of PRH75 and several potyviral replicase proteins has prompted 

us to look into the possibility that the nuclear transport of TuMV viral proteins is 

mediated by Arabidopsis importin α. To investigate whether Arabidopsis importin α is 

required for nucleocytoplasmic shuttle of these proteins, two isoforms of Arabidopsis 

importin α (IMPA), IMPA1 and IMPA2, were analyzed. The Y2H and BiFC assays were 

performed to examine the ability of IMPA1 and IMPA2 to interact with PRH75 and each 

of these TuMV replicase proteins.  

Interactions between PRH75 and IMPA1 and IMPA2 in plant cells were identified using 

the BiFC assay (Figure 22). YFP fluorescence was observed in the nucleus, which is 

consistent with the localization pattern of PRH75. The Y2H assay confirmed that PRH75 

directly interacts with Arabidopsis IMPA1 and IMPA2 (Figure 23).  

Positive interactions were also found between IMPA1 and NIb, IMPA1 and NIa-Pro, 

IMPA1 and VPg, or IMPA1 and CI using the BiFC assay in planta. The reconstituted 

YFP signal was found in the nucleus and cytoplasm of plant cells co-expressing IMPA1 

fused to the N-terminus of YFP with NIb, NIa-Pro, VPg and CI fused to the C-terminus 

of YFP, respectively (Figure 24). The Y2H assay further confirmed that IMPA1 

interacted with NIb, NIa-Pro, VPg and CI (Figure 25). Taken together, these data suggest 

that Arabidopsis IMPA1 interacts with TuMV NIb, NIa-Pro, VPg and CI.  

Similarly, the BiFC assay indicated the interactions of IMPA2 with NIb, NIa-Pro, VPg 

and CI, respectively, in planta. The YFP fluorescence was observed mostly in the nucleus 

with partially in the cytoplasm (Figure 26). The interactions between IMPA2 and NIb, 

NIa-Pro, VPg and CI were further confirmed by the Y2H assay. Altogether, the results 

showed that Arbidopsis IMPA2 also interacts with TuMV NIb, NIa-Pro, VPg and CI 

(Figure 27).  

The tested interactions between PRH75, TuMV viral proteins and Arabidopsis IMPA1 

and IMPA2 are summarized in Table 10. 
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Figure 22    The BiFC assay for detection of the interactions between PRH75 and 

Arabidopsis IMPA1 and IMPA2 in planta. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express (A) IMPA1 

and PRH75 fused with the N- and C- terminal half of YFP (YN and YC), respectively, 

and (B) IMPA2-YN and PRH75-YC. The reconstructed YFP fluorescence was recorded 

48 h post agroinfiltration using a confocal microscopy. DIC, differential interference 

contrast. Bars in (A), 25 µm, and in (B), 50 µm.    
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Figure 23    The yeast two-hybrid assay for detection of the interactions between 

PRH75 and Arabidopsis IMPA1 and IMPA2. 

Positive interactions were found between PRH75 and Arabidopsis IMPA1 and IMPA2 in 

yeast. A series of 10 µl aliquots of 10x yeast dilutions co-transformed with bait and prey 

were spotted onto SD selection plates and incubated for 2- 4 days at 30°C. Yeast cultures 

were plated on SD/-Leu/-Trp or SD/-Ade/-His/-Leu/-Trp dropout medium to observe 

yeast growth and to identify positive interactions, respectively. Co-transformation of the 

pGAD empty vector (prey) with the pGBK empty vector (bait) was used as a negative 

control, and co-transformation of pGAD-VPg with pGBK-eIF(iso)4E as a positive 

control.  
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Figure 24    The BiFC assay for detection of the interactions between IMPA1 and 

TuMV viral proteins in planta. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express (A) IMPA1 

and NIb fused with the N- and C- terminal half of YFP (YN and YC), respectively, (B) 

IMPA1-YN and NIa-Pro-YC, (C) IMPA1-YN and VPg-YC, and (D) IMPA1-YN and CI-

YC. The reconstructed YFP fluorescence was recorded 48 h post agroinfiltration using a 

confocal microscopy. DIC, differential interference contrast. Bars in (A), 20 µm, and in 

(B, C, D), 50 µm. 
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Figure 25   The yeast two-hybrid assay for detection of the interactions between 

Arabidopsis IMPA1 and TuMV viral proteins. 

Positive interactions between Arabidopsis IMPA1 and TuMV viral proteins NIb, NIa-Pro, 

VPg or CI were detected in yeast. A series of 10 µl aliquots of 10x yeast dilutions co-

transformed with bait and prey were spotted onto synthetic defined (SD) selection plates 

and incubated for 2-4 days at 30°C. Yeast cultures were plated on SD/-Leu/-Trp or SD/-

Ade/-His/-Leu/-Trp dropout medium to observe yeast growth and to identify positive 

interactions, respectively. Co-transformation of the pGAD empty vector (prey) with the 

pGBK empty vector (bait) serves as a negative control, and co-transformation of pGAD-

VPg and pGBK-eIF(iso)4E as a positive control.  
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Figure 26    The BiFC assay for detection of the interactions between IMPA2 and 

TuMV viral proteins in planta. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express (A) IMPA2 

and NIb fused with the N- and C- terminal moiety of YFP (YN and YC), respectively, (B) 

IMPA2-YN and NIa-Pro-YC, (C) IMPA2-YN and VPg-YC, and (D) IMPA2-YN and CI-

YC. The reconstructed YFP fluorescence was observed 48 h post agroinfiltration using a 

confocal microscopy. DIC, differential interference contrast. Bars, 20 µm. 
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Figure 27   The yeast two-hybrid assay for detection of the interactions between 

Arabidopsis IMPA2 and TuMV viral proteins. 

Positive interactions between Arabidopsis IMPA2 and TuMV viral proteins NIb, NIa-Pro, 

VPg or CI were confirmed in yeast. A series of 10 µl aliquots of 10x yeast dilutions co-

transformed with bait and prey were spotted onto SD selection plates and incubated for 2-

4 days at 30°C. Yeast cultures were plated on SD/-Leu/-Trp or SD/-Ade/-His/-Leu/-Trp 

dropout medium to observe yeast growth and to identify positive interactions, 

respectively. Co-transformation of the pGAD empty vector (prey) with the pGBK empty 

vector (bait) was used as a negative control, and co-transformation of pGAD-VPg with 

pGBK-eIF(iso)4E as a positive control.  
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Table 10    Summary of tested protein-protein interactions 

 Method NIb NIa-Pro VPg CI 
PRH75 BiFC + + + + 
 FRET + + + + 
 Y2H + ─ + + 
IMPA1 BiFC + + + + 
 Y2H + + + + 
IMPA2 BiFC + + + + 
 Y2H + + + + 
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 PRH75 colocalizes with Arabidopsis importin α, eIF(iso)4E and  TuMV viral 3.5.5

replicase proteins  

To determine if PRH75 colocalizes with IMPA1 and IMPA2, N. benthamiana leaves 

were co-agroinfiltrated with vectors expressing PRH75-CFP and IMPA1-YFP or IMPA2-

YFP, respectively. At 48 h post agroinfiltration, observation was taken by a confocal 

microscopy and revealed that the cyan fluorescence of PRH75 predominantly overlapped 

the IMPA1-YFP and IMPA2-YFP fluorescence in the nucleus (Figure 28).  

Arabidopsis eIF(iso)4E, the isoform of eIF4E, which functions as a cap-binding protein 

that initiates translation of mRNA (Wang and Krishnaswamy, 2012). eIF(iso)4E was 

reported to interact with TuMV VPg and its precursor VPg-Pro (NIa) and was required 

for TuMV infection (Lellis et al., 2002). When expressed alone, eIF(iso)4E was found 

mainly in the cytoplasm, around the nuclear membrane and in the ER network. 

eIF(iso)4E was redistributed to the nucleus when co-expressed with VPg-Pro (NIa) 

(Beauchemin et al., 2007; Beauchemin and Laliberté, 2007). The colocalization study of 

PRH75 with eIF(iso)4E indicated that PRH75 overlaps the localization of eIF(iso)4E in 

the nucleus (Figure 29).  

To investigate whether the intracellular distributions of TuMV viral replicase proteins 

change in the presence of PRH75, we co-expressed PRH75-CFP with NIb-YFP, NIa-Pro-

YFP, VPg-YFP and CI-YFP, respectively in N. benthamiana leaves. No different 

subcellular distribution patterns were found when viral protein was expressed alone or 

co-expressed with PRH75. These data suggested that PRH75 colocalized with TuMV 

viral replicase proteins in the nucleus (Figure 30). 

 Distribution of BiFC signals between PRH75 and TuMV viral replicase 3.5.6

proteins is altered in the presence of TuMV infection 

To assess whether the interactions between PRH75 and TuMV viral replicase proteins are 

altered during TuMV infection, the BiFC assay was carried out. Four viral proteins, NIb, 

NIa-Pro, VPg and CI and PRH75 were introduced into N- or C- terminal half of YFP, 

respectively, and co-expressed into N. benthamiana leaves infected with a TuMV  
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Figure 28   Colocalization of PRH75 and Arabidopsis importin α. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express (A) PRH75-

CFP and IMPA1-YFP, (B) PRH75-CFP and IMPA2-YFP. Observations were recorded 

48 h post agroinfiltration using a confocal microscopy. DIC, differential interference 

contrast. Bars in (A), 50 µm, and in (B) 25 µm. 
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Figure 29  Colocalization of PRH75 and Arabidopsis host proteins. 

N. benthamiana leaves were co-agroinfiltrated with constructs expressing PRH75-CFP 

and eIF(iso)4E-YFP. Images were taken 48 h post agroinfiltration using a confocal 

microscopy. DIC, differential interference contrast. Bars, 30 µm.  
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Figure 30  Colocalization of PRH75 and TuMV viral proteins. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express (A-I) 

PRH75-CFP and NIb-YFP, (B-I) PRH75-CFP and NIa-Pro-YFP, (C-I) PRH75-CFP and 

VPg-YFP, and (D-I) PRH75-CFP and CI-YFP. Transient expression of TuMV viral 

protein alone in N. benthamiana. (A-II) NIb-YFP, (B-II) NIa-Pro-YFP, (C-II) VPg-YFP, 

and (D-II) CI-YFP. Images were recorded 48 h post agroinfiltration using a confocal 

microscopy. DIC, differential interference contrast. Bars in (A), 20 µm, in (B), 25µm, in 

(C), 30 µm and in (D), 50 µm. 
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infectious clone expressing a 6K2-mCherry fusion protein (TuMV::6K2-mCherry). The 

TuMV infectious clone was engineered to carry an in-frame translational fusion of 6K2-

mCherry between P1 and HC-Pro. The TuMV::6K2-mCherry infectious clone can induce 

the formation of discrete fluorescent structures, designated as the viral vesicles. Moreover, 

the motility of 6K2-induced vesicle suggests that the virus movement determinant lies on 

6K2 protein. dsRNA was detected within the virus-induced vesicles by staining with 

antibodies (Cotton et al., 2009). Further, host factors such as eIF(iso)4E (Beauchemin et 

al., 2007), PABP (Beauchemin and Laliberté, 2007), Hsc70-3 (Dufresne et al., 2008), 

eEF1A (Dufresne et al., 2008) and AtRH8 (Huang et al., 2010) were previously 

demonstrated to be enclosed within the 6K2-induced vesicles, indicating that TuMV 6K2 

vesicles represent the sites of viral genome replication. Thus, the 6K2-mCherry induced 

vesicles can serve as a marker for TuMV replication complexes. 

In the presence of TuMV infection, PRH75 indeed interacted with TuMV viral replicase 

proteins NIb, NIa-Pro, VPg and CI. Moreover, those positive interactions were 

colocalized with 6K2- induced vesicles (Figure 31). The colocalization of PRH75 with 

viral replicase proteins and 6K2-induced replication vesicles in TuMV-infected cells 

strongly indicated that PRH75 was translocated from the nucleus to the cytoplasm 

through the interactions with viral replicase proteins and PRH75 was required for 

successful TuMV replication. 

 PRH75 is associated with TuMV replication vesicles that are bound to 3.5.7

chloroplasts and contain dsRNA 

Previous studies have shown that 6K2-induced mobile vesicles are derived from the ER 

and traffic from the ER to the periphery of chloroplasts for viral replication (Wei and 

Wang, 2008; Wei et al., 2010). To determine if  PRH75 is also transported to the 

chloroplast-associated 6K2 vesicles during TuMV infection, colocalization studies of 

PRH75-CFP and a TuMV infectious clone with a YFP fused to the viral protein marker 

6K2 of the replication complex (TuMV::6K2-YFP), were performed. The infectious 

clone of TuMV was engineered to carry an in-frame translational fusion of 6K2-YFP 

between P1 and HC-Pro (Huang et al., 2010).  
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Figure 31    The BiFC assay of interactions between PRH75 and TuMV viral 

proteins during TuMV infection. 

Co-agroinfiltration with constructs to co-express (A) NIb and PRH75 fused with the N- 

and C- terminal moiety of YFP (YN and YC), respectively, into N. benthamiana leaves 

infected by TuMV::6K2-mCherry. (B) NIa-Pro-YN and PRH75-YC, (C) VPg-YN and 

PRH75-YC, and (D) CI-YN and PRH75-YC. DIC, differential interference contrast. Bars 

in (A), 30 µm; in (B-I), 30 µm, in (B-II), 20 µm; in (C-I), 30 µm, in (C-II), 20 µm and in 

(D), 20 µm. 
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N. benthamiana leaves were co-agroinfiltrated with PRH75-CFP and TuMV::6K2-YFP, 

and the localization of PRH75 as well as the movement of the viral vesicles were 

monitored by a confocal microscopy 3 days and 4 days post agroinfiltration. Indeed, the 

6K2-YFP induced yellow fluorescent vesicles were observed on the outer membrane of 

chloroplast and closely aligned with the chloroplast in TuMV-infected N. benthamiana 

leaf epidermal cells. Cyan fluorescence from PRH75-CFP overlapped with the 6K2-

induced vesicles at 3 days and 4 days post agroinfiltration (Figure 32). The presence of 

PRH75 associated with TuMV replication vesicles strongly supported the idea that 

PRH75 was recruited to the viral replication complexes via its binding to viral proteins 

and was essential for TuMV infection. 

Virus replication takes places in the virus-induced vesicles that shelter viral RNA from 

degradation. Before replication, the viral replication complexes (VRCs) are assembled, in 

a process associated with intracellular membranes. The VRC contains the proteins 

synthesized from the viral RNA as well as host proteins to facilitate viral replication and 

translation (Sanfaçon, 2005). Template viral RNAs, as well as double-stranded RNA 

regions formed when the complementary negative-sense RNA is synthesized, are also 

enclosed within the vesicles. During viral replication, RNA helicases are recruited to the 

vesicles and considered to catalyze the separation of dsRNA. As discussed before, 

PRH75 colocalized and interacted with NIb, the RNA-dependent RNA polymerase of 

TuMV, raising the possibility that PRH75 is recruited to the VRCs and plays a role of 

unwinding the viral dsRNA during replication. 

To confirm that the colocalization of PRH75 matched with viral RNA replication sites, a 

novel strategy for localizing plant viral RNAs and VRCs in planta using an RNA-binding 

protein, coupled to the BiFC vectors, referred to a dsRNA-binding dependent 

fluorescence complementation (dRBFC) assay, has been developed (Tilsner et al., 2009) 

(Cheng, unpublished data). To validate the sensitivity of dsRNA detection, PRH75-CFP 

was co-expressed along with the dRBFC assay. The yellow fluorescence signal of the 

dRBFC was visualized as small, discrete aggregates distributed throughout the cytoplasm, 

as well as concentrated in the nucleus. The cyan fluorescence of PRH75 overlapped with 

the dRBFC-labelled dsRNA in the nucleus (Figure 33). In comparison with the  
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Figure 32    PRH75-CFP colocalized with the chloroplast-bound 6K-YFP vesicles. 

N. benthamiana leaves were co-agroinfiltrated with constructs expressing PRH75-CFP 

and TuMV::6K2-YFP. (A) Images were taken 3 days post infiltration using a confocal 

microscopy. (B) Images were recorded 4 days post infiltration. DIC, differential 

interference contrast. Bars in (A), 10 µm, and in (B), 5 µm. 
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Figure 33  PRH75-CFP colocalized with dsRNA-containing foci. 

N. benthamiana leaves were co-agroinfiltrated with constructs to co-express PRH75-CFP 

and the dRBFC assay. Observation was recorded 48 h post agroinfiltration using a 

confocal microscopy. DIC, differential interference contrast. Bars in (A), 30 µm, and in 

(B), 20 µm. 
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localization pattern in the absence of viral infection, coexpression of PRH75 and the 

dRBFC assay into N. benthamiana leaves infected with the TuMV infectious clone 

(TuMV::6K2-mCherry), resulted in observing dRBFC yellow fluorescence signals in a 

granular aggregation or discrete structures in the cytoplasm, resembling the described 

VRC during TuMV infection (Grangeon et al., 2012). Since the dRBFC assay can bind 

both plant and viral dsRNA, dRBFC signal was also detected in the nucleus. PRH75-CFP 

was found to form punctate structures and colocalize with viral dsRNA in the labelled 

VRC (Figure 34). Collectively, these results indicated that PRH75 was recruited to VRC, 

namely viral dsRNA containing foci, during viral replication. In addition to unwinding 

the viral dsRNA intermediate, PRH75 may remain and serve other functions in the 

nucleus. 
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Figure 34  PRH75-CFP colocalized with dsRNA-containing foci in the presence of 

TuMV infection. 

Co-agroinfiltration with constructs to co-express PRH75-CFP and the dRBFC assay into 

N. benthamiana leaves infected with TuMV::6K2-mCherry. Images were taken 48 h post 

agroinfiltration using a confocal microscopy. DIC, differential interference contrast. Bars 

in (A), 30 µm, and in (B), 10 µm. 
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Chapter 4: Discussion 

 Identification of Arabidopsis DEAD-box RNA helicases as host factors 4.1

required for TuMV infection 

In this study, a functional genomics-based screening was performed to identify 

Arabidopsis DEAD-box RNA helicases (AtRH or RH) that are required for TuMV 

infection. From 42 selected putative AtRH genes in the Arabidopsis genome, 

homozygous T-DNA insertion lines for 26 AtRH genes were available. In an initial 

screening based on symptom severity after TuMV infection, three Arabidopsis T-DNA 

insertion lines, corresponding to the genes AtRH9, AtRH26 and PRH75, were identified 

as showing less susceptibility to TuMV infection than wild-type controls. Although there 

was some variability in symptom development among individual plants within the same 

genotype, atrh9, atrh26 and prh75 T-DNA mutants showed supressed TuMV infection in 

comparison with wild-type plants (Figure 4). Since the preliminary BiFC experiments did 

not find positive interactions between AtRH26 and TuMV viral proteins (data not shown), 

I selected AtRH9 and PRH75 for further analysis.  

ELISA assays of TuMV coat protein (CP) accumulation showed remarkably reduced 

amounts of CP in both atrh9 and prh75 T-DNA mutants (Figure 4). Consistently, 

quantitative RT-PCR analysis of viral RNA accumulation in newly-emerged leaves of 

TuMV-challenged atrh9 and prh75 T-DNA mutants suggested that viral replication was 

drastically inhibited compared with that in TuMV-infected WT plants (Figures 6, 13). 

This conclusion was further supported by the weak green fluorescence observed from the 

newly-emerged leaves of atrh9 and prh75 T-DNA insertion mutants infected by a GFP-

tagged TuMV infectious clone, indicative of a delayed viral spread relative to WT 

controls (Figures 6, 13). Thus, these results strongly suggest that AtRH9 and PRH75 are 

required for TuMV infection.  

Both AtRH9 and PRH75 belong to the family of DEAD-box RNA helicase proteins that 

have both RNA-binding and helicase activities. As briefly discussed in Chapter 1, several 

AtRHs, for example, AtRH8 (Huang et al., 2010), AtRH20 (Kovalev et al., 2012) AtRH2 

and AtRH5 (Kovalev and Nagy, 2014) have been found to play functional roles in viral 
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infection. Here, our study has shown that AtRH9 and PRH75 are two potential host 

factors in the DEAD-box RNA helicase family associated with TuMV infection. The 

involvement of AtRH9 and PRH75 in TuMV infection and the mechanism underlying the 

association between DEAD-box RNA helicase and potyvirus infection, therefore became 

the main objective of the remainder of this thesis.  

 AtRH9 and its recruitment for TuMV infection 4.2

AtRH9 is a mitochondrial protein and may be involved in RNA metabolism in 

mitochondria as an RNA chaperon (Köhler et al., 2010). The subcellular localization of 

AtRH9 was visualized as punctate particles in the cytoplasm (Figure 8), consistent with 

the reported mitochondrial distribution (Matthes et al., 2007). It is worth noting that 

AtRH9 mRNA level is enhanced in response to biotic stress caused by different 

pathogens (Matthes et al., 2007). Likewise, AtRH9 is involved in plant-pathogen 

interactions but its functional role therein is currently unknown.   

To explore the functional role of AtRH9 in TuMV infection, the BiFC assay was 

conducted to test protein-protein interactions between AtRH9 and TuMV viral proteins. 

This analysis revealed that AtRH9 interacts with NIa-Pro (Figure 9), a virus-encoded 

protease. TuMV NIa-Pro is present in the VRC and is also responsible for catalyzing the 

cleavage of P3/6K1, 6K1/CI, CI/6K2, 6K2/NIa, NIa/NIb, NIb/CP and the cleavage site 

between VPg and NIa-Pro domains in NIa protein (Li et al., 1997). However, no 

interaction between AtRH9 and NIa-Pro was detected by the Y2H assay (data not shown). 

It is possible that the interaction between AtRH9 and NIa-Pro found in the BiFC assay 

was either transient or mediated by one more host protein that binds to both AtRH9 and 

NIa-Pro and thus serves as a bridging interactor. Further study is needed to confirm the 

AtRH9 and NIa-Pro interaction and to elucidate the functional role played by AtRH9 in 

TuMV infection.  

While our results demonstrate that AtRH9 is associated with TuMV infection through 

interaction with NIa-Pro, the biological mechanism is unclear at present. It is possible 

that AtRH9 may participate in the separation of RNA duplexes during viral genome 



120 

 

 

 

replication. Alternatively, AtRH9 is also likely to facilitate the proteolytic cleavage of 

TuMV polyprotein via interacting with NIa-Pro.   

 PRH75 and its roles in TuMV infection 4.3

 PRH75 is a nuclear-localized ATP-dependent DEAD-box RNA helicase 4.3.1

In this study, we have shown that PRH75 is a nuclear-localized DEAD-box RNA helicase 

in Arabidopsis and that it is associated with TuMV infection (Figures 17, 18). This 

conclusion is based on an intensive screening of Arabidopsis atrh T-DNA insertion lines 

for their susceptibility to TuMV infection. Consistent with the previous findings, the 

sequence analysis clearly demonstrates that PRH75 contains the conserved DEAD 

domain and RNA-binding domain characterized as RGG repeats at the carboxyl-terminal 

extension, which is also found in nucleolar fibrillarin and nucleolin (Figure 16). In 

addition, all the conserved domains for ATP-dependent RNA helicase activity are present 

in PRH75 (Figure 15). Recently, ATP-dependent RNA unwinding activity of PRH75 has 

been reported (Nayak et al., 2013). Arabidopsis PRH75 encodes an essential enzyme 

which is required for embryo development, thus PRH75 is referred to as an embryo 

defective gene (Nayak et al., 2013). Given the lethality of prh75 T-DNA knockout mutant, 

it is suggested there is no functional redundancy between PRH75 and other DEAD-box 

RNA helicase. 

 PRH75 interacts with multiple viral proteins that are essential for TuMV 4.3.2

replication 

In this study, BiFC assays revealed a positive interaction between PRH75 and several 

viral proteins, including NIa-Pro, VPg, CI and NIb, respectively (Figure 19). The 

intimate association between PRH75 and these viral proteins was confirmed by FRET 

analysis (Figure 21). However, Y2H assays only detected the positive interactions of 

PRH75 with NIb, VPg, and CI, respectively, but not with NIa-Pro (Figure 20). The 

absence of the expected protein-protein interaction between PRH75 and NIa-Pro is 

probably due to weak or transient interaction intensity or lack of protein partners required 

for the interaction. Nonetheless, PRH75 interacts with TuMV NIa-Pro, VPg, CI and NIb, 
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which represent four primary components involved in the viral replication complex (VRC) 

(Wei et al., 2010). 

Potyviral NIa contains two nuclear localization signals (NLS) and localizes in the nucleus 

where NIa may induce nuclear inclusions. Mutation of NIa NLS results in a significant 

decrease of viral genome amplification, which indicates that nuclear localization and 

transport of NIa plays an essential role for viral infection (Restrepo et al., 1990; Schaad 

et al., 1996; Rajamäki and Valkonen, 2009). NIa contains an N-terminal VPg domain and 

a C-terminal NIa-Pro protease domain. NIa is processed into two functional proteins VPg 

and NIa-Pro, during proteolytic cleavage by the C-terminal NIa-Pro protease (Carrington 

and Dougherty, 1987). The nuclear localization of PRH75 supports the hypothesis that its 

interaction with NIa-Pro and/or VPg in the nucleus is critical for viral infection. 

Furthermore, two identified TuMV host factors, namely Arabidopsis PABP and 

eIF(iso)4E, have been found to interact and associate with TuMV VPg-Pro (NIa) in the 

nucleus during TuMV infection (Beauchemin et al., 2007; Beauchemin and Laliberté, 

2007), providing precedent for this type of interaction. Consistently, NIa has recently 

been observed to interact with nucleolar fibrillain and this interaction may play a role in 

suppression of virus-induced gene silencing during PVA infection (Rajamäki and 

Valkonen, 2009). 

Potyviral VPg is a multifunctional protein implicated in viral RNA replication and 

translation, cell-to-cell and long-distance movement, and virulence determination 

(Schaad et al., 1996; Schaad et al., 1997; Keller et al., 1998; Lellis et al., 2002). Potyviral 

VPg can be uridylated by NIb, the RNA-dependent RNA polymerase and serve as a 

primer for viral RNA synthesis during replication (Puustinen and Mäkinen, 2004). Given 

its intrinsic structure flexibility (Grzela et al., 2008; Hébrard et al., 2009), VPg could 

function as a hub protein to interact with diverse viral and host proteins to regulate 

different functions during viral infection (Jiang and Laliberté, 2011; Rantalainen et al., 

2011). The presence of VPg at the 5' end of the TuMV genome and its ability to interact 

with host factors eIF4E or eIF(iso)4E, which belong to the host translation machinery, 

strongly demonstrates that VPg is essential for viral RNA translation (Wittmann et al., 

1997; Schaad et al., 2000; Lellis et al., 2002; Roudet-Tavert et al., 2007). In addition, 
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host proteins such as PVIP (Dunoyer et al., 2004), PABP (Dufresne et al., 2008), eEF1A 

(Thivierge et al., 2008) and AtRH8 (Huang et al., 2010) have also been reported to 

interact with VPg. The self-interaction of VPg (Guo et al., 2001) and interactions 

between P1 (Merits et al., 1999), HC-Pro (Roudet-Tavert et al., 2007), P3 (Merits et al., 

1999), CI (Tavert-Roudet et al., 2012), NIb (Li et al., 1997) and CP (Zilian and Maiss, 

2011) have been discovered in potyviruses as well. It is worth noting that the interactome 

between VPg and potyviral proteins reveals the importance of co-ordinated functions 

with other potyviral proteins during viral infection. The ability of PRH75 to bind to VPg 

suggests the possibility that PRH75 may play a role in viral genome translation via 

interaction with VPg. Since VPg has been shown to promote viral translation by 

increasing the stability of viral RNA (Eskelin et al., 2011), PRH75 may be required for 

stabilization of viral RNA to secure efficient translation as an RNA chaperone. 

Potyviral CI possesses ATPase and RNA helicase activities, which are involved in the 

unfolding of RNA secondary structures during viral genome replication. Mutation of 

conserved helicase domain residues of CI causes a significant reduction of viral RNA 

replication (Carrington et al., 1998). Together with VPg and NIb, CI and host translation 

factors eIF(iso)4E were observed to associate with the VRC in TuMV-infected leaves 

(Cotton et al., 2009; Tavert-Roudet et al., 2012). It was also found that CI colocalized 

with dsRNA punctates in the VRC (Cotton et al., 2009) and assisted cell-to-cell transport 

of virions through the PD by interacting with P3N-PIPO (Wei et al., 2010). These 

findings have revealed a pivotal role for CI in viral genome replication, translation and 

intercellular movement. That is, CI not only acts as an RNA helicase to catalyse the 

separation of RNA duplexes but also coordinates viral RNA replication and translation by 

association with both viral RNA polymerase (NIb) and eIF(iso)4E as well as to facilitate 

viral movement by association with P3N-PIPO. The interaction between PRH75 and CI 

reinforces the idea of the involvement of PRH75 in the VRC and suggested that PRH75 

associated with CI and NIb to form the protein complex which was responsible for viral 

genome replication. Moreover, the association of PRH75 with TuMV CI may raise the 

possibility that both viral helicase and cellular helicase are required for viral replication 

and suggest that PRH75 may work synergistically with viral helicase CI. 
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TuMV NIb is a viral RNA-dependent RNA polymerase which catalyzes the synthesis of 

new viral genomic RNA. The NIb protein accumulates predominantly in the nucleus as 

nuclear inclusions and is also recruited into the cytoplasmic membrane-bound vesicles 

that house the VRC during viral infection (Restrepo et al., 1990; Dufresne et al., 2008; 

Thivierge et al., 2008). Recently, NIb has been identified to be the interacting partner of 

SCE1, a SUMO-conjugating enzyme by the Wang laboratory (Xiong and Wang, 2013). 

As a result, NIb is SUMOylated. Silencing SCE1 could confer resistance to potyvirus 

infection. Thus, SUMOylation plays a crucial role in the potyvirus replication process, 

which may directly regulate the function of NIb (Xiong and Wang, 2013). More recent 

data suggest that NIb is predominantly SUMOylated with small ubiquitin-like modifier 3 

(SUMO3), and mimicking SUMOylation of NIb changes its partition between the 

nucleus and cytoplasm (Xiong et al., unpublished data). Intriguingly, using SCE1 as bait, 

the Y2H screening identified PRH75 as one of SUMO substrates in Arabidopsis and the 

SUMOylation assay showed that PRH75 is SUMOylated by SUMO3 (Elrouby and 

Coupland, 2010). Given that NIb and PRH75 interact with each other and both are 

SUMOylated, it is tempting to speculate that PRH75 is involved in NIb SUMOylation to 

regulate TuMV infection. Alternatively, as SUMOylation of NIb facilitates its cytoplasm 

localization and recruitment to the VRC through interacting with 6K2-VPg-Pro, it is also 

possible that the SUMOylated form of PRH75 allows its redistribution from the nucleus 

to the cytoplasm and the cytoplasmic PRH75-NIb complex can be brought to the VRC by 

PRH75 or NIb through interacting with viral replicase components essential for TuMV 

replication. 

 Localization of PRH75 and its recruitment to viral replication complex (VRC) 4.3.3

To establish the subcellular localization of the various protein complexes of PRH75 with 

different viral proteins during TuMV infection, the BiFC assay was conducted with co-

expression of NIb-YN, NIa-Pro-YN, VPg-YN or CI-YN with PRH75-YC, respectively, 

in TuMV-infected leaves. The distribution of BiFC interacting signals between PRH75 

with NIb, NIa-Pro, VPg or CI was observed in the nucleus as well as along with 6K2-

induced vesicles in the presence of TuMV infection (Figure 31). This is in contrast with 

the observation that PRH75 mainly interacted with viral proteins in the nucleus in the 
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absence of TuMV infection (Figure 19). These results have demonstrated that the 

interactions of PRH75 with TuMV viral replicase proteins occur in the nucleus and in the 

cytoplasmic 6K2-induced vesicles during viral infection. This is consistent with the 

previously published data that, during viral genome replication, TuMV replicase proteins 

such as NIb and VPg-Pro (NIa) are localized in the cytoplasm and, to a greater extent, in 

the nucleus of infected cells (Restrepo et al., 1990; Li et al., 1997). Although the primary 

localization of PRH75 is in the nucleus, PRH75 is likely undergoing intracellular 

translocation from the nucleus to cytoplasm as a result of interacting with multiple viral 

proteins essential for viral replication in the VRC or is intercepted to join the VRC before 

it is targeted to the nucleus. The association of PRH75 with the viral replicase 

components in the nucleus and cytoplasm was further confirmed by the colocalization 

studies of PRH75 and TuMV NIb, NIa-Pro, VPg and CI (Figures 30).  

The cytoplasmic 6K2-induced vesicles have been reported to be membrane-associated 

vesicular structures that contain the viral RNA and the viral and host proteins required for 

viral replication (Grangeon et al., 2010). The host translation machinery components 

such as eIF(iso)4E, PABP and eEF1A have also been shown to be present in the 6K2-

induced vesicles, suggesting 6K2-induced vesicles may represent the site for viral protein 

synthesis as well as viral genome replication (Beauchemin et al., 2007; Beauchemin and 

Laliberté, 2007; Thivierge et al., 2008). Observations using confocal microscopy have 

identified the overlap localization pattern between PRH75 and 6K2-induced membranous 

vesicles along the outer chloroplast envelope (Figure 32). Furthermore, TuMV VPg-Pro 

(NIa), NIb and CI have been reported to be associated with viral dsRNA within the VRC 

(Cotton et al., 2009). Consistently, PRH75 colocalizes with dsRNA foci during viral 

infection which indicates the presence of PRH75 in the VRC and may play a functional 

during viral replication (Figure 34). 

In this study, I was able to demonstrate that PRH75 colocalized with 6K2-induced 

vesicles and viral dsRNA (Figures 32, 34). Moreover, the intimate association with four 

primary components of viral replication complexes indicates that PRH75 may serve as an 

important host component of the VRC. Collectively, these data support a possible 

functional role of PRH75 in TuMV genome translation and/or replication. It is certainly 
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noteworthy that recruitment of PRH75 to the VRC is favourable for TuMV infection. 

Given the biological function of PRH75 as an efficient RNA helicase that can unwind the 

RNA duplexes, the emerging picture of PRH75 associated with TuMV infection is that 

PRH75 may alternate or remodel the secondary structure of the viral genomic RNA 

during viral translation or separate the viral dsRNA intermediates during the process of 

viral RNA replication.  

 Arabidopsis PRH75 is highly dynamic 4.3.4

It is well known that nuclear and nucleolar proteins are highly dynamic. Nucleolar 

proteins are in a constant flux, moving in and out of the nucleolus. As a result many of 

them may exhibit altered distribution patterns during interactions with different proteins 

or complexes, especially in response to stresses (Mayer and Grummt, 2005).  

Arabidopsis PRH75 is predominantly localized in the nucleus, preferentially targeting to 

the nucleolus under normal conditions (Figure 17). In the presence of TuMV infection, 

PRH75 was found to be recruited to the cytoplasmic VRC (Figure 31, 32). Therefore, we 

speculate that the subsequent recruitment of PRH75 to the VRC may indicate a constant 

association with viral replicase components for TuMV genome replication under viral 

infection. Similarly, another DEAD-box protein, AtRH2, which is the Arabidopsis 

ortholog of the mammalian DEAD-box helicase eIF4A-III, is relocalized from the 

nucleoplasm to the nucleolus and splicing speckles under hypoxic stress (Koroleva et al., 

2009). In a recent study, it was reported that, as a component of the cytoplasmic 

tombusvirus VRC, AtRH2 destabilizes viral dsRNA replication intermediates and 

promotes bringing the 5' and 3' terminal negative-sense RNA sequences in close vicinity 

via long-range RNA-RNA base pairing. The newly formed RNA structure promoted by 

AtRH2 together with AtRH20 might facilitate the recycling of the viral replicase 

components for multiple rounds of positive-sense viral RNA synthesis (Kovalev and 

Nagy, 2014). It is not clear if PRH75 plays a similar role in TuMV infection or if there 

are any overlapping functions between PRH75 and AtRH2. 
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 Nucleus, nucleolus and virus life cycle 4.4

 The nucleolus functions as a stress sensor in response to viral infection 4.4.1

The notion that the nucleolus could function as a stress sensor is well documented 

(Boulon et al., 2010). The nucleolus is the ribosome factory where most events of 

ribosome biogenesis, such as ribosomal RNA synthesis, processing, and ribosome 

subunit assembly, take place. Apart from ribosome subunit biogenesis, the nucleolus 

appears to be involved in other cellular functions such as stress signalling, viral infection 

response and DNA repair (Mayer and Grummt, 2005). 

After exposure to environmental or cellular stress, the nucleolus plays a critical role in 

monitoring and sensing the cellular stress signals (Olson, 2004). The nucleolar stress 

response includes profound alteration in the composition or organization of the nucleolus. 

For example, nucleolar proteins could translocate to the nucleoplasm under stress 

conditions. It is anticipated that the dynamic sequestration of nucleolar proteins between 

different sub-nuclear compartments is crucial for nucleolar stress response (Koroleva et 

al., 2009). 

Although the relation between nucleus, nucleolus and virus infection has been a research 

interest in the last decade, it is still far beyond our understanding of a clear picture. 

However, it is well established that, during viral infection, various viral components 

could traffic in and out of the nucleolus or the nucleus, and some nucleolar proteins are 

translocated out the nucleolus or non-nucleolar proteins enter the nucleolus to fulfill their 

functions (Salvetti and Greco, 2014).  

 Nuclear import of TuMV viral proteins is mediated by Arabidopsis importin α 4.4.2

Although most RNA viruses are predominantly cytoplasmic during their life cycle, there 

are diverse strategies utilized by RNA viruses in which they can recruit nuclear and 

nucleolar components, or direct host cellular functions within the nucleus, in order to 

facilitate their reproductive processes, such as viral genome replication, virus assembly 

and intracellular trafficking (Hiscox, 2003; Weidman et al., 2003). An increasing number 

of studies have highlighted the importance of the functions of nucleus and nucleolus, with 
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special regards to some RNA virus families, namely, positive-sense, single-stranded 

RNA viruses belonging to the Flaviviridae, Coronaviridae and Togaviridae families. For 

example, members of Flaviviridae include HCV, DENV, WNV (Rice, 1996). Members 

of Coronaviridae include SARS-CoV and Infectious bronchitis virus (IBV) (Siddell, 

1995). 

Indeed, many positive-sense, single-stranded RNA viruses can interact with proteins 

associated with host nucleus or induce the translocation of host proteins from the nucleus. 

The functional relevance between nucleus or nucleolus localization of viral proteins and 

viral genome replication remains less well understood. However, the need of efficient 

trafficking of viral proteins from the cytoplasm to the nucleus has been shown to be 

essential for viral infection (Restrepo et al., 1990).  

Despite the fact that virus-encoded proteins are usually small in size and thus could 

passively diffuse through the nuclear pores, active transport of viral proteins into the 

nucleus has been well demonstrated (Kamata et al., 2005). The localization of proteins to 

the nucleus or nucleolus is mediated by dedicated targeting mechanisms that recognize 

specific protein motifs and contribute to the efficiency of nuclear or nucleolar transport of 

the proteins. Most proteins that are imported to the nucleus or the nucleolus contain the 

nuclear localization signal (NLS) or nucleolar localization signal (NoLS). Similarly, viral 

NLS or NoLS have been identified within potyviral NIb and NIa (Carrington et al., 1991; 

Li and Carrington, 1993; Schaad et al., 1996). Furthermore, many studies have suggested 

that viruses can recognize and utilize the host’s nuclear import machinery to gain access 

to the nucleus (Krichevsky et al., 2006). 

Plant nuclear import and export machinery is composed of a network of proteins that 

shuttle between the nucleus and the cytoplasm, allowing substrate exchange through the 

nuclear pore complexes (NPC) (Doye and Hurt, 1997). Among them, importin α and 

importin β are two of the best characterized nuclear import receptors that can bind to the 

substrates and translocate them into the nucleus (Goldfarb et al., 2004). In the cytoplasm, 

importin α could bind to proteins containing NLS or NoLS via its NLS- or NoLS-binding 

region. The importin α complex is then targeted and transported into the nucleus through 
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the nuclear pore complexes. In Arabidopsis, importin α is capable of mediating the 

nuclear import of proteins without the requirement for importin β (Krichevsky et al., 

2006). 

Our data demonstrate that two Arabidopsis importin α isoforms, IMPA1 and IMPA2 

directly interact with TuMV NIb, NIa-Pro, VPg and CI in vivo and in vitro (Figures 24-

27). Interestingly, our study also shows that PRH75 interacts with both IMPA1 and 

IMPA2 in the nucleus which is consistent with the colocalization result between PRH75 

with IMPA1 and IMPA2 (Figures 22, 23, 28). The reason for the association between 

importin α, TuMV viral proteins and PRH75 is not clear. It is possible that the function of 

importin α is to serve as an adaptor that links TuMV viral proteins to PRH75 to form the 

ternary complex at the periphery of the NPC. Attempts to knockdown both IMPA1 and 

IMPA2 using VIGS were not successful (data not shown). Arabidopsis has nine importin 

α isoforms and functional redundancy is very likely (Bhattacharjee et al., 2008). Our 

study is the first to investigate and provide evidence for the functional roles of 

Arabidopsis importin α in nuclear import of TuMV viral proteins via the interaction with 

viral proteins.  

Our finding that Arabidopsis IMPA1 and IMPA2 directly interact with TuMV NIb, NIa-

Pro, VPg and CI is consistent with those studies reported previously. RNA silencing 

suppressor protein 2b of CMV is imported into the nucleus via the interaction with 

Arabidopsis importin α to counteract the RNA silencing defence in the host nucleus 

(Wang et al., 2004). HIV-encoded Rev protein, which is an essential regulator of viral 

gene expression, is responsible for promoting the nuclear export of unspliced and 

partially spliced mRNA (Dvorin and Malim, 2003). It is also a nuclear factor that could 

be imported into the nucleus by direct binding to human importin β (Henderson and 

Percipalle, 1997). Moreover, recent studies have shown that the nuclear import of HIV-1 

integrase is mediated by importin α. HIV-1 replication is significantly impaired in 

importin α knockdown HeLa cells (Nitahara-Kasahara et al., 2007; Ao et al., 2010; Levin 

et al., 2010).   
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Altogether, this work suggests that the association with Arabidopsis importin α is likely 

involved in the trafficking of TuMV viral proteins from the cytoplasm to the nucleus. 

This observation may broaden our understanding of nuclear import strategy employed by 

potyviruses as well as open a new investigation area for engineering antiviral strategies. 

However, more research attention should be paid to elucidate the mechanism underlying 

the nuclear import machinery during potyvirus life cycle. 

 Major findings and future directions 4.5

Although considerable effort has been made in discovering the host proteins involved in 

potyvirus infection, the vast majority of components are still unknown. In this study, we 

screened Arabidopsis T-DNA insertion mutants of AtRHs against TuMV infection and 

identified three mutants, atrh9, atrh26 and prh75 exhibiting reduced symptoms after 

TuMV infection. Among them, we found that TuMV NIb, NIa-Pro, VPg and CI interact 

with PRH75, a nuclear-localized DEAD-box RNA helicase, in the nucleus. In TuMV-

infected cells, PRH75 also associates with NIb, NIa-Pro, VPg and CI that are primary 

components of the VRC in the cytoplasm. Moreover, PRH75 colocalized with viral 

dsRNA in the VRC in the presence of viral infection. Furthermore, we presented 

evidence that viral accumulation and replication are inhibited if PRH75 is knocked down 

and concluded that PRH75 is required for TuMV infection. These findings highlight the 

important role of DEAD-box RNA helicases in potyvirus life cycle and will certainly 

shed light into the intricate relation between viruses and their hosts. Future studies should 

focus on unveiling the underlying molecular mechanism of the functional role DEAD-

box RNA helicases play during potyvirus infection. 

The involvement of nuclear RNA helicases in the viral infection process has been 

proposed in several independent studies. For example, RNA helicase DDX56 in the 

nucleolus can bind to WNV capsid protein and be recruited to the cytoplasm for viral 

genome replication during WNV infection (Xu et al., 2011; Xu and Hobman, 2012). 

Nucleolin has been reported to colocalize with the NS5B protein of HCV outside the 

nucleolus, in the perinuclear region during HCV infection (Shimakami et al., 2006; 

Kusakawa et al., 2007).  
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Based on the data presented in this study, we propose a model in which PRH75 has 

versatile functions in TuMV infection (Figure 35). Arabidopsis DEAD-box RNA helicase 

PRH75 interacts with TuMV NIb, VPg, NIa-Pro and CI in the nucleus. The nuclear 

transport of viral proteins is mediated by Arabidopsis importin α. During TuMV infection, 

PRH75 is recruited to 6K2-induced viral replication complex via interacting with the 

important viral components NIb, VPg, NIa-Pro and CI and may assist in unwinding of 

viral RNA duplexes during the replication process. Downregulation of PRH75 in 

Arabidopsis impedes the viral infection. Thus, PRH75 serves as an important host factor 

required for TuMV infection. However, the precise function of PRH75 in potyvirus 

infection remains to be further explored in the future. 

 

 
 

Figure 35  Working model for Arabidopsis PRH75 associated with TuMV infection. 
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Appendices 

Appendix I: List of DEAD-box RNA helicases in Arabidopsis.  
Gene Names Locus Gene Names Locus 

RH1 AT4G15850 RH46 AT5G14610 
DRH1 AT3G01540 RH47 AT1G12770 

RH2(eIF-4A-III) AT3G19760 RH48 AT1G63250 
RH3 AT5G26742 RH49 AT1G71370 

RH4(eIF-4A) AT3G13920 RH50 AT3G06980 
eIF-4A-2 AT1G54270 RH51 AT3G18600 
eIF-4A-3 AT1G72730 RH52 AT3G58570 

RH5 AT1G31970 RH53 AT3G22330 
RH6 AT2G45810 RH55 AT1G71280 
RH8 AT4G00660 RH56 AT5G11200 
RH9 AT3G22310 RH57 AT3G09720 

RH10 AT5G60990 RH58 AT5G19210 
RH11 AT3G58510   PRH75 AT5G62190 
RH12 AT3G61240   
RH13 AT3G16840   
RH15 AT5G11170   
RH16 AT4G34910   
RH17 AT2G40700   
RH18 AT5G05450   
RH20 AT1G55150   
RH21 AT2G33730   
RH22 AT1G59990   
RH24 AT2G47330   
RH25 AT5G08620   
RH26 AT5G08610   
RH27 AT5G65900   
RH28 AT4G16630   
RH29 AT1G77030   
RH30 AT5G63120   
RH31 AT5G63630   
RH32 AT5G54910   
RH33 AT2G07750   
RH34 AT1G51380   
RH35 AT5G51280   
RH36 AT1G16280   
RH37 AT2G42520   
RH38 AT3G53110   
RH39 AT4G09730   
RH40 AT3G06480   
RH41 AT3G02065   
RH42 AT1G20920   
RH43 AT4G33370   
RH45 AT3G09620   
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Appendix II: Negative controls of the BiFC assays.  
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