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Abstract

We extend the canonical trace of Kontsevich and Vishik to the algebra of non-

integer order classical pseudodifferntial operators on noncommutative tori. We consider

the spin spectral triple on noncommutative tori and prove the regularity of eta function

at zero for the family of operators eth/2Deth/2 and the coupled Dirac operator D+A on

noncommutative 3-torus. Next, we consider the conformal variations of ηD(0) and we

show that the spectral value ηD(0) is a conformal invariant of noncommutative 3-torus.

Next, we study the conformal variation of ζ ′|D|(0) and show that this quantity is also

a conformal invariant of odd noncommutative tori. This the analogue of the vanishing

of the conformal anomaly of LogDet in odd dimensions in commutative case. We also

consider ηD+A(0) for the coupled Dirac operator D+A on noncommutative 3-torus and

compute a local formula for the variation of ηD+A(0) with respect to the vector potential

A.

In the second part, we consider a family of elliptic first order differential operators

∂̄A on noncommutative two torus which are the noncommutative analogues of Cauchy-

Riemann operators on a closed Riemann surface. We consider the Quillen determinant

line bundle associated to this family and by using the machinery of the canonical trace,

we compute the second variation of the ζ ′∆(0) where ∆ = ∂̄2A is the Dolbeault Laplacian.

This gives the analogue of the Quillen’s computations for the curvature form of the

determinant line bundle in commutative case.

Keywords: Noncommutative tori, Kontsevich-Vishik canonical trace, eta invariant,

Cauchy-Riemann operators, Quillen determinant line bundle.
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Chapter 1

Introduction

As the title suggests, the material covered in this thesis grow up from the soil of Alain

Connes’ noncommutative Geometry. In the past thirty five years, Alain Connes has

developed a framework where the concepts of differential geometry, algebraic topology

and index theory have been extended to a more general algebraic setting [2, 3]. At the

heart of the program of noncommutative geometry lies the fundamental duality between

a point space X and F(X), the algebra of functions on it. This duality is perhaps one

of the oldest ideas in mathematics. For instance, from early on it was known that one

can study a Riemann surface X by studying M(X), the field of meromorphic functions

on it. Along these lines, in 1943 Gelfand and Naimark published a fundamental result

where they characterized a compact Hausdorff topological space X by C(X), the C∗-

algebra of complex valued continuous functions on X. The noncommutative geometry

starts where we consider a noncommutative C∗-algebra as the algebra of functions on a

noncommutative space and try to extend the concepts of topology, analysis and geometry

to this context.

The concept of a Riemannian geometry is extended to the noncommutative setting

through the notion of a spectral triple (A,H, D) [3]. Here A is a ∗-algebra represented on

a Hilbert space H and D is a self adjoint densely defined operator on H satisfying certain

conditions. This data encapsulates and generalizes the data of a classical Riemannian

spin manifold with the algebra A of complex valued smooth functions, the Hilbert space

H of L2-spinors, and the Dirac operator /D. One should perceive the spectral approach

of noncommutative geometry to Riemannian geometry by observing that the local de-

scription of Riemann metric tensor gµν is not accessible in the noncommutative setting

1



Introduction 2

anymore. Here, the spectral geometry offers a solution, namely, to look at the Rieman-

nian metric through the window of spectral invariants of elliptic (pseudo)differential

operators on Riemannian manifolds. Therefore within this paradigm, those properties

and invariants of Riemannaian geometry which can be formulated in terms of spectral

data of elliptic operators, stand a chance of being translated to noncommutaive lan-

guage. For example in the case of a Riemannian spin manifold, one can read off the

dimension and volume of the manifold from the spectrum of the Dirac operator (Wayl’s

law). Also Connes’ distance formula [3] gives the geodesic distance between two points

using the Dirac operator..

One can go further and ask for more refined concepts of Riemannian geometry such

as scalar curvature. Again, the problem here is that the scalar curvature is defined by

the local description of the Riemann metric tensor. For this, spectral geometry offers

a solution as follows. Consider a closed Riemannian manifold (Mn, g) and the Laplace-

Beltrami operator ∆g associated to the metric g acting on smooth functions on M . One

has the following assymptotic expansion for the heat trace around zero,

Tr(e−t∆) ∼ (4πt)−n/2
∞∑
i=0

ait
i/2, t→ 0 (1.1)

and it can be shown that

a2 =
1

6

∫
M
s(x)dvolg,

where s(x) is the scalar curvature. Therefore if one can write the asymptotic expansion

(1.1) for the Dirac Laplacian ∆ = D2 of an abstract spectral triple (A,H, D), then

there is a chance for defining the density involved in a2 as the noncommutative scalar

curvature. The only known example of such spectral triple is built on noncommuta-

tive tori [3] where there exists a powerful notion of pseudodifferential calculus [4] and

therefore the asymptotic expansion (1.1) can be established and one can compute the

noncommutative scalar curvature [4], [5].

There exists another approach for studying the spectral properties of elliptic (classi-

cal) pseudodifferential operators, namely the zeta function approach. It can be thought

as the Mellin transformed counterpart of the heat kernel method. For the special case

of the Laplacian ∆g, the spectral zeta function is defined by

ζ∆(z) = TR
(
∆−z) ,
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where the TR on the right side is the Kontsevich-Vishik canonical trace [6] on classical

pseudodifferential operators of non-integer order. This trace is the analytic continuation

of the ordinary trace on trace-class pseudodifferential operators. In [6] it was shown that

for general non-integer order holomorphic families of elliptic classical pseudodifferential

operators Pz, the map TR (Pz) is a meromorphic function with simple poles. In the

special case of the families of the form AQ−z it turns out that z = 0 is a simple pole

with residue given by,

Resz=0TR(AQ
−z) =

1

ord(Q)
Wres (A) ,

where Wres(A) is the Wodzicki residue [9] on the integer order classical pseudodifferential

operators. Furthermore, in [7] a full description of the Laurent expansion of the map

TR(AQ−z) at the poles was given.

One advantage of the zeta function method is that by using the canonical trace,

one can express various spectral invariants of elliptic operators in terms of integrals of

local densities computed from the homogeneous terms in the symbol of the operator.

For instance, considering the Laplacian operator ∆g on a closed Riemannian manifold

(M, g), from the pole structure of TR(∆−z) we see that z = 0 is a regular point and the

value ζ∆(0) is given by a local formula

ζ∆(0) = −
1

2

∫
M

resx (log∆) dvolg − Tr(Π∆), (1.2)

where resx (log∆) is a certain density computed from the operator log∆ and Π∆ is the

orthogonal projection onto ker(∆).

The central idea of this thesis is to study the spectral invariants of elliptic operators

on noncommutative tori by using the machinery of canonical trace. The backbone of the

results in both chapter [3] and chapter [4] is the generalization of the canonical trace to

Connes’ algebra of classical pseudodifferential operators on noncommutative tori. Here

we briefly review the contents of the chapters in this thesis. In chapter [2] we review

the basics of pseudodifferential operators on a closed manifold. We also review the

construction of the the canonical trace on non-integer order classical pseudodifferential

operators and express some important spectral invariants of pseudodifferential operators

within this picture. We also review some of the results on conformal invariants of elliptic

operators obtained by the method of variations of the canonical trace. At the end we
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give a quick introduction to the framework of noncommutative geometry through Dirac

operators and spectral triples.

In chapter [3] we consider the spin spectral triple on noncommutative tori and by

studying the meromorphic structure of the canonical trace of holomorphic families of

pseudodifferntial operators on noncommutative tori, we prove the regularity of eta func-

tion at zero for the family of conformally perturbed Dirac operators eth/2Deth/2 and the

coupled Dirac operator D+A on noncommutative 3-torus. The spectral eta function was

first introduced in [1] where the value ηP (0) of a self adjoint pseudodifferntial operator

P appeared as a boundry correction term in Atiyah-Patodi-Singer index theorem. Using

the method of variations of canonical trace we consider the conformal variations of ηD(0)

and we show that the spectral value ηD(0) is a conformal invariant of noncommutative

3-torus. Next, we study the conformal variation of ζ ′|D|(0) and show that this quantity

is also a conformal invariant of odd noncommutative tori. This is the analogue of the

vanishing of the conformal anomaly of LogDet in odd dimensions in the commutative

case. We also consider ηD+A(0) for the coupled Dirac operator D + A on noncommu-

tative 3-torus and compute a local formula for the variation of ηD+A(0) with respect to

the vector potential A.

In chapter [4] we consider a family of twisted Dolbeault spectral triples on noncom-

mutative two-torus. This gives rise to a family of elliptic first order differential operators

∂̄A which are the noncommutative analogues of Cauchy-Riemann operators on a closed

Riemann surface. In [8], Quillen considered a line bundle associated to a family of

Cauchy-Riemann operators on a closed Riemann surface and equiped the line bundle

with a Hemitian metric. Then by using the variations of zeta functions he was able to

compute the first Chern form of the line bundle. We consider the Quillen determinant

line bundle associated to the family of Cauchy-Riemann operators on noncommutative

two-torus and by using the machinery of the canonical trace, we compute the second

variation of the ζ ′∆(0) where ∆ = ∂̄2A is the Dolbeault Laplacian and we obtain the

analogue of the Quillen’s computations for the curvature form of the determinant line

bundle in commutative case.
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Chapter 2

Background Material

2.1 Pseudodifferntial operators

In this section we recall the basic properties of pseudodifferential operators on manifolds.

For the proof of the results we refer to [17] and [27].

2.1.1 Pseudodifferential operators on Euclidean space

We begin by definition of differential operators on open sets of Euclidean space.

Let U ⊂ Rd be an open set. A differential operator with smooth coefficients acting

on smooth functions on U is defined by

Pu(x) =
∑
|α|⩽a

cα(x)D
α
xu(x), u ∈ C∞(U), cα ∈ C∞(U),

where Dα
x := (−i)α∂α1

x1 · · · ∂
αd
xd

with α = (α1, · · ·αd), αi ⩾ 0. The non negative integer a

is called the order of P .

The symbol of the operator P is defined by

σ(P )(x, ξ) =
∑
|α|⩽a

cα(x)ξ
α.
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By the basic properties of Fourier transform, one has the relation

Pu(x) =

∫
ei⟨x,ξ⟩σ(P )(x, ξ)û(ξ)dξ, x ∈ U, u ∈ C∞

0 (U), (2.1)

where dξ is the Lebesgue measure on Rd with an additional normalizing factor of

(2π)−d/2. A pseud differential operator on U is defined by the above formula by us-

ing a generalized class of symbols.

Definition 2.1.1. A scalar symbol σ of order a ∈ R on U is a smooth function in

C∞(U×Rd) with property that there exists a real number a such that for any multi-indices

γ, δ ∈ Zd⩾0 and for any compact subset K ⊂ U , there exists a constant Cγ,δ,K ∈ R+ such

that ∣∣∣∂γx∂δξσ(x, ξ)∣∣∣ ⩽ Cγ,δ,K ⟨ξ⟩a−|δ| , x ∈ K, ξ ∈ Rd,

where ⟨ξ⟩ :=
√

1 + |ξ|2.

We denote the set of scalar symbols of order a by Sa(U) and the set of all symbols

on U by S(U). The order of symbols naturally equips the set of scalar symbols with a

filtration,

S(U) =
∪
a

Sa(U).

If E is a trivial vector bundle on U with the complex vector space V as fibers, we define

a symbols with matrix coefficients as an element in

Sa(U)⊗ End(V ). (2.2)

Also, the class of scalar smoothing symbols is defined by

S−∞(U) =
∩
a∈R
Sa(U). (2.3)

The equivalence of symbols is defined by the relation

σ ∼ σ′ ←→ σ − σ′ ∈ S−∞(U). (2.4)

Next we define the class of classical symbols on U .

Definition 2.1.2. A symbol σ ∈ S(U) is called a classical symbol of order α ∈ C if for

any N and each 0 ⩽ j ⩽ N there exist σα−j(x, ξ), positive homogeneous of degree α− j
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in ξ variable, and a symbol σN ∈ SRe(α)−N−1(U), such that

σ(x, ξ) =

N∑
j=0

χ(ξ)σα−j(x, ξ) + σN (x, ξ) ξ ∈ Rd. (2.5)

Here χ is a smooth cut off function on Rd which is equal to zero on a small ball around

the origin, and is equal to one outside the unit ball. It can be shown that the homogeneous

terms in the expansion are uniquely determined by σ. The set of all classical symbols of

order α over U is denoted by Sαcl(U).

The above definition can be easily adapted to symbols with matrix coefficient on U .

Definition 2.1.3. The first term in homogeneous expansion 2.5 for the symbol σ is

called the leading symbol and is denoted by σL(x, ξ).

For a fixed order α one can equip the the space of symbols Sαcl(U)⊗ End(V ) with a

Fréchet structure using the following semi norms [27],

supx∈Ki,ξ∈Rd ⟨ξ⟩−Re(α)+|β| ||∂αx ∂
β
ξ σ(x, ξ)||,

supx∈Ki,ξ∈Rd ⟨ξ⟩−Re(α)+N+|β| ||∂αx ∂
β
ξ

σ − N−1∑
j=0

χ(ξ)σα−j

 (x, ξ)||,

supx∈Ki,|ξ|=1||∂αx ∂
β
ξ σα−j,l(x, ξ)||,

where α, β are multi-indices, j ⩾ 0, {Ki, i ∈ N} is a countable covering of U with

compact sets and χ is any smooth function vanishing around zero and equal to one

outside of the unit ball.

On can define the star-product of two classical symbols σ ∈ Sacl(U) and τ ∈ Sbcl(U)

by

σ ⋆ τ = lim
N→∞

N−1∑
|α|=0

(−i)|α|

α!
∂αξ σ(x, ξ)∂

α
x τ(x, ξ), (2.6)

where the limit is taken in the above Fréchet topology on the space of symbols of constant

order a+b and also the following multi-index notation is used: α = (α1, · · · , αd), αj ⩾ 0,

α! = α1! · · ·αd!, ∂αξ = ∂α1
ξ1
· · · ∂αd

ξd
and ∂αx = ∂α1

x1 · · · ∂
αd
xd
. In particular, the above limit

means that for any N ∈ N

σ ⋆ τ −
N−1∑
|α|=0

(−i)|α|

α!
∂αξ σ(x, ξ)∂

α
x τ(x, ξ) ∈ Sa+b−Ncl (U).
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Let σ ∈ Sa(U) and τ ∈ Sb(U), then

σ ⋆ τ ∈ Sa+b(U) (2.7)

and the leading symbols are related by

(σ ⋆ τ)L = σL.τL.

Recall that for a function u ∈ C∞
0 (U) the Fourier transform of u is defined by

F(u)(ξ) = û(ξ) =

∫
Rd

e−i⟨y,ξ⟩u(y)dy.

Definition 2.1.4. Consider a symbol σ ∈ S(U), the pseudodifferential operator corre-

sponding to σ is a linear operator

Op(σ) : C∞
0 (U) −→ C∞

0 (U) (2.8)

defined by

(Op(σ)u) (x) = F−1 (σ(x, .)û) , u ∈ C∞
0 (U). (2.9)

We say that the pseudodifferential operator Op(σ) is classical of order a if σ ∈ Sacl(U).

Also Op(σ) is a matrix pseudodifferential operator if σ ∈ S(U)⊗End(V ), and Op(σ) is

smoothing if σ ∈ S−∞(U).

We denote the collection of all matrix pseudodifferential operators on U by Ψ∗(U, V )

and classical matrix pseudodifferential operators by Ψ∗
cl(U, V ). If a linear operator A :

C∞
0 (U) → C∞

0 (U) is given by A = Op(ρ) where ρ ∈ S∗(U), we write σ(A) ∼ ρ. Note

that Ψ∗(U, V ) is equipped with a natural filtration given by the order of symbols. The

following proposition shows that the composition of pseudodifferential operators respects

this filtration and hence, Ψ∗(U, V ) is a filtered algebra (see [17] for a proof).

Proposition 2.1.5. Let A,B : C∞
0 (U, V ) −→ C∞

0 (U, V ) be two matrix pseudodiffer-

ential operators with the symbols σ(A) and σ(B). The composition of A and B is a

pseudodifferntial operator with the following symbol

σ(AB) ∼ σ(A) ⋆ σ(B), (2.10)
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where the ⋆-product is defined in (2.6). Furthermore, the leading symbol of AB is the

product of the leading symbols

σL(AB) = σL(A) ◦ σL(B).

2.1.2 Pseudodifferential operators on manifolds

In this section we extend the notion of pseudodifferential operators on euclidean spaces

to smooth manifolds. LetM be a d−dimensional smooth manifold with an atlas {Ui, ϕi}
and a partition of unity {χi} subordinate to this atlas. Now consider a linear operator

A : C∞(M) → C∞(M) on M . The localized operator on the coordinate patch (U, ϕ)

around a point x ∈M is given by AU := χAχ̃ where χ and χ̃ are smooth functions with

compact support in U which are equal to one in a neighborhood of x.

Definition 2.1.6. We call A a pseudodiffrential operator, if on each chart (U, ϕ), the

following operator on the open set ϕ(U) of Rd is a pseudodifferential operator,

ϕ∗AU := ϕ∗ ◦AU ◦ ϕ∗, (2.11)

where ϕ∗f := f ◦ ϕ and ϕ∗f := f ◦ ϕ−1. We define the symbol of A in the local chart

(U, ϕ) to be the symbol of ϕ∗AU .

Now, given the partition of unity {χi} for M , one can write,

A =
∑

Supp(χi)∩Supp(χj )̸=∅

χiAχj +R(A), (2.12)

where R(A) =
∑

Supp(χi)∩Supp(χj)=∅ χiAχj is a smoothing operator. Those properties

of pseudodifferential operators on euclidean space which are invariant under diffeomor-

phisms can be extended to smooth manifolds. Let (U, ϕ) and (V, ψ) be two coordinate

patches and κ := ψ ◦ ϕ−1 be the coordinate transformation. Then

ψ∗AU∩V = κ∗ ◦ ϕ∗AU∩V ◦ κ∗ = κ∗ (ϕ∗AU∩V ) . (2.13)

One can show that (see [17]) ψ∗AU∩V and ϕ∗AU∩V have the same order and differ by

an operator of strictly smaller order. Therefore it makes sense to define an operator A
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to be classical if on any chart (U, ϕ) and any localization AU , the localized operator

Aϕ(U) is classical. The operator A has the order α if on any chart (U, ϕ) and any

localization AU , the localized operator ϕ∗A has order α. We denote the set of classical

pseudodifferential operators of order α by Ψα
cl(M). At the local chart (U, ϕ), the leading

symbol σL (A) (x) at the point x ∈ U is defined by σL (ϕ∗AU ) (ϕ(x)). Based on above,

we have the following two definitions.

Definition 2.1.7. A pseudodifferential operator A is called elliptic if for x ∈ M and

ξ ̸= 0, the leading symbol σL (A) (x, ξ) is invertible.

Definition 2.1.8. The algebra of classical pseudodifferential operators on M , denoted

by Ψ∗
cl(M) is the algebra generated by

∪
α∈CΨα

cl(M). It is endowed with the natural

filtration resulting from the order and the product of symbols makes it into a filtered

algebra. The two sided ideal of smoothing operators is given by

Ψ−∞
cl (M) =

∩
α∈C

Ψα
cl(M).

The above definitions and properties extend to matrix pseudodifferential operators

acting on sections C∞
0 (M,E) of a smooth vector bundle E on M . This leads to the

algebra of matrix pseudodifferential operators Ψ∗
cl(M,E).

2.1.3 Traces on pseudodifferential operators

In this section we review the different types of traces defined on algebra of classical

pseudodifferential operators on a compact closed d−dimensional Riemannian manifold

M , all of the results hold in the case of matrix pseudodifferential operators as well. We

follow [27] and [31] in this section.

Consider an open subset U ⊂ Rd. Recall that a pseudodifferential operator A :

C∞
0 (U) 7→ C∞

0 (U) with the symbol σ can be written as follows,

Au(x) =

∫
Rd

ei<x,ξ>σ(x, ξ)û(ξ)dξ, u ∈ C∞
0 (U),
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and one can write

Au(x) =

∫
Rd

∫
Rd

ei<x−y,ξ>σ(x, ξ)u(y)dξdy

=

∫
Rd

KA(x, y)u(y)dy, (2.14)

where

KA(x, y) =

∫
Rd

ei<x−y,ξ>σ(x, ξ)dξ

is the Schwartz Kernel of the operator A. In general, this is a distribution kernel with

the singularities located on the diagonal.

The notion of Schwartz Kernel can be extended to pseudodifferential operators on

manifolds (see [31] for a detailed review). However, all we need here is that, when M

is compact and A ∈ Ψ<−d
cl (M), the restriction of the Schwartz kernel KA(x, y) to the

diagonal of M ×M defines a smooth 1-density (therefore it can be integrated over M).

Also the operator A belongs to the ideal of trace class operators and its trace is given

by the integral over the diagonal of M ×M of the kernel,

Tr(A) =

∫
M
KA(x, x)dx. (2.15)

We are seeking for an extension of ordinary trace possibly to the algebra Ψ∗
cl(M). It

turns out that the canonical trace ([23]),

TR : Ψ/∈Z
cl (M)→ C, (2.16)

on classical operators of non-integer order is the unique analytic continuation of the

ordinary trace on Ψ<−d
cl (M). Roughly speaking, being analytic means that if Az for

z ∈ C is a holomorphic family of pseudodifferential operators in Ψ
C\Z
cl (M), then TR (Az)

is a holomorphic map. The basic idea behind the construction of the canonical trace is

actually quite old and in mathematics literature it is known as the Hadamard finite part

method. Also the idea was widely used by physicists when dealing with integrals of the

form ∫
Rd

f(ξ)dξ,

when f ∈ L1 (BR(0)) for any R > 0 but f /∈ L1
(
Rd
)
(ultra-violet divergence) where it is

known as momentum cut-off integral method.
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We start by the following lemma on the cut-off integral of classical symbols on

euclidean space [27],[29].

Lemma 2.1.9. Let σ ∈ Sαcl(U) where U ∈ Rd is an open set and BR(0) be the ball of

radius R around the origin. One has the following asymptotic expansion

∫
B(R)

σ(ξ)dξ ∼R→∞

∞∑
j=0,α−j+d ̸=0

αj(σ)R
α−j+d + β(σ) logR+ c(σ), (2.17)

where β(σ) =
∫
|ξ|=1 σ−d(ξ)dξ and the constant term in the expansion, c(σ), is given

by

c(σ) =

∫
Rn

σN (x, ξ)dξ+

N∑
j=0

∫
B(1)

χ(ξ)σα−j(ξ)dξ−
N∑

j=0,α−j+d ̸=0

1

α− j + d

∫
Sd−1

σα−j(ω)dω,

(2.18)

where we have used the notation in definition (2.1.2).

Proof. In order to simplify the notations we drop the variable x ∈ U and write σ(ξ) =∑N
j=0 χ(ξ)σα−j(ξ)+σ

N (ξ) with large enough N , so that σN is integrable. Then we have,

∫
B(R)

σ(ξ)dξ =

N∑
j=0

∫
B(R)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)

σN (ξ)dξ. (2.19)

For N > α+ 1, σN ∈ L1(Rd), so∫
B(R)

σN (ξ)dξ →
∫
Rd

σN (ξ)dξ, R→∞.

Now for each j ⩽ N we have∫
B(R)

χ(ξ)σα−j(ξ)dξ =

∫
B(1)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ.

Obviously
∫
B(1) χ(ξ)σα−j(ξ)dξ <∞ and by using polar coordinates ξ = rω, and homo-

geneity of σα−j , we have

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ =

∫ R

1
rα−j+d−1dr

∫
|ξ|=1

σα−j(ξ)dξ. (2.20)
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Note that the cut-off function is equal to one on the set Rd\B(1). For the term with

α− j = −d one has∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = logR

∫
|ξ|=1

σα−j(ξ)dξ.

The terms with α− j ̸= −d will give us the following:∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = (2.21)

Rα−j+d

m− j + d

∫
|ξ|=1

σα−j(ξ)dξ −
1

α− j + d

∫
|ξ|=1

σα−j(ξ)dξ.

Adding all the constant terms in (2.19)-(2.21), we get the constant term given in (2.18).

The cut-off integral of the classical symbol σ ∈ Sαcl(U) regularizes the possible diver-

gence in
∫
Rd σ(ξ)dξ, by only picking the constant term (finite part) in the asymptotic

expansion of
∫
BR(0) σ(ξ)dξ as R→∞.

Definition 2.1.10. Let σ ∈ Sαcl(U) be a classical symbol. The cut-off integral is given

by the constant term in the equation (2.17),

∫
−σ(x, ξ)dξ = c(σ)(x, ξ)

=

∫
Rn

σN (x, ξ)dξ +

N∑
j=0

∫
B(1)

χ(ξ)σα−j(ξ)dξ −
N∑

j=0,α−j+d̸=0

1

α− j + d

∫
Sd−1

σα−j(ω)dω.

It is immediate from the definition of the cut-off integral that for σ ∈ S |α|<−d
cl (U),∫

−σ(ξ)dξ =
∫
Rd

σ(ξ)dξ.

Also a quick computation (see [29]) shows that if A ∈ Ψ∗
cl(U) is a differential operator,

then ∫
−σ (A) (ξ)dξ = 0.

In order to define the cut-off integral for symbols on manifolds we need to see how it

changes under the coordinate transformations. Let U and U ′ be two open sets of Rd and
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ϕ : U → U ′ be a diffeomorphism. For a pseudodifferential operator A on U we define its

push forward by

ϕ∗A := ϕ∗ ◦A ◦ ϕ∗, (2.22)

where ϕ∗f = f ◦ ϕ and ϕ∗g = g ◦ ϕ−1 for any f ∈ C∞(U ′) and g ∈ C∞(U). It can be

shown (see [17]) that ϕ∗Op(σ) and Op(ϕ∗σ) are related as follows, at (x′, ξ′) ∈ T ∗U ′,

ϕ∗σ(x
′, ξ′) = σ

(
ϕ−1(x′), dϕ

(
ϕ−1(x′)

)t
ξ′
)

(2.23)

where dϕ(x) : TxU → Tx′U
′ and (dϕ(x))t : T ∗

ϕ(x)U
′ → T ∗

xU .

Therefore, in order to lift the cut-off integral to a density on a manifold M , we

need to know how the expression in Definition 2.1.10 transforms under the ξ-changes

of variable of the form Aξ where A ∈ GL(d,R). It turns out that unlike the ordinary

integrals which are invariant under changes of variable, the cut-off integral suffers from

lack of covariance. The following lemma make this more precise, we refer the reader to

[23] or [27] for the proof.

Lemma 2.1.11. Let A ∈ GL(d,R), U ⊂ Rd and open set and σ ∈ Sαcl(U) a classical

symbol. Then, ∫
−σ(Aξ)dξ =

∫
−σ(ξ)dξ −

∫
Sd−1

σ−d(ω) log
(
|A−1ω|

)
dω. (2.24)

It follows from the above lemma that in order to have a well-defined trace density

for the canonical trace on a manifold M we need to restrict its domain to non-integer

order classical pseudodifferential operators.

Definition 2.1.12. The TR−functional, TR : Ψ
C\Z
cl (M)→ C is defined by

TR(A) :=

∫
M

∫
−σ(A)(x, ξ)dξdx, A ∈ Ψ

C\Z
cl (M). (2.25)

The trace property of the functional TR : Ψ
C\Z
cl (M)→ C follows from the fact that

it is the analytic continuation of the ordinary trace Tr : Ψ<−d
cl (M)→ C to Ψ

C\Z
cl (M). In

the following we establish this important relationship in detail, we follow [29] and [31]

in this part.
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The notion of a holomorphic family of symbols was first used in [19] and then used

by Kontsevich and Vishik [23] in studying the multiplicative anomaly for determinants

in quantum field theory. Let W ⊂ C be a complex domain, a map f : W → E with

values in a normed vector space (E, ||.||) is called holomorphic if for any w0 ∈ W there

exists a a vector f ′(w0) ∈ E such that

lim
w→w0

∥f(w)− f(w0)

w − w0
− f ′(w0)∥ = 0.

The map is called holomorphic if the above property holds for any w0 ∈W . The known

results for holomorphic maps with values in Banach spaces can be generailized to the

maps with values in Fréchet spaces (see [27]). We now give the precise definition of

holmorphic families of symbols and pseudodifferential operators. We restrict to the case

of classical symbols on Euclidean spaces.

Definition 2.1.13. A family σ(z) of classical symbols on the open set U ⊂ Rd parametrized

by a complex domain W ⊂ C is called holomorphic if

• σ(z) is a holomorphic map of variable z with values in C∞(U × Rd) and

σ(z) ∼
∑
j⩾0

σα(z)−j(z) ∈ S
α(z)
cl (U), (2.26)

where the order α :W → C is holomorphic.

• for N ⩾ 1, the remainder

σN (z) := σ(z)−
N−1∑
j=0

σα(z)−j(z)χ

is holomorphic as a function with values in C∞(Rd), and the k-th z−derivative

∂kz
(
σN (z)

)
is a symbol on Rd of order α(z) − N + ϵ for any ϵ > 0 and locally uniformly in

z, i.e. the k-th z−derivative ∂kz
(
σN (z)

)
satisfies the estimate in Definition 2.1.1

and the estimate is uniform in z on compact sets K.

A family of operators Az is called holomorphic if Az = Op(σ(z)) for a holomorphic

family of symbols σ(z).
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The following important result of Kontsevich and Vishik [23] describes the pole

structure of cut-off integrals of holomorphic families of classical symbols.

Theorem 2.1. Given a holomorphic family σ(z) ∈ S∗cl(Rd), z ∈W ⊂ C, the map

z 7→
∫
−σ(z)(ξ)dξ,

is meromorphic with at most simple poles located in

P = {z0 ∈W ; α(z0) ∈ Z ∩ [−d,+∞]} .

The residues at poles are given by

Resz=z0

∫
−σ(z)(ξ)dξ = − 1

α′(z0)

∫
|ξ|=1

σ(z0)−ddξ.

Proof. By definition, one can write σ(z) =
∑N

j=0 χ(ξ)σ(z)α(z)−i(ξ) + σ(z)N (ξ), and by

Lamma 2.1.9 we have,

∫
−σ(z)(ξ)dξ =

∫
Rd

σ(z)N (ξ)dξ +

N∑
j=0

∫
B(1)

χ(ξ)σ(z)α(z)−j(ξ)

−
N∑
j=0

1

α(z) + d− j

∫
|ξ|=1

σ(z)α(z)−j(ξ)dξ.

Now suppose α(z0) + d− j0 = 0. By holomorphicity of σ(z), we have

α(z)− α(z0) = α′(z0)(z − z0) + o(z − z0),

hence

Resz=z0

∫
−σ(z) = −1

α′(z0)

∫
|ξ|=1

σ(z0)−d(ξ)dξ.

One has the following immediate corollary.

Corollary 2.1.14. The functional TR : Ψ
C\Z
cl → C is the analytic continuation of the

ordinary trace on trace-class pseudodifferential operators.

Proof. First observe that, by the above result, for a non-integer order holomorphic

family of symbols σ(z), the map z 7→
∫
−σ(z)(ξ)dξ is holomorphic. Hence, the map
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σ 7→
∫
−σ(ξ)dξ is the unique analytic continuation of the map σ 7→

∫
Rd σ(ξ)dξ from

S<−d
cl (Rd) to S /∈Zcl (Rd). Since the canonical trace involves an integration over x−variable

of above densities, we obtain the result.

Complex powers of operators form an important class of holomorphic families. We

briefly explain their construction here, following [27].

Let Q ∈ Ψq
cl(M) be a positive elliptic pseudodifferential operator of order q > 0. The

complex power of such an operator, Qzϕ, for Re(z) < 0 can be defined by the following

Cauchy integral formula.

Qzϕ =
i

2π

∫
Cϕ

λzϕ(Q− λ)−1dλ. (2.27)

Here λzϕ is the complex power with branch cut Lϕ = {reiϕ, r ⩾ 0} and Cϕ is a contour

given by

Cϕ = C1
ϕ ∪ C2

ϕ ∪ C3
ϕ,

C1
ϕ = {ρeiϕ, ∞ > ρ ⩾ r},

C2
ϕ = {ρei(ϕ−2π), ∞ > ρ ⩾ r},

C3
ϕ = {reit, ϕ− 2π ⩽ t < ϕ}

around the branch cut Lϕ and the non-zero spectrum of A. the constant r is chosen

small enough such that the contour does not intersect the spectrum of A.

In general an operator for which one can find a ray Lϕ with the above property, is

called an admissible operator with the spectral cut Lϕ. Positive elliptic operators are

admissible and we take the ray Lπ as the spectral cut, and in this case we drop the index

ϕ and write Qz.

To extend (2.27) to Re(z) > 0 we choose a positive integer such that Re(z) < k and

define

Qzϕ := QkQz−kϕ .

It can be proved (see [27]) that this definition is independent of the choice of k.

Now we can prove the trace property of TR-functional. The basic idea is to embed

the symbol σ(A) of the operator A into the holomorphic family of symbols σ (AQ−z).
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Proposition 2.2. We have TR(AB) = TR(BA) for any A,B ∈ Ψcl(M), provided that

ord(A) + ord(B) /∈ Z.

Proof. Consider the families Az andBz such that A0 ∼ A, B0 ∼ B , ord(Az) = ord(A)+z

and ord(Bz) = ord(B) + z. For z ∈ W = −(ord(A) + ord(B)) + Z the families {AzBz}
and {BzAz} have non-integer order . For Re(z)≪ 0, the two familIes are trace-class and

Tr(AzBz) = Tr(BzAz). now by analytic continuation we have TR(AzBz) = TR(BzAz),

for z ∈ C−W . Putting z = 0 gives TR(AB) = TR(BA).

Another important functional on algebra of classical pseudodifferential operators is

the noncommutative (Wodzicki) residue. It is a trace on the algebra of integer order

classical pseudodifferential operators ([19], [20], [37]),

Wres : ΨZ
cl(M) 7→ C. (2.28)

We begin by the following definition for pseudodifferential operators on U ⊂ Rd.

Definition 2.1.15. For σ ∈ Smcl (U), the residue density of σ is defined as follows.

res (σ) (x) =

∫
|ξ|=1

σ−d(x, ξ)dξ. (2.29)

The Wodzicki residue of a classical pseudodifferential operator A ∈ ΨZ
cl(U) is defined

as,

Definition 2.1.16.

Wres(A) =

∫
U
res (σ(A)) dx =

∫
U

∫
|ξ|=1

σ(A)−d(x, ξ)dξdx. (2.30)

In order to extend the above definition to operators on manifold we need to make sure

that the residue density of σ(A) is in fact a density. This can be established by making

use of a deeper relation between the canonical trace on non-integer order operators and

noncommutative residue on algebra of integer order operators.

Proposition 2.1.17. Let A ∈ Ψα
cl(M) be of order α ∈ Z and let Q be a positive elliptic

classical pseudodifferential operator of positive order q. Then,
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• For the holomorphic family σ(z) = σ(AQ−z), z = 0 is a simple pole for the map

z 7→
∫
−σ(z)(ξ)dξ,

whose residue is given by

Resz=0

(
z 7→

∫
−σ(z)(ξ)dξ

)
= − 1

α′(0)

∫
|ξ|=1

σ−d(0)dξ = −
1

α′(0)
res(A). (2.31)

•
Resz=0TR(AQ

−z) =
1

q
Wres(A). (2.32)

Proof. This is simply a corollary of Theorem 2.1 applied to the holomorphic family

σ(z) = σ(AQ−z). Also , since σ(z) has non-integer order,
∫
−σ(z)(ξ)dξ is a well defined

density and therefore

res(A)(x, ξ) = Resz=0

∫
−σ(z)(ξ)dξ (2.33)

is a well defined density on M .

The trace property of the noncommutative residue can be derived from the above

result.

Proposition 2.1.18. Consider the operators A,B ∈ ΨZ
cl(M), then

Wres([A,B]) = 0. (2.34)

Proof. We write,

Wres([A,B]) = Resz=0TR([A,B]Q−z) = Resz=0TR(Cz) + Resz=0TR([AQ
−z, B]),

where Cz = ABQ−z − AQ−zB. For Re(z) ≫ 0, the operator AQ−z is trace-class and

Tr([AQ−z, B]) = 0, so by analytic continuation,TR([AQ−z, B]) = 0 and therefore,

Resz=0TR([A,B]Q−z) = Resz=0TR(Cz). (2.35)

Finally, C0 = ABQ0 − AQ0B ∈ Ψ−∞
cl (M), and since the noncommutative residue of a

smoothing operator is zero, we obtain

Wres([A,B]) = Resz=0TR(Cz) = Wres(C0) = 0. (2.36)
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The result of Theorem 2.1 has been generalized in [29] and the full Laurent expansion

can be explicitly calculated.

Theorem 2.3. Consider the holomorphic family σ(z) of classical symbols on an open set

U ⊂ Rd. Also, assume that that the order of the family is linear, α(z) = α′(0)z + α(0),

α′(0) ̸= 0. Then at z = 0 the map z 7→
∫
−σ(z)(x, ξ)dξ has the following Laurent

expansion,∫
−σ(z)(x, ξ)dξ =

(
−1
α′(0)

resσ(0)

)
1

z

+

K∑
k=0

zk

k!

(∫
−σ(k)(0)− 1

α′(0)(k + 1)
resσ(k+1)(0)

)
+O(zk).

One has to note that the z−derivative σ(k)(0) need not be a classical symbol, however

the z−derivatives of holomorphic families of the form σ(z) = AQ−z fall into a larger class

of symbols called log-polyhomogenous symbols. Here we briefly review their definition

and properties and refer the reader to [29] and [26] for details.

Definition 2.1.19. Let U ⊂ Rd be an open set, α ∈ C and k ∈ Z. a symbol σ ∈ Sα(U) is

called log-polyhomogeneous of order α and log− type k if for any N and each 0 ⩽ j ⩽ N

there exist a symbol σN ∈ SRe(α)−N−1(U), such that

σ(ξ) =

N∑
j=0

χ(ξ)σα−j(ξ) + σN (ξ) ξ ∈ Rd, (2.37)

where

σα−j(x, ξ) =

k∑
l=0

σα−j,l(x, ξ) log
l(|ξ|), ξ ̸= 0, (2.38)

and σα−j,l(x, ξ) are positively homogeneous of order α− j in ξ. Here χ is a smooth cut

off function on Rd which is equal to zero on a small ball around the origin, and is equal

to one outside the unit ball. We denote the collection of these symbols by Sα,kcl (U).

An important example of an operator with a log-polyhomogenous symbol is logQ

where Q ∈ Ψq
cl(M) is a positive elliptic differential operator of order q > 0. The
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logarithm of Q can be defined by

logQ = Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C
λz−1(Q− λ)−1dλ.

It is a pseudodifferential operator with symbol

σ(logQ) ∼ σ(Q) ⋆ σ
( d

dz

∣∣∣∣
z=0

Qz−1
)
, (2.39)

where ⋆ denotes the product of symbols. Using symbol calculus, it can be shown that

(2.39) is a log-homogeneous symbol of the form

σ(logQ)(ξ) = q log |ξ|I + σcl(logQ)(ξ),

where σcl(logQ) is a classical symbol of order zero. This symbol can be computed using

the homogeneous parts of the classical symbol σ(Qz) =
∑∞

j=0 b(z)qz−j(ξ) and it is given

by the following formula (see e.g. [27]).

σcl(logQ)(ξ) = (2.40)

∞∑
k=0

∑
i+j+|α|=k

1

α!
∂ασq−i(Q)δα

[
|ξ|−q−j d

dz

∣∣∣∣
z=0

b(z − 1)qz−q−j (ξ/|ξ|)
]
.

The definition of the cut-off integral of symbols can be extended to log-polyhomogenous

symbols [26] and for a non-integer order symbol σ ∈ Sα,kcl (M),
∫
−σ(x, ξ)dξ is a well de-

fined density, and hence one can define the canonical trace TR(A) by (2.25). Also it is

shown in [26] that the noncommutative residue can be extended to log-polyhomogenous

symbols of log type k by the following formula for the residue density,

res (σ) (x, ξ) =

∫
|ξ|=1

σ−d,k(x, ξ)dξ, σ ∈ Sα,kcl , U ⊂ Rd. (2.41)

The Theorem 2.3 takes the following form when applied to the holomorphic family

Az = AQ−z where Md is a closed manifold, A ∈ Ψ∗
cl(M) and Q is a positive elliptic

differential operator (more generally, an admissible operator) of order q > 0. We only

state the result here and refer to [29] for the proof in a more general setting.

Theorem 2.4. For the pseudodifferential operator A ∈ Ψ∗
clM and Q a positive elliptic

differential operator of order q > 0, TR(AQ−z) has a pole of order at most 1 at z = 0
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with the following Laurent expansion,

TR(AQ−z) =
1

q
Wres(A)

1

z

+

∫
M

(∫
−σ(A)(ξ)− 1

q
res(A logQ)

)
− Tr(AΠQ)

+
K∑
k=1

(−1)k (z)
k

k!

×
(∫

M

(∫
−σ(A(logQ)k)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)
− Tr(A logkQΠQ)

)
+ o(zK),

where ΠQ is the projection over the generalized kernel of Q.

2.1.4 Spectral functions of elliptic operators

In this section we define and review the basic properties of two important spectral

function associated to an elliptic operator on a closed manifold. For a thorough review

of the subject, we refer the reader to [17] and to [5] for the applications in quantum field

theory. We start by the definition of admissible operators.

Definition 2.1.20. An operator A ∈ Ψ∗
cl(M) is called admissible if for any (x, ξ) ∈

T ∗M\M × {0} the leading symbol σL(A)(x, ξ) has no eigenvalue on the ray Lθ =

{reiθ, r ⩾ 0} and also the spectrum of A does not intersect Lθ. θ is called the principal

angle and Lθ is the spectral cut.

Remark 2.1.21. From the definition, it follows that an admissible operator is elliptic

and invertible. In applications, many of the interesting elliptic operators have kernel,

however one can obtain an invertible operator as follows. Let A ∈ Ψ∗
cl(M) be a self

adjoint elliptic operator. One has the splitting L2(M) = ker(A)⊕Range(A) where ker(A)
is the finite dimensional kernel of A and Range(A) is the closed range of A. By setting

A′ = A ⊕ ΠA, where ΠA is the projection onto ker(A) one gets an invertible operator.

Classical pseudodifferential operators with positive leading symbol such as generalized

Laplacians, also formally self adjoint elliptic classical pseudodifferential operators such

as Dirac operators in odd dimensions are all examples of admissible operators.
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Definition 2.1.22. Let A ∈ Ψ∗
cl(M) and Q be an admissible operator, then the gener-

alized ζ-function of Q is given by,

ζϕ(A,Q) := TR
(
AQ−z

ϕ

)
, (2.42)

where TR is the canonical trace and ϕ is a fixed principal angle for Q and Q−z
ϕ is the

complex power of Q using the spectral cut Lϕ.

In the special case of A = I in above definition one gets the spectral ζ-function of Q,

ζϕ(Q)(z) = TR
(
Q−z
ϕ

)
. (2.43)

The meromorphic structure of the spectral ζ−function easily follows from the pole

structure of canonical trace of the family Q−z
ϕ (see Theorem 2.4).

Proposition 2.1.23. Let Q ∈ Ψq
cl(M) be an admissible operator of order q > 0, the

spectral ζ−function ζϕ(Q)(z) = TR
(
Q−z
ϕ

)
is a meromorphic function with at most

simple poles located in the set Σ = {d−kq , k = 0, 1, · · · }, where d is the dimension of M .

Furthermore, z = 0 is always a regular point and residues at poles are given by

Resz=σζϕ(Q)(z) = qWres
(
Q−σ
ϕ

)
, σ ∈ Σ. (2.44)

Proof. The pole structure of ζϕ(Q)(z) follows from Theorem 2.1. Also by Theorem 2.4

we see that

Resz=0ζϕ(Q)(z) =
1

q
Wres(I) = 0,

therefore z = 0 is a regular point. For the residues at other poles, we set, w = z−σ and

therefore,

Resz=σζϕ(Q)(z) = Resw=0TR
(
Q−w−σ
ϕ

)
= Resw=0TR

(
Q−σ
ϕ Q−w

ϕ

)
=

1

q
Wres

(
Q−σ
ϕ

)
.

Remark 2.1.24. It follows from the above result that for an admissible operator Q ∈
Ψq
cl(M) , the values ζθ(Q)(0) and ζ ′θ(Q)(0) make sense. Also, from Theorem 2.4 we

obtain the following formulas,

ζθ(Q)(0) = −1

q

∫
M

res (A logQ)− Tr(AΠQ). (2.45)
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and

ζ ′θ(Q)(0) = −
(∫

M

(∫
−σ(logQ)dξ − 1

2q
res((logQ)2)

)
− Tr(logQΠQ)

)
. (2.46)

Note that unlike ζθ(Q)(0), the value ζ ′θ(Q)(0) is non local due to presence of the cut off

integral which consists of infinitely many homogeneous terms of the symbol of logQ.

Form the definition of the complex power of an elliptic operator it is obvious that

the values of the spectral zeta function has a dependence on the choice of the spectral

cut. Here we briefly review some of the results regarding this dependence and refer the

reader to [30] for details.

Consider the elliptic operator A ∈ Ψα
cl(M) with α > 0. Let Lθ and Lθ′ be two

different spectral cuts with θ < θ′ ⩽ θ + 2π and let Λθ,θ′ be the sector of the plane

θ < argλ < θ′. The corresponding sectorial projection of A is defined by

Πθ,θ′(A) =

∫
Γθ,θ′

λ−1(A− λ)−1dλ, (2.47)

where

Γθ,θ′ = {ρeiθ; ∞ > ρ ⩾ r} ∪ {reit; θ < t < θ′} ∪ {ρeiθ′ ; r ⩽ ρ <∞},

and r is small enough such that no non-zero eigenvalue of A lies inside the disk |λ| ⩽ r.

It can be shown (see [30]) that Πθ,θ′(A) is a psedodifferential operator of ord ⩽ 0 and

hence is a bounded operator on L2(M). Furthermore, when the principal symbol of A

has no eigenvalues in the angular sector Λθ,θ′ , the operator Πθ,θ′(A) is smoothing.

The following result is due to M.Wodzicki [35] .

Proposition 2.1.25. One has the following equality of meromorphic functions,

ζθ(A)(z)− ζθ′(A)(z) =
(
1− e−2πiz

)
TR

(
Πθ,θ′A

−z
θ

)
, z ∈ C. (2.48)

One also has the following result on the value of the spectral ζ−function at zero [35].

Proposition 2.1.26. Consider the elliptic operator A ∈ Ψα
cl(M) with α > 0 and let Lθ

be a spectral cut. then the value ζθ(A)(0) is independent of θ.
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Remark 2.1.27. The Wodzicki’s proof of the above proposition is quite involved and uses

very careful analysis of local spectral invariants. Note that the difference

ζθ(A)(0)− ζθ′(A)(0)

is a multiple of the Wodzicki residue of a pseudodifferntial projection. In fact he used

the above result to prove that the Wodzicki residue of any pseudodifferential projection

is zero [36].

Another important spectral function associated to a self adjoint elliptic pseudodif-

ferential operator is the spectral eta function. It was introduced in [1] and it’s value at

origin appeared as a boundary correction term in Atiyah-Patodi-Singer index theorem.

Definition 2.1.28. Let A ∈ Ψ∗
cl(M) be a self adjoint elliptic pseudodifferential operator.

The spectral eta function is defined by

η(A)(z) = TR
(
A|A|z−1

)
= TR

(
F |A|−z

)
, (2.49)

where F = A|A|−1.

Regarding the meromorphic structure of the spectral eta function one has the fol-

lowing result.

Proposition 2.1.29. Let A ∈ Ψα
cl(M

d) be a self adjoint pseudodifferential operator.

The spectral eta function η(A)(z) is a meromorphic function with at most simple poles

located in the set Σ = {d−kα , k = 0, 1, · · · }. Also the residue at z = 0 is given by

Resz=0η(A)(z) =
1

α
Wres (F ) . (2.50)

Proof. The result follows easily from Theorem 2.4.

It turns out that the eta function is in fact regular at z = 0 and the value η(A)(0)

should be considered as the infinite dimensional analogue of the signature of a self

adjoint matrix. However, the proof of regularity of η(A)(z) at z = 0 for a self adjoint

pseudodifferential operator is much harder than regularity of zeta functions at zero. This

was proved in [2] and [16]. The proof uses topological arguments to reduce the problem

to the case of a twisted spin Dirac operator on an odd dimensional spin manifold and

then uses invariant theory. Along a different line, one can give a different proof, using
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the result of Wodzicki on the Wodzicki residue of a pseudodifferential projection (see

Remark 2.1.27 and [4]). First one obrerves that for a self adjoint pseudodifferential

operator A ∈ Ψα
cl(M

d),

Resz=0η(A)(z) =
1

α
Wres (F ) ,

where F = A
|A| . Now consider the operator P = F+1

2 , it is a pseudodifferential projection

(in fact it is the projection onto the +1 eigenspace of F ). One has

F = 2P − 1 (2.51)

and therefore by appealing to the result of Wodzicki, one has

Wres(F ) = 0. (2.52)

2.1.5 Conformal invariants of elliptic operators

In this section we study those spectral quantities associated to geometric operators that

remain invariant under the conformal changes of the metric. Let (M, g) be a closed

Riemannian maifold and E →M be a complex vector bundle. By a geometric operator

we mean a classical pseudodifferential operator Ag ∈ Ψcl(M,E) acting on the smooth

sections of E. Recall that a Riemannian metric g̃ is called conformally equivalent to the

metric g if,

g̃ = efg, f ∈ C∞(M). (2.53)

Among the geometric operators we restrict our selves to the class of conformally covari-

ant operators.

Definition 2.1.30. An operator Ag ∈ Ψcl(M,E) made from the Riemannian metric g

is called conformally covariant, if there exists two numbers a and b such that,

Ag̃ = e−bfAge
af , (2.54)

where g̃ = e2fg.

In the following, we list some of the important examples of conformally covariant

differential operators.

Example 2.1.31. Our first example of a conformally covariant operator is the Dirac

operator. Consider the triple (C∞(M), L2(M,S)g, Dg) encoding the data of a closed
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n-dimensional spin Riemannian manifold with the spin Dirac operator on the space of

spinors. By varying g within its conformal class, we consider g̃ = k−2g for some k = eh >

0 in C∞(M). The volume form for the perturbed metric is given by dvolg̃ = k−ndvolg

and one has a unitary isomorphism

U : L2(M,S)g −→ L2(M,S)g̃

by

U(ψ) = k
n
2 ψ,

It can be shown that (see [21]) Dg̃ = k
n+1
2 Dgk

−n+1
2 and hence

U∗Dg̃U = k
−n
2 (k

n+1
2 Dgk

−n+1
2 )k

n
2 =
√
kDg

√
k.

Example 2.1.32. Let D : L2(M,S)g → L2(M,S)g be the Dirac operator on the space

of spinors and Fg = D|D|−1. By a conformal change of metric g̃ = k−2g for some

k = eh > 0 in C∞(M) and under the above unitary equivalence of Hilbert spaces one

has (see [3]),

U∗F̃U = F mod K,

where K is the ideal of compact operators on L2(M,S)g. Also consider another metric

g′, the corresponding Dirac operator D′ : L2(M,S)g′ → L2(M,S)g′ and F
′ = D′|D′|−1,

then one can show that if

U∗F̃U = F ′ mod K,

for an isomorphism U between the Hilbert spaces, then the metrics g and g′ are con-

formally equivalent. This is the precise statement of the folklore fact that the F = D
|D|

encodes the conformal class of the Riemannian metric.

Example 2.1.33. The Laplace-Beltrami opertor on a closed surface defined by

∆g = d∗d+ dd∗ : C∞(M)→ C∞(M)

is conformally covariant [8]. In higher dimension n, the conformal Laplacian defined by

Lg = ∆g + cnRg

is coformally covariant, where cn = n−2
4(n−1) and Rg is the scalar curvature.
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In the rest of this section we study the following three spectral quantity associated

to a conformally covariant operator Ag,

ζ(Ag)(0), ζ ′(Ag)(0), η(Ag)(0)

and the way they change under the transformations

g → e2fg, Ag → e−bfAge
af .

We follow the approach of [28] where the method of variations of the canonical

trace for smooth families is used for studying the conformal anomalies. For a different

approach, using the variations of heat kernels, we refer to [33].

First we introduce the notion of the weighted trace.

Definition 2.1.34. Let Q ∈ Ψq
cl(M) be an admissible operator of order q > 0 and

A ∈ Ψ∗
cl(M). The weighted trace of A is defined by

trQ(A) := f.p.z=0TR
(
AQ−z)+ tr (AΠQ) , (2.55)

where f.p.z=0TR(AQ−z) is the finite part (the constant term) in the Laurent expansion

of TR(AQ−z) at z = 0 ( see Theorem 2.4).

From the above definition it is clear that the three spectral quantities ζ(A)(0),

ζ ′(A)(0) and η(A) (for A self adjoint) can be expressed as weighted traces,

ζ(A)(0) = trA (I) ,

ζ ′(A)(0) = trA (logA) ,

η(A)(0) = tr|A|
(
A|A|−1

)
.

Next, we need the following results on variation of the Wodzicki residue and the

canonical trace of differentiable families of operators, we refer to [28] or [27] for the

proof. A Ck-differentiable family of operators At satisfies the conditions of definition

2.1.13, with holomorphic replaced by Ck differentiable.

Proposition 2.1.35. Consider a differentiable family At ∈ Ψ∗
cl(M) of constant order

α. Then,
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• The Wodzicki residue commutes with the variation,

d

dt
Wres(At) = Wres(Ȧt), (2.56)

where Ȧt =
d
dtAt.

• If α is non-integer,
d

dt
TR(At) = TR(Ȧt). (2.57)

Also, consider a C1 map h : W ⊂ C → R such that for any admissible operator

A ∈ Ψ∗
cl(M),one has h(A), h′(A) ∈ Ψ∗

cl(M). We have the following proposition [28].

Proposition 2.1.36. Let At be a differentiable family of admissible operators of constant

non-integer order α. then,

d

dt
TR

(
h(At)A

−z
t

)
= TR

(
h′(At)ȦtA

−z
t

)
− zTR

(
h(At)ȦtA

−z−1
t

)
. (2.58)

Corollary 2.1.37. By equating the Laurent expansions on both sides of above equation

we obtain,

d

dt
Wres (h(At)) = Wres

(
h′(At)Ȧt

)
, (2.59)

d

dt
trAt (h(At)) = trAt

(
h′(At)Ȧt

)
− 1

α
Wres

(
h(At)ȦtA

−1
t

)
, (2.60)

d

dt
trAt

(
h(At) log

j At
)
= trAt

(
h′(At)Ȧt log

j At

)
+ jtrAt

(
h(At)ȦtA

−1
t logj−1At

)
,

(2.61)

j ∈ Z+.

Now consider a self adjoint conformally covariant operator Ag and let At = Aetfg be

the one-parameter family of operators obtained from the conformal perturbation of the

metric, i.e. the one parameter family of the Riemannian metrics

gt = e2tfg, f ∈ C∞(M).
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Remark 2.1.38. Note that since Ag is conformally covariant one has,

ker (At) = ker (A) ,

and Ȧt =
d
dtÃt, where the Ãg = Ag +ΠAg . Therefore in computing the variations of At

one can replace Ag by Ãg.

Definition 2.1.39. Let Met(M) be the space of Riemannian metrics on M and F :

Met(M)→ C be a Fréchet differentiable functional. The conformal anomaly of F at the

reference metric g is defined as

δfF :=
d

dt
F
(
e2tfg

)∣∣∣
t=0

. (2.62)

In the following, we restrict ourselves to self adjoint conformally covariant differential

operators1 and compute the conformal anomaly of the three functionals ,

g 7→ ζ (Ag) (0),

g 7→ ζ ′ (Ag) (0),

g 7→ η (Ag) (0).

The following result computes the conformal anomaly of the above functionals [28].

Proposition 2.1.40. Let Ag be a self adjoint conformally covariant differential operator

of order α. One has the following conformal anomalies,

δfζ (Ag) (0) = δf tr
Ag(I) = 0,

δfζ
′ (Ag) (0) = −δtrAg (logAg) = (a− b)trAg(f),

δf tr
Ag

(
Ag
|Ag|

)
=
b− a
α

Wres

(
f
Ag
|Ag|

)
.

Proof. The proof is based on the result of Proposition 2.1.36 for the choices of h = 1,

h(λ) = λ and h(λ) = λ
λ and the observation that for a conformally covariant operator

Ag ,

Ȧg = (a− b)fAt − a[f,At].

1The results hold for the more general class of admissible operators [28]
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Corollary 2.1.41. From the above result it follows that for a conformally covariant

operator Ag , the spectral value ζ (Ag) (0) is conformal invariant. In dimension 2 and

Ag = ∆g this result is the spectral formulation of the Gauss-Bonnet theorem (see [17],

[8]). Of course Gauss-Bonnet theorem proves that in dimension 2, ζ (∆g) (0) is in fact a

topological invariant.

Regarding the conformal anomaly of ζ ′ (Ag) (0) and η (Ag) (0) we can say more by

incorporating the asymptotic expansion of the heat kernel around zero of an admissible

operator with non-negative leading symbol [17]. Let ord(A) = α, under these conditions

the operator e−tA is smoothing and has the following asymptotic expansion around zero,

Tr
(
e−tA

)
∼

∞∑
j=0

aj(A)t
j−n
α +

∞∑
k=0

bk(A)t
k log t, (2.63)

where aj(A) and bk(A) are given by integrals over M of local densities.

We need the two following results relating the coefficients in the asymptotic expansion

of Tr(Ae−tQ) to the constant term in the Laurent expansion of TR (AQ−z). We refer to

[6] for a proof.

Lemma 2.1.42. Let f.p.Tr
(
Ae−tQ

)
be the constant term in the asymptotic expansion

of Tr
(
Ae−tQ

)
for the admissible operators A,Q ∈ Ψ∗

cl(m) where Q has a non-negative

leading symbol with ord(Q) > 0.Then

trQ(A) = f.p.Tr
(
Ae−tQ

)
− γ

ord(Q)
Wres(A), (2.64)

where γ is the Euler constant.

Again, consider an admissible operator A with non-negative leading symbol, one has

the following relation between the coefficients of Tr(e−tA) in (2.63) and the Wodzicki

residue of the powers Ak (see [28] for a proof).

Lemma 2.1.43. Under the above conditions, one has

Wres
(
Ak
)
=

(−1)k+1k!αbk(A) k ∈ Z⩾0

α
(−k−1)!an+αk(A) k ∈ Z−

where α = ord(A) and an+αk = 0 if αk /∈ Z.
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From the above lemmas the conformal invariance of ζ ′(Ag)(0) for a conformally

covariant differential operator Ag in odd dimensions follows.

Proposition 2.1.44. Let Ag be a conformally covariant differential operator on an odd

dimensional closed Riemannian manifold (M, g). Then,

δfζ
′(Ag)(0) = (b− a)

∫
M
f(x)an(Ag)(x)dvolg. (2.65)

Therefore ζ ′(Ag)(0) is conformal invariant.

Proof. From Proposition 2.1.40 and Lemma 2.1.42 it follows that

δfζ
′(Ag)(0) = (a−b)trAg(f) = (a−b)f.p.Tr

(
fe−tAg

)
= (a−b)

∫
M
f(x) (an(Ag)(x)) dvolg.

It is a known fact that for differential operators only the coefficients of the terms with

even powers of t are nonzero (see [17]), therefore in odd dimensions,∫
M
f(x)an(Ag)(x)dvolg = 0.

And lastly, on has the following result on conformal invariance of η(Ag)(0).

Proposition 2.1.45. Let Ag be a conformally covariant differential operator of order

α on an n-dimensional closed Riemannian manifold (M, g), the η(Ag)(0) is conformal

invariant if α and n have opposite parity.

Proof. We consider the following asymptotic expansion,

Tr
(
Ae−t|A|

)
∼

∞∑
j=0

ãj(A)t
j−n
α +

∞∑
k=0

b̃k(A)t
k log t.

By using Lemma 2.1.43 we get,

Wres

(
f
Ag
|Ag|

)
= −(b− a)

∫
M
f(x)ãn(Ag, x)dvolg.

Again, careful analysis of the terms involved in above asymptotic expansion [33] shows

that when α and n have opposite parity, the density ãn(x) is identically zero and hence

the result follows.
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Remark 2.1.46. The above result can be extended [33] and one can prove that for a con-

formally covariant differential operator A on a closed manifold M , the quantity η(A)(0)

is conformally covariant. We consider the case of an odd order conformally covariant

operator A on an odd dimensional manifold M (the even case is similar). We choose

an elliptic operator B of order zero with index(B) = −1 on the circle and construct an

operator A#B on M × S1. If A acts on the sections of a vector bundle E, A#B acts

on the sections of E ⊗ R and is given by

A#B =

[
A⊗ I I ⊗B∗

I ⊗B −A⊗ I

]
.

It can be shown that [17]

η(A#B)(0) = η(A)(0). (index(B)) .

Now a slight modification of the proof of the Proposition 2.1.45 gives the conformal

invariance of η(A#B)(0) and hence the conformal invariance of η(A)(0) [33].

2.2 Framework of noncommutative geometry

In this section we review the basic tools and methods of noncommutative topology and

noncommutative geometry. Our exposition closely follows [12].

2.2.1 Noncommutative topology

The duality between a space X and F(X), the algebra of functions on it is perhaps one

of the oldest ideas in mathematics and has different incarnations in many areas. It is also

considered as one of the cornerstones of Alain Connes’ noncommutative geometry [9].

The first important theorem to point at is the following result of Gelfand and Naimark

published in 1943 where the above duality is expressed in terms of equivalence of certain

categories.

Theorem 2.5. The category of unital commutative C∗-algebras is anti-equivalent to the

category of compact Hausdorff topological spaces. The anti-equivalence is given by,

X ←→ C(X), (2.66)
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where C(X) is the algebra of complex valued continuous functions on X.

Remark 2.2.1. A C∗-algebra A is a Banach algebra equipped with an involution ∗ :

A −→ A which is compatible with the norm in the following way,

∥aa∗∥ = ∥a∥2.

The algebra of bounded operators on a Hilbert space B (H) is an example of a C∗-

algebra. In fact another important theorem due to Gelfand and Naimark shows that

any C∗-algebra can be embedded into some B (H) . Also the correspondence in the

above theorem can be extended to locally compact Hausdorff spaces as follows,

X ←→ C0(X),

where C0(X) is the algebra of complex valued continuous functions on X vanishing at

infinity. Note that the algebra C0(X) does not have a unit unless X is compact.

The idea of a noncommutative space enters the picture when we remove the commuta-

tivity condition on C∗-algebras in Theorem 2.5. The category of C∗-algebras still makes

sense and therefore a noncommutative topological space is merely a noncommutative

C∗-algebra.

The goal of noncommutative topology is to look for further topological and geomet-

rical structures that can be categorically formulated for algebraic structures . Among

those, the results of R. G. Swan (1962) following the result of of J.-P. Serre (1957/58)

gives a categorical equivalence between projective finitely generated C(X)-modules and

vector bundles over a compact Hausdorff spaces X (see [22] for a detailed exposition).

Therefore a vector bundle over a noncommutative space A is a finitely generated projec-

tive A-module.

One can go further and ask for the analogues of differential forms, de Rham cohomol-

ogy and characteristic classes for a noncommutative space. We should mention that the

answer to this is part of the machinery of Connes-Chern character which is the extension

of Chern character in the commutative case. Since these aspects are not related to the

topic of this text, we skip these topics and refer the reader to [12] and [22].
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2.2.2 Dirac operators and spectral triples

Beyond the noncommuattive topology, the program of noncommutative geometry in

the spectral triple picture initiated by Alain Connes [9] is to extend the framework of

Riemannian geometry to noncommutative spaces. The fundamental idea is that since

the local properties of Riemann metric tensor are not accessible in noncommutative

setting, one has to see the metric through the window of spectral geometry of elliptic

operators, or more precisely the Dirac operators. Within this paradigm, those properties

and invariants of Riemannian geometry which can be formulated in terms of spectral

data of elliptic operators, stand a chance of being translated to noncommutaive language.

In this sense, a noncommutative geometry tries to encapsulate the geometric data

of a Riemanninan spin geometry and generalize it to more general notions of spaces. In

order to motivate the definition of a noncommutative Riemannian geometry (a spectral

triple) we recall the construction of spinor bundles and Dirac operators over a SpinC

manifold. We refer the reader to [25] and [12] for the details and proofs.

Let (M, g) be an n dimensional Riemannian manifold. Each fiber TxM of the tangent

bundle is equipped with the metric gx and therefore one can assign to it the real Clifford

algebra in the following way,

Cl (TxM) =
T (TxM)

(v ⊗ v − gx(v, v))
,

where T (TxM) is the tensor algebra over TxM ,

T (TxM) = C⊕ TxM ⊕ (TxM ⊗ TxM)⊕ · · · (TxM ⊗ · · ·TxM)⊕ · · · .

These fibers patch together and form the real Clifford bundle Cl(TM) over the Rieman-

nian manifold M . At each fiber, there exist a Z2-grading on Cl(TxM, gx) induced by the

map χ : (x, v) 7→ (x,−v). By patching the +1 and −1 eigenspace of this map we obtain

the sub-bundles Cl+(M) and Cl−(M). Also note that there exist a natural isomorphism

Cl(TM) ≃ Cl(T ∗M).

The fibers of the complexified Clifford bundle are defined as follows ,

Clx(M) = Cl(TxM)⊗R C,
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and one has the following characterization [25],

Clx(M) =

M2m(C) n = 2m

M2m(C)⊕M2m(C) n = 2m+ 1.

The smooth sections of the (complexified) Clifford bundle C∞(Cl(M)) form a ∗-algebra.
In fact the set of continuous sections C(Cl(M)) is a C∗-algebra with the fiberwise product

and the involution induced by ⊗RC.

Now Consider the Clifford bundle Cl(M) in even dimensions n = 2m and the first

matrix block part Cl(M)† of the Clifford bundle Cl(M) for n = 2m+1. For any x ∈M
one can find a vector space Sx on which Clx(M) acts linearly and irreducibly. Therefore,

locally the Clifford bundle is isomorphic to (U ×Hom(Sx), U). One can equip Sx with a

scalar product compatible with the C∗-algebra structure of C(Clx(M). Also the spaces

Sx is constant locally and dim(Sx) = 2m where m := [n/2].

We say that the tangent bundle TM admits a SpinC structure if one can glue together

the local data (U ×Hom(Sx), U) and form a vector bundle over M .

Definition 2.2.2. The Riemannian manifold (M, g) is SpinC if the tangent bundle TM

admits a SpinC structure.

Not every Riemannian manifold (M, g) admits a SpinC structure. In fact the exist a

certain integral cohomology class of M associated to Cl(M) in even dimensions and to

Cl†(M) in odd dimensions which is the obstruction for existence of SpinC structure. This

cohomology class is called the Dixmier-Douady class (see [25] and references therein),

δ(Cl(M)) ∈ H3(M,Z), n = 2m,

δ(Cl†(M)) ∈ H3(M,Z), n = 2m+ 1.

One has the following proposition.

Proposition 2.2.3. The Riemannian manifold (M, g) is SpinC if δ(Cl(M)) = 0 in even

dimensions and δ(Cl†(M)) = 0 in odd dimensions.

Let (M, g) be a SpinC Riemannian manifold. The local data (U ×Hom(Sx), U) patch

together and form the Spinor bundle over S −→ M over which Cl(M) or C†l(M) acts

irreducibly. The space C∞(S) of smooth sections of spinor bundle are called spinors or
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chiral vector fields in physics literature. Note that in even dimensions, the grading of

the Clifford bundle induces a grading on spinor bundle,

S = S+ ⊕ S−.

One can always equip the space of spinors with an inner product and by completing it

one gets the Hilbert space of L2-spinors,

H = L2(S).

In even dimensions, this Hilbert space is Z2 graded,

H = H+ ⊕H−.

The smooth sections of the Clifford bundle act on H (since each fiber Sx is a represen-

tation space of Cl(M) or Cl†(M)). Since

C∞(Cl(M)) = C∞(M)⊕ Ω1M ⊕ · · · ,

it is seen that the smooth functions act on H by multiplication. The representation

γ : Cl(M) → B(H) of the Clifford bundle on spinors is called the spin representation.

Restricted to 1−forms on M , one has the following identity,

γ(α)γ(β) + γ(β)γ(α) = 2gijαiβj ,

where αi and βj are the components of the 1−forms α and β with respect to the or-

thonormal basis for T ∗M .

Next we show that the spinor bundle over a SpinC Riemannian manifold (M, g) is

equipped with a natural first order elliptic self adjoint differential operator called the

Dirac operator. The Riemannian metric g on M gives rise to a unique connection called

the Levi-Civita connection

∇g : Ω1M → Ω1M ⊗ Ω1M.

It can be extended to (contra-/covariant) C∞-tensor fields overM and it is characterized

by the properties of being symmetric and torsion free. The Levi-Civita connection lifts

to the spinor bundle S and one obtains obtain the SpinC connection.
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Definition 2.2.4. A SpinC connection is a C−linear

∇S : C∞(S)→ C∞(S)⊗ Ω1M

and satisfies the two Leibniz rules

∇S(ψa) = ∇S(ψ)a+ ψ ⊗ da

and

∇S(γ(α)ψ) = γ(∇gα)ψ + γ(α)∇S(ψ),

where a ∈ C∞(M), α ∈ Ω1M and ψ ∈ C∞(S).

It can be shown that there exists a SpinCconnection on the spinor bundle. Now, we

are ready to define the Dirac operator.

Definition 2.2.5. Let m : C∞(S) ⊗ Ω1M → C∞(S) be the Clifford multiplication

defined by m(ψ ⊗ α) = γ(α)ψ for α ∈ Ω1M and ψ ∈ C∞(S). The Dirac operator

/D : C∞(S)→ C∞(S) is defined by

/D := m ◦ ∇S . (2.67)

Below, we list the important properties if the Dirac operator.

• /D : C∞(S) → C∞(S) is symmetric and extends to an unbounded self adjoint

operator on H = L2(S).

• In even dimensions n = 2m the Dirac operator is odd with respect to the grading

of spinors S = S+ ⊕ S− and can be written as

/D =

[
0 /D

+

/D
−

0

]
, (2.68)

where /D
+
: H− → H+ and /D

−
: H+ → H−.

• /D : C∞(S)→ C∞(S) is a first order, elliptic differential operator.

• From the ellipticity of /D it follows that /D is a Fredholm operator, i.e. the ker( /D)

is finite dimensional.
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• The parametrix, /D
−1

is compact. The eigenvalues λk of /D
−1

counted with multi-

plicity satisfy the relation λk ⩽ C.k−1/n where C is a constant and n = dim(M).

Therefore the spectral growth of the Dirac operator detects the dimension of the

manifold.

• [ /D, a] is bounded for any a ∈ C∞(M). in fact

[ /D, a](ψ) = /D(aψ)− a /D(ψ) = γ(da)ψ, a ∈ C∞(M), ψ ∈ C∞(S).

Therefore [ /D, a] is bounded by the sup-norm ∥γ(da)∥∞.

• (Connes’ distance formula) The Dirac operator encodes the geodesic distance be-

tween the points on the manifold. More precisely, for two points x, y on M we

have

d(x, y) = sup{|f(x)− f(y)|, f ∈ C∞(M), ∥[f, /D]∥ ⩽ 1}. (2.69)

The example of a compact SpinC Riemannian manifold (M, g) gives the first example

of a spectral triple. First we give the basic definition of a spectral triple [12].

Definition 2.2.6. A spectral triple (A,H, D) is given by an involutive unital (possibly

noncommutative) algebra A, a representation π : A −→ B(H) on a Hilbert space H, and
a self-adjoint densely defined operator D : Dom(D) ⊂ H −→ H with compact resolvent

and the property that [D,π(a)] is bounded for any a ∈ A.

A spectral triple (A,H, D) is called even if there exist a selfadjoint unitary operator

Γ : H → H, such that aΓ = Γa, for a ∈ A and DΓ = −ΓD. The operator Γ induces a

grading H = H+ ⊕H− with respect to which the Dirac operator is odd:

D =

[
0 D−

D+ 0

]
.

The following definitions abstract and generalize the fact that the spectral growth of the

Dirac operator detects the dimension of the manifold.

Definition 2.2.7. A spectral triple is finitely summable when the resolvent of D has

characteristic values µn = O(n−α), for some α > 0 (see [18, Ch. 7] for details).

Definition 2.2.8. A finitely summable spectral triple is of metric dimension p if D−1

is of order 1/p (see [18, Ch. 7] for details).
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From the above list of properties of the Dirac operator it is seen that the triple(
C∞(M), L2(S), /D

)
encoding the data of a compact Riemmanian SpinC manifold sat-

isfies the requirements of a spectral triple. Note that in even dimensions the spectral

triple
(
C∞(M), L2(S), /D

)
is even.

Below, we explain the ingredients of a spectral triple in more detail.

• The algebra. We assume the the involutive algebra A is in fact a pre-C∗-algebra,

i.e. A is a dense sub-algebra of a C∗ algebra A and stable under holomorphic

functional calculus. This means that for any a ∈ A and any holomorphic function

defined on a neighborhood of spec(a),

f : spec(a)→ C

the element f(a) belongs to A.

• The Dirac operator. The compact resolvent property ofD means that (D−λ)−1

is compact for λ /∈ R. Therefore D−1 defined over the orthogonal complement of

ker(D) is compact and also ker(D) is finite dimensional. Also it follows that D

has discrete spectrum and each eigenvalue has finite multiplicity. We see that

this property generalizes the ellipticity of the Dirac operator on a compact SpinC

manifold.

• The boundedness of the commutators [D,π(a)] is clearly the generalization of the

fact that functions on M act on spinors as multiplication operators and

∥[ /D, a](ψ)∥ ⩽ ∥γ(da)ψ∥∞, a ∈ C∞(M), ψ ∈ C∞(S).

Below, we list a few examples of spectral triples.

Example 2.2.9. Finite spectral triples. A finite spectral triple is essentially a Rie-

mannian geometry over a point. The triple (A,H, D) is zero dimensional (Recall that

the spectral growth of the Dirac operator detects the dimension) and both A and H are

finite dimensional. The structure of the finite dimensional real involutive algebras which

carry a faithful representation on a finite dimensional Hilbert space is known. They are

of the form

A =

N⊕
i=1

Mni(K)

where K = R, C or H. The classification of finite spectral triples is done in [24].
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Example 2.2.10. Almost commutative spectral triples. Almost commutative

spectral triples are products of the commutative spectral triple (C∞(M), L2(S), /D) en-

coding the data of a compact Riemannian SpinC manifold (M, g) and finite spectral

triples. Recall that the product of the spectral triples (A1,H1, D1) and (A2,H2, D2) is

defined by the triple (A,H, D) where,

A =A1 ⊗C A2,

H =H1 ⊗C H2,

D =D1 ⊗ I + I ⊗D2.

An example of this construction is the product of (C∞(M), L2(S), /D) with the finite

spectral triple (MN (C),CN , D = 0) wich plays a fundamental role in the approach of

noncommutative geometry to standard model of elementary particles via spectral action

principle (see [14]).

Example 2.2.11. Noncommutative tori. The noncommutative tori Anθ are perhaps

the most popular platform for examining the methods of noncommutative geometry.

The origin of these noncommutative algebras can be traced back to Heisenberg formu-

lation of quantum mechanics. It was proposed by Hermann Weyl (see [34]) that the

Heisenberg commutation relations should be replaced by their exponential form in or-

der to obtain a bounded Hilbert space realization. The C∗-algebra generated by these

exponential elements are in fact the noncommutative tori. From another point of view,

the noncommutative tori can be thought as the strict deformation quantization of alge-

bra of functions on tori ([32]) There are two main spectral triples on noncommutative

tori, each reflecting a different aspect of their geometry. The Spin spectral triples on

noncommutative tori (see [18]) are basically the deformation of the spin spectral triple

on commutative tori. The other class of spectral triples on noncommutative tori are

the so called Dolbeault spectral triples (see [15]) which are meant to reflect the complex

geometry of tori.

Example 2.2.12. Isospectral deformations. The Connes-Landi [13] method of

isospectral deformation, deforms the commutative spectral triple (C∞(M), L2(S), /D),

where (M, g) is a compact Riemannian Spin manifold admitting an isometric action

of a torus Tl for l ⩾ 2. The outcome is a θ−deformed spectral triple (C∞(Mθ),H =

L2(S), /D) with the same Hilbert space and the Dirac operator. Note that the deformed

algebra C∞(Mθ) still has a compatible representation on the Hilbert space H. The

noncommutative tori fit into this picture as well. Another example of this construction
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is the spectral triple (C∞(S4θ), L2(S), /D) which is the isospectral deformation of the

Riemannian geometry of the the round sphere S4.

At the end we say a few words about the characterization of commutative spaces

by the spectral triples. It seems natural to ask if a general spectral triple (A,H, D)

with the a commutative unital algebra A corresponds to a SpinC (or spin) geometry

(C∞(M), L2(S), /D) for a compact Riemannian Spin manifold (M, g). This is in fact the

content of Connes’ reconstruction theorem [10], [11]. First it turns out that in order to

speak of a noncommutative manifold, the notion of spectral triple is not enough and one

has to add extra properties and axioms (see [18]) to data of the spectral triple. Here

we avoid the technicalities of the axioms and only give a list of them without going in

depth.

• Axiom 1, Dimension. There is an integer p, the metric dimension of the spectral

triple, such that |D|−1 is of order 1/p (see Definition 2.2.8).

• Axiom 2, Reality. There exists an anti-unitary operator J : H → H such that

J(DomD) ⊂ DomD, and [a, Jb∗J−1] = 0 for all a, b ∈ A. We say (A,H, D) is of

KO-dimension n if the operator J satisfies the following commutation relations

J2 = ϵ1, JD = ϵ′DJ, JΓ = ϵ′′ΓJ,

where the ϵ, ϵ′, ϵ′′ depend on n ∈ Z8 according to the following table:

n 0 1 2 3 4 5 6 7

ϵ 1 1 -1 -1 -1 -1 1 1

ϵ′ 1 -1 1 1 1 -1 1 1

ϵ′′ 1 -1 1 -1

• Axiom 3, First order condition. For a, b ∈ A, one has the following commu-

tation relation:

[[D, a], Jb∗J∗] = 0. (2.70)

• Axiom 4, Orientability. There is a Hochschild cycle c ∈ Zn(A,A ⊗ A◦) whose

representation on H is given by

πD(c) =

Γ p = 2k

1 p = 2k + 1
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,where Γ is the grading operator for the spectral triple.

• Axiom 5, Regularity. For any a ∈ A, [D, a] is a bounded operator on H , and

both a and [D, a] belong to the domain of smoothness
∩∞
k=1Dom(δk), where the

derivation δ on B(H) given by δ(T ) := [|D|, T ].

• Axiom 6, Finiteness The space of smooth vectors H∞ :=
∩∞
k=1Dom(Dk) is a

finitely generated projective left A-module with a Hermitian pairing (., .) implicitly

given by ∫
− (ξ, η)|D|−p = ⟨ξ, η⟩ , (2.71)

where for an element a in the algebra generated by A, [D;A] and |D|−z, z ∈ C,∫
− a := Resz=0TR(a|D|−z), (2.72)

and ⟨., .⟩ is the inner product of the Hilbert space H.

• Axiom 7, Poincaré duality. The Fredholm index of the operator D yields a

nondegenerate intersection form on the K-theory ring of the algebra A⊗A◦.

Definition 2.2.13. A noncommutative manifold is a real spectral triple (A,H, D,Γ, J)
or (A,H, D, J), according as its dimension is even or odd, that satisfies the above seven

axioms.

We finish this chapter by giving a weaker version a the reconstruction theorem (see

[7] for a proof and [11] for the stronger form of the theorem).

Theorem 2.6. Let (A,H,D) be a noncommutative manifold with the unital commuta-

tive algebra A and spectral dimension p. There exists a compact oriented Riemannian

manifold M of dimension p, a Hermitian vector bundle E on M , and an essentially

self-adjoint Dirac-type operator DE
2 such that

(A, H,D) ≃ (C∞(M), L2(M,E), DE), (2.73)

where ≃ denotes a unitary equivalence of spectral triples.

2i.e., a first-order differential operator such that the principal symbol ofD2
E is given by σL(D2

E)(x, ξ) =
g−1(ξ, ξ).I
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[9] A. Connes. C∗ algèbres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A-B,

290(13):A599–A604, 1980.

[10] A. Connes. Geometry from the spectral point of view. In Lett.Math.Phys.,34,203-

238, 1995.

[11] A. Connes. On the spectral characterization of manifolds. In J.Noncommut.Geom.,

7, 1-82, 2013.

45



Background Material 46

[12] A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.

[13] A. Connes, G. Landi. Noncommutative manifolds, the instanton algebra and

isospectral deformations. Comm. Math. Phys.,221(2001), no.1, 141-159.

[14] A. Connes, M. Marcolli. Noncommutative Geometry, Quantum Fields and Motives.

American Mathematical Soc., 2007.

[15] A. Connes, P. Tretkoff. The Gauss-Bonnet theorem for the noncommutative two

torus. In Noncommutative geometry, arithmetic, and related topics, pages 141–158.

Johns Hopkins Univ. Press, Baltimore, MD, 2011.

[16] P. B. Gilkey. The residue of the local eta function at the origin. Math. Ann.,

240(2):183–189, 1979.

[17] P. B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theo-

rem, volume 11 of Mathematics Lecture Series. Publish or Perish Inc., Wilmington,

DE, 1984.

[18] J. M. Gracia-Bondia, J. C. Varilly, H. Figueroa. Elements of Noncommutative

Geometry. Birkhäuser, 2001.
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Chapter 3

On Certain Spectral Invariants of

Dirac Operators on

Noncommutative Tori

3.1 Introduction

In this paper we study the variations of spectral zeta and eta functions ζ|D|(z) =

TR (|D|−z) and ηD(z) = TR(D|D|−z−1) associated to certain families of Dirac operators

on noncommutative 3-torus. In the classical case the canonical trace TR [30] provides

a unified method of studying various spectral functions of elliptic operators and their

variations. Connes’ pseudodifferential calculus for noncommutative tori makes it pos-

sible to define a suitable notion of noncommutative canonical trace [19], and translate

some of the properties of the canonical trace on manifolds to noncommutative settings.

Among these, the fundamental result is the explicit description of the Laurent expan-

sion at zero of the function TR(AQ−z) where A and Q are classical elliptic operators

[36]. This result enables us to prove the regularity of ζ|D|(z) and ηD(z) at z = 0, and

also gives a local description for variations of ηD(0) and ζ
′
|D|(0). In particular, we show

that ηD(0) is constant over the family {ethDeth} and hence is a conformal invariant of

noncommutative 3-torus. Also, using the local description for conformal variation of

ζ ′|D|(0), we prove that this quantity is a conformal invariant of noncommutative 3-torus.

This paper is organized as follows. In Section 2 we recall the definition of a spectral

triple which is the basic ingredient in the definition of a noncommutative Riemannian
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space [12]. Our main example is the spin spectral triple for noncommutative tori and

its conformal perturbation first proposed in [10, 16]. In Section 3 we give a brief review

of Connes’ pseudodifferential calculus for noncommutative tori from [11, 16], and recall

the extension of the Kontsevich-Vishik canonical trace to the setting of noncommutative

tori from [19]. It should be mentioned that this is also done in [33] where one works

with toroidal symbols instead of Connes’ symbols.

In Section 4 we study the eta function associated to the Dirac operators of the

conformally perturbed spectral triples (C∞(T3
θ),H, ethDeth), and also to the coupled

Dirac operator of the spectral triple (C∞(T3
θ),H, D + A). By exploiting the developed

canonical trace, the regularity of the eta function at zero in above cases will be proved.

Next, by using variational techniques we show that the value of the eta function at zero

is constant over a conformally perturbed family. Also, by considering the spectral triple

(C∞(T3
θ),H, D) and the family Dt = D + tu∗[D,u] for a unitary element u ∈ C∞(T3

θ),

we relate the difference ηD1(0) − ηD0(0) to the spectral flow of the family Dt and give

a local formula for index of the operator PuP . This is the analogue of the result of

Getzler [25], in the case of noncommutative 3-torus.

In Section 5 we consider the spectral zeta function ζ|D|(z) = TR(|D|−z) and study

the conformal variation of the spectral value ζ ′|D|(0) within the framework of the canon-

ical trace. We show that for the noncommutative 3-torus this quantity is a conformal

invariant. In even dimensions though, the conformal variation is not zero and hence con-

formal anomaly exists. Following [15] we give a local formula for the conformal variation

of ζ ′∆(0) in the case of noncommutative two torus.

Finally, in section 6 we consider the coupled Dirac operator D + A and study the

value ζ ′D(0) where ζD(z) = TR(D−z). Since the spectrum of D is extended along the

real line, there is an ambiguity in the definition of the complex power D−z and hence

in the value ζ ′D(0). In odd dimensions, this ambiguity can be expressed in terms of

ηD+A(0) and hence has a dependence on the coupled gauge field A. This dependence

can be computed by a local formula and in physics literature it is usually referred to

as the induced Chern-Simons term generated by the coupling of a massless fermion to

a classical gauge field (cf. e.g. [6]). We give an analogue of this computation and the

local formula in the case of noncommutative 3- torus.

Conformal and complex geometry of noncommutative two tori were first studied

in the seminal work of Connes and Tretkoff [16] where a Gauss-Bonnet theorem was

proved for a conformally perturbed metric (cf. [10] for a preliminary version). This
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result was extended in [20] where the Gauss-Bonnet theorem was proved for metrics

in all translation invariant conformal structures. The problem of computing the scalar

curvature of the curved noncommutative two torus was fully settled in [6], and in [21],

and in [22] in the four dimensional case. Other related works on curved tori include

[17, 18, 31, 40]. The computation of the curvature of the determinant line bundle in

the sense of Quillen for certain families of Dirac operators on noncommutative tori was

carried out in [19].

AF would like to thank Asghar Ghorbanpour for useful discussions on the subject of

this paper. MK would like to thank the Hausdorff Institute in Bonn for its hospitality

and support while this work was being completed.

3.2 Noncommutative geometry framework

In this section we recall the basic ingredients in the definition of a noncommutative

geometry. Our main example is the spin spectral triple for noncommutative tori on

which all the material in this paper is based. The data of a noncommutative Riemannian

geometry is encoded in a spectral triple [11].

Definition 3.2.1. A spectral triple (A,H, D) is given by an involutive unital (possibly

noncommutative) algebra A, a representation π : A −→ B(H) on a Hilbert space H, and
a self-adjoint densely defined operator D : Dom(D) ⊂ H −→ H with compact resolvent

and the property that [D,π(a)] is bounded for any a ∈ A.

A spectral triple (A,H, D) is called even if there exist a self-adjoint unitary operator

Γ : H → H, such that aΓ = Γa, for a ∈ A and DΓ = −ΓD. The operator Γ induces a

grading H = H+ ⊕H− with respect to which the Dirac operator is odd:

D =

[
0 D−

D+ 0

]
.

It can be shown that the triple (C∞(M), L2(M,S), /D), consisting of A = C∞(M)

the algebra of smooth functions on a closed Riemannian spin manifold (M, g), and the

spin Dirac operator /D on the Hilbert space H = L2(M,S) of L2-spinors satisfies the

requirements of a spectral triple (see [28]). In even dimensions, the spinor bundle admits
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a grading and we have S = S+ ⊕ S− with respect to which the Dirac operator is odd.

Therefore in even dimensions the spectral triple (C∞(M), L2(M,S), /D) is even.

3.2.1 Geometry of noncommutative tori

Let Θ ∈ Mn(R) be a skew symmetric matrix. The noncommutative n-torus C(TnΘ) is

defined to be the universal C∗-algebra generated by the unitaries Uk for k ∈ Zn and

relations,

UkUl = eπiΘ(k,l)Uk+l, k, l ∈ Zn.

Consider the standard basis {ei} for Rn and let ui = Uei . Then it follows that

ukul = e2πiθkluluk,

where θkl = Θ(ek, el). The smooth noncommutative n-torus C∞(TnΘ) is defined to be the

Fréchet ∗−subalgebra of elements with Schwartz coefficients in the Fourier expansion,

that is all the a ∈ C∞(Tnθ ) that can be written as

a =
∑
k∈Zn

akUk,

where {ak} ∈ S(Zn). In fact, C∞(Tnθ ) is a deformation of C∞(Tn) and consists of the

smooth vectors under the periodic action of Rn on C(TnΘ) given by

αs(Uk) = eis.kUk, s ∈ Rn, k ∈ Zn.

The algebra C∞(Tnθ ) is equipped with a tracial state given by

τ(
∑
p∈Zn

apUp) = a0.

We also denote by δµ the analogues of the partial derivatives 1
i
∂
∂xµ on C∞(Tn) which

are derivations on the algebra C∞(Tnθ ) defined by

δµ(Uk) = kµUk.

These derivations have the following property

δµ(a
∗) = −(δµa)∗,
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and also satisfy the integration by parts formula

τ(aδµb) = −τ((δµa)b), a, b ∈ C∞(Tnθ ).

By GNS construction one gets the Hilbert space Hτ on which C∞(Tnθ ) is represented
by left multiplication denoted by π(a) for a ∈ C∞(Tnθ ). The spectral triple describing the
noncommutative geometry of noncommutative n-torus consists of the algebra C∞(Tnθ ) ,
the Hilbert space H = Hτ ⊗ CN , where N = 2[n/2] with the inner product on Hτ given

by

⟨a, b⟩τ = τ(b∗a),

and the representation of C∞(Tnθ ) given by π ⊗ 1.

The Dirac operator is

D = /∂ = ∂µ ⊗ γµ,

where ∂µ = δµ, is seen as an unbounded self-adjoint operator on Hτ and γµs are Clifford

(Gamma) matrices in MN (C) satisfying the relation

γiγj + γjγi = 2δijIN .

In 3−dimension the Clifford matrices are given by the Pauli spin matrices,

γ1 =

[
0 1

1 0

]
, γ2 =

[
0 −i
i 0

]
, γ3 =

[
1 0

0 −1

]
.

Consider the chirality matrix

γ = (−i)mγ1 · · · γn,

where n = 2m or 2m+ 1. It is seen that γ · γ = 1, and γ anti-commutes with every γµ

for n even. The operator Γ = 1⊗ γ on H = Hτ ⊗C2[n/2]
defines a grading on H and for

even n one has

ΓD = −DΓ.

Therefore (C∞(Tnθ ),H, D) is an even spectral triple for n even.
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3.2.2 Real structure

Definition 3.2.2. A real structure on a spectral triple (A,H, D) is an anti-unitary

operator J : H → H such that J(DomD) ⊂ DomD, and [a, Jb∗J−1] = 0 for all a, b ∈
A. We say (A,H, D) is of KO-dimension n if the operator J satisfies the following

commutation relations

J2 = ϵ1, JD = ϵ′DJ, JΓ = ϵ′′ΓJ,

where the ϵ, ϵ′, ϵ′′ depend on n ∈ Z8 according to the following table:

n 0 1 2 3 4 5 6 7

ϵ 1 1 -1 -1 -1 -1 1 1

ϵ′ 1 -1 1 1 1 -1 1 1

ϵ′′ 1 -1 1 -1

Note that the real structure operator switches left action to right action. More

precisely, Since A commutes with JAJ∗ the real structure gives a representation of the

opposite algebra Aop by b◦ = Jb∗J∗ and turns the Hilbert space H into an A−bimodule

by

aψb = aJb∗J∗(ψ) a, b ∈ A, ψ ∈ H.

Example 3.2.3. The spectral triples (C∞(Tnθ ),H = Hτ ⊗CN , D) for N = 2[n/2] are all

equipped with real structure. The real structure operator J : Hτ ⊗ CN → Hτ ⊗ CN is

given by

J = J0 ⊗ C0,

where J0 is the Tomita conjugation map associated to the GNS Hilbert space Hτ given

by

J0(a) = a∗, a ∈ C∞(Tnθ )

and C0 is the charge conjugation operator on CN (cf. e.g. [28]). For N = 2 we have

J =

[
0 −J0
J0 0

]
.

J2
0 = 1 for all n-mod 8, so by extending the Hilbert space Hτ and coupling J0 with C0

one can check that the resulting operator J satisfies the requirements for a real structure

(see [28]).
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3.2.3 The coupled Dirac operator

In this section We consider the spectral triples obtained by coupling (twisting) the Dirac

operator by a gauge potential. We begin by recalling the construction in commutative

case.

Consider a compact Riemannian spin manifold (M, g) with the spin Dirac operator

D : L2(S) → L2(S) on spinors. Let V → M be a Hermitian vector bundle equipped

with a compatible connection ∇V . Then one constructs the coupled (twisted) spinor

bundle S ⊗ V →M with the extended Clifford action

π(ω).(ψ ⊗ f) = (ω.ψ)⊗ f,

where π(ω) is a section of the Clifford bundle overM represented on the space of spinors

and ψ and f are sections of spinor bundle and the vector bundle V respectively. Also,

the vector bundle S ⊗ V is equipped with the coupled (twisted) spin connection

∇S⊗V = ∇S ⊗ 1 + 1⊗∇V ,

where ∇S is the spin connection on S. This connection gives rise to the coupled Dirac

operator D∇V acting on the sections of S ⊗ V . When V is a trivial vector bundle, the

connection ∇V can be globally written as ∇V = d+A where A is a matrix of one forms

(vector potential) and an easy computation shows that

DA = D + π(A).

The above construction can be generalized to the setting of spectral triples. Starting

with a spectral triple (A,H, D), one can construct a new spectral triple (A,H, D + A)

by adding a gauge potential to the Dirac operator, this corresponds to picking a trivial

projective module over the algebra A.

More precisely, A is a self adjoint element of

Ω1
D =

∑
j

a0j [D, a
1
j ], a

i
j ∈ A

 .
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In fact, Ω1
D is the image inside B(H) of the noncommutative 1-forms on A under the

induced map

π : a0da1 −→ a0[D, a1].

Below, we explicitly write down the coupled Dirac operator for the spectral triple

(C∞(Tnθ ),H, D + A). First note that for any element a =
∑

k∈Zn akUk in C∞(Tnθ ) we

have,

[D, a] = ∂µ(a)⊗ γµ.

Any A ∈ Ω1(C∞(Tnθ )) is of the form A =
∑

i aidbi where ai, bi are in C∞(Tnθ ) and we

have

π(A) =
∑
i

ai∂µ(bi)⊗ γµ.

We denote the elements
∑

i ai∂µbi by Aµ and hence,

π(A) = Aµ ⊗ γµ,

also self adjointness of A gives A∗
µ = Aµ. Therefore, the coupled Dirac operator is given

by

D +A = /∂ + /A,

where again by Feynman slash notation /A = Aµ ⊗ γµ.

3.3 Elliptic theory on noncommutative tori

Our aim in this section is to recall the extension of the Kontsevich-Vishik canonical trace

to the setting of noncommutative tori from [19]. Alternatively, this is also done in [33]

where they work with toroidal symbols instead of Connes’ symbols. We begin by a brief

review of the basics of Connes’ pseudodifferential calculus for noncommutative tori from

[11, 16].

3.3.1 Matrix pseudodifferential calculus on C∞(Tnθ )

We shall use the multi-index notation α = (α1, .., αn), αi ⩾ 0 , |α| = α1 + ... + αn,

α! = α1!...αn!, δ
α = δα1

1 ...δαn
n and ∂βξ = ∂β1ξ1 ...∂

βn
ξn

.



On Certain Spectral Invariants of Dirac Operators on Noncommutative Tori 56

Definition 3.3.1. A matrix valued symbol of order m on noncommutative n−torus is

a smooth map

σ : Rn −→ C∞(Tnθ )⊗MN (C),

such that

||δα∂βξ σ(ξ)|| ⩽ Cα,β(1 + |ξ|)m−|β|,

and there exists a smooth map k : Rn \ {0} −→ C∞(Tnθ )⊗MN (C) such that

lim
λ→∞

λ−mσ(λξ1, λξ2, ..., λξn) = k(ξ1, ξ2, ..., ξn).

We denote the symbols of order m by Sm(C∞(Tnθ )).

A matrix pseudodifferential operator associated with σ ∈ Sm(C∞(Tnθ )) is the oper-

ator Aσ : C∞(Tnθ )⊗ CN −→ C∞(Tnθ )⊗ CN defined by

Aσ(a) =

∫
Rn

∫
Rn

e−is.ξσ(ξ)αs(a)dsdξ,

where αs is the extended action of Rn on C∞(Tnθ )⊗ CN .

Two symbols σ, σ′ ∈ Sm(C∞(Tnθ )) are considered equivalent if σ−σ′ ∈ Sm(C∞(Tnθ ))
for all m. The equivalence of the symbols will be denoted by σ ∼ σ′. We denote the

collection of pseudodifferential operators by Ψ∗(C∞(Tnθ )). The order gives a natural

filtration on Ψ∗(C∞(Tnθ )) and the following proposition [16] gives an explicit formula for

the symbol of the product of pseudodifferential operators as operators on H modulo the

above equivalence relation.

Proposition 3.3.2. Let P and Q be pseudodifferential operators with the symbols σ

and σ′ respectively. The product PQ is a pseudodifferential operator with the following

symbol,

σ(PQ) ∼
∑
α

1

α!
∂αξ (σ(ξ))δ

α(σ′(ξ)).

Definition 3.3.3. A symbol σ ∈ Sm(C∞(Tnθ )) is called elliptic if σ(ξ) is invertible for

ξ ̸= 0, and for some c

||σ(ξ)−1|| ⩽ c(1 + |ξ|)−m,

for large enough |ξ|.
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Example 3.3.4. Consider the Dirac operator of the spectral triple
(
C∞(T3

θ),Hτ ⊗ C2, D = /∂
)
,

/∂ = ∂µ ⊗ γµ : Hτ ⊕Hτ −→ Hτ ⊕Hτ .

The symbol reads

σ(D)(ξ) = ξµ ⊗ γµ =

[
ξ3 ξ1 − iξ2

ξ1 + iξ2 −ξ3

]
,

which is clearly elliptic.

A smooth map σ : Rn → C∞(Tnθ ) ⊗MN (C) is called a classical symbol of order

α ∈ C if for any L and each 0 ⩽ j ⩽ L there exist σα−j : Rn\{0} → C∞(Tnθ )⊗MN (C)
positive homogeneous of degree α − j, and a symbol σL ∈ SRe(α)−L−1(C∞(Tnθ )), such
that

σ(ξ) =
L∑
j=0

χ(ξ)σα−j(ξ) + σL(ξ) ξ ∈ Rn. (3.1)

Here χ is a smooth cut off function on Rn which is equal to zero on a small ball around

the origin, and is equal to one outside the unit ball. The homogeneous terms in the

expansion are uniquely determined by σ. The set of classical symbols of order α on

noncommutative n-torus will be denoted by Sαcl(C∞(Tnθ )).

The analogue of the Wodzicki residue for classical pseudodifferential operators on

the noncommutative n-torus is defined in [23].

Definition 3.3.5. The noncommutative residue of a classical pseudodifferential operator

Aσ is defined as

Wres(Aσ) = τ (res(Aσ)) ,

where res(Aσ) :=
∫
|ξ|=1 trσ−n(ξ)dξ.

It is evident from the definition that noncommutative residue vanishes on differential

operators, operators of order < −n as well as non-integer order operators

3.3.2 The canonical trace

In what follows, we recall the analogue of Kontsevich-Vishik canonical trace [30] on

non-integer order pseudodifferential operators on the noncommutative tori from [19].

For an alternative approach based on toroidal noncommutative symbols see [33]. For a

thorough review of the theory in the classical case we refer to [35, 37].
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The existence of the so called cut-off integral for classical noncommutative symbols

is established in [19].

Proposition 3.3.6. Let σ ∈ Sαcl(C∞(Tnθ )) and B(R) be the ball of radius R around the

origin. One has the following asymptotic expansion

∫
B(R)

σ(ξ)dξ ∼R→∞

∞∑
j=0,α−j+n ̸=0

αj(σ)R
α−j+n + β(σ) logR+ c(σ),

where β(σ) =
∫
|ξ|=1 σ−n(ξ)dξ and the constant term in the expansion, c(σ), is given by

∫
Rn

σL +
L∑
j=0

∫
B(1)

χ(ξ)σα−j(ξ)dξ −
L∑

j=0,α−j+n ̸=0

1

α− j + n

∫
|ξ|=1

σα−j(ω)dω. (3.2)

Here we have used the notation of (3.1).

Definition 3.3.7. The cut-off integral of a symbol σ ∈ Sαcl(C∞(Tnθ )) is defined to be the

constant term in the above asymptotic expansion, and we denote it by
∫
−σ(ξ)dξ.

Now the canonical trace of a classical pseudodifferential operator of non-integer order

on C∞(Tnθ ) is defined as follows [19]:

Definition 3.3.8. The canonical trace of a classical pseudodifferential operator A of

non-integral order α is defined as

TR(A) = τ

(∫
− trσA(ξ)dξ

)
.

The relation between the TR-functional and the usual trace on trace-class pseudod-

ifferential operators is established in [19]. Note that any pseudodifferential operator A

of order less that −n is a trace class operator and its trace is given by

Tr(A) = τ

(∫
Rn

trσP (ξ)dξ

)
.

The symbol of such operators is integrable and we have∫
−σA(ξ) =

∫
Rn

σA(ξ)dξ. (3.3)

Therefore, the TR-functional and operator trace coincide on classical pseudodifferential

operators of order less than −n.
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The TR-functional is in fact the analytic continuation of the operator trace and using

this fact we can prove that it is actually a trace.

Definition 3.3.9. A family of symbols σ(z) ∈ Sα(z)cl (C∞(Tnθ )), parametrized by z ∈
W ⊂ C, is called a holomorphic family if

i) The map z 7→ α(z) is holomorphic.

ii) The map z 7→ σ(z) ∈ Sα(z)cl (Aθ) is a holomorphic map from W to the Fréchet space

Scl(C∞(Tnθ )).

iii) The map z 7→ σ(z)α(z)−j is holomorphic for any j, where

σ(z)(ξ) ∼
∑
j

χ(ξ)σ(z)α(z)−j(ξ) ∈ S
α(z)
cl (C∞(Tnθ )). (3.4)

iv) The bounds of the asymptotic expansion of σ(z) are locally uniform with respect to

z, i.e, for any L ⩾ 1 and compact subset K ⊂W , there exists a constant CL,K,α,β

such that for all multi-indices α, β we have∣∣∣∣∣∣
∣∣∣∣∣∣δα∂β

σ(z)−∑
j<L

χσ(z)α(z)−j

 (ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣ < CL,K,α,β |ξ|Re(α(z))−L−|β|.

A family {Az} ∈ Ψcl(C
∞(Tnθ )) is called holomorphic if Az = Aσ(z) for a holomorphic

family of symbols {σ(z)}.

Complex powers of elliptic operators are an important class of holomorphic families.

Let Q ∈ Ψq
cl(C

∞(Tnθ )) be a positive elliptic pseudodifferential operator of order q > 0.

The complex power of such an operator, Qzϕ, for Re(z) < 0 can be defined by the

following Cauchy integral formula.

Qzϕ =
i

2π

∫
Cϕ

λzϕ(Q− λ)−1dλ. (3.5)

Here λzϕ is the complex power with branch cut Lϕ = {reiϕ, r ⩾ 0} and Cϕ is a contour

around the spectrum of Q such that

Cϕ ∩ spec(Q)\{0} = ∅, Lϕ ∩ Cϕ = ∅,

Cϕ ∩ {spec(σ(Q)L(ξ)), ξ ̸= 0} = ∅.
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Remark 3.3.10. More generally, an operator for which one can find a ray Lϕ with the

above property, is called an admissible operator with the spectral cut Lϕ and its complex

power can be defined as above. Self-adjoint elliptic operators are admissible (see [35]

and [19]).

The following Proposition is the analogue of the result of Kontsevich and Vishik [30],

for pseudodifferential calculus on noncommutative tori.

Proposition 3.3.11. Given a holomorphic family σ(z) ∈ Sα(z)cl (C∞(Tnθ )), z ∈ W ⊂ C,
the map

z 7→
∫
−σ(z)(ξ)dξ,

is meromorphic with at most simple poles located in

P = {z0 ∈W ; α(z0) ∈ Z ∩ [−n,+∞]} .

The residues at poles are given by

Resz=z0

∫
−σ(z)(ξ)dξ = − 1

α′(z0)

∫
|ξ|=1

σ(z0)−ndξ.

Proof. By definition, one can write σ(z) =
∑L

j=0 χ(ξ)σ(z)α(z)−j(ξ) + σ(z)L(ξ), and by

Proposition (3.3.6) we have,

∫
−σ(z)(ξ)dξ =

∫
Rn

σ(z)L(ξ)dξ +

L∑
j=0

∫
B(1)

χ(ξ)σ(z)α(z)−j(ξ)

−
L∑
j=0

1

α(z) + n− j

∫
|ξ|=1

σ(z)α(z)−j(ξ)dξ.

Now suppose α(z0) + n − j0 = 0. By holomorphicity of σ(z), we have α(z) − α(z0) =
α′(z0)(z − z0) + o(z − z0). Hence

Resz=z0

∫
−σ(z) = −1

α′(z0)

∫
|ξ|=1

σ(z0)−n(ξ)dξ.

Corollary 3.3.12. The functional TR is the analytic continuation of the ordinary trace

on trace-class pseudodifferential operators.
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Proof. First observe that, by the above result, for a non-integer order holomorphic family

of symbols σ(z), the map z 7→
∫
−σ(z)(ξ)dξ is holomorphic. Hence, the map σ 7→

∫
−σ(ξ)dξ

is the unique analytic continuation of the map σ 7→
∫
Rn σ(ξ)dξ from S<−n

cl (C∞(Tnθ )) to
S /∈Zcl (C∞(Tnθ )). By (3.3) we have the result.

Corollary 3.3.13. Let A ∈ Ψα
cl(C

∞(Tnθ )) be of order α ∈ Z and let Q be a positive

elliptic classical pseudodifferential operator of positive order q. We have

Resz=0TR(AQ
−z) =

1

q
Wres(A).

Proof. For the holomorphic family σ(z) = σ(AQ−z), z = 0 is a pole for the map z 7→∫
−σ(z)(ξ)dξ whose residue is given by

Resz=0

(
z 7→

∫
−σ(z)(ξ)dξ

)
= − 1

α′(0)

∫
|ξ|=1

σ−n(0)dξ = −
1

α′(0)
res(A).

Taking τ -trace on both sides gives the result.

Now we can prove the trace property of TR-functional.

Proposition 3.3.14. We have TR(AB) = TR(BA) for any A,B ∈ Ψ∗
cl(C

∞(Tnθ )),
provided that ord(A) + ord(B) /∈ Z.

Proof. Consider the families {Az} and {Bz} such that A0 ∼ A, B0 ∼ B , ord(Az) =

ord(A)+z and ord(Bz) = ord(B)+z. For z ∈W = −(ord(A)+ord(B))+Z the families

{AzBz} and {BzAz} have non-integer order . For Re(z)≪ 0, the two families are trace-

class and Tr(AzBz) = Tr(BzAz). now by analytic continuation we have TR(AzBz) =

TR(BzAz), for z ∈ C−W . Putting z = 0 gives TR(AB) = TR(BA).

Remark 3.3.15. The above result provides another proof for the trace property of the

non-commutative residue on ΨZ
cl(C

∞(T2
θ)) given in [23], namely, for A,B ∈ ΨZ

cl(C
∞(T2

θ)),

Wres([A,B]) = 0.

On can write,

Wres([A,B]) = Resz=0TR([A,B]Q−z) = Resz=0TR(Cz) + Resz=0TR([AQ
−z, B]),
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where Cz = ABQ−z − AQ−zB. For Re(z) ≫ 0, the operator AQ−z is trace-class

and Tr([AQ−z, B]) = 0, so by analytic continuation,TR([AQ−z, B]) = 0 and therefore,

Resz=0TR([A,B]Q−z) = Resz=0TR(Cz). Finally, C0 = ABQ0−AQ0B ∈ Ψ−∞
cl (C∞(T2

θ)),

so

Wres([A,B]) = Resz=0TR(Cz) = Wres(C0) = 0,

where in the last equality we used the fact that the noncommutative residue of a smooth-

ing operator is zero.

3.3.3 Log-polyhomogeneous symbols

In general, z-derivatives of a classical holomorphic family of symbols are not classical

anymore and therefore we introduce log-polyhomogeneous symbols which include the

z-derivatives of the symbols of the holomorphic family σ(AQ−z).

Definition 3.3.16. A symbol σ is called a log-polyhomogeneous symbol if it has the

following form

σ(ξ) ∼
∑
j⩾0

∞∑
l=0

σα−j,l(ξ) log
l |ξ| |ξ| > 0, (3.6)

with σα−j,l positively homogeneous in ξ of degree α− j.

An important example of an operator with such a symbol is logQ where Q ∈
Ψq
cl(C

∞(Tnθ )) is a positive elliptic pseudodifferential operator of order q > 0. The loga-

rithm of Q can be defined by

logQ = Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C
λz−1(Q− λ)−1dλ.

It is a pseudodifferential operator with symbol

σ(logQ) ∼ σ(Q) ⋆ σ
( d

dz

∣∣∣∣
z=0

Qz−1
)
, (3.7)

where ⋆ denotes the product of symbols. One can show that (3.7) is a log-polyhomogeneous

symbol of the form

σ(logQ)(ξ) = q log |ξ|I + σcl(logQ)(ξ),

where σcl(logQ) is a classical symbol of order zero (see [35]).
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By adapting the proof of Theorem 1.13 in [37] to the noncommutative case, we have

the following theorem for the family σ(AQ−z).

Proposition 3.3.17. Let A ∈ Ψα
cl(C

∞(Tnθ )) and Q be a positive (or more generally, an

admissible) elliptic pseudodifferential operator of positive order q. If α ∈ P then z = 0

is a possible simple pole for the function z 7→ TR(AQ−z) with the following Laurent

expansion around zero,

TR(AQ−z) =
1

q
Wres(A)

1

z

+ τ

(∫
−σ(A)− 1

q
res(A logQ)

)
− Tr(AΠQ)

+

K∑
k=1

(−1)k (z)
k

k!

×
(
τ

(∫
−σ(A(logQ)k)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)
− Tr(A logkQΠQ)

)
+ o(zK).

Where ΠQ is the projection on the kernel of Q.

Remark 3.3.18. The term res(A logQ) appearing in above Laurent expansion is an ex-

tension of Wodzicki residue density to operators with Log-polyhomogeneous symbols

[32]. For an operator P with log-polyhomogeneous symbol, by res(P ) we mean,

res(P ) =

∫
|ξ|=1

σ−n,0(ξ)dξ,

(see (3.6)).

3.4 The spectral eta function

In this section we study the eta function associated with the family of spectral triples

(C∞(T3
θ),H, ethDeth) where h ∈ C∞(T3

θ) is a self-adjoint element [14], and also the cou-

pled spectral triple (C∞(T3
θ),H, D+A). By exploiting the developed pseudodifferential

calculus, the regularity of the eta function at zero in above cases will be proved.
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3.4.1 Regularity at zero

The spectral eta function was first introduced in [1] where its value at zero appeared as a

correction term in the Atiyah-Patodi-Singer index theorem for manifolds with boundary.

It is defined as

ηD(z) =
∑

λ∈spec(D),λ ̸=0

sgn(λ)|λ|−z = TR
(
D|D|−z−1

)
,

where D is a self-adjoint elliptic pseudodifferential operator. Unlike the spectral zeta

functions for positive elliptic operators, proving the regularity of eta function at zero is

difficult. This was proved in [2] and [26] using K-theoretic arguments and in [5], Bismut

and Freed gave an analytic proof of the regularity at zero of the eta function for a twisted

Dirac operator on an odd dimensional spin manifold.

Remark 3.4.1. Note that for an even spectral triple (A,H,D) we have DΓ = −ΓD,

therefore the spectrum of the Dirac operator is symmetric and ηD(z) is identically zero.

Also the same vanishing happens if the spectral triple admits a real structure with

KO-dimensions 1 or 5 (see definition 3.2.2).

The meromorphic structure of eta function for Dirac operator can be studied by the

pole structure of the canonical trace for holomorphic families.

Proposition 3.4.2. Let D be an elliptic self-adjoint first-order differential operator on

C∞(T3
θ). The poles of the eta function ηD(z) are located among {3− i, i ∈ N}, and

Resz=0ηD(z) = Wres(D|D|−1).

Proof. By using the result of Proposition 3.3.11, the family
{
σ
(
D|D|−z−1

)}
has poles

within the set {z;−z ∈ Z ∩ [−3,∞]} or {z = 3− i, i ∈ N}. Also, by Proposition 3.3.17

we have

ηD(z) = TR
(
D|D|−z−1

)
= Wres(D|D|−1)

1

z
+ a0 + a1z + · · · ,

Hence,

Resz=0ηD(z) = Wres(D|D|−1).
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We now prove the regularity at z = 0 of eta function for the 1-parameter family

{ethDeth} for the spectral triple (C∞(T3
θ), Hτ ⊗ C2, D = ∂µ ⊗ γµ) on noncommutative

3-torus.

Proposition 3.4.3. Consider the family of operators {ethDeth} on Hτ ⊗ C2 where

h = h∗ ∈ C∞(T3
θ), then

Resz=0ηethDeth(z) = 0.

Proof. By definition, ηDt(z) = TR(Dt|Dt|−z−1). Using Proposition 3.4.2 we have

Resz=0ηDt(z) = Wres(Dt|Dt|−1),

where the right hand side is the Wodzicki residue on noncommutative 3-torus.

Now for each element of the family Dt = e
th
2 De

th
2 , D2

t = e
th
2 DethDe

th
2 and |Dt| =√

D2
t . By using the product formula for the symbols we have,

σ(Dt) ∼ ξµeth ⊗ γµ + e
th
2 δµ(e

th
2 )⊗ γµ, (3.8)

and

σ(D2
t ) = σ(e

th
2 DethDe

th
2 ) ∼ ξλξµe2th ⊗ γλγµ

+ ξλe
3th
2 δµ(e

th
2 )γλγµ + ξµe

th
2 δλ(e

3th
2 )⊗ γλγµ

+ e
th
2 δλ(e

th)δµ(e
th
2 )⊗ γλγµ + e

3th
2 δλδµ(e

th
2 )⊗ γλγµ.

To compute the homogeneous terms in the symbol of |Dt|, we observe that |Dt| =
√
D2
t

and hence,

σ(|Dt|) =
√
σ(D2

t ) ∼ σ1(ξ) + σ0(ξ) + σ−1(ξ) + · · · . (3.9)
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We compute the first three terms, which we need for computing the symbol of |Dt|−1.

σ1(ξ) = lim
k→∞

σ(|Dt|)(kξ)
k

=
√

(ξ2)eth ⊗ I,

σ0(ξ) = lim
k→∞

σ(|Dt|)(kξ)− kσ1(ξ)

=
(
ξλe

3th
2 δµ(e

th
2 )
)
(

1

2
√
ξ2
e−th)⊗ γλγµ +

(
ξµe

th
2 δλ(e

3th
2 )
)
(

1

2
√
ξ2
e−th)⊗ γλγµ,

σ−1(ξ) = lim
k→∞

(σ(|Dt|)(kξ)− σ1(ξ)− σ0(ξ))
k−1

=
1

2
√
ξ2

(
e

th
2 δλ(e

th)δµ(e
th
2 )
)
e−th ⊗ γλγµ + 1

2
√
ξ2

(
e

3th
2 δλδµ(e

th
2 )
)
e−th ⊗ γλγµ

− 1

8ξ2
√
ξ2

(
ξλe

3th
2 δµ(e

th
2 )
)
e−th

(
ξνe

3th
2 δρ(e

th
2 )
)
e−2th ⊗ γλγµγνγρ

− 1

8ξ2
√
ξ2

(
ξλe

3th
2 δµ(e

th
2 )
)
e−th

(
ξρe

th
2 δν(e

3th
2 )
)
e−2th ⊗ γλγµγνγρ

− 1

8ξ2
√
ξ2

(
ξµe

th
2 δλ(e

3th
2 )
)
e−th

(
ξνe

3th
2 δρ(e

th
2 )
)
e−2th ⊗ γλγµγνγρ

− 1

8ξ2
√
ξ2

(
ξµe

th
2 δλ(e

3th
2 )
)
e−th

(
ξρe

th
2 δν(e

3th
2 )
)
e−2th ⊗ γλγµγνγρ,

where we have used the notation ξ2 =
∑3

k=0 ξ
2
k.

Now by using the relation |Dt|−1|Dt| = 1 and by recursive computation we find the

homogeneous terms in the symbol of the inverse,

σ(|Dt|−1) ∼ σ−1(|Dt|−1)(ξ) + σ−2(|Dt|−1)(ξ) + · · · , (3.10)

where,

σ−1(|Dt|−1)(ξ) =
1√
ξ2
e−th ⊗ I,
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σ−2(|Dt|−1)(ξ) =

− σ−1(|Dt|−1){σ0(|Dt|)σ−1(|Dt|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−1(|Dt|−1)},

σ−3{|Dt|−1)(ξ) =

− σ−1(|Dt|−1){(σ−1(|Dt|)σ−1(|Dt|−1) + σ0(|Dt|)σ−2(|Dt|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−1(|Dt|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−2(|Dt|−1)},

σ−4(|Dt|−1)(ξ) =

−σ−1(|Dt|−1){σ−2(|Dt|)σ−1(|Dt|−1) + σ−1(|Dt|)σ−2(|Dt|−1) + σ0(|Dt|)σ−3(|Dt|−1)

+
∑

α1+α2+α3=1

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|Dt|)δα1δα2δα3σ−2(|Dt|−1)

+
∑

α1+α2+α3=1

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ−1(|Dt|)δα1δα2δα3σ−1(|Dt|−1)

+
∑

α1+α2+α3=1

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−3(|Dt|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|Dt|)δα1δα2δα3σ−1(|Dt|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−2(|Dt|−1)

+
∑

α1+α2+α3=3

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|Dt|)δα1δα2δα3σ−1(|Dt|−1)}.

Therefore, the symbol of σ(Dt|Dt|−1) reads

σ(Dt|Dt|−1) ∼ (σ1(Dt) + σ0(Dt)) ⋆
(
σ−1(|Dt|−1) + σ−2(|Dt|−1) + σ−3(|Dt|−1) + · · ·

)
∼
(
σ1(Dt) ⋆ σ−1(|Dt|−1)

)
+
(
σ1(Dt) ⋆ σ−2(|Dt|−1)

)
+
(
σ1(Dt) ⋆ σ−3(|Dt|−1)

)
+
(
σ1(Dt) ⋆ σ−4(|Dt|−1)

)
+ · · ·

+
(
σ0(Dt) ⋆ σ−1(|Dt|−1)

)
+
(
σ0(Dt) ⋆ σ−2(|Dt|−1)

)
+
(
σ0(Dt) ⋆ σ−3(|Dt|−1)

)
+ · · · .
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For a = 1, 0 and b = −1,−2,−3. · · · , one has

σa(Dt) ⋆ σb(|Dt|−1) =
∑
α

1

α!
∂αξ σa(Dt)δ

ασb(|Dt|−1),

and each term is of order a− |α|+ b. By collecting the terms of order −3 we obtain,

σ−3(Dt|Dt|−1) ∼
(
σ1(Dt)σ−4(|Dt|−1)

)
+
(
σ0(Dt)σ−3(|Dt|−1)

)
+

( ∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(Dt)δ

α1
1 δα2

2 δα3
3 σ−3(|Dt|−1)

)

+

( ∑
α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(Dt)δ

α1
1 δα2

2 δα3
3 σ−2(|Dt|−1)

)

+

( ∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(Dt)δ

α1
1 δα2

2 δα3
3 σ−2(|Dt|−1)

)

+

( ∑
α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(Dt)δ

α1
1 δα2

2 δα3
3 σ−1(|Dt|−1)

)
.

Now, one should notice that Wodzicki residue of a matrix pseudodifferential operator

involves a trace taken over the matrix coefficients. By analyzing the terms involved in

σ−3(Dt|Dt|−1) and using the trace identities for gamma matrices (cf. e.g. [24]), we see

that the only contribution is from the the terms whose matrix coefficient consist of either

one γ matrix or product of three. Next, we use the following identities,

tr(γλ) = 0, (3.11)

tr(γλγµγν) = iϵλµνtr(I), (3.12)

where ϵλµν is the Levi-Civita symbol. By observing that

∑
λ,µ,ν

ϵλ,µ,ν = 0,

we conclude that

Wres
(
Dt|Dt|−1

)
= τ

(∫
|ξ|=1

tr
(
res(Dt|Dt|−1

)
dξ

)
= 0. (3.13)
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Remark 3.4.4. In [5], Bismut-Freed showed that in fact, for a twisted Dirac operator

on a Riemannian Spin manifold, the local eta-residue, tr
(
resx

(
D|D|−1

))
vanishes. The

above and the following results confirm the same vanishing in the noncommutative case

for the family of operators {Dt} on C∞(T3
θ).

The following result proves the regularity at zero of eta function for the coupled

Dirac operator D +A on C∞(T3
θ).

Proposition 3.4.5. Consider the coupled Dirac operator /∂+ /A on Hτ⊗C2 over C∞(T3
θ),

then

Resz=0ηD+A(z) = 0.

Proof. The coupled Dirac operator D and D2 are given by

D = ∂µ ⊗ γµ +Aµ ⊗ γµ

D2 = ∂µ∂λ ⊗ γµγλ + ∂µ(Aλ)⊗ γµγλ +Aµ∂λ ⊗ γµγλ +AµAλ ⊗ γµγλ.

Note that ∂µAλ(a) = ∂µ(Aλ)a+Aλ∂µ(a) and also AµAλ ̸= AλAµ. Hence,

D2 =
∑
µ

∂2µ ⊗ I + 2Aµ∂λ ⊗ γµγλ + ∂µ(Aλ)⊗ γµγλ +AµAλ ⊗ γµγλ,

where ∂µ(Aλ) in the third term above is a multiplication operator. The symbols are:

σ(D) = /ξ + /A,

and

σ(D2) = ξ2 + 2Aµξλ ⊗ γµγλ + ∂µ(Aλ)⊗ γµγλ +AµAλ ⊗ γµγλ,

where ξ2 =
∑

µ ξ
2
µ ⊗ I. Now,

σ(|D|) =
√
ξ2 + 2Aµξλ ⊗ γµγλ + ∂µ(Aλ)⊗ γµγλ +AµAλ ⊗ γµγλ

∼ σ1(ξ) + σ0(ξ) + σ−1(ξ) + · · · ,
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where

σ1(ξ) =
√
ξ2 ⊗ I,

σ0(ξ) =
/A/ξ√
ξ2
,

σ−1(ξ) =
1

2
√
ξ2

(
∂µ(Aλ)⊗ γµγλ +AµAλ ⊗ γµγλ

)
− 1

2ξ2
√
ξ2

(
AµξλAνξρ ⊗ γµγλγνγρ

)
.

By using σ(|D|) ⋆ σ(|D|−1) ∼ 1 and by recursive computation, we get:

σ−1(|D|−1) =
1√
ξ2
⊗ I.

σ−2(|D|−1) =

− 1√
ξ2
⊗ I

(
σ0(|D|)σ−1(|D|−1) +

∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)

)

= − 1√
ξ2
⊗ I

(
/A/ξ√
ξ2
.

1√
ξ2
⊗ I

)
= −

/A/ξ

ξ2
√
ξ2
.

σ−3(|D|−1) = − 1√
ξ2
⊗ I{σ−1(|D|)σ−1(|D|−1) + σ0(|D|)σ−2(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)}

= − 1√
ξ2
⊗ I

(
/A/ξ√
ξ2
.
− /A/ξ
ξ2
√
ξ2

+ ∂1ξ (
√
ξ2 ⊗ I).δ1( −

/A/ξ

ξ2
√
ξ2

)

)

=
ξµξνAρAλ

ξ4
√
ξ2
⊗ γµγνγργλ + 1√

ξ2
∂1ξ (
√
ξ2)δ1(

Aµξν

ξ2
√
ξ2

)⊗ γµγν .
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σ−4(|D|−1) = − 1√
ξ2
⊗ I{σ−2(|D|)σ−1(|D|−1) + σ−1(|D|)σ−2(|D|−1)

+ σ0(|D|)σ−3(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ−1(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|D|)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−3(|D|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

+
∑

α1+α2+α3=3

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)}

= − 1√
ξ2
⊗ I{σ0(|D|)σ−3(|D|−1) +

∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(|D|)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

+
∑

α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−3(|D|−1)

+
∑

α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(|D|)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)}.

Therefore the symbol of σ(D|D|−1) reads

σ(D|D|−1) ∼ (σ1(D) + σ0(D)) ⋆
(
σ−1(|D|−1) + σ−2(|D|−1) + σ−3(|D|−1) + · · ·

)
∼
(
σ1(D) ⋆ σ−1(|D|−1)

)
+
(
σ1(D) ⋆ σ−2(|D|−1)

)
+
(
σ1(D) ⋆ σ−3(|D|−1)

)
+
(
σ1(D) ⋆ σ−4(|D|−1)

)
+ · · ·

+
(
σ0(D) ⋆ σ−1(|D|−1)

)
+
(
σ0(D) ⋆ σ−2(|D|−1)

)
+
(
σ0(D) ⋆ σ−3(|D|−1)

)
+ · · · .

For a = 1, 0 and b = −1,−2,−3. · · · , one has

σa(D) ⋆ σb(|D|−1) =
∑
α

1

α!
∂αξ σa(D)δασb(|D|−1),
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and each term is of order a− |α|+ b. By collecting the terms of order −3 we get

σ−3(D|D|−1) ∼
(
σ1(D)σ−4(|D|−1)

)
+
(
σ0(D)σ−3(|D|−1)

)
+

( ∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(D)δα1

1 δα2
2 δα3

3 σ−3(|D|−1)

)

+

( ∑
α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(D)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

)

+

( ∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(D)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

)

+

( ∑
α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ0(D)δα1

1 δα2
2 δα3

3 σ−1(|D|−1)

)
.

Since σ0(D) has no ξ dependence, the last two terms vanish and therefore we have:

σ−3(D|D|−1) ∼
(
σ1(D)σ−4(|D|−1)

)
+
(
σ0(D)σ−3(|D|−1)

)
+

( ∑
α1+α2+α3=1

∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(D)δα1

1 δα2
2 δα3

3 σ−3(|D|−1)

)

+

( ∑
α1+α2+α3=2

1

α1!α2!α3!
∂α1
ξ1
∂α2
ξ2
∂α3
ξ3
σ1(D)δα1

1 δα2
2 δα3

3 σ−2(|D|−1)

)
.

Finally, similar to the proof of Proposition (3.4.3), one observes that the matrix coeffi-

cients of all terms in σ−3(D|D|−1) consist of either one γ matrix or product of three γ

matrices. Again, by using the similar trace identities of γ matrices identities we obtain,

Wres(
D

|D|
) = τ

(
res(D|D|−1)

)
= τ

(∫
|ξ|=1

tr(σ−3)dξ

)
= 0.

3.4.2 Conformal invariance of ηD(0)

In this section we study the variations of ηD(0) for the spectral triple (C∞(T3
θ),H, D =

/∂). We consider the conformal variation of the Dirac operator and show that ηD(0) will
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remain unchanged.

Consider the commutative spectral triple (C∞(M), L2(M,S)g, Dg) encoding the data

of a closed n-dimensional spin Riemannian manifold with the spin Dirac operator on the

space of spinors. By varying g within its conformal class, we consider g̃ = k−2g for

some k = eh > 0 in C∞(M). The volume form for the perturbed metric is given by

dvolg̃ = k−ndvolg and one has a unitary isomorphism

U : L2(M,S)g −→ L2(M,S)g̃

by

U(ψ) = k
n
2 ψ,

It can be shown that (cf. [29]) Dg̃ = k
n+1
2 Dgk

−n+1
2 and hence

U∗Dg̃U = k
−n
2 (k

n+1
2 Dgk

−n+1
2 )k

n
2 =
√
kDg

√
k.

The above property of the Dirac operator is usually referred to as being conformally

covariant. It is a known fact that ηD(0) for a Dirac operator on an odd dimensional

manifold is a conformal invariant [1], i.e. it is invariant under the conformal changes of

the metric. In a more general context, in [34, 41] and [36], using variational techniques,

it was shown that for a coformally covariant self adjoint differential operator A, ηA(0)

is a conformal invariant.

In the framework of noncommutative geometry, conformal perturbation of the metric

is implemented by changing the volume form [10], namely, by fixing a positive element

k = eh for h∗ = h in C∞(Tnθ ), one constructs the following positive functional

φk(a) = τ(ak−n).

By normalizing the above functional one obtains a state which we denote by φ.

The state φ defines an inner product

⟨a, b⟩φ = φ(b∗a) a, b ∈ C∞(Tnθ )

and hence one obtains a Hilbert space Hφ by GNS construction. The algebra C∞(Tnθ )
acts unitarilly on Hφ by left regular representation and the right multiplication operator
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Rkn/2 extends to a unitary map U0 : Hτ −→ Hφ. In fact one has,

⟨U0a, U0b⟩φ = φ(kn/2b∗akn/2) = τ(kn/2b∗akn/2k−n) = τ(b∗a) = ⟨a, b⟩τ .

We put H̃ = Hφ ⊗ CN , the action of C∞(Tnθ ) on H̃ is given by

a −→ a⊗ 1

and the map

U = U0 ⊗ I : H −→ H̃

is a unitary equivalence between the two Hilbert spaces.

Now we consider the operator D̃ = R
k
n+1
2
DR

k
−n+1

2
.

Proposition 3.4.6. (C∞(Tnθ ), H̃, D̃) and (C∞(Tnθ ),H, R√
kDR

√
k) are spectral triples,

and the map U is a unitary equivalence between them.

Proof. Note that left multiplication by an element a ∈ C∞(Tnθ ) commutes with right

multiplication operators Rk2 , Rk−1 and R√
k . Also the two norms coming from <,>φ

and <,>τ are equivalent. So both commutators [a, D̃] and [a,
√
kD
√
k] are bounded.

The unitary equivalence easily follows from definition of U and D̃.

In next step, we convert the right multiplications in R√
kDR

√
k to left multiplication

using the real structure on noncommutative tori (see example 3.2.3) . It is easily seen

that

J0R√
k∂µR

√
kJ0 = −

√
k∂µ
√
k,

and

JR√
kDR

√
kJ =

√
kD
√
k.

Since
√
kD
√
k is iso-spectral to R√

kDR
√
k (being intertwined by J), the following

definition is reasonable.

Definition 3.4.7. The conformal perturbation of the Dirac operator D is the 1-parameter

family (C∞(Tnθ ),H, Dt), where

Dt = e
th
2 De

th
2 , h = h∗ ∈ C∞(Tnθ ).
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We need the following formula for variation of eta function.

Lemma 3.4.8. Let {Dt} be a smooth 1-parameter family of invertible self-adjoint elliptic

operators of order d, then

d

dt
ηDt(z) = −zTR(Ḋt(D

2
t )

−( z+1
2

)).

Proof. For k > 0 odd, ηDk(z) = ηD(kz), hence we can replace D by Dk for k large

enough.

For d large enough, (D − λ)−1 is trace class, so one can write

ηDt(z) =
1

2πi

∫
Γ1

λ−zTr(Dt − λ)−1dλ−
∫
Γ2

(−λ)−zTr(Dt − λ)−1dλ,

where Γ1 and Γ2 are appropriate contours around positive and negative eigenvalues of

D.

Now,
d

dt
(Dt − λ)−1 = −(Dt − λ)−1Ḋt(Dt − λ)−1,

so

Tr(
d

dt
(Dt − λ)−1) = −Tr(Ḋt(Dt − λ)−2),

therefore

d

dt
ηDt(z) =

1

2πi
Tr(Ḋt(

∫
Γ1

−λ−sTr(Dt − λ)−2dλ+

∫
Γ2

(−λ)−zTr(Dt − λ)−2dλ)).

Now, integration by parts in both integrals and the formula d
dλ(Dt − λ)−1 = (Dt − λ)−2

gives the result.

Remark 3.4.9. By applying the above lemma to the Dirac operator D on noncommuta-

tive 3-torus we get,

∂ηD(0) =

[
d

dt

∣∣∣∣
t=0

ηDt(z)

]
z=0

=
[
−zTR(∂D|D|−1(D2)

−z
2 )
]
z=0

= −Wres(∂D|D|−1).

By the properties of Wodzicki residue, one sees that η(0) is constant under smoothing

perturbations, so if ker(D) ̸= 0, on can replace D by D + Π where Π is the projection
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on the finite dimensional kernel of D and hence the result of above lemma still makes

sense for an operator with nontrivial kernel.

Proposition 3.4.10. Consider the spectral triple (C∞(T3
θ),H, D = /∂), then ηD(0) is

invariant under the conformal perturbations.

Proof. Consider the 1-parameter family of operators

Dt = e
th
2 De

th
2 , h = h∗ ∈ C∞(T3

θ).

One computes

Ḋt =
1

2
(hDt +Dth),

and

∂D =
1

2
(hD +Dh).

Therefore by trace property of noncommutative residue we get

∂η(D, 0) = −Wres(hD|D|−1),

and it is seen that

Wres(hD|D|−1) = τ
(
tr(res(hD|D|−1)

)
= τ

(
tr(h res(D|D|−1)

)
.

Now by looking at the symbols

σ(D) ∼ ξµ ⊗ γµ,

σ(|D|) ∼ |ξ|2 ⊗ I,

we get,

σ(D|D|−1) ∼ ξµ
|ξ|
⊗ γµ.

Therefore, there is no homogeneous term of negative order in the symbol of σ(D|D|−1)

and hence,

Wres(hD|D|−1) = 0.
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3.4.3 Spectral flow and odd local index formula

The value of eta function at zero is intimately related to another spectral quantity

called the spectral flow. To motivate this relation, consider a family At of N × N

Hermitian matrices. The spectral flow of the family At is defined as the net number of

the eigenvalues of At passing zero. It is easily seen that the difference of the signatures

of the end points is related to the spectral flow of the family by,

ηA1(0)− ηA0(0) = 2SF(At).

The spectral flow of a family of self adjoint elliptic operators At on manifolds can also

be defined ([1]) but the above equality holds along with a correction term (see [7] for a

proof).

Proposition 3.4.11. Let At be a self-adjoint family of elliptic operators of order a with

A0 and A1 invertible, then

ηA1(0)− ηA0(0) = 2SF(At)−
1

a

∫ 1

0

d

dt
ηAt(0)dt. (3.14)

It’s a remarkable fact due to Getzler ([25]) that the spectral flow of the family of

operators Dt = D + tg−1[D, g] interpolating D and g−1Dg for the Dirac operator D on

an odd dimensional spin manifold and g ∈ C∞(M,GL(N)) in fact gives the index of

PgP where P = 1+F
2 and F = D|D|−1 is the sign operator. Therefore one obtains a

pairing between the odd K-theory and K-homology:

SF(Dt) = index(PgP ). (3.15)

The above equality has been generalized to the framework of non commutative in-

dex theory [8, 9]. Consider a spectral triple (A,H, D) with sufficiently nice regularity

properties and let u ∈ A be a unitary element and [u] ∈ K1(A) the corresponding class

in K-theory. The sign operator F = D
|D| gives the projection P = 1+F

2 and PuP is a

Fredholm operator. For the family Dt = D + tu∗[D,u] interpolating between D and

u∗Du one can show that(see [8] and [9]):

SF(Dt) = index(PuP ). (3.16)
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The odd local index formula of Connes-Moscovici in turn expresses the right side of

the above equality as a pairing between the periodic cyclic cohomolgy and K-theory

given by a local formula in the sense of non commutative geometry [13]. Note that for

the spectral triple (C∞(T3
θ),H, D = /∂), by Proposition (3.4.5), the eta function ηDt(0)

over the family of Dirac operators Dt = D + tu∗[D,u] makes sense and with a minor

modification of the proof of Proposition (3.4.11) in the commutative case we get,

ηu∗Du(0)− ηD(0) = 2SF(Dt)−
∫ 1

0

d

dt
ηDt(0)dt. (3.17)

Since u∗Du and D have the same spectrum, we have ηu∗Du(0) = ηD(0) and therefore we

obtain obtain the following integrated local formula for the index:

index(PuP ) =
1

2

∫ 1

0

d

dt
ηDt(0)dt. (3.18)

3.5 Bosonic functional determinant and conformal anomaly

Consider a positive elliptic differential operator A on a closed manifold M , the corre-

sponding bosonic action is defined by

Sbos(ϕ) = (ϕ,Aψ),

where ϕ : M → Cd is a bosonic field living on M . Upon quantization, one constructs

the partition function

Zbos =

∫
e

−1
2
Sbos(ϕ)[Dϕ],

where [Dϕ] is a formal measure on the configuration of bosonic fields. The corresponding

effective action is given by

W = logZ.

One should think of Zbos formally as (detA)−
1
2 . Through zeta regularization scheme

(see e.g. [6]) one defines,

Z := e
1
2
ζ′A(0) (3.19)

and hence,

W =
1

2
ζ ′A(0), (3.20)
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where the spectral zeta function is defined by

ζA(z) = TR(A−z),

and we have dropped the dependence on the spectral cut Lθ in definition of the complex

power. Note that since A is a differential operator, by Proposition (3.3.17), ζA(z) is

regular at z = 0 and ζ ′A(0) makes sense.

Let D be the Dirac operator on a closed odd dimensional spin manifold, it’s a known

fact that ζ ′|D|(0) is a conformal invariant (see [41] and [34]). We prove the analogue of

this result for the Dirac operator on noncommutative n-torus (C∞(Tnθ ),H, D = /∂) in

odd dimensions.

In even dimensions the conformal variation is not zero and hence conformal quantum

anomaly exists. In dimension two, the Polyakov anomaly formula [38] gives a local

expression for conformal anomaly of the Laplacian on a Riemann surface. Following [6]

we derive an analogue of this formula for noncommutative 2-torus using the formalism

of canonical trace.

For proving the conformal invariance of ζ ′|D|(0) on C
∞(T2p+1

θ ) we will need to care-

fully analyze the coefficients in short time asymptotic of the trace of heat operator

e−tD
2
.

Lemma 3.5.1. Consider the spectral triple (C∞(Tnθ ),H, D). One has the following

asymptotic expansion

Tr(e−tD
2
) ∼

∞∑
i=0

ai(D
2)t

i−n
2 t→ 0,

where coefficients ai are computed by integrating local terms.

Proof. We have,

Tr(e−tD
2
) = τ(

∫
Rn

trσ(e−tD
2
)(ξ)dξ).

The operator e−tD
2
is again a pseudodifferential operator of order −∞ whose symbol

can be computed using the symbol product rules. For any λ in the resolvent of D2,

(λ−D2)−1 is a pseudodifferential operator of order −2 with symbol r(ξ, λ) which can be

written as its homogeneous parts r = r0 + r1 + · · · , with rk(ξ, λ) homogeneous of order

−k − 2 in (ξ, λ) i.e.

rk(tξ, t
2λ) = t−2−krk(ξ, λ) ∀t > 0 (3.21)
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The operator e−tD
2
is also a pseudodifferential operator with the symbol e0+e1+e2+· · ·

where en ∈ S−∞ and are defined by

en(t, ξ) =
1

2πi

∫
γ
e−tλrn(ξ, λ)dλ t > 0 (3.22)

∫
Rn

σ(e−tD
2
)(t, ξ)dξ

=
∑
i

∫
ei(t, ξ)dξ

The integrands
∫
Rn ei(t, ξ)dξ are homogeneous in ξ.∫
Rn

en(t, ξ)dξ =
1

2πi

∫
Rn

∫
γ
e−tλrn(x, ξ, λ)dλdξ

=
1

2πi

∫
Rn

∫
γ
e−λ

′
rn(t

−1/2ξ′, t−1λ′)
dλ′

t

dξ′

tn/2

= t(
i−n
2 ) 1

2πi

∫
Rn

∫
γ
e−λrn(ξ, λ)dλdξ

In identity second identity we have used the change of variable tλ = λ′ and t1/2ξ = ξ′.

Hence we have ∫
Rn

σ(e−tD
2
)(ξ)dξ ∼

∑
i=0

βit
i−n
2 , (3.23)

Where

βi(x) =
1

2πi

∫
Rn

∫
γ
e−λri(ξ, λ)dλdξ (3.24)

and hence

Tr(e−tD
2
) ∼

∞∑
i=0

t
i−n
2 ai(D

2), t→ 0,

Where ai(D
2) = τ(tr(βi))
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Remark 3.5.2. The above asymptotic expansion holds for any self-adjoint elliptic differ-

netial operator A ∈ Ψ∗
cl(C

∞(Tnθ )). In fact, one has

Tr(e−tA
2
) ∼

∞∑
i=0

ai(A
2)t

i−n
α t→ 0,

where α = ord(A).

Remark 3.5.3. One also has the following asymptotic expansion

Tr(ae−tD
2
) ∼

∞∑
i=0

ai(D
2, a)t

i−n
2 t→ 0,

Where a ∈ C∞(Tnθ ) is considered as a multiplication operator and

ai(D
2, a) = τ(tr(aβi))

in above computations.

Next, we have the following variational result.

Lemma 3.5.4. Let At be a 1-parameter family of positive elliptic differential operators

of fixed order α on noncommutaive n-torus, then

d

dt
ζAt(z) = −zTR(Ȧt(At)−z−1).

Proof. By using the contour integral formula for the complex powers we have,

d

dt
TR(A−z

t ) =
1

2πi

∫
Γ
λ−z

d

dt
TR(λ−At)−1dλ

=
1

2πi

∫
Γ
λ−zTR(Ȧt(λ−At)−2)dλ

= TR

(
Ȧt

1

2πi

∫
Γ
λ−z(λ−At)−2dλ

)
.

Now using integration by parts formula gives the result.

Remark 3.5.5. Note that by above lemma we have:

d

dt
ζAt(0) =

[
−zTR(ȦtA−1A−z)

]
z=0

= −Wres(ȦtA
−1), (3.25)
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and therefore, the value of zeta at zero is constant under smoothing perturbations and

hence the above result makes sense for non invertible operators.

We also need the following result relating the constant term in Laurent expansion of

TR(AQ−z) around z = 0 to the constant term in the asymptotic expansion Tr(Ae−tQ)

at t = 0. Let f.p. TR(AQ−z)|z=0 denote the constant term in the Laurent expansion

and also f.p. Tr(Ae−tQ)
∣∣
t=0

denote the constant term in the heat trace asymptotic near

zero. We refer the reader to [3] for a proof of the following result in a more general form

in commutative case.

Lemma 3.5.6. Consider the differential operators A,Q ∈ Ψ∗
cl(C

∞(Tnθ )), where Q is

positive with positive order q. Then,

f.p. TR(AQ−z)
∣∣
z=0

= f.p. Tr(Ae−tQ)
∣∣
t=0

. (3.26)

Proposition 3.5.7. Consider the spectral triple (C∞(T2p+1
θ ),H, D = /∂). The value

ζ ′|D|(0) is a conformal invariant.

Proof. It is enough to show that ζ ′∆(0) for ∆ = D2 is conformally invariant. By the

Lemma (3.5.4) we have,

∂ζ∆(z) = −zTR(∂∆ ·∆−1∆−z),

so we have the following Laurent expansion around z = 0:

∂ζ∆(z) = −z
(
a−1

1

z
+ a0 + a1z + · · ·

)
.

Therefore

∂ζ ′∆(0) =
d

dz
∂ζ∆(z)|z=0 = −a0 = −τ

(∫
−σ(∂∆∆−1)− 1

2
res(∂∆∆−1 log∆)

)
. (3.27)

Consider the conformal perturbation of the Dirac operator,

Dt = e
th
2 De

th
2 h = h∗ ∈ Aθ.
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An easy computation gives

∂∆ =
d

dt
D2
t

∣∣∣∣
t=0

=
h

2
D2 +DhD +

1

2
D2h,

and therefore by inserting the above identity into (3.27) we get

∂ζ ′∆(0) = −2τ
(∫
−σ(h)− 1

2
res(h log∆)

)
= −2f.p. TR(h∆−z)

∣∣
z=0

. (3.28)

Now using the Lemma (3.5.6) we have

∂ζ ′∆(0) = −2f.p. Tr(he−t∆)
∣∣
t=0

= −2a2p+1(h,∆) = −2τ(tr(hβ2p+1)). (3.29)

By examining the proof of Lemma (3.5.1), we see that an = 0 for odd n since the

integrand involved is an odd function, hence the result is obtained.

In the following we give an analogue of Polyakov anomaly formula [38] for the spactral

triple (C∞(C∞(T2
θ),H, /∂). Note that although log det(∆) = −ζ ′∆(0) is not local1 (see

Proposition (3.3.17)), the difference between log det∆h
of the conformally perturbed

Laplacian and log det∆ can be given by a local formula. This is of course an example

of the local nature of anomalies in quantum field theory. Here we only express this

difference as an integrated anomaly and refer the reader to [6] for further computations

and interpretation of the formula.

Proposition 3.5.8. ( A conformal anomaly formula) Consider the spectral triple

(C∞(T2
θ),H, D = /∂), ∆ = D2 and ∆h = D2

h where D = e
h
2De

h
2 . The difference between

log det∆h
of the conformally perturbed Laplacian and log det∆ can be given by a local

formula:

log det(∆h)− log det(∆) = −
(
ζ ′∆h

(0)− ζ ′∆(0)
)
= −

∫ 1

0

d

dt
ζ ′∆t

(0)dt, (3.30)

where ∆t = D2
t , D = e

th
2 De

th
2 .

Proof. The proof follows from the Lemma (3.5.4) and fundamental theorem of calculus

along the family ∆t.

1Roughly, it means that it can not be written as an integral of finite number of homogenous terms
of the symbol of ∆.
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Remark 3.5.9. Note that, by using the similar argument used in derivation of the equa-

tions (3.27) and (3.29) we see that the integrand in equation (3.30) is given by

d

dt
ζ ′∆t

(0) = −τ
(∫
−σ( d

dt
∆t∆

−1
t )− 1

2
res(

d

dt
∆t∆

−1
t log∆t)

)
=

− 2a2(h,∆t) = −2τ (tr(hβ2(∆t))) .

of course, computing the density tr(β2(∆t)) requires considerable amount of computa-

tions (see [6] and [11]).

3.6 Fermionic functional determinant and induced chern-

Simons term

Consider a closed manifold M and the classical fermionic action defined by

Sfer(ψ̄, ψ) = (ψ̄,Dψ),

where ψ̄ and ψ are fermion fields on M and D = iγµ∇µ is the Dirac operator . The

fermionic partition function is given by

Zfer =

∫
e−Sfer(ψ̄,ψ)[Dψ̄][Dψ],

where [Dψ̄] and [Dψ] are formal measures on the space of fermions. The partition

function Z should be thought as the det(D). The one-loop fermionic effective action is

defined as

W := log(Z) = log det(D).

Similar to bosonic case, after choosing a spectral cut Lϕ
2, by definition we have (see

(4.10)):

ζD(z) = TR(D−z
ϕ ),

and hence one can define

W = log det(D) := −ζ ′D(0). (3.31)

2 There are two choices of spectral cut Lϕ for the Dirac operator: in upper or lower half plane
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Note that due to choice of a spectral cut, there is an ambiguity involved in above

definition of one-loop effective action. Let ζ↑D(z) and ζ
↓
D(z) be the spectral zeta functions

corresponding to a choice of ϕ in upper and lower half plane respectively. a quick

computation shows that (cf. [39])

ζ↑D(z)− ζ
↓
D(z) = (1− e−iπz)ζ↑D(z)− (1− e−iπz)ηD(z),

and the measure of ambiguity in the effective action is given by

ζ↑D(0)
′ − ζ↓D(0)

′ = iπζ↑D(0) + iπηD(0). (3.32)

In 2p+ 1 dimensions ζ↑D(0) = ζ↓D(0) = 0 and hence

ζ↑D(0)
′ − ζ↓D(0)

′ = iπηD(0).

Therefore the ambiguity is given by the non local quantity ηD(0) which also depends

on the gauge field coupled to the Dirac operator. The measure of this dependence can

be given by a local formula which in physics literature is referred to as the induced

Chern-Simons term generated by the coupling of a massless fermion to a classical gauge

field(see [6]).

Here, we give an analogue of this local term for the coupled Dirac operator on

noncommutative 3-torus. We consider the operator D = /∂+ /A on C∞(T3
θ) and compute

the variation of the eta invariant ηD(0) with respect to the vector potential.

First we state the following lemma. The proof in commutative case also works in

noncommutative setting with minor changes and we will not reproduce it here (see [36]).

Lemma 3.6.1. In the asymptotic expansion of the heat kernel for a positive elliptic

differential operator A ∈ Ψ∗
cl(C

∞(Tnθ )) of ord(A) = α,

∫
Rn

σ(e−tA)(ξ)dξ ∼
∞∑
i=0

βit
i−n
α ,

one has

res(A−k) =
α

(k − 1)!
βn−αk,

where k ∈ Z+ and βn−αk = 0 if αk /∈ Z.
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Consider the family Dt = /∂ + /At on C∞(T3
θ). By performing the variation with

respect to Aµ we have:

∂D = γµ∂Aµ. (3.33)

For the family pf Dirac operators {Dt}, a proof similar to the proof of Proposition

(3.4.5) shows that ηDt(z) is regular at z = 0 and therefore along this family, ηDt(0)

makes sense. By using Lemma (3.4.8) we obtain:

∂η(0) = Wres
(
∂D|D|−1

)
= Wres

(
γµ∂Aµ|D|−1

)
. (3.34)

Now by using Lemma (3.6.1) and the fact that γµ∂Aµ is a zero order operator it

follows that the variation of the eta invariant with respect to the gauge field Aµ is given

by the following local formula:

∂ηD(0) = Wres
(
γµ∂Aµ|D|−1

)
= τ (tr (γµ∂Aµβ2)) . (3.35)
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[29] N. Hitchin. Harmonic Spinors. Advances in Mathematics, 14(1):1 - 55, 1974.

[30] M. Kontsevich, S. Vishik. Geometry of determinants of elliptic operators. In Func-

tional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993),

volume 131 of Progr. Math., pages 173–197. Birkhäuser Boston, Boston, MA, 1995.

[31] M. Khalkhali and A. Moatadelro. A Riemann-Roch theorem for the noncommuta-

tive two torus. Journal of Geometry and Physics, 86(0):19 – 30, 2014.

[32] M. Lesch. On the noncommutative residue for pseudodifferential operators with

log-polyhomogeneous symbols. Ann. Global Anal. Geom., 17(2):151–187, 1999.

[33] C. Levy, C. N. Jimnez, S. Paycha. The canonical trace and the noncommutative

residue on the noncommutative torus. ArXiv:1303.0241 [math.AP], 2013.

[34] T. Parker, S. Rosenberg. Invariants of conformal Laplacians. J. Differential Geom.,

25:199–222, 1987.

[35] S. Paycha. Regularised integrals, sums and traces. Volume 59, University Lecture

Series. American Mathematical Society, Providence, RI, 2012.

[36] S. Paycha, S. Rosenberg. Conformal anomalies via canonical traces. In Analy-

sis, geometry and topology of elliptic operators, pages 263–294. World Sci. Publ.,

Hackensack, NJ, 2006.

[37] S. Paycha, S. Scott. A Laurent expansion for regularized integrals of holomorphic

symbols. Geom. Funct. Anal., 17(2):491–536, 2007.

[38] S. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103:207–210,

1981.

[39] R. Ponge. Spectral asymmetry, zeta functions, and the noncommutative residue.

Internat. J. Math, 17(9): 1065–1090, 2006.



Curvature of The Determinant Line Bundle For The Noncommutative Two Torus 90

[40] J. Rosenberg. Levi-Civita’s theorem for noncommutative tori. SIGMA 9 (2013),

071, 9 pages.

[41] S. Rosenberg. The Determinant of a Conformally Covariant Operator. Journal of

the London Mathematical Society,Volumes 2-36(3):553-568, 1987.

[42] S. Scott. Traces and determinants of pseudodifferential operators. Oxford Mathe-

matical Monographs. Oxford University Press, Oxford, 2010.

[43] M. Wodzicki. Noncommutative residue. I. Fundamentals. K-theory, Arithmetic and

Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin,

1987, p. 320-399.



Chapter 4

Curvature of the Determinant

Line Bundle for the

Noncommutative Two Torus

4.1 Introduction

In this paper we compute the curvature of the determinant line bundle associated to a

family of Dirac operators on the noncommutative two torus. Following Quillen’s pioneer-

ing work [23], and using zeta regularized determinants, one can endow the determinant

line bundle over the space of Dirac operators on the noncommutative two torus with a

natural Hermitian metric. Our result computes the curvature of the associated Chern

connection on this holomorphic line bundle. In the noncommutative case the method of

proof applied in [23] does not work and we had to use a different strategy. To this end

we found it very useful to extend the canonical trace of Kontsevich-Vishik [16] to the

algebra of pseudodifferential operators on the noncommutative two torus.

This paper is organized as follows. In Section 2 we review some standard facts

about Quillen’s determinant line bundle on the space of Fredholm operators from [23],

and about noncommutative two torus that we need in this paper. In Section 3 we

develop the tools that are needed in our computation of the curvature of the determinant

line bundle in the noncommutative case. We recall Connes’ pseudodifferential calculus

and define an analogue of the Kontsevich-Vishik trace for classical pseudodifferential



Curvature of The Determinant Line Bundle For The Noncommutative Two Torus 92

symbols on the noncommutative torus. A similar construction of the canonical trace

can be found in [20], where one works with the algebra of toroidal symbols. Section 4

is devoted to Cauchy-Riemann operators on Aθ with a fixed complex structure. This

is the family of elliptic operators that we want to study its determinant line bundle.

In Section 5 using the calculus of symbols and the canonical trace we compute the

curvature of determinant line bundle. Calculus of symbols and the canonical trace allow

us to bypass local calculations involving Green functions in [23], which is not applicable

in our noncommutative case.

The study of the conformal and complex geometry of the noncommutative two torus

started with the seminal work of Connes and Tretkoff [7] (cf. also [5] for a prelimi-

nary version) where a Gauss-Bonnet theorem is proved for a noncommutative two torus

equipped with a conformally perturbed metric. This result was refined and extended in

[10] where the Gauss-Bonnet theorem was proved for metrics in all translation invariant

conformal structures. The problem of computing the scalar curvature of the curved non-

commutative two torus was fully settled in the work of Connes and Moscovici [6], and,

independently, in [11], and in [12] for the four dimensional case. Other related works

include [1, 8, 9, 15, 18].

4.2 Preliminaries

In this section we recall the definition of Quillen’s determinant line bundle over the space

of Fredholm operators. We also recall some basic notions about noncommutative torus

that we need in this paper.

4.2.1 The determinant line bundle

Unless otherwise stated, in this paper by a Hilbert space we mean a separable infinite

dimensional Hilbert space over the field of complex numbers. Let F = Fred(H0,H1)

denote the set of Fredholm operators between Hilbert spaces H0 and H1. It is an open

subset, with respect to norm topology, in the complex Banach space of all bounded

linear operators between H0 and H1. The index map index : F → Z is a homotopy

invariant and in fact defines a bijection between connected components of F and the set

of integers Z.
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It is well known that F is a classifying space for K-theory: for any compact space

X we have a natural ring isomorphism

K0(X) = [X,F ]

between the K-theory of X and the set of homotopy classes of continuous maps from

X to F . In other words, homotopy classes of continuous families of Fredholm operators

parametrized by X determine the K-theory of X. It thus follows that F is homotopy

equivalent to Z × BU , the latter being also a classifying space for K-theory. Let F0

denote the set of Fredholm operators with index zero. By Bott periodicity, π2j(F) ∼= Z
and π2j+1(F) = {0} for j ≥ 0. So by Hurewicz’s theorem, H2(F0, Z) ∼= Z. Now the

determinant line bundle DET defined below has the property that its first Chern class,

c1(DET), is a generator of H2(F0,Z) ∼= Z. We refer to [2, 24] and references therein for

details.

In [23] Quillen defines a line bundle DET→ F such that for any T ∈ F

DETT = Λmax(ker(T ))∗ ⊗ Λmax(coker(T )).

This is remarkable if we notice that ker(T ) and coker(T ) are not vector bundles due

to discontinuities in their dimensions as T varies within F . Let us briefly recall the

construction of this determinant line bundle DET. For each finite dimensional subspace

F of H1 let UF = {T ∈ F1 : Im(T ) + F = H1} denote the set of Fredholm operators

whose range is transversal to F . It is an open subset of F and we have an open cover

F =
∪
UF .

For T ∈ UF , the exact sequence

0→ ker(T )→ T−1F
T→ F → coker(T )→ 0 (4.1)

shows that the rank of T−1F is constant when T varies within a continuous family in

UF . Thus we can define a vector bundle EF → UF by setting EFT = T−1F. We can then

define a line bundle DETF → UF by setting

DETFT = Λmax(T−1F )∗ ⊗ ΛmaxF.
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We can use the inner products on H0 and H1 to split the above exact sequence (4.1)

canonically and get a canonical isomorphism ker(T )⊕F ∼= T−1F ⊕ coker(T ). Therefore

Λmax(ker(T ))∗ ⊗ Λmax(coker(T )) ∼= Λmax(T−1F )∗ ⊗ ΛmaxF.

Now over each member of the cover UF a line bundle DETF → UF is defined. Next one

shows that over intersections UF1 ∩ UF2 there is an isomorphism DETF1 → DETF2 and

moreover the isomorphisms satisfy a cocycle condition over triple intersections UF1 ∩
UF2 ∩ UF3 . This shows that the line bundles DETF → UF glue together to define a line

bundle over F . It is further shown in [23] that this line bundle is holomorphic as a

bundle over an open subset of a complex Banach space.

It is tempting to think that since c1(DET) is the generator of H2(F0,Z) ∼= Z, there
might exits a natural Hermitian metric on DET whose curvature 2-form would be a

representative of this generator. One problem is that the induced metric from ker(T )

and ker(T ∗) on DET is not even continuous. In [23] Quillen shows that for families

of Cauchy-Riemann operators on a Riemann surface one can correct the Hilbert space

metric by multiplying it by zeta regularized determinant and in this way one obtains

a smooth Hermitian metric on the induced determinant line bundle. In Section 5 we

describe a similar construction for noncommutative two torus.

4.2.2 Noncommutative two torus

For θ ∈ R, the noncommutative two torus Aθ is by definition the universal unital C∗-

algebra generated by two unitaries U, V satisfying

V U = e2πiθUV.

There is a continuous action of T2, T = R/2πZ, on Aθ by C∗-algebra automorphisms

{αs}, s ∈ R2, defined by

αs(U
mV n) = eis.(m,n)UmV n.

The space of smooth elements for this action will be denoted by A∞
θ . It is a dense

subalgebra of Aθ which can be alternatively described as the algebra of elements in Aθ
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whose (noncommutative) Fourier expansion has rapidly decreasing coefficients:

A∞
θ =

 ∑
m,n∈Z

am,nU
mV n : am,n ∈ S(Z2)

 .

There is a normalized, faithful and positive, trace φ0 on Aθ whose restriction on smooth

elements is given by

φ0(
∑
m,n∈Z

am,nU
mV n) = a0,0.

The algebra A∞
θ is equipped with the derivations δ1, δ2 : A

∞
θ → A∞

θ , uniquely defined

by the relations

δ1(U) = U, δ1(V ) = 0, δ2(U) = 0, δ2(V ) = V.

We have δj(a
∗) = −δj(a)∗ for j = 1, 2 and all a ∈ A∞

θ . Moreover, the analogue of the

integration by parts formula in this setting is given by:

φ0(aδj(b)) = −φ0(δj(a)b), ∀a, b ∈ A∞
θ .

We apply the GNS construction to Aθ. The state φ0 defines an inner product

⟨a, b⟩ = φ0(b
∗a), a, b ∈ Aθ,

and a pre-Hilbert structure on Aθ. After completion we obtain a Hilbert space denoted

H0. The derivations δ1, δ2, as densely defined unbounded operators on H0, are formally

selfadjoint and have unique extensions to selfadjoint operators.

We introduce a complex structure associated with a complex number τ = τ1 +

iτ2, τ2 > 0, by defining

∂̄ = δ1 + τδ2, ∂̄
∗ = δ1 + τδ2.

Note that ∂̄ is an unbounded operator on H0 and ∂̄∗ is its formal adjoint. The

analogue of the space of anti-holomorphic 1-forms on the ordinary two torus is defined

to be

Ω0,1
θ =

{∑
a∂̄b , a, b ∈ A∞

θ

}
.
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Using the induced inner product from φ0, one can turn Ω0,1
θ into a Hilbert space which

we denote by H0,1 (see [4] for details).

4.3 The canonical trace and noncommutative residue

In this section we define an analogue of the canonical trace of Kontsevich and Vishik

[16] for the noncommutative torus. Let us first recall the algebra of pseudodifferential

symbols on the noncommutative torus [3, 7].

4.3.1 Pseudodifferential calculus on Aθ

Using operator valued symbols, one can define an algebra of pseudodifferential operators

on A∞
θ . We shall use the notation ∂α = ∂α1

∂ξ
α1
1

∂α2

∂ξ
α2
2

, and δα = δα1
1 δα2

2 , for a multi-index

α = (α1, α2).

Definition 4.1. For a real number m, a smooth map σ : R2 → A∞
θ is said to be a

symbol of order m, if for all non-negative integers i1, i2, j1, j2,

||δ(i1,i2)∂(j1,j2)σ(ξ)|| ⩽ c(1 + |ξ|)m−j1−j2 ,

where c is a constant, and if there exists a smooth map k : R2 → A∞
θ such that

lim
λ→∞

λ−mσ(λξ1, λξ2) = k(ξ1, ξ2).

The space of symbols of order m is denoted by Sm(Aθ).

Definition 4.2. To a symbol σ of order m, one can associate an operator on A∞
θ ,

denoted by Pσ, given by

Pσ(a) =

∫ ∫
e−is·ξσ(ξ)αs(a) ds dξ.

Here, dξ = (2π)−2dLξ where dLξ is the Lebesgue measure on R2. The operator Pσ is

said to be a pseudodifferential operator of order m.

For example, the differential operator
∑

j1+j2⩽m aj1,j2δ
(j1,j2) is associated with the

symbol
∑

j1+j2⩽m aj1,j2ξ
j1
1 ξ

j2
2 via the above formula.
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Two symbols σ, σ′ ∈ Sm(Aθ) are said to be equivalent if and only if σ−σ′ ∈ Sn(Aθ)
for all integers n. The equivalence of the symbols will be denoted by σ ∼ σ′.

Let P and Q be pseudodifferential operators with the symbols σ and σ′ respectively.

Then the adjoint P ∗ and the product PQ are pseudodifferential operators with the

following symbols

σ(P ∗) ∼
∑

ℓ=(ℓ1,ℓ2)⩾0

1

ℓ!
∂ℓδℓ(σ(ξ))∗,

σ(PQ) = σ(P ) ⋆ σ(Q) ∼
∑

ℓ=(ℓ1,ℓ2)⩾0

1

ℓ!
∂ℓ(σ(ξ))δℓ(σ′(ξ)).

Definition 4.3. A symbol σ ∈ Sm(Aθ) is called elliptic if σ(ξ) is invertible for ξ ̸= 0,

and for some c

||σ(ξ)−1|| ⩽ c(1 + |ξ|)−m,

for large enough |ξ|.

A smooth map σ : R2 → Aθ is called a classical symbol of order α ∈ C if for any N

and each 0 ⩽ j ⩽ N there exist σα−j : R2\{0} → Aθ positive homogeneous of degree

α− j, and a symbol σN ∈ SRe(α)−N−1(Aθ), such that

σ(ξ) =

N∑
j=0

χ(ξ)σα−j(ξ) + σN (ξ) ξ ∈ R2. (4.2)

Here χ is a smooth cut off function on R2 which is equal to zero on a small ball around the

origin, and is equal to one outside the unit ball. It can be shown that the homogeneous

terms in the expansion are uniquely determined by σ. We denote the set of classical

symbols of order α by Sαcl(Aθ) and the associated classical pseudodifferential operators

by Ψα
cl(Aθ).

The space of classical symbols Scl(Aθ) is equipped with a Fréchet topology induced

by the semi-norms

pα,β(σ) = supξ∈R2(1 + |ξ|)−m+|β|||δα∂βσ(ξ)||. (4.3)

The analogue of the Wodzicki residue for classical pseudodifferential operators on

the noncommutative torus is defined in [13].
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Definition 4.4. The Wodzicki residue of a classical pseudodifferential operator Pσ is

defined as

Res(Pσ) = φ0 (res(Pσ)) ,

where res(Pσ) :=
∫
|ξ|=1 σ−2(ξ)dξ.

It is evident from its definition that Wodzicki residue vanishes on differential opera-

tors and on non-integer order classical pseudodifferential operators.

4.3.2 The canonical trace

In what follows, we define the analogue of Kontsevich-Vishik trace [16] on non-integer

order pseudodifferential operators on the noncommutative torus. For an alternative

approach based on toroidal noncommutative symbols see [20]. For a thorough review of

the theory in the classical case we refer to [19, 22]. First we show the existence of the

so called cut-off integral for classical symbols.

Proposition 4.5. Let σ ∈ Sαcl(Aθ) and B(R) be the ball of radius R around the origin.

One has the following asymptotic expansion

∫
B(R)

σ(ξ)dξ ∼R→∞

∞∑
j=0,α−j+2̸=0

αj(σ)R
α−j+2 + β(σ) logR+ c(σ),

where β(σ) =
∫
|ξ|=1 σ−2(ξ)dξ and the constant term in the expansion, c(σ), is given by

∫
Rn

σN +
N∑
j=0

∫
B(1)

χ(ξ)σα−j(ξ)dξ −
N∑

j=0,α−j+2̸=0

1

α− j + 2

∫
|ξ|=1

σα−j(ω)dω. (4.4)

Here we have used the notation of (4.2).

Proof. First, we write σ(ξ) =
∑N

j=0 χ(ξ)σα−j(ξ) + σN (ξ) with large enough N , so that

σN is integrable. Then we have,

∫
B(R)

σ(ξ)dξ =

N∑
j=0

∫
B(R)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)

σN (ξ)dξ. (4.5)

For N > α+ 1, σN ∈ L1(R2,Aθ), so∫
B(R)

σN (ξ)dξ →
∫
R2

σN (ξ)dξ, R→∞.
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Now for each j ⩽ N we have∫
B(R)

χ(ξ)σα−j(ξ)dξ =

∫
B(1)

χ(ξ)σα−j(ξ)dξ +

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ.

Obviously
∫
B(1) χ(ξ)σα−j(ξ)dξ <∞ and by using polar coordinates ξ = rω, and homo-

geneity of σα−j , we have

∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ =

∫ R

1
rα−j+2−1dr

∫
|ξ|=1

σα−j(ξ)dξ. (4.6)

Note that the cut-off function is equal to one on the set R2\B(1). For the term with

α− j = −2 one has∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = logR

∫
|ξ|=1

σα−j(ξ)dξ.

The terms with α− j ̸= −2 will give us the following:∫
B(R)\B(1)

χ(ξ)σα−j(ξ)dξ = (4.7)

Rα−j+2

m− j + 2

∫
|ξ|=1

σα−j(ξ)dξ −
1

α− j + 2

∫
|ξ|=1

σα−j(ξ)dξ.

Adding all the constant terms in (4.5)-(4.7), we get the constant term given in (4.4).

Definition 4.6. The cut-off integral of a symbol σ ∈ Sαcl(Aθ) is defined to be the

constant term in the above asymptotic expansion, and we denote it by
∫
−σ(ξ)dξ.

Remark 4.7. Two remarks are in order here. First note that the cut-off integral of a

symbol is independent of the choice of N . Second, it is also independent of the choice

of the cut-off function χ.

We now give the definition of the canonical trace for classical pseudodifferential

operators on Aθ.

Definition 4.8. The canonical trace of a classical pseudodifferential operator P ∈
Ψα
cl(Aθ) of non-integral order α is defined as

TR(P ) := φ0

(∫
−σP (ξ)dξ

)
.
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In the following, we establish the relation between the TR-functional and the usual

trace on trace-class pseudodifferential operators. Note that any pseudodifferential op-

erator P of order less that −2, is a trace-class operator on H0 and its trace is given

by

Tr(P ) = φ0

(∫
R2

σP (ξ)dξ

)
.

On the other hand, for such operator the symbol is integrable and we have∫
−σP (ξ)dξ =

∫
R2

σP (ξ)dξ. (4.8)

Therefore, the TR-functional and operator trace coincide on classical pseudodifferential

operators of order less than −2.

Next, we show that the TR-functional is in fact an analytic continuation of the

operator trace and using this fact we can prove that it is actually a trace.

Definition 4.9. A family of symbols σ(z) ∈ Sα(z)cl (Aθ), parametrized by z ∈W ⊂ C, is
called a holomorphic family if

i) The map z 7→ α(z) is holomorphic.

ii) The map z 7→ σ(z) ∈ Sα(z)cl (Aθ) is a holomorphic map fromW to the Fréchet space

Scl(Anθ ).

iii) The map z 7→ σ(z)α(z)−j is holomorphic for any j, where

σ(z)(ξ) ∼
∑
j

χ(ξ)σ(z)α(z)−j(ξ) ∈ S
α(z)
cl (Aθ). (4.9)

iv) The bounds of the asymptotic expansion of σ(z) are locally uniform with respect

to z, i.e, for any N ⩾ 1 and compact subset K ⊂ W , there exists a constant

CN,K,α,β such that for all multi-indices α, β we have∣∣∣∣∣∣
∣∣∣∣∣∣δα∂β

σ(z)−∑
j<N

χσ(z)α(z)−j

 (ξ)

∣∣∣∣∣∣
∣∣∣∣∣∣ < CN,K,α,β |ξ|Re(α(z))−N−|β|.

A family {Pz} ∈ Ψcl(Aθ) is called holomorphic if Pz = Pσ(z) for a holomorphic family

of symbols {σ(z)}.
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The following Proposition is an analogue of a result of Kontsevich and Vishik[16],

for pseudodifferential calculus on noncommutative tori.

Proposition 4.10. Given a holomorphic family σ(z) ∈ Sα(z)cl (Aθ), z ∈W ⊂ C, the map

z 7→
∫
−σ(z)(ξ)dξ,

is meromorphic with at most simple poles located in

P = {z0 ∈W ; α(z0) ∈ Z ∩ [−2,+∞]} .

The residues at poles are given by

Resz=z0

∫
−σ(z)(ξ)dξ = − 1

α′(z0)

∫
|ξ|=1

σ(z0)−2dξ.

Proof. By definition, one can write σ(z) =
∑N

j=0 χ(ξ)σ(z)α(z)−i(ξ) + σ(z)N (ξ), and by

Proposition 4.5 we have,

∫
−σ(z)(ξ)dξ =

∫
R2

σ(z)N (ξ)dξ +

N∑
j=0

∫
B(1)

χ(ξ)σ(z)α(z)−j(ξ)

−
N∑
j=0

1

α(z) + 2− j

∫
|ξ|=1

σ(z)α(z)−j(ξ)dξ.

Now suppose α(z0) + 2 − j0 = 0. By holomorphicity of σ(z), we have α(z) − α(z0) =

α′(z0)(z − z0) + o(z − z0). Hence

Resz=z0

∫
−σ(z)(ξ)dξ = −1

α′(z0)

∫
|ξ|=1

σ(z0)−2(ξ)dξ.

Corollary 4.11. The functional TR is the analytic continuation of the ordinary trace

on trace-class pseudodifferential operators.

Proof. First observe that, by the above result, for a non-integer order holomorphic

family of symbols σ(z), the map z 7→
∫
−σ(z)(ξ)dξ is holomorphic. Hence, the map

σ 7→
∫
−σ(ξ)dξ is the unique analytic continuation of the map σ 7→

∫
R2 σ(ξ)dξ from

S<−2
cl (Aθ) to S /∈Zcl (Aθ). By (4.8) we have the result.
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Let Q ∈ Ψq
cl(Aθ) be a positive elliptic pseudodifferential operator of order q > 0. The

complex power of such an operator, Qzϕ, for Re(z) < 0 can be defined by the following

Cauchy integral formula.

Qzϕ =
i

2π

∫
Cϕ

λzϕ(Q− λ)−1dλ. (4.10)

Here λzϕ is the complex power with branch cut Lϕ = {reiϕ, r ⩾ 0} and Cϕ is a contour

around the spectrum of Q such that

Cϕ ∩ spec(Q)\{0} = ∅, Lϕ ∩ Cϕ = ∅,

Cϕ ∩ {spec(σ(Q)L(ξ)), ξ ̸= 0} = ∅.

In general an operator for which one can find a ray Lϕ with the above property, is

called an admissible operator with the spectral cut Lϕ. Positive elliptic operators are

admissible and we take the ray Lπ as the spectral cut, and in this case we drop the index

ϕ and write Qz.

To extend (4.10) to Re(z) > 0 we choose a positive integer such that Re(z) < k and

define

Qzϕ := QkQz−kϕ .

It can be proved that this definition is independent of the choice of k.

Corollary 4.12. Let A ∈ Ψα
cl(Aθ) be of order α ∈ Z and let Q be a positive elliptic

classical pseudodifferential operator of positive order q. We have

Resz=0TR(AQ
−z) =

1

q
Res(A).

Proof. For the holomorphic family σ(z) = σ(AQ−z), z = 0 is a pole for the map z 7→∫
−σ(z)(ξ)dξ whose residue is given by

Resz=0

(
z 7→

∫
−σ(z)(ξ)dξ

)
= − 1

α′(0)

∫
|ξ|=1

σ−2(0)dξ = −
1

α′(0)
res(A).

Taking trace on both sides gives the result.

Now we can prove the trace property of TR-functional.
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Proposition 4.13. We have TR(AB) = TR(BA) for any A,B ∈ Ψcl(Aθ), provided

that ord(A) + ord(B) /∈ Z.

Proof. Consider the families Az = AQz and Bz = BQz where Q is an injective positive

elliptic classical operator of order q > 0. For Re(z)≪ 0, the two families are trace class

and Tr(AzBz) = Tr(BzAz). By the uniqueness of the analytic continuation, we have

TR(AzBz) = TR(BzAz),

for those z for which 2qz + ord(A) + ord(B) ̸∈ Z. At z = 0, we obtain TR(AB) =

TR(BA).

4.3.3 Log-polyhomogeneous symbols

Proposition 4.10 can be extended and one can explicitly write down the Laurent ex-

pansion of the cut-off integral around each of the poles. The terms of the Laurent ex-

pansion involve residue densities of z-derivatives of the holomorphic family. In general,

z-derivatives of a classical holomorphic family of symbols is not classical anymore and

therefore we introduce log-polyhomogeneous symbols which include the z-derivatives of

the symbols of the holomorphic family σ(AQ−z).

Definition 4.14. A symbol σ is called a log-polyhomogeneous symbol if it has the

following form

σ(ξ) ∼
∑
j⩾0

∞∑
l=0

σα−j,l(ξ) log
l |ξ| |ξ| > 0, (4.11)

with σα−j,l positively homogeneous in ξ of degree α− j.

An important example of an operator with such a symbol is logQ where Q ∈ Ψq
cl(Aθ)

is a positive elliptic pseudodifferential operator of order q > 0. The logarithm of Q can

be defined by

logQ = Q
d

dz

∣∣∣∣
z=0

Qz−1 = Q
d

dz

∣∣∣∣
z=0

i

2π

∫
C
λz−1(Q− λ)−1dλ.

It is a pseudodifferential operator with symbol

σ(logQ) ∼ σ(Q) ⋆ σ
( d

dz

∣∣∣∣
z=0

Qz−1
)
, (4.12)
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where ⋆ denotes the products of the pseudodifferential symbols. Using symbol calculus

and homogeneity properties, we can show that (4.12) is a log-homogeneous symbol of

the form

σ(logQ)(ξ) = q log |ξ|I + σcl(logQ)(ξ),

where σcl(logQ) is a classical symbol of order zero. This symbol can be computed using

the homogeneous parts of the classical symbol σ(Qz) =
∑∞

j=0 b(z)qz−j(ξ) and it is given

by the following formula (see e.g. [19]).

σcl(logQ)(ξ) = (4.13)

∞∑
k=0

∑
i+j+|α|=k

1

α!
∂ασq−i(Q)δα

[
|ξ|−q−j d

dz

∣∣∣∣
z=0

b(z − 1)qz−q−j (ξ/|ξ|)
]
.

For an operator A with log-polyhomogeneous symbol as (4.11) we define

res(A) =

∫
|ξ|=1

σ−2,0(ξ)dξ.

By adapting the proof of Theorem 1.13 in [22] to the noncommutative case, we have

the following theorem which is written only for the families of the form σ(AQ−z) which

we will use in Section 4.5.

Proposition 4.15. Let A ∈ Ψα
cl(Aθ) and Q be a positive , in general an admissible,

elliptic pseudodifferential operator of positive order q. If α ∈ P then 0 is a possible

simple pole for the function z 7→ TR(AQ−z) with the following Laurent expansion around

zero.

TR(AQ−z) =
1

q
Res(A)

1

z

+ φ0

(∫
−σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(AΠQ)

+

K∑
k=1

(−1)k (z)
k

k!

×
(
φ0

(∫
−σ(A(logQ)k)(ξ)dξ − 1

q(k + 1)
res(A(logQ)k+1)

)
− Tr(A(logQ)kΠQ)

)
+ o(zK).

Where ΠQ is the projection on the kernel of Q.
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For operators A and Q as in the previous Proposition, we define the generalized zeta

function by

ζ(A,Q, z) = TR(AQ−z). (4.14)

From Proposition 4.10, it follows that ζ(A,Q, z) is meromorphic function with at most

simple poles. Moreover, by Corollary 4.11, it is obvious that ζ(A,Q, z) is the analytic

continuation of the zeta function Tr(AQ−z).

Remark 4.16. If A is a differential operator, the zeta function (4.14) is regular at z = 0

with the value equal to

φ0

(∫
−σ(A)(ξ)dξ − 1

q
res(A logQ)

)
− Tr(AΠQ).

4.4 Cauchy-Riemann operators on noncommutative tori

In [23], Quillen studies the geometry of the determinant line bundle on the space of all

Cauchy-Riemann operators on a smooth vector bundle on a closed Riemann surface.

To investigate the same notion on noncommutative tori, we first briefly recall some

basic facts in the classical case on how Cauchy-Riemann operators are related to Dirac

operators and spectral triples. Then by analogy we define our Cauchy-Riemann operator

on Aθ, and consider the spectral triples defined by them.

Let M be a compact complex manifold and V be a smooth complex vector bundle

on M . Let Ωp,q(M,V ) denote the space of (p, q) forms on M with coefficients in V . A

∂̄-flat connection on V is a C-linear map D : Ω0,0(M,V ) → Ω0,1(M,V ), such that for

any f ∈ C∞(M) and u ∈ Ω0,0(M,V ),

D(fu) = (∂̄f)⊗ u+ fDu, (4.15)

and D2 = 0. Here to define D2, note that any ∂̄-connection as above has a unique

extension to an operator D : Ωp,q(M,V )→ Ωp,q+1(M,V ), defined by

D(α⊗ β) = ∂̄α⊗ u+ (−1)p+qα ∧Du, α ∈ Ωp,q(M), u ∈ C∞(V ).

We refer to ∂̄-flat connections as Cauchy-Riemann operators. A holomorphic vector

bundle V has a canonical Cauchy-Riemann operator ∂̄V : Ω0(M,V ) → Ω0,1(M,V ),

whose extension to Ω0,∗(M,V ) forms the Dolbeault complex of M with coefficients in
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V . In fact there is a one-one correspondence between Cauchy-Riemann operators on V

up to (gauge) equivalence, and holomorphic structures on V . We denote by A the set

of all Cauchy-Riemann operators on V .

Any holomorphic structure on a Hermitian vector bundle V determines a unique

Hermitian connection, called the Chern connection, whose projection on (0, 1)-forms,

∇0,1(M,V ), is the Cauchy-Riemann operator coming from the holomorphic structure.

Now, if M is a Kähler manifold, the tensor product of the Levi-Civita connection for

M with the Chern connection on V defines a Clifford connection on the Clifford module

(Λ0,+⊕Λ0,−)⊗ V and the operator D0 =
√
2(∂̄V + ∂̄∗V ) is the associated Dirac operator

(see e.g. [14]). Any other Dirac operator on the Clifford module (Λ0,+ ⊕Λ0,−)⊗ V is of

the form D0 + A where A is the connection one form of a Hermitian connection. This

connection need not be a Chern connection. However, on a Riemann surface (with a

Riemannian metric compatible with its complex structure) any Hermitian connection on

a smooth Hermitian vector bundle is the Chern connection of a holomorphic structure

on V . Therefore, the positive part of any Dirac operator on (Λ0,0 ⊕ Λ0,1) ⊗ V is a

Cauchy-Riemann operator, and this gives a one to one correspondence between all Dirac

operators and the set of all Cauchy-Riemann operators.

Next we define the analogue of Cauchy-Riemann operators for the noncommutative

torus. First, following [7, 10], we fix a complex structure on Aθ by a complex number τ

in the upper half plane and construct the spectral triple

(Aθ,H0 ⊕H0,1, D0 =

(
0 ∂̄∗

∂̄ 0

)
), (4.16)

where ∂̄ : Aθ → Aθ is given by ∂̄ = δ1 + τδ2. The Hilbert space H0 is obtained by GNS

construction from Aθ using the trace φ0 and ∂̄∗ is the adjoint of the operator ∂̄.

As in the classical case, we define our Cauchy-Riemann operators on Aθ as the

positive part of twisted Dirac operators. All such operators define spectral triples of the

form

(Aθ,H0 ⊕H0,1, DA =

(
0 ∂̄∗ + α∗

∂̄ + α 0

)
),

where α ∈ Aθ is the positive part of a selfadjoint element

A =

(
0 α∗

α 0

)
∈ Ω1

D0
(Aθ).
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We recall that Ω1
D0

(Aθ) is the space of quantized one forms consisting of the elements∑
ai[D0, bi] where ai, bi ∈ Aθ [4]. Note that the in this case, the space A of Cauchy-

Riemann operators is the space of (0, 1)-forms on Aθ.

We should mention that in the noncommutative case, in the work of Chakraborty and

Mathai [2] a general family of spectral triples is considered and, under suitable regularity

conditions, a determinant line bundle is defined for such families. The curvature of the

determinant line bundle however is not computed and that is the main object of study

in the present paper, as well as in [23].

4.5 The curvature of the determinant line bundle for Aθ

For any α ∈ A, the Cauchy-Riemann operator

∂̄α = ∂̄ + α : H0 → H0,1

is a Fredholm operator. We pull back the determinant line bundle DET on the space

of Fredholm operators Fred(H0,H0,1), to get a line bundle L on A. Following Quillen

[23], we define a Hermitian metric on L and compute its curvature in this section. Let

us define a metric on the fiber

Lα = Λmax(ker ∂̄α)
∗ ⊗ Λmax(ker ∂̄∗α).

as the product of the induced metrics on Λmax(ker ∂̄α)
∗, Λmax(ker ∂̄∗α), with the zeta

regularized determinant e−ζ
′
∆α

(0). Here we define the Laplacian as ∆α = ∂̄∗α∂̄α : H0 →
H0, and its zeta function by

ζ(z) = TR(∆−z
α ).

It is a meromorphic function and by Remark 4.16 it is regular at z = 0 . Similar proof

as in [23] shows that this defines a smooth Hermitian metric on L.

On the open set of invertible operators each fiber of L is canonically isomorphic to

C and the nonzero holomorphic section σ = 1 gives a trivialization. Also, according to

the definition of the Hermitian metric, the norm of this section is given by

∥σ∥2 = e−ζ
′
∆α

(0). (4.17)
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4.5.1 Variations of LogDet and curvature form

We begin by explaining the motivation behind the computations of Quillen in [23].

Recall that a holomorphic line bundle equipped with a Hermitian inner product has

a canonical connection compatible with the two structures. This is also known as the

Chern connection. The curvature form of this connection is computed by ∂̄∂ log ∥σ∥2,
where σ is any non-zero local holomorphic section.

In our case we will proceed by analogy and compute the second variation ∂̄∂ log ∥σ∥2

on the open set of invertible index zero Cauchy-Riemann operators. Let us consider a

holomorphic family of invertible index zero Cauchy-Riemann operators Dw = ∂̄ + αw,

where αw depends holomorphically on the complex variable w and compute

δw̄δwζ
′
∆(0).

One has the following first variational formula,

δwζ(z) = δwTR(∆
−z) = TR(δw∆

−z) = −zTR(δw∆∆−z−1),

where in the second equality we were able to change the order of δw and TR because of

the uniformity condition in the definition of holomorphic families (cf. [21]).

Note that, although TR(∆−z) is regular at z = 0, TR(δw∆∆−z−1) might have a pole

at z = 0 since δw∆∆−z−1|z=0 = δw∆∆−1 is not a differential operator any more and

may have non-zero residue. Around z = 0 one has the following Laurent expansion:

−zTR(δw∆∆−z−1) = −z(a−1

z
+ a0 + a1z + · · · ).

Hence,

δwζ(z)|z=0 = −a−1,
d

dz
δwζ(z)

∣∣∣∣
z=0

= −a0.

Using Proposition 4.15 we have

δwζ
′(0) =

d

dz
δwζ(z)

∣∣∣∣
z=0

= −φ0

(∫
−σ(δw∆∆−1)(ξ)dξ − 1

2
resx(δw∆∆−1 log∆)

)
.

To compute the right hand side of the above equality, we need to note that since Dw

depends holomorphically on w, δwD
∗ = 0 and hence

δw∆ = δwD
∗D +D∗δwD = D∗δwD.
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Since δwD is a zero order differential operator, we have

δwζ
′(0) = −φ0

(∫
−σ(D∗δwD∆−1)(ξ)dξ − 1

2
res(D∗δwD∆−1 log∆)

)
= −φ0

(∫
−σ(δwD∆−1D∗)(ξ)dξ − 1

2
res(δwD log∆∆−1D∗)

)
= −φ0

(
δwD

(∫
−σ(D−1)(ξ)dξ − 1

2
res(log∆D−1)

))
= −φ0 (δwDJ) ,

where

J =

∫
−σ(D−1)(ξ)dξ − 1

2
res(log(∆)D−1).

The reader can compare this to the term J in Quillen’s computations [23].

Now we compute the second variation δw̄δwζ
′(0). Since Dw is holomorphic we have

δw̄δwζ
′(0) = −φ0 (δwDδw̄J) .

Next we compute the variation δw̄J . Note that since Dw is invertible, D−1
w is also

holomorphic and hence δw̄
∫
−σ(D−1)(ξ)dξ = 0. Therefore

δw̄J = δw̄

(∫
−σ(D−1)(ξ)dξ − 1

2
res(log∆D−1)

)
= −1

2
δw̄res(log∆D−1).

Thus, we have shown that

Lemma 4.17. For the holomorphic family of Cauchy-Riemann operators Dw, the second

variation of ζ ′(0) reads:

δw̄δwζ
′(0) =

1

2
φ0

(
δwDδw̄res(log∆D−1)

)
.

Our next goal is to compute δw̄res(log∆D−1). This combined with the above lemma

shows that the curvature form of the determinant line bundle equals the Kähler form on

the space of connections.
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Lemma 4.18. With above definitions and notations, we have

σ−2,0(log∆D−1) =
(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2

(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)(ξ1 + τξ2)

− log

(
ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22

|ξ|2

)
α

ξ1 + τξ2
,

and

δw̄res(log(∆)D−1) =
1

2πℑ(τ)
(δwD)∗.

Proof. By writing down the homogeneous terms in the expansion of σ•,0(log∆) and

σ(D−1) and using the product formula of the symbols we see that

σ−2,0(log∆D
−1) ∼ σ−1,0(log∆)σ−1(D

−1) + σ0,0(log∆)σ−2(D
−1).

Starting with the symbol of ∆, we have

σ(∆) = ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22 + (α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2 + ∂̄∗(α).

Then, the homogeneous parts of σ((λ − ∆)−1) =
∑

j b−2−j is given by the following

recursive formula

b−2 = (λ− σ2(∆))−1,

b−2−j = −b−2

∑
k+l+|γ|=j, l<j

∂γσ2−k(∆)δγb−2−l/γ!,

which gives us

b−2 =
1

λ− (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)
,

and

b−3 =
1

(λ− (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22))2
((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2) .

Also, ∆z is a classical operator defined by

∆z =
1

2πi

∫
C
λz(λ−∆)−1dλ,
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with the homogeneous parts of the symbol given by

b(z)2z−j := σ2z−j(∆
z) =

1

2πi

∫
C
λzb−2−jdλ.

Hence we have

b(z)2z =
1

2πi

∫
C
λz

1

λ− (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)
dλ

= (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)z

b(z)2z−1 =
1

2πi

∫
C
λz

((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2)

(λ− (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22))2
dλ

= z(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22))z−1 ((α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2) .

Using (4.13) and what we have computed up to here, it is clear that

σ0,0(log∆)(ξ) = σ2(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

b(z − 1)2z−2 (ξ/|ξ|)

= σ2(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

((ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)/|ξ|2)z−1

= log((ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)/|ξ|2).
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Note that the above term is homogeneous of order zero in ξ.

σ−1,0(log∆)(ξ)

=
∑

i+j+|α|=1

1

α!
∂ασ2−i(∆)δα|ξ|−2−j d

dz

∣∣∣∣
z=0

b(z − 1)2z−2−j (ξ/|ξ|)

= σ2(∆)|ξ|−3 d

dz

∣∣∣∣
z=0

b(z − 1)2z−3 (ξ/|ξ|)

+ σ1(∆)|ξ|−2 d

dz

∣∣∣∣
z=0

b(z − 1)2z−2 (ξ/|ξ|)

=
1− log(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)/|ξ|2)

(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)
[(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

+
log(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)/|ξ|2)

ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22
[(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

= (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1 [(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2] .

Next we compute the symbol of D−1. The symbol of D reads

σ(D) = ξ1 + τξ2 + α.

We need to compute the homogeneous parts of order -1 and -2 ofD−1. By using recursive

formula for the symbol of the inverse we get:

σ−1(D
−1) = σ1(D)−1 = (ξ1 + τξ2)

−1

σ−2(D
−1) = −σ−1(D

−1)
∑

k+|γ|=1

∂γσ1−k(D)δγσ−1(D
−1)/γ!

= −σ−1(D
−1)2σ0(D)

= −(ξ1 + τξ2)
−2α.
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Finally, we have

σ−2,0(log∆D−1) = σ−1,0(log∆)σ−1(D
−1) + σ0,0(log∆)σ−2(D

−1)

= (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1(ξ1 + τξ2)
−1 [(α+ α∗)ξ1 + (τ̄α+ τα∗)ξ2]

− log((ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)/|ξ|2)(ξ1 + τξ2)
−2α.

Therefore, we compute the variation:

δw̄σ−2,0(log∆D−1) = (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1 [(δw̄α
∗)ξ1 + (τδw̄α

∗)ξ2] (ξ1 + τξ2)
−1

= (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1(δw̄α
∗)

= (ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1(δwD)∗. (4.18)

In order to compute the variation of the residue density, we need to integrate (4.18) with

respect to ξ variable:

δw̄res(log(∆)D−1) =

∫
|ξ|=1

(ξ21 + 2Re(τ)ξ1ξ2 + |τ |2ξ22)−1(δwD)∗dξ =
1

2πℑ(τ)
(δwD)∗.

Note that we have used the normalized Lebesgue measure in the last integral (see (4.2)).

We record the main result of this paper in the following theorem. It computes the

curvature of the determinant line bundle in terms of the natural Kähler form on the

space of connections.

Theorem 4.19. The curvature of the determinant line bundle for the noncommutative

two torus is given by

δw̄δwζ
′(0) =

1

4πℑ(τ)
φ0 (δwD(δwD)∗) . (4.19)

Remark 4.20. In order to recover the classical result of Quillen for θ = 0, we have to

take into account the change of the volume form due to a change of the metric. This

means we have to multiply the above result by ℑ(τ).
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