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ABSTRACT 

The purpose of this investigation was to determine if ten weeks of aerobic exercise training 

could increase hepatic glycogen storage in rats with Type 1 Diabetes Mellitus (T1DM) and whether 

elevated hepatic glycogen content is associated with alterations in glycogenic proteins and insulin 

signaling.  Rats were divided into control-sedentary, control-exercised, T1DM-sedentary and T1DM-

exercised groups.  Animals from each group underwent a euglycemic-hyperinsulinemic clamp at the 

conclusion of the study.  Exercise training consisted of treadmill running at 27m/min, 6% incline for 

1hr, five days/week for ten weeks.  T1DM rats had lower liver glycogen concentrations than control 

rats and glycogen was not increased with training.  GS, GK and PEPCK protein contents were also 

increased in the T1DM groups.  Insulin-clamp stimulated GSK phosphorylation was not different 

between treatments.  These findings indicate that aerobic exercise training does not increase liver 

glycogen content in T1DM rats despite increases in glycogenic protein content and normal insulin 

signaling. 
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CHAPTER 1 

1.1 Introduction 

Type 1 diabetes mellitus (T1DM) is a disease associated with the autoimmune-mediated 

destruction of the insulin secreting cells of the endocrine pancreas, the islet β cells, which 

prevents the natural secretion of insulin in response to elevated blood glucose levels. As the 

primary role of insulin is to initiate glucose uptake in peripheral tissues, patients suffer from 

chronic hyperglycemia.  This deficit in glucose metabolism manifests a host of diabetes-related 

complications including cardiovascular disease, neuropathy, nephropathy, retinopathy and insulin 

resistance 
1,2

. Furthermore, these complications worsen as the patient progresses through life, 

such that the life expectancy of a patient with T1DM is dramatically reduced from 4 to 19 years 

depending on age at diagnosis and treatment 
3,4

.  Similar to the prevalence of type 2 diabetes 

mellitus (T2DM), epidemiological data suggests that T1DM onset is increasing worldwide and in 

both low (low incidence of disease) and high (high incidence of disease) risk populations 
5
. 

To lower the risk of complications, T1DM patients are required to consistently monitor 

blood glucose levels and adjust synthetic insulin injections to maintain their blood glucose to near 

normalized levels.  This modernized insulin therapy regime consists of multiple daily injections 

(referred to as intensive insulin therapy), which is in stark contrast to more conventional insulin 

therapy regimes that typically consist of a daily single dose of insulin 
1,6

.  The Diabetes Control 

and Complications Trial, a large multi-center and long term study of T1DM pathology, found that 

this intensive insulin therapy produced lower blood glucose and glycosylated hemoglobin 

(HBA1C) over time 
1
.  These changes were in concert with reductions in both retinopathy and 

neuropathy and improved the low-density lipoprotein profile of patients (an indicator for 

cardiovascular disease risk) 
1
.  This type of insulin treatment strategy is not without its 
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challenges, including the incidence of severe hypoglycemia onset being increased 3-fold by 

intensive treatment versus more conventional insulin therapy 
1,6

.   

In addition to insulin supplementation, regular exercise is often advised as it has been 

shown to help counteract many of the complications associated with T1DM.  For example, 

regular exercise has been shown to lower blood glucose concentrations and triglycerides, improve 

bone health, decrease cardiovascular risk and increase insulin sensitivity, as well as increase lean 

muscle and bone mass and decrease fat mass 
7–9

.  Additionally, improved quality of life and sense 

of well-being have also been reported in patients with T1DM following an exercise intervention 

10
.  Despite these known benefits, many patients with T1DM refrain from regular exercise due to 

fear of experiencing severe hypoglycemia 
10,11

.  The combination of insulin therapy and regular 

exercise has been shown to improve health markers, but potentiate the risk of hypoglycemia onset 

due to the potentiating effects of both factors on glucose uptake 
12

.   As such, patients with T1DM 

struggle to find a delicate and individualized balance between the dosage of insulin and the 

amount of exercise required to achieve the health benefits associated with exercise and avoid 

hypoglycemic episodes.  

Patients with T1DM suffer from significant deficits in glucose metabolism, including 

uptake, storage and release 
13–17

.  Following exercise in both healthy and diabetic, glucose uptake 

into peripheral tissues such as skeletal muscle increases dramatically and glucose production, 

from hepatic stores or simple ingestion, must increase accordingly.  However, hepatic glycogen 

stores are known to be decreased in T1DM, impairing the liver’s ability to naturally release 

glucose 
17,18

.  Decreased production, combined with increased glucose use and improved insulin 

sensitivity following exercise make it extremely difficult to maintain glucose homeostasis, 

leading the T1DM patient to a severe risk of hypoglycemia onset 
8
.  The mechanisms underlying 

lowered levels of hepatic glycogen are not well understood; understanding these mechanisms may 

provide insight into how we can mitigate post exercise hypoglycemia in T1DM. 
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1.2 Liver Physiology 

The liver is a complex organ which is involved in several processes essential for survival.  

Located in the upper right section of the abdominal cavity, the liver can be structurally divided 

into four lobes, the left, right, caudate and quadrate lobes (located under the left and right lobes 

respectively).  The liver tissues consist of two primary cell types, parenchymal cells known as 

hepatocytes, and non-parenchymal cells including sinusoidal epithelial cells, kupfer cells and 

stellate cells.  The blood supply to the liver comes from two sources, the hepatic artery which 

supplies oxygenated blood directly from the aorta and the hepatic portal vein which brings 

deoxygenated blood from the gastrointestinal tract, as well as the spleen and other organs 
19

.  The 

liver is able to obtain about half of its required oxygen from the portal vein, while the other half 

comes from the hepatic artery 
19

.  Arterial and venous blood mixes within hepatic sinusoids prior 

to entering the hepatic vein for transport out of the liver.  Functionally, the liver can be 

subdivided into small clusters, or acini, which consist of a central arteriole surrounded by a group 

of hepatocytes, which, in turn, are surrounded by venules which carry blood away from the liver 

towards the vena cava 
19

.  This arrangement creates a strong oxygen gradient (highest centrally, 

decreasing distally), resulting in additional gradients in the activities of various enzymes.  For 

example, citric acid cycle and electron transport enzyme activities are highest centrally within 

each acinus, where there is an abundance of oxygen, whereas glycolytic, non-oxygen requiring 

enzymes, are higher in the periphery 
19

 

The liver is highly innervated with both afferent and efferent sympathetic (SNS), 

parasympathetic (PNS) and sensory neurons, allowing constant communication between the liver 

and the brain 
19

.  Afferent fibers are able to communicate directly with the central nervous 

system, relaying information on blood temperature and pressure, as well as ion and nutrient 

content (carbohydrate, lipids, proteins, and circulation hormones and growth factor levels)  
20-21

.  

Efferent nervous fibres allow central control over a multitude of functions for which the liver is 
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responsible.  Specifically applicable, the SNS is known to decrease liver glycogen content 

through adrenergic-mediated  release of glucose
22

.  SNS denervation has also been shown to 

decrease the rate of fatty acid oxidation via carnitine-palmitoyltransferase, which increases 

circulating triglycerides and very low density lipoporteins (VLDL) as well as decreasing the 

production of ketone bodies 
23–25

.  Conversely, stimulation of the PNS has been shown to increase 

rates of hepatic glycogen synthesis and increase production of a hepatic insulin sensitizing 

substance (HISS), a yet unidentified molecule known to increase glucose uptake in skeletal 

muscle 
26–28

.  In addition to these metabolic influences, the SNS is known to decrease blood flow 

to the liver via the hepatic artery without changing the overall distribution of blood within the 

liver while the PNS has little impact 
19

.  

1.2.1 Liver Functions 

Liver functions can be divided into three main categories: nutrient processing, 

biosynthesis and protection/filtering.   

Nutrient Processing:  

As the portal vein brings blood directly from the gastrointestinal tract to the liver, it is 

exposed to all the nutrients absorbed following meal ingestion.  One of the fundamental roles of 

the liver is to maintain a normalized blood glucose concentration (~4 mM) 
29

.  Carbohydrates, 

primarily glucose and fructose, are taken up into hepatocytes where they have several potential 

fates: direct metabolism into usable energy for the liver itself, storage as glycogen, or entered into 

the pentose phosphate cycle and converted either into NADPH or ribose-5 phosphate 
30

. Meals 

containing excess amounts of carbohydrate stimulate lipogenesis resulting in their conversion to 

both glycerol and fatty acids for storage
30

.  The liver also functions in de novo glucose production 

via gluconeogenesis 
29,30

.  This process uses non-carbohydrate precursors such as lactate and 

certain amino acids to generate glucose 
30

.  This is done by reversing, with a few additional 
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enzymatic reactions, the process of glycolysis.  During states of nutrient deprivation such as 

fasting or in various disease states such as diabetes where glucose homeostasis is disrupted, this 

process is critical to maintaining circulating blood glucose levels. 

Fatty acids are also absorbed directly from the diet and are metabolized into usable 

energy for the hepatocytes themselves, or, can be packaged for export 
31

.  Individual fatty acids 

combine to form triglycerides which are subsequently organized into lipoproteins (be it high, low 

or very low density (HDL, LDL, VLDL, respectively)) for export or stored in hepatic vesicles for 

future use 
32

.  During periods of carbohydrate shortage, use of fatty acids increases greatly and as 

a result, the production of ketone bodies, acetone, acetoacetate and 3-hydroxybutyrate, increase as 

well 
33

.  The liver is also responsible for the processing of cholesterol, necessary for the 

production of many important molecules (steroid hormones including cortisol, testosterone and 

estradiol, lipoproteins, as well as critical components in all cellular membranes). Cholesterol 

molecules can be used within hepatocytes for the production of bile acids or packaged into 

lipoproteins for export to peripheral tissues.   

The liver also processes excess amino acids, resulting from either dietary sources or 

normal protein turnover.  These amino acids are degraded in the urea cycle for excretion.  Non-

essential amino acids can also be synthesized within the liver, provided the necessary essential 

amino acids are present 
34

.  Finally, the liver is also a site for the storage of excess vitamins and 

minerals including vitamins A, D, B12, K and iron 
35–38

.  

Biosynthesis: 

A second important function of the liver is the biosynthesis of compounds necessary for 

normal body function.  In addition to glucose, fat and amino acid synthesis, albumin, a major 

component of blood plasma, is produced in the liver and binds proteins, fats, hormones and many 

other constituents, within the blood to maintain the osmotic pressure
39

.  Coagulation factors such 
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as fibrinogen and prothrombin are also synthesized in the liver, as well as binding proteins, 

apoferritin and transferrin, which are important for the transport of iron in the blood 
40,41

.  

Furthermore, bile salts, compounds necessary for the digestion and absorption of fats from the 

digestive tract, are also produced and secreted from the liver 
42

. 

Protection:  

The last major function of the liver is protection and clearance of potentially harmful 

substances from the body.  The gastrointestinal tract, particularly the colon, contains bacteria 

which is a potential risk to enter circulation.  Kupfer cells within the hepatic sinusoids are potent 

macrophages which scavenge and can clear bacterium from hepatic sinusoids 
19

.  Similarly, the 

liver is able to clear toxins, hormones, and other harmful substances from the blood through 

oxidative reactions that disrupt foreign substances without damaging its own proteins and DNA 

34,43
.  For instance, the liver is heavily involved in the clearance of hormones such as insulin and 

glucagon and plays an important role in the metabolism of the drugs used to treat any number of 

conditions 
34

. 

1.3  Glycogen Metabolism 

There are two primary stores of carbohydrate in the body, liver and muscle glycogen.  

While small amounts have been shown to exist in other areas (neurons, the brain etc.) these 

quantities make up a very small proportion of total energy storage 
44

.  Glycogen is a branched 

polymer of glucose residues and functions to release  glucose into circulation when it is 

unavailable from the diet (i.e. during fasting) 
44

.   Muscle glycogen is stored mainly for fueling 

muscle contraction, while liver glycogen stores serve to maintain blood glucose homeostasis 
44–46

.  

Glucose release from the liver is critical in times of increased glucose uptake into peripheral 

tissues, such as skeletal muscle, during exercise 
45,46

. The maintenance of normalized 
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concentrations of glucose in the blood is critical for organs such as the brain which rely heavily 

on a steady flow of glucose in the blood to function 
34,44

.   

Glycogen synthesis (shown in figure 1.1) is initiated by a single protein, glycogenin, 

which is able to self-glycosylate, creating an eight residue chain 
47

.  This glucosyl chain, in turn, 

is extended by forming alpha-1,4 glycosidic bonds to the existing end of the chain 
47

.  Once 

thirteen residues are linked linearly, a branch is then created by removing the final four residues 

and reattaching them via an alpha-1,6 linkage 
44,47

.  Each thirteen-residue chain will have two 

alpha-1,6 branch points, creating a densely packed granule.  Successive “tiers” are created in this 

fashion until the upper limit of twelve tiers, has been reached 
44

.  A full twelve-tier glycogen 

molecule would contain approximately fifty-five thousand residues; although, analysis of particle 

size suggests the average is closer to seven tiers 
46

. The glycogen granule is not solely composed 

of carbohydrate.  Known as a glycosome, many proteins involved in the synthesis and 

degradation of glycogen, as well as an abundance of downstream regulators, also participate in  

binding to the granule 
48

.  While the specific function is unknown, it is believed the function of 

the glycosome is to provide a scaffold to bring many of the necessary enzymes into close 

association with each other to allow coordinated and timely control of glycogen metabolism 
44,48

. 

The glycogen concentration is controlled by the relative activities of two enzymes, 

glycogen synthase (GS) and glycogen phosphorylase (GP). The synthesis of glycogen is mediated 

by GS which functions to add glucose units to a glycogen chain, while GP is responsible for the 

breakdown of the glycogen molecule through the removal of glucose units  
44

.  GS is expressed in 

two isoforms, a liver-specific form and a more widely expressed, muscle isoform 
44,49,50

 and can 

synthesize glycogen through a  direct or indirect pathway 
44,51

.  The direct pathway involves the 

uptake of glucose into  either the liver or skeletal muscle and its subsequent phosphorylation into 

glucose-6-phosphate (G6P) 
44,52

.  G6P is then converted into glucose-1-phosphate (G1P), which is 

subsequently converted to uridine diphosphate-glucose (UDPG) by UDP-glucose-
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pyrophosphorylase.  UDPG molecules are assembled into a glycogen chain by GS, adding 

residues by the formation of α1-4 bonds, while an additional enzyme, the branching enzyme, 

removes existing 1-4 bonds and creates the α1-6 branch points.  The indirect pathway exists 

primarily in the liver, but can also occur in the kidneys, involving the gluconeogenic creation of 

G6P from three-carbon precursors including lactate, glycerol and alanine 
51,53

.  This pathway is 

less efficient than direct synthesis but allows glycogen to be synthesized from non-carbohydrate 

sources 
51,53

.   
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Figure 1.1  Steps in Glycogen Synthesis. 
Abbreviations: UDP, uridine diphosphate; UDPG, uridine diphosphate-glucose; UDPGPP UDPG-
pyrophosphorylase; PGM, phsphoglucomutase; GK, glucokinase; PEPCK, phosphoenolpyruvate 
carboxykinase; Lac, lactate, Pyr, pyruvate; Ala, alanine 
Adapted from: 
Bollen, M., Keppens, S. & Stalmans, W. Specific features of glycogen metabolism in the liver. 
Biochem J 336, 19–31 (1998). 
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1.4 Glucose Processing 

Glucose uptake into the liver is mainly accomplished through the glucose transporter 2 

(GLUT2) protein 
54

.  Although GLUT2 is located in several tissues, the highest levels of this 

protein are expressed in the liver hepatocytes and  pancreatic β-cells 
54,55

.  It is constitutive to the 

membrane and allows glucose uptake via facilitated, yet passive, transport.  Although GLUT2 has 

a high capacity for glucose uptake, the affinity for the glucose molecule is low by comparison to 

other GLUT isoforms 
54,56,57

.  This low affinity for glucose is favourable during conditions of 

lowered blood glucose concentrations, preventing excessive glucose uptake and subsequent 

hypoglycemia onset.  Glucose uptake and subsequent metabolism is critical in the β-cells 

mechanism for insulin secretion, reinforcing the importance of a selective transporter 
55,58

.   

Upon entering the hepatocyte, glucose is phosphorylated into G6P by a liver-specific 

hexokinase, glucokinase (GK).  GK differs from other hexokinase isoforms in that it is not 

allosterically inhibited by its own product, G6P; as well as having a higher Michaelis constant 

(Km) for glucose 
49,51

.  Additionally, GK is also controlled through interaction with its own 

regulatory protein, glucokinase regulatory protein (GKRP), which in combination with glycolytic 

metabolite fructose-6-phosphate (F6P), acts to bind and inhibit GK activity 
59,60

.  More elaborate 

control mechanisms are also important for modulating GK activity as there is evidence of this 

step being rate limiting in glycogen synthesis 
61

.  This is important in the liver because it is the 

site of not only glucose storage, but in times of excess, conversion of glucose into fatty acids 
62

.  

As glucose uptake is dependent upon the concentration gradient between the hepatocyte and the 

blood, a high rate of glucose phosphorylation to G6P is critical to maintain a low concentration of 

free glucose within hepatocytes, and subsequent glucose uptake.  However, when glycogen stores 

are full, high glycolytic flux (and subsequently, high F6P) can feedback to GK to slow glucose 

uptake and prevent conversion to fat 
62–64

. 
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There are two primary fates for G6P, glycolysis and glycogen synthesis.  Glycolysis 

utilizes G6P, and, through a series of reactions, converts it into two molecules of pyruvate, two 

ATP molecules and four reducing equivalents in the form of NADH.  Pyruvate, depending on the 

environment, can be converted to lactate when the overall energy state of the cell is low (a 

shortage of NAD
+
) or into acetyl-coenzyme A (acetyl-CoA), which in turn is metabolized in the 

citric acid cycle to produce additional NADH for electron transport and oxidative 

phosphorylation.  If directed towards glycogen synthesis, G6P is converted to G1P and then in the 

glycogenic substrate, UDPG, by phosphoglucomutase and UDPG pyrophosphorylase, 

respectively 
51

. 

When conditions favour glycogen synthesis, such as following a carbohydrate-containing 

meal, glucose units will be funneled towards storage.  This requires the combined control of two 

regulatory enzymes, glycogen synthase (GS) and glycogen phosphorylase (GP).  Activation of 

GS is mediated by both allosteric and covalent mechanisms 
44,49

.  Glucose and glucose 

metabolites account for the allosteric modulation while insulin signalling is the main covalent 

effector 
49

.  GS is a homodimer and exists in two states, an active a form and an inactive b form.  

Phosphorylation occurs through the activity of a variety of protein kinases including protein 

kinase A (PKA), AKT (also known as protein kinase B (PKB)), glycogen synthase kinase 3 

(GSK3), calmodulin dependent protein kinase (CamK), protein kinase C (PKC) and adenosine 

monophosphate dependent protein kinase (AMPK) among others 
49,65,66

.  Phosphorylation of any 

of GS’ six possible sites acts to convert the a form to the b form, decreasing its maximal rate 

(Vmax) of catalysis 
49

.  This illustrates a key difference between the muscle and liver isoforms of 

GS as phosphorylation of the muscle isoform decreases its affinity towards its substrate UDPG, 

not the maximal rate of catalysis as in the liver isoform 
49

.  Additionally, G6P is a potent activator 

of the b form of GS, such that maximal activity of G6P through the exposure of the enzyme to 

supraphysiological conditions results in equivalent rates of glycogen synthesis as seen with the 
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active a form of the enzyme 
49

.  In addition, intracellular localization is also different between the 

muscle and liver isoforms of GS 
67

.  GS translocates from a diffuse distribution in the cytosol 

towards the cell periphery in hepatocytes; whereas in the muscle, it moves from the nucleus into 

the cytosol to synthesize glycogen
67–69

.   

1.5 Modulators of Glycogen Synthase Activity 

1.5.1 Glucose Induced Glycogen Synthesis 

The first mechanism by which elevated levels of intracellular glucose can increase the 

rate of glycogen synthesis is through interaction with GP (see figure 1.2).  The active form of GP 

acts as a glucose sensor, binding to free glucose which competitively inhibits the enzymes active 

site and alters GP conformation 
49,70

.  Conformational changes in GP have a twofold effect as it  

increases the rate of GP dephosphorylation (and inactivation) and disrupts the complex that forms 

between active GP and the primary GS phosphatase, phosphoprotein phosphatase 1 (PP1) 
49,70

.  

Dissociation of PP1 allows this protein to dephosphorylate and activate GS.  In addition, glucose 

is an important regulator of the GK-GKRP interaction.  Increases in glucose concentration have 

been shown to free GK from this complex to increase the production of G6P, another potent GS 

activator 
71,72

.  As mentioned above, G6P allosterically activates GS b by increasing the rate of 

GS dephosphorylation and directly interacting with the enzyme 
71

.  Finally, as previously 

discussed, glucose is also a regulator of GS localization, causing it to move to sites of glycogen 

storage. 
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Figure 1.2  Modulators of Glycogen Synthesis.  GS activity is altered by a variety of signals 

including covalent phosphorylation by the insulin signalling (inhibitory) cascade as well as 

small metabolite allosteric control. 

Abbreviations:  IRS, insulin receptor substrate; PI3K, phosphatidylinositol phosphate kinase; 

IP2 Inositol diphosphate, IP3, Inositol triphosphate; PDK, phosphoinositide dependent protein 

kinase; GSK3β, glycogen synthase kinase 3β; GS, glycogen synthase, GKRP, glucokinase 

regulatory protein; GK, glucokinase; PP1, phosphoprotein phosphatase 1; GP, glycogen 

phosphorylase; ERK, extracellular regulated kinase; JNK, c-jun n-terminal kinase; NFκB, 

nuclear factor kappa B; PKC, protein kinase C; PKA, protein kinase A; AMPK, adenosine 

monophosphate dependent kinase, CAMK, calmodulin dependent protein kinase  
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1.5.2 Insulin Signalling 

Insulin signalling is responsible for controlling many intracellular processes, including 

glucose metabolism and is illustrated in figure 2.2 
73

.  The insulin receptor (IR) is a ubiquitously 

expressed, heterodimeric receptor, belonging to the receptor tyrosine kinase (RTK) superfamily.  

IR activation leads to the stimulation of both canonical arms of the insulin signalling pathway, the 

metabolic phosphatidylinositol-3 kinase (PI3K) - AKT nodule; and the mitogenic ras-mitogen 

activated protein kinase (MAPK) signalling pathways 
74,75

.  As the AKT side of this pathway is 

primarily responsible for regulating glucose metabolism, it will be the focus of the following 

section.  It should be noted however, that despite the apparent divergence of these two cascades, 

significant cross-talk exists, contributing to the complexity of insulin signalling network 
73

. 

Circulating insulin binds to the (extracellular) α subunit of the insulin receptor, causing 

the autophosphorylation of tyrosine residues in the intracellular β subunit, creating an active 

docking site for insulin receptor substrate (IRS) proteins 
76

.  The IRS family contains six 

members (dubbed IRS 1-6), of which, IRS1 and IRS2 are the most widely expressed in both the 

liver and skeletal muscle 
73,77,78

.  IRS proteins then bind to phosphorylated tyrosine residues on 

the activated IR 
73,78,79

.  IR-IRS interaction promote phosphorylation of one or more of IRS’ 

approximately twenty tyrosine residues, allowing interaction with the p85/p55 regulatory subunit 

of PI3K
79

.  Subsequent activation of the p110 kinase domain of PI3K allows the conversion of 

phosphatidylinositol diphosphate (PIP2) to the active second messenger phosphatidylinositol 

triphosphate (PIP3).  PIP3 then binds to and activates 3-phosphoinositide dependent kinase (PDK) 

which phosphorylates 2 residues (a serine and a threonine) to activate AKT 
73

. 

AKT is the principle mediator of an insulin signal as it is capable of mediating changes in 

other kinases, signalling molecules and transcription factors.  GSK3 is a key effector on glycogen 

metabolism and is down regulated by AKT phosphorylation 
73

.  This decreases its capacity to 
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phosphorylate and inactivate GS, favouring glycogen synthesis 
49

.  GSK3 exists in two isoforms, 

GSK3α and GSK3β.  The two forms share high levels of sequence homology within their kinase 

domains but little throughout the rest of the protein and have largely redundant functions 
80

.  

GSK3 is an important regulator of many intracellular processes with over 40 recognized putative 

substrates including transcription factors, structural proteins involved in cell motility and 

trafficking as well as metabolic substrates such as GS 
80

.  GSK3 is controlled by reversible 

phosphorylation (as in the insulin cascade outlined above as well as in pathways controlled by G-

protein coupled receptors); as well as by intracellular localization (nuclear GSK3 is more active 

than cytosolic GSK3) and its association with signalling complexes (seen in its role in Wnt-β 

Catenin signalling) 
80

.  It should be noted that, unlike traditional positive regulation by 

phosphorylation, serine phosphorylation, such as that mediated by AKT, of GSK3 decreases its 

activity toward its substrates 
80

. 

1.6 Insulin Resistance 

Insulin resistance is a condition in which peripheral tissues are unable to properly 

respond to the insulin hormone.  Resistance to insulin has profound consequences not only to 

glucose metabolism but other metabolic signalling pathways (lipolysis/fatty acid metabolism, 

transcription, translation, etc.) influenced by the insulin hormone as well.  While common to both 

T1DM and T2DM, the origin of the disease appears to differ.  Insulin resistance seems to 

preclude the development of T2DM as it has been evident in patients 10 to 20 years prior to the 

onset of clinical hyperglycemia 
81

.  Tissue resistance to insulin causes islet β-cells to secrete 

progressively higher levels of insulin, which eventually causes β-cells to fail, resulting in overt 

hyperglycemia and T2DM 
82

.  On the other hand, T1DM  begins with immune-related β-cell 

death and insulin resistance manifests later in the progression of the disease, impairing the 

efficacy of administered insulin in controlling blood glucose concentrations 
83

.   
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Despite etiological differences, a possible mechanism is similar between these two 

conditions and revolves around decreased insulin-induced, IRS mediated PI3K activation 
73,81

.  

This effectively decreases overall insulin signalling as it decreases the activity of AKT, the 

principle effector on both glucose uptake and glycogen synthesis.  The exact mechanism behind 

this has yet to be fully elucidated; however, increased levels of IRS serine phosphorylation are 

seen in insulin resistant states and have been implicated 
73

.  IRS proteins contain over 70 potential 

serine phosphorylation sites capable of modifying its activity.  Interestingly, insulin-responsive 

kinases including extracellular regulated kinase (ERK), S6 kinase, c-jun N-terminal kinase (JNK) 

and nuclear factor kappa B kinase (NFκB) are all known to phosphorylate serine residues within 

IRS proteins, indicating a feedback mechanism to limit an insulin signal 
84–87

.   These proteins are 

also positively controlled by levels of circulating cytokines as well as fatty acids, creating a 

causative link between fat metabolism/obesity and insulin resistance 
73,81,88,89

.  In addition, 

alterations in insulin receptor phosphorylation, decreased ability for insulin to bind its receptor 

and depleted intracellular pools of IR have also been cited as potential mechanisms underlying 

insulin resistance 
87,90

. 

1.6.1 Hepatic Insulin Resistance 

The IR represents the first step in transducing an insulin signal into intracellular events 

and as such, plays a key role in insulin resistance 
91

.  Hepatic IR knockout (known as LIRKO) 

mice demonstrate severe insulin resistance and  dysfunctional glucose production and gene 

expression 
91

.  Recent work utilizing another genetically-induced model of hepatic insulin 

resistance in which NFκB is constitutively active have shed further light on the matter. 

Hyperactive NFκB mimics the subacute inflammatory state seen in the fatty livers of patients 

with T2DM.
87

.  Evidence from this model has demonstrated decreased  basal and insulin-

stimulated IR and IRS2 tyr-phosphorylation, decreased insulin-induced suppression of hepatic 

glucose production, decreased glycogen storage and impaired GSK-3β phosphorylation 
87

.  The 
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gluconeogenic response to feeding was also disrupted such that glucose-6 phosphatase (G6Pase) 

and phosphoenolpyruvate carboxykinase (PEPCK) mRNAs were inappropriately elevated 

postprandially 
87

.  NFκB activation also increased mRNA production of pro-inflammatory 

cytokines interleukin (IL) 1B and IL6 as well as cytokine receptors for IL1, IL6, IL8 and toll-like 

receptor (TLR) 2 
87

.  These were shown to feedback to the liver itself as mRNAs for Stat3 and 

SOCS1, 2 and 3 were elevated 
87

.  Despite hepatic-specific NFκB activation, systemic effects in 

skeletal muscle were also observed as IRS1 phosphorylation, glucose uptake and glycogen 

synthesis were all impaired, lending support to the idea that insulin resistance could potentially 

begin in the liver and travel systemically 
87,92

.   

T1DM is associated with both peripheral and hepatic insulin resistance.  Early work from 

DeFronzo et al demonstrated that, during hyperinsulinemia, patients with T1DM had higher 

levels of endogenous glucose production than healthy control subjects, indicative of the liver’s 

inability to respond to insulin 
93

.  These results have been confirmed more recently by several 

groups reporting that T1DM patients with long term continuous subcutaneous insulin therapy 

(CSII) had deficits in suppression of endogenous glucose production (EGP).  Furthermore, 

following overnight normalization of blood glucose concentrations, patients with T1DM required 

significantly more insulin to supress hepatic glucose production 
94,95

.  Despite a lack of 

mechanistic studies in T1DM, potential links can be drawn between recent works.  Insulin 

resistance in T2DM has long been associated with obesity, specifically alterations in lipid 

partitioning such that abnormal amounts of lipid accumulate in the liver and skeletal muscle.  A 

mouse model lacking adipose tissue was created and mimicked this response by causing 

significant fat accumulation in the liver and skeletal muscle; and insulin resistance 
96

.  Despite 

lack of obesity, recent work using liver biopsies from T1DM patients has demonstrated that over 

50% demonstrate steatosis, 20% had non-alcoholic fatty liver disease and over 70% had fibrotic 
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scarring 
97

.  This is the first study to date demonstrating this in T1DM and may provide insight 

into the origin of insulin resistance in this condition. 

1.7 Diabetes and Glycogen Storage 

While patients with T1DM are likely to experience both fed and fasting hyperglycemia, 

they are also susceptible to the development of insulin- and exercise-mediated hypoglycemia.  

Despite the seemingly opposite nature of these conditions, it has been suggested that deficits in 

hepatic glycogen storage contribute to both 
17

.  Early work by Hwang et al, demonstrated using 

C13 magnetic resonance spectroscopy that, following ingestion of isocaloric meals (breakfast, 

lunch and dinner), patients with T1DM stored less liver glycogen after each individual meal 

(measured 4hrs later) as well as accumulated less total glycogen (approximately 70% less) over 

the course of the day 
17

.  This same study also demonstrated that T1DM subjects synthesized only 

41% of their daily  liver glycogen from the direct pathway; whereas healthy control subjects 

synthesized 65% from direct sources 
17

.  The authors conclude that alterations in the 

insulin:glucagon ratio (T1DM subjects were hypoinsulinemic and hyperglucagonemic following 

each meal relative to the controls) likely contribute to this deficit but acknowledge that hepatic 

alterations in T1DM are also likely.  Decrements in glycogen storage and direct:indirect pathway 

flux is a strong candidate for postprandial hyperglycemia as increased gluconeogenic activity and 

glucose release, combined with impaired glucose uptake/storage leaves absorbed glucose 

nowhere to go.  Later work from Kishore and colleagues connected these findings to impairments 

in hypoglycemic recovery 
18

.  They found that, during a hypoglycemic clamp in which patients 

blood glucose was held constant at ~3.33mM by insulin infusion, patients with T1DM were 

unable to increase the rate of endogenous glucose production (total of hepatic glycogenolysis and 

gluconeogenesis) due to the complete inability to utilize hepatic glycogen 
18

.  It was concluded 

that a 30% decrement in baseline hepatic glycogen relative to control subjects, in addition to 

defects in hormonal counterregulation (lower epinephrine, norepinephrine and glucagon were 
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observed during hypoglycemia) were the cause of impaired response to hypoglycemia in 

T1DM
18

.   

While patients with T1DM in the above studies were insulin treated, there was still some 

doubt as to whether intensive insulin treatment could normalize hepatic glycogen content.  

Consecutive works from Bischoff et al set out to answer this question 
98,99

.  The first of the two 

experiments examined if short-term intensive insulin therapy could normalize the alterations in 

hepatic glycogen metabolism seen in T1DM.  Untreated subjects with T1DM showed lower rates 

of both glycogen synthesis and breakdown (74% and 41% respectively, relative to healthy 

subjects), both of which were significantly improved with intensive insulin treatment
98

.  The 

second experiment utilized similar short-term insulin treatment in addition to a full week of 

treatment prior to the study during which T1DM patients were normoglycemic.  Rates of hepatic 

glycogen synthesis were normalized to the level of control subjects; however, the proportion of 

direct-to-indirect synthesis was still favouring indirect synthesis in the patients with T1DM 
99

.    

This finding in patients with long term T1DM is in opposition to more recent work in an STZ-

induced model of rodent diabetes.   Soares et al (2012) found that, when insulin was administered 

9 days post Streptozotocin (STZ), by day 18 (post STZ) the rates of direct pathway glycogen 

synthesis were normalized in the rats with T1DM 
100

.  This suggests that, if intensive insulin 

therapy is started early following the onset of T1D, the hepatic defects seen in long standing T1D 

may in fact be reversible.   

Insulin signalling and glycogen storage in T1DM is associated with deficits in the 

expression and activation of many proteins involved in hepatic glycogen synthesis.  Libal-

Weksler et al (2001) recently demonstrated that STZ-induced diabetic animals had lower total 

and activated GS activity relative to healthy animals and that insulin stimulation was unable to 

increase GS activity in vitro 
101

.  Despite this, they found that the total amount of GS protein was 

equivalent between the two conditions and that insulin stimulation increased GS protein content 
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in both groups 
101

.  This is interesting as it suggests that insulin’s effects on protein production are 

functional in this model of T1DM, but its ability to increase enzyme activity is hindered.  These 

results were verified in the same study using two dietary models of insulin resistance, high fat and 

high simple sugar diets.  Both induced decreases in GS activity 
101

.  This is of particular interest 

as hyperglycemia is also a known characteristic of T1DM and, despite the presence of insulin 

secretion, glucose  was also able to decrease GS activity 
101

. 

Work from Gannon and Nuttall, however, have shown that GS activity is increased in 

T1DM as a function of duration of the disease 
102

.  Specific activity and GS mRNA were 

increased in T1DM after both 3 and 8 days of the disease 
102

.  This occurred despite only small 

changes in total GS content and was unchanged with feeding or fasting 
102

. It was concluded that 

T1DM increases the efficiency of the enzyme as enzyme mass and mRNA could not explain the 

change in activity. Furthermore, by day 8, protein mass and mRNA were lower than that seen in 

controls animals 
102

.  Enzyme activity was also equivalent in the fed and fasted state, yet mRNA 

and protein contents differed, hence, changes in enzyme phosphorylation and activation by G6P 

were cited as to why enzyme activity was increased.  This work is not the only to contradict 

Libal-Weksler and colleagues.  Increases in GS activity in T1DM have been reported by several 

groups as well as in differing diabetic models including STZ and alloxan-induced diabetes 
103–107

. 

Despite apparent increases in GS activity, T1DM animals in the aforementioned works 

had significantly decreased hepatic glycogen levels and no change in GS content at both 3 and 8 

days 
102

.  This is interesting as increases in GS protein content by adenoviral overexpression have 

been shown to increase hepatic glycogen storage 
108

.  As simple overexpression of GS is clearly 

unable to account for all changes accompanying the hepatic proteome in T1DM, direct 

comparisons are unfounded; however, it does raise interest as to what else might be causing the 

deficit in glycogen storage. 
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Differences in the above studies are likely due to differences in T1DM model as well as 

disease duration.  In vitro versus in vivo activity analyses yield seemingly conflicting results as 

cell culture of diabetic hepatocytes suggests decreases in GS activity while hepatocytes from 

whole-animal livers suggest an increase 
101,102

.  Reasons for these discrepancies are unclear but 

may be due to differences in the hormonal and neural input to an intact liver, causing alterations 

in enzyme activity not mimicked by culture media.  Additionally, studies in T1DM animals 

without insulin treatment remove a key hormonal stimulus for GS activation that has been 

reported to be impaired in vitro 
101

.  Additionally, the duration of diabetes, as well as the severity, 

has also been shown to change GS activity 
102

.  Durations up to 8 days as used by Gannon and 

Nuttall demonstrate increased GS activity, however Rao and colleagues found, in insulin treated 

animals after three weeks of diabetes, that GS activity and expression were unchanged from 

control levels 
109

.  To date, no studies on long term diabetes and GS activity or expression have 

been conducted but if the trend of decreased activity from 8 to 21 days continues, it is possible 

that GS activity would be decreased relative to control levels and may be a contributing factor to 

decreased levels of hepatic glycogen. 

In addition to GS, other proteins involved in hepatic glycogen synthesis have been shown 

to be altered in T1DM.  GLUT2 protein and mRNA content appears to be stable in T1DM 

patients and is largely unchanged with insulin administration 
110

.  Additionally, although feeding 

and fasting have been known to alter GLUT2 mRNA, there is little change in protein content 

57,110
.  Despite these findings, Libal-Weksler et al have shown that, in cultured hepatocytes, both 

high sugar and high fat feeding decreased GLUT2 protein content, which, consistent with 

additional works, was not improved by acute insulin administration 
49,57

.  This is an interesting 

finding as glucose has also been shown to increase GLUT2 mRNA content in hepatocyteswhich 

suggests a post-transcriptional control mechanism is dominant in GLUT2 expression
111

. 
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Downstream of GLUT2, GK is an important regulator of glycogen synthesis in the liver. 

Adenoviral overexpression of GK in hepatocytes has been shown to significantly increase 

glycogen storage, independent of GS content or activity 
61,108,112

.  Insulin is the primary factor 

responsible for increasing GK content in hepatocytes, and accordingly, insulin deficient STZ-

induced T1DM animals have significantly lower levels of GK; and humans deficient for GK 

develop maturity onset diabetes of the young (MODY) type 2 
51,113–115

.  Furthermore, obese 

T2DM patients also have decreased levels of GK, indicating once again GK’s importance in 

whole body glucose homeostasis 
116

.  Insulin administration to T1DM subjects has been shown to 

normalize both GK content and activity, and overexpression in diabetic animals also restores both 

blood glucose concentration and glycogen content, as well as the animals ability to avoid 

hypoglycemia during a fast 
100,115

. 

In addition to alterations in direct pathway glycogen storage, T1DM is also known to 

generate significant amounts of glycogen by the indirect pathway.  Proteins involved in the 

gluconeogenic production of G6P are also altered in T1DM.  Soares and colleagues noted, in a 

short-term insulin treated, STZ-induced diabetic model, that T1DM animals (with or without 

insulin) demonstrated significant increases in the mRNA content of gluconeogenic proteins 

PEPCK, fructose-1,6-bisphosphatase (F6Pase) and G6Pase 
100

.   

 

1.8 Exercise and Glycogen 

Physical exercise is a metabolic stressor well known to improve insulin sensitivity as well 

as alter substrate utilization, increase lean muscle mass and decrease fat mass 
117,118

.  Exercise 

also produces alterations in key metabolic enzyme concentrations and activities, as well as 

cardiac and respiratory efficiency, allowing better performance in subsequent exercise bouts.  

Muscle glycogen is used in an intensity and duration dependent manner to fuel muscle 
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contractions; and loss of glycogen is associated with exhaustion and withdrawal from exercise 
119

.  

During and following an exercise bout, muscle glucose uptake is increased in an insulin-

independent fashion which functions to both provide glucose for glycolysis during exercise, and 

substrate for glycogen resynthesis following exercise 
119,120

.  Following long term training 

programs, increases in oxidative enzyme capacity generate a glycogen-sparing effect such that a 

greater proportion of energy can be obtained from fatty acids at increasingly higher intensities.  

Additionally, exercise training also increases the overall storage capacity for muscle glycogen 
121

.  

With respect to function in blood glucose maintenance, hepatic glycogen storage and use with 

both acute and prolonged training will be the focus of the following section. 

1.8.1 Acute Exercise 

Stored hepatic glycogen is utilized for the maintenance of blood glucose concentrations 

in times of increased use, not for fueling muscle contractions.  Earlier studies from Ivey and 

colleagues demonstrated significant glycogen use in skeletal muscle but not the liver during 5 

minutes of intense treadmill exercise 
122

.  Exercise of this short duration is unlikely to be long 

enough for blood glucose to become a significant contributor to exercise energy production, 

leaving hepatic glycogen untouched.  However, following the bout, liver glycogen was depleted 

over the following four hours, while significant glycogen accumulated in muscle 
122

.  Studies 

utilizing prolonged low-intensity or high-intensity exercise to exhaustion, however, demonstrate 

complete depletion of hepatic glycogen 
123–127

.  Following an acute exercise bout, very little 

hepatic glycogen is resynthesized in the absence of food intake, and by 24 hours post-exercise, 

glycogen concentrations are lower than those seen following 36 hours of fasting 
124

. In a follow 

up study, animals were followed for 24 hours and again, during the first four hours following 

either continuous or intermittent exercise to exhaustion, no hepatic glycogen was stored when 

food was restricted 
127

.  Despite this, skeletal muscle glycogen concentrations increased in this 

time frame to approximately 50% of resting levels 
127

.  When food was provided ad libitum for 
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the following 20 hours, liver glycogen returned to the level of an exercised rat, but not to the level 

of a non-exercised control rat 
127

.  In this same time frame however, muscle glycogen was seen to 

reach approximately 190% of pre-exercise resting values, suggestive of preferential resynthesis in 

muscle over the liver 
126,127

. 

1.8.2 Exercise Training 

Exercise training has been established to increase hepatic glycogen storage 
128,129

.  

Baldwin and coworkers demonstrated increased resting hepatic glycogen levels in rats following 

14 weeks of swimming, 6 hours per day, 5 days a week 
129

.  This improvement was also 

associated with a smaller decrease in liver glycogen following a 45 min progressive treadmill test 

129
.  In contrast to the extreme endurance activity used in those studies, only 6 weeks of treadmill 

running, 6 weeks of weighted jumps (4 sets of 10, 5 days per week) and 12 weeks of ladder 

climbing (4-8 climbs, 3 days per week) have all be shown to increase liver glycogen stores 
130,131

.  

Additionally, exercise training supplemented with either a diet high in fructose or whey protein, 

have also been shown to further increase liver glycogen 
132–134

.  In addition to alterations in 

hepatic glycogen content, exercise training has also been shown to increase GS activity, in 

conjunction with increases in liver size, further enhancing the capacity of the liver to store 

glycogen 
128

. Contrary to these findings, work from James and colleagues found that 10 weeks of 

treadmill running at a light, moderate or high intensity did not alter glycogen content or GS 

activity in the liver 
135

. 

1.9 Summary 

 Patients with T1DM suffer from hepatic glycogen deficits, which alter their ability to 

increase glucose release during a hypoglycemic episode.  Additionally, hepatic insulin resistance 

is present and may contribute to the lack of hepatic glycogen stores.  Exercise training has been 

shown to improve a host of T1DM-related complications, however many patients refrain from 



 25 

exercise due to fear of hypoglycemia.  Training studies have demonstrated that exercise might act 

as a means of increasing hepatic glycogen storage and would aid in hypoglycemia prevention and 

recovery.   Further study is required to elucidate molecular mechanisms involved in both the 

glycogen deficit and hepatic-insulin resistance noted in patients with T1DM and to examine the 

effects of exercise training on these parameters. 
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CHAPTER 2 

 

2.1 Introduction 

Type 1 diabetes mellitus (T1DM) is characterized by the autoimmune destruction of 

pancreatic islet β-cells, resulting in inadequate insulin secretion and deficits in blood glucose 

control.  As a result, many T1DM patients suffer from a variety of complications including 

cardiovascular disease, retinopathy, neuropathy and nephropathy; as well as insulin resistance 
1,2

.  

While it has been shown that strict control of blood glucose concentrations (4-7mM) through 

intensive insulin therapy is effective in preventing many of these complications, many patients 

refrain from strict control and maintain more moderate levels of glycemia (8-11mM, known as 

conventional insulin therapy) to prevent insulin overcorrection and subsequent hypoglycemia 
1
.  

In addition to intensive insulin therapy, physical activity has been shown to be effective in 

relieving many T1DM-related complications.  However, patients refrain due to fear of exercise 

induced hypoglycemia 
3–5

. 

It is believed that a deficit in hepatic glycogen stores may, in part, be responsible for the 

inability of patients’ with T1DM to respond to a hypoglycemic episode 
6
.  Hepatic glycogen, 

unlike that in muscle, is stored for the maintenance of blood glucose concentrations in times when 

glucose homeostasis is challenged, such as during a fast or following exercise.  Early work from 

Hwang et al. (1995) demonstrated that, following a meal, patients with T1DM synthesized 

significantly less hepatic glycogen than healthy subjects.  Furthermore, a larger proportion of that 

glycogen came from indirect synthesis 
6
.  It was concluded that this was largely due to disruptions 

in the insulin:glucagon ratio following a meal 
6
.  Glycogen deficits are also seen to persist 

following short term intensive insulin therapy, however, following a week of normoglycemia, 

hepatic glycogen levels have been shown to return to those of a healthy subject 
7,8

.  Lack of 

hepatic glycogen stores can be connected to impairments in hypoglycemic recovery.  Under a 
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hypoglycemic clamp, rats with T1DM are completely unable to mobilize hepatic glycogen, 

suggesting that inadequate hepatic release of glucose during hypoglycemia was a result of 

insufficient glycogen at the start of the clamp 
9
.   

Hepatocyte glucose uptake, unlike that seen in muscle, is mediated by the glucose 

transporter 2 (GLUT2), an insulin insensitive isoform 
10–12

.  Glucose is phosphorylated by 

glucokinase (GK), a high affinity isoform of hexokinase, into glucose-6-phosphate (G6P) 
10,13

.  

G6P is then converted to glucose-1-phosphate (G1P), uridine diphosphate-glucose (UDPG) and 

ultimately converted into glycogen by glycogen synthase (GS) 
10

.  All three of these proteins have 

been shown to modulate hepatic glycogen concentrations and aberrant expression or activity may 

underlie defective glycogen synthesis 
14–17

.  These proteins have also been demonstrated to be 

disrupted in T1DM, although conflicting results have been shown due to differences in diabetic 

model, as well as disease duration 
18–22

. In addition to alterations in glycogen synthesizing 

proteins, hepatic insulin resistance may also have a role in impaired glycogen synthesis.  Work 

from Defranzo et al originally demonstrated hepatic insulin resistance in T1DM as demonstrated 

by reduced suppression of hepatic glucose production by insulin; a finding which has recently 

been supported by others 
23,24

.  Although no mechanistic studies exist in patients with T1DM, a 

rodent model of hepatic insulin resistance, in which hepatic nuclear factor kappa B (NFκB) is 

constitutively active, exhibits disruptions in insulin signaling and glycogen storage.  More 

specifically, the activation of insulin receptor substrates (IRS) and glycogen synthase kinase 

(GSK)-3β were shown to be reduced 
25

.   

Exercise training has been shown to mitigate many of the complications associated with 

T1DM and, in healthy populations, also alters hepatic glycogen metabolism.  Recent studies have 

demonstrated the efficacy of various exercise programs, including aerobic and resistance 

exercise, in increasing hepatic glycogen stores as well as glycogen synthase (GS) activity 
26–29

.  

However, limited work has been completed in T1DM models
30

.  Following high intensity 

exercise, patients with T1DM, despite having lower basal hepatic glycogen contents, have similar 
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rates of glycogenolysis, and higher rates of gluconeogenesis compared to healthy control subjects 

31
.  Similar rates of glycogenolysis suggest that that if basal glycogen levels had been higher, any 

drop in glycemia following exercise might have been shorter in duration and/or magnitude, or 

preventable altogether.  

The purpose of the current investigation was to determine if a 10-week aerobic exercise 

training program could improve hepatic glycogen storage in rats with T1DM and whether 

improved glycogen storage was associated with changes in expression of glycogen-synthesizing 

proteins.  Furthermore, a secondary aim of the study was to determine if aerobic training was able 

to alter the insulin signaling pathways mediating glycogen storage in the liver.  It was 

hypothesized that exercise training would increase hepatic glycogen storage as well as glycogenic 

protein expression, and that this would be associated with improvements in hepatic insulin 

signaling. 

 

2.2 Methods 

Ethics approval 

In accordance with the guidelines of the Canadian Council on Animal Care, this study 

was approved by the University Council of Animal Care and Research Ethics boards of the 

University of Western Ontario (Appendix B1). 

 

Animals 

 Eight week old, male Sprague-Dawley rats were obtained from Charles River 

Laboratories (St. Constant, QC, Canada).  Animals were housed two per cage in standard rat 

cages and kept on a 12-hour light/dark cycle at constant temperature and humidity (20±1°C, 50% 

respectively).  Food (protein=26%, carbohydrate=60%, fat=14%; enriched with vitamins and 

minerals; 164 PROLAB RMH 3000, Brentwood, MO, USA) and water were given ad libitum for 

the duration of the study.  Rats were divided into four experimental groups: non-T1DM sedentary 
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(C, n=16), non-T1DM exercised (CX, n=16), T1DM sedentary (D, n=16), and T1DM exercised 

(DX, n=16).  (See Figure 2.1) 

  

Experimental Procedures 

 Diabetes Induction 

 T1DM was induced using multiple low dose streptozotocin (STZ) injections (Appendix 

A1) to replicate conditions seen in T1DM patients 
32

.  On five consecutive days, 20mg/kg of STZ, 

dissolved in citrate buffer (0.1M, pH 4.5), was given intraperitoneally (IP).  T1DM was then 

confirmed by two consecutive non-fasted blood glucose readings of >18mM.  If, after five 

injections, T1DM was not confirmed, additional injections were given until confirmation was 

obtained.  Blood glucose was then maintained in the range of 9-15mM using insulin pellets, to 

represent that under conventional insulin treatment 
33

.  Exogenous insulin pellets (1 pellet; 2U 

insulin/day; Linplant, Linshin Canada, Inc., Toronto, Ontario, Canada) were subcutaneously 

implanted in the abdominal region (Appendix A2). 
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Figure 2.1  Study Design 
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 Exercise Protocol 

 One week prior to the start of exercise training, animals were familiarized with the 

treadmill to allow rats to become accustomed to both the treadmill and to running itself.  

Familiarization consisted of 15min of progressive running up to 30m/min over two days.  

Following the familiarization period, the exercise training consisted of 1hr of treadmill running, 5 

days per week, at 27m/min on a 6% gradient for 10 weeks.  This intensity of exercise has 

previously been shown to elicit 70-80% of the animals’ VO2max 
34

. 

 

Experimental Measures 

 Euglycemic Hyperinsulinemic Clamp 

Eight animals from each group were utilized for the euglycemic-hyperinsulinemic clamp.  

Clamp experiments were initiated three days following the final bout of exercise training.  Prior 

to clamp studies, animals were fasted for 12hrs.  Anesthetization consisted of inhaled isoflurane 

gas (4%) as well as an IP injection of urethane (25mg/kg) and α-chloralose (4mg/kg).  Isoflurane 

gas was removed after approximately 20min and urethane α-chloralose maintained 

anesthetization during the clamp.  A catheter was inserted into the right jugular vein to facilitate 

infusions of anesthetic,   insulin (10mU/kg/min; 0.4 μIU/mL; Eli Lilly, Toronto, ON, CAN) and 

glucose (20 mg/kg/min, 0.2 g/mL; EMD Millipore, Darmstadt, HE, Germany).  Body temperature 

was maintained at 37°C with a heating pad and was assessed by a rectal thermometer. 

Clamp procedures were originally described by DeForonzo et al. (1979)
35

.  Rats were 

stabilized for 1hr prior to initiation of clamp experiments.  Insulin (10mU/kg/min) was infused 

using an infusion pump and blood glucose was maintained at basal blood glucose concentration 

using variable infusions based on glucose measures (FreeStyle Lite, Abbot Diabetes Care, 

Alameda, CA) every 5min for the first 20min and every 10min thereafter. 
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Tissue Collection 

Animals were euthanized by exsanguination immediately following the cessation of the 

insulin clamp, where liver and muscle samples were quickly extracted.  To remove the effects of 

insulin clamp on tissue analysis, eight of the sixteen did not undergo the clamp procedure and 

were sacrificed (isoflurane anesthesia followed immediately by exsanguination) three days 

following their last bout of exercise for extraction of liver and muscle tissues samples. Upon 

extraction, all liver and muscle tissues were immediately flash frozen in liquid nitrogen and 

stored at -70°C for further analysis.   

 

 Glycogen Quantification 

Liver and muscle glycogen content was determined spectrophotometrically as described 

by Lo et al. (1970 )
36

.  Briefly, liver samples were homogenized in 30% KOH, saturated with 

Na2SO4 and boiled for 30min.  Glycogen was then precipitated in 95% ethanol and centrifuged at 

3000rpm for 25min.  Supernatants were discarded and the glycogen pellet was resuspended in 

3ml of water and split into three, 1ml aliquots for triplicate analysis.  1ml of 5% phenol and 5ml 

concentrated sulfuric acid (96-98%) were added sequentially, allowed to stand for 10min, 

agitated, and incubated for 20min at 25-30°C.  The colour reaction was then analyzed using a 

spectrophotometer at a wavelength of 490nm.  

 

 Immuno Blot Analysis 

Liver samples were homogenized at a 1:10 (weight : volume) ratio in homogenizing 

buffer containing 100mM tris, 0.1mM EDTA, 0.1mM EGTA, 1% triton-X 100, 1% phosphatase 

inhibitor, 1% protease inhibitor, pH 7.5.  Loading volumes were determined using the Bradford 

protein assay. 

Proteins were run on polyacrylamide gels (10% separating, 4% stacking) at a constant 

voltage (125V) for approximately 90min in running buffer containing 25mM tris, 200mM L-
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glycine and 0.1& SDS, pH 8.3. Proteins were then transferred to nitrocellulose membranes, 

blocked for 4 hours at 4°C in 10% non-fat dry milk, 1% BSA and probed with primary antibodies 

(anti-GS, anti-IR and anti-pGSK-3β were from Cell Signaling; anti-GLK, anti-GLUT2 and anti-

PEPCK from abcam and anti-GSK-3β was from Santa Cruz) overnight.  Membranes were then 

washed and incubated for 1 hour in horseradish-peroxidase conjugated secondary antibodies and 

detected using luminol-based chemiluminescence in a chemidoc imager (BioRad).  Optical 

densities were quantified in BioRad Quantity One software.  Total GS protein content was shown 

as the additive total of the two bands detected. 

 

 Statistical Analysis 

Basic characteristics, glycogen contents and western blot group differences were tested 

using a two-way ANOVA and tukey’s post hoc test.  Group differences for the euglycemic-

hyperinsulinemic clamp were assessed using a repeated measures two-way ANOVA.  

Significance was declared with α set to 0.05. 

 

2.3 Results 

Animal Characteristics 

Animal weights and weekly blood glucose values are shown from weeks 1 and 10 in 

table 2.1. There were main effects of diabetes on blood glucose levels such that T1DM animals 

had higher blood glucose concentrations at both weeks 1 and 10 (p<0.05).  No effects of exercise 

were seen at either week 1 or 10 (p>0.05).  Body weights were significantly lower in animals 

with T1DM at both weeks 1 and 10 (p<0.05) and exercised animals also weighed significantly 

less than unexercised counterparts at these time points (p<0.05).  These data have also been 

reported elsewhere 
37,38

.   

 

 



 44 

Liver Glycogen 

There was a main effect for T1DM on the hepatic glycogen content (p<0.05; figure 2.2) 

such that rats with T1DM had lower liver glycogen contents than those without T1DM.  10 weeks 

of aerobic exercise training had no effect on liver glycogen levels (p>0.05; figure 2.2). 

 

Protein Expression 

To determine if aberrant expression of glycogenic proteins could underlie discrepancies 

in hepatic glycogen storage in T1DM, GLUT2, GK and GS levels were quantified in the liver.  

Neither T1DM nor exercise training significantly altered GLUT2 expression (p>0.05; figure 2.3).  

GK was significantly increased in rats with T1DM (p<0.05; figure 2.4), while exercise training 

had no effect (p>0.05; figure 2.4).  There was a significant interaction between T1DM and 

exercise (p<0.05; figure 2.5) with respect to total GS content.  Pairwise comparisons indicate that 

DX is significantly greater than D (p<0.05), no other differences were found.  Finally, PEPCK 

protein content was significantly elevated by T1DM (p<0.05, figure 2.6).  No main effects were 

found with exercise training (p>0.05, figure 2.6). 

 

Euglycemic-hyperinsulinemic Clamp and Hepatic Insulin Signaling 

Glucose infusion rates are shown in figure 2.7.  Individual glucose infusion rates did not 

change significantly for any group over the course of the clamp (p>0.05).  There was a significant 

main effect of groups on glucose infusion rate (p<0.05).  Pairwise comparisons indicate that D is 

significantly lower than C, CX and DX (p<0.05), C and DX are not significantly different from 

each other (P>0.05) and CX is significantly higher than C, D and DX (p<0.05). 

 

 Prior to insulin stimulation, IR protein content was significantly elevated in rats with 

T1DM compared to non-T1DM rats (p>0.05; figure 2.8).  Exercise training had no effect on IR 

protein content (p>0.05; figure 2.8).  To examine if an insulin signal was being propagated down 
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the insulin signaling cascade, phosphorylated GSK was examined following the insulin clamp.  

There were no effects of either T1DM or exercise training on the phosphorylation of GSK 

following insulin stimulation (p>0.05; figure 2.9).     

 

 Following the insulin clamp, liver and soleus glycogen contents were measured to 

determine which tissues were responsible for glucose uptake.  No effects of T1DM or exercise 

training were observed for liver glycogen content (p>0.05; figure 2.10).  Soleus glycogen was 

found to be significantly increased by exercise training (p<0.05; figure 2.11), and no effects of 

T1DM were observed (p>0.05; figure 2.11). 
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Figure 2.2  Hepatic Glycogen Content.  Glycogen content presented as mean ± SE.  
An asterisk (*) indicates a significant main effect of diabetes (p<0.05), no effects of 
exercise were found (p>0.05).  n = 8, 8, 8, 6 for C, CX, D and DX respectively. 
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Figure 2.3  Hepatic GLUT2 Protein Content.  Hepatic GLUT2 transporter was 
quantified using western blot analysis, normalized to the expression of β-actin and 
presented as mean ± SE.  Representative blots are shown in the same order as the 
graph.  No effects were found for either diabetes or exercise (p>0.05).  n = 5 for 
every group. 
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 Figure 2.4  Hepatic Glucokinase Protein Content.  Glucokinase protein level was quantified 
using western blot analysis, normalized to the expression of β-actin and presented as mean ± 
SE.  Representative blots are shown in the same order as on the graph.  An asterisk (*) 
indicates a significant main effect of diabetes (p<0.05), no effects of exercise were found 
(p>0.05).  n = 8 for C, CX and D, n = 7 for DX. 
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Figure 2.5  Total Hepatic Glycogen Synthase Protein Content.  GS protein content was 
quantified using western blot analysis, normalized to the expression of β-actin and 
presented as mean ± SE.  Bands represent the muscle (top) and liver (bottom) isoform of 
the GS protein.  Bands were added together for quantification of total content.  
Representative blots are shown in the same order as on the graph.  A significant 
interaction was found between diabetes and exercise (p<0.05).  Pairwise comparison 
indicates that DX is significantly greater than D (shown by an asterisk (*) p<0.05).  n = 5 
for all groups. 
 

GS 

GS 

β-actin 

* 
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Figure 2.6  Hepatic PEPCK Protein Content.  PEPCK protein level was quantified using 
western blot analysis, normalized to the expression of β-actin and presented as mean ± SE.  
Representative blots are shown in the same order as on the graph.  An asterisk (*) 
indicates a significant main effect of diabetes (p<0.05), no effects of exercise were found 
(p>0.05).  n = 7 for all groups 
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Figure 2.7  Glucose Infusion Rate during a Euglycemic-Hyperinsulinemic Clamp.  During the 
clamp, animal blood glucose was maintained at their basal level (~4mM for C and CX, ~15mM for D 
and DX) using continuous infusion. Insulin was infused at a rate of 10mu/kg/min.  Full circles (●) 
represent C, open circles (○) are CX, full triangles () are D and open triangles (Δ) are DX.  Data are 
presented as mean ± SE.  There was a significant effect of group (p<0.05).  No effect of time was 
observed (p>0.05).   n = 7, 6, 9, 9 for C, CX, D and DX respectively. 
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Figure 2.8  Hepatic Insulin Receptor Protein Content.   Insulin receptor protein level was 
quantified using western blot analysis, normalized to the expression of β-actin and presented 
as mean ± SE.  Representative blots are shown below in the same order as the graph.  An 
asterisk (*) indicates a significant main effect of diabetes (p<0.05), no effects of exercise were 
found (p>0.05).  n = 5 for all groups. 
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Figure 2.9  Insulin-Induced Hepatic Glycogen Synthase Kinase 3β Phosphorylation.  
Western blot analysis of GSK-3β phosphorylation was done on animals having undergone the 
insulin clamp protocol to examine hepatic insulin signaling.  Phospho-GSK-3β was 
normalized to the total amount of GSK-3β and presented as mean ± SE.  Representative blots 
are shown in the same order as on the graph.  No significant affects were observed (p>0.05) 
for diabetes or exercise.  N = 8, 8, 7, 6 for C, CX, D and DX respectively. 
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Figure 2.10  Post Insulin Clamp Hepatic Glycogen Content. Glycogen contents 
are presented as mean ± SE.  No significant effects for diabetes or exercise were 
detected (p>0.05). n = 8, 8, 8, 6 for C, CX, D and DX respectively. 
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Figure 2.11  Post Insulin Clamp Soleus Glycogen Content.  Glycogen contents are 
presented as mean ± SE.  An asterisk (*) indicates a significant main effect of exercise 
(p<0.05).  No significant effects of diabetes (p>0.05) were observed.  n = 8, 8, 7, 6 fr C, CX, 
D and DX respectively. 
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2.4 Discussion 

 Results of the current study indicate that 10 weeks of aerobic exercise training is not able 

to reduce the hepatic glycogen deficit seen in rats with T1DM.  Furthermore, proteins comprising 

the direct and indirect pathway for glycogen synthesis, GLUT2, GK, GS and PEPCK, are all 

present at levels equal to or in excess of those seen in healthy control animals.  Finally, hepatic 

insulin signaling appears to be intact in these animals as indicated by increases in IR content and 

equivalent GSK-3β phosphorylation following insulin stimulation. 

Early work has demonstrated that aerobic exercise training is able to increase hepatic 

glycogen stores in healthy female rats by approximately 75% 
27

.  Although mechanistic details 

were not examined, it was suggested that increases in food intake by the exercised animals could 

be driving the increase in glycogen storage 
27

.  Additional work from Galbo et al. (1979) 

demonstrated increased hepatic glycogen following aerobic training and noted higher basal GS 

and lower glycogen phosphorylase (GP) activities in trained relative to untrained animals 
26,28

.  It 

is unclear why the control-exercised animals in the current study did not increase their hepatic 

glycogen stores.  Despite sex differences between studies, male and female rats have been shown 

not to differ on both basal and post exercise liver glycogen levels 
39

.  Differences in animal 

sacrifice time post final exercise bout as well as exercise modality/duration of training may also 

account for discrepancies.  Both of the abovementioned studies demonstrating an exercise-

mediated increase in hepatic glycogen utilized swimming for up to 6 hours per day in contrast to 

the 1 hour of running used in the present study; total training volume over the duration of the 

study was also much greater and could account for the discrepancy 
40

.   

In agreement with this argument, rats with T1DM in the current study had significantly 

less liver glycogen than their healthy controls and this was not improved with exercise training.  

Leme et al (2009) also demonstrated no increase in liver glycogen in animals with T1DM or in 

healthy animals submitted to swim training 
30

.  Animals in that study however, swam for 1 hour 

per day and were sacrificed 2 days post exercise, as opposed to three days as done by Galbo 
26,30

.  
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While it is understood that insulin promotes glycogen storage through the activation of GS, 

insulin treatment in the current study was unable to restore/improve glycogen storage in rats with 

T1DM.  It is possible that, because normoglycemia was never achieved, treatment was 

insufficient to restore glycogen levels.  Furthermore, previous work from our laboratory 

demonstrated that T1DM-exercised animals require less insulin than unexercised-T1DM, which 

may account for the lack of glycogen storage 
41

.  Additionally, subcutaneous insulin pellets 

utilized in this study release insulin at a constant rate which has been shown to produce different 

effects upon insulin signaling and subsequently, GS activation, than the pulsatile release seen 

from a healthy pancreas which may account for the lack of treatment effect 
42

. 

Work from Gannon and others has suggested that short term T1DM (lasting 8 days) 

results in an increase in GS activity 
19,43–45

.  In contrast, Rao and coworkers has demonstrated that 

STZ-induced, insulin treated  T1DM animals have equivalent GS activity and protein content to 

healthy animals after three weeks of diabetes 
20

.  To date no studies have examined the effects of 

long term T1DM on GS activity.  However, these aforementioned works do suggest GS activity 

may actually decrease overtime, which, if continued over the long term may produce lowered 

activity.  Temporary increases in activity may also be indicative of a latency period in which the 

disease has not fully developed and is consistent with studies demonstrating improvements and 

even some reversals when interventions (insulin, exercise) are initiated very early in the 

progression of the disease 
22,46

.  To date no studies have been done examining if exercise training 

can increase GS and/or decrease GP activities in patients with T1DM; however, a lack of hepatic 

glycogen in diabetic-exercised animals suggests that GS activity might be lowered. 

In the current study, proteins involved in the direct pathway of glycogen synthesis were 

measured to assess if the liver had the capacity to synthesize glycogen.  No change in hepatic 

GLUT2 protein was detected which is consistent with work in other diabetic models.  

Furthermore,  this passive transporter is not thought to be the rate limiting step governing hepatic 

glucose uptake or glycogen synthesis in healthy subjects 
10,47,48

.  However, work in 
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pancreatectomized diabetic animals has demonstrated increases in GLUT2 protein in the liver 

with exercise training, a result not supported in the current study 
49

.  It was suggested that because 

these animals had lower circulating glucose levels (one factor known to modulate GLUT2 

production) than their untrained controls, which may explain why it was not observed in the 

current study 
49

.  GLUT2 mRNA however, has been shown to decrease with training and exhibit a 

negative correlation with hepatic glycogen, suggesting that increases in GLUT2 may not be 

required for glycogen storage 
50

. 

GK was found to be increased in both diabetic groups, with no modulation with exercise.  

STZ induced T1DM has been shown to dramatically reduce GK activity which is subsequently 

normalized with insulin treatment 
51,52

.  Furthermore, adenoviral overexpression of GK in rats 

with T1DM resulted in a decreased fasting blood glucose, improved glucose clearance during a 

tolerance test and increased hepatic glycogen content 
21

.  GK overexpression has also been shown 

to increase liver glycogen stores in healthy animals, demonstrative of its control over glycogen 

synthesis 
17

.  One potential reason why the increase in GK content was unable to stimulate 

glycogen storage is that despite increased protein, activity may still be decreased in T1DM.  This 

may occur via glucokinase regulating protein (GKRP), which is increased under instances of high 

glucose but is unaffected by insulin 
53

.  Under current conditions in which insulin was present but 

insufficient to produce normoglycemia, it is conceivable the GKRP might be produced in excess 

and subsequently suppress GK activity as a result of hyperglycemia 
13,54–56

.  Park and colleagues 

have demonstrated increases in GK content with training in diabetic animals; however, these 

animals were not receiving exogenous insulin as were the animals in the current study 
49

.  The 

lack of exercise-induced increase could be a result of exercise and insulin working through a 

common mechanism with regards to GK expression.   

Although direct comparison between GS protein content as measured in the current 

experiment and its activity are unfounded, changes in protein content have been linked to changes 

in glycogen storage capacity 
17,57,58

.  The current study has reported an increase in GS protein 
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content in the livers of DX animals, which, in combination with increased GK content suggest 

that the capacity to store glycogen is present in these animals.   

The indirect pathway of glycogen synthesis is also known to be perturbed in T1DM, such 

that it accounts for a larger proportion of glycogen synthetic precursors than it does in a healthy 

state 
6–8,22

.  As flux through the gluconeogenic pathway is largely governed by PEPCK protein 

content, data in the current study agrees with this dogma as it is elevated in T1DM, indicative of 

increased gluconeogenesis 
22,59,60

.  Insulin is the primary factor controlling PEPCK production, 

however, previous work using insulin-treated T1DM has also concluded that insulin treatment is 

unable to correct the increase in protein 
22,60,61

.  Inability of the liver to properly decrease 

expression of gluconeogenic proteins may be indicative of a resistant state which is unable to be 

altered with aerobic exercise.   

In addition to dysregulation of glycogenic proteins, it has been shown that patients with 

T1DM suffer from an overdriven sympathetic nervous system 
62,63

. These findings are supported 

by previous data from our laboratory using this model of T1DM demonstrating that basal 

neuropeptide-Y concentrations are elevated in both exercise and sedentary T1DM rats 

(unpublished data).  Furthermore, higher levels of glucagon are present within pancreatic islets 
5
 

and, following aerobic exercise training, the glucagon response to an acute bout of exercise-

induced reductions in glycemia is increased relative to pretraining (unpublished data).  This is 

consistent with the hyperglucagonemia known to contribute to hyperglycemia in T1DM patients 

64
.  Both sympathetic agents (neuropeptide Y (NPY), epinephrine etc.) and glucagon activate 

hepatic glycogen degradation and prevent its synthesis, which may contribute to an overall 

hepatic glycogen deficit 
10

.   

Another well-known characteristic of T1DM is hepatic insulin resistance 
24,65

.  If an 

insulin signal is not propagating downstream (IRS-AKT-GSK pathway), phosphorylase is likely 

to remain active, and consequently, GS will not be effectively activated which will further hinder 

glycogen synthesis 
25,49,66

.  To address this, an insulin clamp was done and markers of hepatic 
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insulin signaling were measured.  Glucose infusion rates required to maintain basal blood glucose 

concentrations were higher in both exercised groups compared to sedentary levels; and the 

control-exercised animals required the highest rates of glucose infusion, consistent with a) insulin 

resistance in T1DM and b) improvements in whole-body insulin sensitivity with exercise training 

in both healthy and T1DM subjects 
24,67,68

.   

Interestingly, basal hepatic insulin receptor content was found to be increased in the 

T1DM rats of the current study.  Insulin receptor content is known to fluctuate based upon 

circulating insulin levels, with hyperinsulinemia and hypoinsulinemia decreasing and increasing 

receptors, respectively 
69,70

.  T1DM rats in the current study were treated with insulin and 

previous work using this model of T1DM found that circulating levels were equivalent to that of 

control animals, so it is unclear why IR content is elevated 
41

.  It is possible that differences exist 

between endogenous rat insulin and the human insulin that the T1DM animals are treated with in 

their ability to bind and/or activate the IR.  The importance of the insulin receptor in hepatic 

insulin resistance has been demonstrated by liver insulin receptor knockout (LIRKO) mice which 

demonstrate impairments in glucose clearance and suppression of hepatic glucose production, as 

well as insulin signaling defects with regards to activation of its substrates IRS 1 and 2 
71

.  

Interestingly, upregulation of insulin receptors has also been shown to improve insulin sensitivity 

and glucose clearance in cultured human hepatocytes 
72

.  This appears to contradict the widely 

accepted notion that T1DM suffer from hepatic insulin resistance 
24

.  Reasons for this discrepancy 

are unclear, however, the etiology of hepatic insulin resistance is also illusive in T1DM so it is 

possible that defects more distal in the signaling pathway are the root cause and receptors are 

being upregulated in an attempt to compensate.   

To assess insulin signal transduction, insulin induced inhibition of GSK-3β, a key 

effector upon GS, was measured following the hyperinsulinemic clamp.   No change in GSK-3β 

phosphorylation was detected in T1DM rats in comparison to non-T1DM, suggesting that the 

insulin signaling pathway is not perturbed in T1DM.  Although mechanistic studies in T1DM are 
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lacking, recent work using another model of hepatic insulin resistance, in which hepatic NFκB is 

hyperactive, showed decreases in GSK-3β phosphorylation following insulin stimulation 
25

.  That 

same model found decreased hepatic glycogen storage as well as impaired suppression of hepatic 

glucose production, two known features of T1DM 
24,25

.  While this appears to suggest normal 

hepatic sensitivity in the current study, it is important to note that modulation of GSK is not the 

only way insulin modulates glycogen synthesis.  Many other protein kinases including adenosine 

monophosphate-dependent protein kinase (AMPK), Protein Kinase A, AKT (also known as 

protein kinase B), and calmodulin induced protein kinase (CamK) among others are able to 

phosphorylate GS and are also modulated by insulin
10,15,73,74

.  GSK-3β phosphorylates residues 

known to be important to GS activity yet can only do so when other residues have already be 

phosphorylated (referred to as hierarchal phosphorylation) by other proteins.  Alterations in any 

of the above mentioned factors could, therefore, also affect GSK-3β’s ability to modulate GS 

activity 
10,73

. 

As GS is most active in its unphosphorylated state, defects in its dephosphorylation will 

also strongly modulate its ability to synthesize glycogen.  Protein phosphatase 1 (PP1), the 

primary phosphatase of hepatic GS, is also altered in T1DM 
75

.  PP1 activity towards GS was also 

shown to be dependent on the degree of insulin deficiency 
75

.  More recent works have 

demonstrated that a subunit of PP1, GL, that targets PP1 to a glycogen granule, was absent in 

T1DM 
76

.  This, however, was also corrected with insulin therapy 
76

.  As previously mentioned, 

animals in the current study were not given sufficient insulin to achieve normoglycemia so it is 

unclear whether or not PP1 and/or GL deficiencies play a role in the glycogen deficit. 

Insulin stimulated glycogen synthesis has also been shown to stem from AKT-mediated 

inactivation of GP.  GSK-3β is a downstream target of AKT; however, constitutively active AKT 

mutants stimulate glycogen synthesis in cultured hepatocytes; even in the presence of the GSK-3β 

inhibitor SB-216763 
66,77

.  Furthermore, cells with overactive AKT had decreased GP activity and 

greater levels of glycogen synthesis than in GSK-3β inhibited cells alone 
66,77

.  It should be noted 
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that GSK-3β is still an important regulator of GS activity, but active GS alone does not appear to 

be sufficient to drive glycogen synthesis 
66

.  Although the mechanism by which this occurs is not 

understood, it suggests that glycogen accumulation can be hindered despite normal GSK-3β 

phosphorylation in response to insulin. 

Differences between the current study and other published works may also stem from 

measurement technique.  Assessment of insulin-induced suppression of hepatic glucose 

production gives a measure of hepatic response to insulin, but does not decipher the mechanistic 

details with respect to the known direct and indirect effects of insulin on the liver 
78

.  The direct 

effects of insulin are the alteration of hepatic glycogenolysis (discussed above) and 

gluconeogenesis, which is largely mediated through an AKT-mediated inhibition of PEPCK 

transcription 
78

.  The indirect effects of insulin include its manipulation of circulating levels of 

glucagon, non-esterified fatty acids (due to decreased adipose and skeletal muscle lipolysis), 

gluconeogenic precursor glycerol, as well as neural signals stemming from the hypothalamus 
78

.  

It has also been suggested that the indirect effects of insulin are greater effectors on hepatic 

glucose production in rodents than its direct effects, making comparisons between the current 

study and other existing works quite confounded 
79

. 

In addition to insulin signaling, post-clamp glycogen was measured in both the liver and 

soleus muscle to assess where glucose is being stored during an insulin stimulus.  Soleus 

glycogen was significantly increased in exercise-trained groups, consistent with improvements in 

peripheral insulin sensitivity following training.  All groups had equivalent liver glycogen levels 

following the clamp, which is consistent with what is known to occur following an overnight fast 

9
.  Furthermore, euglycemic clamps do not stimulate glucose uptake via the GLUT2 transporter 

and, subsequently, do not stimulate significant hepatic glycogen storage 
9,80,81

.  This is an 

interesting finding as the control and diabetic groups were clamped at different blood glucose 

concentrations.  Control and diabetic animals were clamped at 5mM and 15mM blood glucoses 

respectively, in an attempt to assess insulin sensitivity at their resting blood glucose 
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concentration.  However, the T1DM animals were clamped in what is typically considered a 

hyperglycemic, not a euglycemic, range.  Contradictory to the current study, previous works 

using clamps in this range have shown increases in liver glycogen following a hyperglycemic 

clamp in animals with T1DM 
82

.  Differences in the model of T1DM (STZ vs pancreatectomy), as 

well as disease duration, may account for this discrepancy; however, another possibility does 

exist.  As has been posited for other conditions such as baroreflex sensitivity  in hypertension, it 

is possible that, following sufficient duration of T1DM, a “resetting” of the homeostatic resting 

blood glucose may occur 
83

.  If, for example, the liver in these diabetic animals perceives 15mM 

as a new normoglycemia, it is unlikely that glucose would be taken up during the insulin clamp 

and glycogen would be stored. This would account for lack of storage in the present study and 

also lend support to tighter regulation of resting blood glucose being beneficial in T1DM 
1
.  

Future works examining intracellular glucose and glucose-metabolite levels in these animals 

would help elucidate why hyperglycemia is unable to stimulate hepatic glycogen synthesis.  

Furthermore, use of this model in conjunction with more intensive insulin treatment and 

normoglycemia will help to determine if this is the case. 

 

2.5 Conclusion 

In conclusion, the current study demonstrates that 10 weeks of aerobic exercise training is 

not able to improve the deficit in hepatic glycogen content in rats with T1DM.  This was also 

associated with a lack of training-derived improvements in GLUT2, GK and PEPCK protein 

contents, and increases in GS protein in exercised T1DM animals.  These data indicates that the 

capacity to synthesize glycogen is not hindered in these animals and may suggest that metabolic 

signaling deficits are somehow hindering synthesis.   However, GSK-3β inactivation following an 

insulin clamp was unchanged with either exercise training or T1DM, suggesting that an insulin 

signal is capable of reaching the key effectors on GS activation.  Of course the possibility remains 

that other protein kinases capable of phosphorylating GS may be deregulated in T1DM, and 
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provides avenues for future investigation.   Additionally, other insulin functions, such as 

modulation of GS phosphatases as well as GP activity and gluconeogenic flux may all play a role 

in hindering glycogen synthesis.  Finally, it is possible that a “resetting” of blood glucose 

homeostasis is hindering glucose uptake such that glycogenic substrates are not present to drive 

glucose metabolism towards storage.  All of these results indicate the complexity of glycogen 

storage and, despite the known benefits of exercise upon T1DM-related complications, suggests 

that exercise training is not an effective way to improve hepatic glycogen storage in T1DM rats. 
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Appendix A 
A1, Streptozotocin Induction 
             REVISION DATE: 13/06/2012 

 

PURPOSE: 

To induce Type I diabetes in rats 

 

MATERIALS: 

Gloves 

Lab Coat 

Streptozotocin (STZ) 

5X Stock Citric Acid/Citrate Buffer  

- Anhydrous Citric Acid 

- Sodium Citrate Dihydrate 

- MilliQ Deionized Water 

13M HCl 

3 Falcon Tube 

Sterile Filter 

 

EQUIPMENT: 

Biological Safety Cabinet 

Weigh Scale 

pH Meter 

 

PROCEDURE: 

Preparing 5X Citric Acid/Citrate Buffer 

1. For a pH 4.6 buffer at 765 mM (5X stock solution), in a beaker, Add 

i. 13.8g Anhydrous Citric Acid (Sigma) or 15.1g Citric Acid Monohydrate 

ii. 23.8g Sodium Citrate Dihydrate (Sigma) 

Mix into    iii.   175mL of MilliQ water 

The pH should be at 4.6, Add HCl or NaOH to adjust (do not over-shoot pH) 

2. Once the proper pH is obtained, add MilliQ water until you are close to the 200 ml mark (pH 

will move slightly).  If satisfied with the pH, adjust volume in a 250 ml graduated cylinder 

and filter in a 0.2µm filter. 

 

3. Store at room temperature.  This is your 5X stock solution. 

 

Making up Streptozotocin (STZ) for Injection 

**NOTE Animals should be pre-weighed prior to making up STZ to ensure accurate amounts 

of STZ to be prepared. 

 

1. Using pre-made buffer, put 1 mL of buffer in a 50 mL Falcon Tube and add 4 mL of distilled 

water filtered through a 0.2µm syringe filter.  Check the pH.  This gives you a working 

concentration of 153 mM 

 

2. The desired pH is between 4.5-4.7.  Under the fume hood, add 1 drop at a time of 

concentrated HCl to the buffer, checking pH in between until desired pH is reached.     

 

3. Once pH is reached, add 1 mL distilled water (sterile filtered through a 0.2µm syringe filter 

as before).  If pH is below 4.5, restart. 
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4. Weigh out an appropriate amount of STZ for the number of animals (see calculations below) 

that will be injected in a 15 minute time frame. 

 

 

Ex. Rats will be injected at 20mg/kg, so for 10 animals at an ideal weight of 200g (avg. 

weight of rats to be injected), you will require a minimum of 40mg.  

  20mg/kg X 0.2kg = 4mg per animal 

The amount of STZ weighed out should be more than the minimum as some solution will be 

lost in filtering. (4mg (per animal) X 12 rats = 48mg total (0.048g) 

5. Dissolve the STZ into buffer (keeping in mind a comfortable injection volume).  Shake to 

dissolve powder (approx. 1min).  Sterile filter using a 0.2µm syringe filter.   

Ex. 48mg STZ ÷ 3 mL buffer = 16mg/mL solution 

 4mg ÷ 16mg/mL solution = 0.25mL 

6. STZ is time dependent and must be used within 15 minutes 

 

Injecting and Follow-Up of the Animals 

1. Promptly inject each rat with the solution (intraperitoneal) at a dosage rate of 20mg/mL (in 

this example, 0.25mL).  Do not use anymore STZ solution more than 15 minutes after it has 

been dissolved in the sodium citrate buffer. 

 

2. Dispose of any container having come into contact with the STZ (in either powder or 

dissolved form) into a biohazardous waste receptacle.  Dispose of needles into a sharps 

container. 

 

3. Return injected rats to their cage.  Record the date of STZ injection and add a biohazard label 

to the cage (leave biohazard label on cage for at least 3 days following the last injection). 

 

4. Repeat this procedure the following day. 

 

5. Check blood glucose daily.  Diabetes is achieved with two non-fasting blood glucose 

readings of >18 mmol  Diabetes should be achieved after 5-8 injections (i.p. 20mg/kg). 

 

Reference: 

Low dose STZ induction protocol. Animal Models of Diabetic Complications Consortium 

AMDCC Protocols.2003 
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A2, Insulin Pellet Implant 
REVISION DATE: 13/06/2012 

 

MATERIALS: 

LinShin LinPlant Insulin Pellet 

Rat anesthetic - Isoflurane 

Ampicillin 

Sterile water 

1ml syringe with 25 g needle 

10% providone-iodine solution 

gauze (or swab) 

Tissue forceps 

Scalpel handle and blades (or scissors) 

Silk suture 

Needle drivers 

 

EQUIPMENT: 

IsofluoraneAnaesthetic Machine 

Hair clippers 

Heat lamp 

 

Special Safety: 

 

Must don lab coat and gloves before handling rodents.  Any bite or scratch that breaks the skin 

must be thoroughly scrubbed with soap and water (report to Occupational Health and Safety). 

 

PROCEDURE: 

 

Pellet implantation (for a rat): 

 

1. Anesthetize the animal using the isofluorane machine by placing it in the induction chamber. 

Set isoflurane to 4-5% with an O2 flow rate of 1L/min. Open the stopcock valve so gas 

reaches the chamber.  Keep in chamber until the animal is unconscious. 

 

2. Remove the animal and place its nose in the nose cone, reduce the isofluorane to 3% to 

maintain the plane of anesthesia.   

 

3. Shave the area where the pellet is to be implanted.  

 

4. Using gauze (or a swab), apply 10% providone-iodine solution to the skin, followed by 70% 

ethanol, to disinfect the site of insertion. 

 

5. Hold the skin with forceps and make a subcutaneous incision. 

 

6. Cleanse a 12g trocar with 10% providone-iodine solution and insert it through the puncture 

site to a depth of at least 2 cm. 

 

7. Using forceps, briefly immerse the pellet in 10% providone-iodine solution, rinse with saline 

and insert into the subcutaneous region.  

 

8. Use 1 pellet for the first 350g of body weight.  
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9. Pinch the skin closed after the last pellet is inserted. Place a drop of 10 % providone-iodine 

solution over the opening.  

 

10. Close the incision by suturing. 

 

11. Place the animal under a heat lamp and monitor until it recovers from anesthesia. 

 

12. Record on the cage card that insulin pellets have been implanted.  

 

 

Pellet removal: 

1. Anesthetize the animal as described above for implantation.  

 

2. Shave and palpate the area of implantation to locate pellets. Sterilize this area by applying 

10% providone-iodine solution followed by 70% ethanol. 

 

3. Using a scalpel (or scissors), make an incision through the skin superficial to the location of 

the pellets.  

 

4. Using forceps, remove the pellet. Some connective tissue may need to be cut away using 

scissors. Discard the pellet. 

 

5. Close the incision by suturing.  

 

6. Place the animal under a heat lamp and monitor until it recovers from anesthesia. 

 

7. Record on the cage card that the pellets have been removed. 
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A3, Glycogen 
REVISION DATE: 13/06/2012 

 

MATERIALS: 

Tissue samples 

Fume hood 

3 x 100mm glass test tubes 

Potassium hydroxide (KOH) pellets 

Sodium sulfate (Na2SO4) 

95% ethanol 

Glycogen powder 

Phenol crystals 

96-98 % Sulfuric Acid (H2S04) 

490nm spectrophotometer 

 

Standard Curve: 

 

Prepare standard curve with stock glycogen solution (1mg/mL). 

 

 Standard [Glycogen] (mg/ml)  Volume (μl)  Water (μl) 

 1  0.000    0   1000 

 2  0.005    5   995 

 3  0.010    10   990 

 4  0.050    50   950 

 5  0.100    100   900 

 6  0.200    200   800 

 7  0.300    300   700  

   0.500    500   500 

   1.000    1000   0 

 

 

 

Colour Reaction: 

 

Add 1 ml of 5 % phenol. 

  

Rapidly add 5 ml of 96-98 % H2S04. 

 

Let samples stand for 10 min.   

 

Vortex and place in water bath (25 to 30C) for 10 to 20 minutes. 

 

Read tubes at 490 nm. 

 

Procedure: 

 

1. Cut and weigh approximately 20mg of tissue samples and place in glass test tube. 

 

2. Saturate 30% KOH stock solution with sodium sulfate (Na2SO4) 
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3. Add 0.5 ml of 30 % KOH saturated with Na2S04. Make sure that tissue is completely 

submerged. 

  

4. Put caps on tubes and immerse in boiling water bath until homogenous solution is 

obtained (30 minutes). 

 

4. Place tubes on ice. 

 

5. Precipitate glycogen with 1mL of 95 % ethanol for 30 minutes (on ice). 

 

6. Spin tubes at 840 x g (3 000 rpm on Sorval) for 20 to 30 minutes. 

 

7. Remove supernatants and immediately dissolve precipitates in 3mL ddH2O. Do not allow 

precipitated to dry. 

 

8. Pipette 1 ml glycogen solution into 3 separate glass test tubes (3 x 100mm). 

-  3 separate tubes of glycogen solution are necessary for analysis in triplicates. 

 

9. Add 1 ml of 5 % phenol. 

 

10. Rapidly add 5 ml of 96-98 % H2S04. 

 

11. Let samples stand for 10 min.   

 

12.  Vortex and place in water bath (25 to 30C) for 10 to 20 minutes. 

 

13. Read tubes at 490 nm. 

 

14. Calculate glycogen content by: 

 

g of glycogen / 100g tissue = A490 x V x 10
-4

 

  k        v     W 

 

where, V = total volume of glycogen solution; v = volume of aliquot used in colour 

reaction; A490 = absorbance at 490 mn; W = weight of tissue samples in grams; k = slope 

of standard curve; units = 1 per microgram glycogen. 

SOLUTIONS: 

 

Glycogen Stock Solution 

(1mg/mL) 

100mL ddH2O 

100mg Glycogen powder 

 

30% Potassium Hydroxide Stock Solution 

300g Potassium Hydroxide Pellets 

(KOH) 

1L ddH2O 

Reaction is exothermic; therefore, it might be 

necessary to put on ice. 
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SPEC. PROCEDURE: 

 

1. Turn on ~20minutes before needed (TRANS) 

2. Set desired λ& insert appropriate filter 

3. Insert a blank tube (dH2O) 

4. With spec. on “TRANS”, set to 0.000 using “zero” button & while pressing “zero set” 

5. Release “zero set”, but adjust value to 100.00 with spec set to “TRANS” using “100% 

T/OA” adjustments 

6. Set spec from “TRANS” to “ABS” using LHS button 

7. Check that “ABS” reading is 0.00; if not adjust with “100%T/OA” 

8. Check that a true a zero reading has been reached by reading the abs values of 2 other 

blank tubes 

9. Read 3 reagent tubes (blank) and record zero on the middle value using “100%T/OA” 

10. Read all standard samples 

 

Reference:  

Lo, S.L., Russell, J.C., and Taylor, A.W. (1970) J Appl. Physiol, 28(2), 234-6. 
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A4, Western Blot 

 
SEPARATING GEL (makes 4 10% gels) 

 Remove samples and allow to thaw on ice. 

 Clean mini-gel plates with 70% ethanol before use. 

 Assemble gel cassettes and check for leaks. 

 Prepare separating gel in a small beaker with continuous stirring. 

o Prepare a 10% ammonium persulfate (APS) solution; prepare fresh each time.  

Measure out 50mg of APS into a 1.5 mL Eppendorf tube and add 450 μL of 

double distilled water (ddH2O). 

o Add 15.992mL of ddH2O 

o Add 13.333mL of Acrylamide solution
1
; begin to stir 

o Add 10mL of Separating gel buffer
2
 

o Add 400μL sodium 10% SDS
3
 

o Let stir for a minimum of 10 min 

o Add 250μL of 10% APS solution and 25μL of tetramethylethylenediamine 

(TEMED) simultaneously and let stir for about 20 seconds. 

 Quickly pour the gel into each cassette with a Pasteur pipet up to about 1.5cm from the 

top of the short plate. 

 Try to remove most bubbles by tipping the apparatus and/or soaking them up with filter 

paper. 

 Immediately overlay each gel with about 1cm of water-saturated butanol. 

 Allow gel to polymerize 30-60 min 

 Continue preparing samples: 

o Vortex samples and pipet appropriate volumes into a set of labeled tubes 

o Add an equal volume of 2X Lammeli SDS-PAGE sample buffer
4
 to each tube 

(each tube should now be a 1:1 mixture of homogenized sample to sample 

buffer) 

o Mix samples thoroughly, and centrifuge to pull all contents down if necessary. 

 

STACKING GEL (makes 4 4% gels) 

 Clean lane combs with 70% ethanol. 

 Prepare the 4% stacking gel in small beaker with continuous stirring 

o Add 12.2 mL of ddH2O 

o Add 2.6 mL of Acrylamide solution; begin to stir 

o Add 5 mL of Stacking gel buffer
5
 

o Add 200 μL of 10% SDS 

o Let stir for a minimum of 10 min 

 While stirring and once separating gel has polymerized, dump butanol overlay down the 

sink 

 Dry exposed glass plates (above separating gel) with filter paper. 

 After 10 min of stirring, add 125μL of 10% APS and 25μL of TEMED simultaneously 

and let stir for about 20 seconds. 

 Quickly pour the gel into each cassette with a Pasteur pipet up to the top of the short 

plate. 

 Carefully place lane combs in between the two plates, making sure no bubbles are 

trapped beneath it. 

 Allow gel to polymerize for 30-60 min 
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 Continue preparing samples: 

o Bring water in a metal container to 75-80°C and place samples in water.  Heating 

times vary (approximately 3-10min) 

o Remove from hot water and let cool at room temperature before loading onto gel. 

o Mix samples again by vortexing and centrifuge to pull down contents if 

necessary. 

o Prepare 1X running buffer
6
 (25mM Tris, 192 mM glycine, 0.1% SDS) from 10X 

running buffer and refrigerate.  Approximately 1L is needed per electrophoresis 

unit. 

 

STACKING GEL 

 Once stacking gel has polymerized, carefully remove gel cassettes from apparatus and 

transfer to electrophoresis electrode modules. 

o Each BioRad Mini-Gel Protean Tetra Cell electrophoresis unit holds one 

“electrode” module and one “companion” module, and each module holds two 

gels.  If running only two gels, you must use the “electrodue” module. 

o Make sure each cassette is as far down as possible on the modules. 

o Make sure the short plate faces the inside of the module. 

o For electrophoresis to work, you need a closed-in compartment on the inside.  If 

running an odd number of gels, you can place an unused cassette, but the 

“spacer” plate facing the inside, opposite to the lone gel in order to seal off the 

inside compartment. 

o **Make sure you can identify your gels 

 Remove the lane combs and fill each well about halfway with 1X running buffer with a  

Pasteur pipet. 

 Load the correct amount of each sample into each corresponding well using a 

micropipette 

o Based on 1:1 sample to sample buffer mixture, each well will contain a different 

volume of sample to equalize protein amounts. 

o Load 5 μL of chemiluminescent ladder (BioRad Precision Plus Protein Standards 

Kaleidoscope #161-0375 or #161-0324) 

 Fill the inside compartment of the electrode modules with 1X running buffer to a level 

above the short plate to cover the wells. 

 Fill the rest of the tank (outside the gel cassettes) with cold 1X running buffer to the same 

level. 

 

ELECTROPHORESIS 

 Place electrophoresis unit into a second larger container and cover it. Ensure the 

electrodes match the lid: ie red to red and black to black. 

 Fill container with ice 

 Connect lid electrodes to the power unit. 

 Generally, run at a low voltage (50-70) until the dye has passed through the stacking gel.  

Then turn it up to 110-125 for the remainder of the run. 

 As this is taking place, prepare the transfer buffer
7
 (25 mM Tris, 192 mM glycine, 0.1% 

SDS, 20% methanol), and cut filter paper and nitrocellulose. 

 Put a layer (arbitrary volume) of cold transfer buffer into a baking dish and soak the 

nitrocellulose, filter paper and brillo pads 

 

TRANSFER 

 Once electrophoresis is complete, unplug unit and remove lid. 
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 Using the “wedge” piece, separate the short and spacer plates to reveal the gel.  Slice off 

the stacking gel. 

 Dislodge the gel from the spacer plate and assemble the “sandwich” in the transfer 

apparatus: 

o Place the “positive” end (white) of the sandwich frame on the bottom.   

o Stack the individual components as follows: 1 brillo pad, 2 filter papers, 1 

nitrocellulose piece, gel, 3 filter papers, 1 nitrocellulose piece, gel, 2 filter papers, 

1 brillo.  The “negative” end (black) of the sandwich frame is on top, and secures 

the sandwich.  

 

 
 Apply pressure on the sandwich before closing to try to remove bubbles between the gel 

and nitrocellulose. 

 Place the closed sandwich in the transfer electrode module and place this in the transfer 

tank. ****Remember to orient it correctly in the module. 

 Place an ice pack in the tank and fill it with cold transfer buffer. 

 Place the transfer unit into a second larger container and cover the unit with the lid. 

o Ensure electrodes match on the module and lid (ie. red to red and black to black) 

 Fill container with ice. 

 Connect the lid electrodes to the power unit. 

 Generally, transfer is 70V for 90min 

 While transfer is taking place, prepare 1X Tween TBS
8
 (TTBS; 10mM Tris pH 7.5, 100 

mM NaCl, 0.1% Tween-20) from 10X TBS, and blocking solution 
9a,b

. 

o Prepare 2L of TTBS for 4 blots 

o Select small, shallow containers to incubate blots 

o Prepare 25-30 mL of blocking solution per container. 

 

BLOCKING 
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 Once transfer is complete, unplug from the power unit and remove the lid from the 

transfer tank. 

 Remove each piece of nitrocellulose and place in the prepared blocking containers with 

blocking solution. 

 Place only two pieces of nitrocellulose “blots” per container and ensure they are back-to-

back. 

 Allow to incubate for 1 hr at room temperature with gentle shaking (~40 rpm). 

 Prepare the primary antibody solution
10,11

 

 When blocking is complete, wash blots once with TTBS 

o Dump blocking solution down the sink and replace with TTBS. 

o Allow to wash for 5 min at room temperature with vigorous shaking (~90 rpm). 

 

PRIMARY ANTIBODY 

 Dump TTBS down the sink and replace with prepared antibody solution. 

 Allow blots to incubate overnight (12-16 hours) at 4°C with gentle shaking (~60 rpm). 

 Before primary incubation is stopped, prepare the secondary antibody solution
12

 in 50mL 

falcon tubes. 

 Once primary antibody incubation is done, remove any unbound primary antibody with 

three successive washes and rinse in TTBS (10 min with vigorous shaking ~90rpm). 

 

 

 

SECONDARY ANTIBODY 

 Dump TTBS down the sink and replace with the previously prepared secondary antibody 

solution
12

. 

 Allow blots to incubate for 60 min at room temperature with gentle shaking (~40 rpm). 

 Prepare 1X Tris buffered saline
13 

from 10X TBS 

o Prepare 100mL of TBS for 4 blots (2 containers). 

 Once secondary antibody incubation is done, remove any unbound secondary with three 

successive washes and rinses in TTBS (10 min with vigorous shaking ~90 rpm). 

 After last TTBS rinse, perform one final rinse with TBS
13

 and leave blots in an 

unspecified volume of TBS. 

 

CHEMILUMINESCENT 

 Turn on the BioRad Chemidoc XRS System, open the Quantitiy One 1-D analysis 

program 

o Select band analysis guide from the toolbar, and a pop-up with a  list of items 

should appear on the top right of the screen 

o Click on “select scanner” and select “Chemidoc XRS”  

o In the control window, click “Live/Focus” and press “Epi White” on the 

chemidoc system. 

 Clean the inside surface of the Chemidoc with 70% ethanol 

 Prepare BioRad chemiluminescence substrate in a 1.5mL Eppendorf tube 

o Pipet 500 μL of Luminol solution and 500 μL of peroxide solution in the 

Eppendorf and mix. 

 Place blots on transparency and pipet chemiluminescence solution over blot.  Close 

transparency. 

 Place blot in chemidoc drawer and align it to the center 
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 In the control window, check “highlight saturated pixels” box near the bottom, and click 

the “Open Iris” button repeatedly. 

o Saturated pixels will be displayed red, and there should be a “pulsating” ellipse 

of red pixels in the center of the display. 

o Continue pressing this button until the size of the ellipse is no longer noticeably 

increasing. 

 Close the chemidoc door and press “Epi White” again to turn off the light. 

 Click “freeze” in quantity one and click “Live Acquire” 

 A pop-up appears and you can decide exposure parameters 

 Allow the camera to detect chemiluminescence for the total exposure time. 

o Choose an image in which your bands of interest are just on the verge of 

saturation. 
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STACKING GEL 
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