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ABSTRACT 

 

Reinforced concrete (RC) pipes are widely used as open channels (non-pressurized pipes) for 

sewage and storm water conveyance. RC pipes have generally achieved a reliable long-term 

performance. Depending on multiple parameters (e.g. pipe diameter, pipe wall thickness, 

required strength, etc.) the pipe may have up to three welded reinforcement cages in order to 

resist anticipated loads. Each cage is an assembled unit of steel reinforcement consisting of 

circumferential and longitudinal bars or wires. The fabrication process of steel cage 

reinforcement is time- and labour-consuming. Thus, eliminating the steel cage reinforcement 

will yield an overall reduction in the production cost of precast concrete pipes. Dispersed 

steel fibres can be an effective alternative for the reinforcement of concrete pipes.  

The aim of this study is to explore the use of steel fibres as reinforcement in dry-cast 

concrete pipes. Mechanical properties of dry-cast steel-fibre reinforced concrete (DCSFRC) 

fabricated using multiple steel fibre types at various dosages were characterized. 

Consequently, precast pipes reinforced with Dramix RC-65/35-CN and Dramix RC-80/60-

CN fibres at various dosages were fabricated. An extensive experimental program was 

carried out in order to evaluate the structural performance of the full-scale steel fibre-

reinforced concrete (SFRC) pipes that were produced in comparison to plain concrete (PC) 

and RC pipes. Precast pipes had internal diameters of 300, 450, and 600 mm as well as a 

Type C wall thickness. The structural performance of pipes was characterized using both the 

continuous and cyclic three-edge-bearing tests (TEBT). Furthermore, the soil-pipe interaction 

of buried full-scale SFRC pipes was investigated. Finally, a three dimensional non-linear 

finite element model of the TEBT of SFRC pipes was developed. Subsequently, a parametric 

study covering multiple pipe configuration and reinforcement parameters was conducted. 

Results showed that hooked-end fibres with the largest fibre aspect ratio (Dramix RC-

80/60-CN) induced the best flexural performance of DCSFRC specimens. While crimped 

fibres (Novocon XR) were the least effective at enhancing the flexural strength and post-peak 

behaviour of DCSFRC.  The load carrying capacity of SFRC pipes increased with increased 

fibre dosage. Results of the TEBT for 300 mm diameter pipes showed that the reinforcement 

specified for Class V pipes in ASTM C76 “Standard Specification For Reinforced Concrete 
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Culvert, Storm Drain, And Sewer Pipe” could be achieved using a steel fibre dosage of 20 

kg/m³, while a fibre dosage of 30 kg/m³ was sufficient for 450 and 600 mm diameter pipes to 

satisfy the same strength class (Class V). Furthermore, provided using a sufficient fibre 

dosage, SFRC pipes exhibited higher residual strengths and less deformations than that of RC 

pipes when subjected to small to moderate loading levels. In addition, results showed that 

using a hybrid system of short (Dramix RC-65/35-CN) and long (Dramix RC-80/60-CN) 

fibres did not result in synergetic effects. 

Full-scale testing results of buried SFRC pipes indicated that the pipes could sustain 

live loads consisting of a fully loaded 625CL Standard Ontario Truck without exhibiting any 

cracks or significant deformations, even when the pipe was installed in the least quality 

installation type (Type IV). This indicated that the current design recommendations for the 

pipe wall thickness in ASTM C76 (Type C wall) are overly conservative. Furthermore, it was 

found that the post-cracking behaviour of buried SFRC pipes was more sensitive to the 

installation type than to the type of steel fibre reinforcement.  

Finally, the developed FE model was able to predict the ultimate D-loads of SFRC 

pipes with an average error of 6.50% when compared to D-loads obtained from testing SFRC 

pipes using the TEBT. The findings of the FE parametric study were presented in a tabular 

form that can be used as a design aid supplementary to the newly released ASTM C1765 

“Standard Specification for Steel Fiber Reinforced Concrete Culvert, Storm Drain, and 

Sewer Pipe”.   

The experimental findings of this study should assist the precast concrete industry in 

producing more economical SFRC pipes without the need for costly and time consuming 

welded steel cage reinforcement. The numerical and analytical study findings can provide a 

simple and rational tool for the design of such SFRC pipes.   

 

Keywords: Steel, fibre, reinforced concrete, precast, pipe, hybrid fibres, three-edge-bearing, 

full-scale, testing, structural performance, ultimate load, diametrical deformation, buried 

concrete pipe, soil-pipe interaction, standard installation, finite element, modelling.  
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CHAPTER ONE 

 

 

 

1 INTRODUCTION 

 

1.1 GENERAL 

Reinforced concrete pipes have been in wide-spread use for many decades in North America. 

They have often been used as open channels (non-pressurized pipes), particularly for the 

conveyance of sewage and storm water. They have generally shown reliable long-term 

performance. In the late 1890’s, the manufacturing of precast concrete pipes became a 

recognizable industry in Ontario. The Ontario Concrete Pipe Association (OCPA) was 

founded in 1957. OCPA has joined several industrial and governmental agencies to establish 

standards for the manufacture of high quality concrete pipe products. The Canadian Concrete 

Pipe Association (CCPA) was founded in 1992 (OCPA, 2010).  

Due to the advent of new pipe materials such as corrugated steel, PVC and HDPE, 

which have been gradually introduced into the market over the last half a century, reinforced 

concrete pipes have lost some of their market share.  Pipes made from these materials are 

structurally classified as flexible, while concrete pipes are rigid pipes. A rigid pipe is stiffer 

than the surrounding soil. It relies on its own resistance as a ring to support external loads. 

Conversely, a flexible pipe relies on the horizontal thrust from the soil at its sides to resist 

vertical loads without excessive deformation. A flexible pipe has to sustain at least 10% 

decrease in its vertical diameter without any risk of damage to the material (Young, 1984). 

Thus, concrete pipes have the advantage of handling low quality bedding soils without 

affecting the hydraulics of the flow. 
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New pipe materials are relatively lighter in weight than concrete, which enables the 

manufacturing of longer pipe segments; leading to an easier installation process. The length 

of one concrete pipe segment is 2.44m, while that of an HDPE pipe can be as long as 13m. 

From a durability perspective, concrete pipes are more susceptible to chemical and biological 

attacks than plastic pipes. On the other hand, concrete pipes have superior impact and fire 

resistance. The final pipe selection is usually a compromise between the initial installation 

cost and the long-term performance.  

 

1.2 RESEARCH NEEDS AND MOTIVATION 

The structural applications of steel fibre-reinforced concrete (SFRC) have recently been 

increasing due to improvements it imparts, such as increased toughness, impact and fatigue 

resistance, and enhanced durability. However, detailed and commonly accepted guidelines 

for the design of SFRC structures have not been included in main building codes. The 

motivation behind this research project is to develop a more competitive concrete pipe by 

using steel fibres to eliminate the pipe’s steel reinforcement cage. Manufacturing of the steel 

cage from conventional steel reinforcement requires special bending, welding, and placement 

machinery, and is thus time-consuming.  Pre-manufactured steel fibres, on the other hand, 

can be added in the mixer of any concrete batch plant similar to other mixture ingredients 

without significant process modification. Steel fibre-reinforced concrete can be produced and 

cast in pipe moulds similar to ordinary plain concrete. Therefore, SFRC pipes can be an 

economical alternative to conventionally reinforced concrete pipes.  

 

1.3 SPECIFIC RESEARCH OBJECTIVES 

This research program aims at exploring the adequacy of using steel fibres to replace 

conventional steel reinforcement in precast concrete pipes. Savings in the cost of materials 

and in the work hours spent in building steel cages for pipe reinforcement will yield less 

costly and more competitive precast concrete pipes. The specific research goals are to:   
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1) Conduct an exploratory study on the engineering properties of dry-cast steel fibre- 

reinforced concrete fabricated using different types and dosages of steel fibres, in order 

to recommend steel fibre types suitable for the manufacturing of full-scale SFRC pipe 

specimens. 

2) Produce full-scale 300, 450, and 600 mm diameter precast pipes fabricated with various 

dosages of steel fibres as the sole reinforcement and evaluate the mechanical 

performance of the produced SFRC pipes using the three-edge-bearing test compared to 

that of plain concrete (PC) and regularly reinforced concrete (RC) pipes. 

3)  Determine steel fibres dosages that are sufficient for 300, 450 and 600 mm diameter 

SFRC pipes to satisfy the strength requirements of Class V pipes according to the 

ASTM C497 standard. 

4) Study the behaviour of buried full-scale SFRC pipes and the soil-pipe interaction for 

pipes installed in Type III and Type IV standard installations. 

5) Develop a three-dimensional finite element model that can simulate the three-edge-

bearing test of SFRC pipes. Utilize the developed model to conduct a parametric study 

to predict the load-deformation curves for different combinations of pipe strength/pipe 

diameter/ wall thickness/ steel fibres type/ steel fibres dosage. 

6) Develop a simplified design tool that can be used in conjunction with the ASTM C1765 

standard for the design SFRC pipes.        

  

1.4 THESIS OUTLINE 

This dissertation has been prepared according to the integrated-article format predefined by 

the Faculty of Graduate Studies at Western University, London, Ontario, Canada. It consists 

of seven chapters covering the scope of this study: performance and modelling of precast 

steel fibre-reinforced concrete pipes. Substantial parts of this thesis have been published, 

accepted, or submitted for possible publication in peer-reviewed technical journals and 
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international conferences. Chapter 1 provides a brief introduction along with the research 

motivation, objectives, and original contributions to research. 

Chapter 2 provides a brief overview of precast concrete pipes, standards and 

specifications regulating the industry, testing methods and design procedures. In addition, a 

brief review of current structural applications of SFRC, focusing on precast concrete pipes, is 

also provided.   

Chapter 3 presents an experimental program covering the mechanical characterization of 

multiple dry-cast SFRC (DCSFRC) mixtures fabricated using four different types of steel 

fibres at different dosages. Consequently, full-scale 300 mm diameter precast SFRC pipe 

specimens were fabricated using two different types of steel fibres that were recommended 

based on the findings of the previous step. SFRC pipes were tested using the continuous 

procedure of the three-edge-bearing test specified in ASTM C470.      

Chapter 4 presents an experimental program covering the fabrication and analysis of the 

mechanical performance of full-scale 450 and 600 mm diameter precast SFRC pipe 

specimens. SFRC pipes were fabricated using the recommended steel fibre types at three 

different dosages. SFRC pipes were tested using the cyclic procedure of the three-edge-

bearing test specified in the European standard EN 1916:2002.     

Chapter 5 evaluates the structural behaviour and soil-pipe interaction of buried full-scale 

SFRC pipes compared to that of plain and regularly reinforced concrete pipes. Sound (un-

cracked) and cracked SFRC pipes were tested under realistic live loads.  

Chapter 6 presents the development, calibration, and further verification of a non-linear 

three-dimensional finite element model of SFRC pipes under the three-edge-bearing test. 

Furthermore, a parametric study, covering multiple parameters, was conducted and its results 

were presented. In addition, design tables for SFRC pipes with diameters ranging between 

300 mm and 1200 mm are also introduced.    

Chapter 7 summarizes the research conclusions and future recommendations. 
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1.5 ORIGINAL CONTRIBUTIONS 

This research fills a knowledge gap concerning precast SFRC pipes. Previous studies 

reported using several types and dosages of steel fibres in the fabrication of SFRC pipes, 

however, the selection of the used steel fibre types and dosages was not based on a 

systematic rational approach. Although, the problem of SFRC pipe design encompasses 

multiple variables, these studies only dealt with specific design scenarios (i.e. ultimate loads 

achieved by pipes with a specific combination of pipe diameter, wall thickness, fibre type, 

and fibre dosage), and thus lacked a comprehensive approach to the problem. Furthermore, 

the structural performance of buried SFRC pipes and the soil-pipe interaction are yet to be 

explored.  

This study is divided into four main phases, each aiming at addressing part of the 

problem. The specific original contributions of this research include:  

1) Providing a detailed study of the mechanical properties of DCSFRC. Findings and 

recommendations of this stage justified the selection of the steel fibre type and dosage 

used in the full-scale production of SFRC pipes. 

2) Providing the technical support that facilitated, for the first time in Canada, the 

production of industry full-scale SFRC pipes with steel fibres as the sole reinforcement. 

Several adjustments were applied to the automated production system employed in the 

sponsoring precast concrete plant to accommodate the new product.  

3) Conducting a detailed study of and comparison between the mechanical behaviour of 

PC, RC, and SFRC pipes tested under both of the continuous and cyclic three-edge-

bearing test. Findings of this study demonstrated the superiority of SFRC pipes over RC 

pipes. Therefore, the precast concrete pipe industry can promote the new product with 

scientifically substantiated data.  

4) Providing, for the first time in the literature, a detailed study on the soil-structure 

interaction of SFRC pipes. Both cases of sound (un-cracked) and cracked pipe were 

considered.  
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5) Finally, developing design tables for SFRC pipes of internal diameter ranging between 

300 and 1200 mm.   
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CHAPTER TWO 

 

 

 

2 LITERATURE REVIEW 

 

2.1 PRECAST CONCRETE PIPES  

As mentioned earlier; the precast concrete pipe industry has been well established in Ontario 

and Canada for a long time. Nowadays, this industry is governed by provincial, national, and 

international standards. These standards (outlined in Table 2-1) cover the manufacturing, 

materials and product specifications, testing and construction processes. Recently, the ASTM 

standard C1765 “Specification for Steel Fibre Reinforced Concrete Culvert, Strom Drain, 

and Sewer Pipe” for SFRC pipes was published to regulate the production of SFRC pipes in 

the US. However, currently there is no Canadian standard for SFRC pipes. 

 

2.1.1  Manufacture of Precast Concrete Pipes  

The process of manufacturing concrete pipes starts with the assembly of the reinforcement 

cage, if any. Cage machines, mandrels, and wire rollers are the three most common means of 

fabricating reinforcing cages in a concrete pipe plant. A concrete pipe can have up to three 

steel cages depending on its diameter, wall thickness and the required pipe strength. 

Globally, five common methods are used in concrete pipe manufacturing. Four of these 

methods use mechanical means to place and compact a dry concrete mixture into the pipe 

form. These are centrifugal, dry cast/vibration, packerhead, tamp, and wet cast. The fifth 

method (wet cast method) uses a more conventional wet mix and casting procedure. In the 

dry cast/vibration method, the mould consists of an inside core mould and an outside mould.  



8 

 

 

Table 2-1 Standards regulating the precast concrete pipe industry and other related 

precast products in North America 

American Society for 

Testing and Materials, 

ASTM  

Canadian Standards 

Association, CSA  

Ontario Provincial Standard 

Specifications, OPSS 

C14 “Specification for 

Concrete Sewer, Storm Drain, 

and Culvert Pipe” 

A257.0 “Methods for 

Determining Physical 

Properties of Concrete Pipe” 

407 “The Construction of 

Manholes, Catch Basins, 

Ditch Inlets and Valve 

Chambers” 

C76 “Specification for 

Reinforced Concrete Culvert, 

Storm Drain, and Sewer Pipe” 

A257.1 “Concrete Culvert, 

Storm Drain and Sewer Pipe” 

408 “Adjusting or Rebuilding 

Manholes, Catch Basins, 

Ditch Inlets and Valve 

Chambers” 

C118 “Specification for 

Concrete Pipe for Irrigation or 

Drainage” 

A257.2 “Reinforced Concrete 

Culvert, Storm Drain and 

Sewer Pipe” 

422 “Precast Reinforced 

Concrete Box Culverts and 

Box Sewers” 

C443 “Specification for Joints 

for Circular Concrete Sewer 

and Culvert Pipe Using 

Rubber Gaskets” 

A257.3 "Joints for Circular 

Concrete Sewer and Culvert 

Pipe Using Rubber Gaskets" 

1351 “Components for Precast 

Reinforced Concrete 

Catch Basins, Manholes, 

Ditch Inlets and Valve 

Chambers” 

C665 “Specification for 

Reinforced Concrete D-Load 

Culvert, Storm Drain, and 

Sewer Pipe” 

A257.4 “Precast Circular 

Concrete Manhole Sections, 

Catch Basins & Fittings” 

 

1820 “Circular Concrete Pipe” 

 

C497 “Test Methods for 

Concrete Pipe, Manhole 

Sections, or Tile” 

 

 

1821 “Precast Reinforced 

Concrete Box Culverts and 

Box Sewers” 

 

C497 “Standard Specification 

for Steel Fiber Reinforced 

Concrete Culvert, Storm 

Drain, and Sewer Pipe” 

 

 

 

 

That assembly is placed vertically on a supporting plate and the reinforcement cage with its 

spacers is placed within the mold space. Concrete is fed in under mechanical vibration. When 

the mould is filled, a ring descends onto the top of the concrete and applies pressure (Levitt, 

2007). An electronic management system regulates the supply of concrete and the application 
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of the pressure head. The form is removed immediately, as the newly formed pipe can 

support its self-weight. The pipe is then transferred to the curing room. The most common 

curing method in the concrete pipe industry is the low pressure steam curing. For instance, 

Haktanir et al. (2007) reported a concrete pipe-curing regime as follows: after the removal of 

the steel mould, the pipe rests at room temperature in the plant for 6 hours. The first phase of 

curing is increasing the ambient temperature at a rate of 12 oC per hour. The second stage is 

the application of steam curing at a constant temperature of 60 oC for a period of 12 hours. 

The third stage is cooling back to room temperature at the rate of 12 oC per hour.  

 

2.1.2 Concrete Mixture  

The nature of the precast concrete pipe manufacturing mandates the use of especially 

designed concrete mixtures. Minimizing the time of production requires immediate removal 

of the concrete pipe from its mould. Thus, the fresh concrete should be sufficiently cohesive 

to maintain its shape after consolidation. Hence, dry cast concrete or zero-slump concrete is 

widely used in precast concrete manufacturing. The general rule is to use as much water as 

the pipe can tolerate without cracking or slumping when the mould is stripped off. The term 

zero-slump concrete refers to concrete having a slump from zero to 25 mm (ACI 211.3, 

2009). Generally, such concrete has poor workability when compacted by hand rodding; 

however, acceptable workability can be achieved when using vigorous mechanical vibration 

and other consolidation techniques as described earlier. The most commonly used technique 

for measuring the consistency of mixtures having a slump of less than 25 mm is the Vebe 

apparatus. Table 2-2 shows a comparison between results obtained using the Vebe test and 

the conventional slump test (ACI 211.3, 2009).  

The cohesiveness of the mixture can be improved by increasing the amount of fines in 

the concrete mixture. This can be achieved by using well-graded aggregates and reducing the 

volume of the coarse aggregate. The maximum nominal size recommended for aggregates 

used in the production of precast concrete pipes is 19 mm (ACI 211.3, 2009). Supplementary 

cementitious materials such as fly ash, silica fume and ground granulated blast furnace slag 

can be added to increase the cohesiveness and decrease segregation. Such admixtures 
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increase the mechanical strength of concrete at early and/or late ages, decrease cracking, and 

permeability, thus leading to higher resistance to chemical attack (Li, 2011). 

 

Table 2-2 Comparison of consistency measurements for slump and Vebe apparatus 

Consistency description Slump, mm Vebe, sec 

Extremely dry - 32 to 18 

Very stiff - 18 to 10 

Stiff 0 to 25 10 to 5 

Stiff plastic 25 to 75 5 to 3 

Plastic 75 to 125 3 to 0 

Very plastic 125 to 190 - 

 

 

2.1.3 Three Edge Bearing Test and D-Load 

The recognized standard test for the mechanical strength of a reinforced concrete pipe is the 

Three-Edge-Bearing test (TEBT). In this test, the load is applied by a hydraulic jack as a line 

load along the crown of the pipe, while the pipe is supported on a two closely spaced bearing 

strips along the invert as sketched in Fig. 2-1.  

The pipe performance is evaluated based on two criteria; these are the ultimate 

crushing load of the pipe Pult (or the ultimate strength) and the load that produces a crack 

with a width of 0.3 mm and a length of 300 mm P0.3 (or the design strength). Both values are 

expressed in kN. Current CSA and ASTM standards define the ultimate and design strength 

of reinforced concrete pipes in terms of D-loads. A D-load is the total load per meter of pipe 

length divided by the inside diameter of the pipe in millimeter N/m/mm. Thus, a group of 

pipes that have the same strength will support the same D-load regardless of the pipe 

diameter. Pipe classification based on D-load requirements according to CSA A257.2 and 

ASTM C76 standards are shown in Table 2-3. These standards provide guidelines for the 

circumferential reinforcement (inner and outer cages and elliptical cage, if any) and wall 

thickness required for pipes that have diameters ranging between 300 mm and up to 3600 

mm to achieve the designated D-load for their classes. 
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ASTM C655 “Standard Specification for Reinforced Concrete D-Load Culvert, Storm 

Drain, and Sewer Pipe” allows a reinforced concrete pipe to be designed, using the direct 

design method (Section 2.1.4), to support a specific D-load (i.e. D-Load that does not fall 

under strength classes specified in ASTM C76). In such case, the pipe designation shall be 

the D0.3 load. The relationship between the ultimate strength Dult and D0.3 shall be 1.5 for 

design strength designations up to 100 N/m/mm, and of 1.25 for design strength designations 

greater than 150 N/m/mm.  The factor can be prorated for design strength designations 

between 100 and 150 N/m/mm. 

 

 

Figure 2-1: Three-edge-bearing test setup. 

 

The European standards EN 1916:2002 “Concrete Pipes and Fittings, Unreinforced, 

Steel Fibre and Reinforced” describe a different procedure for conducting TEBT for SFRC 

pipes (Fig. 2-2-a): 
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Table 2-3 Classification of reinforced concrete pipes based on required design and 

ultimate D-Load 

ASTM Class CSA Class 
Design Strength 

D0.3 (N/m/mm) 

Ultimate Strength 

Dult (N/m/mm) 

I - 40 60 

II 50D 50 75 

III 65D 65 100 

IV 100D 100 150 

V 140D 140 175 

 

 Stage 1-2: The pipe should withstand a load of 0.67 Fn, where Fn is the minimum 

crushing load required, appropriate to its nominal size and strength class for one minute 

without showing any crack. 

 Stage 2-3: If no crack is found, the load is taken to the ultimate (collapse) load Fu that is 

greater than Fn. 

 Stage 4-5: After the sustained load has fallen to 95% or less of the ultimate (collapse) 

load, it is released, then reapplied to 0.67 Fn and sustained for one minute. 

 

This procedure is more rigorous than the procedure specified for conventionally 

reinforced pipes since SFRC pipes have to show no sign of cracks at a load of 0.67 Fn, 

while conventionally reinforced pipes are allowed to exhibit a surface crack of 0.3 mm 

width and a length of 300 mm. In addition, conventionally reinforced pipes do not have to 

conform to the requirements of stages 4 and 5 of the test. The cyclic loading procedure is 

specified to ensure adequate fibre-bond in the post-cracking stage of SFRC pipes.  

 

Figure 2-2-b summarizes the TEBT procedure specified in ASTM C1765 for SFRC 

pipes testing. The pipe ultimate D-load (Du) shall exceed the required D-load specified for 

the targeted pipe class (DTest). When Du is reached, the pipe is de-loaded immediately and 

then reloaded up to DService. Similar to EN 1916:2002, DService equals to 0.67 Du.  Table 2-4 

shows SFRC pipes classification according to ASTM C1765. 
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Figure 2-2 TEBT for SFRC pipes according to a) EN 1916:2002, and b) 

ASTM C1765. 

 

 

Table 2-4 SFRC pipes strength requirements according to ASTM C1765 

Pipe Class 
Dservice 

(N/m/mm)  

DTest 

(N/m/mm) 

I 40 60 

II 50 75 

III 67.5 100 

IV 100 150 

V 150 225 
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2.1.4 Design Methods 

The structural design of reinforced concrete pipes is a relatively complex problem due to the 

curved nature of the pipe itself and the soil-pipe interaction involved in both supporting the 

pipe and the load transfer to the pipe barrel. The straining actions occurring in the pipe 

section due to the applied loads depend greatly on the way the pipe was installed.  

 

2.1.4.1 Soil-Pipe Construction 

The soil-pipe construction consists of the precast reinforced concrete pipe, in-situ soil in the 

foundation below the pipe and between the vertical or slopping trench walls, and the placed 

soils (constructed bedding and backfill) below, around and above the pipe up to the surface 

(ACPA, 1993).  

There are three main types of soil-pipe construction methods; namely trench type 

constructions, embankment type constructions, and jacking type constructions. Trench type is 

when the pipeline is located completely below the natural ground surface in narrow 

excavations, and then the backfill of in-situ soil is placed on top and around the pipe up to the 

surface. Embankment type construction is divided into two groups: positive and negative 

projection. In positive projection construction, the pipe is installed with the top of the pipe 

projecting above the surface of the natural ground or compacted fill, and then covered with 

earth fill. In negative projection construction, the pipe is installed in relatively shallow 

trenches of such depth that the top of the pipe is below the level of the natural ground 

surface, and then covered with earth fill to a height appreciably greater than the distance from 

the natural ground surface to the top of the pipe.  

Figure 2-3 shows pipe terminology and the standard trench/ embankment construction. 

Do and Di are the outside and inside diameter of the pipe, respectively. Overfill soil 

categories are summarized in Tables 2-5 and 2-6. In jacking-tunneling type construction, the 

pipe is installed simultaneously with the excavation process. In this construction type, the 

pipe will be subjected to extra axial load due to the jacking pressure.   
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Figure 2-3 Standard Trench/ Embankment Construction. 

 

2.1.4.2 Standard Installations and Bedding Factors 

Bedding is the placed or natural soil immediately below or adjacent to the bottom of the pipe 

that is in place before the pipe is positioned in the construction (ACPA, 1993). The bedding 

factor is a factor that relates the behavior of the pipe under the field condition of loading to 

that under the more severe three-edge–bearing test. The bedding factor for a particular 

pipeline, and consequently the supporting strength of the buried pipe, depends upon two 

characteristics of the installation: width and quality of bedding and magnitude of the lateral 

pressure against the sides of the pipe.  
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Table 2-5 Standard installations soil and minimum compaction requirements 

Installation Type Bedding Thickness 
Haunch and Outer 

Bedding 
Lower Side 

Type 1 

Do/ 24 minimum, not 

less than 75 mm. If 

rock foundation, use 

Do/ 12 minimum, not 

less than 150 mm. 

95% Category I* 

90% Category I, 95% 

Category II, or 100% 

Category III 

Type 2 

Do/ 24 minimum, not 

less than 75 mm. If 

rock foundation, use 

Do/ 12 minimum, not 

less than 150 mm. 

90% Category I, or 

95% Category II 

85% Category I, 90% 

Category II, or 95% 

Category III 

Type 3 

Do/ 24 minimum, not 

less than 75 mm. If 

rock foundation, use 

Do/ 12 minimum, not 

less than 150 mm. 

85% Category I, 90% 

Category II, or 95% 

Category III 

85% Category I, 90% 

Category II, or 95% 

Category III 

Type 4 

No bedding required, 

except if rock 

foundation, use Do/ 

12 minimum, not less 

than 150 mm. 

No compaction 

required, except if 

Category III, use 

85% Category III 

No compaction 

required, except if 

Category III, use 

85% Category III 

* “95% Category I” refers to Category I soil material, as indicated in Table 2-6, with 

minimum standard Proctor compaction of 95%. 

 

There are two general approaches for the design of reinforced concrete pipes; the 

indirect design method and the direct design method. Both methods are valid and widely 

accepted. The indirect design method follows an empirical procedure that was first 

introduced by (Spangler, 1933). The required pipe strength is determined as a ratio between 

the total applied field loads to the bedding factor. Based on the required D-load, the strength, 

reinforcement requirement and pipe wall thickness are given in the previously mentioned 

standards (CSA A-257, ASTM C76).  
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Table 2-6 Equivalent USCS and AASHTO soil classifications for soil designations 

SIDD Soil 

Soil Types Percent Compaction 

USCS AASHTO 
Standard 

Proctor 

Modified 

Proctor 

Gravely Sand 

(Category I) 

SW, SP, GW, 

GP 
A1, A3 

100 

95 

90 

85 

80 

61 

95 

90 

85 

80 

75 

59 

Sandy Silt 

(Category II) 

GM, SM, ML, 

Also GC, SC 

with less than 

20% passing 

#200 sieve  

A2, A4 

100 

95 

90 

85 

80 

49 

95 

90 

85 

80 

75 

46 

Silty Clay 

(Category III) 

CL, MH, GC, 

SC 
A5, A6 

100 

95 

90 

85 

80 

45 

90 

85 

80 

75 

70 

40 

 

The direct design method follows a more rational procedure in terms of moment, thrust, 

and shear to determine the required pipe strength. It was first introduced by the ACPA in 

1993 and it is incorporated in the American Society of Civil Engineers Standards as “ASCE 

Standard Practice for Direct Design of Buried Precast Concrete Pipe in Standard Installation 

(SIDD)”. The method allows for the design of reinforcing for concrete pipe based on five limit 

states: 1) reinforcement tension, 2) concrete compression, 3) radial tension, 4) diagonal tension, 

and 5) crack control.  

Moreover, there are four standard installations introduced by the American Concrete 

Pipe Association (ACPA) as a result of a long range research program that started in 1970. 

Although these standard installations (beddings) were introduced along with the Direct 

Design method, they have been incorporated in the indirect design method to replace the 

historical A, B, C and D beddings that were introduced by Marston (1930) and Spangler 

(1933). These four standard installations provide a wide range of soil-pipe interaction 

scenarios due to variation in the quality of the backfill soil or quality of the compaction. Type 

1 installation requires a lower strength pipe, while Type 4 installation requires a higher 
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strength pipe, because it was developed for conditions of little or no control over materials or 

compaction. These four installations are well explained in (ACPA, 2011). Tables 2-5 and 2-6 

illustrate the soil categories associated with the four installation types. 

It is worth mentioning that both design methods generally use similar approaches in 

calculating the loads applied on the pipeline. Sections 2.1.4.3 and 2.1.4.4 will explain both 

methods in further detail. 

 

2.1.4.3 Indirect Design Method 

The indirect design method requires the following procedure: 

1. Establishing the pipe diameter, wall thickness, and type of standard installation 

2. Determination of the vertical earth load and live load forces acting on the pipe 

3. Determination of the bedding factors  

4. Applying factor of safety 

5. Determination of required pipe D-Load strength 

The diameter of the pipe is usually determined by the hydraulic design of the pipeline. The 

wall thickness is given in the ASTM C76 standard. The wall thickness, h in mm is 

determined as follows: 

                                     Wall A:  h = 
12

iD
                                                                Eq. 2-1 

                                    Wall B:  h = 25
12

iD
                                                       Eq. 2-2 

                                    Wall C:  h = 44
12

iD
                                                          Eq. 2-3 

where Di is the internal pipe diameter in mm. The selection of a standard installation is based 

on the anticipated quality of the construction process. A Type 1 standard installation requires 

the highest construction quality and degree of inspection. Conversely, a Type 4 standard 

installation requires virtually no construction or quality inspection. Thus, for the same depth 
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of installation, Type 4 installation will require a higher strength pipe with larger wall 

thickness than Type 1 installation.  

 

2.1.4.3.1 Calculation of earth load, We 

The type of installation has a significant effect on the loads carried by the rigid pipe. As 

indicated earlier; a concrete pipe can be installed in either an embankment or trench 

condition. In the embankment condition, the soil alongside the pipe will settle more than the 

soil above the rigid pipe structure, thereby imposing an additional load to the prism of soil 

directly above the pipe. This phenomenon is known as soil arching and is accounted for using 

a “Vertical Arching Factor”. Thus, the total earth load is calculated using the following 

equation: 

                                          We = VAF x PL                                                              Eq. 2-4 

where PL “Prism Load” is the weight of the prism of earth directly above the outside 

diameter of the pipe in N/m. PL can be calculated from Eq. 2-5. 

                                









1000

107.0

1000

oo D
H

wD
PL                                                     Eq. 2-5 

where: w is the soil unit weight (N/m3) 

           Do is the outside diameter of the pipe (mm) 

           H is height of fill from the crown to the ground surface (m) 

 

Figure 2-4 shows the vertical arching factors and Heger earth pressure distribution for 

the standard installations. The load from the weight of the earth over and around the pipe is 

applied to the pipe as a non-uniformly distributed external pressure whose magnitude and 

distribution is a function of the relative deformation of the pipe and soil (ACPA, 1993).   
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Installation 

Type 
VAF HAF A1 A2 A3 A4 A5 A6 a b c e f u v 

1 1.35 0.45 0.62 0.73 1.35 0.19 0.08 0.18 1.40 0.40 0.18 0.08 0.05 0.80 0.80 

2 1.40 0.40 0.85 0.55 1.40 0.15 0.08 0.17 1.45 0.40 0.19 0.10 0.05 0.82 0.70 

3 1.40 0.37 1.05 0.35 1.40 0.10 0.10 0.17 1.45 0.36 0.20 0.12 0.05 0.85 0.60 

4 1.45 0.30 1.45 0.00 1.45 0.00 0.11 0.19 1.45 0.30 0.25 0.00 - 0.90 - 

Notes: 

1. VAF and HAF are vertical and horizontal arching factors. These coefficients represent no dimensional total 

vertical and horizontal loads on the pipe, respectively. The actual total vertical and horizontal loads are 

(VAF) x (PL) and (HAF) x (PL), respectively, where PL is the prism load. 

2. Coefficients A1 through A6 represent the integration of non-dimensional vertical and horizontal 

components of soil pressure under the indicated portions of the component pressure diagrams (i.e. the area 

under the component pressure diagrams). The pressures are assumed to vary either parabolically or linearly, 

as shown, with the non-dimensional magnitudes at governing points represented by h1, h2, uh1, vh2, a and 

b. Non-dimensional horizontal and vertical dimensions of component pressure regions are defined by c, d, 

e, uc, vd, and f coefficients. 

3. d is calculated as (0.5-c-e). 

            h1 is calculated as (1.5A1) / (c) (1+u). 

          h2 is calculated as (1.5A2) / [(d) (1+v) + (2e)] 

 

Figure 2-4 Arching coefficients and Heger Earth Pressure Distribution. 
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In the trench construction condition, the earth load on the pipe can be computed using 

Eq. 2-6:  

                      We = 
1000

2

dd wBC
+ w

Do

1000

107.0 2

                                                            Eq. 2-6 

where: Bd is the trench width (m) 

            Cd is the trench load coefficient, Cd =




K

dB

H

2

e-1
2K-

  

Where: K = ratio of active lateral unit pressure to vertical unit pressure 

             µ = tan Ø, coefficient of friction between the fill material and sides of the trench, 

where Ø is the angle of internal friction.  

Typical values of K and µ range from 0.11 to 0.19 depending on the soil type (Moore, 2001). 

 

2.1.4.3.2 Calculation of live load, WL 

In the design of a pipeline, it is necessary to evaluate the effect of live loads (WL). The most 

encountered loads are wheel loads from trucks and heavy vehicles. However, buried 

pipelines may also pass under railroads or airport runways. These concentrated surface loads 

are distributed through the pavement and the earth cover over the pipeline. On any plane in 

the earth cover, the intensity of the load is greatest directly below the point of load 

application, and decreases in all directions outward from the center of application. In 

addition, the intensity of the load decreases when the distance between the plane and the 

surface increases. 

A detailed procedure for calculating the effective live loads on pipeline is introduced in 

the ACPA (2011). The same procedure is also specified in article 3.6 of “AASHTO LRFD 

Bridge Design Specifications”. It is worth mentioning that AASHTO Bridge Specifications 

allow the surface wheel loads to be neglected if the height of earth cover over the crown of 

the pipe is greater than 8 ft (2.44 m).   
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2.1.4.3.3 Pipe weight and fluid load, WF  

The pipe weight is usually neglected in the indirect design method since it is always active in 

the three-edge-bearing test. The fluid weight is typically about the same order of magnitude 

as the pipe weight. Generally, it represents a significant portion of the pipe design load only 

for large diameter pipes under relatively shallow fills. The AASHTO Standard Specifications 

for Highway Bridges recommend the fluid weight to be taken as 62.4 lbs/ft3 (1000 kg/m³), 

unless otherwise specified. 

The subsequent step in the indirect design method is the determination of the Bedding 

Factor, Bf. Table 2-7 shows the bedding factors in the embankment condition for the four 

standard installations at different pipe diameters. Bedding factors for pipe diameters other 

than listed in the Table can be interpolated. It has to be mentioned that these Bf values are 

calculated based on the direct design approach and the new standard installations introduced 

by the ACPA (1993). The older approach was based on the historical A, B, C and D beddings 

introduced by Spangler (1933) and Marston (1930).  

The Equation 2-7 below is used to calculate the bedding factor in the case of the trench 

construction condition: 

                 fo

odt

odfofe

f B
)D(B

)D)(BB(B
B 




                                                         Eq. 2-7 

where: 

Do = outside diameter of pipe 

Bd = trench width at top of pipe 

Bdt = transition width at top of pipe 

Bfe = bedding factor in the case of embankment condition 

Bfo = minimum bedding factor for the trench condition (Table 2-8) 

 

The factor of safety (FS) employed in the indirect design method is the ratio between 

the ultimate D-load strength and the 0.3 mm crack D-load strength, which is between 1.25 

and 1.50 depending on the targeted D-load, as specified in ASTM C655. 
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Table 2-7 Bedding factor values, Bf for the embankment condition 

Pipe Diameter 

(in) 

Standard Installation 

Type 1 Type 2 Type 3 Type 4 

300 4.4 3.2 2.5 1.7 

600 4.2 3.0 2.4 1.7 

900 4.0 2.9 2.3 1.7 

1800 3.8 2.8 2.2 1.7 

3600 3.6 2.8 2.2 1.7 

 

 

Table 2-8 Minimum bedding factors, Bfo for the trench condition 

Standard Installation Minimum Bedding factor, Bfo 

Type 1 2.3 

Type 2 1.9 

Type 3 1.7 

Type 4 1.5 

 

 

The final step in the indirect design method is to determine the required D-Load 

strength of the pipe as indicated in Eq. 2-8, where BfL.L is the live load bedding factor: 

iLfL

L

f

fe

D

FS
x

B

W

B

WW
loadD










































 


.

                           Eq. 2-8 

 

2.1.4.4 Direct Design Method 

The direct design method specifically addresses the anticipated pipe loading conditions in the 

field. This method requires the following procedure: 

1. Establishing the pipe diameter, wall thickness and type of standard installation 

2. Determination of the vertical earth load and live load forces acting on the pipe 

3. Determining the moments, thrusts and shears due to the applied loads at the critical 

sections (invert crown and spring line). Equations 2-9 to 2-11 are used for the 

calculation of these straining actions at the critical sections:  
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CM                                                                      Eq. 2-9 

                    inii WCN                                                                                  Eq. 2-10 

                    iviWCV i                                                                                  Eq. 2-11 

where Mi, Ni and Vi are the moment, thrust and shear forces, respectively. Cmi, Cni and Cvi are 

non-dimensional coefficients used for determining the straining actions Mi, Ni and Vi, 

respectively. Wi represents any of the loads acting on the pipe. Dm is the intermediate 

diameter of the pipe. The values of the Cmi, Cni and Cvi coefficients are given elsewhere 

(ACPA, 1993) for each of the four standard installations types.    

4. The next step is the structural design of the pipe using established reinforced concrete 

design principles for the following limit and serviceability states: 

a. Reinforcement design for flexural strength limit 

b. Shear (diagonal tension) strength limit 

c. Stirrup reinforcement design (if any) 

d. Service limit for crack width control 

Section 12 of the “AASHTO LRFD Bridge Design Specifications” provides the design 

equations for the above-mentioned limit and serviceability states. 

 

2.2 APPLICATION OF SFRC IN PRECAST PIPES 

Fibre-reinforced concrete (FRC) is defined, according to ACI 116R (2005), as concrete 

containing dispersed randomly oriented fibres. The most commonly used fibres in FRC are 

steel fibres. Steel fibre-reinforced concrete (SFRC) was first introduced by Romualdi and 

Mandel (1964). The role of fibres is to bridge micro- and macro-cracks that occur in a 

cementitious matrix due to various states of stress, leading to a great increase in the 

toughness of cementitious materials. Originally, steel fibres were used primarily for crack 

control, to replace the secondary reinforcement often used for that purpose in flat slabs, 

pavements and tunnel linings, as well as in various repair applications (Bentur and Mindess, 

2007). Currently, there is an increased tendency to use steel fibres in structural applications 

to replace conventional steel reinforcing rebar or to act in a complementary fashion with it. 
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However, the improvements in strength due to steel fibre addition are modest, except for high 

fibre volumes.  

Several studies investigated the use of steel fibres in precast concrete pipes (e.g. 

MacDonald and Trangsrud, 2004; Haktanir et al., 2007; de la Fuente and de Figueiredo, 

2011; de la Fuente et al., 2012; and Abolmaali et al., 2012).  These studies and their main 

findings are summarized below:   

 

2.2.1 MacDonald and Trangsrud (2004) 

MacDonald and Trangsrud (2004) conducted an experimental study on concrete pipes having 

a diameter of 0.53 m, a C Type wall (thickness = 89 mm) designed as Class V pipes 

according to ASTM C76. Two mixture proportions were used as shown in Table 2-9. 

Mixture 1 was used for both of making pipes with welded wire fabrics without fibres, and for 

making pipes with welded wire fabric and fibres. Mixture 2 was used for making pipes with 

steel fibres alone. Pipes made using Mixture 1 having only fibres crumbled when moved. The 

employed steel fibre had a length of 40 mm, an aspect ratio of 40 with a rectangular cross-

section, and its ends were enlarged and bent. The fibre dosages tested were 20, 39 and 59 

kg/m3. The TEBT was conducted according to the procedure described in ASTM C497. 

Pipes made with Mixture 1 were tested at ages of 1 and 7 days. Pipes made with Mixture 2 

were tested at ages of 2 and 5 days.  

 

Table 2-9 Mixture proportions used for pipe fabrication (MacDonald and Trangsrud, 

2004) 

Material (kg/m3) Mixture #1 Mixture #2 

Cement 326 341 

Fly ash 89 74 

Superplasticizer 1 1 

Coarse aggregate 681 984 

Fine aggregate 1369 1067 

Moisture content 199 158 

w/c 0.48 0.38 
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The TEBT results for pipes made with steel fibres as sole reinforcement are shown in 

Table 2-10. From these results, it was concluded that SFRC pipes would gain strength with 

maturity in consistence with the strength gain of concrete. Pipes having a steel fibre content 

of 20 kg/m3 did not fulfill the D-load requirements of Class V pipes specified in ASTM C76. 

Pipes having a steel fibre content of 39 kg/m3 were successful when tested at the age of 5 

days. It is worth noting that in all of the SFRC pipes tested, regardless of the fibre content, 

the first crack load, the 0.25 mm crack load, and the ultimate (failure) load had the same 

value. This is an indication of a brittle behaviour. This finding is in contrast with de la Fuente 

et al. (2011) who reported that pipes having a fibre content of 40 kg/m3 exhibited a strain 

hardening behaviour after reaching the ultimate load. This discrepancy may be due in part to 

the testing method. Load control tests may not properly capture post-crack behaviour as 

opposed to displacement-controlled tests.  

 

Table 2-10 TEBT results for SFRC pipes (MacDonald and Trangsrud, 2004) 

Fibre content 

(kg/m3) 

Load (kN/m) Age 

(days) First Crack 0.25 mm Crack Ultimate Load 

20 

82.4 82.4 82.4 2 

88.3 88.3 88.3 5 

8% average difference   

39 

91.2 91.2 91.2 2 

94.14 94.14 94.14 5 

3% average difference   

59 

108.85 108.85 108.85 2 

110.82 110.82 110.82 5 

3% average difference   
Note: Required F0.25 and Fult loads for Class V with a Di = 525 mm are 73.5 and 91.9 kN/m, 

respectively according to ASTM C76.  

 

2.2.2 Haktanir et al. (2007) 

Haktanir et al. (2007) conducted an experimental study to compare the behaviour of plain 

concrete and conventionally reinforced concrete pipes with that of SFRC pipes. A total of 35 

pipes having an internal diameter of 500 mm were cast. All pipes had a wall thickness of 65 

mm. Conventionally reinforced pipes had only one elliptical steel cage with a total 

reinforcement area of 5.1 cm2/m. This design was in accordance with the Turkish standards 
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TS-821-EN-191. Comparing the wall thickness, concrete strength, and reinforcement; this 

design falls somewhere between Class III and Class IV of the standard five classes specified 

in ASTM C76. Two types of steel fibres were used to manufacture the SFRC pipes. These 

are ZP 308 (length: 30 mm, aspect ratio: 40) and Dramix RC-80/60-BN (length: 60 mm, 

aspect ratio: 80). Details of the mixture design are shown in Table 2-11.   

 

Table 2-11 Mixture proportions used for pipe fabrication (Haktanir et al., 2007) 

Material Dosage (kg/m3) 

Portland cement 350 

Water 117 

River sand (SSD) 710 

Crushed sand (SSD) 604 

Crushed medium aggregate (SSD) 301 

Crushed coarse aggregate (SSD) 401 

Steel fibres 25, 40 
Note: SSD means in saturated surface dry condition 

 

Table 2-12 shows a summary of the results of pipes tested under the TEBT. The TEBT 

was carried out in a similar manner to that specified in ASTM C497.  In all cases, SFRC 

pipes fulfilled the requirements of the Turkish standard TS-821-EN-191. However, only 

SFRC pipes with Dramix RC-80/60-BN fulfilled the requirements of Class IV according to 

ASTM C76. It was concluded that longer fibres were more suitable for precast pipe 

application, with negligible strength increase when the fibre content was increased from 25 to 

40 kg/m3. 

Table 2-12 TEBT results for plain concrete, reinforced concrete and SFRC pipes 

(Haktanir et al., 2007) 

Type of Pipe 
Average Ultimate 

Load (kN/m) 

Relative Difference with 

Respect to RCP (%) 

Plain concrete pipe (CP)  43.0 - 

Reinforced concrete pipe (RCP) 73.7 - 

SFRC pipe (ZP-308 @ 25 kg/m3) 70.2 -5 

SFRC pipe (ZP-308 @ 40 kg/m3) 74.9 +2 

SFRC pipe (RC-80/60-BN @ 25 kg/m3) 78.3 +6 

SFRC pipe (RC-80/60-BN @ 40 kg/m3) 80.5 +9 
Note: Required ultimate load Fu = 67.5 kN/m according to TS-821-EN-1916. Required ultimate load 

Fu = 50 and 75 kN/m for Class III and IV, respectively according to ASTM C76. 



28 

 

 

2.2.3 de la Fuente et al. (2011) 

Another experimental study was conducted by de la Fuente et al. (2011). In this study, a total 

of 18 pipes divided into two series having an internal diameter of 600 mm and a fibre dosage 

of 10, 20 and 40 kg/m3 were tested. All pipes had a wall thickness of 72 mm. Three pipes 

were cast for each fibre dosage. The water/cement ratio (w/c) was increased in the second 

series to achieve better workability and surface finish. Dramix RC-80/60-BN steel fibres 

were used in this study. Pipes were tested according to the TEBT procedure described in EN 

1916:2002. The study aimed to manufacture SFRC pipes that can satisfy the requirements of 

Class C-90 of EN 1916:2002. The required service crushing load, Fn and ultimate load, Fu for 

this class for a 600 mm internal diameter pipe are 36 and 54 kN/m, respectively. This class is 

comparable to Class III in ASTM C76 where the required F0.3 and Fult loads for a pipe of the 

same size are 39 and 60 kN/m, respectively.  

Table 2-13 shows the mixture design that was used in fabricating the SFRC pipes. It 

was found that the observed first crack load (Fcr) was similar for all pipes tested, regardless 

of the fibre dosage. In addition, the first crack always appeared in the internal face of the 

invert at the male end of the pipe. However, the load displacement curve (F-ν) for the tested 

pipes showed that pipes having a fibre dosage of 40 kg/m3 behaved differently from pipes 

having lower amounts of fibres. Pipes having low amounts of fibres (10 and 20 kg/m3) 

exhibited a displacement softening behaviour pattern (i.e. loss of load resistance capacity) 

with the increase of displacement once the ultimate failure load (Fu) was reached. On the 

other hand, pipes with a fibre dosage of 40 kg/m3 showed a displacement hardening behavior 

when the yielding point was reached. Thus, it was deduced that in such pipes, fibres could 

perform a task similar to that of traditional reinforcing bars. Table 2-14 shows the individual 

and average values of the reported Fcr and Fu loads. 
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Table 2-13 Mixture proportions used for SFRC pipes fabrication (de la Fuente et al., 

2011) 

Material Dosage (kg/m3) 

River sand 679 

Crushed sand 340 

Granitic crushed coarse aggregate 1067 

Cement 355 

Water 152 

Fibres 10, 20 and 40 

 

 

Table 2-14 TEBT results for SFRC pipes (de la Fuente et al., 2011) 

Series 
Dosage 

(kg/m3) 

Fcr (kN/m) Fu (kN/m) 

T1 T2 T3 Avg. T1 T2 T3 Avg. 

1st 

10 38.4 39.2 n/a 38.8 59.6 48.0 n/a 54.0 

20 38.4 40 n/a 39.2 56.0 49.6 n/a 52.8 

40 37.2 39.2 40.0 38.8 62.4 65.2 59.6 62.4 

2nd 

10 40.0 33.2 40.0 37.6 50.8 52.8 55.2 52.8 

20 39.2 38.0 34.0 37.2 60.4 58.0 51.6 56.8 

40 32.0 32.0 46.0 36.8 60.8 56.0 77.2 64.8 

Note:  Fcr is the first crack load. Required Fn and Fu loads are 36 and 54 kN/m, respectively. 

 

2.2.4  Abolmaali et al. (2012) 

Abolmaali et al. (2012) reported the production of 66 SFRC pipes. Pipes had internal 

diameters ranging between 400 and 1200 mm with B Type and C Type walls. Dramix RC-

65/35-CN (length = 35 mm, aspect ratio = 65) steel fibres were used as sole reinforcement at 

dosages ranging between 13.1 and 65.5 kg/m³. They reported that a fibre dosage of 20 kg/m³ 

for 600 mm diameter pipe, 40 kg/m³ for 900 mm diameter pipe, and 65 kg/m³ for 1200 mm 

diameter pipe seem to be optimum for Class III pipe requirements according to ASTM C76 

standard. It has to be mentioned that these SFRC pipe specimens were cast at four different 

precast concrete plants using different concrete mixtures.  
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2.3  SUMMARY   

This chapter presented an overview of the manufacture and design of reinforced concrete 

pipes. RC pipes are facing a rapidly shrinking market share due to the advent of new pipe 

materials such as corrugated steel, PVC and HDPE. This is partly because these new pipes 

are relatively lighter and in some cases less costly. However, concrete pipes are generally 

more favourable when considering the long-term performance of pipelines. 

An emerging solution to restore the competitiveness of concrete pipes is to replace the 

time- and labour-consuming steel cage reinforcement with dispersed easily mixed steel 

fibres. Only a few studies were accessible in the open literature regarding the application of 

steel fibres in precast concrete pipe manufacturing. All of these studies used a trial and error 

approach in order to specify an optimum steel fibre content that is sufficient for a specific 

pipe diameter/pipe wall configuration to reach specific pipe strength. However, a 

comprehensive and inclusive approach to the problem has not yet been reported. 

Furthermore, no information could be found in the literature on the soil-pipe interaction of 

SFRC pipes. 

Thus, the present study aims at filling this knowledge gap. An experimental study on 

the mechanical properties of dry-cast steel fibre reinforced concrete fabricated using four 

different types of steel fibres at three dosages was carried out. Based on the findings of this 

initial phase, two types of steel fibres were selected for the fabrication of full-scale SFRC 

pipes having internal diameters of 300, 450, and 600 mm. The structural performance of 

SFRC pipes was characterized in terms of achieved crack and ultimate loads, vertical and 

horizontal deformations and concrete strain at critical sections compared to that of PC and 

RC pipes using the continuous and cyclic three-edge-bearing test. In addition, the 

performance of buried SFRC pipes was investigated. The resulting experimental data was 

used to calibrate and validate a finite element model simulating the three-edge-bearing test. 

The model was used to carry out a parametric study that explored the effects of pipe 

diameter, pipe wall thickness, steel fibres type, steel fibres dosage, and targeted pipe strength 

class. Finally, design tables for SFRC pipes have been as an alternative to the trial and error 

approach that has been used so far. 
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CHAPTER THREE 

 

 

 

3 FULL-SCALE PIPES USING DRY-CAST STEEL FIBRE-

REINFORCED CONCRETE1 

 

3.1 INTRODUCTION 

Steel fibres (SFs) enhance the post-cracking behaviour of hardened concrete through 

maintaining some of its load-carrying capacity after crack formation. Moreover, during 

fracture, energy is consumed in the de-bonding, pulling-out, and rupture of fibres leading to 

higher concrete toughness (Bentur and Mindess, 2007). The overall improvement in the 

engineering properties of concrete owing to SFs addition is a function of several variables, 

including the fibre shape, length, aspect ratio, volume fraction with respect to the total 

concrete volume, and the quality of the hosting matrix (Brandt, 2008).  

Recently, structural applications of steel fibre-reinforced concrete (SFRC) have been 

increasing. For instance, SFRC has been used in tunnel linings (Cook et al., 2007, Yan et al., 

2013, Abbas et al., 2014 a, b), slabs on grade (Roesler et al., 2004), pavements on metal 

decks (Murakoshi et al., 2008), and seismic retrofitting and rehabilitation of various concrete 

structures (Morgan, 1984, Ramakrishnan, 1984; Ilki et al., 2004; Wang and Lee, 2007; di 

Tommaso et al., 2008). However, only about 5% of the total amount of FRC that is produced 

annually is used in precast members (Bentur and Mindess, 2007).  

                                                 
1 A version of this chapter was published in the Construction and Building Materials Journal 

(2014). Part of this chapter was published in the Tunneling Association of Canada 

Conference, Montreal, Canada (2012). 
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This chapter investigates the mechanical properties of dry-cast concrete incorporating 

different types of commercially available steel fibres at different addition rates. Adequate 

type and dosage of steel fibres for manufacturing full-scale dry-cast steel fibre-reinforced 

concrete (DCSFRC) precast pipes were identified. Moreover, the flexural behaviour of full-

scale 300 mm diameter DCSFRC pipes was explored in comparison to that of plain concrete 

(PC) and regularly reinforced concrete (RC) pipes with similar diameter.   

 

3.2 EXPERIMENTAL PROGRAM 

3.2.1 Materials and Mixture Proportions 

A commercial precast pipe dry-cast concrete mixture was adapted for the fabrication of 

laboratory specimens. A total of 15 mixtures including a control mixture were cast. High 

early-strength portland cement and ground granulated blast furnace slag (GGBFS) were used 

in the binder formulation. Gravel with a maximum nominal size of 13 mm was used as the 

coarse aggregate. Natural sand with a fineness modulus of 2.82 was used as the fine 

aggregate. The water-to-cementitious materials ratio (w/cm) for all mixtures was 0.38. A 

polycarboxylate super-plasticizer was added at a rate of 0.16% by mass of the cementitious 

materials. A non-ionic surfactant-dispersing admixture was added at a rate of 0.20% by mass 

of the cementitious materials. Four commercially available steel fibres were used. Steel fibres 

were either collated (Type A and B) or dispersed (Type C and D). The steel fibre dosage in 

the tested concrete mixtures (Wf) was 20, 40, and 60 kg/m3 (Vf = 0.25, 0.50, and 0.75 % by 

volume fraction). The effect of synergistic hybridization between fibres A (short) and B 

(long) was also investigated. The composition of the tested DCSFRC mixtures and different 

properties of the used steel fibres are shown in Tables 3-1 and 3-2, respectively. 

 

3.2.2 Specimens Preparation and Testing 

Cement, GGBFS, coarse and fine aggregates, as well as steel fibres were dry-mixed for 5 

minutes using a drum mixer. The superplasticizer and surfactant were added to the mixing 

water. Water was then added gradually to the mixture and mixing continued for another five  
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Table 3-1 Concrete mixture proportions 

Material Mass/Cement Mass 

Cement (SG = 3.15) 1.00 

Blast Furnace Slag (SG = 2.9) 0.54 

Fine Aggregate (SG = 2.68) 5.00 

Coarse Aggregate (SG = 2.75) 4.17 

Water (SG = 1.0) 0.58 

Super plasticizer 0.34 litre/m3 

Surfactant 0.43 litre/m3 

Steel Fibres (SG = 7.8)  0, 20, 40, 60 kg/m3 

                                SG = specific gravity 

 

 

Table 3-2 Physical and mechanical properties of steel fibres used 

Fibre 

Type 

Physical Properties Mechanical Properties 

Shape 
Lf  

(mm) 

df  

(mm) 
φ 

Ff  

(MPa) 

Ef  

(GPa) 

A1 Collated- 

hooked end 
35 0.55 65 1550 210 

B2 Collated- 

hooked end 
60 0.75 80 1350 210 

C3 
Dispersed- 

hooked end 
50 1.00 50 1050 N/A 

D4 
Dispersed- 

crimped 
50 

1.04  

(eq.) 
44 1242 N/A 

        Lf = fibre length, df = fibre diameter, φ = fibre aspect ratio, Ff = fibre tensile strength,  

       Ef = fibre modulus of elasticity. 1 Dramix RC-65/35-CN. 2 Dramix RC-80/60-CN.  
          3 Novocon 1050. 4 Novocon XR.  

 

minutes. The average measured air content was 3.5%. All mixtures exhibited a zero slump. 

Cylindrical 100 mm  200 mm and prismatic 150 x 150 x 500 mm specimens were cast from 

each batch. Specimens were cast and compacted in accordance with the common practice for 

SFRC (i.e. no rodding or internal vibration).  In agreement with previous work on dry-cast 
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concrete and SFRC pipes (e.g. Haktanir et al., 2007 and Wilson, 2012) specimens’ 

compaction was done using a vibrating table. The vibrating table had dimensions of 500x500 

mm and a motor with frequency between 2600 and 3600 RPM. Its maximum load capacity is 

140 kg. Immediately after casting, specimens were covered with plastic caps and wet burlap 

to prevent surface drying. All specimens were de-moulded after 24 hours and moved to a 

moist curing room (T = 25C and RH = 98%) until the testing age.  

At 28 days, the compressive strength (Cs), modulus of elasticity (Es) and splitting 

tensile strength (Ts) were evaluated for the various mixtures according to the guidelines of 

ASTM C39 (Standard Test Method for Compressive Strength of Cylindrical Concrete 

Specimens), ASTM C469 (Standard Test Method for Static Modulus of Elasticity and 

Poisson's Ratio of Concrete in Compression) and ASTM C496 (Standard Test Method for 

Splitting Tensile Strength of Cylindrical Concrete Specimens), respectively. Each reported 

result represents the average values obtained on four identical specimens. 

The flexural performance of DCSFRC prism specimens was evaluated as per the 

procedure of ASTM C1609 (Standard Test Method for Flexural Performance of Fibre-

Reinforced Concrete (Using Beam with Third-Point Loading)). A controlled displacement 

load was applied at a rate of 0.05 mm/min. The first crack load was identified as the load 

whereby the initial linear elastic slope of the load displacement plot ends, while the 

peak/ultimate load was considered as the maximum load of the load-mid span displacement 

curve. Three replicate prismatic specimens from each mixture were tested to evaluate the 

flexural performance. Tables 3-3 and 3-4 show the average and coefficient of variation 

(COV) for each of the conducted tests. 

 

3.2.3 Full-Scale Pipe Production and Testing   

Full-scale 300 mm DCSFRC pipes using discrete steel fibres as the main reinforcement were 

cast at a commercial precast plant in Oakville, Ontario. The plant uses the dry-cast 

production method. Pipes were cast vertically in a mould consisting of an inside core and an 

outside mold. This assembly was placed vertically on a supporting ring and the reinforcement 

cage, if any, with its spacers was placed within the mould. Then, concrete was poured in  
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Table 3-3 Mixtures prepared and their mechanical properties 

Mix. 

no. 
Group 

Fibre 

Type 

Wf   

kg/m3  

Cs Ts Es 

MPa COV MPa COV GPa COV 

1 Control - - 45.80 3.04 5.59 1.33 35.79 6.26 

2 
C

o
ll

at
ed

  

F
ib

re
s 

A 

20 45.80 3.29 6.86 6.36 37.53 4.61 

3 40 48.92 1.85 7.07 5.96 33.53 7.03 

4 60 49.65 1.30 7.85 4.51 34.78 3.87 

5 

B 

20 47.39 4.56 6.21 7.53 32.05 1.70 

6 40 51.99 2.52 8.71 3.20 37.17 2.34 

7 60 53.98 8.17 8.99 6.52 35.62 5.28 

8 

D
is

p
er

se
d
 

F
ib

re
s 

C 

20 52.88 4.33 6.76 0.38 34.85 5.80 

9 40 58.02 6.38 7.32 4.22 37.77 2.53 

10 60 61.64 2.40 7.92 0.94 34.37 2.80 

11 

D 

20 52.74 4.83 6.29 5.19 35.15 2.54 

12 40 56.24 1.09 6.89 1.95 34.82 3.26 

13 60 60.00 4.31 6.95 4.80 N/A N/A 

14 
Hybrid 

A+B 20+20 50.00 1.79 6.93 9.18 N/A N/A 

15 A+B 20+40 51.99 4.38 9.05 6.52 N/A N/A 

 

 

Table 3-4 Summary of flexural performance test results 

M
ix

 n
o
. First Peak  Second Peak 

 at δ of L/600 

(0.762 mm) 

 at δ of L/150  

(3.05 mm) 

f1   

(MPa) 
COV 

δ1  

(mm) 

f2 

(MPa) 

δ2  

(mm) 

f D600  

(MPa) 

f D150  

(MPa) 

1 4.76 6.55 0.08 --- --- --- --- 

2 5.23 9.93 0.09 --- --- --- 1.09 

3 5.90 0.46 0.09 --- --- 3.25 2.45 

4 6.81 1.58 0.09 --- --- 4.92 3.80 

5 5.44 1.39 0.08 --- --- 2.96 1.26 

6 6.41 2.38 0.07 --- --- 4.50 4.00 

7 6.85 3.76 0.09 7.75 0.57 6.64 5.61 

8 5.38 0.59 0.07 --- --- 2.94 1.56 

9 6.26 1.32 0.06 --- --- 4.26 3.62 

10 6.58 5.23 0.07 6.58 0.70 6.20 4.64 

11 4.98 8.41 0.05 --- --- --- 0.56 

12 5.13 7.46 0.06 --- --- 3.34 0.74 

13 6.69 1.24 0.07 --- --- 3.46 1.45 

14 6.57 1.94 0.08 6.73 0.79 5.81 3.91 

15 6.61 2.28 0.07 7.46 0.85 7.35 4.44 
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under mechanical vibration. When the mould was filled, a circular ring descends onto the top 

of the concrete and applies pressure. An electronic management system regulates the supply 

of concrete and the application of the pressure head. The form was removed immediately 

after casting, as the newly formed pipe could support its self-weight. Pipes were then 

transferred to a curing room. The curing regime lasted for eight hours where the temperature 

was raised gradually up to 55o under a relative humidity of 95%. After this steam curing, 

pipes were stored at the plant yard until being shipped to the Structures Laboratory of 

Western University for testing.  All pipes had an inside diameter Di of 300 mm and a Type C 

wall (Di/12 + 44 mm). Two duplicates of PC, RC, and DCSFRC pipes were also fabricated 

and tested. The targeted pipe strength was Class V pipe according to ASTM C76. RC pipes 

had one circular reinforcement cage with a reinforcement area of 1.5 cm² per linear meter of 

pipe wall. Table 3-5 shows the fabricated 300 mm diameter pipes, and their corresponding 

fibre type and dosage. 

 

Table 3-5 Fabricated 300 mm diameter pipes 

Fibre Type 
Pipe 

Designation 

Wf 

(kg/m3) 

Plain  PC - 

Regular 

Reinforcement  
RC - 

Fibres Type 

A1 

(short fibres) 

SS20 20 

SS40 40 

SS60 60 

Fibres Type 

B2 

(long fibres) 

SL20 20 

SL40 40 

SL60 60 

Hybrid  

(short fibres + 

long fibres) 

SH20 

(0.5:0.5)* 
20 

SH40 

(0.5:0.5) * 
40 

SH60 

(0.33:0.67) * 
60 

* = hybridization ratio. 1 Dramix RC-65/35-CN. 2 Dramix RC-80/60-CN. 
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The mechanical performance and structural behaviour of concrete pipes were evaluated 

using the Three Edge Bearing Test (TEBT) as per the guidelines of ASTM C497 (Standard 

Test Methods for Concrete Pipe, Manhole Sections or Tile) as shown in Fig. 2-1. A line load 

was applied along the crown of the pipe using a displacement controlled universal materials 

testing system (MTS). A rigid steel beam was attached to the loading system. The upper 

bearing consisted of a 25 mm thick hard rubber strip attached to a rigid wood beam. Pipes 

were supported along their longitudinal axis on a lower bearing system consisting of 25 mm 

thick hard rubber strips attached to two rigid wood beams spaced at 50 mm apart. For each 

tested pipe specimen, the vertical deflection of the crown toward the invert at pipe spigot was 

recorded versus the load using linear displacement transducers (LVDTs). LVDTs were 

positioned against the inner surface of the pipe crown and attached to supports fixed at the 

bottom part of the pipe. In addition, concrete strain at the pipe invert at spigot (area of 

maximum bending moment) was recorded using strain gauges mounted on the pipe inner 

surface. The test setup and pipe instrumentation are shown in Fig. 3-1. 

 

 

 

 

 

Figure 3-1 Testing setup and pipe instrumentation. 

 

Vertical LVDT 

at spigot 

Holding frame 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Mechanical Characterization of DCSFRC Mixtures 

3.3.1.1 Compressive Strength  

Figure 3-2 illustrates the compressive strength of DCSFRC mixtures (Cs) with respect to that 

of the control mixture without fibre (Cp) (Cs/Cp). Generally, the compressive strength 

increased with the addition of steel fibres. The higher the fibre dosage, the higher was the 

increase. For example, for mixtures incorporating Type B steel fibres, Cs/Cp increased by 

about 14% as the fibre dosage increased from 20 to 60 kg/m3. At higher fibre content, more 

fibres can resist crack formation in the longitudinal direction of the tested cylinders, then 

resulting in higher compressive strengths (Yang, 2011).  

Using a hybrid fibre system did not affect Cs of DCSFRC. Cs/Cp for mixtures 

incorporating a hybrid system of fibres (Types A and B) was in between those for mixtures 

incorporating fibre A or B individually at the same fibre content. For instance, at a fibre 

dosage of 40 kg/m3, Cs/Cp for mixtures incorporating Types A and B and a hybrid fibre was 

1.06, 1.14, and 1.09, respectively. 

It has been reported elsewhere (Ezeldin and Lowe, 1991, and Gao et al., 1997) that an 

increase in the steel fibre content resulted in an increase in the compressive strength. For 

mixtures with low fibre content (Vf < 1), an increase in the compressive strength up to 25%, 

depending on the fibre type and content, can be found in the literature (Ezeldin and Lowe, 

1991; Gao et al., 1997; Yao et al., 2003; Song and Hwang, 2004; and Nehdi and Ladanchuk, 

2004). In addition, ACI Committee 544 (2009) documented an increase in the compressive 

strength ranging from zero to 23% for concrete with a normal range of fibre content. 

However, others (Beaudoin, 1990, and Johnston, 2001) reported that steel fibres had little to 

no effect on the compressive strength of SFRC.  

Generally, these discrepancies on the effect of steel fibres on the compressive strength 

of concrete can be explained by the conflicting effects of fibres. Steel fibres addition arrests 

the development of micro-cracks in concrete, thus possibly resulting in higher compressive 

strength. Simultaneously, it can reduce workability and compactability of concrete, leading to  
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Figure 3-2 Relative compressive strength (Cs/Cp) with respect to fibre content. 

 

perturbation of the matrix and possibly higher voidage, which in turn reduces compressive 

strength. In addition to the fibre dosage, perturbation of the cementitious matrix will depend 

on its ability to accommodate fibres (Neves and Fernandes, 2005). Unlike normal concrete, 

zero-slump concrete relies more on vivid mechanical vibration for its consolidation and less 

on its inherent flow properties. Since the detrimental effect of fibre addition on consolidation 

by energetic mechanical vibration is less significant than that on conventional workability, 

the positive effect of steel fibre addition on the compressive strength of DCSFRC can be 

more significant than that observed in normal slump concrete.  

To account for the effects of both the fibre dosage and aspect ratio, the compressive 

strength of DCSFRC mixtures was expressed as a function of the fibre-reinforcing index as 

shown in Eq. 3-1 (Harajli et al., 2002; Ou et al., 2012): 

                                 
if

ifn

i ifv
d

L
VRI

,

,

1 , 
                                                          Eq. 3-1 

where Vf is the fibre volume fraction in percentage and n is the total number of fibre types 

used in the mixture. The effect of the reinforcing index on the DCSFRC compressive 
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strength is illustrated in Fig. 3-3. Generally, no correlation was found between the DCSFRC 

compressive strength and the reinforcing index. This behaviour is expected since the fibre 

length (Lf) showed no effect on the compressive strength (Cs) of DCSFRC as reported in 

Table 3-3. For example, at a fibre content of 60 kg/m3, mixtures incorporating different fibre 

types, including A (Lf = 35 mm- hooked ends) and B (Lf = 60 mm- hooked ends), exhibited 

Cs values of 49.7 and 54.0 MPa, respectively (i.e. only 8% difference ). Moreover, at the 

same fibre content, the larger diameter fibre is preferred as it performs better under a 

buckling failure mode, leading to higher compressive strength (Beaudoin, 1991).   

 

 

Figure 3-3 Effect of fibre reinforcing index on compressive strength and modulus of 

elasticity of DCSFRC. 

 

 

3.3.1.2 Splitting Tensile Strength  

Figure 3-4 illustrates the splitting tensile strength of the tested DCSFRC mixtures (Ts) with 

respect to that of the control mixture without fibre (Tp) (Ts/Tp). Regardless of the fibre type, 
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increasing the fibre content led to higher splitting tensile strength. This can be attributed to 

the presence of fibres in the matrix, which intersect, block, and arrest the propagation of 

cracks (Song and Hwang, 2004). The increase in relative splitting tensile strength ranged 

between 1.13 and 1.60. This range is in agreement with previous findings (Wafa and Ashour, 

1992; Song and Hwang, 2004; Bentur and Mindess, 2007; Yazici et al., 2007; Mohan and 

Parthiban, 2011).  

 

 

Figure 3-4 Relative splitting tensile strength (Ts/Tp) with respect to fibre content. 

 

Mixtures incorporating Type B fibre exhibited the highest Ts/Tp increase. This can be 

attributed to its longer length, which is more effective at bridging micro-cracks. For mixtures 

incorporating a hybrid fibre system (i.e. one third of the long fibres (Type B) was replaced 

with shorter fibres (Type A)), the increase in Ts/Tp was not affected if compared with that of 

mixture incorporating fibre B only. At a fibre content of 60 kg/m3, the increase in Ts/Tp for 

mixtures incorporating the Type B fibre or hybrid fibres was 60%. However, Ts/Tp dropped 

significantly when the hybridization ratio became 50:50 (i.e. from 1.60 to 1.24). This finding 
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suggests the existence of a threshold limit in replacing long fibres with short ones, beyond 

which fibre hybridization becomes inefficient.  

In addition, Fig. 3-4 reveals that hooked end fibres were more effective in enhancing 

the splitting tensile strength of DCSFRC mixtures than the crimped fibres. Type C and D 

fibres had the same length and comparable aspect ratio (φ); however, Ts/Tp increased in the 

range of 1.21 to 1.42 and 1.13 to 1.24 as the fibre dosage increased from 20 to 60 kg/m3, 

respectively. This confirms that fibres with deformed ends are more effective than those with 

deformations over their entire length. This is because crimped fibres will transfer stresses 

through anchorage along its entire length, initiating crushing, and/or splitting of the matrix, 

which reduces its effectiveness in stress transfer (Trottier and Banthia, 1994). 

Figure 3-5 shows the effect of the reinforcing index, RIv on Ts. Unlike the case of 

compressive strength, the tensile strength of DCSFRC mixtures increased linearly with the 

increase of RIv. This is expected since Ts increases with the increase of both Vf and φ. 

 

Figure 3-5 Effect of fibre reinforcing index on tensile strength and flexural strength of 

DCSFRC. 
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3.3.1.3 Modulus of Elasticity  

Figure 3-3 shows the effect of RIv on the modulus of elasticity (Es) of DCSFRC mixtures. It 

can be observed that Es fluctuated as the reinforcing index increased. The modulus of 

elasticity of DCSFRC mixture was independent of the fibre length and shape. Moreover, for 

the tested range of fibre dosage, Es was only marginally affected by the change in the fibre 

dosage (i.e. ± 10% compared to that of the control mixture without fibres) (Table 3-3). This 

is in agreement with previous results (Chem et al., 1992; Jo et al., 2001). This behaviour is 

expected since Es values were measured up to only 40% of the compressive strength (i.e. 

prior to concrete cracking). Hence, fibres were not fully activated (Ou et al., 2011).  

 

3.3.1.4 Flexural Strength  

The flexural behavior of PC and DCSFRC mixtures was evaluated based on the first-peak 

strength (f1), second-peak strength (f2) and residual strengths at deflection of L/600 (f D
600) 

and L/150 (f D 150) values.  The following formula was used to calculate the flexural strength 

at different points (Eq. 3-2): 

                                                             
2bd

PL
f                                                             Eq. 3-2 

where f is the flexural strength (MPa), P is the load (N), L is the span length (457 mm), b is 

the specimen’s average width at fracture (152 mm), and d is the specimen’s average depth at 

fracture (152 mm). Eq. 3-2 is derived from the flexural stress equation f = M.y/I, where M is 

the bending moment, y is the distance between the section centroid and the extreme fibre 

subjected to either tension or compression, and I is the second moment of the area of the 

section. In the case of a third point-loading flexural test, M = PL/6, y = d/2 and I = bd³/12. 

Although Eq. 3-2 is based on linear stress-strain distribution, which is no longer valid 

after the first crack formation, the calculated values for residual and peak stresses can be 

acceptable for the sake of comparison (ACI 544.4, 2009). Flexural results for different 

mixtures are summarized in Table 3-4.  Similar to splitting tensile strength results, the first 

peak strength of DCSFRC mixtures (f1s) increased linearly as the RIv (Fig. 3-5) and fibre 
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dosage increased (Fig. 3-6) increased. This is because f1s is directly proportional to both Vf 

and φ. This increase varied between 5% and 44% depending on the fibre length and shape. 

Interestingly, increasing the fibre dosage from 20 to 40 kg/m3 resulted in higher first-peak 

strength than that induced when the fibre dosage increased from 40 to 60 kg/m3. This 

suggests that a fibre content of 20 kg/m3 or less is insufficient to improve the flexural or post-

cracking behaviour of DCSFRC mixtures compared to that of the control mixture. This 

observation was confirmed by load-deflection curves and residual strength results as 

discussed below. 

 

Figure 3-6 Effect of fibre content on relative flexural strength. 

 

 

3.3.1.5 Load- Deflection Curves 

Figure 3-7 (a-d) shows the mid-span deflection of tested prismatic specimens versus the 

applied load under the three-point bending test. Generally, the specimen’s deflection 

increased linearly as the load increased until reaching the peak load. Thereafter, the load 

dropped while the specimen exhibited a progressive deflection. Such load drop represented 

the onset of cracking due to matrix failure. For control specimens, the test was terminated at 
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the peak load since the specimen was broken into two pieces and no post-peak behaviour 

could be recorded. Conversely, steel fibres in DCSFRC specimens started bridging the 

developed cracks at this point. The deflection of DCSFRC specimens decreased as the fibre 

dosage increased. Beyond the peak load, the main crack formed at mid-span started to widen 

and move towards the top edge of the specimen.  

However, specimens incorporating 20 kg/m3 of fibre exhibited large instability regions 

(i.e. abrupt increase in deflection accompanied by a reduction in load capacity) regardless 

fibre type. Mixtures incorporating higher fibre dosage showed more stable behavior and 

some exhibited a second peak load, f2 after the initial peak (Figs. 3-7b and 3-7c), a 

phenomenon known as deflection hardening (Naaman, 2003, and Kim et al., 2010). For 

instance, for mixtures incorporating Type A fibre, the average residual load at a deflection of 

(L/150) = 3.05 mm was 8.47, 18.95 and 29.41 kN for fibre dosages of 20, 40 and 60 kg/m3, 

respectively. Therefore, a fibre content greater than 20 kg/m3 was required to achieve stable 

post-peak flexural behaviour. 

Moreover, longer fibre length enhanced the post-peak behaviour and energy absorption 

capacity of DCSFRC specimens greater than that of shorter fibres (Figs. 3-7a and 3-7b). For 

example, at a fibre dosage of 40 kg/m3, the average residual load immediately dropped after 

the first peak load to 25.82 kN and 33.20 kN at corresponding deflections of 0.71 and 0.42 

mm for specimens incorporating Type A (Lf = 35 mm) and B (Lf = 60 mm) fibres, 

respectively. Unlike specimens incorporating 60 kg/m³ of fibre A, specimens made with 

similar dosage of fibre B exhibited a second peak load of 60.70 kN. Therefore, longer steel 

fibres are recommended to achieve better post-peak flexural behaviour and higher energy 

absorption capacity. Hybridization of two different fibre lengths in the same mixture was 

found to improve the post-peak behaviour of DCSFRC specimens, leading to higher residual 

loads at similar deflection (Fig. 3-7b). In addition, using fibres with different lengths can 

better control the micromechanics of crack formation at different strain levels than single-

type fibres (Nehdi and Ladanchuk, 2004). This explains the comparable average second peak 

load (60.7 and 60.13 kN, respectively) for mixtures incorporating fibre Type B alone and 

hybrid fibre system (A (20 kg/m3) + B (40 kg/m3)). 
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Figure 3-7 Representative load-deflection curves of DCSFRC specimens under three-

point bending test for different types of fibre: a) Type A, b) Type B and hybrid fibre 

system (A+B), c) Type C, and d) Type D. 

 

In addition to the fibre dosage and length, its shape was found to affect the flexural 

behavior of DCSFRC specimens. As shown in Figs. 3-7c and 3-7d, while both fibres had 

similar length and comparable aspect ratio, Type C fibres achieved better post-peak 

behaviour and higher energy absorption capacity than that imparted by Type D fibres. For 

instance, at a fibre dosage of 60 kg/m3, DCSFRC with Type C fibres achieved a second peak 

load (P2 = 51.10 kN) equivalent to the first cracking load (P1 = 51.10 kN), while DCSFRC 

specimens with Type D fibres did not exhibit such a behaviour. This can be ascribed to the 

low stress transfer effectiveness of crimped fibre as explained earlier, in agreement with 

previous study (Soroushian and Bayasi, 1991). 
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Further analysis of the flexural behaviour of DCSFRC mixtures based on residual 

strength is shown in Fig. 3-8. Residual strength represents the ability to sustain load after 

first crack at different specific deflection values. Generally, residual strength results confirm 

earlier findings: a fibre dosage of 20 kg/m3 was unable to improve the post-peak behaviour; 

and at higher fibre dosage, fibres with higher aspect ratio (especially Type B) maintained 

higher residual strength at larger deflections. For example, for DCSFRC specimens 

incorporating 60 kg/m3 of fibre, the average residual strengths were 6.6 and 5.6 MPa for 

Type B fibres (Lf = 60 mm- φ = 80), 6.2 and 4.6 MPa for Type C (Lf = 50 mm- φ = 50) and 

4.9 and 3.8 MPa for Type A (Lf = 35 mm- φ = 65) fibres, respectively at a deflection of 

(L/600) = 0.76 mm and (L/150) =3.05 mm. 

 

  

 

Figure 3-8 Residual strengths at different deflections for DCSFRC mixtures with fibre 

contents: a) 20 kg/m³, b) 40 kg/m³, and c) 60 kg/m³. 
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The purpose of the preliminary study was to recommend a steel fibre type and dosage 

to be used in the fabrication of full-scale DCSFRC pipes. Thus, the flexural performance, in 

terms of first peak strength (f1s) and the softening/hardening response in the post-cracking 

stage, was used in ranking the various fibres investigated. The observed performance ranked 

as follows: Type B fibres > Type C > Type A > Type D. Therefore, Type B fibres were 

recommended for the full-scale production stage. However, SFRC pipes have a known issue 

with fibres sticking out of the surface, especially at the spigot, which may potentially harm 

pipe joints during installation. Therefore, the industry partner requested using short fibres 

(Type A fibres) as well, especially in the fabrication of small size pipes (Di = 300 mm) 

having a relatively smaller wall thickness (h = 69 mm). Thus, it was decided to use both 

fibres A and B for the full-scale pipe production.  

 

3.3.2 Mechanical Characterization of Full-Scale DCSFRC Precast Pipe  

3.3.2.1 Failure Mechanism 

Flexural failure was the governing failure mechanism for all tested full-scale precast pipes. 

Such failure was characterized by the formation of longitudinal cracks at the inner crown and 

inner invert, as well as on the outer spring-lines of the precast pipe (Fig. 3-9). Other failure 

mechanisms associated with conventional precast concrete pipes reinforced with steel cages 

(i.e. diagonal and radial tension) were not observed. DCSFRC pipes were capable to undergo 

large vertical and horizontal displacements without collapsing. In fact, none of the tested 

DCSFRC pipes collapsed during the testing. Tests were stopped due to excessive 

deformation beyond the ultimate load, which was accompanied by very large crack widths (> 

10 mm). Examining the opened crack zones showed that both failure mechanisms (fibre 

pullout and rupture) had occurred (Fig. 3-10).  
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Figure 3-9 Flexural failure mechanism: (a) cross-sectional cracks, and (b) longitudinal 

cracks. 

 

  

Figure 3-10 DCSFRC failure mechanism: (a) fibres pull-out, and (b) fibres rupture. 

 

3.3.2.2 Cracking (Pcr) and Ultimate (Pult) Loads 

The cracking and ultimate strength results for all tested pipes are summarized in Table 3-6.  

The average coefficient of variation (COV) was about 1.49% and 2.17% for the crack and 

ultimate loads, respectively. All tested pipes, including PC pipes, exhibited substantially 

higher loads than the specified crack (Pcr) and ultimate (Pult) strength for Class V pipes 

(highest strength class) according to ASTM C76 (i.e. Pcr = 104 and Pult = 130 kN). For 

(b) 
 

 

(a) 

  

(a) (b) 
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instance, the average ultimate loads for DCSFRC pipes fabricated with 20 kg/m3 of fibres 

Type A, B, and hybrid A-B fibres were 362, 371, and 346 kN, respectively. This represents 

an increase in the ultimate strength of the pipe of about 8% and 12.4% for fibre Type A, 

10.8% and 15.2% for fibre Type B and 3.3% and 7.5% for hybrid A-B fibres compared to 

that of the PC and RC pipes, respectively. This can be attributed to the enhancement of the 

concrete tensile and flexural strengths due to fibres intersecting, blocking, and arresting the 

propagation of cracks (Song and Hwang, 2004). This is in agreement with results of the 

tested DCSFRC mixtures explained earlier.  

Similar to the trend observed for DCSFRC beam specimens, the higher the fibre 

content, the higher was the increase in ultimate load of the precast pipes regardless the fibre 

type. For instance, increasing the fibre dosage from 20 to 40 and 60 kg/m³ resulted in an 

increase in the ultimate load by 4.1% and 24.1% for pipes fabricated with Type A (short 

fibre), 6.0% and 41.5% for pipes fabricated with Type B (long fibre), and 5.5% and 34.4% 

for pipes fabricated with hybrid fibres, respectively. Values shown in Table 3-6 reveal that 

using longer fibres resulted in higher ultimate load compared to loads achieved when short or 

hybrid fibres were used. Short fibres were less effective since they tended to slip out of the 

matrix with less contribution to strength (Bentur and Mindess, 2007), which concurs with 

earlier findings from DCSFRC beam specimens. 

 

Table 3-6 Summary of the crack and ultimate loads of tested pipes 

Pipe 
Pcr (kN) Pult (kN) 

Pipe 1 Pipe 2 avg. COV  Pipe 1 Pipe 2 avg. COV  

PC 337 333 335 0.84 337 333 335 0.84 

RC 318 316 317 0.45 318 328 322 2.19 

SS20 360 360 360 0.00 364 360 362 0.78 

SS40 355 364 360 1.77 366 388 377 4.13 

SS60 391 398 395 1.25 473 481 477 1.19 

SL20 372 366 369 1.15 372 369 371 0.57 

SL40 355 355 355 0.00 393 392 393 0.18 

SL60 384 388 386 0.73 531 519 525 1.62 

SH20 336 355 346 3.88 336 355 346 3.88 

SH40 370 350 360 3.93 374 356 365 3.49 

SH60 362 350 356 2.38 448 482 465 5.17 
Notes:  wall type: C; wall thickness = 69 mm. 
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Furthermore, it was observed that ultimate loads coincided with cracking loads for PC, 

RC, and DCSFRC pipes fabricated with a fibre content of 20 kg/m³. This indicates that pipes 

made with this fibre dosage exhibited a strain softening behaviour. DCSFRC pipes made 

with higher fibre dosage, especially at 60 kg/m³, exhibited a deflection hardening behaviour 

since the pipes were able to sustain higher loads after first crack. In the case of DCSFRC 

pipes with a fibre dosage of 40 kg/m³, Pult was reached shortly after reaching the Pcr. 

Generally, the findings reported above agree with previous studies (MacDonald and 

Trangsrud, 2004; Haktanir et al., 2007; de la Fuente et al., 2012; and Abolmaali et al., 2012) 

that steel fibres can be used to successfully replace regular reinforcement in precast concrete 

pipes. The achieved ultimate loads are a function of the pipe size, pipe wall thickness, steel 

fibres type and content, and the compressive strength of the original concrete mixture.  Di of 

400 mm was the nearest SFRC pipe size to be reported in the literature (Abolmaali et al., 

2012). The fibre content was 26 kg/m³ and the pipe wall thickness was 50 mm (Type B wall). 

These pipes achieved ultimate loads from 129 to 150 kN, which is significantly lower than 

the range of ultimate loads reported herein. This is due to the larger pipe diameter and lesser 

wall thickness and fibre content used in Abolmaali et al. (2012). 

 

3.3.3 Pipe Load-Deformation Curves  

3.3.3.1 Effect of Fibre Content 

Figure 3-11a shows the load versus deflection at the spigot’s crown curves for RC and 

DCSFRC pipes. For all pipes, the vertical deflection at the crown increased linearly as the 

applied load increased up to the proportionality limit. Thereafter, an instability region was 

observed for all pipes except for DCSFRC pipes with a fibre dosage of 60 kg/m³, which 

showed a deflection hardening behaviour instantly after reaching the proportionality limit. 

For DCSFRC pipes incorporating 40 kg/m³ of fibres, the instability region was smaller than 

that of DCSFRC pipes with a fibre content of 20 kg/m³. In addition, a hardening behaviour 

was also observed at a fibre dosage of 40 kg/m³. This can be explained as follows: For all 

DCSFRC mixtures there is a critical fibre volume Vf (crit), which after matrix cracking, will 

carry similar load to that carried by the composite before cracking (Hannant, 1978).  
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Figure 3-11 Load vs. deflection at crown of spigot for RC and SFRC pipes:  (a) RC and 

DCSFRC pipes reinforced with 20, 40, and 60 kg/m3 of Type B fibres,  (b) DCSFRC 

pipes reinforced with 40 kg/m³ of short (Type A), hybrid (0.5: 0.5) and long (Type B) 

fibres, and (c) DCSFRC pipes reinforced with 60 kg/m³ of short (Type A), hybrid (0.5: 

0.5) and long (Type B) fibres. 

 

For steel fibres, Vf (crit) is about 0.31% (i.e. 25 kg/m³). Hence, DCSFRC pipes with a fibre 

dosage greater than 25 kg/m³ (i.e. 40 and 60 kg/m³) exhibited a deflection hardening 

behaviour, while specimens with lower fibre content (i.e. 20 kg/m³) exhibited a strain 

softening behaviour. 

Interestingly, an instability region was observed for the RC pipe also (Fig. 3-11a). This 

can be attributed to the manufacturing process of precast RC pipes since the reinforcing steel 

cage is positioned around the mid-section of the pipe wall (near the neutral axis) in order to 

satisfy the minimum cover requirement. Thus, the reinforcement becomes active at high 

levels of cracking and displacement (de la Fuente et al., 2012). 
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3.3.3.2 Effect of Fibre Type    

The effect of the fibre type on the load-deflection curves at the spigot’s crown for DCSFRC 

pipes is illustrated in Fig. 3-11b. The strain softening branch of the load-deflection curve for 

the SL40 specimen started at a deflection of 3.0 mm, while for both the SS40 and SH40 

specimens, it started at 1.50 mm. The use of longer fibres extended the hardening region 

compared to those of the short and hybrid fibres as it required higher pullout energy 

(Beaumont and Aleszka, 1978). In addition, the behaviour of pipes reinforced with hybrid 

fibres (0.50:0.50) is comparable to that of the pipes reinforced with short fibres (i.e. similar 

residual loads at the same deflections) (Fig. 3-11b). This indicates that the behaviour of 

hybrid fibre specimens was governed by the failure of the short fibres since they would slip 

out of the matrix before the longer fibres. Furthermore, as the fraction of the longer fibre was 

increased in the hybrid system from 0.50 to 0.67, the softening branch of the average load 

deflection curve of the SH60 pipes was slightly improved and the residual loads obtained 

were higher than those of SS60 pipes at the same deflection (Fig. 3-11c). However, the 

softening branch for both the SS60 and SH60 pipes started at a deflection of 1.5 mm, which 

indicates that short fibres still governed the ultimate load capacity of the pipes. These 

findings suggest that the hybrid fibre system used herein did not result in significant 

synergetic effects and the improvement in the post-peak behaviour of the pipes was 

dependant on the fraction of long fibres used in the composite. 

 

3.3.4 Post-Cracking Behaviour Analysis  

The post-cracking strength (PCS) analysis proposed by Banthia and Trottier (1995) was 

adopted in this study to characterize the post-cracking behaviour of DCSFRC pipes. In this 

method, the load–displacement curve is converted into an equivalent flexural strength curve 

using simple energy equivalence. The generated post-cracking strength PCS can be used in 

comparative assessment and design, especially for serviceability considerations (Banthia and 

Sappakittipakorn, 2007). 

The post-cracking strength at any point is calculated using the following equation: 
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                                                   Eq. 3-3 

where, Epost is the post-peak energy at any deflection δ (i.e. area under the load-deflection 

curve between δpeak and δ), δpeak is the vertical deflection at the first peak load, L is the 

specimen span = (πDi/2), b is specimen width = 2450 mm and h = pipe wall thickness. In this 

study, for PCS calculations, deflection points were selected in the deflection range of 0.0 to 

5.0 mm. Average PCS values for DCSFRC pipes are shown in Fig. 3-12. The first point on 

the PCS curve was obtained by replacing the term (Epost/δ-𝛿peak) with the first peak load on 

the load deflection curve. 

 

 

Figure 3-12 Post cracking strength PCS at different deflection values for 

DCSFRC pipes. 

 

 

The trends of PCS curves shown in Fig. 3-12 are generally in agreement with the 

previously discussed load deflection responses. For the same fibre type and at the same 

deflection (δ), an increase in the fibre content resulted in an increase in the post-crack 
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strength. For instance, the average PCS values were 8.76, 15.21, and 20.65 N/mm² at a 

deflection of 3 mm, and 8.15, 15.29, and 20.15 N/mm² at a deflection of 5 mm for SL20, 

SL40, and SL60, respectively (Fig. 3-12). In addition, at the same fibre content and 

deflection, pipes incorporating the long fibres exhibited higher PCS values than that of 

similar pipes made with short or hybrid fibres. For example, at a fibre content of 20 kg/m³, 

the average PCS values were 4.49, 7.83, and 8.76 N/mm² at 3 mm deflection and 4.45, 7.01, 

and 8.15 N/mm² at 5 mm deflection for SS20, SL20, and SH20 pipes, respectively. 

It was found that any enhancement to the post-cracking behaviour due to fibre 

hybridization appeared to be related to the inclusion of the long fibres only (i.e. short fibres 

had no synergetic effect). A synergy evaluation according to Banthia and Soleimani (2005) 

was performed using the following formula (Eq. 3-4): 

                       1
sin


 



mixfibregle

mixHybrid

PCS

PCS
Synergy                                                  Eq. 3-4 

 

where, PCS Hybrid–mix is the PCS value of the tested hybrid pipe at a certain deflection (δ), and 

∑PSC Single–fibre–mix is the summation of the PCS values of tested single-fibre pipes at the same 

deflection. A positive value indicates the existence of a synergetic effect and vice versa. No 

synergy effect was observed for the selected deflection limits as shown in Table 3-7. 

 

Table 3-7 Fibre synergy assessment at various deflections 

Pipe 

Fibre 

Content 

(kg/m³) 

Synergy 

at 1 mm 

 

at 3 mm 

 

at 5 mm 

 

SH20 20 -0.33 -0.41 -0.44 

SH40 40 -0.52 -0.52 -0.52 

SH60 60 -1.00 -0.53 -0.12 
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3.3.5 Strain Measurements 

Figure 3-13 shows the average strain measured at the pipe inner invert at spigot at different 

loading stages. The measured strain at the pipe invert was always positive (i.e. tensile strain) 

and increased as the load increased until the first crack formation. Subsequently, the gauge 

would either rupture (in most cases) or give a very low reading as an indication of stresses 

redistribution at the invert. The measured strain at 130 kN (required ultimate load Pult) was 

around 60 με for all tested pipes. This value is less than the tensile strain of plain concrete at 

cracking (i.e. 80-200 με) (Gopalaratnam and Shah, 1985; and Belarbi and Hsu, 1994), 

indicating that the material was in the elastic range at this loading level. In addition, the 

presence of steel fibres did not affect the strain at the concrete surface for this loading level. 

This is because steel fibres were not contributing to the strength at this stage since they are 

only mobilized near the initiation of the first crack. At the cracking stage, it seems that there 

was an increasing trend in the strain at Pcr as the fibre content increased, regardless of the 

fibre type. This likely due to the increase of composite deformability due to the increase in 

the fibre content (Nataraja et al., 1999, Dhakal et al., 2005, Boulekbache et al., 2012). 

 

 
Figure 3-13 Average strain measured at the inner pipe invert at spigot at the required 

ultimate load (Pult = 130 kN) and at the cracking load Pcr. 
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3.4 SUMMARY AND CONCLUSIONS 

This chapter explored the mechanical properties of DCSFRC mixtures made with different 

types and dosages of steel fibres. Laboratory results on small specimens were further 

confirmed through full-scale production and testing of DCSFRC precast pipes. The following 

conclusions can be drawn based on the experimental findings: 

 The engineering properties of DCSFRC mixtures were improved as the fibre dosage 

was increased. Consequently, DCSFRC precast pipes incorporating higher fibre 

content exhibited higher ultimate and post-cracking strengths. 

 The reinforcing index, RIv can be utilized for comparing the splitting tensile and 

flexural strengths of different DCSFRC mixtures, while it showed no defined 

correlation with the compressive strength and modulus of elasticity. 

 A fibre dosage of 20 kg/m3 was found to be insufficient to provide a significant 

improvement in the mechanical properties of DCSFRC. 

 Type B fibres induced the best flexural performance of DCSFRC specimens among 

all fibres investigated herein. Type D fibres were the least effective at enhancing the 

flexural strength and the post-peak behaviour of DCSFRC.     

 Using a hybrid fibre system improved the mechanical properties of the DCSFRC with 

respect to a mixture fabricated with one type of fibre at the same fibre content. The 

improvement in DCSFRC mechanical properties induced by hybridization depended 

mainly on the amount of long fibres in the mixture rather than a synergetic effect.  

 Dispersed steel fibres can be used instead of regular steel reinforcement in precast 

concrete pipes depending on the target pipe strength, pipe diameter, steel fibres type 

and dosage.  

 The reinforcement specified for Class V 300 mm diameter pipes in ASTM C76 could 

be achieved by a steel fibre dosage of 20 kg/m³. 
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CHAPTER FOUR 

 

 

 

4 MECHANICAL PERFORMANCE OF FULL-SCALE 

PRECAST STEEL FIBRE-REINFORCED CONCRETE 

PIPES2 

 

4.1 INTRODUCTION 

This chapter expands on the findings of the previous chapter and explores the behaviour of 

SFRC pipes in greater depth.  Full-scale precast SFRC pipes having internal diameters (Di) of 

450 and 600 mm were fabricated and tested. In addition, PC and RC pipes of the same 

diameters were cast and tested for comparison. Precast pipes were tested using both the 

continuous and cyclic loading procedures as per the ASTM C497 and EN 1916 guidelines, 

respectively. The steel fibre content needed to satisfy the strength requirements for Class V 

450 and 600 mm diameter pipes according to ASTM C76 was identified. Moreover, the 

continuous TEBT test and the cyclic TEBT test, specified in ASTM C497 and EN 1916, 

respectively, were compared, which provided insight into how SFRC pipes should be tested 

in the future. 

 

                                                 
2 A version of this chapter was published in the Journal of Engineering Structures (2015). 

Part of this chapter was published in the ACI-fib workshop on FRC, Ecole Polytechnique de 

Montreal, Montreal, Canada (2014). 
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4.2 EXPERIMENTAL PROGRAM  

4.2.1 Materials and Mixture Proportions 

SFRC pipes were cast at an industrial precast concrete plant in Oakville, Ontario. Two pipe 

diameters were manufactured; namely, 450 mm and 600 mm. All pipes were 2.45-m in 

length. All pipes had a Type C wall. Class V pipe was the target pipe strength (i.e. D0.3 and 

Dult are 140 and 175 N/m/mm, respectively) according to ASTM C76.  

In this study, SFRC pipes with the same diameter were produced in a single day in 

order to minimize the influence of intervening variables in the pipes production. Detailed 

description of materials used in concrete fabrication was given earlier in Section 3.2.1. Two 

types of steel fibres (Dramix RC-65/35-CN and Dramix RC-80/60-CN) were added manually 

as partial replacement for the coarse aggregate at Wf (fibre mass per 1 m3) of 20, 30 and 40 

kg/m3, i.e. equivalent to 0.25, 0.38, and 0.50 % by concrete volume (Vf). The compositions of 

the control fibreless mixture and other tested SFRC mixtures are shown in Table 4-1. The 

physical and mechanical properties of steel fibres used in this study were given earlier in 

Table 3-2. Pipes were produced and cured in the same manner described earlier in Section 

3.2.3. Simultaneously, 100 x 200 mm cylinders were cast for measuring the compressive 

strength of the mixtures. Tables 4-2 and 4-3 list the fabricated 450 and 600 mm diameter 

pipes, their fibre type and content, and the compressive strength of corresponding mixtures, 

respectively. Three pipe replicates were cast for each mixture composition for a total of 66 

full-scale pipes. 

 

Table 4-1 Concrete mixture proportions 

Material Mass/Cement mass 

Cement 1.00 

Blast Furnace Slag 0.54 

Fine Aggregate 5.00 

Coarse Aggregate 4.17 

Water 0.58 

Super plasticizer 0.0016 

Air entraining admixture 0.002 

Steel Fibres 0, 20, 30, 40 kg/m3 

 



69 

 

 

 

Table 4-2 Fabricated 450 mm diameter pipes and their achieved loads 

Reinforcement 
Pipe 

Designation 

Vf 

(kg/m3) 

f c' 

(MPa) 
COV 

Pcr 

(kN) 

Pult 

(kN) 

Ppost, max 

(kN) 

None PC45 - 66.0 3.40 280 280 - 

Regular RC45 - 47.0 4.86 265 265 210 

Short fibre 

(Dramix 

RC-65/35-CN) 

SS4520 20 74.1 6.84 304 304 147 

SS4530 30 42.5 6.01 266 283 249 

SS4540 40 61.0 6.17 330 360 339 

Long fibre 

(Dramix 

RC-80/60-CN) 

SL4520 20 66.0 8.97 316 316 210 

SL4530 30 35.8 1.28 286 302 273 

SL4540 40 46.2 9.24 330 344 - 

Hybrid 

(Short + Long 

fibres) 

SH4520 20 48.3 2.97 240 251 214 

SH4530 30 52.5 3.82 315 320 294 

SH4540 40 62.1 6.33 327 362 325 
            Notes:  

 Pipe Wall Thickness = 82 mm 

 ASTM C76: P0.3 = 156 kN, Pult = 195 kN for class V (class 140D) 450 mm diameter pipe 

 BS 5911: Pc = 108 kN, Pult = 135 kN for 450 mm diameter pipes of class 120 for trench use 

 

 

Table 4-3 Fabricated 600 mm diameter pipes and their achieved loads 

Reinforcement 
Pipe 

Designation 

Vf 

(kg/m3) 

f c' 

(MPa) 
COV 

Pcr 

(kN) 

Pult 

(kN) 

Ppost, max 

(kN) 

None PC60 - 64.8 5.26 253 253 - 

Regular RC60 - 43.8 3.28 192 294 - 

Short fibre 

(Dramix 

RC-65/35-CN) 

SS6020 20 61.6 13.71 227 227 206 

SS6030 30 58.0 7.23 275 277 239 

SS6040 40 73.0 1.89 266 330 294 

Long fibre 

(Dramix 

RC-80/60-CN) 

SL6020 20 56.0 10.60 237 237 217 

SL6030 30 44.9 5.26 260 288 262 

SL6040 40 65.2 2.44 325 352 324 

Hybrid 

(Short + Long 

fibres) 

SH6020 20 72.1 4.62 251 254 224 

SH6030 30 70.7 0.09 261 320 - 

SH6040 40 71.7 1.74 262 329 295 
Notes:  

 Pipe Wall Thickness = 94 mm 

 ASTM C76: P0.3 = 208 kN, Pult = 258 kN for class V (class 140D) 600 diameter mm pipe 

 BS 5911: Pc = 142 kN, Pult = 177 kN for 600 diameter mm pipes of class 120 for trench use 
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4.2.2 Pipe Testing Procedures and Specimen Instrumentation   

The mechanical performance and structural behaviour of the full-scale precast concrete pipes 

were evaluated using the TEBT according to the EN 1916 standard. However, in the present 

study, one additional step was added to the EN 1916 testing procedure according to the 

Brazilian standard NBR 8890 (Precast Circular Concrete Pipes for Pluvial and Sanitary 

Drainage: Requirements and Test Methods) (Brazilian Association of Technical Standards, 

2008). After the one minute sustained loading, the load is increased until the pipe reaches the 

maximum measured post-peak load (Fpost, max). The Fpost,max must be greater than 1.05 Fc. This 

procedure was adopted to ensure adequate fibre-bond in the post-cracking stage of SFRC 

pipes (de Figueiredo et al., 2012). In addition, selected specimens were evaluated using the 

crushing test method according to the ASTM C497 method for comparison.  

Figure 4-1 shows the load profile versus time for the 450-mm diameter pipes tested 

according to the ASTM C497 (continuous test) and EN 1916 (cyclic test) procedures. It also 

shows the design and ultimate D-loads specified in ASTM C76 for 450 mm Class V pipes. 

The change in slope at 50 kN corresponds to the change in the loading rate from 5 mm/min to 

1 mm/min. The loading rate was reduced to better capture the full behaviour of the pipe. The 

horizontal line in Fig. 4-1b represents the one minute period during which the load was held 

constant at 156 kN (= 64 kN/m). This corresponds to Fc = 0.8 Fn > 0.67 Fn. This further 

modification to the EN 1916 standard was adopted so that the proof load Fc specified in EN 

1916 could coincide with the design load specified in ASTM C76. Furthermore, EN 1916 

specifies that the proof load Fc should be equal to 0.8 Fn in the case of "tightened inspection". 

Tightened inspection is required when a new production or a change in process occurs 

(European Committee for Standardization, 2002). In the present study, the cracking load (Fcr) 

is the load at which the first crack took place and always occurred at the pipe invert at the 

spigot. 
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Figure 4-1 Load vs. time for TEBT according to (a) ASTM C497, and (b) modified 

European EN: 1916 test procedures for SH4530 pipes. 

 

 It is worthy of noting that the British Standard BS 5911 (Concrete Pipes and 

Ancillary Concrete Products Specification for Unreinforced and Reinforced Concrete Pipes 

(including jacking pipes) and fittings with flexible joints (complementary to EN 1916:2002)) 

(British Standards Institution, 2002) indicates that pipes used in trenches shall satisfy the 

strength class of 120 N/m/mm, which falls in between Class III and Class IV of the ASTM 

C76. Contrary to ASTM C76, EN 1916 does not provide guidelines regarding the amount of 

reinforcement required for a pipe to achieve a certain required strength.  
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Details of the test setup and pipes instrumentation were given earlier in Section 3.2.3. 

In addition, the horizontal deformation of the spring-lines were recorded using two LVDTs. 

LVDTs were positioned against the upper and the two sides of the inner surface of the pipe 

and attached to supports fixed at the bottom part of the pipe at the spigot section. 

Furthermore, strains on the concrete surface at critical points (e.g. invert, inside of spring-

lines, outside of spring-lines, etc.) were recorded using strain gauges mounted on the pipe 

surface at spigot. The test setup and pipe instrumentation are shown in Fig. 4-2.  

 

 

 
 

 

Figure 4-2 Test setup and pipe instrumentation. 

 

4.3 RESULTS  

4.3.1 Failure Mechanism and Cracking Pattern  

All tested SFRC pipes exhibited a flexural failure mechanism, which was characterized by 

the occurrence of longitudinal cracks at the crown, invert, and spring-lines, as shown in Fig. 

4-3. Other failure mechanisms typically associated with conventional concrete pipes 
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reinforced with steel cages (i.e. diagonal tension and radial tension) were not observed.  

Figure 4-4 shows typical crack openings at failure for SFRC pipes.  

 

  

Figure 4-3 Flexural failure mechanism (SL6040 pipes). 

 

In the first loading cycle, the first crack always developed at the spigot in the inner side 

of the pipe’s invert between the two supporting blocks, followed by a crack at the outer side 

of the pipe’s wall of the spring-lines at spigot. Both cracks increased in width and length 

gradually with load increase. By the end of this cycle, for most pipes, the crack at the invert 

reached the bell end of the pipe, while cracks at the spring-lines stopped at nearly the pipe’s 

half-length. No secondary cracks were observed during this loading cycle. The average crack 

width in the spring-line at the ultimate load ranged between 1.0 and 2.0 mm. The effect of the 

fibre type and dosage on the cracking pattern could not be identified in this first load stage. In 

the second loading cycle, both cracks did not increase in length and width until Ppost, max was 

reached. Afterwards, the crack at the invert increased in width; only a few short hairline 

secondary branched cracks were observed in this area. Simultaneously, the crack at the 

spring-line started to propagate towards the pipe bell. Secondary cracks started to form 

thereafter in the spring-lines at various locations along the pipe’s length (i.e. L/2, 2L/3, 3L/4). 

While propagating towards the bell end, these cracks inclined between 00 and 900. The 

number of these secondary cracks seemed to increase with higher fibre dosage; however, the 

effect of changing the fibre type was not tangible.  

Flexural cracks 
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(a) Crack bridging by steel fibres  (b) Steel fibres pull out failure mechanism 

  

(c) Steel fibres rupture failure mechanism (d) Excessive crack opening 

Figure 4-4 Cracking patterns at failure of SFRC pipes. 

 

Examining the opened crack zones showed that both failure mechanisms of fibre 

pullout and fibre rupture co-existed. SFRC pipes were able to undergo large vertical and 

horizontal displacements without collapse. Tests were stopped due to excessive deformation 

beyond the ultimate load and substantial increase in crack widths (typically at vertical 

deflection of about 20 mm). The average crack width at the spring-line ranged between 8.0 

and 12.0 mm when the test was terminated.   

 

(a) (b) 

(c) (d) 
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4.3.2 Effect of Fibre Type and Dosage on Ultimate Load 

Table 4-2 and Table 4-3 show the average crack, ultimate, and post-peak loads and 

coefficient of variation for ultimate loads achieved from TEBT for 450 mm and 600 mm 

pipes, respectively. Some inconsistency can be observed for the ultimate loads reported in 

Tables 4-2 and 4-3. For instance, the achieved ultimate loads, Pult for 450 mm diameter 

SFRC pipes fabricated with 20, 30, and 40 kg/m³ of Dramix 65/35 steel fibres were 304, 283, 

and 360 kN, respectively (Table 4-2). This can be due to variability in the strength of the 

original concrete matrix itself. Hence, to minimize this effect, the normalized ultimate loads 

were used for evaluation. The normalized ultimate load is the ultimate load Pult divided by 

the square root of the compressive strength, fc’ of the concrete mixture. This is in agreement 

with previous work (Cho and Kim, 2003; Dhakal et al., 2005; and Ou et al., 2011). 

Figure 4-5 shows the change of the normalized ultimate load, Pult / fc
’0.5 (N0.5.m) with 

respect to the fibre content and type. Generally, the normalized ultimate load increased as the 

fibre content was increased, regardless of the fibre type. This can be attributed to the 

presence of fibres in the matrix, which intersect, block, and arrest the propagation of cracks, 

leading to enhanced structural performance (Song and Hwang, 2004). For instance, the 

calculated normalized ultimate load for 450 mm diameter pipes fabricated with 20 kg/m³ of 

Dramix 65/35 fibres increased by 22.9% and 30.5% when the fibre content was increased to 

30 and 40 kg/m3, respectively. Similarly, the normalized ultimate load for the 600 mm 

diameter pipes fabricated with 20 kg/m³ of Dramix 80/60 fibres increased by 35.7% and 

37.6% when the fibre content was increased to 30 and 40 kg/m3, respectively. Moreover, the 

addition of long fibres (Dramix 80/60) led to higher normalized ultimate loads. For example, 

at a fibre content of 30 kg/m3, the normalized ultimate loads for 450 mm diameter pipes were 

50.47, 44.16, and 43.41 N0.5.m for Dramix 80/60, hybrid (Dramix 65/35 and Dramix 80/60 at 

0.5:0.5 hybridization ratio) and Dramix 65/35 fibres, respectively.  

Regardless of the fibre length, it was noticeable that the gain in the normalized ultimate 

load, Pult / fc
0.5 was insignificant when the fibre content increased from 30 to 40 kg/m³. For 

instance, for the 600 mm diameter pipes, the gain in the normalized ultimate load when the 

fibre content increased from 30 to 40 kg/m³ was only 6% and 1.2% for short and long fibres, 

respectively. This was true for both pipe diameters under investigation (Fig. 4-5). This is in 
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agreement with findings of Haktanir et al. (2007). Furthermore, no increase in Pult / fc’
0.5 was 

observed when the hybrid fibre system was used, compared to using the short fibre alone 

(Dramix 65/35). Again, this was true for both pipe diameters under investigation. It seems 

that the normalized ultimate load was governed by the dosage of the long fibre.  

 

 

 

Figure 4-5 Normalized ultimate load change with fibre dosage in precast SFRC (a) 450 

mm, and (b) 600 diameter mm pipes. 
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4.3.3 Structural Behaviour of 450 mm Precast Concrete Pipes 

The required ultimate D-load strength for Class V pipes according to ASTM C76 is 175 

N/m/mm, which corresponds to an applied load of about 195 kN. The ultimate strengths for 

all tested 450 mm SFRC pipes were substantially higher than the strength requirements 

specified for ASTM C76 Class V pipes (Table 4-2). However, ASTM C76 lacks criteria for 

accepting SFRC pipes. Therefore, the load-deformation curves under continuous loading 

were selected to characterize the post-crack behaviour of the SFRC pipes.  

Figure 4-6 shows typical load deformation curves for SFRC and RC precast pipes 

tested using the continuous TEBT. In all cases, the deflection was found to increase linearly 

as the load was increased, until reaching the cracking load or the peak load. It can be 

observed that the recorded Pult for all SFRC pipes, even at the lowest fibre content (i.e. 20 

kg/m3), were higher than the Pult of the RC pipes. This implies a strength increase due to fibre 

inclusion in the matrix. In addition, an instability region, marked by an abrupt decrease in the 

load carrying capacity accompanied by a very large increase in deflection, was observed for 

the RC45 pipe. This can be attributed to the manufacturing process of precast RC pipes since 

the reinforcing steel cage is positioned around the mid-section of the pipe wall (near the 

neutral axis) in order to satisfy the minimum cover requirement. Thus, the reinforcement 

becomes active at high levels of cracking and displacement (de Figueiredo et al., 2012). 

Conversely, steel fibres effectively contribute to the strength of the pipe even before the 

initiation of the first major crack.  

Generally, the post-cracking behaviour depended on the fibre content.  At a fibre 

content of 20 kg/m3, an abrupt increase in vertical deflection occurred immediately after 

cracking. Conversely, as the fibre content was increased to 40 kg/m3, the behaviour changed 

to a deflection hardening and a second peak load of 334 kN was observed. Figure 4-6 

suggests that for a 450 mm diameter SFRC pipe, a fibre of content between 20 and 40 kg/m3 

would be sufficient for providing stress-strain behaviour comparable to that of conventional 

RC45 pipes with similar diameter.  
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Figure 4-6 Load vs. deflection at crown of spigot for RC45, SL4520, and SL4540 pipes 

(ASTM C497 continuous TEBT). 

 

Figure 4-7 shows the applied load versus time for the 450 mm diameter SFRC pipes 

reinforced with short (Dramix 65/35) fibres at a dosage of 20 and 30 kg/m3. Considering the 

acceptance criteria described in EN 1916, the SS4520 pipe incorporating 20 kg/m³ of Dramix 

65/35 fibres did not meet the required proof load in the second load cycle (i.e.  Ppost, max = 147 

kN < Pc = 156 kN). When the fibre content was increased to 30 kg/m³, the SS4530 pipe not 

only met the required Pc load, but also exhibited Ppost, max load that was 70% higher than that 

of the SS4520 pipe. However, no cracks were detected on the concrete surface of both pipes 

when the load was held for one minute at Pc = 156 kN (i.e. both pipes passed the first load 

cycle successfully). Thus, it can be argued that a fibre content of 30 kg/m³ would be 

sufficient to substitute for the regular reinforcement in Class V 450 mm diameter pipes.  
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Figure 4-7 Load vs. time (modified EN: 1916 cyclic TEBT) for SS4520 and SS4530 

pipes. 

 

Figure 4-8 exhibits the cyclic load versus deflection at the crown of the spigot for the 

SS4530, SH4530, and SL4530 pipes. In the first loading cycle, a linear elastic behaviour is 

observed for all pipes up to the cracking load (Pcr). Once the first crack was initiated, all 

pipes showed a deflection hardening behaviour, indicating that fibres effectively contributed 

to the ultimate load capacity of the pipes by transferring stresses across cracks. When the 

load bearing capacity dropped to 0.95 Pult, the load was released completely, leading to the 

recovery of some deformation as shown in Fig. 4-8.  

In the second load cycle, which is specified in EN 1916 to ensure that fibres are able 

to prevent the pipe from collapsing after Pult is reached (Abolmaali et al., 2012), a nearly 

linear response was recorded until Ppost, max was reached. Two components contributed to this 

response: (i) bridging cracks by fibres up to the Ppost, max, and (ii) aggregate interlocking 

which had a relatively much smaller contribution to the overall response. After Ppost, max, a 

softening behaviour was recorded regardless of the fibre type and dosage. This is expected 

since deflection-hardening behaviour would have occurred in the first cycle.  
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Figure 4-8 Load vs. deflection at crown of spigot SS4530, SH4530, and SL4530 pipes 

(modified EN: 1916 cyclic TEBT). 

 

In addition, it was observed that there were no instability regions in any of the second load 

cycles. The same observation was reported elsewhere (de Figueiredo and Gettu, 2008). 

 

4.3.4 Structural Behaviour of 600 mm Diameter Precast Concrete Pipes 

The required ultimate D-load for Class V 600 mm diameter pipes according to ASTM C76 is 

175 N/m/mm, which corresponds to an applied load of 258 kN. Figure 4-9 shows the load 

deformation curves for 600 mm SFRC pipes. Similar to the 450 mm diameter pipes, the 

deflection in the first load cycle was found to increase linearly with increasing load until 

reaching the cracking load. After cracking, all pipes showed a deflection hardening 

behaviour. However, the post-cracking behaviour better improved at higher fibre content. 

Unlike pipes with fibre contents of 20 and 30 kg/m³, the deflection hardening at a fibre 

content of 40 kg/m³ was accompanied by increasing load carrying capacity as the deflection 

increased. For example, the load capacity was 225, 277, and 301 kN at a deflection of 1.0 
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mm and 218, 273, and 324 kN at a deflection of 2.0 mm for the SS6020, SS6030, and 

SS6040 pipes, respectively (Fig. 4-9a).  

 

 

 

Figure 4-9 Load vs. deflection at crown of spigot (EN: 1916 cyclic TEBT) for (a) RC60, 

SS6020, SS6030, and SS6040 pipes and (b) SS6040 and SL6040 pipes. 
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The load- deflection curve for the control RC60 pipe was plotted on the same graph 

as that of the SFRC pipes for comparison (Fig. 4-9a). Unlike the RC45 pipe, no instability 

regions were observed on the load-deflection curve of the RC60 pipe because the 

reinforcement consisted of three steel rebar cages (inner, outer and elliptical) that were 

positioned closer to the extreme fibres (ASTM C76). It can be deduced from Fig. 4-9a that 

the SFRC pipes showed superior behaviour (higher load bearing capacity at similar 

displacement level) to that of the conventionally reinforced pipes at small displacements (2.5 

to 5.0 mm depending on the fibre content). Similar observation was also reported by others 

(de Figueiredo et al., 2012).  

Examining Fig. 4-10 reveals that a fibre content of 20 kg/m³ failed to achieve the 

required ultimate strength for Class V 600 mm diameter pipes (Pult = 227 kN < Pn = 258 

kN), despite the fact that the pipe sustained the required design strength (Pcr = 227 kN < Pc = 

208 kN) with no visible cracks on the concrete surface. In the second load cycle, the pipe did 

not reach the required proof load (i.e. Ppost, max = 206 kN < 208 kN). When the fibre content 

was increased to 30 and 40 kg/m³, Pult increased to 277 and 330 kN and Ppost, max increased to 

239 and 294 kN, respectively. These findings suggest that a fibre content of 30 kg/m³ would 

be sufficient for 600 mm diameter SFRC pipes to achieve the required strength for Class V 

pipes according to ASTM C76 requirements. In addition, data presented in Table 4-3 and 

Fig. 4-9a show that, similar to Pult, the maximum post-peak strength, Ppost, max increased with 

the increase of the fibre content, regardless of the fibre type.  

The benefit of using longer fibres (Dramix 80/60) over short fibres (Dramix 65/35) is 

illustrated in Fig. 4-9b. Pipes incorporating both types of fibres achieved the required 

strength in the first and second load cycles (Pult = 330, 352 kN and Ppost, max= 294, 324 kN for 

Dramix 65/35 and Dramix 80/60 fibres, respectively). The increases in ultimate and 

maximum post-peak load were 7% and 10%, respectively. Likewise, using longer fibres 

enhanced the toughness or fracture energy (i.e. area under load-deflection curve) for SFRC 

pipes. For example, the average measured toughness at deflections of 3.1 mm (i.e. πDi/600) 

and 12.5 mm (i.e. πDi/150) was 0.93x106 and 0.94x106 N.mm for SS6040 pipe and 2.72 x106 

and 3.93x106 N.mm for SL6040 pipe, respectively. Changes in residual strength of -2, 115, 

131, and 144% were recorded at deflections of 5, 8, 12, and 18 mm, compared to that 

observed for pipes made with short fibres, respectively.  
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Figure 4-10 Load vs. time (modified EN: 1916 cyclic TEBT) for SS6020, SS6030, and 

SS6040 pipes. 

 

This can be ascribed to the efficiency of long fibres in bridging cracks since they require 

higher pullout energy than that of short fibres (Beaumont and Aleszka, 1978).  

 

4.3.5 Post-Cracking Behaviour Analysis 

The post-cracking strength (PCS) analysis was explained earlier in Section 3.3.4. The trends 

of PCS curves shown in Fig. 4-11 are generally in agreement with the previously discussed 

load deflection responses. For the same fibre type and at the same deflection (δ), an increase 

in the fibre content resulted in an increase in the post-crack strength. For instance, for the 450 

mm diameter pipes, the average PCS values were 11.0, 13.2, and 14.2 N/mm² at a deflection 

of 2 mm, and 9.6, 11.7, and 14.0 N/mm² at a deflection of 5 mm when long fibres were added 

at rates of 20, 30, and 40 kg/m³, respectively (Fig. 4-11-a). In addition, at the same fibre 

content and deflection, pipes incorporating the long fibres exhibited higher PCS values than 

that of similar pipes made with the short or hybrid fibres. For example, at a fibre content of 

30 kg/m³, the average PCS values were 10.6, 11.8, and 11.8 N/mm² at 5 mm deflection and 

9.1, 9.6, and 10.5 N/mm² at 10 mm deflection for pipes made with short, hybrid, and long 
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fibres, respectively (Fig. 4-11b). These values are of great importance when considering the 

design of SFRC elements from serviceability limits perspective.  

 

 

 

Figure 4-11 Post-crack strength PCS at different deflection values for (a) 450 mm 

diameter SFRC pipes and (b) 600 mm diameter SFRC pipes. 
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The synergy analysis was explained earlier in Section 3.3.4. No synergy effect was 

observed for the selected deflection limits for mixtures used in the fabrication of the 450 and 

600 mm diameter pipes as shown in Table 4-4. It was found that any enhancement to the 

post-cracking behaviour due to fibre hybridization appeared to be related to the inclusion of 

the long fibres only (i.e. short fibres had no synergetic effect). 

 

Table 4-4 Fibre synergy assessment at various deflections 

Pipe 

Fibre 

Content 

(kg/m³) 

Synergy 

at 3.0 mm 

 

at 5 mm 

 

at 10 mm 

 

SH4520 20 -0.56 -0.49 -0.47 

SH4530 30 -0.48 -0.48 -0.51 

SH4540 40 -0.49 -0.51 -0.51 

SH6020 20 -0.47 -0.51 -0.49 

SH6030 30 -0.51 -0.48 -0.49 

SH6040 40 -0.49 -0.50 -0.48 
Note: hybridization ratio = 0.5:0.5 

 

4.3.6 Strain Measurements for 450 mm Diameter Pipes 

Figure 4-12 illustrates the strains measured at the inner invert (SG #1), the inner spring-lines 

(SG #2) and the outer springs (SG #3) of the 450 mm diameter pipes at the ultimate D-Load 

(175 D) for Class V pipes, and at the ultimate load Pult. Figure 4-12a indicates that the 

measured strains on the concrete surface corresponding to the ultimate D-Load level at the 

inner invert and outer spring-lines were positive (i.e. tensile strains). SG #1 and SG #3 

readings increased with increasing load until the formation of the first crack.  

After first crack formation, SG #1 either ruptured or gave a very low reading (positive 

or negative) as an indication of stresses redistribution at the inside invert area. Similarly, with 

loading increase, SG #3 either ruptured or indicated a redistribution of stresses at the outer 

spring area. This can be ascribed to the fact that the bending moment at the invert section is 

typically higher than that at spring-lines, resulting in higher stresses at the invert section. The 

average measured strain values for SG#1 and SG#3 were less than 100 με (<<concrete 
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ultimate tensile strain = 900 to 1600 με (Gopalaratnam and Shah, 1985)), indicating that the 

material was well in the elastic range at such a loading level.  

 

 

 

Figure 4-12 Measured strain at concrete surface of 450 mm diameter pipes at inner 

invert (SG #1), inner spring-line (SG #2), and at outer spring-line (SG #3) at (a) 

ultimate required D-load = 194 kN and (b) at ultimate load Pult. 
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Conversely, the reading of SG #2 progressed until the end of the test, indicating that a 

concrete compression failure did not occur at the spring-lines. For instance, average SG #2 

readings at Pult for PC45 and RC45 pipes were -141 and -115 με (which is significantly lower 

than the concrete’s ultimate compressive strain = 3500 με), respectively. After reaching Pult, 

the PC45 pipe collapsed, while the RC45 pipe exhibited a deflection hardening behaviour 

(Fig. 4-6). The maximum compressive strain measured at the inner spring-lines was 1360 με 

at P = 190 kN, before it started to decrease due to a reduction of residual strength induced by 

yielding of the wire reinforcement.  

A similar behaviour to that of the RC45 pipe was observed for the SFRC pipes; 

however, the maximum measured compression strain was significantly higher than that of the 

RC45 pipe. For instance, at a fibre content of 40 kg/m3, the maximum strain readings for SG 

#2 were -4447, -2112 and -4954 με at P = 136,  172 and 204 kN for pipes incorporating 

short, long, and hybrid fibres, respectively. These values are well below reported values for 

maximum compressive strain for SFRC incorporating similar range of steel fibres (= 15000 

με) (Fanella and Naaman, 1985; Ezeldin and Balaguru, 1992; Nataraja et al., 1999).  

SG #2 readings for SFRC pipes decreased due to reduction of the residual strengths 

caused by fibres pullout and rupture. Figure 4-12b shows a pattern of increased compressive 

strain at Pult as the fibre content increased for all fibre types. This is ascribed to 

improvements of the matrix deformability due to the addition of higher amount of fibres 

(Nataraja et al., 1999; Dhakal et al., 2005; and Boulekbache et al., 2012).  

 

4.3.7 Strain Measurements for 600 mm Diameter Pipes 

Figure 4-13 displays typical strains measured at the inner invert (SG #1), inner spring-lines 

(SG #2) and outer spring-lines (SG #3) of the 600 mm diameter pipes at the ultimate required 

D-Load (175 D) for Class V pipes and at the ultimate load Pult. The behaviour of the 600 mm 

diameter pipes was comparable to that of the 450 mm diameter pipes. However, the 600-mm 

diameter pipes with a fibre dosage of less than 30 kg/m³ failed to reach the required ultimate 

load (no reading reported in Fig. 4-13a). The average strain reading of SG #2 for SFRC pipes 

at the required D-load was -260 με, which is higher than that of the 450 mm diameter  pipes 
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(-84  με). This is due to the larger pipe diameter, which dictates higher D-loads and bending 

moments. Similar to 450 mm diameter pipes, Fig. 4-13b shows an increasing trend of 

compressive strain at Pult with increased fibre content.  

 

 

 

Figure 4-13 Measured strain at concrete surface of 600 mm pipes at inner invert (SG 

#1), inner spring-line (SG #2), and at outer spring-line (SG #3) at (a) ultimate required 

D-load = 258 kN, and at (b) ultimate load Pult. 
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4.3.8 Diametrical Deformation of 450 and 600 mm Diameter SFRC pipes  

Figures 4-14 and 4-15 illustrate the cross-sectional deformations at the two load cycles 

specified in EN 1916 TEBT for SFRC 600 mm and 450 mm diameter pipes, respectively. 

Four loading points were selected, which correspond to the ASTM design load (140 D) and 

Pult in the first loading cycle, and proof strength (140 D) and Ppost, max in the second loading 

cycle.  At the end of the first loading cycle, the vertical and horizontal deformations were 

gaged to zero and considered as initial values for the second loading cycle in order to 

compare the deformability of the pipe during the two cycles.  

 

 

Figure 4-14 Cross-section vertical and horizontal deformations of 600 mm SFRC pipes 

with a) 20 kg/m3 and b) 40 kg/m3 of Dramix 65/35 fibres, c) 20 kg/m3, and d) 40 kg/m3 of 

Dramic 80/60 fibres. 
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Figure 4-15 Cross-section vertical and horizontal deformations of 450 mm SFRC pipes 

with a) 20 kg/m3 of Dramix 65/35 fibres b) 30 kg/m3 of Dramix 80/60 fibres, c) 20 kg/m3, 

and d) 30 kg/m3 of Hybrid Dramix fibres. 

 

In the first load cycle, it can be observed that there was no significant difference 

between pipe deformations at the design load 140D (156 kN and 208 kN for 450 and 600 mm 

diameter pipes, respectively) (Figs. 4-14 and 4-15). This is because the load was carried 

primarily by the concrete matrix and fibres were not mobilized at this stage. At the ultimate 

loads of the first load cycle (Pult), pipes with higher fibre content exhibited higher 

corresponding diametrical deformations. For instance, for the 600 mm diameter pipes, the 

vertical and horizontal deformations at Pult increased from 0.805 and -0.332 mm (negative 

sign indicates outward displacement) to 3.95 and - 1.656 mm, respectively when the long 

fibre content increased from 20 to 40 kg/m³ (Fig. 4-14). This amounts to about five times 

increase in deformability when the fibre content was doubled, which further explains the 
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increase in compressive strain values at the pipe inner springs when the fibre content 

increased (Fig. 4-13b).  

In addition, pipes incorporating longer fibres exhibited more ductile behaviour, which 

is in agreement with findings discussed earlier. For instance, at a fibre content of 40 kg/m³, 

the vertical and horizontal deformations at Pult increased from 2.573 and - 0.835 mm to 3.950 

and - 1.656 mm when short fibres were replaced by longer fibres. Figure 4-15 indicates that 

combining long and short fibres did not create a synergetic effect. For example, for the 450 

mm diameter pipes incorporating 30 kg/m³ of fibres, the vertical and horizontal deformations 

at Pult were 0.20 and - 0.075 mm when long fibres were used, and 2.155 and -1.219 mm for 

hybrid fibres, respectively.  

In the second load cycle, the ability of SFRC pipes to deform was mainly dependant on 

the properties and dosage of the steel fibres used, unlike in the first load cycle where the 

interaction between the matrix and fibres had a predominant effect. It was observed that 

pipes incorporating high dosage (i.e. 30 and 40 kg/m³) of long fibres exhibited comparable 

cross-section deformations at the ultimate loads in both load cycles (Pult and Ppost, max). This 

was true for both the 600 mm (Fig. 4-14d) and 450 mm diameter pipes (Fig. 4-15b).  

 

4.4 DISCUSSION 

4.4.1 Continuous TEBT versus Cyclic TEBT 

The procedures of ASTM C497 and EN 1916 pipe crushing tests were illustrated earlier. In 

their work, Abolmaali et al. (2012) used the cyclic EN 1916 test reporting that the second 

cycle loading is used to ensure that fibres are able to prevent pipe collapse after the ultimate 

load is reached. Conversely, de Figueiredo et al. (2012) used the continuous ASTM C497 

crushing test in their work. They reported that there was no influence of the number of cycles 

(one or two) used in the test on the response of SFRC pipes based on de Figueiredo and Gettu 

(2008) previous findings.  

Results of the current study align with de Figueiredo and Gettu (2008) and de 

Figueiredo et al.  (2012) findings. Figure 4-16 shows the load deflection curves for two 450 
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mm diameter pipe specimens fabricated with 30 kg/m³ of hybrid fibres under continuous and 

cyclic TEBT. It can be observed that the second load cycle did not alter the post-cracking 

behaviour since the pipe specimen in the second load cycle was able to pick up the load from 

where it ended in the first load cycle. This suggests that the behaviour of SFRC pipes can be 

explored using the continuous TEBT without need for an extra loading cycle. However, in an 

industrial realm, if the second loading cycle is to be eliminated, an acceptance criterion for 

the post-peak behaviour of SFRC pipes must be agreed upon between the owner and the 

manufacturer depending on the pipe application. This criterion could be in the form of a 

minimum required residual strength at a specified deflection related to the pipe diameter.  

Recently ASTM C1765-13 (standard specification for “Steel Fiber Reinforced 

Concrete Culvert, Storm Drain, and Sewer pipe) (ASTM, 2013) was published after the 

completion of the experimental program reported in the present study. SFRC pipe classes 

specified in ASTM C1765 are similar to classes specified in ASTM C76 for RC pipes. 

Similar to the EN 1916 standard, the ASTM C1765 standard specifies two loading cycles, 

however, it does not require the load to be held constant at any loading stage.  

 

 

Figure 4-16 Load vs. deflection for TEBT continuous and cyclic test for 450 mm SFRC 

pipe fabricated with 30 kg/m³ of hybrid Dramix fibres 
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4.4.2 P0.3 versus Pcr 

ASTM C497 specifies the pipe design (crack) strength for RC pipes based on the 0.3 mm 

crack width criterion, where the design load is the maximum load reached before a crack 

having a width of 0.3 mm and a continuous length of 300 mm occurs. The crack is 

considered 0.3 mm in width when the tip of the 0.3 mm measuring gage will, without 

forcing; penetrate 1.5 mm at close intervals throughout the specified distance of 300 mm. 

This procedure is operator sensitive (de Figueiredo and Gettu, 2008). In addition, Erdogmus 

and Tadros (2009) reported that the 0.3 mm crack width criterion is arbitrary and it is not 

technically supported that it constitutes the limit of allowance for water ingress to cause 

corrosion. Thus, it is recommended to alter the 0.3 mm crack width criterion and adopt an 

alternative criterion stating "no visible cracks on the concrete surface" for SFRC pipes 

(similar to EN 1916), since the inclusion of steel fibres in the cementitious matrix shall 

significantly increase the ability of the composite to resist crack formation and propagation 

(Bischoff, 2003; Jiang et al., 2008; and Buratti, et al., 2013). Indeed, crack occurrence at this 

load stage would indicate inadequate fibre dosage in the matrix. 

 

4.5 SUMMARY AND CONCLUSIONS 

This chapter presents the results of an experimental program that was carried out on full-

scale 450 mm and 600 mm diameter SFRC pipes using both the continuous and cyclic three-

edge bearing tests. A Post-Cracking Strength (PCS) analysis was conducted in order to 

evaluate the effects of the reinforcement strategy on the post-cracking behaviour of SFRC 

pipes. The following conclusions emerged from the experimental results: 

 Steel fibres could be successfully used in producing precast concrete pipes to replace 

the regular steel cage reinforcement. Results showed that a fibre dosage of 30 kg/m³ 

should be sufficient for 450 and 600 mm diameter pipes to satisfy the strength 

requirements of ASTM C76 Class V pipes. 

  At relatively small displacements (2.0 to 5.0 mm), SFRC pipes fabricated with a fibre 

content of 30 kg/m³ or more exhibited residual strengths higher than that of RC pipes.  
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 For SFRC pipes, PCS values at the same deflections increased with the increase of 

fibres length and dosage.  

 Using a hybrid system of long and short steel fibres did not result in synergetic effects. 

Improvements due to the usage of a hybrid fibre system over short fibres were due to 

the inclusion of long fibres.  

 In the second loading cycle of the cyclic TEBT, diametrical deformations of SFRC 

pipes were dependant only upon the employed fibre type and dosage and were not 

affected by the hosting matrix.  

 The behaviour of SFRC pipes can be fully explored using the continuous TEBT 

without the need of an extra loading cycle.   
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CHAPTER FIVE 

 

 

 

5 FIELD PERFORMANCE OF BURIED FULL-SCALE 

STEEL FIBRE REINFORCED CONCRETE PIPES3 

 

5.1 INTRODUCTION 

Reinforced concrete pipes are typically installed following the procedures of the 

Standard Installations Direct Design (SIDD) method. The SIDD method is the state-of-the art 

in the area of reinforced concrete pipe design and it is used to determine the actual moments, 

thrusts, and shears in a buried pipe (ACPA, 1993). The SIDD method introduced the four 

standard installations (I to IV) based on Heger’s earth pressure distribution around a buried 

pipe (Fig. 2-4). The four standard installations cover a wide range of installation effort, site 

management, and soil quality. Type I requires the highest quality of bedding material and 

compaction effort, while Type IV assumes little or no effort with no imported bedding 

materials (Wong et al., 2006).  

Over the last two decades, several authors have experimentally investigated the soil-pipe 

interaction of conventionally reinforced concrete pipes through long-term field monitoring 

(e.g. Hill et al., 1999; McGrath et al., 2000; Smeltzerl and Daigle, 2005; Wong et al., 2006; 

Maximos et al., 2008; Erdogmus and Tadros, 2009) and short-term laboratory testing (e.g. 

Sargand et al., 1995; Lay and Brachman, 2014).  However, no studies could be found in the 

open literature that investigate the soil-pipe interaction of SFRC pipes.  

                                                 
3 A version of this chapter was submitted for publication to the Construction and Building 

Materials Journal.  
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This chapter presents an exploratory investigation providing novel data on the behaviour 

of buried full-scale 600-mm diameter SFRC pipes under actual and simulated live loads.  The 

first phase of this study monitored the behaviour of SFRC pipes under standard CL 625 

truckloads. In the second phase, the post-cracking behaviour of SFRC pipes under artificial 

live loads was examined. The soil-pipe interaction for SFRC pipes was analyzed in light of 

the established analysis procedures. Plain concrete (PC) and conventionally reinforced 

concrete (RC) pipes were also tested for comparison. 

 

5.2 EXPERIMENTAL PROGRAM  

5.2.1 Precast Concrete Pipes Fabrication 

 PC, RC, and SFRC pipes were fabricated at an industrial precast concrete plant in Oakville, 

Ontario, operating with the dry-cast production method. Pipes’ internal diameter (Di) was 

600 mm. All pipes had a Type C wall (wall thickness h = 94 mm). The Class V pipe (i.e. 

ultimate D-load = 175 N/m/mm) was the target pipe strength according to ASTM C76. Two 

types of steel fibre (Dramix RC-65/35-CN and Dramix RC-80/60-CN) were added manually 

as partial replacement for the coarse aggregate in SFRC pipes at Wf (fibres mass per 1 m3) of 

20 and 40 kg/m3 (i.e. equivalent to 0.25 and 0.50 % by concrete volume (Vf)). Detailed 

description of materials used in concrete fabrication was given earlier in Section 3.2.1. The 

compositions of the control fibreless mixture and other tested SFRC mixtures are shown in 

Table 5-1.  The physical and mechanical properties of steel fibres used in this study are 

shown in Table 3-2. Full-scale field-testing was conducted at Western University’s Field 

Site. Table 5-2 summarizes experimental details, including the tested pipes, reinforcement 

type and dosage, and installation types according to the SIDD method.  

 

5.2.2 Instrumentation and Specimens Preparation 

In the first experimental phase, only PC60 and SS6020 pipes were tested. A total of 24 

electrical foil resistance strain gauges were mounted on the circumference direction at the 

spigot and mid-span sections to measure hoop strains. For each pipe segment, at both 
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sections, strain gauges were mounted on the interior and exterior wall surfaces of the pipe at 

its crown, spring-lines, and invert regions to measure flexural strains. After mounting, strain 

gauges were treated with polyethylene and melting wax for waterproofing and protection 

from soil friction.  

 

Table 5-1 Concrete mixture proportions 

Material Mass/Cement mass 

Cement 1.00 

Blast Furnace Slag 0.54 

Fine Aggregate 5.00 

Coarse Aggregate 4.17 

Water 0.58 

Super plasticizer 0.0016 

Air entraining admixture 0.002 

Steel Fibres 0, 20, 40 kg/m3 

 

Table 5-2 Tested pipes and Installation types 

Phase 
Pipe 

Designation 
Reinforcement 

Wf 

(kg/m3) 

Installation 

Type 

1
st
 PC60 None - IV 

SS6020 Dramix 65/35 20 IV 

2
n

d
 

SL6020 Dramix 80/60 20 IV 

SL6040 Dramix 80/60 40 IV 

PC60 None - IV 

RC60 Regular - IV 

SS6020 Dramix 65/35 20 III 

SS6040 Dramix 65/35 40 III 

 

In the second phase, RC and SFRC pipes were subjected to the three-edge bearing test 

TEBT in the laboratory prior to being transported and tested in the field. SFRC pipes were 

loaded up to their ultimate loads (Pult), and then the load was released when the load carrying 

capacity dropped to 0.95 Pult. This procedure is similar to the first loading cycle described in 

both standards ASTM C1765 (Standard Specification for Steel Fiber Reinforced Concrete 

Culvert, Storm Drain, and Sewer Pipe) and EN 1916 (Concrete Pipes and Fittings, 

Unreinforced, Steel Fiber and Reinforced), while the second loading cycle was replaced with 
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the field-testing. The RC60 pipe was loaded up to Pult, and then the load was released when 

the reinforcement started yielding. The PC60 pipe was not loaded in the laboratory prior to 

field-testing. 

In both experimental phases, during pipe installation, linear variable differential 

transducers (LVDTs) were used to measure vertical pipe deflections. A special central holder 

truss frame with three spokes radiating from the holder hub were designed and built to hold 

the LVDTs during loading at the pipe spigot (Fig. 5-1). Measured strains and displacements 

were recorded automatically using a data acquisition system.  

 

 

 

Figure 5-1 Pipe segment instrumented with LVDTs. 

 

In the second experimental phase, 230 mm diameter Geokon earth pressure cells (model 

4810E Vibrating Wire Contact Pressure Cell) were used to monitor the stresses in the soil 

around the outside walls of the buried pipe during installation and live load application. The 

operating range of the pressure cells was from zero up to 700 kPa; however, they are capable 

of accommodating a 50% overload as per manufactures specifications. All cells used 

vibrating wires sensors to determine the pressure and were accurate up to 0.25% as indicated 
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by the manufacturer. All cells were calibrated by the manufacturer prior installation and 

Geokon’s calibration curves were used in analyzing the recorded data. The pressure cells 

were positioned approximately at the middle of the pipe length from one end. A portable 

GK403 readout unit was used to monitor earth pressure cells during installation and loading. 

Figure 5-2 shows a schematic cross-sectional view of a typical pipe segment and pressure 

cells positions in this stage. Pressure cells installed in the horizontal direction were used to 

measure the vertical earth pressure at the pipe invert and crown. Pressure cells installed in the 

vertical orientation were used to measure the horizontal earth pressure at the pipe spring-

lines. Pressures cells were installed following the same procedure described by Sargand et al. 

(1995) and Wong et al. (2006). Furthermore, to ensure uniform contact pressure on the cell 

surface, the following installation procedure was adopted: 

 Compaction of all areas surrounding the pressure cell prior to installation using a 

plate vibratory compactor. 

 Digging a hole of 400 x 400 x 100 mm dimensions and the removal of any visible 

cobblestones in the hole. 

 

Figure 5-2 Arrangement of earth pressure cells around the pipe in the second 

experimental campaign. 
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 Filling the hole with fine white sand and burying the pressure cell in fine sand. 

 Finally, covering the hole with the excavation and compacting by hand. 

Using white sand facilitated locating the pressure cell during pipe removal after testing.  

 

5.2.3 Installation Type and Procedure 

Type III and IV standard installations according to the SIDD method were tested (Table 5-

2). In Type IV installation, available soil from the site excavation was compacted to a 

standard Proctor compaction of 85%. The soil was classified as clayey sand (SC) according 

to ASTM D2487 (Standard Practice for Classification of Soils for Engineering Purposes 

(Unified Soil Classification System)). For Type III installation, well-graded river sand (SW) 

was imported and compacted to a standard Proctor compaction of 85%. The particle size 

distribution of both soils is given in Fig. 5-3. These installations match the C and D 

installations according to Marston/Spangler design method (ACPA, 2007).  Figure 5-4 

shows the original trench dimensions and pipe after installation. 

 
 



104 

 

 

 
 

Figure 5-3 Grain size distribution for soil type a) Clayey sand (SC) and b) Well-graded 

sand (SW) 

 

 

 

Figure 5-4 Trench dimensions (mm) in the second experimental campaign. 
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5.2.4 Testing Procedure 

5.2.4.1 First experimental phase 

Pipes were tested for service performance using a standard fully loaded CL 625 Ontario truck 

that was about 35 tons (343 kN), which is the maximum allowable weight for such truck. 

This was equivalent to front and rear axle loads of 68 kN and 137 kN, respectively. Two 

loading orientations were applied: a) Truck travels transverse to the centerline of the pipe, 

and b) parallel to the centerline of the pipe. Four stations (i.e. truck stops) along the buried 

pipe were explored: 1) tires of the rear axle of the truck were exactly over the center of the 

buried pipe, 2) tires of the front axles were exactly over the center of the buried pipe, 3)  tires 

of one side of the two rear axles were exactly along the center of the buried pipe, and 4)  tires 

of the two rear axles of each tandem dump truck were positioned symmetrically with respect 

to the buried pipes. Figure 5-5 shows a schematic of a buried pipe under truck loading and 

tire/load configuration of the loading truck. 

 

 

 

Figure 5-5 a) Schematic of pipe under truck loading b) tire/load configuration of the 

loading truck 
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5.2.4.2 Second experimental phase 

Loading was done using precast concrete blocks. Loading increased/ decreased incrementally 

by 75 kN. Readings of pressure cells and LVDTs were recorded at the end of each step after 

a period of five to ten minutes to allow the system to stabilize. Figure 5-6 shows a schematic 

of a pipe buried in the trench with concrete blocks loading.  

 

 

Figure 5-6 Schematic of loading using concrete blocks in the second experimental 

campaign (mm). 

 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 First Experimental Phase 

Table 5-3 shows the average measured internal (εin) and external (εout) circumferential strains 

at the invert and spring-line sections for the PC60 and SS6020 tested pipes. Positive sign 

indicates tension strains and vice versa. Regardless of the pipe type, the measured tensile 

strain values were lower than the tensile cracking strain of plain concrete (i.e. 100-200 με) 

(Gopalaratnam and Shah, 1985; and Kaklauskas, and Ghabouss, 2001). Furthermore, the 
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measured vertical displacement at crown for all loading cases was less than 0.1 mm. This 

explains the absence of cracks or permanent deformations on the concrete surface when the 

pipes were visually inspected after extraction. To better utilize values reported in Table 5-3, 

experimental bending moments (Mexp) were calculated and compared to theoretical bending 

moments (MSIDD) as shown in Fig. 5-7. Experimental bending moments (Mexp) were 

calculated using Eq. 5-1 (Munro et al., 2009, and Lay and Brachman, 2014). 

 

                                        Mexp = EI (
𝜀𝑖𝑛−𝜀𝑜𝑢𝑡

ℎ
)                                                          Eq. 5-1 

 

 

Table 5-3 Average flexural strains at critical sections for PC60 and SS6020 pipes 

Loading 

case 

PC60 SS6020 

at Invert  at spring-line  at Invert  at spring-line  

εin  

(με) 

εout 

(με) 

εin  

(με) 

εout 

(με) 

εin  

(με) 

εout 

(με) 

εin  

(με) 

εout 

(με) 

1 45 -25 -31 20 67 -22 -44 41 

2 53 -30 -39 48 61 -25 -41 41 

3 61 -27 -32 68 91 -50 -67 64 

4 55 -12 -19 71 74 -33 -52 49 

 

where Mexp is the bending moment (kN.m/m), EI is the flexural stiffness of the pipe wall 

section (kN.m²/m), h is the pipe wall thickness (m), εin and εout are the internal and external 

circumferential concrete strains, respectively. The modulus of elasticity (E) was determined 

experimentally using standard sized cylindrical specimens (100 mm x 200 mm) that were 

prepared during pipe fabrication, then cured and tested at an age of 28 days. The average 

modulus of elasticity value was 30 GPa. The calculated flexural stiffness (EI) was 2076 

kN.m²/m. In all load cases, no significant difference in experimental bending moment values 

at critical sections between the two tested pipes was recognized (Fig. 5-7). The difference 

between the measured Mexp at critical sections for the SS6020 pipe and that for the PC60 pipe 

ranged from -41% to 17% of the Mexp values for the PC60 pipe at same sections for all 
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loading cases. This range is acceptable for such studies (Smeltzer and Daigle, 2005; Lay and 

Brachman, 2014). This is expected, since both pipes sustained the applied live load without 

suffering any cracks at critical sections. Consequently, the effect of fibre addition to the 

matrix was not clear at this stage, since the concrete properties dominated the pipe’s 

behaviour rather than the steel fibres.  

 

 

 

Figure 5-7 Experimental and theoretical SIDD bending moments for PC60 and SS6020 

pipes at a) invert section b) spring-line section. 
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Furthermore, Fig. 5-7 shows theoretical bending moments (MSIDD) calculated using 

standard installations direct design method (SIDD) procedures. MSIDD was calculated using 

Eq. 5-2 (ACPA, 2001): 

 

                                      MSIDD = 
𝐷𝑚

2
 (Cmp Wp+ Cml Wl)                                             Eq. 5-2               

 

where MSIDD is the theoretical bending moment according to the Standard Installations Direct 

Design method (SIDD) (kN.m/m), Dm is the mean pipe diameter (m), Wp is the pipe’s weight 

(kN/m), Wl is the live load (kN/m), Cmp and Cml are non-dimensional coefficients for 

calculating the bending moment.  

The same load spreading assumptions and calculating procedures provided by ACPA 

(1993), which are consistent with the Canadian Highway Bridge Design Code (CHBDC) 

(CSA, 2006), were adopted in this study. Table 5-4 summarizes values of parameters used to 

calculate SIDD bending moments.  Detailed calculations of MSIDD are given in Appendix A.  

The difference between the measured Mexp at critical sections and the theoretical MSIDD 

values ranged from -20% to 157%. This range is similar to that published in the literature on 

regularly reinforced concrete pipes installed according to SIDD installations (Sargand et al., 

1995; Smeltzerl and Daigle, 2005; and Lay and Brachman, 2014). These findings confirm 

that the SIDD method provides reasonable approximation for bending moments acting on a 

buried SFRC pipe’s wall before cracking.   

At the end of this phase, it was concluded that, similar to the PC pipe, the SFRC pipe 

(fabricated with the least content of steel fibres, i.e. 20 kg/m³) can sustain a fully loaded CL 

625 standard Ontario truck without any cracking or significant deformation.  Thus, in order 

to investigate the efficiency of steel fibres in the post-cracking regime, pipes in the second 

phase were pre-cracked in the laboratory under the TEBT, prior to installation and testing in 

the field.  
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Table 5-4 Values of parameters used to calculate bending moments according to SIDD 

method 

Parameter Value 

Installation type IV 

Inside diameter (Di) 0.6 m 

Mean diameter (Dm) 0.694 m 

Outside diameter (Do) 0.8 m 

Wall thickness (h) 0.094 m 

Concrete density (ρ) 2400 kg/m³ 

Backfill height (H) 0.6 m = 1.0 Di 

Moment coefficient (Cmi)  

at Invert: Cmp 

                CmL 
0.235 

0.211 

at Spring-line: Cmp 

                        CmL 
-0.101 

-0.145 

Length of tire contact area (L) 0.2 m 

Width of tire contact area (W) 0.5 m 

Length of distributed earth pressure area at the 

crown level (AL1) 
1.25 m 

Width of distributed earth pressure area at the 

0.75 Do level (AL2) 
2.61 m 

Impact factor (If) 1.2 

Wheel load (P): 

Load case # 1: 

Load case # 2: 

Load case # 3: 

Load case # 4: 

 

68.5 kN 

34.25 kN 

68.5 kN 

68.5 kN  

 

 

5.3.2 Second Experimental Phase 

5.3.2.1 TEBT load-deflection curves 

In order to investigate the actual field behaviour of SFRC pipes in the post-cracking stage, 

these pipes were preloaded to their ultimate load capacity (Pult). The regularly reinforced 

concrete pipe RC60 was also pre-cracked in the laboratory prior to field-testing. Figure 5-8 

shows the load deformation curves (in terms of D-loads) for SFRC pipes at the preliminary 

cracking stage. Regardless of the pipe type, no cracks were observed at the critical sections  
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Figure 5-8 Load-deformation curves for SFRC pipes at the preliminary cracking stage. 

 

 

(invert, crown, and the spring-lines) when the load was held at the 140D limit (208 kN for 

600 mm diameter Class V pipe according to ASTM C76) for one minute. The first crack load 

(Pcr) was 298 kN (D-load = 200 N/m/mm) for the SS6020 pipe. A slight increase in Pcr was 

observed with increasing fibre content or using longer fibres. For instance, Pcr increased to 

304 kN (D-load = 208 N/m/mm) and 302 kN (D-load = 206 N/m/mm) when the fibre content 

was increased to 40 kg/m³ (pipe SS6040), and the long fibres were used (SL6020), 

respectively. Similarly, the achieved ultimate load increased as the fibre content increased. 

For instance, the ultimate load increased from 305 kN (D-load = 208 N/m/mm) to 325 kN 

(D-load = 222 N/m/mm) when the fibre content was increased from 20 to 40 kg/m³ of 

Dramix 80/60 fibres.  All SFRC pipes achieved ultimate D-loads higher than 175 N/m/mm 

(i.e. 258 kN for 600 mm diameter Class V pipe according to ASTM C76).  
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Figure 5-9 shows the load deformation curve for the RC60 pipe during the preliminary 

cracking stage. The first crack load (i.e. Pcr = 193 kN or D-load = 132 N/m/mm) was 

significantly lower than that of SFRC pipes (298 kN). This can be attributed to the absence of 

steel fibres. Steel fibres in the matrix would intersect, block and arrest the propagation of 

cracks leading to higher cracking loads and a better overall structural performance (Song and 

Hwang, 2004). Table 5-5 summarizes the achieved ultimate loads for all of the tested pipes. 

The achieved ultimate load for the RC60 pipe (i.e. Pult = 292 kN or D-load = 200 N/m/mm) 

was comparable to that reported for SFRC pipes (average variation = 4.88%); however, it 

was achieved at a higher deformation in the case of the RC60 pipe (i.e. 9.0 mm) when the 

steel reinforcement started to yield.  

 

  

Figure 5-9 Load-deformation curve for the RC60 pipe at the preliminary cracking 

stage. 
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Table 5-5 Pcr and Pult for pipes under investigation in the second experimental phase 

Pipe Reinforcement 
Pcr 

(kN) 

Pult 

(kN) 

PC60 Plain ___ ___ 

RC60 
Regular 

Reinforcement 
193 292 

SS6020 Dramix  

RC-65/35-CN 

(short fibres) 

298 300 

SS6040 304 319 

SL6020 Dramix  

RC-80/60-CN 

(long fibres) 

302 305 

SL6040 314 325 

 

5.3.2.2 Initial earth pressure measurements  

In this study, pipe installations were adapted from the Standard Installation Direct Design 

SIDD method. This method is based on the Heger’s earth pressure distribution as illustrated 

earlier (Fig. 2-4). Tables 5-6 to 5-8 show the measured and estimated earth pressure at the 

pipe’s invert, crown and spring-line, respectively. The estimated earth pressures were based 

on Heger’s distribution and the calculation of the prism load (PL) at the top of the pipe. The 

prism load PL was calculated using the following equation Eq. 5-3 (ASCE 15-98, 2000): 

 

                                 PL = (γDo) [H + 0.107 Do]                                                      Eq. 5-3 

 

where PL is the prism load (N/m), γ is the unit weight of soil (N/m³), Do is the outside 

diameter of the pipe (m), and H is the height of earth above the top of the pipe (m). An 

example of the calculated Heger’s earth pressures is given in Appendix B. 

Based on the results reported in Tables 5-6 to 5-8, it can be observed that the PC60 pipe 

was the only pipe that was installed in the un-cracked condition, thus it represents a true rigid 

pipe case. The percentage difference between the measured and estimated stresses was 

around 26%, -73%, and 272% at the pipe invert, crown, and spring-lines, respectively. 
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Hence, it can be concluded that the SIDD method provides a reasonable estimation for the 

vertical stress at the pipe’s invert. However, the SIDD method overestimated the vertical 

stress at the pipe crown and underestimated the horizontal stress at the pipe spring-line level. 

This is in agreement with previous work (Wong et al., 2006). 

Moreover, for the RC60 and SFRC pipes, the SIDD method overestimated the vertical 

stresses at the pipe’s invert by about -40% to -87% (average of -64%). This can be attributed 

to the fact that the RC60 pipe and the SFRC pipes were tested in the cracked condition; 

hence, their behaviour can be approximated as semi-rigid pipes rather than rigid pipes. 

Therefore, stresses were dissipated in the pipe ring deformation and crack width increase 

rather than being transformed in the form of higher stresses in the soil around the pipe.  

 

Table 5-6 Measured and estimated earth pressure at pipe invert 

pipe 
Installation 

type 
Height (m) 

Earth Pressure at Invert σinv (kPa) 

measured estimated % Diff. 

PC60 IV 0.9 177.20 140.71 25.93 

RC60 IV 0.9 28.07 140.71 -80.05 

SS6020 III 1.1 19.81 155.59 -87.27 

SS6040 III 1.1 63.58 155.59 -59.14 

SL6020 IV 0.6 43.87 97.95 -55.21 

SL6040 IV 0.6 59.21 97.95 -39.55 

 

 

 

Table 5-7 Measured and estimated earth pressure at pipe crown 

pipe 
Installation 

type 
Height (m) 

Earth Pressure at Crown σcrn (kPa) 

measured estimated % Diff. 

PC60 IV 0.9 12.00 44.55 -73.06 

RC60 IV 0.9 6.77 44.55 -84.80 

SS6020 III 1.1 13.00 52.96 -75.45 

SS6040 III 1.1 4.53 52.96 -91.45 

SL6020 IV 0.6 7.21 31.01 -76.75 

SL6040 IV 0.6 6.40 31.01 -79.36 
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Table 5-8 Measured and estimated earth pressure at pipe spring-lines 

pipe 
Installation 

type 
Height (m) 

Earth Pressure at Springs σspg (kPa) 

measured estimated % Diff. 

PC60 IV 0.9 7.11 1.91 272.25 

RC60 IV 0.9 4.09 1.91 114.14 

SS6020 III 1.1 5.00 3.47 44.09 

SS6040 III 1.1 2.96 3.47 -14.70 

SL6020 IV 0.6 4.05 1.33 204.51 

SL6040 IV 0.6 6.63 1.33 398.50 

 

 

Likewise, vertical stresses at the pipe’s crown (σcrn) were overestimated for all the 

cracked pipes under investigation. The difference ranged between -75% and -91% (average 

of -82%). The difference of σcrn in the case of the PC60 pipe was in the same range (-73%). 

This indicates that the vertical stress at the pipe’s crown σcrn was not affected by the pipe 

condition. This can be attributed to the fact that σcrn was measured at a level above the pipe 

itself, hence it was not affected by the pipe ability to deform.  

Furthermore, the horizontal stresses at the pipe’s spring-line level σspg were 

underestimated for all the cracked pipes under investigation (except for pipe SS6040). The 

difference ranged between 44% and 398% (an average of 169%). This can be attributed to 

the increased lateral support offered by the soil surrounding the pipe when the horizontal 

deformation of the pipe is allowed (i.e. semi-rigid pipe). 

 

5.3.2.3 Soil-pipe response during loading 

As mentioned earlier, each loading step represented an incremental load increase or decrease 

of 75 kN. Loading was stopped after five loading steps. At that stage, soil failure was 

identified by significant cracking and settlement around the loading area. Afterwards, 

unloading began while recording stresses and displacements at each loading step.  
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Figures 5-10 to 5-15 show the measured soil stresses (σcrn, σinv, and σspg) around the 

tested pipes. Figures 5-10a to 5-15a show soil stresses before loading, at the maximum load, 

and after fully unloading for the PC60, RC60, SL6020, SL6040, SS6020, and SS6040 pipes, 

respectively. Combined soil-pipe responses are presented as the change in σinv and in vertical 

displacement at the pipe crown (ΔDv) as shown in Figs. 5-10b to 5-15b. All stresses (σcrn, 

σinv, and σspg) increased as the applied load increased and decreased with unloading. The 

highest reading was recorded at maximum load. Stress values varied depending on the pipe 

condition (cracked or un-cracked), type of reinforcement (regular reinforcement or steel 

fibres), type and dosage of steel fibres, and type of installation (Type IV or III). For instance, 

at maximum load, the highest σinv value was recorded for the un-cracked pipe (PC60) (i.e. 

315 kPa) compared to only 58 kPa for the cracked RC60 pipe. For cracked SFRC pipes, σinv 

ranged from 43 to 198 kPa. Similarly, for all pipes, ΔDv increased as the applied load was 

increased and vice versa.  

 

  

Figure 5-10 PC60 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 
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Figure 5-11 RC60 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 

 

 

  

 

Figure 5-12 SL6020 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 

 



118 

 

 

  

Figure 5-13 SL6040 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 

 

 

  

 

Figure 5-14 SS6020 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 
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Figure 5-15 SS6040 pipe (a) measured soil stresses around the pipe, and (b) Soil- pipe 

response during loading and unloading. 

 

5.3.2.3.1 Effect of pipe condition 

The RC60 pipe exhibited significant reduction in the measured σinv (-80%) accompanied by 

an increase in the ΔDv (83%) (Fig. 5-11) compared to that of the PC60 pipe (Fig. 5-10). This 

can be attributed to the reduction in rigidity of the RC60 pipe due to the pre-test cracking, 

allowing the dissipation of stresses in the pipe ring deformation and crack width increase, 

rather than being stored in the form of higher stresses in the soil around the pipe. This led to a 

higher horizontal support from the surrounding soil in the case of the RC60 pipe. This was 

evident in the 74% increase of σspg for the RC60 pipe at the maximum load was (from 4 to 

15.5 kPa), while this increase was only 46% for the PC60 pipe (from 7.1 to 13 kPa) at 

maximum loading. It is worth mentioning that visual inspection of the PC60 pipe after 

extraction did not indicate any presence of cracks at critical sections. 

 

5.3.2.3.2 Effect of reinforcement type 

The advantage of SFRC pipes over RC pipes can be illustrated by comparing Fig. 5-11 

(RC60 pipe) and Fig. 5-13 (SL6040 pipe). Lower pipe deformations accompanied by higher 
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stresses at the invert were reported for the SL6040 pipe compared to that of the RC60 pipe. 

For instance, the measured σinv and ΔDv for the RC60 and SL6040 pipes at maximum load 

were 58.13 kPa and 0.22 mm, and 187 kPa and 0.17 mm, respectively. This can be attributed 

to the presence of steel fibres in the concrete matrix. Steel fibres restrained the opening and 

growth of pre-made cracks as the load increased since they are mobilized once cracks are 

initiated. On the other hand, regular reinforcement would be mobilized only when cracks 

reach to the reinforcement level. Therefore, lower deformations were measured in the case of 

the SL6040 pipe compared to that of the RC60 pipe. 

 

5.3.2.3.3 Effect of fibre dosage 

Figures 5-12 and 5-13 show the effect of increasing the fibre dosage on the soil-pipe 

response of SFRC pipes. The measured σinv and ΔDv for the SL6020 and SL6040 pipes at the 

maximum load were 107.11 kPa and 0.37 mm, and 187 kPa and 0.17 mm, respectively. 

Higher fibre dosage led to a lower pipe deformation. Consequently, the measured stresses at 

the invert increased as the fibre dosage increased. A similar trend can be observed by 

comparing Figs. 5-14 and 5-15. The measured σinv and ΔDv for the SS6020 and SS6040 pipes 

at maximum load were 43.85 kPa and 0.22 mm, and 197.5 kPa and 0.11 mm, respectively. 

This observation suggests that, for pipes of this size (Di = 600 mm), a fibre dosage of 20 

kg/m³ may be insufficient to achieve a desirable post-cracking behaviour.   

 

5.3.2.3.4 Effect of installation type 

Pipes installed in Type III installation (pipes SS6020 and SS6040) were fabricated using a 

different type of steel fibres than those installed in Type IV installation (pipes SL6020 and 

SL6040) (see Table 5-2). Hence, it is difficult to directly investigate the effect of the 

installation type on the soil-pipe interaction. Thus, the improvement in the pipe stiffness (i.e. 

applied load/ pipe deformation) offered by the bedding installation, over the pipe stiffness 

obtained from the TEBT was compared instead. Figure 5-16 shows the pipe stiffness 

obtained from the second cycle of the TEBT performed on replicates of SL6040 (Fig. 5-16a) 

and SS6040 (Fig. 5-16b) pipes as well as the pipe stiffness obtained from field loading.  
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Figure 5-16 Pipe stiffness (PS) obtained from the second cycle of the TEBT and from 

field testing for (a) SL6040 pipe and (b) SS6040 pipe. 
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Figure 5-17 Pipe stiffness (PS) obtained from the second cycle of the TEBT and from 

field testing for (a) SL6020 pipe and (b) SS6020 pipe. 

 

For the SL6040 pipe, the stiffness increased from 0.09 x 10³ to 2.0 x 10³ kN/mm due to the 

support offered by Type IV installation. For the SS6040 pipe, stiffness increased from 0.05 x 

10³ to 3.0 x 10³ kN/mm due to the support offered by Type III installation. The SS6040 pipe 

exhibited higher stiffness than that of the SL6020 pipe, despite having lower stiffness in the 

TEBT. This can be attributed to the better support provided by Type III installation over that 
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of Type IV installation, since it employs a better quality bedding material. This was implied 

since the increase in σspg for the SS6040 pipe at the maximum load was 72% (from 2.96 to 

10.57 kPa), while it was 64% for the SL6040 pipe (from 6.63 to 18.57 kPa). Similarly, Type 

III installation offered greater support to the SS6020 pipe (stiffness increase by 1.925 x 10³ 

kN/mm), than did Type IV installation for the SL6020 pipe (stiffness increase by 0.925 x 10³ 

kN/mm) (Fig. 5-17). From Figs. 5-16 and 5-17, it seems that most SFRC pipes exhibited a 

constant stiffness regardless of the load increase, with the exception of the SL6020 pipe, 

whose stiffness decreased as the loading increased. This is due to the lower fibre dosage used 

in this pipe as well as the lack of support from the installation (Type IV).  

 

5.4 SUMMARY AND CONCLUSIONS 

This chapter explored the behaviour of full-scale SFRC pipes when buried in soil and 

subjected to live loads. The main interest was the earth pressure around the pipe and the pipe 

diametrical deformations. Two experimental phases were conducted. A revised strategy was 

used in the second phase by employing heavier live loads and installing SFRC pipes that 

were intentionally pre-cracked in the laboratory. From this full-scale pipe field-testing 

program, the following conclusions can be drawn: 

1. The current design recommendations for the pipe wall thickness in ASTM C76 (Type 

C wall) are overly conservative, since no sign of cracks or reduced stiffness was 

detected in the plain concrete pipe (or the SFRC pipe ) installed in a shallow Type IV 

installation (the least quality installation Type) and subjected to a fully loaded CL 625 

Ontario standard truck. 

2. The SIDD method provides reasonable estimation of the vertical stresses at the pipe 

invert. However, it overestimates the vertical stress at the pipe crown and 

underestimates the lateral support provided by the haunch and lower side represented 

by the horizontal stress at the pipe spring-line level. 

3. Vertical stresses at the pipe invert were reduced significantly when the pipe ring is 

allowed to deform (due to pre-induced cracks in this study). 

4. SFRC pipes fabricated with 40 kg/m³ of Dramix 80/60 fibres exhibited lower 

deformations than that of the conventional control RC pipe.  
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5. The response of pre-cracked SFRC pipes is more sensitive to the installation type 

than to the fibre type. SFRC pipes fabricated with short steel fibres exhibited lower 

deformations and higher stiffness than that of SFRC pipes fabricated with long steel 

fibres when installed in a better installation type (Type III instead of Type IV).     
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CHAPTER SIX 

 

 

 

6 RATIONAL FINITE ELEMENT ASSISTED DESIGN OF 

PRECAST STEEL FIBRE REINFORCED CONCRETE 

PIPES4 

 

6.1 INTRODUCTION 

Recently, there has been growing interest in using steel fibres in precast concrete pipes as a 

replacement for regular steel rebar reinforcement. Over the last decade, several experimental 

studies (e.g. MacDonald and Trangsrud, 2004; Haktanir et al., 2007; de la Fuente and de 

Figueiredo, 2011; de Figueiredo et al., 2012- a, Abolmaali et al., 2012; and Mohamed et al., 

2014) investigated the mechanical performance of precast SFRC pipes.  Several parameters 

were explored, including the pipe internal diameter (Di), wall thickness (h), fibre content 

(Wf), fibre type, and the targeted pipe ultimate strength. The main goal was to find the 

optimal fibre content for a specific pipe configuration (diameter/wall thickness) to achieve a 

certain strength class. This procedure is generally uneconomical and inefficient due to the 

variety of parameters that need to be accounted for (de Figueiredo et al., 2012- b). 

de Figueiredo et al.  (2012-b) and de la Fuente et al. (2012) reported the development 

of a numerical model (MAP or Mechanical Analysis of Pipes) for the analysis and design of 

SFRC pipes. The MAP model is presumed to simulate the three-edge-bearing test that is 

                                                 
4 A version of this chapter was submitted for publication to the Engineering Structures 

Journal.  
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widely used by the industry as a basis for the design check of concrete pipes. The main 

model hypotheses and basic governing equations were given in (de Figueiredo et al., 2012-b, 

and de la Fuente et al., 2012). However, final design equations were not provided in the 

related literature. Moreover, the model was validated using experimental data generated only 

by the same authors and did not include data from other sources. 

This chapter aims at developing a 3D finite element model simulating the three-edge-

bearing test (TEBT) of SFRC pipes. The model was validated using experimental data 

generated by the author, as well as other experimental results available in the open literature. 

Consequently, the validated model was used to conduct a parametric study capturing the 

following parameters: pipe diameter, pipe wall thickness, and fibre type and content. Finally, 

the findings of the parametric study were presented in a tabular form in order to facilitate the 

rational design process of SFRC pipes. The TEBT was described earlier in Section 2.1.3.. 

Table 2-4 shows the pipe strength requirements for SFRC pipes according to ASTM C1765 

(Dtest and Dservice).  

 

6.2 FINITE ELEMENT MODELLING OF TEBT 

A finite element analysis (FEA) using the commercially available software ABAQUS 

(Version 6.9) was performed in order to conduct the parametric study. A 3D model was 

constructed to simulate the TEBT. The model consists of the upper loading strip, lower 

supporting strips, and the concrete pipe. The upper and lower strips had dimensions of 50 x 

50 mm. The lower bearing strips were 50 mm apart. The model’s length was maintained at 

1000 mm, while the pipe diameter and wall thickness varied depending on the case under 

investigation. The pipe was modeled using hexahedral (8-node) isoparametric linear solid 

elements with reduced integration and hourglass control. Three different element sizes were 

considered (50, 20, and 10 mm) for meshing the pipe. The predicted results were similar 

when the element size was 20 and 10 mm. However, the execution time of the 20 mm 

element size model was about 15% of that of the 10 mm element size model. Therefore the 

element size was maintained at 20 mm.  
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Figure 6-1 shows the 3D modelling of the TEBT. The upper and lower bearing strips 

were modeled as rigid elastic bodies. The two lower bearing strips served as supports to the 

system and were fixed at the bottom to prevent rotational or translational degrees of freedom. 

Displacement controlled loading was accomplished by applying a 20 mm downward 

displacement at the upper bearing strip. The interaction between the pipe barrel and the upper 

and lower strips was modeled using a simple tie constraint.  

 

  

Figure 6-1 Finite element modelling of the three edge bearing test. 

 

 

6.3 SFRC MODELLING: CONCRETE DAMAGED PLASTICITY 

MODEL 

The constitutive behaviour of SFRC differs significantly from that of plain concrete, 

especially for tension stiffening.  Steel fibres (SFs) enhance the post-cracking behaviour of 

hardened concrete through maintaining some of its load-carrying capacity after crack 

formation. Moreover, during fracture, energy is consumed in the de-bonding, pulling-out, and 

rupture of fibres, leading to higher concrete toughness (Bentur and Mindess, 2007). The 
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overall improvement in the engineering properties of concrete owing to SFs addition is a 

function of several variables, including the fibre shape, length, aspect ratio, volume fraction 

with respect to the total concrete volume, and the quality of the hosting matrix (Brandt, 

2008). Thus, an accurate constitutive modelling of SFRC behaviour is essential for achieving 

a reliable FE model of SFRC pipes. Two concrete constitutive models are available in 

ABAQUS. These are the concrete smeared cracking (CSC) model and the concrete damaged 

plasticity (CDP) model.  

The CSC model is used for modelling the concrete behaviour under monotonic loading 

and low confining pressure (less than four to five times the magnitude of the largest stress 

that can be carried by the concrete in uniaxial compression) and can be used to model plain 

and reinforced concrete (ABAQUS Analysis User’s Manual, 2006).  The model employs an 

isotropically hardening yield surface that is active when the stress is dominantly compressive 

and an independent “crack detection surface” that determines if a point fails by cracking. 

After failure, the behaviour across cracks is modeled using strain softening for cracked 

concrete (ABAQUS Analysis User’s Manual, 2006). However, the CSC model is known to 

have difficulty converging after steel yielding (Ahn, 2011, and Chen and Graybeal, 2012).  

Since the main contribution of SF’s lies in the post-cracking regime, it was decided to rather 

employ the CDP model. 

The CDP model is generally used for modelling monotonic, cyclic, and/or dynamic 

loading under low confining pressure and can also be used to model plain and reinforced 

concrete (ABAQUS Analysis User’s Manual, 2006). It assumes that the main two failure 

mechanisms are tensile cracking and compressive crushing of concrete. The evolution of the 

failure surface is controlled by the compressive plastic strain (εc
pl) and the tensile plastic 

strain (εt
pl). Figure 6-2 shows the assumed uniaxial tension and compression stress-strain 

behaviour. The model follows a linear elastic relationship until the failure stress (σto) in the 

case of tension or the yielding stress (σco) in the case of compression. The tensile failure 

stress (σto) corresponds to the onset of micro-cracking in the concrete material, after which, 

progressive cracking is represented by a softening stress-strain response (Fig. 6-2a). In 

compression, the response in the plastic regime is characterized by stress hardening, followed 

by strain softening beyond the ultimate stress (σcu) (Fig. 6-2b).  
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Figure 6-2 Response of concrete to uniaxial loading in (a) tension and (b) compression 

(ABAQUS Analysis User’s Manual, 2006). 

 

 

6.3.1 Defining Tensile and Compressive Behaviours 

Tension stiffening can be defined by means of a post-cracking stress-strain relation. In 

this case, the post-cracking stress is given as a function of the cracking strain (εt
ck), where: εt

ck 

= εt - εto
el and εto

el = σt/ Eo and Eo is the modulus of elasticity. Moreover, the tension stiffening 

can be defined by applying a fracture energy cracking criterion. In this case, the behaviour is 
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characterized by a stress-displacement response rather than a stress-strain response. Under 

tension, a concrete specimen will crack across its critical section. When the specimen has 

been pulled apart (sufficiently for most of the stress to be removed and the undamaged elastic 

strain becomes relatively small), its length will be determined primarily by the opening at the 

crack (ABAQUS Analysis User’s Manual, 2006). The opening does not depend on the 

specimen's length. The fracture energy cracking criterion can be characterized by specifying 

the post-cracking stress as a function of cracking displacement (ut
ck) (Fig. 6-3), where: ut

ck = 

2Gf/σto and Gf is the fracture energy. Typical values of Gf range between 40-120 N/m for 

concrete with compressive strength between 20-40 MPa. This method was introduced by 

Hillerborg (1976), and since then it has been preferred for many practical purposes over the 

post-cracking stress-strain approach. This is because the latter will introduce unreasonable 

mesh sensitivity into the results in areas where reinforcement does not exist (i.e. SFRC 

member without steel reinforcement). Compressive behaviour in the plastic regime is 

specified as a stress-inelastic strain (εc
in) relation, where: εc

in = εc – εco
el and εco

el = σc/ Eo. 

 

 

 

Figure 6-3 Post-cracking stress-displacement curve (ABAQUS Analysis User’s Manual, 

2006). 
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6.3.2 Defining Concrete Plasticity 

In the CDP model, concrete plasticity is defined by assuming a non-associated potential 

plastic flow and a bi-linear yield surface as shown in Fig. 6-4. The CDP model employs the 

yield function of Lubliner et al. (1989), with some modifications introduced by Lee and 

Fenves (1998) to account for different evolution of strength under tension and compression 

(ABAQUS Analysis User’s Manual, 2006). Table 6-1 shows the parameters used in this 

study to define concrete plasticity in the CDP model. The dilatation angle (ψ) and 

eccentricity (m) control the plastic straining response of the material. The ratio σco/σbo and Kc 

determine the shape and size of the bi-linear yield surface (Blazejowski, 2012). Since the 

response of the structure (SFRC pipe) will be predominately uniaxial, it is not anticipated 

that there will be significant changes to the analyses by varying these parameters. Viscosity 

has been set to zero and this assumes that there are no strain rate effects. Values of 

parameters in Table 6-2 were set similar to previous studies on SFRC (Ahn, 2011; 

Blazejowski, 2012; Chen and Graybeal, 2012; and Abbas, 2014). Definition of each of these 

parameters and further information regarding the plastic flow function (G) and yield surface 

function can be found in (ABAQUS User’s Manual, 2006).   

 

6.3.3 Modelling Compression Behaviour 

Several analytical models that describe the compressive behaviour of SFRC concrete can be 

found in the literature (e.g. Soroushian and Lee, 1989; Ezeldin and Balaguru, 1992; Nataraja 

et al., 1999; and Barros and Figueiras, 1999). Most of these models are based on equations 

similar to those of plain concrete. However, the compressive strength and the strain 

corresponding to the peak stress are evaluated empirically by adding a dimensionless factor 

to the peak stress and the corresponding strain of plain concrete. Bencardino et al. (2008) 

conducted a critical evaluation of these models using a large database of experimental results 

available in the literature. They found that these models agree well with the experimental 

data from which the model equations were derived. However, they do not show the same 

degree of agreement when applied to other published data (Bencardino et al., 2008). 

Nevertheless, they reported that, in general, the stress- strain behaviour of SFRC could be 
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“reasonably” predicted by the model proposed by Barros and Figueiras (1999) (Bencardino et 

al., 2008).  

 

 

Figure 6-4 Plane stress yield surface of concrete in CDP model (ABAQUS Analysis 

User’s Manual, 2006). 

 

 

Table 6-1 CDP model plasticity parameters 

CDP Parameter Value 

Dilation angle (ψ) 36.31o 

Viscosity parameter (μ) 0 

Eccentricity (m) 0.1 

σco/σbo 1.16 

Kc 0.67 
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Therefore, the model proposed by Barros and Figueiras (1999) was used herein to model the 

compression stress-strain behaviour of SFRC in this study. The model can be described using 

the following relationships: 

                         𝜎 = 𝑓𝑐𝑓  

𝜀

𝜀𝑝𝑓

(1−𝑝−𝑞)+𝑞(
𝜀

𝜀𝑝𝑓
)+𝑝(

𝜀

𝜀𝑝𝑓
)

(1−𝑞)
𝑝

                                              Eq. 6-1 

             with:   𝑞 = 1 − 𝑝 −
𝐸𝑝𝑓

𝐸𝑐
,  𝑝 + 𝑞 𝜖 ]0,1[ , and 

1−𝑞

𝑝
> 0                             Eq. 6-2 

                        𝐸𝑝𝑓 =  
𝑓𝑐𝑓

𝜀𝑝𝑓
 , and 𝐸𝑐 = 21.500 √

𝑓𝑐𝑓

10

3
                                               Eq. 6-3 

where: fcf is the compression strength. For hooked-end fibres (lf = 30 mm, df = 0.5 mm, lf/df = 

60): 

                               𝜀𝑝𝑓 =  𝜀𝑐𝑜 + 0.0002 𝑊𝑓                                                          Eq. 6-4 

                              𝑝 = 1 − 0.919𝑒−0.394𝑊𝑓                                                          Eq. 6-5 

For hooked-end fibres (lf = 60 mm, df = 0.8 mm, lf/df  = 75): 

                            𝜀𝑝𝑓 =  𝜀𝑐𝑜 + 0.00026 𝑊𝑓                                                           Eq. 6-6 

                            𝑝 = 1 − 0.722𝑒−0.144𝑊𝑓                                                            Eq. 6-7 

 

where εco is the strain at peak stress for plain concrete (εco = 2.2 x 10-3 according to CEB-FIP 

Model Code 1990 (CEB-FIP, 1993)), εpf is the strain at peak stress, and Wf  is the fibre weight 

percentage in the mixture.  The model is valid for concrete with fcf values ranging from 30 to 

60 MPa and for Wf up to 3.33% (fibre content = 80 kg/ m³ or 1% by concrete volume). Steel 

fibres used in this study (lf = 35 mm, df = 0.55 mm, lf/df = 65 and lf = 60 mm, df = 0.75 mm, lf/df = 

80) are very similar to those employed by Barros and Figueiras (1999). Thus, Eqs. 6-4 to 6-7 

used to determine εpf and p can be used to describe the compression stress-strain behaviour of 

SFRC incorporating various fibre contents. Figure 6-5 shows the compression stress-strain 

curves used in the FEM in this study. 
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Figure 6-5 Compression stress-strain curves for SFRC used in the FEM. 
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6.3.4 Modelling Tensile Behaviour 

In this study, the tensile behaviour of SFRC in the post-cracking regime was defined 

using the fracture energy-cracking criterion by providing the software with tensile stress-

crack width displacement relations. The Variable Engagement Model (VEM) proposed by 

Voo and Foster (2003) was used to quantify the contribution of SF’s to the tensile strength of 

SFRC as described below:  

The strength of the composite (σ (w)) for a given crack opening displacement (COD) 

(w) is the summation of stress carried by the concrete at a given COD (σc(w)) including any 

beneficial coupling effect from the fibres on the matrix, and the stress carried by fibres 

(σf(w)) (Eq. 6-8). The contribution of the matrix is significant prior to cracking and fades in 

the post-cracking regime. Figure 6-6 shows a scheme of this combined response. The tensile 

softening of plain concrete σc (w) can be taken as indicated in Eq. 6-9 (Amin et al., 2014):   

 

                      𝜎(𝑤) =  𝜎𝑐(𝑤) + 𝜎𝑓(𝑤)                                              Eq. 6-8 

                       𝜎𝑐(𝑤) =  𝑐1𝑓𝑐𝑡𝑒−𝑐2𝑤                                                   Eq. 6-9 

where fct  is the tensile strength of concrete without fibres, c1 is a coefficient for any 

beneficial effect of the fibres on the peak strength, and c2 is a coefficient that controls the 

steepness of the descending branch, and is influenced by the volume of fibres and the 

cementitious matrix composition (Amin et al., 2014).  According to Voo and Foster (2004), 

Lee and Foster (2008), and Voo and Foster (2009) c1 can be taken as unity for mode I 

fracture, while c2 can be calculated using the formula proposed by Ng et al. (2012) for 

concretes with maximum size aggregate > 10 mm (cited in Amin et al., 2014) (Eq. 6-10): 

                            𝑐2 =
20

(1+100𝑉𝑓)
                                                        Eq. 6-10 

where Vf is the fibre content by volume. Tensile strength (fct) can be taken as 0.6 √fcf (Voo 

and Foster, 2003). The fibres’ component σf (w) is calculated using Eq. 6-11: 
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where αe is the fibre engagement parameter, with a recommend value of 3.5 for hooked end 

fibres (Voo and Foster, 2003), τb is the mean shear stress between the fibre and the matrix 

measured. τb can be taken as 0.8√fcf for normal-strength concrete (Gouveia et al., 2014). 

Figure 6-7 shows the tension stress- crack opening curves used in the FEM in this study. 

 

 

Figure 6-6 Tensile stress versus the COD for SFRC. 

 

6.3.5 Elastic Properties  

As mentioned earlier, the concrete modulus of elasticity (Ec) was defined using Eq. 6-3. The 

concrete’s Poisson’s ratio (υ) and density (ρ) were taken as 0.20 and 2400 kg/m³, 
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respectively. Both loading and supporting strips were modeled to exhibit a rigid behaviour 

using an enlarged modulus of elasticity. Their Poisson’s ratio was set to 0.3.  

 

 

 

Figure 6-7 Tension stress-crack opening curves for SFRC used in the FEM 
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6.4 EXPERIMENTAL PROGRAM AND RESULTS  

To calibrate and verify the FE model, a group of full-scale SFRC pipes were fabricated and 

tested under the TEBT. Two pipe diameters were manufactured; namely, 450 mm and 600 

mm. All pipes had a Type C wall. Details regarding pipe production, mixture proportions and 

curing regime were given earlier in Section 3.2.3. Dramix RC-65/35-CN and Dramix RC-

80/60-CN fibres were added manually at rates of 30 and 40 kg/m³. The physical and 

mechanical properties of these steel fibres are shown in Table 3-2. Simultaneously, 100 x 

200 mm cylinder specimens were cast for measuring the compressive strength of the 

mixtures. Table 6-2 lists the fabricated 450 and 600 mm diameter pipes, their fibre type and 

content, and the compressive strength of the corresponding concrete mixtures. Three pipe 

replicates were cast for each mixture composition for a total of 12 full-scale pipes. The cyclic 

TEBT procedure described in the European standard EN 1916 was used to evaluate the 

mechanical performance of SFRC pipes. Test setup and pipe instrumentation were similar to 

pipes tested in chapter 4 (Section 4.2.2). The achieved average ultimate (Dult) D-loads are 

summarized in Table 6-2. 

 

Table 6-2 Results of SFRC pipes tested under TEBT for model verification 

Pipe 

Designation 

Di  

(mm) 
Fibre type 

Wf 

(kg/m3) 

h 

(mm) 

f c' 

(MPa) 

Dult 

(N/m/mm) 
% 

diff. 
Exp. FEM 

SS4530 450 Short fibres 30 82 42.5 256.7 236.8 -7.7 

SL4530 450 Long fibres 30 82 35.8 273.9 253.7 -7.3 

SS6040 600 Short fibres 40 94 73.0 224.5 210.1 -6.5 

SL6040 600 Long fibres 40 94 65.0 239.5 228.6 -4.6 

             Note: Short fibres: Dramix RC-65/35-CN, and Long fibres: RC-80/60-CN. 

 

 

6.5 MODEL CALIBRATION  

The load-deflection response of SFRC is mainly controlled by the tensile capacity. Therefore, 

material parameters for other aspects, such as compression response and shear, are less 



141 

 

 

relevant (Mobasher, 2011). When modelling the load-deflection response of SFRC round 

panels, Mobasher (2011) reported that Young’s modulus and the tensile stress-crack width 

model are the two most critical parameters for concrete. Furthermore, a study on FE 

modelling of SFRC precast tunnel linings (Blazejowski, 2012) performed a sensitivity 

analysis to quantify the effects of varying material parameters of the numerical model on the 

model outputs. Material parameters included: compressive stress-strain, tensile stress- strain, 

Young’s modulus (Ec), Poisson’s ratio (υ), and concrete density (ρ). Similarly, Blazejowski 

(2012) reported that the elastic modulus and the stress-strain tension stiffening parameters 

had the most significant effect on the model outputs. Therefore, model calibration in this 

study was limited to these parameters. In addition, in order to facilitate the calibration 

process and reduce the program running time, tensile stress-strain relations shown in Fig. 6-7 

were approximated into bi-linear relations as shown in Fig. 6-8.    

The FE model was first calibrated using results of the TEBT of the SL6040 pipe. 

Figure 6-9 shows a comparison between the experimental and numerical load-deflection 

curves at the pipe’s crown. The experimental curve shows an unloading/reloading cycle, 

which is not matched in the FE model. Nevertheless, it has already been established that this 

extra loading cycle does not alter or modify the overall pipe behaviour (de Figueiredo and 

Gettu, 2008; de la Fauente et al., 2012; and de la Fuente et al., 2013). The experimental and 

numerical behaviours had comparable shape. However, the FE model overestimated the 

ultimate D-load by 35%. In addition, the experimental curve exhibited a deflection-hardening 

plateau followed by a descending branch, while the FE model exhibited a steep decrease in 

load carrying capacity followed by an ascending branch.  It can be observed that a good 

agreement existed until a deflection of 0.3 mm (D-load = 140 N/m/mm). Hence it can be 

deduced that the assumption for the Young’s modulus was valid. Therefore the model 

calibration focused on adjusting the tension stiffening parameters only.  

Several trials were made in order to fit the numerical curve with the experimental one 

by altering the tension stiffening parameters one at a time. The best fit was found when the 

schematic shown in Fig. 6-10 was adopted. However, constant fracture energy (Gf) was 

maintained before and after modification.  
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Figure 6-8 Bi-linear approximations for tension stress-strain curves for SFRC used in 

the FEM. 
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Figure 6-9 Load-deflection curve of SL6040 pipe obtained experimentally and 

numerically. 

 

 

  

Figure 6-10 Schematic showing tension stiffening (a) before, and (b) after modification. 
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6.6 MODEL VERIFICATION 

Figure 6-11 shows the FE load-deflection curves using the modified tension stiffening 

parameters for SFRC pipes. Overall good agreement between experimental and modelling 

results can be observed in Fig. 6-11, especially up to a displacement of 10 mm. The predicted 

ultimate D-loads were, on average, 6.50 % lower (i.e. on the conservative side) than the 

experimental D-loads (Table 6-2).    

 

  

  

Figure 6-11 Comparison between experimental and numerical load-deflection curves of 

(a) SS4530, (b) SL4530, (c) SS6040, and (d) SL6040 pipes. 
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For further verification, experimental and numerical results reported by de Figueiredo 

et al. (2012-b), and de la Fuente et al. (2012) were compared to the predictions of the finite 

element model developed in this study. Figures 6-12a and 6-12b show the achieved ultimate 

D-loads for 600 and 800 mm diameter SFRC pipes, respectively. Details of SFRC pipes’ 

design and the MAP model development are mentioned elsewhere (de Figueiredo et al., 

2012-b and de la Fuente et al., 2012). For the MAP model, the reported average error was -

10.63 % for 600 mm diameter pipes (de Figueiredo et al., 2012-b), and -1.45 % for 800 mm 

diameter pipes (de la Fuente et al., 2012). For the FE model in this study, the average error 

was -6.40 %, and -4.35 for 600 mm and 800 diameter pipes, respectively. 

It can be concluded that the finite element model predictions agree reasonably with the 

experimental data obtained by the present authors and reported by others. Furthermore, the 

observed error, in most cases, fell on the conservative side of the experimental results.  

 

  

Figure 6-12Comparison between experimental and numerical results reported by de la 

Fuente et al. (2012 b, and 2012 c) and the developed finite element model for (a) 600 mm 

and (b) 800 mm diameter SFRC pipes. 
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6.7 PARAMETRIC STUDY 

Following model verification, a parametric study was conducted. The main goal was to 

provide the concrete pipe industry with a rational design tool that can be used to fabricate 

SFRC pipes that can satisfy strength requirements of a certain pipe class as specified in 

ASTM C1765. The outcome of this parametric study is presented in a tabular form to specify 

the optimal fibre type and content for a specific pipe diameter/wall thickness configuration 

sufficient to achieve a certain pipe class. This form is intended to be similar to design tables 

presented in ASTM C76 (Standard Specification for Reinforced Concrete Culvert, Storm 

Drain, and Sewer Pipe) for RC pipes. Therefore, the following parameters were considered 

when conducting the parametric study and the rationale behind their limitations is described: 

 Internal pipe diameter (Di): the pipe diameter ranged from 300 mm to 1200 mm as 

specified in ASTM C1765. The pipe diameter was increased by a 75 mm increment until 

Di = 900 mm, then the increment became 150 mm until Di = 1200 mm. 

 Pipe wall thickness (h): for each pipe diameter, three wall thicknesses were considered. 

Similar to RC pipes wall thicknesses specified in ASTM C76, these included Type A 

wall, Type B wall, and Type C wall. These thicknesses correspond to Di /12, Di /12 + 

25.4 (mm), and Di /12 + 44.5 (mm) for Type A, B, and C walls, respectively. 

 Fibre type: two types of steel fibres were considered in this study: short and long Dramix 

fibres. Physical and mechanical properties of these fibres are provided in Table 3-2. 

These fibres were recommended for SFRC pipes fabrication based on previous 

experimental work carried out by the author (Mohamed et al., 2014, and Mohamed et al., 

2015). 

 Fibre dosage (Wf): the fibre content ranged between 25 and 80 kg/m³ (i.e. 0.31 % to 1.0 

% by concrete volume). The lower limit coincides with the critical fibre volume (Vf) 

below which no significant enhancement to the concrete post-cracking behaviour could 

be observed (Bentur and Mindess, 2007). The upper limit was set at 80 kg/m³ since 

higher fibre contents would be uneconomical and hard to mix. Fibre content was 

increased by a 10 kg/m³ increment (0.125 % by volume) (only the first increment was 

5.0 kg/m³).      

 Concrete compressive strength (fcf): for RC pipes, ASTM C76 specifies, depending on 

the pipe diameter/wall thickness/targeted strength configuration, three minimum 
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strengths, namely 27.6, 34.5, and 41.4 MPa (4000, 5000, and 6000 psi). In this study, fcf 

was taken as fcf1 = 34.5 and fcf2 = 41.4 MPa. fcf1 and fcf2 were matched with short and long 

Dramix fibres, respectively. The first configuration was assigned to small pipe diameters 

(Di = 300 to 600 mm), while the second configuration was assigned to intermediate pipe 

diameters (Di = 675 to 1200 mm). This is because SFRC pipes are known to have a 

problem of steel fibres “sticking out” of the matrix. Using shorter fibres with small 

diameter pipes, hence small wall thicknesses, would reduce the possibility of such a 

problem.   

 Target pipe strength: all the five strength classes specified in ASTM C1765 were 

considered (Table 2-4).  

As an example, Fig. 6-13 shows load-deflection curves obtained for a certain pipe 

configuration (Di = 1050 mm, h = 132 mm (C Wall), fcf = 41.4 MPa, and long Dramix 

fibres). Load-deflection curves were contrasted against Dtest (Fig. 6-13a), and Dservice (Fig. 6-

13b) for the aforementioned strength classes. As mentioned earlier, the extra loading cycle is 

not expected to alter the pipe behaviour; therefore the generated curves can be used to 

determine the optimal fibre content for a certain pipe class. From Fig. 6-13, it can be 

deduced that, for this configuration, a fibre dosage of 80, 60, 40, 30, and 25 kg/m³ would be 

sufficient to achieve strength requirements of Class V, IV, III, II, and I, respectively.   

    Tables 6-3 to 6-7 show the outcome of the parametric study.  Examining these tables 

reveals that, with the current design limitations, Di = 1050 mm is the maximum pipe size that 

can be produced and is able to fulfil strength requirements of Class V pipes. In addition, 

regardless of the fibre type and content, Type B-Wall pipes cannot fulfil strength 

requirements of Class V pipes (with the exception of 300 mm and 375 mm diameter pipes). 

Finally, regardless of the fibre type and content, Type A-Wall pipes cannot fulfil strength 

requirements of Class V and Class IV pipes. Tables 6-3 to 6-7, similar to tables available in 

ASTM C76 for RC pipes, can serve as a complimentary design tool to ASTM C1765 for 

SFRC pipes.  
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Figure 6-13 Load-deflection curves for a C-wall 1050 mm diameter pipe reinforced with 

various steel fibres contents imposed on (a) Dtest, and (b) Dservice loads specified in 

ASTM C1765 for pipe strength classes. 
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Table 6-3 Fibre content requirements for Class I SFRC pipes 

Di 

(mm) 

Wall A Wall B Wall C 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

3001 44 25 50 25 69 25 

3751 47 30 57 25 75 25 

4501 50 30 63 25 82 25 

5251 57 30 69 25 88 25 

6001 63 40 75 30 94 25 

6752 66 30 82 25 100 25 

7502 69 40 88 30 107 25 

8252 72 40 94 30 113 25 

9002 75 50 100 30 119 25 

10502 88 50 113 30 132 25 

12002 100 60 125 40 144 30 
                     Notes: 

 For Class I SFRC pipes: DService = 40 N/m/mm, DTest =60 N/m/mm 

 1 Steel fibres type: Dramix RC-65/35-CN- fc’ = 34.5 MPa 

 2 Steel fibres type: Dramix RC-80/60-CN- fc’ = 41.4 MPa 

 

 

 

 

 

Table 6-4 Fibre content requirements for Class II SFRC pipes 

Di 

(mm) 

Wall A Wall B Wall C 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

3001 44 30 50 25 69 25 

3751 47 40 57 25 75 25 

4501 50 40 63 25 82 25 

5251 57 40 69 25 88 25 

6001 63 50 75 30 94 25 

6752 66 50 82 30 100 25 

7502 69 60 88 40 107 25 

8252 72 60 94 40 113 25 

9002 75 70 100 40 119 25 

10502 88 70 113 40 132 30 

12002 100 80 125 50 144 40 
                     Notes:  

 For Class II SFRC pipes: DService = 50 N/m/mm, DTest =75 N/m/mm 

 1 Steel fibres type: Dramix RC-65/35-CN- fc’ = 34.5 MPa 

 2 Steel fibres type: Dramix RC-80/60-CN- fc’ = 41.4 MPa 
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Table 6-5 Fibre content requirements for Class III SFRC pipes 

Di 

(mm) 

Wall A Wall B Wall C 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

3001 44 40 50 25 69 25 

3751 47 50 57 25 75 25 

4501 50 60 63 40 82 25 

5251 57 60 69 40 88 25 

6001 63 70 75 50 94 25 

6752 66 70 82 40 100 25 

7502 69 80 88 50 107 30 

8252 72 80 94 50 113 30 

9002 75 80 100 50 119 30 

10502 88 80 113 50 132 40 

12002 100 > 80 125 60 144 50 
                     Notes: 

 For Class III SFRC pipes: DService = 67.5 N/m/mm, DTest =101.25 N/m/mm 

 1 Steel fibres type: Dramix RC-65/35-CN- fc’ = 34.5 MPa 

 2 Steel fibres type: Dramix RC-80/60-CN- fc’ = 41.4 MPa 

 

 

 

 

Table 6-6 Fibre content requirements for Class IV SFRC pipes 

Di 

(mm) 

Wall A Wall B Wall C 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

3001 44 > 80 50 30 69 25 

3751 47 > 80 57 40 75 25 

4501 50 > 80 63 60 82 30 

5251 57 > 80 69 70 88 30 

6001 63 > 80 75 70 94 30 

6752 66 > 80 82 60 100 40 

7502 69 > 80 88 70 107 40 

8252 72 > 80 94 70 113 50 

9002 75 > 80 100 70 119 50 

10502 88 > 80 113 80 132 50 

12002 100 > 80 125 > 80 144 60 
                     Notes: 

 For Class IV SFRC pipes: DService = 100 N/m/mm, DTest =150 N/m/mm 

 1 Steel fibres type: Dramix RC-65/35-CN- fc’ = 34.5 MPa 

 2 Steel fibres type: Dramix RC-80/60-CN- fc’ = 41.4 MPa 
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Table 6-7 Fibre content requirements for Class V SFRC pipes 

Di 

(mm) 

Wall A Wall B Wall C 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

h 

(mm) 

Wf 

(kg/m³) 

3001 44 > 80 50 70 69 25 

3751 47 > 80 57 80 75 25 

4501 50 > 80 63 > 80 82 30 

5251 57 > 80 69 > 80 88 30 

6001 63 > 80 75 > 80 94 40 

6752 66 > 80 82 > 80 100 50 

7502 69 > 80 88 > 80 107 60 

8252 72 > 80 94 > 80 113 70 

9002 75 > 80 100 > 80 119 80 

10502 88 > 80 113 > 80 132 80 

12002 100 > 80 125 > 80 144 > 80 
                     Notes:  

 For Class V SFRC pipes: DService = 150 N/m/mm, DTest =225 N/m/mm 

 1 Steel fibres type: Dramix RC-65/35-CN- fc’ = 34.5 MPa 

 2 Steel fibres type: Dramix RC-80/60-CN- fc’ = 41.4 MPa 

 

 

6.8 SUMMARY AND CONCLUSIONS 

In this chapter, a non-linear 3D finite element model was developed in order to simulate the 

three-edge-bearing test of precast SFRC pipes. The model employs the Concrete Damaged 

Model offered by the finite element simulation program, ABAQUS. An experimental 

campaign on full-scale SFRC pipes was also conducted in order to calibrate and validate the 

developed FE model. The average error in the predicted ultimate D-loads was 6.50% on the 

conservative side. Interestingly, the average error was found to be 6.4% and 4.35% on the 

conservative side when contrasted against experimental data available in the literature. 

Subsequently, a parametric study was conducted. Six independent parameters were 

investigated with limitations adjusted to the specifications of ASTM C1765 and ASTM C76 

standards. Finally, a rational design tool was developed in order to recommend an optimal 

steel fibre type and dosage to satisfy a certain pipe strength class. The developed design 

tables can be used as a supplementary aid to the ASTM C1765 standard.           
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CHAPTER SEVEN 

 

 

 

7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 SUMMARY AND CONCLUSIONS 

This study aimed at providing the precast concrete pipe industry with technical information 

and recommendations regarding the production, testing, structural performance, and design 

of SFRC pipes, as well as providing a confidence level to infrastructure owners and the 

general public in such pipe option.       

In Chapter 3, the mechanical properties of dry-cast steel fibre-reinforced concrete 

(DCSFRC) were investigated. Four commercially available steel fibres were added at rates of 

0, 20, 40 and 60 kg/m³. Results showed that the mechanical properties of DCSFRC were 

enhanced as the fibre dosage increased. Generally, hooked-end fibres with the highest aspect 

ratio led to highest tensile and flexural strengths. Consequently, full-scale 300 mm diameter 

precast pipes were fabricated using the tested DCSFRC mixtures to examine its potential for 

such an application. In addition, plain (PC) and conventionally reinforced concrete (RC) 

precast pipes were fabricated and tested for comparison. The continuous three-edge-bearing 

test was used to characterize the structural performance of precast pipes. SFRC pipes 

achieved ultimate loads greater than the required strength for Class V pipes according to the 

ASTM C76 standard. In addition, the post-peak behaviour of SFRC pipes was comparable or 

superior to that of conventional RC pipes. In general, using discrete steel fibres was shown to 

be a viable alternative to the labour intensive and time-consuming steel cages normally used 

for reinforcing precast concrete pipes. 
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Chapter 4 expanded on the findings of Chapter 3. Full-scale 450 and 600 mm diameter 

SFRC pipes were cast. Two types of steel fibres having round cross-sections and hooked 

ends were used. Steel fibres had lengths and aspect ratios of 35 and 60 mm, and 65 and 80, 

respectively. The steel fibres content ranged from zero to 40 kg/m3. Pipe specimens were 

instrumented with strain gauges mounted on critical sections of each pipe. In addition, 

vertical and horizontal deformations of the pipe’s cross-section were monitored using 

LVDTs. Precast pipes were tested using both the continuous and cyclic loading procedures as 

per the ASTM C497 and EN 1916 guidelines, respectively. PC and RC pipes of 450 and 600 

mm diameter were cast and tested for comparison. Results showed that a fibre dosage of 30 

kg/m³ satisfied the strength requirements of ASTM C76 Class V pipe for 450 and 600 mm 

diameter pipes. In addition, the post-peak behaviour of SFRC pipes was comparable or 

superior to that of conventional RC pipes at small deformations. It was also found that using 

a hybrid system of long and short steel fibres did not result in synergetic effects. 

Improvements due to the usage of a hybrid fibre system over short fibres were due to the 

inclusion of long fibres. Finally, it was demonstrated that the behaviour of SFRC pipes could 

be fully explored using the continuous three-edge-bearing test without need of the extra 

loading cycle specified in the EN 1916 standard. 

Chapter 5 presented novel data on the behaviour of buried full-scale 600 mm diameter 

SFRC pipes under actual and simulated live loads. The first phase of this experimental 

campaign monitored the behaviour of SFRC pipes under standard CL 625 truckloads 

(standard Ontario truck). Results showed that SFRC pipes could sustain the regular standard 

truckloads without exhibiting significant deformations or cracks. Therefore, it is believed that 

the current design recommendations for the pipe wall thickness in ASTM C76 (Type C wall) 

are overly conservative. In the second phase, the post-cracking behaviour of SFRC pipes 

under artificial live loads was examined. Cracked SFRC pipes incorporating a relatively high 

fibre dosage of 40 kg/m³ exhibited less deformation than that of cracked regularly reinforced 

concrete pipes. The post-cracking behaviour of SFRC pipes depended primarily on the steel 

fibre dosage and type of bedding installation. 

Chapter 6 presented the development, calibration, and further verification of a non-

linear three-dimensional finite element model of SFRC pipes under the three-edge-bearing 

test. The concrete damaged plasticity (CDP) model, integrated in the ABAQUS software, 
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was used to model SFRC. Constitutive models describing the compressive and tensile 

behaviour of SFRC were adapted from the literature. Variability in the steel fibres’ type and 

dosage and its effect on the behaviour of SFRC could be captured by the employed 

constitutive models. The model was verified using experimental data generated in the present 

study, as well as other data available in the open literature. The model was capable of 

reasonably simulating the load-deformation curves of SFRC pipes tested using the three-

edge-bearing method. The average error in model-predicted ultimate D-loads was about 6.5% 

on the conservative side. Subsequently, a parametric study was conducted. The pipe 

diameter, pipe wall thickness, fibre type and content, concrete compressive strength, and 

targeted pipe strength were the parameters under investigation. The generated load-

deformation curves were contrasted against service and ultimate loads specified in the ASTM 

C1765 standard for SFRC pipes and used to determine the optimal fibre content for a certain 

pipe class. The findings of the parametric study were presented in a tabular form that can be 

used as a design aid supplementary to the ASTM C1765 standard. 

 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The current research revealed that some further studies on SFRC pipes maybe needed as 

follows: 

1) In the present thesis, full-scale tests were conducted on RC and SFRC pipes in order 

to evaluate their mechanical behaviour. Therefore, it is recommended to investigate 

the use of conventional steel reinforcement and steel fibre reinforcement at various 

dosages in full-scale pipes with hybrid reinforcement. 

2) In the present thesis, due to time and budgetary constraints, soil-structure interaction 

of buried SFRC pipes was investigated under a short-term loading condition. It is 

recommended to explore the soil-pipe interaction under long-term loading conditions 

where the pipe is instrumented and installed in a high traffic area and the data 

collection spans over a period of several months or years. The effects of repeated 

loading/unloading cycles need to be addressed.   

3) In the present thesis, numerical modelling was limited to the three-edge-bearing test. 

This approach is consistent with the indirect design method. For SFRC pipes to be 
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implemented in the direct design method, numerical modelling of the entire soil-pipe 

system is needed. Soil parameters associated with the four standard installations, as 

well as parameters associated with steel fibre reinforcement need to be investigated in 

a parametric study.  

4) Susceptibility to body and joint leakage, as well as the joints’ ability to withstand 

differential loading need to be investigated for SFRC pipes. 

5) The durability performance of SFRC pipes remains largely unexplored. Therefore, 

durability issues need to be investigated experimentally. Specifically, the chloride 

ions penetration and corrosion potential of full-scale SFRC pipes as well as sulfate 

attack resistance need to be studied. Consequently, a detailed numerical analysis and 

service life estimation, accounting for mechanical degradation of SFRC pipes in harsh 

environments, may be developed.    

6) The application of hybrid micro-macro fibres, synthetic fibres and hybrid metallic- 

synthetic fibres in precast concrete pipes should be investigated. 

7) The application of ultra-high performance concrete (UHPC) and ultra-high 

performance fibre-reinforced concrete (UHPFRC) in precast pipes should be 

considered in future investigations.     
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Appendices  

 

 

Appendix A 

Calculations of theoretical bending moments MSIDD (SIDD method) 

 

                           MSIDD = 
𝐷𝑚

2
 (Cmp Wp+ Cml Wl)                                            Eq. 5-2 

 

Dm = 600 mm + (2x 94 mm)/2 = 694 mm 

Cmp = 0.235, Cml = 0.211 @ invert 

Cmp = 0.101, Cml = 0.145 @ spring-line 

 

Wp = pipe volume x concrete density 

      = 0.5 m³ x 2400 kg/m³ = 1200 kg = 11.77 kN 

Wp = 11.77 kN/ pipe length (2.44 m) = 4.82 kN/m 

 

wl = 
𝑃𝑥 𝐼𝑓

𝐴𝐿1𝑥 𝐴𝐿2
 

AL1 = L + 1.75 H = 0.2 m + 1.75 (0.6 m) = 1.25 m 

AL2 = W + 1.75 (H + 0.75 Do) = 0.5 m + 1.75 (0.6 + 0.75x 0.8m) = 2.6 m 

Loading case #1 = P1 = 68.5 kN 

Loading Case #2 = P2 = 34.25 kN 

Loading Case #3 = P2 = 68.5 kN 

Loading Case #4 = P2 = 68.5 kN 



161 

 

 

Wl1 = (68.5 kN x 1.2)/ (1.25 m x 2.6 m) x 0.8 m = 20.23 kN/m 

Wl2 = (34.25 kN x 1.2)/ (1.25 m x 2.6 m) x 0.8 m = 10.12 kN/m 

Wl3 = (68.5 kN x 1.2)/ (1.25 m x 2.6 m) x 0.8 m = 20.23 kN/m 

Wl4 = (137 kN x 1.2)/ (1.25 m x 2.6 m) x 0.8 m = 20.23 kN/m 

 

@ Invert 

MSIDD (1) = 0.694 m /2 x (0.235 x 4.82 kN/m + 0.211 x 20.23 kN/m) = 1.87 kN.m 

MSIDD (2) = 0.694 m /2 x (0.235 x 4.82 kN/m + 0.211 x 10.12 kN/m) = 1.13 kN.m 

MSIDD (3) = 0.694 m /2 x (0.235 x 4.82 kN/m + 0.211 x 20.23 kN/m) = 1.87 kN.m 

MSIDD (4) = 0.694 m /2 x (0.235 x 4.82 kN/m + 0.211 x 20.23 kN/m) = 1.87 kN.m 

 

 @ Spring-line 

MSIDD (1) = 0.694 m /2 x (0.101 x 4.82 kN/m + 0.145 x 20.23 kN/m) = 1.18 kN.m 

MSIDD (2) = 0.694 m /2 x (0.101 x 4.82 kN/m + 0.145 x 20.23 kN/m) = 0.68 kN.m 

MSIDD (3) = 0.694 m /2 x (0.101 x 4.82 kN/m + 0.145 x 20.23 kN/m) = 1.18 kN.m 

MSIDD (4) = 0.694 m /2 x (0.101 x 4.82 kN/m + 0.145 x 20.23 kN/m) = 1.18 kN.m 
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Appendix B 

Example on calculations of Heger earth pressures 

 

Do = 800 mm = 0.8 m, H = 1.1 m, γ = 22.0 kN/m³ 

PL = (γDo) [H + 0.107 Do]                                                      Eq. 5-3 

PL = (22.0 kN/m³ x 0.8m) (1.1 m + 0.107 x 0.8m) = 20.87 kN/m 

From Fig. 2-4:  

VAF = 1.4, HAF = 0.37  

A1 = 1.05 

c = 0.2, u = 0.85,  

a = 1.45, b = 0.36 

h1 = 1.5 x A1 / (c x (1+u)) = (1.5 x 1.05) / (0.2 x (1+0.85)) = 4.26 

Calculation of stresses 

σinv = (PL x VAF x h1) /Do = (20.87 kN/m x 1.4 x 4.26 )/ 0.8 m = 155.59 kPa 

σinv = (PL x VAF x a) /Do = (20.87 kN/m x 1.4 x 1.45 )/ 0.8 m = 52.96 kPa 

σinv = (PL x HAF x b) /Do = (20.87 kN/m x 0.37 x 0.36 )/ 0.8 m = 3.47 kPa 
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