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Abstract 

Sexual selection is a branch of natural selection which acts upon variation in reproductive 

success.  Sexual selection is a complex field of study in biology as each species have their 

own mating system and strategies.  Models of sexual selection theory and female mate choice 

are not mutually exclusive, and often times there are multiple layers of selection within a 

given mating system.  For instance, both direct and indirect benefits of sexual selection can 

occur simultaneously, and selection can act both before and after mating occurs.  Postmating 

sexual selection, which is not as well understood, can be comprised of both  the male-male 

interaction of sperm competition and the male-female interaction of cryptic female choice.  

Although there are many studies which show the existence of postmating sexual selection, 

there is limited knowledge of its underlying mechanisms or genetic basis.  Although we 

know of the physical male traits that females prefer, the relationships among male trait, 

female preference, and postmating sexual selection are unknown.  Here I show accurate 

alternative measurements for female lifetime reproductive success (Chapter 2) and the 

genetic architecture underlying lifetime reproductive success (Chapter 3).  I found that the 

short term measure of 5 days can accurately predict the lifetime reproductive success of 

females, and that this reproductive success is a result of additive genetic variation.  In Chapter 

4, I compared lifetime reproductive success to mating success in a multi-generational study 

and found that males who were more successful at mating produced sons with lower fitness.  

I then examined mechanisms of sperm competition, specifically the role of Acps (accessory 

gland proteins) in sperm competition in Chapter 5.  I discovered that Acps from the first male 

to mate are beneficial to the second mated male, contributing to second male advantage.  

Lastly, in Chapter 6, I assessed male quality based on five fitness measures and determined 
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male performance in both pre- and postcopulatory sexual selection.  I concluded that a 

combined fitness measure most accurately predicted male offspring production.  This thesis 

characterizes the various factors that contribute to variation in lifetime reproductive success, 

specifically from a sexual selection perspective.       
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Chapter 1  

1 Introduction 

Sexual selection is an expanding field in evolutionary biology, initially proposed by Darwin 

to explain traits that do not appear to be adaptive via natural selection (Darwin 1871).  

Exaggerated traits such as the peacock's tail are detrimental to the male's survival in that they 

are energetically costly to produce and maintain, makes them conspicuous to predators, and 

is a hindrance for flight and predatory escape.  Darwin proposed that these traits which are 

maladaptive to survival instead help the individual to successfully obtain mates.  This mating 

advantage will increase an individual's fitness: securing a mate will ensure the production of 

offspring.  These offspring inherit the genes for the sexually-selected trait, which can increase  

their success in producing their own offspring.  

The observation of the recurring phenomenon of promiscuous females (polyandry) across 

many species has expanded the focus for studies of sexual selection.  When a female mates 

with more than one male, there is the opportunity for selection to continue to act after 

copulation has occurred.  Being polyandrous comes at a very high cost for females in terms 

of time, energy, increased vulnerability to predation, transmission of sexual diseases and 

decreased female longevity (Turner and Anderson 1983; Fowler and Partridge 1989; 

Magurran and Nowak 1991; Rowe 1994; Chapman et al. 1995).  In order for polyandry to 

persist, polyandrous females must acquire benefits to counteract the severe costs of mating.  

The benefits females receive can be direct or indirect, and female mate choice is often a 

complex assessment of the quality of the benefits that a potential mate can confer.  
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1.1 Precopulatory sexual selection: evolution of female 
mate choice 

1.1.1 Direct benefits 

Direct benefits occur when a female mates with a male to increase her direct fitness, which 

could result in acquiring a higher immediate fecundity or fertility.  These direct benefits 

include increased paternal care (reducing the cost of parental care for the female), better 

quality of resources through territory, nuptial gifts, and male protection from other 

harassing males or predators (Wagner et al. 2001).  In resource-based mating systems, 

females that are polyandrous can receive more resources than females that mate only 

once.  For example, females can obtain additional nutritional benefits through nuptial 

gifts or by absorbing male ejaculates.  In the bushcricket Requena verticalis (Orthoptera: 

Tettigoniidae), females who consumed more spermatophylax (a male nutrient 

contribution) produced more and heavier eggs (Gwynne 1984).  A direct benefit of 

polyandry can be increased fertility through maintaining sufficient sperm supply 

(Fjerdingstad and Boomsma 1998).  Mating can also reduce male harassment of females 

from other males, as seen in the water strider Aquarius remigis (Hemiptera: Gerridae); 

this protection allows females to enjoy increased feeding rates (Rowe et al. 1994).  

Females can also mate with males to gain access to higher quality territory.  In the pied 

flycatcher Ficedula hypoleuca (Passeriformes: Muscicapidae), females prefer to mate 

with males that possessed a higher quality territory of low birch density, thick-trunked 

trees, and high nest sites (Alatalo et al. 1986).  Side-blotched lizard females Uta 

stansburiana (Squamata: Phrynosomatidae) who mated with males on high quality 
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territories enjoyed the direct benefits of earlier egg laying and produced larger eggs 

(Calsbeek and Sinervo 2002).  

1.1.2 Indirect benefits 

In non-resource based mating systems, polyandrous females can acquire indirect benefits 

which increase the fitness of her offspring.  Indirect benefits of polyandry are difficult to 

study since they involve an interplay between the genetic basis of female mate choice, male 

attractiveness, and other fitness components (Kokko et al. 2003).  Polyandrous females 

mating with higher genetic quality males should benefit from an increased in fitness through 

their offspring.  Therefore, selection should favor females who can identify males that are of 

higher genetic quality.  There are several models that examine indirect benefits of sexual 

selection that are not mutually exclusive, and more than one can occur in a given mating 

system. 

1.1.2.1 Fisherian model 

In the Fisherian model of sexual selection, females prefer to mate with males that are more 

attractive (Fisher 1930).  The genes for the attractive trait and the preference for it will be 

coupled and passed down in subsequent generations, causing a linkage disequilibrium.  

Although it is unclear how the initial attraction for this trait arose, the exaggeration of this 

trait by sexual selection, to the point where it can be detrimental in natural selection, is called 

the Fisherian runaway process (Fisher 1930).  In the Fisherian model, males have a higher 

fitness due to being more attractive, which will result in a higher mating success.  However, 

the benefit of attractiveness can come at a high cost of viability, and therefore decrease their 

lifespan (Kokko 2001).  An extension of the Fisherian model is the sexy sons hypothesis 

where females will gain indirect benefits by mating with attractive males since they will 



4 

 

produce sons with the same traits that allow for superior mating success (Weatherhead and 

Robertson 1979). 

1.1.2.2 Indicator traits 

In contrast to the Fisherian model, where the attractive trait of a male is arbitrary, the "good 

genes" model proposes that a female can enhance her offspring's survival by preferentially 

mating with males that advertise their good genetic quality.  A positive association between 

the male trait a female is selecting on, male genetic quality, and offspring quality allows 

females to preferentially mate with males that provide superior growth, fecundity or survival 

to their offspring.  A related theory, the handicap hypothesis, states that attractive sexually 

selected traits are very costly (Zahavi 1975).  Therefore, only high quality males can afford 

to bear the cost of displaying the attractive trait and survive; the trait becomes an honest 

indicator of overall male quality.  The indicator trait of attractive males can also be condition-

dependent and indicate the male's current condition.  For example, Hamilton and Zuk 

propose that indicator traits can reveal a male's parasite and disease resistant status (Hamilton 

and Zuk 1982).  As with the good genes scenario, females who mate with these more 

attractive males will acquire indirect benefits of increased fitness to their offspring.   

Studies that test theories of indicator traits often examine plumage and song in birds.  In the 

house finch Carpodacus mexicanus (Passeriformse: Fringillidae), males can vary in their 

plumage colour as a result of their diet quality (Hill 1991).  Furthermore, male plumage is 

heritable as brightly coloured fathers produce brightly coloured sons.  Brightly coloured 

males also fed their mates and offspring at a higher rate than males with dull plumage and 

had a higher survival rate.  Males who were artificially made brighter mated earlier and had a 
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higher mating success, indicating that females select male bright plumage colour as an honest 

indicator of male quality (Hill 1991).   

1.1.2.3 Compatible genes 

Genetic quality can also be assessed as genetic compatibility, where a female preferentially 

mates with a male whose genome is compatible to her own.  This can occur as inbreeding 

avoidance: inbreeding depression results in a decrease in fitness due to increasing 

homozygosity and the expression of deleterious recessive alleles, a decrease in the 

heterozygote advantage, or overdominance.  Females of Mus musculus (Rodentia: 

Muridae) prefer the scent of outbred males, and this preference was enhanced when the 

females were inbred themselves, suggesting that inbred females may gain a greater 

fitness benefit than outbred females when mating to heterozygous males (Ilmonen et al. 

2009).  A very well-studied instance of genetic compatibility involves the major 

histocompatibility complex (MHC) genes, which are highly polymorphic loci that 

influence immune function by promoting immune response and resistance to infections 

and diseases (Penn and Potts 1999; Penn 2002).  Females of several species have a 

preference for males that have dissimilar MHC alleles (Wedekind et al. 1995; Penn and 

Potts 1999; Penn 2002).  In house mice, females preferentially mate with males carrying 

dissimilar MHC alleles by using MHC odours of their natal nest mates as a reference to 

avoid, a mechanism called negative familial imprinting (Penn and Potts 1998).  This 

MHC disassortative mating allows females to acquire MHC heterozygosity in their 

offspring, increasing their fitness as they are more resistant to diseases due to the 

increased diversity at this locus.  Similarly, wild-caught Atlantic salmon, Salmo salar 

(Salmoniformes: Salmonidae), had more dissimilar MHC alleles than expected by 
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random chance, indicating that their parents likely exhibited dissassortative mating for 

this locus (Consuegra and Leaniz 2008).  Wild-caught salmon with dissimilar MHC 

alleles were less likely to be infected by a marine nematode parasite, Anisakis 

(Ascaridida: Anisakidae), than those with similar MHC alleles.  Additionally, wild-

caught salmon on average were less likely to be infected compared to artificially-

spawned salmon, and had a lower parasite intensity when infected (Consuegra and Leaniz 

2008).  These studies emphasizes the importance of sexual selection and mate choice on 

offspring fitness through indirect genetic benefits.         

1.1.3 Sensory bias 

Sensory bias is a theory in mate choice evolution proposed by Ryan and Rand where female 

preference for mate choice evolved for reasons other than sexual selection (Ryan and Rand 

1990).  For instance, females may be biased towards a certain colour to allow them to detect 

food more easily.  Males then exploit this sensory bias in females in order to be more 

attractive to them.  Cases demonstrating sensory bias are further supported by phylogenetic 

analyses which show that females sometimes prefer a trait which conspecific males do not 

posses, but which are present in heterospecific males of closely-related species (Smith et al. 

2004).  A popular example of sensory bias occurs in the three-spined stickleback 

Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae), where females prefer to mate 

with red coloured males.  In the stickleback family, both the three-spined and the nine-spined 

sticklebacks Pungitius pungitius (Gasterosteiformes: Gasterosteidae) have a feeding 

preference for red colouration, regardless of sex and age (Smith et al. 2004).  However, 

males of nine-spined sticklebacks do not exhibit red colouration, indicating that the evolution 

for the preference of red colouration occurred before the female preference for red 
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colouration in a mating context.  Therefore, a female's preference for red colouration in a 

foraging context is likely exploited by males who use the sensory bias in a mating context to 

increase their mating success.   

1.2 Prezygotic postcopulatory sexual selection 

Sexual selection can take place at different levels, from pre-mating to post-mating, and 

sometimes even post-fertilization in differential parental investment (Price et al. 1999; 

Wagner et al. 2001; Gowaty et al. 2007).  While the initial level of selection is behavioural 

(who the female decides to mate with), selection can also take place after mating through 

postmating sexual selection. Postmating sexual selection can act at the cellular level, such as 

at the interaction site between the sperm and egg (gametic selection), between sperm that 

compete for fertilization within the female reproductive tract (sperm competition), and 

between sperm and the female’s reproductive tract (cryptic female choice). These 

mechanisms can lead to deviations from  Mendelian ratios and unexpected prevalence of 

particular offspring genotypes.  For instance, in the stalk-eyed fly, Cyrtodiopsis dalmanni and 

C. whitei have X chromosome meiotic drive, which results in fewer male offspring. Females 

prefer to mate with males with long stalk eyes, which have a drive resistant Y-chromosome, 

and which results in more male offspring  (Wilkinson et al. 1998).  Understanding the 

mechanisms of postmating sexual selection can aid in explaining what causes non-random 

fertilization and the selection pressures driving changes in species traits causing evolution. 

The ability for gametic recognition is vital for successful fertilization, and is especially 

apparent in open marine fertilization systems. Species-specific surface proteins on sperm and 

eggs allow for gamete recognition and fusion (Aketa 1967, 1973; Aketa and Onitake 1969).  

In the sea urchin Echinometra mathaei, the sperm’s acrosome contains the protein bindin, 
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which binds to species-specific sperm receptor glycoproteins on the vitelline layer of the egg 

(Schmell et al. 1977; Vacquier and Moy 1977; Palumbi 1999).  The eggs of E. mathaei 

also demonstrate assortative fertilization: eggs are fertilized with sperm carrying bindin 

alleles that are the same as their own 80% of the time (Palumbi 1999).  This demonstrates 

that gametic selection can act at a molecular level on the site of sperm and egg recognition.  

However, our knowledge of the molecular basis of gametic recognition is limited to only a 

few species.  Only very recently, within the past year, has the mammalian egg receptor 

protein (Juno) to the sperm cell surface protein Izumo been identified (Bianchi et al. 2014).  

If the Fisherian model is a precopulatory mechanism of female mate choice involving male-

male competition where females choose to mate with more attractive males, a postcopulatory 

equivalent would be the 'sexy sperm hypothesis' involving sperm-sperm competition 

(Andersson and Simmons 2006).  Here, females mate with males that have a high 

fertilization success and  produce sons who inherit the traits conferring high fertilization 

success.  Similarly, the 'good sperm hypothesis' is a postcopulatory parallel of the indicator 

mechanisms of female mate choice, where high quality sperm gain the majority of 

fertilization successes and will confer indirect fitness benefits through high quality offspring 

(Andersson and Simmons 2006).  

Sexual selection and fertilization success is often a combination of both male and female 

interactions.  As a result, it is often difficult to tease apart the components of sperm 

competition from males and the influence of females through cryptic female choice.   
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1.2.1 Sperm competition 

To increase their reproductive success, males have evolved strategies to limit their 

exposure to sperm competition that include mate-guarding, copulatory plugs, prolonged 

copulation after insemination, and mechanical removal of residing sperm (Parker 1970, 

1984; Waage 1979; Alcock 1994).  However, in the event that these initial strategies fail 

and females successfully mate with multiple males, sperm-sperm interactions can occur and 

induce postmating sexual selection via sperm competition, where two or more male 

ejaculates compete for fertilization (Parker 1970).  As sperm number is an important factor 

in successful fertilization during competition (Parker et al. 1997; Hosken et al. 2001), a 

simple strategy that males employ is to vary the number of sperm released per ejaculate 

(Pizzari et al. 2003, 2004).  Not only can males vary the sperm number in their ejaculates, 

they can also vary the quality of sperm. When compared to females who had previously 

mated only once, male field crickets (Teleogryllus oceanicus) transfer less viable sperm when 

mated to females who were virgins as there is minimal risk of sperm competition.  (Thomas 

and Simmons 2007).  Drosophila melanogaster is one species that displays the common 

phenomenon of second male sperm precedence, wherein the second male to which a female 

is mated fathers 50 – 100% of the offspring (Clark et al. 1995).  This trend is partially 

attributed to accessory gland proteins in the seminal fluid, which physically displace and 

incapacitate sperm already present in a female (Harshman and Prout 1994; Price et al. 

1999).  First-mated males counteract second male sperm precedence through the release of 

their own accessory gland proteins in seminal fluid that increase oviposition rates in females 

and decreases their receptivity to remating (Chen et al. 1988).  In the polyandrous deer mice 

Peromyscus maniculatus, sperm from the same male aggregate together more often than to 
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sperm of another conspecific male, even if that other male was a sibling, demonstrated that 

sperm have the capability of recognizing sperm from different males (Fisher and Hoekstra 

2010).  Sperm competition has likely led to the evolution of P. maniculatus sperm’s ability to 

recognize relatedness since aggregation of self sperm results in faster swimming (Fisher and 

Hoekstra 2010) and therefore increased fertilization and fitness (Casselman et al. 2006). If 

eggs can recognize sperm genotype via the same mechanism that sperm recognize 

relatedness, preferential fertilization of sperm with compatible or good genes can occur.   

1.2.2 Cryptic female choice 

To increase their fitness, females have evolved strategies in response to male tactics.  In order 

to minimize forced copulation, female genitalia has undergone anatomical changes in some 

species.  The reproductive tract of female waterfowls (Anseriformes: Anatidae) contain 

anatomical barriers such as "dead end" pouches and spirals in a counter-clockwise direction 

to the cork-screw shape of the male phallus in order to control mating (Brennan et al. 2007).  

When mating does occur, the female reproductive tract can be a hostile environment for 

sperm.   For example, females of Drosophila have accessory reproductive glands that excrete 

proteins into the reproductive tract that are toxic to sperm; these glands are larger (and thus 

more toxic) in polyandrous species than monogamous species (Hosken et al. 2001). 

Females do not necessarily play a passive role in postmating sexual selection, and can use 

cryptic female choice to bias the paternity of their offspring and influence which sperm will 

fertilize their eggs (Eberhard 1996).  Cryptic female choice can occur at the same time as 

sperm competition or be confounded by differential abortion (mortality) and/or genetic 

incompatibility.  Therefore, it is often difficult to tease apart the contributions of sperm 
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competition, cryptic female choice, and male (sperm) and female (egg) interaction towards 

fertilization success. 

Eberhard's definition of cryptic female choice is inclusive, in that it can involve behavioural 

events under female control that are non cryptic (Eberhard 1996).  The most direct method 

for a female to control fertilization is to remate.  Inbreeding causes deleterious recessive 

disorders to be expressed and eliminates heterozygous advantages, causing a reduction in 

fitness (Charlesworth and Charlesworth 1987).  Michalczyk et al. (2011) showed that 

inbred red flour beetles become more polyandrous: females were quicker to mate, mated for 

longer periods of time, and had an increased rate of remating (Michalczyk et al. 2011).  

Several studies have also demonstrated that females were more likely to remate to a male of 

higher genetic quality (Gabor and Halliday 1997; Pitcher et al. 2003), thus increasing her 

future offspring's fitness over what it would have been if she continued to use only the first 

male's sperm for fertilization. 

Cryptic female choice can also be seen in the process of sperm storage.  In field crickets, 

females are able to preferentially store sperm of unrelated males to father their offspring, 

resulting in increased egg hatching success (Bretman et al. 2009).  Similarly, female red 

junglefowl Gallus gallus have significantly decreased sperm storage when they are mated 

with a related male (Pizzari et al. 2004).  Gallus gallus females receive direct and indirect 

fitness benefits by mating with dominant males and, therefore, are less likely to eject sperm 

of dominant males (Pizzari and Birkhead 2000).  In a more complex demonstration of 

cryptic female choice, females of some species exhibit non random sperm use in the presence 

of sperm competition.  Cryptic female choice in these instances can be shown with 

significant male x female interaction effects on P2 values (the proportion of offspring sired by 
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the second mated male) (Pitnick and Brown 2000).  The variation of P2 attributed to male x 

female interaction would indicate that the non random use of sperm by females depends on 

the identity of the male and of the female. 

1.3 Postzygotic sexual selection 

Sexual selection can occur at and even after fertilization.  The differential allocation 

hypothesis suggests that since mating is costly, preferential allocation in investment and 

resources should be given to offspring from attractive high quality males (Sheldon 2000).  In 

the house crickets, Acheta domesticus (Orthoptera: Gryllidae), females invested more in 

reproductive effort when mated with attractive males by laying larger eggs (Head et al. 

2005).  However, this could be a result of attractive males manipulating the behaviour of 

females.  Side-blotched lizard females Uta stansburiana who mated with multiple males 

produced sons with sperm from the larger male while they produced daughters with 

sperm from the smaller males (Calsbeek and Sinervo 2002).  Offspring sired by the larger 

males were also larger and in better condition.  In this species, males have a greater 

fitness when they are larger and females when they are smaller.  Therefore, females of 

this species mate with both large and small males, and control the sex of the resulting 

offspring, to maximize fitness.  On the opposite end of the spectrum with respect to the 

differential allocation hypothesis, the compensation hypothesis predicts that females should 

preferentially increase investment and resources to offspring when mated to low quality 

males in order to offset the harmful effects of poor mate quality (Gowaty et al. 2007).  In the 

pronghorn Antilocapra americana, females who mate with unattractive males produce 

offspring with higher mortality (Byers and Waits 2006).  However, they compensate by 

increasing the amount of milk production for their offspring (Byers and Waits 2006).  In a 
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comprehensive study, Gowaty et al. (2007) tested the compensation hypothesis in a wide 

range of species: wild mallards Anas platyrhynchos (Anseriformes: Anatidae), Tanzanian 

cockroaches Nauphoeta cinera (Blattodea: Blaberidae), fruit flies D. pseudoobscura 

(Diptera: Drosophilidae), pipefish Syngnathus typhle (Syngnathiformes: Syngnathidae) and 

feral house mice Mus musculus (Rodentia: Muridae).  In all species tested, they found that 

non-preferred mating pairs produced offspring with lower viability.  However, females in 

non-preferred mating pairs increased their fecundity in order to compensate for lower 

offspring quality.  The compensation hypothesis is not limited to females: D. pseudoobscura 

males produced more sperm in their ejaculates when mated to non-preferred females. 

1.4 Drosophila melanogaster as a model system 

Drosophila melanogaster is a widely-used model species in studies of evolutionary 

biology due to its small body size, simple rearing requirements and fast generation time.  

It is especially useful in sexual selection studies since the species exhibits sexually 

dimorphic traits and the mating behaviour of D. melanogaster is well-documented 

(reviewed in Spieth 1974; O’Dell 2003).  Drosophila males can perform a variety of 

courtship behaviours that include tapping, leg rubbing, licking, circling, and produce a 

species-specific courtship song from the vibrations produced with his wings. 

Furthermore, D. melanogaster females are polyandrous and possess two types of sperm 

storage organs, the seminal receptacle and a pair of spermathecae, allowing for 

postmating sexual selection to occur (Lefevre 1962).  Males produce Acps (accessory 

gland proteins) in their ejaculates, of which some have been characterized and play a 

significant role in sperm competition (Ram and Wolfner 2007).  Drosophila 

melanogaster is also genetically well-characterized and a vast array of molecular tools 
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are readily available.  Although one of the limitations of using D. melanogaster as a 

model species in lab experiments relates to whether  the results are valid in terms of what 

happens in nature, the findings can nonetheless provide a foundation for future studies. 

1.5 Thesis structure 

Although there has been an increased interest in sexual selection within the past several 

decades, many questions still remain unknown.  In order to address quality of individuals, 

accurate measures of fitness need to be determined, as well as which fitness traits are an 

accurate representation of an individual's overall quality.  Furthermore, the genetic 

architecture of fitness traits in the context of sexual selection is rarely identified.  An 

inclusive view of sexual selection that incorporates both survivorship and mating success 

and how both components contribute to an individual's overall fitness allows for an 

accurate assessment of an individual’s quality and its relationship to sexual selection.  In 

my PhD thesis, I use D. melanogaster to address these questions in order to advance our 

knowledge of sexual selection. 

This thesis is presented as an integrated article where the five data chapters (Chapters 2-6) are 

independent units for publication.  The goal of this research is to expand our knowledge of 

reproductive success, and specifically how sexual selection contributes to variation in 

reproductive success.  One of the chapters has been published (Chapter 2), and one is 

currently under review (Chapter 3).  The remaining three chapters are in preparation for 

submission (Chapter 4-5-6).  
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1.5.1 Lifetime reproductive success 

Accurate measures of fitness allow us to assess the quality of individuals.  The first two data 

chapters (Chapter 2-3) focus on the fitness measurement of lifetime reproductive success (the 

total number of offspring produced in an individual's lifetime) as lifetime reproductive 

success is an important measure of fitness.  Chapter 2 ("Accurate Alternative Measurements 

for Female Lifetime Reproductive Success in Drosophila melanogaster"; Nguyen and 

Moehring 2015) focuses on accurate proxies for lifetime reproductive success, as 

measuring lifetime reproductive success is often a very time consuming process or non-

feasible.  I hypothesize short term reproductive success measures of 1-2 days are not 

accurate indicators of lifetime reproductive success since reproductive success measures, 

particularly at the onset of reproduction, contain a high amount of variation.  In Chapter 3, I 

further analyze the lifetime reproductive success fitness measure by identifying the 

genetic architecture of lifetime reproductive success in a multi-generational study using 

the Cockerham and Weir Biomodel to disentangle the genetic components responsible for 

variation in this phenotype.  I hypothesize that the fitness trait of lifetime reproductive 

success will be result from significant genetic components as fitness traits are often 

heritable. 

1.5.2 Mating success in a competitive environment 

An inclusive view of sexual selection that incorporates both male mating success and 

male quality allows for a comprehensive assessment of male fitness.  In Chapter 4, I 

compare male mating success to the direct and indirect benefits females may receive.  I 

used a multi-generational study measuring female lifetime reproductive success and the 

lifetime reproductive success of F1 individuals (daughters and sons).  Male mating 
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success was measured in a novel mating arena that allowed both male-male competition 

and female-female competition.  I hypothesize that high quality males who have a high 

lifetime reproductive success will also have a high mating success. 

1.5.3 Male reproductive success 

An important aspect of sexual selection involves the female's assessment of male quality. 

This raises the question of which traits accurately represent a male's overall fitness.  

Chapters 5-6 focus on the various aspects of male reproductive success.  I identify how 

both sperm itself and the proteins found in seminal fluid each contribute to sperm 

competition and, by extension, offspring production.  To measure this, males were 

competed with sterile mutant males which produce no sperm, but still produced Acps 

(accessory gland proteins) (Chapter 5).  I then assessed male quality using five fitness 

measures (1- productivity,  2- productivity of F1 sons, 3- productivity of F1 daughters, 4- 

mating success in competition, and 5- combined fitness traits) and measured male 

performance in both precopulatory (using mating assays) and postcopulatory (using 

various treatments of competition) sexual selection (Chapter 6).  I hypothesize high 

quality males will perform better than low quality males in both pre- and postcopulatory 

sexual selection.   

1.5.4 Summary 

To conclude, in Chapter 7, I discuss the limitations of reproductive success and sexual 

selection.  I present how my research contributes to our knowledge of sexual selection 

and how it incorporates an inclusive view of reproductive success.  Lastly, I consider the 

direction that sexual selection research is taking and future studies that can expand our 

understanding of sexual selection.    
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Chapter 2  

2 Accurate Alternative Measurements for Female Lifetime 
Reproductive Success in Drosophila melanogaster 

Fitness reflects an individual’s ability to survive and reproduce, and is an important 

concept in evolutionary biology. However, accurately measuring fitness is often difficult, 

and appropriate fitness surrogates need to be identified.  Lifetime reproductive success, 

the total progeny an organism can produce in its lifetime, is thought to be a suitable proxy 

for fitness, but the measure of an organism’s reproductive output across a lifetime can be 

difficult or impossible to obtain.  Here I demonstrate that the short-term measure of 

reproductive success across five days provides a reasonable prediction of an individual's 

total lifetime reproductive success in Drosophila melanogaster.  However, the lifetime 

reproductive success of a female that has only mated once is not correlated to the lifetime 

reproductive success of a female that is allowed to mate multiple times, demonstrating 

that these measures should not serve as surrogates nor be used to make inferences about 

one another.   

 

 

1 

                                                 
1
 A version of this chapter has been published in the PloS ONE and is presented here with permission. 

Citation: Nguyen, T. T. X., A. J. Moehring. (In press) Accurate Alternate Measurements for Female 
Lifetime Reproductive Success in Drosophila melanogaster. PLoS ONE. 
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2.1 Introduction 

An organism’s success in the presence of selection is defined by its fitness (Endler, John 

A. 1986; Stearns 1992; Falconer and Mackay 1996; Smith 1998).  While the idea of 

fitness as the production of offspring, who are in turn successful in producing offspring, 

is conceptually easy to understand, there has been debate as to the appropriate way to 

measure fitness within a laboratory setting (Rosenberg 1982; Orr 2009; Hunt and 

Hodgson 2010).  These measurements must be of a phenotype that is able to be scored in 

a reasonable manner, yet accurately capture the essence of an organism’s fitness.  In an 

attempt to measure fitness, studies often measure more tractable surrogates of fitness 

such as body size, survivability, viability, growth rate, mating success, longevity, 

fecundity, and fertility (Reid et al. 2004; Anderson et al. 2007; Hosokawa et al. 2007).  

Of these alternative measurements, the number of offspring an individual produces over 

its lifetime (lifetime reproductive success) is generally considered an acceptable estimate 

of fitness (Stearns 1992; Brommer et al. 2004; Hunt and Hodgson, D. 2010).  However, 

for species with multiple reproductive cycles, long generation times, or large numbers of 

offspring, lifetime reproductive success is often difficult and time-consuming to measure.  

Studies therefore often measure reproductive success over only a subset of an organism’s 

lifespan as an approximation of lifetime reproductive success (Turner and Anderson 

1983; Singh and Singh 2001; Fleming 2008; Marshall and Sinclair 2010; Kudupali and 

Shivanna 2013; Parkash et al. 2013; Vijendravarma et al. 2013).  However, using short-

term reproductive success as a measure of fitness can potentially be inaccurate if 

organisms vary in their rates of offspring production, such as through a trade-off in 

quantity of early vs. late lifetime reproductive output. 
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Drosophila melanogaster is a model organism that is often used in studies with a 

fitness component (Wigby et al. 2009; Billeter et al. 2012; Klepsatel et al. 2013; Carazo 

et al. 2014). Under unlimited conditions of food and access to mates, a female will 

produce an average total of 615 offspring throughout her lifetime (Clutton-Brock, T. H. 

1988), which is approximately 90 days at 21 degrees Celsius for wild-type D. 

melanogaster (Miquel et al. 1976).  The long life expectancy and high productivity of D. 

melanogaster make it time-consuming to measure the total lifetime reproductive success, 

particularly when sample sizes are large, and thus surrogate measures of fitness are 

usually used in this species.  Measuring reproductive output over a much shorter time 

span or after only a single mating could potentially serve as accurate proxies for lifetime 

reproductive success, but a direct test of the relationship between these alternative 

measures and lifetime reproductive success has not been conducted for this widely-used 

model species.  Here, I used multiply-mated females from ten isofemale lines of D. 

melanogaster to determine if a female’s short-term reproductive output (after one day 

and/or seven days) can accurately predict lifetime offspring production. I also determined 

the optimal number of days to measure reproductive output in order to achieve the 

strongest correlation with lifetime reproductive success using the fewest number of 

measurements.  I then compared lifetime reproductive success of multiply-mated females 

to that of singly-mated females to assess whether a female's reproductive output from a 

single mating, which is less cumbersome to measure, is indicative of her output after 

multiple matings, which is more representative of a female's mating status in the wild. 
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2.2 Methods 

2.2.1 Experimental procedures 

Ten isofemale lines of D. melanogaster, collected from the wild in Sudbury, Ontario 

Canada, in 2011, were generously provided by T. Merritt. Flies were maintained in the 

laboratory on standard cornmeal agar media (Bloomington Drosophila Stock Center, 

Indiana) in 8-dram vials on a 14:10 light-dark cycle, at 24ºC and approximately 75% 

relative humidity.  Males and females were separated upon eclosion (to ensure virginity), 

aged four to six days, and then placed in single mating pairs within a vial.  Additional 

males were collected at the same time but left unmated; these aged males were used as 

replacements for similarly-aged males who died. 

For multiply-mated females, pairs were kept together throughout the female’s lifetime, 

allowing for remating. The ten isofemale lines were mated in a full-factorial diallel cross, 

resulting in 100 mating pairs, each with four replicates.  Mated pairs were checked daily 

and dead males were replaced with a male of similar age.  Mating pairs were transferred 

into a new vial after one day, transferred again after an additional six days (seven days 

after initial mating), and then every seven days thereafter.  The measure of offspring from 

the initial vial is the reproductive output from one day (the number of offspring that 

eclose from the total eggs laid in one day), the measure of offspring from the first vial 

plus the second vial is the reproductive output after seven days (the number of offspring 

that eclose from the total eggs laid in 7 days), and the measure of the offspring produced 

from all of the vials in a female’s lifetime is the lifetime reproductive success.  The 

number of offspring eclosing from each vial was scored daily, up until 16-17 days after 

the last egg was laid or the female died, ensuring enough time for all larvae to emerge 
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and that all offspring that were produced were scored.  Since offspring eclosion was 

recorded daily, the total daily eclosion and the total daily cumulative eclosion measures 

were analyzed.  The total daily eclosion measures consist of the total number of eclosions 

that occurred each day after the first eclosion, regardless of when the eggs were laid. The 

total daily eclosion measures may differ from the eclosion measures from the one day and 

7 day block (previously stated) since these were scored based on the day the eggs were 

laid rather than the day of eclosion, and variation in larval developmental times could 

cause these values to differ.  Any female that did not produce any larvae, indicating that 

mating did not occur or that individuals were sterile, was removed from the data set.  I 

note that the lifetime reproductive success of females measured here may not be 

representative of the values that may occur in nature, as these laboratory females are 

supplied with unlimited food and mating opportunities, and are not subjected to predation 

or competition.  

For singly mated females, mating assays were performed with a single male and female 

in each vial and males were removed after mating; unmated flies were discarded.  

Isofemale line combinations that were mated are shown in Figure 2.1 for a total of 47 

mating pairs, each with 20 replicates. Females were transferred into a new vial every 

seven days and the number of offspring eclosing from each vial was scored in a similar 

manner as above.  

2.2.2 Statistical analysis 

To determine whether early short term reproductive success (one day and seven days) 

could be used to predict lifetime reproductive success, a linear model (LM) was 

performed using lifetime reproductive success as the response variable and short term  



29 

 

 

Figure 2.1 Isofemale line combinations that were assayed. Combinations that were mated 

in singly-mated crosses are shaded (see Methods). All combinations (shaded and 

unshaded) were used in the multiply-mated crosses.  

 

 

 



30 

 

reproductive success (one day or seven days) as the predictors.  A similar LM was used 

to determine whether early reproductive success could be used to predict late 

reproductive success.  Late reproductive success was calculated by excluding early 

reproductive success measures from lifetime reproductive success. For comparison to a 

previous study (Pekkala et al. 2011), a  LM with quasipoisson distribution was performed 

using a short term reproductive success window of 7 days after approximately 30 days of 

offspring emergence. The between line and within line variation in isofemale lines for 

lifetime reproductive success of singly mated females was analyzed in a two-way 

ANOVA with a Tukey's post hoc using female line and male line as factors.  To compare 

singly and multiply mated isofemale line crosses, a linear mixed model (LMM) was 

performed using the average multiply mated lifetime reproductive success for each 

isofemale line combination as the response variable and the corresponding isofemale line 

combination average of singly mated lifetime reproductive success as the predictor 

variable, along with female line and male line as random factors.  All analyses were 

performed in R 3.0.3 (2013)  

2.3 Results 

Early, one-day reproductive success can predict lifetime reproductive success (Figure 

2.2A; Estimate = 3.8386 ± 0.8717 S.E., F (1, 267) = 19.39, P < 0.0001, R2 = 0.0642). 

Similarly, one-day reproductive success can predict late (older than 1 day) reproductive 

success (Figure 2.2B; Estimate = 2.8386 ± 0.8717 S.E., F (1, 267) = 10.60, P = 0.0012. R2 = 

0.0346).  While these measures are predictive, they only explain 6.4% of the variation in 

lifetime measurement. This is likely because pairs of flies were not scored for the timing 

of mating, and were simply removed 24 hours after being paired.  Fly pairs therefore 
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Figure 2.2 Regression of early short-term reproductive outputs on lifetime reproductive 

success. Early reproductive success is defined by the number of offspring that eclosed 

from eggs laid in the first day (A, B) or the first seven days (C, D). These values were 

compared to a total lifetime reproductive success response variable that either included 

values of short-term reproductive success (A, C) or that excluded the short-term 

reproductive success values of one day (B) or seven days (D). Dashed lines represent the 

95% CI. 
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could have mated at any time within the 24 hours, and females who mated at the end of 

this time period would have laid very few fertilized eggs. 

Similarly, early seven-day reproductive success is a strong predictor for lifetime 

reproductive success (Figure 2.2C; Estimate = 2.6790 ± 0.2250 S.E., F (1, 398) = 141.8, P 

<0.0001, R2 = 0.2608) and can predict late reproductive success (older than 7 days) 

(Figure 2.2D; Estimate = 1.6790 ± 0.2250 S.E, F (1, 398) = 55.68, P  < 0.0001, R2 = 

0.1205).  The mean one-day reproductive output is 20.72 (19.28-22.17 95% CI, values 

ranging from 1- 53), mean seven-day reproductive output is 84.38 (80.68-88.07 95% CI, 

values ranging from 16 - 165), and mean lifetime reproductive output is 345.63 (325.72-

365.54 95% CI, values ranging from 16-838).  

There is a consistently high rate of offspring eclosion up until approximately day 25 after 

the first offspring ecloses, with peak eclosion at approximately day 10 (Figure 2.3). 

Interestingly, there are fluctuations in eclosion rates on an approximately 7 day cycle 

(Figure 2.3A).  This may correspond with the timing of tipping the females to new vials, 

but since the correspondence of fly tipping with eclosion was not scored I am unable to 

assess this directly. However, this is unlikely to be due to food limitation since I see the 

cycle even when the peak number of offspring eclosing is relatively low (e.g. days 29-36 

and 37-43, Figure 2.3A), suggesting that the cycle may be due to inducing increased egg 

laying upon transfer to a new food source.  When evaluating the minimum window of 

early reproduction that could be measured as a proxy for lifetime reproductive success 

(LRS), even the first day of eclosion has a significant correlation with LRS (Table 2.1).   
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Figure 2.3 Daily eclosion rates. (A) Mean daily eclosion, measured as the total number of offspring eclosing on each day. (B) Mean 

cumulative eclosion per day. ‘Day 1’ is the first day that offspring eclosed. Error bars represent the 95% CI. 
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Table 2.1 Predicting total lifetime reproductive success from daily cumulative eclosion in 

D. melanogaster 

Parameter
1 

Estimate (SE)
2
 F(1, 398) P - value R

2 

1 Day 3.8686 (0.9579) 16.31 6.45e-05 0.0369 

2 Day 3.5868 (0.6783) 27.96 2.045e-07 0.0633 

3 Day 3.9042 (0.5549) 49.50 8.704e-12 0.1084 

4 Day 3.7284 (0.4545) 67.30 3.259e-15 0.1425 

5 Day 3.7665 (0.3953)  90.80 <2.2e-16 0.1837 

6 Day 3.3235 (0.3534) 88.46 <2.2e-16 0.1798 

7 Day 3.3636 (0.3129) 115.50 <2.2e-16 0.2230 

8 Day 3.2656 (0.2654) 151.40 <2.2e-16 0.2737 

9 Day 2.8440 (0.2106) 182.30 <2.2e-16 0.3124 

10 Day 2.6479 (0.1869) 200.70 <2.2e-16 0.3335 

1 The number of cumulative days after the day of first eclosion 

2 Estimated via a linear model. 
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However, as expected, correlation values increase as more days are scored, with the 

greatest gains in R2 occurring up to day 5 (Table 2.1).  

A seven-day reproductive success window for older females (after approximately 30 days 

of offspring emergence) is a strong predictor for total lifetime reproductive success 

(Figure 2.4; Estimate = 0.0072 ± 0.0004 S.E., t (211) = 14.88, P <0.0001, pseudo R2 = 

0.5083).  The two-way ANOVA revealed a significant female line effect (Figure 2.5A; F 

(8, 866) = 8.2960, P < 0.0001) and significant male line effect (F (8, 866) = 7.7590, P < 

0.0001) for the lifetime reproductive success of singly-mated females.  No significant 

interaction was detected (F (30, 836) = 0.7170, P = 0.8680).  Of note, the productivity from 

singly-mated flies was not a significant variable in determining productivity from 

multiply-mated flies (Figure 2.5B; χ2 (1) = 0.0228, P = 0.8801).   

2.4 Discussion 

Early, short-term reproductive success measures of one or seven days can accurately 

predict both lifetime reproductive success and late reproductive success in D. 

melanogaster (Figure 2.2).  However, seven days of reproductive success is more 

accurate as an indicator and can explain more of the variation in  lifetime reproductive 

success than the very short-term measure of one day. Similarly, a short term reproductive 

success measurement of a seven day window in older females is highly significant 

(P<0.0001) in predicting their lifetime reproductive success (Figure 2.4).  These results 

concur with those of Pekkala et al. (2011) who showed low but significant correlations of 

short-term measures (2 day, 4 day, and 10 day windows) of offspring production and 

lifetime reproductive success for young females in Drosophila littoralis  
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Figure 2.4 Regression of late short term reproductive output on lifetime reproductive 

success.  Late short-term reproductive success was measured as the total number of 

offspring eclosing during a seven day window after females were approximately 30 days 

old.  Dashed lines represent the 95% CI. 
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Figure 2.5 Reproductive success by line and by mating level. (A) Variation of lifetime reproductive success of singly mated females 

separated by female line.  Columns with the same letters are not significantly different. Error bars represent the 95% CI. (B) 

Regression of mean productivity of females with multiple matings on productivity of singly mated females. Dashed lines represent the 

95% CI. 
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(Pekkala et al. 2011).  These results also concur with their findings in older females, 

where there is a high correlation between offspring production measured during a brief 

window later in life and lifetime reproductive success (correlation up to 0.83).  This 

comparison of similar studies in different species demonstrates that some aspects of 

reproductive success may show a consistent trend across Drosophila; however caution 

should still be used in applying these results to other species of Drosophila. 

Although it is evident the longer the initial measures of reproductive success, the more 

accurately it can predict lifetime reproductive success, the question remains is how many 

days in early life is optimum to predict lifetime reproductive success.  Although a 

measure of one day of eclosion is statistically significant, it only explains 6.4% of the 

variation in lifetime reproductive success.  According to these results, it appears the 

cumulative eclosion measure of the initial 5 days in early life is optimal, explaining 

18.37% of the variation in lifetime reproductive success, with minimal increase in 

predictive power at day 6 (Table 2.1).  Therefore, studies involving lifetime reproductive 

success measures may obtain an optimal balance of accuracy vs. labor by measuring the 

initial reproductive success of the first 5 days of offspring eclosion. 

The regression of early short term reproductive success (1 day or 7 days) on later 

reproductive success (>1 day or >7 days) shows a positive correlation (Figure 2.2B, 

2.2D).  Therefore, having an initially high reproductive output does not come with a 

reproductive trade-off cost later in life, counter to what would be expected if antagonistic 

pleiotropy was occurring (Sgrò and Partridge 1999; Maklakov et al. 2005).  Similar 

positive pleiotroic effects are seen in the bedbug, Cimex lectularius, where higher 
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ejaculate doses both increase reproductive rates and delays female reproductive 

senescence (Reinhardt et al. 2009).  Interestingly, the peak daily eclosion does not occur 

from eggs laid in very early life, counter to expected.  Instead, peak eclosion numbers 

occur from eggs laid later in life, approximately on day 10 of eclosion (eggs laid when 

females are approximately 14-16 days old), which is shortly after females would be 

expected to regain receptivity towards a courting male and accept a second mating (at ~8-

9 days old; (Manning 1962)). This suggests that peak female fecundity may not occur 

until females have mated a second time. 

Although very short term reproductive success values from one day are not strongly 

predictive of lifetime reproductive success in the laboratory, they may be an accurate 

fitness measure in natural environments, although this likely depends on the species 

being examined.  The average life expectancy in the wild is approximately three days for 

domesticate species of Drosophila (e.g. D. melanogaster, D. simulans, D. immigrans, etc; 

(Rosewell and Shorrocks 1987)),  approximately 6 days for D. serrata (Robson et al. 

2006), and approximately seven days for D. mercatorum (Templeton et al. 1993). Hence, 

the reproductive output from a shorter time span may more accurately reflect the 

biological fitness of an organism, even if it does not reflect the total reproductive output 

possible in the laboratory, if that longer lifespan is not realized in the wild. 

 Significant female line effects for the lifetime reproductive success of singly mated 

females indicate that the fecundity of a singly mated female can predict the fecundity of 

another singly mated female from the same isofemale line, regardless of who the female 

mates with.  Therefore, a similar relationship could be expected with singly and multiply 

mated females.  However, contrary to this, the productivity of from a single mating does 
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not predict lifetime productivity when allowing for remating in D. melanogaster. The 

relationship (or lack thereof) between the reproductive output of single and multiple 

matings is not universal across species: for example, in the Bruchid beetle, 

Callosobruchus maculatus (Coleoptera: Bruchidae), there was no difference in fecundity 

between singly mated females and females who were confined to a single male during her 

lifetime, which allowed for remating (Fox 1993).  In D. melanogaster, the lack of a 

relationship between single and multiply-mated females is likely due to sperm limitation 

(the male’s contribution) in the former case and egg production limitation (the female’s 

contribution) in the latter case.  Similar to these results, multiply-mated D. 

pseudoobscura females had a higher productivity than singly-mated females, suggesting 

that singly-mated females are sperm limited (Turner and Anderson 1983).  However, this 

sperm limitation has only a moderate effect on productivity in this study since singly 

mated females had 82% of the productivity of multiply mated females (Templeton et al. 

1993).   

These results, together with Pekkala et al. (2011) suggest that one or two day 

reproductive measurements are appropriate indicators of an individual's total lifetime 

reproductive success in Drosophila.  Short-term measurements of the initial seven days 

of offspring production in young females can, however, explain more variation (26%) in 

total lifetime reproductive success in D. melanogaster.  It is important to note that this 

significant short term measure of reproductive success applies to multiply-mated females.  

There was no correlation between singly and multiply mated females, and thus these 

measures should not be used to make inferences about each other.  However, within both 

D. melanogaster (presented here) and D. littoralis (Pekkala et al. 2011), it appears that a 



41 

 

well-timed window measurement of seven days in older females is significantly 

correlated to lifetime reproductive success, and thus this measure may also potentially 

serve as an accurate proxy across the Drosophila genus in laboratory controlled 

conditions (Pekkala et al. 2011).       
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Chapter 3  

3 Daughters affected most strongly by good genes and 
inbreeding 

Males and females often have opposing strategies for increasing fitness, which can cause 

sexual conflict.  Male-male competition creates variation in lifetime reproductive 

success: males that out-compete others will benefit by acquiring more mating 

opportunities and thus producing a higher number of offspring.  Females benefit from 

mating with a high quality male that possesses good genes or genes that are more 

compatible with her genotype, receiving either direct benefits through acquisition of 

additional resources or indirect benefits through the increased fitness of offspring.  The 

genetic basis of lifetime reproductive success may also be in conflict, causing alleles that 

are beneficial for one sex to have detrimental effects in the opposite sex.  Here we 

attempt to tease apart the genetic architecture of lifetime reproductive success in a 

multigenerational study in Drosophila melanogaster.  I found significant additive, 

maternal and paternal effects for lifetime reproductive success of offspring, with a much 

stronger effect for daughters than sons.  Interestingly, inbreeding depression also had a  

 2 

 

                                                 
2
 A version of this chapter has been submitted to Evolution and is currently under review.  

Citation: Nguyen, T. T. X., A. J. Moehring. (submitted) Daughters affected most strongly by good genes 
and inbreeding. Evolution 
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significant effect on the lifetime reproductive success of daughters, but did not have a 

significant effect on the productivity of sons or parents.  I found no evidence of 

intersexual conflict in the lifetime reproductive success of daughters and sons. 

3.1 Introduction 

One of the most important aspects in evolution is an animal's ability to reproduce, making 

lifetime reproductive success (LRS) a vital measure of fitness.  Males and females often 

have differing reproductive strategies to increase their lifetime reproductive success 

(Andersson 1994).  Males typically increase their fitness by competing and acquiring as 

many mating opportunities as possible.  Variation in reproductive success is thus usually 

larger for males than it is for females, since some males may not achieve any matings 

while others achieve multiple matings.  In contrast, females are usually mated, resulting 

in low variation in reproductive success in females compared to males.  While there may 

be some advantages to females for repeatedly mating, there are also costs (Turner and 

Anderson 1983; Fowler and Partridge 1989; Magurran and Nowak 1991; Rowe 1994; 

Chapman et al. 1995), and thus females may instead increase their fitness by mating 

selectively.  Polyandrous females can receive indirect benefits of multiple mating through 

their offspring.  Indirect benefits are only acquired through mating with multiple males, 

and not merely multiple mating events with the same male (Zeh 1997; Tregenza and 

Wedell 1998; Ivy and Sakaluk 2005), indicating that these benefits are genetic.  Indirect 

benefits can be obtained by mating with individuals with good genes through additive 

genetic variation in the offspring or by mating with individuals with compatible genes 

and acquiring non-additive genetic benefits (Neff and Pitcher 2005).   
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In non-resource based mating systems, females may evolve and maintain mate 

preferences in order to gain indirect additive and non-additive genetic benefits to increase 

the fitness of their offspring.  Females can obtain additive genetic benefits by mating with 

males that signal higher genetic quality, thus acquiring his good genes in the resulting 

offspring (Andersson 1994), which can result in their superior growth, fecundity, or 

survival (Møller and Alatalo 1999).  A number of studies have provided evidence that 

females of some species choose mates based on good genes, and when they do so, the 

offspring have higher fitness. A meta-analysis showed a significant correlation between 

male trait and offspring survival and found that male characteristics explain 1.5% of the 

variability in offspring survival (Møller and Alatalo 1999).  In the pronghorn Antilocapra 

americana, (Artiodactyla: Antilocapridae), dominant males who acquired the most matings 

produced offspring with higher survival (Byers and Waits 2006).  Attractive males 

produce offspring with faster growth rates, possibly allowing the evasion of predators and 

increasing survival rates (Byers and Waits 2006).  Female poison frogs Dendrobates 

leucomelas (Anura: Dendrobatidae) and Epipedobates tricolor (Anura: Dendrobatidae) 

preferred to mate with males with higher calling rates and chirp duration, an indicator of 

good genes (Forsman and Hagman 2006).  These males with higher calling performance 

produced offspring with higher fitness, measured as higher hatching success and lower 

mortality in several life-history stages (Forsman and Hagman 2006).  These studies 

indicate that females preferentially mate with males who signal honest indicators of good 

genes in order to confer a fitness advantage to their offspring.         

In addition, females can acquire non-additive genetic benefits by mating with males to 

increase their genetic compatibility (Trivers 1972).  Females can have a preference for 
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outbred males to avoid inbreeding, as inbreeding can result in decreased offspring fitness 

due to increased homozygosity and accumulation of deleterious mutations, and a decrease 

in heterozygote advantage or overdominance  (Ilmonen et al. 2009).  A well documented 

system of  genetic compatibility involves the major histocompatibility complex (MHC) 

genes, where females of many organisms have a preference for males with dissimilar 

MHC alleles (Wedekind et al. 1995; Penn and Potts 1999; Penn 2002).  MHC genes are 

highly polymorphic loci that influence immune function by promoting immune response 

and resistance to infections and diseases (Penn and Potts 1999; Penn 2002).  Therefore, 

females who mate with males that have dissimilar MHC genes will produce offspring 

with an increase in fitness as they have a better immune response by recognizing more 

pathogens.  These studies emphasize the importance of sexual selection and mate choice 

on offspring fitness through indirect genetic benefits.         

There may also be sex-specific differences in the fitness of the resulting male and female 

offspring due to differential investment or sexual conflict (Arnqvist and Rowe 2005). The 

unequal cost of mating produces different selection pressures in the two sexes.  Since 

most genes are expressed in both sexes, there can be intersexual genetic conflict whereby 

alleles can be beneficial in one sex but harmful to the other (Chippindale et al. 2001).  In 

some cases, sexual conflict is extreme enough to cause a decrease in lifespan and even 

death (Chapman et al. 1993, 1995; Pitnick and García–González 2002).   When the 

female sex was prevented from selectively contributing to the gene pool, causing 99% of 

the haploid genome was transferred from father to son in Drosophila melanogaster 

creating a synthetic Y chromosome, males rapidly increased in fitness, most likely a 

result from the elimination of counterselection by females (Rice 1998).  Males containing 
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the synthetic Y chromosome had a higher mating rate, higher remating rate, and a higher 

offence paternity in competition.  When this synthetic Y chromosome was expressed in 

females, they suffered a reduced fitness through a slower developmental time. 

These studies provide extensive evidence for the ability of females to mate selectively 

based on a male's genetic quality in order to increase offspring fitness. However, they 

also show the existence of potential genetic conflict between the sexes, which could 

cause fitness to instead be reduced in offspring of a particular sex. To date, very few 

studies have examined the relationship between parental fitness and the fitness of each 

sex of resulting offspring (Kokko 2001).     

In this study, my first aim was to identify the genetic relationship between parental and 

offspring fitness.  I obtained lifetime reproductive success (LRS) measurements (the 

number of offspring an individual can produce throughout its lifetime) in D. 

melanogaster for parentals and all F1 individuals (both sons and daughters) from a full 

factorial diallel cross.  I used multiple simple regressions to analyze additive, paternal 

and maternal effects.  We then used the more complex Cockerham and Weir biomodel 

(Cockerham and Weir 1977) to tease apart the genetic and parental effects contributing to 

variation in reproductive success.  These models revealed significant additive, maternal 

and paternal effects for the reproductive success of offspring, with a stronger effect for 

daughters than sons.  My second aim was to identify the effects of inbreeding across 

generations and between males and females to determine if there were sex-specific 

effects of inbreeding on lifetime reproductive success. I found that inbreeding did not 

affect the reproductive output of parental crosses or their sons, but had a significant effect 

on daughter fitness.  Lastly, I looked for a negative relationship between the fitness of 
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daughters and sons, which would indicate sexual conflict between loci contributing to 

reproductive output.  I did not find any evidence of sexual conflict for this trait, 

indicating that the differential offspring fitness I observed is caused by factors other than 

intersexual conflict. 

3.2 Methods 

3.2.1 Inbred lines 

Isofemale lines of Drosophila melanogaster were started from individual females 

collected from the wild in Sudbury, Ontario Canada in 2011, generously provided by T. 

Merritt.  Rearing methods are similar to that of (Nguyen and Moehring, in press).  

Isofemale populations are reared in the lab on standard cornmeal agar and maintained at 

24°C and 75% RH on a 14 h light: 10 h dark cycle.  A total of 10 isofemale lines were 

used in this experiment.  Each line was kept with non-overlapping generations as a 

population of approximately 500 flies distributed among vials that were intermittently 

intermixed.   

3.2.2 Diallel cross - LRS fitness measured 

Diallel crossing methods are similar to those of Nguyen and Moehring (in press).  Ten 

isofemale lines were used in a full diallel cross, mating females and males in all 

combinations to create 100 mating pairs.  Male and female virgins were collected upon 

eclosion, aged 4-6 days, and mated.  Mated pairs were kept together throughout the 

female’s lifetime, allowing for remating.  Mated pairs were checked daily and dead males 

were replaced with a male of similar age and strain.  Mating pairs were transferred into a 

new vial every 7 days.  Vials were checked daily and counted for number of eclosing 
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adult offspring.  Vials were counted for 16-17 days after the last egg was laid or the 

female died, ensuring enough time for all larvae to emerge, providing a measure of total 

lifetime reproductive success.  A total of 4 replicates of the complete 10x10 diallel cross 

were performed (400 pairings total).   

To measure the F1 productivity (lifetime reproductive success), four F1 males (sons) and 

four F1 females (daughters) were taken from the first 10 days of offspring production for 

each of the four replicates of the 100 diallel crosses (for a total of 1600 F1 males and 

1600 F1 females).  Each F1 focal son was paired in a vial with a single standard female, 

and each F1 female was paired with a single standard male, allowing for remating.  

Standard females and males used in F1 mating pairs are from an outbred (synthetic) 

population made from 19 isofemale lines.  A synthetic population line was started from 

two virgin males and two virgin females from each of the 19 isofemale lines.  It was then 

maintained in a population cage.  Lifetime reproductive success of F1's were measured in 

a similar manner as above.  F1 daughter's productivity was measured for the entire 

lifespan of the female.  F1 son's productivity was measured as the number of offspring an 

F1 male can produce with a single standard female when paired with her for seven days.  

After seven days the parents were discarded and all offspring that eclosed were counted.  

This productivity measure of 7 days is an accurate measure of lifetime productivity in D. 

melanogaster (Nguyen and Moehring, in press).  

3.2.3 Data analysis: Multiple regressions 

Additive effects can be detected by regressing offspring values on parental values 

(Falconer 1989).  To detect sexual conflict, mean productivity of sons were regressed on 

mean productivity of daughters.  To detect paternal and maternal effects, crosses by sire 
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line (across different dam lines) and dam line (across different sire lines) were grouped 

and regressed on values of paternal and maternal lines (Buzatto et al. 2012).  The model 

for paternal effects of productivity on daughters had a non-normal distribution and so a 

quasipoisson distribution was used; all other comparisons were normally distributed.  

Analysis was performed in R 3.0.3 (2013). 

3.2.4 Data analysis: Cockerham and Weir Biomodel 

Reproductive success measures were analyzed by the Cockerham and Weir Biomodel 

(Cockerham and Weir 1977; Lynch and Walsh 1988) which allows for an estimation of 

genetic, maternal and paternal variance components for reproductive success (Table 3.1).   

Data for inbred crosses (crosses using dam and sires from the same isofemale line) were 

discarded for analysis in the model as recommended.  The equation of the model was 

  Yijkl = µ + Ni + Nj + Tij + Mj + Pi + Kij + Rk(ij) + Wl(k(ij))  

where Yijkl is the reproductive success of the l'th individual from the k'th replicate of cross 

between male line i and female line j, µ is the mean reproductive success of the 

population.  Ni  and Nj are the haploid nuclear additive effects of lines i and j, independent 

of sex.  Tij is the haploid nuclear nonadditive interaction (including dominance and 

epistatic effects).  Mj and Pi are the maternal and paternal genetic and environmental 

effects of line j when used as dams and line i when used as sires.  Kij is the interaction 

between maternal and paternal effects.  Rk(ij) is the  effect of k'th replicate cross within 

dam x sire line combinations.  Wl(k(ij))  is the within replicate cross (the residual) effect of 

individual l (Fry 2004; Bilde et al. 2008; Dowling et al. 2010; Buzatto et al. 2012).  Note  
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Table 3.1 Variance parameters. Table adapted from (Bilde et al. 2008; Dowling et al. 

2010; Buzatto et al. 2012). 

 

Observational 

variance 

Causal variance 
* 

Description 

σ
2

N VA = 2 σ2
N / F  Nuclear additive variance 

σ
2

T VD = σ2
T / F

2 Nuclear interaction variance 

(dominance, if epistatic is small) 

σ
2

M VM = σ
2
M Maternal effects variance (both 

genotype and environmental 

effects) 

σ
2

P VP = σ
2

P Paternal effects variance (both 

genotype and environmental 

effects) 

σ
2

K VK = σ
2

K Interaction variance (of 

maternal and paternal effects 

and of nuclear and extra-nuclear 

effects) 

σ
2

R VE = σ2
R + σ

2
W † Among replicate crosses 

variance 
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σ
2

W VE  = (VTOT  - VA - VD - VM - VP - VK   ) Within replicate crosses 

variance 

 VTOT  = (σ2
N + σ

2
T + σ

2
M + σ

2
P + σ

2
K + 

σ
2

R + σ
2

W) 

 

* F is the inbreeding coefficient. 

† Only used if F = 1
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that the analysis for parental's lifetime reproductive success does not contain the term 

Wl(k(ij)) as there is no within-replicate cross (residual) effect of individuals.   

The Cockerham and Weir Biomodel was fitted using the GLIMMIX procedure in SAS 

9.3 (SAS Institute Inc. SAS/STAT 9.2 User’s Guide, Second Edition 2009).  The  

EFFECT command was used to define the nuclear parental contributions as a 

multimember effect (SAS/STAT 9.2 User's Guide, Second Edition; Example 38.16, pg 

2412).  The COVTEST command was used to provide a likelihood ratio test to compare a 

reduced model, where a given covariance parameter is set to zero, to a full model where 

all parameters were allowed to have positive values.   

Observational variance parameters (Table 3.1) were used to calculate causal variance 

parameters using F, the inbreeding coefficient (Bilde et al. 2008). Isofemale lines are 

estimated to have a total inbreeding coefficient of F = 0.4375.  This inbreeding 

coefficient is estimated from FIT = FST + FIS(1-FST) (Wright 1969), assuming: (1) a 

population bottleneck of 2 individuals and that the individual female caught from the 

wild used to start the isofemale line was mated to a single male or that there is strong 

second-male sperm precedence (drift inbreeding) and (2) a full brother and sister sibling 

mating in the population (pedigree inbreeding). This level of inbreeding is slightly less 

than that of previous studies that have used the Cockerham and Weir Biomodel, which 

have inbreeding coefficients of approximately 0.67-0.89 (Bilde et al. 2008; Dowling et al. 

2010; Buzatto et al. 2012). 
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3.2.5 Data analysis: Inbred vs. Outbred 

The productivity of inbred vs. outbred crosses were compared within each isofemale line 

for productivity, productivity of  F1 sons and daughters using three separate Linear Mixed 

Model (LMM).  A nested LMM was used with inbred or outbred as a fixed factor and 

female line as the random factor.  To analyze the F1 productivity of inbred vs. outbred 

crosses of sons and daughters, the ratio of inbred to outbred  productivity of sons and 

daughters were compared.  Inbred and outbred values were analyzed using Welch's test.  

Analyses were performed in R 3.0.3 (2013).   

3.3 Results 

3.3.1 Generational comparisons of productivity 

The regression of productivity values of sons (Figure 3.1A; R2 = 0.096, d.f. = 98, P = 

0.002) and daughters (Figure 3.1B; R2 = 0.083, d.f. = 98, P = 0.004) on parental 

productivity detected significant additive effects.  The slope of the regression gives the 

heritability values of productivity of sons and daughters (Falconer 1989).  The heritability 

of productivity for sons is 0.035 ± 0.011 (mean ± SE) and for daughters is 0.236 ± 0.079 

(mean ± SE).  Regression of productivity of F1 sons on productivity of F1 daughters was 

not significant and did not detect any sexual conflict (Figure 3.1C; R2 = 0.002, d.f. = 98, 

P = 0.665).  Regressions detected significant paternal (Figure 3.2A; R2 =0.698, d.f. = 8, P 

= 0.003), but no significant maternal (Figure 3.2B; R2 =0.0380, d.f. = 8, P  = 0.589) effect 

for productivity of sons and significant paternal (Figure 3.3A; pseudo R2 =0.499, d.f. = 8, 

P = 0.021) and maternal (Figure 3.3B; R2 =0.701, d.f. = 8, P  = 0.002) effects for 

productivity of daughters.    
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Figure 3.1 Regression of 

productivity of (A) F1 sons 

and (B) F1 daughters on 

parental productivity  

identified significant 

additive genetic effects.  

Regression of productivity 

of F1 sons on productivity of 

F1 daughters (C) detected no 

sexual conflict.  Dashed 

lines represent 95% CI. 
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3.3.2 Partitioning the productivity variance 

The Cockerham and Weir Biomodel partitions the productivity variance into genetic and 

parental effects.  The model detected no significant additive or non additive genetic 

effects, maternal, paternal or interaction effects for productivity of parentals or 

productivity of F1 sons (Table 3.2).  The productivity of F1 daughters is a result of 

significant nuclear additive genetic effects (P = 0.0079), but no nonadditive, maternal, 

paternal or interaction effects (Table 3.2).  This significant nuclear additive genetic 

effects accounts for only 0.03% of the variation in productivity (Table 3.3); this is not 

surprising since lifetime reproductive success (productivity) is an extremely variable 

polygenic complex trait.  The majority of the variation for productivity of parentals and 

F1 sons and daughters was accounted for by replicate variance (explaining 99% of the 

variation) (Table 3.3).   

3.3.3 Comparison of inbred vs. outbred productivity 

There is no significant difference between inbred and outbred crosses for productivity in 

female lines of parentals (Figure 4 A ; Figure 5; χ2 (1) = 0, P = 1.0)  and productivity of F1 

sons (Figure 4 B; Figure 5; χ2 (1) = 0, P = 1.0).  However, inbred crosses of F1 daughters 

have significantly lower productivity than outbred crosses (Figure 4 C; Figure 5; χ2 (1) = 

10.862, P = 0.0001).  Paired t-tests show that inbreeding affects the productivity of F1 

daughters significantly more than it affects the productivity of F1 sons, whereby 

inbreeding decreases the productivity of F1 daughters  (t = 5.2836, d.f. = 3, P = 0.01322).   
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Figure 3.2 Regression of productivity of F1daughters, grouped by (A) sire lines or (B) dam lines on parental productivity detected 

significant paternal and maternal effects.  Dashed lines represent 95% CI.

P = 0.003 P = 0.589 
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Figure 3.3 Regression of productivity of F1daughters, grouped by (A) sire lines or (B) dam lines on parental productivity detected 

significant paternal and maternal effects.  Dashed lines represent 95%  CI. 

P = 0.021 P = 0.002 
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Table 3.2 Observational variance component estimates from the Cockerham and Weir Biomodel to estimate the genetic architecture 

of  lifetime reproductive succes measures in isofemale lines of D. melanogaster and their F1 offspring. 

 

 Lifetime reproductive success F1 sons productivity F1 daughters productivity 

Variance component Estimate (SE) P - value Estimate (SE) P - value Estimate (SE) P - value 

σ
2

N 0.0105 (0.0078) 0.0932 0.0002 (0.0003) 0.5273 0.0025 (0.0015) 0.0079 

σ
2

T 0 - 0 - 0.0007 (0.0013) 0.5499 

σ
2

M 0.0019 (0.0066) 0.7530 0 - 0 - 

σ
2

P 0.0068 (0.0082) 0.2955 0.0001 (0.0005) 0.8040 0 - 

σ
2

K 0 - 0 - 0 - 

σ
2

R 73.4872 (5.6284)  0.0188 (0.0023) <0.0001 0.0181 (0.0031) <0.0001 

σ
2

W   5.1874 (0.2254)  43.5622 (1.9144)  
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Table 3.3 Causal variance component estimates from the Cockerham and Weir Biomodel to estimate the genetic architecture of  

lifetime reproductive succes measures in isofemale lines of D. melanogaster and their F1 offspring.   

 

 Lifetime reproductive success F1 sons productivity F1 daughters productivity 

Variance component Estimate  Percent Estimate  Percent Estimate  Percent 

VA 0.0480 0.06 0.0009 0.02 0.0114 0.03 

VD 0 0 0 0 0.0036 0 

VM 0.0019  0 0 0 0 0 

VP 0.0068  0 0.0001 0 0 0 

VK 0 0 0 0 0 0 

VE 73.4497 99.94 5.2055 99.98 43.5690 99.96 

       

VTOT 73.5064  5.2065  43.5840  
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3.4 Discussion 

There is a significant positive correlation for both F1 sons' and daughters' productivity 

when regressed over parental productivity, but not a significant correlation between sons 

and daughters (Figure 3.1).  Thus, some parental combinations produce high quality sons 

and some produce high quality daughters, but these offspring values have no relationship 

(either positive or negative) to one another, indicating that there is no intersexual conflict 

or intersexual cohesiveness for this trait.  This is counter to the findings of a negative 

correlation in D. melanogaster adult reproductive success between males (male 

fertilization success) and females (female fecundity) (Chippindale et al. 2001).  They 

suggested that good genes are sex specific; high quality males produce high quality sons, 

but low quality daughters.  Sexual conflict was also evident in Tribolium castaneum 

(Coleoptera: Tenebrionidae) where polyandrous females produced fit sons, but not fit 

daughters (Pai and Yan 2002).  I found good genes for lifetime reproductive success are 

expressed in both sexes.  Similar positive pleiotropic effects are found in Teleogryllus 

commodus (Orthoptera: Gryllidae). A study using  a full-sib/half-sib breeding design 

found a positive genetic correlation between male calling effort and female fecundity, 

indicating no intra-locus sexual conflict and a positive correlation in reproductive efforts 

between males and females (Zajitschek et al. 2007).  

I found significant additive genetic effects for the productivity of F1 daughters, but no 

other genetic or parental effects.  The Cockerham and Weir Biomodel did not detect any 

genetic genetic or parental effects for productivity of parentals or productivity of F1 sons.  

Thus, lifetime reproductive success of daughters is more strongly affected by good genes 

than is the reproductive success of sons.  Additional regression analysis detected 
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significant additive genetic, paternal and maternal effects for the productivity of F1 sons 

and F1 daughters.  This difference in results is likely due to the Cockerham and Weir 

Biomodel partitioning all of the phenotypic variation into the replicate variance.  Similar 

results were found in Buzatto et al. (2012), where additional regression analysis detected 

effects not found using the Cockerham and Weir Biomodel (Buzatto et al. 2012).  They 

suggested that the Cockerham and Weir Biomodel is a conservative model that 

underestimates the variance components (Buzatto et al. 2012).  This effect is likely 

enhanced by the strains that I used in my experiment since isofemale lines are not fully 

inbred.  The detection of an effect in F1 offspring but not parentals could also be due to 

the larger number of replicates for this group (16 vs. 4), and the effect in daughters but 

not sons could be due to productivity differences resulting from our different measures 

(ranges of 10-1220 and 3-306 offspring, respectively). Alternatively, it is possible that the 

lack of a significant additive effect of offspring production in sons resulted from a 

reduced variation in spermatogenesis and the resulting sperm (compared to egg 

production in daughters) due a lack of recombination in D. melanogaster male gametes 

(Morgan 1914). Furthermore, in non-resource based mating systems, females acquire 

indirect benefits in the form of increased fitness in their offspring.  This could possibly 

explain why there is more phenotypic variation in the F1 generation (i.e. daughters) than 

in the parentals.   

 Although 99% of the productivity variation lies in the replicate variance, there are 

distinct differences among the mean productivity of parentals and F1 sons versus F1 

daughters when comparing between inbred vs. outbred crosses (Figure 3.4).  Inbreeding 

depression can be caused by an increase in homozygosity and result in an accumulation  
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Figure 3.4 Productivity of 

outbred vs. inbred crosses for 

(A) parentals, (B) F1 sons and 

(C) F1 daughters.   
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of recessive deleterious alleles, or by decreasing heterozygote advantage, also known as 

overdominance.  I found that female offspring (F1 daughters) from inbred crosses 

produce significantly fewer offspring than those from outbred crosses.  Surprisingly, this 

inbreeding depression is only present in the productivity of F1 daughters, and not F1 sons 

or parentals.  This is counter to what was seen in Bicyclus anynana (Lepidoptera: 

Nymphalidae), where inbreeding depression was detected in both parents and offspring 

(Saccheri et al. 2005).    For example, outbred parental crosses had a higher hatching rate 

of 44% compared to inbred lines with a hatching rate of 37% (Saccheri et al. 2005).  Also 

opposite to my findings, inbred males of B. anynana suffer a greater loss of fertility than 

inbred females.  Inbred males suffered a 40% loss of fertility, measured as percent of egg 

hatching, whereas inbred females had  no measurable inbreeding depression (Saccheri et 

al. 2005).   The contrasting results between that study and mine may potentially be 

explained by the different chromosomal complement in the sexes of the two species: 

males of B. anynana are homogametic and females are heterogametic, while males are 

the heterogametic sex in D. melanogaster.  In both studies, it is the homogametic sex that 

suffers the greatest inbreeding depression.  Indeed, a study in seed beetles 

Callosobruchus maculatus (Coleoptera: Chrysomelidae), where the females are the 

homogametic sex, females suffer a significant reduction in lifespan due to inbreeding, 

while males actually had an increased lifespan when inbred (Bilde et al. 2009).  Likewise, 

inbred females of C. maculatus had a reduced lifespan, 9-13% shorter than outbred 

females while inbred males suffer no cost of inbreeding depression (Fox et al. 2006).  In 

the endangered New Zealand bird, Notiomystis cincta (Passeriformes: Notiomystidae), 

the homogametic male sex was found to be more inbred than females (Brekke et al. 
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2010).  Furthermore, these males were more sensitive to inbreeding depression as inbred 

males suffer a higher embryo and nestling mortality than inbred females (Brekke et al. 

2010).  This male-biased sensitivity to inbreeding was not a result of males being more 

inbred, as this relationship was still significant when highly inbred males were removed.  

These studies may indicate a trend where the homogametic sex is more sensitive to 

inbreeding depression.  However, I found exceptions in some birds where the 

heterogametic inbred females of Porphyrio hochstetteri (Gruiformes: Rallidae) and 

Melospiza melodia (Passeriformes: Emberizidae) show a significantly lower fledging 

success (Jamieson et al. 2003) and lifetime reproductive success due to egg mortality 

(Keller 1998) respectively, while inbred males suffer no inbreeding cost.  

These findings where the homogametic sex suffers a greater inbreeding depression are 

counter to expectation since the heterogametic sex is hemizygous for their sex 

chromosomes and will express all sex-linked alleles.  Any negative epistatic interactions 

with the autosomes would be expected to surface within the heterogametic sex, as seen 

with the reduction of fertility in the heterogametic sex of interspecies hybrids (Haldane 

1922) and the increased reduction in lifespan due to inbreeding within heterogametic 

individuals (reviewed in Tower and Arbeitman 2009).  Deleterious effects of recessive X-

linked alleles can be masked in heterozygous individuals who are homogametic, even 

when they are inbred, as long as there is some residual genetic variation.  There are 

numerous studies that show that the X chromosome evolves faster than the autosomes 

(reviewed in Meisel and Connallon 2013), and that the X chromosome more rapidly 

accumulates changes affecting male sterility (reviewed in Presgraves 2008).  

Additionally, mating and reproducing is usually more costly for females, whereas males 
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have fairly little investment by comparison, and thus there should be stronger selection 

for reproductive robustness in females.  However, my results indicate that sensitivity to 

inbreeding depression for lifetime reproductive success is sex-dependent and appears to 

be biased towards the homogametic sex, which is female in D. melanogaster.  

It has previously been suggested that sexual size dimorphism can result in biased 

sensitivities in inbreeding depression (Brekke et al. 2010).  The (homogametic) males of 

N. cincta, who suffer a greater inbreeding depression than females, are significantly 

larger than females with respect to weight, tarsus length and head-bill length (Brekke et 

al. 2010).   Likewise, (homogametic) D. melanogaster females are often larger than their 

male counterparts.  The energetic requirements for increased growth and maintenance of 

larger individuals can potentially cause them to be more sensitive to inbreeding 

depression.  Additionally, mating and egg laying are energetically costly for D. 

melanogaster females, decreasing lifespan.  Inbred females can thus be more sensitive to 

these energetic demands, resulting in a decreased lifespan and lower productivity.  In 

contrast, inbred males could have an increased lifespan if they do not perform 

energetically costly reproductive behaviours (Bilde et al. 2009).  Several studies have 

shown a decrease in reproductive behaviour and performance in inbred males.  Inbred 

males of Mus domesticus (Rodentia: Muridae) have a lower mating and reproductive 

success because they could not obtain quality territory and were less aggressive (Eklund 

1996; Meagher et al. 2000).  Bicyclus anynana males produce less sex pheromones when 

inbred, resulting in reduced mating success, and had an 18% reduction in flight time 

compared to outbred males (Bergen et al. 2013).  Although inbred males of Teleogryllus 

commodus have a 30% reduced calling effort compared to outbred males, their call is just 
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as attractive to females compared to calls from outbred males, indicating that call 

structure in inbred males have not been compromised (Drayton et al. 2010).  Unlike 

female D. melanogaster, inbred males avoiding energetically costly behaviours could 

allocate their resources to maintaining their lifespan and productivity, as suggested in my 

study.  Whether the differential effect on fitness is caused by differences in genetic 

structure (homogamy) or differences in energetic investment between the two sexes 

requires further study. 
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Chapter 4  

4 Males with higher mating success produce sons with 
lower fitness 

Female mate choice can result in direct benefits to the female or indirect benefits to her 

offspring.  Females can increase their fitness by mating with males of higher genetic 

quality, where genetic quality consists of both survivorship and reproductive output. 

Attractive males will gain more copulations, and thus have a higher fitness due to 

increased mating success.  However, male mating success is not only dependent upon a 

female’s receptivity towards a courting male, and in nature can involve complex 

interactions between individuals of both sexes in the time preceding copulation.  Here I 

used a novel approach to measure male mating success in a mating arena that allows for 

male-male, male-female, and female-female interactions using 10 isofemale lines of D. 

melanogaster.  I then correlated mating success with direct and indirect benefits females 

may receive.  Surprisingly, I found that males with higher mating success reduce female 

fitness as they produce sons with lower lifetime reproductive success (productivity). 

4.1 Introduction 

Female mate choice can occur when there is variation in male phenotypes.  Male 

variation in fitness traits  can be evaluated by females as important indicators of male 

quality.  Females will preferentially mate with males that will provide them with 

increased fitness benefits.  Direct benefits are those that females gain to increase her 

fitness; they are acquired in the current generation (Andersson 1994).  Often, these direct 

benefits are obtained in resource-based mating systems, such as when a male provides a 
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female with a nuptial gift, and can enhance the female's immediate fecundity or fertility 

(Gwynne 1984). 

In many mating systems, the female does not gain any apparent direct benefit, yet 

females still demonstrate mate choice.  For example, Taylor et al. (2007) examined the 

fitness effects of female Drosophila simulans (Diptera: Drosophilidae) mating to 

preferred and non-preferred males (Taylor et al. 2008).  They found no significant 

correlation between female preference and female lifetime productivity (Taylor et al. 

2008).  For mating systems in which there is a non-positive correlation between male 

attractiveness and direct female fitness, females may be choosing a male on the basis of 

the indirect benefits he provides, such as in the form of higher quality offspring.  These 

'good genes' within the male will allow him to successfully survive, and the preference of 

females for these genes will allow him to out-compete rival males in sexual selection.  An 

individual's total fitness, or lifetime reproductive success, includes an individual's 

survivorship (viability), and mating success (Stearns 1992).  However, an important 

aspect of reproductive success that can often be overlooked is a male's ability to obtain 

mates.  Both components of fitness viability and attractiveness contributes to a male's 

genetic quality (Kokko et al. 2002; Neff and Pitcher 2005).  Ideally, studies examining 

the benefits of mate choice should consist of both components; whether a male contains 

good genes due to survivorship or good genes due to an increase in mating success are 

equally significant (Zahavi 1975; Eshel et al. 2000; Kokko 2001).   

The Fisherian hypothesis predicts that females will mate with males that advertise an 

arbitrarily attractive trait (Fisher 1930).  Attractive males will enjoy an increase in fitness 

by attaining copulations and having a higher mating success.  Females who mate with 
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attractive males can gain indirect fitness benefits by producing sons who are more 

successful at mating (sexy sons hypothesis) (Weatherhead and Robertson 1979).  The 

sexy sons hypothesis is supported by several studies.  Males of crickets Allonemobius 

socius (Orthoptera: Gryllidae) who were successful at mating in the field produced sons 

who were also more successful at mating (Fedorka and Mousseau 2004).  Similarly, 

attractive males of D. simulans provide indirect benefits to females by siring attractive 

sons (Taylor et al. 2007).  These studies demonstrate that the ability to obtain mates and 

mating are important heritable measures of total fitness. 

The mating behaviour and courtship of Drosophila melanogaster have been well 

characterized (reviewed in Spieth 1974; O’Dell 2003).  After a Drosophila male orients 

and approaches a potential mate, he first engages in a variety of behaviours that include 

tapping, leg rubbing, licking, and circling.  He then produces a species-specific courtship 

song by vibrating one of his wings before attempting to mount and copulate.  A female 

signals acceptance by standing still and spreading her wings, removing a physical barrier, 

to allow a male to successfully mount.  Forceful coercion of mating by males is almost 

always unsuccessful.  Unreceptive females display rejection behaviour by kicking, 

decamping, and abdomen elevation or depression.  If males are successful at copulation, 

it is possible that they provide a material resource to females through nutrients in their 

ejaculate as ejaculate traces can often be found in somatic and ovarian tissues of females 

(Pitnick et al. 1997).  Since D. melanogaster usually aggregate at food sources (Tinette et 

al. 2004), which are also where copulation is most likely to occur (Spieth 1974), more 

complex male-male interactions have the potential to significantly affect a male's 

reproductive success in the wild. 
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The majority of studies examining mating success involve focusing on a single male-

female interaction in order to dissect male courtship and female receptive behaviour (e.g., 

(Reynolds and Gross 1992; Head et al. 2005; Taylor et al. 2007)).  While multiple-choice 

mating assays have sometimes been used, and allow for male-male competition, a single 

female is typically presented with a choice of only two males (Fedorka and Mousseau 

2004; Taylor et al. 2008).  In another study, a mating chamber was used that allowed for 

female-female interactions with multiple females and male-male interactions with 

multiple males; however there were only two isofemale lines involved in the male-male 

competition (Taylor et al. 1987).  In the lab, male-male aggression has been documented 

where larger males chase smaller males away (Partridge and Farquhar 1983), and the 

outcome of these interactions affects a male's future aggressive behaviour (Yurkovic et 

al. 2006), making it likely that these interactions are also present in natural environments.  

Group composition and social life also affect male-female interactions.  Drosophila 

males court virgin females more aggressively than mated females (Siegel and Hall 1979).  

However, male courtship can be modified by experience as males that are exposed to 

mated females do not court virgin females as forcefully (Siegel and Hall 1979).  Females 

also display learning behaviour in a mating context.  Drosophila melanogaster females 

that were exposed to the courtship from small males (but not mating) were more likely to 

mate to small and large males compared to females who were only exposed to large 

males (Dukas 2005).  Furthermore, female-female interactions can also affect mating 

behaviour, as seen in mate-choice copying where a female's choice in mate is influenced 

by another female's mate choice (Vakirtzis 2011).  In D. melanogaster, females 

preferentially mate with males who they had observed successfully copulating with 
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another female (Mery et al. 2009).  It is also possible for males and females to have 

opposing selection pressures on mating.  In the cockroach Nauphoeta cinerea (Blattodea: 

Blaberidae), the pheromones that make males more dominant and successful in male-

male competition also make them less attractive to females; the chemicals females prefer 

makes males subordinate (Moore and Moore 1999).  These studies indicate that mating 

behaviour is multifaceted and involves male-male, male-female, and female-female 

interactions. 

Competitive male mating encounters are complex, and involve male-male, male-female 

and female-female interactions. Due to this complexity, studies examining mating 

success of males are often indirect and use proxies such as male size (Pitnick and García–

González 2002; Friberg and Arnqvist 2003) or pheromone composition (Boake 1985) for 

determining attractiveness to females in a no-choice mating assay (Boake 1985; Pitnick 

and García–González 2002; Friberg and Arnqvist 2003; Head et al. 2005).  These no-

choice assays do not include possible male-male competition, which could play a 

significant role in mating success in the wild.  Fitness is defined as not only the success 

of an individual in reproducing, but also the subsequent reproductive success of the 

offspring that are produced. In studying the adaptive value of mate choice, therefore, it is 

critical to assess both the reproductive output of the individual and the output from their 

sons and daughters (Kokko et al. 2003; Fedorka and Mousseau 2004; Hunt et al. 2004).  

Since examining fitness in a multi-generational study is labour-intensive, especially for 

measures such as lifetime reproductive success that reflect an individual's fitness 

throughout their entire lifetime, these measures are historically rarely done (Pitnick and 

García–González 2002; Friberg and Arnqvist 2003; Hunt et al. 2004).  Several studies 
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have examined the effect of male attractiveness on the number of grandchildren produced 

(Boake 1985; Reynolds and Gross 1992; Fedorka and Mousseau 2004; Head et al. 2005; 

Rundle et al. 2007; Gilbert et al. 2011).  In general these studies found that there is no 

relationship between a male’s attractiveness and the resulting fitness of the offspring 

(Boake 1985; Reynolds and Gross 1992; Head et al. 2005; Rundle et al. 2007).  However, 

the study by Gilbert et al. (2001) did find a positive relationship between male 

attractiveness and number of offspring produced.  In that study, they altered individual 

male attractiveness in order to disconnect the perceived male attractiveness from the 

male's actual fitness (Gilbert et al. 2001).  While these studies advance our understanding 

of the association between male attractiveness and reproductive output, there are some 

limitations to these inferences.  Male attractiveness in these studies was usually measured 

in a no-choice mating assay (Boake 1985; Reynolds and Gross 1992; Head et al. 2005; 

Rundle et al. 2007), and the number of grandchildren was examined in only one sex 

(Reynolds and Gross 1992; Fedorka and Mousseau 2004) or indirectly measured as an 

estimate calculation (Head et al. 2005).   

Here I examine mating success in D. melanogaster in a 'semi-natural' context that allows 

for complex female-female, male-female, and male-male interactions.  I placed males and 

females from ten isofemale lines within a mating arena that allowed for male-male 

competition, learning behaviour, and female choice and scored which individuals 

copulated.  I then compared the male’s mating success to the number of offspring 

produced by each line combination, and the subsequent sons' and daughters' offspring 

production.  I then compared male attractiveness (mating success) with direct fitness 

(offspring production) and indirect fitness (offspring production by sons and daughters).  
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This provides the first study to compare male mating success within a complex social 

environment to multi-generational lifetime reproductive success.  This multi-generational 

study allows for testing of both direct and indirect fitness benefits of male attractiveness.   

4.2 Methods 

4.2.1 Drosophila strains and maintenance 

Ten isofemale lines of D. melanogaster were collected from the wild in Sudbury, 

Ontario, Canada in 2011 by T. Merritt and maintained in the laboratory in 8-dram vials 

with standard cornmeal agar media (Bloomington Drosophila Stock Center, Indiana).  

Flies were reared in a 14:10 light-dark cycle, at 24ºC and approximately 75% relative 

humidity.   

4.2.2 Mating success 

To measure male mating success for the 10 isofemale lines, males and females were 

placed together in a mating arena that allows for male-male, male-female, and female-

female interactions.  Density-controlled vials were set up by crossing 10 females and 15 

males from the focal isofemale line. This ensures that the offspring were of similar size 

since high density can reduce the resulting developmental size, and male size is often 

correlated with fitness and mating success (Partridge et al. 1987a,b).  Virgin males and 

females were collected from the density-controlled vials, separated by sex, and aged 4-6 

days prior to use in mating assays.  Males were colour-coded by their isofemale line 

using coloured nail polish marks on the dorsal side of their thorax approximately 24 

hours prior to when the assays began.  A latin square design was performed for the colour 

code used to identify male line in order to randomize any effects due to the markings.  
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For each focal female line, 10 virgin females (all from the same isofemale line) and 2 

marked males from each isofemale line (20 males total) were placed in a 500 ml jar (for a 

total density of 30 flies).  Mating assays commenced in the morning (9-11 am, which is 

0-3 hours after ‘lights on’) at room temperature (21-23ºC).  Females from isofemale line 

4 were not assayed in this study due experimental difficulties; males from this line were 

still used in the mating arena. The mating arena was observed and mating pairs were 

removed with aspiration.  The mating male's progenitor line was identified by the colour 

on his thorax.  The female and a male from the appropriate line were replaced so that the 

mating arena density remained constant.  The experiment continued until a total of 17-20 

matings occurred (approximately 5-8 hours).  Mating arenas that did not contain at least 

17 mated pairs after ~8 hours were discarded and repeated the next day.  A total of 20 

replicates were performed for each of the 9 focal isofemale female lines, for a total of 

3478 observed matings.   

4.2.3 Statistical analysis 

The data collected here on male mating success is being compared and analyzed with 

previously reported data on the lifetime reproductive success (productivity) of the same 

lines for parental crosses, F1 sons, and F1 daughters (Chapter 3).  Mating success was 

analyzed using a nested Linear Mixed Model (LMM) with female and male lines as 

random factors.  Mating success was also analyzed in three separate Linear Models (LM), 

using productivity of parentals, F1 sons, or F1 daughters as the response variable and the 

corresponding mating success of the cross as the predictor variable in three separate 

regression analyses.  All analyses were performed in R 3.0.3 (2013). 
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4.3 Results 

There were significant male line effects for male mating success (Figure 4.1; χ2
(1) = 

31.451, P < 0.0001): males from some lines consistently achieved a high mating success, 

while males from other lines had a consistently low mating success across the female 

lines that they were assayed with.  For each female line that they were paired with, males 

were ranked based on the percentage of successful matings.  A correlation matrix of male 

mating success ranking for each female isofemale line shows an average correlation value 

of 0.56 (Ranges from 0.18-0.83) across female lines (Figure 4.2), indicating that the 

ranking of male mating success was fairly consistent across female lines and further 

supporting the fact that male mating success was strongly correlated across female lines.  

Regressions of productivity of parentals, F1 sons and F1 daughters on male mating 

success (the proportion of matings the sire line achieved) all showed a negative slope, 

however it was only statistically significant for the productivity of F1 sons (Figure 4.3B; 

R2 = 0.07, d.f. = 88, P = 0.0099), and not the productivity of parentals (Figure 4.3A; R2 = 

0.032, d.f. = 88, P = 0.0874) or F1 daughters (Figure 4.3C; R2 = 0.0054, d.f. = 88, P = 

0.491).  Thus, males that have a high mating success within a competitive arena produce 

fewer offspring, produce daughters that have fewer offspring, and produce sons that have 

significantly fewer offspring. 

4.4 Discussion 

Using a mating assay that allowed for complex social interactions, I showed that 

attractive males did not provide a direct benefit to females.  In fact, there was a negative 

correlation (although not significant) which showed that males that are more successful at  
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Figure 4.1 Percent of males that mated in a mating arena for each isofemale line.  

Percents are shown as stacked. 
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Figure 4.2 Comparison of mate preferences among females. The correlation matrix 

compares average male mating success percentages across the isofemale lines. Female 

lines that have identical mate preferences are shown in blue, while those that have 

dissimilar preferences are shown in orange, with scaled colours in between. 
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Figure 4.3 Regression of (A) parental 

productivity, (B) productivity of F1 sons, 

and (C) productivity of F1 daughters on 

percent mating success.  Productivity was 

assessed using females continually housed 

with males, allowing for remating.  

Dashed lines represent 95% CI. 
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mating have a lower productivity.  This may be because high mating success can come at 

a high cost, causing a trade-off between mating success and fitness or survival, resulting 

in an antagonistic relationship (Kokko 2001).  For example, a higher level of mating 

frequency can decrease the lifespan of males (Partridge and Farquhar 1983), and females 

mated to more attractive males suffer a reduced longevity and increased mortality (Rice 

1998; Taylor et al. 2008).  Similar to these results, several studies have shown a negative 

correlation between male mating success and productivity: females who mated with 

larger males, used as a proxy for attractiveness, had a lower fecundity and egg-adult 

survival as a result of reduced lifespan (Pitnick and García–González 2002; Friberg and 

Arnqvist 2003).  Similarly, female house crickets, Acheta domesticus (Orthoptera: 

Gryllidae), who mate with more attractive males suffer a direct cost of survival (Head et 

al. 2005).  These results show a sexually antagonistic relationship between  mating 

success at the cost of direct fitness for females.  Antagonistic coevolution of female mate 

choice and/or mating in general can cause a reduced direct fitness in females, and thus it 

is possible that the more attractive males in this study infer a greater cost of mating to 

females.  Rice (1998) suggests that these more attractive males had an increased seminal 

fluid toxicity, a pleiotropic effect, causing the females that mated with them to suffer a 

greater direct fitness cost.  Similarly, the males that are more successful at mating in this 

study could have a lower productivity due to an increased mortality rate inferred on 

females, which was not measured in this study.  Taylor et al. (1987) attempted to 

correlate male mating success in D. melanogaster with various fitness traits.  Male 

mating success did not correlate with male survival rate or developmental time, but did 
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significantly correlate with offspring fitness in competitiveness, indicating an indirect 

benefit for females that mate with an attractive male (Taylor et al. 1987). 

In non-resource based mating systems, such as in D. melanogaster, females are thought 

to remain choosy to acquire an indirect benefit in the form of increased fitness in their 

offspring.  However, these results show that males that achieve the most matings in a 

competitive environment do not provide females with indirect benefits: attractive males 

do not produce higher quality offspring as daughters are not more fecund and sons 

produce fewer offspring.  This was surprising as the mating arena had high potential for 

female choice.  Why would females prefer males that confer lower fecundity?  My 

measurement of mating success does not necessarily reflect female preference, as the end 

act of copulation could arise due to other factors.  Forced copulations are extremely rare 

in this species (reviewed in Spieth 1974; O’Dell 2003)  but it is possible that females 

were only courted by the males that were most aggressive in chasing off competitor 

males, and thus the male-male interactions, rather than female preference, drives this 

outcome.  If so, this indicates a strong sexual antagonism in mating, where males who are 

more successful at mating are not those that confer the highest fitness to females. 

Although there are many studies that examined male attractiveness and its indirect fitness 

benefit to offspring, these studies did not include generational measurements of lifetime 

reproductive success (i.e., number of grandchildren) (Brooks 2000; Friberg and Arnqvist 

2003).  Of the few studies that measured the number of grandchildren produced, the 

majority found no significant effect of male attractiveness on the production of 

grandchildren.  Both attractive and unattractive males produced the same number of 

grandchildren by F1 sons or F1 daughters of the house cricket, Acheta domesticus (Head 
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et al. 2005).  However, in this study, male attractiveness was measured indirectly by the 

latency of mounting by females in a no-choice mating assay.  Similarly, there was no 

significant correlation between attractive males and the number of progeny produced by 

F1 males or F1 females in the red flour beetle, Tribolium castaneum (Coleoptera: 

Tenebrionidae) (Boake 1985).  In that study, male attractiveness was indirectly measured 

using a two-choice pitfall trap apparatus where females were presented with pheromones 

from a focal male and a blank control.  In the guppy, Poecilia reticulata 

(Cyprinodontiformes: Poeciliidae), male attractiveness was scored as a measure of female 

preference, the amount of orienting and gliding displays performed towards the male, 

when they were presented with a single focal male (Reynolds and Gross 1992).  As with 

the cricket and flour beetle studies, male attractiveness in the guppy did not affect 

offspring (daughters, in this case) fecundity.   

However, there is one study that reported a significant effect of male attractiveness on 

offspring fecundity. In another species of cricket, Allonemobius socius (Orthoptera: 

Gryllidae), there was a significant negative correlation between male attractiveness and 

daughters' fecundity (Fedorka and Mousseau 2004).  In this study, male attractiveness 

was measured in a two-choice mating assay, allowing for a single male competitor.  

Thus, the primary similarity between this study and my own, which both found a negative 

correlation between male attractiveness and offspring fecundity, was an assessment of 

male mating success that allowed for female choice and male-male interactions.  This 

significant negative correlation demonstrates the importance male-male competition in 

determining male mating success, and the cost that this success has on the quality of the 

resulting offspring   
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A significant negative correlation between male mating success and the lifetime 

reproductive success of F1 sons can potentially be explained by the sexy sons hypothesis. 

Males that are more successful at mating can persist in spite of a cost of lower 

productivity if they produce sons that are also attractive (Weatherhead and Robertson 

1979; Brooks 2000).  Mothers that mate with attractive males can compensate for the 

initial loss of productivity by producing sons that have a higher mating success, 

producing an overall greater number of grandchildren (Kokko et al. 2002).  While very 

few studies have examined the relationship between male mating success and the mating 

success of their sons, and this was not measured in this study, the heritability of male 

attractiveness has been demonstrated in other species.  In Drosophila simulans,  cuticular 

hydrocarbons (CHCs) protect from desiccation and act as pheromones, and are reflective 

of male attractiveness.  The CHC profile is heritable across varying temperatures and 

diet; sire attractiveness (measured as CHCs) can accurately predict attractiveness of sons 

even in environmental heterogeneity (Ingleby et al. 2013). In Gryllus bimaculatus 

(Orthoptera: Gryllidae), attractive males produced sons that were more successful in 

mating, but these sons suffer the cost of an increased developmental time, indicating a 

trade-off between mating success and fitness (Wedell and Tregenza 1999).  Attractive 

males of house crickets, Acheta domesticus (Orthoptera: Gryllidae), produce sons who 

are more attractive, but females who mated with attractive males suffered a direct fitness 

cost of reduced survival (Head et al. 2005). 

 Furthermore, evidence of sexual conflict was not found as there was a negative 

correlation between male attractiveness and the lifetime reproductive success of both 

sons and daughters.  This result is counter to a previously reported study that examined 
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male attractiveness in crickets, A.  socius.  These authors found that attractive males 

produced sexy sons, but had daughters with reduced fecundity, indicating the presence of 

sexual conflict (Fedorka and Mousseau 2004). However, this result is consistent with 

previous data in D. melanogaster that showed no sexual conflict when comparing 

parental productivity to the productivity of F1 sons and F1 daughters (Chapter 3).  For 

both sexes, there was a significant positive correlation, indicating that individuals with a 

high lifetime reproductive success produced sons and daughters with a high lifetime 

reproductive success.  These results thus show when females mate with males that have a 

high mating success, females suffer from both direct and indirect fitness cost.  Females 

who mate with attractive males have a lower lifetime reproductive success and produce 

sons and daughters with a lower lifetime reproductive success.   
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Chapter 5 

5 The first male's seminal proteins contribute to the 
second male advantage 

Polyandrous females allow for sexual selection to persist after mating.  In the event that 

females successfully mate with more than one male, sperm competition can occur.  One 

outcome of this competition is the common phenomenon of second male advantage, 

whereby the second male to mate sires the majority of offspring.  In response to sexual 

selection, males have evolved strategies that reduce postcopulatory competition.  Male 

ejaculates consist of both sperm and seminal fluid.  Accessory gland proteins (Acps) 

found in seminal fluid play a significant role in sexual selection as they can both alter the 

behaviour of females and directly influence sperm competition.  Acps provided by the 

second mated male can incapacitate and displace residing sperm.  However, not much is 

known about the role the ejaculate of first mated males plays in sperm competition.  Here 

I show that Acps provided by first mated males, in absence of first males' sperm, 

contribute to second male advantage by increasing the lifetime reproductive success 

(productivity) of second mated males.  These competing Acps provide a "protective 

effect," where the Acps from the first mated male protects the sperm from the second 

mated male, increasing its longevity and extending the female's egg laying duration.   

5.1 Introduction 

Successful reproduction is a primary component of fitness: selection favours both males 

and females that have maximized their reproductive success.  Females are polyandrous, 

which allows selection to persist after mating.   In many species, this selection acts after 

copulation but prior to fertilization (postcopulatory prezygotic selection).  Some 
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organisms can exhibit cryptic female choice during this time, whereby females bias the 

paternity of their offspring to a particular male (Eberhard 1996).  Sperm competition 

between males can occur when there are ejaculates from two or more males within the 

female reproductive tract (Parker 1970).  Males can evolve strategies to try and reduce 

the exposure to sperm competition that include mate-guarding, insertion of a copulatory 

plug, prolonged copulation after insemination, and mechanical removal of residing sperm 

(Parker 1970, 1984; Waage 1979; Alcock 1994).  However, in the event that sperm 

competition occurs, it can drive the evolution of sperm number and size (Parker 1993).   

There is a growing body of evidence that suggest sperm are costly to produce (Pitnick 

and Markow 1994; Pitnick et al. 1995; Snook 2005), and sperm competition can 

sometimes result in different sperm phenotypes to offset this cost.  White butterfly Pieris 

napi (Lepidoptera: Pieridae) males use a non-fertile enucleated 'apyrene' sperm to delay 

the female's remating by filling her sperm storage organ with sperm that are less costly to 

produce (Cook and Wedell 1999). In many ways, males must balance resources between 

surviving and acquiring mates, as well as being successful in fertilization and sperm 

competition (Parker 1990).  Males benefit if they can strategically allocate resources to 

sperm production, altering their ejaculates in the presence of competition.  For example, 

males of the dung fly Sepsis cynipsea (Diptera: Sepsidae) can increase their ejaculate 

transfer size in the presence of competition (Martin and Hosken 2002).  The fair raffle 

theory suggests that sperm from two competing males are equal and have an equal chance 

of being used for fertilization (Parker et al. 1990).  In this instance, males would have a 

reproductive advantage by simply increasing their ejaculate size and sperm number.  In 

contrast, the loaded raffle suggests that sperm from different males are not equal and 
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therefore, some have a better probability of being used for fertilization than others 

(Parker et al. 1990).  Males not only have to allocate their resources to ejaculate size and 

sperm number, but sperm quality is also of significance as it can influence fertilization 

efficiency (Pattarini et al. 2006).  Sperm quality consists of traits such as velocity, 

viability, longevity and size (reviewed in Snook 2005).  Of the two sexes, postcopulatory 

sexual selection generally has a greater impact on a male's fitness, as not only do they 

have to compete for mating events, but also have to compete after mating for fertilization.   

Species with internal fertilization have varying mechanisms of sperm competition.  Males 

of most species with internal fertilization transfer both sperm and proteins in the seminal 

fluid.  Sperm competition is usually intense in insects, where females of many species 

have a sperm storage organ, allowing for overlap of ejaculates from multiple males 

(Lefevre and Jonsson 1962).  Unlike mammals, whose sperm survive 5-6 days, and birds 

who have a 12-13 day sperm survival time, sperm in insects can survive up to several 

years (Parker 1984).  In Drosophila melanogaster, a species whose ejaculate has been 

extensively studied, males transfer at least 112 different proteins (called accessory gland 

proteins, or Acps) (Ram and Wolfner 2007), of which a few are characterized.  One of 

the first identified and most well characterized Acps is known as sex peptide (SP, 

encoded by the gene Acp70A). When SP is injected into a female it reduces her 

receptivity to remating and increases egg laying behaviour (Chen et al. 1988).  This is 

beneficial to a male as it decreases the opportunity for sperm competition and increases 

his rate of fertilization.  Similarly, Acp26Aa also increases ovulation (Herndon and 

Wolfner 1995).  These behavioural changes can have detrimental effects to females.  

Females mated to Acp-producing spermless males have a decreased lifespan similar to 
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that caused by mating to males that transfer both sperm and Acps (Chapman et al. 1993), 

indicating that the harmful effects of mating for females are not a result of stored sperm, 

but rather seminal fluid. While the co-evolution of male and female reproductive proteins 

can be antagonistic, there is also evidence that some male and female reproductive 

proteins have evolved to interact cooperatively (LaFlamme et al. 2014).   Additionally, 

Acps are involved in efficient sperm transfer and are required for sperm storage.  Mutant 

males that produced a reduced amount of Acps transferred more variable amounts of 

sperm and had a reduced number of sperm stored within the female's sperm storage 

organs (Tram and Wolfner 1999).  In the presence of perceived competition, males can 

vary the amount of Acps transferred, increasing the amount of sex peptide and ovulin  

(Wigby et al. 2009).       

A well known phenomenon that occurs in many species involving sperm competition is 

the 'second male advantage,' where the second male to mate fertilizes the majority of 

offspring.  Several mechanisms of second male advantage have been identified, and Acps 

are thought to play a critical role.  Studies focused on sperm competition most often 

examine the effects of the second male to mate (offensive traits).  For this male, Acps can 

physically displace residing sperm stored by females (Harshman and Prout 1994), and 

can act to incapacitate any remaining sperm and thus prevent their use in fertilization 

(Price et al. 1999).  Several Acps have been associated with offensive traits responsible 

for second male advantage and P2 values ( Acp29AB, Acp33A, CG17331, Acp26Aa, 

CG6168, Acp62F; Fiumera et al. 2005, 2007).  For the first male that mates (defensive 

traits) a partially overlapping suite of Acp proteins are significantly correlated with the 

ability for sperm to resist being physically displaced ( CG8137, CG6168, Acp33A, 
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Acp26Aa/Ab, Acp29B, Acp36DE and Acp53E; Clark et al. 1995; Fiumera et al. 2005).  

These Acps can have pleiotropic effects, as they can be seen to be associated with both a 

male's offspring production when he is the first male to mate (P1) and when he is the 

second male to mate (P2).  Aside from the physical resistance to displacement, very little 

is known about the role that the first mated male's Acps have on sperm competition.  

Here, I test the effects of Acps from the first mated male on sperm competition via their 

effect on the productivity of the second male to mate. Surprisingly, I found that Acps 

from the first male have a protective effect on the second male's sperm, and thus 

contribute to the second male advantage.   

5.2 Methods 

5.2.1 Drosophila strains and maintenance 

Ten isofemale lines were provided by T. Merritt, who started them from individual 

females collected in Sudbury, Ontario Canada in 2011.  Isofemale lines were maintained 

on standard cornmeal agar in 8-dram vials at 24ºC, 75% RH and a 14 h light: 10 h dark 

cycle.   

In order to assign paternity in the P2 assays (below), th1
 st

1
 cp

1
 in

1
 kni 

ri-1
 p 

p stock line 

was used to cross in a homozygous recessive phenotypic marker, knirps (kni), into all ten 

isofemale lines.  The kni mutation is a 252 bp deletion located at 

3L:20,700,201...20,700,452 that results in a shortened L2 wing vein phenotype when 

homozygous (Lunde et al. 2003)  The kni line was first crossed to each isofemale line, 

then backcrossed to each isofemale line for five generations in order to retain most of the 

isofemale line genome, selecting each generation for individuals bearing the recessive kni 
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mutation. Genotyping was performed to identify individuals harboring kni by using 

forward 5' GCTGGCCTTTGCCTTTTAG and reverse 5' 

AATGATGAGGCGATGGATGT primers flanking the deletion and a touchdown PCR at 

1 cycle 95º 5', 3 cycles 94º 1' / 58º 30" / 72 º  1', 3 cycles 94º 1' / 55º 30" / 72º 1', 30 

cycles 94º 1' / 52º 30" / 72º 1', 1 cycle 72º 10'. 

5.2.2 Sperm competition assays 

Ten isofemale lines of D. melanogaster were used in this study (Nguyen and Moehring, 

in press).  Rearing methods are described in Nguyen and Moehring (in press).  Individual 

virgin males and females were collected from density-controlled vials to control for size 

(as in Chapter 4) and aged 4-6 days.  A total of 47 isofemale line combinations of mating 

pairs were used in this study (as in Nguyen and Moehring, in press: Figure 1).  There 

were a total of three treatments: 1) productivity after a single mating (without 

competition) (data used from Nguyen and Moehring, in press), 2) productivity in a 

double mating with an initial male that produces both Acps and sperm (Acps + sperm), 

followed by a wild type male and 3) productivity in a double mating with an initial male 

that produces Acps but no sperm (only Acps), followed by a wild type male. 

For the control treatment (without competition), a single mating pair was placed in an 8-

dram vial containing standard cornmeal agar media (Bloomington Drosophila Stock 

Center, Indiana) and observed until mating occurred, or approximately 4 hours passed, at 

which point the vial was discarded if mating had not occurred.  After mating occurred, 

males were removed and females were allowed to oviposit.  Females were transferred 

into a new vial every seven days and the number of offspring eclosing from each vial was 

scored daily (as in Nguyen and Moehring, in press) .  Experiment continued until a 
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female no longer produced fertile eggs or the female died.  A total of 20 replicates for 

each isofemale line combination was performed.  

The second treatment with competition serves as a second control (the first male has 

Acps + sperm).  Males from isofemale line mating combinations were tested in both 

mating orders with an alternating recessive marker against another male from a different 

line: (1) focal malekni, second male, (2) focal male, second malekni, (3) first malekni, focal 

male and (4) first male, focal malekni.  Females used contained the homozygous kni 

phenotypic marker.  Mating assays were performed in the same manner  described above.  

The total number of offspring from the first male to mate (P1) and the second male to 

mate was counted (P2).  Ten replicates for each of the 4 orders were performed for a total 

of 40 replicates for each of the 47 isofemale line combinations.  Females were initially 

mated to a first male and remated to a second male after 24 hours.  Females who did not 

remate were allowed to remate again the following day.  Females who did not remate in 

24-48 hours after initial mating were discarded.  Mating was scored in a no choice mating 

assay where males were removed immediately after mating was completed.  The total 

number of offspring produced was scored in a similar manner as Nguyen and Moehring, 

(in press), with offspring paternity assigned based on the presence / absence of the kni 

phenotype.  Only offspring produced after the second male mated were scored and 

counted. 

In the third treatment considered the experimental treatment with competition (the first 

male has only Acps), females were initially mated to sons of tudor mothers; these sons 

are standard sterile males that produce Acps but no sperm (Boswell and Mahowald 1985; 

Chapman et al. 1993).  These sterile males were obtained by crossing stock genotypes 
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mutant females.  Homozygous tudor mothers were mated to a male from a separate but 

similar isofemale line that was not one of the ten isofemale lines used in this study.  

Spermless male offspring of homozygous tudor mothers were collected and aged 4-6 

days.  Females and males were paired in a mating assay as above.  After successful 

copulation, spermless males were aspirated and removed, and mated females remained 

housed with food singly in the vial.  After females were initially mated to sons of tudor 

mothers, females were mated secondly to isofemale line males approximately 24 hours 

later.  Females who did not remate were placed again in a mating assay 48 hours after the 

initial mating.  Females who did not remate in the 24-48 hour window were discarded.  

The number of offspring produced (productivity) was scored in a similar manner as 

above (and as in Nguyen and Moehring, in press)  since the first male was sterile, all 

offspring that were produced were sired by the second male. 

5.2.3 Statistical analysis 

A Linear Mixed Model (LMM) was performed to determine the components that affect 

sperm  competition.  Lifetime reproductive success (productivity) was used as the 

response variable while the female and male lines were used as random factors and 

treatment as a fixed factor.  Treatment factor consists of the control (without competition) 

or the experimental competition treatment where females were initially mated to a 

spermless, Acp-producing male.  A three way interaction of female line - male line - 

treatment was used as the predictor variable, including their lower order components, in 

the full model.  Predictor variables that were not significant from the log likelihood test 
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were removed in the reduced model unless they were significant in a higher order 

interaction.   

An analysis of variance (ANOVA)  with a post hoc Bonferroni correction was performed 

to compare the lifetime reproductive success (productivity) of all three treatments: 

control treatment (without competition), competition (the first male has sperm + Acps), 

and experimental treatment (competition with spermless, Acp-producing males).  A t-test 

was also performed in the treatment with competition (involving both sperm and Acps) to 

compare the number of offspring sired by the second male and the number of offspring 

sired by the first male.  

A Linear Model (LM) was used to perform a linear regression of productivity when in 

competition (competition with spermless, Acp-producing males) regressed on 

productivity when not in competition.  LM was also used to regress the increase in 

productivity due to competition on productivity without competition.  All analyses were 

performed in R 3.0.3 (2013).  

5.3 Results 

The three way interaction of female line - male line - and treatment was not a significant 

predictor of productivity (Table 5.1; χ2
(1) = 0, P = 1).  However, both two way 

interactions of female line * treatment, and male line * treatment were significant (Table 

5.1: χ2
(1) = 10.093, P = 0.0014 and χ2

(1) = 7.185, P < = 0.0073 respectively). 

Regression of productivity with competition (competition with spermless, Acp-producing 

males) on productivity without competition was statistically significant (Figure 5.1; R2 =  
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Table 5.1 Treatment and line effects, determined by a Linear Mixed Model regression.  

Treatment is either the control (without competition) or the experimental competition 

treatment where females were initially mated to a spermless, Acp-producing male.    

 

Variance component χ
2 

(1) P-value 

Female line * Male line * Treatment 0 1 

Male line * Treatment 7.185 0.0073 

Female line * Treatment 10.093 0.0014 

Female line * Male line 0.329 0.5657 

Male line 5.095 0.0239 

Female line 5.303 0.0212 

Treatment 1.761 0.1844 
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Figure 5.1 Regression of each isofemale line combination's productivity when in 

competition (competition with spermless, Acp-producing males) on productivity without 

competition (control).  Dashed lines represent 95% CI.   
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0.375, d.f. = 45, P < 0.0001).  Regression of the increase in productivity due to the 

presence of competition (the difference between productivity with and without 

competition) on productivity without competition was not statistically significant 

(Supplementary Figure B.3; R2 = 0.036, d.f. = 45, P = 0.196).  As expected, second male 

sperm precedence was confirmed in D. melanogaster isofemale lines.  The second male 

to mate fathered the majority of the offspring (P2 = 0.76) when females were doubly 

mated to wildtype males that had both sperm and Acps (Figure 5.2; t = -38.035, d.f. = 

2001, P < 0.0001).  There was a significant difference between treatment of control 

treatment (without competition), the experimental competition treatment (the first male 

has only Acps), and the competition treatment (the first male has both sperm + Acps) 

(Figure 5.2; F = 51.247, d.f. = 2, 3063, P < 0.0001).  Unexpectedly, the females from the 

experimental competition treatment (the first male has only Acps) produced more 

offspring than the control treatment (without competition) (Figure 5.2; P < 0.0001).  

Similarly, females from the competition treatment (the first male has both sperm + Acps) 

produced more offspring than the experimental competition treatment (the first male has 

only Acps) (Figure 5.2; P < 0.0001).  Females from the competition treatment (the first 

male has both sperm + Acps) also produce more offspring than females from the control 

treatment (without competition) (Figure 5.2; P < 0.0001).  The average total number of 

offspring produced from the control treatment (without competition) is 131.98 ± 1.93 

(mean ± SE), experimental competition treatment (the first male has only Acps) is 143.06 

± 2.06 and when females were doubly mated to wildtype males that had both Acps and 

sperm is 152.88 ± 1.75.  Therefore, adding another set of Acps has a greater effect on 

increasing the female's productivity (a 9% increase) than the effect due to sperm itself  



108 

 

 

Figure 5.2 Number of offspring produced from the first male (white) and the second 

male (black) when a female is mated with a single male (without competition), mated 

first to a mutant (MT tud) male producing only Acps, or mated first to a wildtype (WT) 

male producing Acps and sperm.  P2 represents the proportion of offspring sired by the 

second male. Error bars represent 95% CI. 
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(adding sperm and Acps increases the productivity by another 7%; this increase is the 

sperm effect).  To examine why there was increased productivity in the presence of 

additional Acps, the daily eclosion for the control (without competition) was compared to 

the experimental treatment (competition where the first male has only Acps) (Figure 

5.3A; Supplementary Table B.1).   

5.4 Discussion 

I found that males that mated in competition with spermless, Acp-producing males had a 

greater fitness (higher productivity) than when they were the only male to mate with a 

female (Figure 5.2).  In other words, males sired more offspring when mated to a female 

that already contains Acps (but no sperm) from a previous male.  To explain how 

secondly mated males can have a higher productivity in the presence of competing Acps, 

I offer three possible mechanisms that could occur.  Scenario 1 (Figure 5.3B) I consider 

an "additive effect", where the increased concentration of Acps increases the female's egg 

laying rate throughout her reproductive life.  Scenario 2 (Figure 5.3C) would result if a 

"priming effect" occurred.  The Acps from the initial male would increase the female's 

egg-laying rate, causing it to be at a higher standing level at the time she mates with the 

second male, increasing his initial productivity.  A "protective effect" would result in 

scenario 3 (Figure 5.3D) where the Acps from the first male protects the sperm from the 

second mated male, increasing its longevity and extending the female's egg laying 

duration.  A comparison of daily eclosion between the control (without competition) and 

experimental treatment (competition with spermless, Acp-producing males) (Figure 

5.3A), shows that the third scenario of Acp protection is most probable.  Therefore, 

secondly mated males have a higher productivity in the presence of residing competing 
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Figure 5.3 Daily eclosion rates of offspring. (A) The control treatment (green; females mated to one male; N=862 females) compared 

to the experimental treatment (blue; females first mated to a sterile male that produces only Acps; N=932 females).  Error bars 

represent 95% CI.  Vertical asterisks indicate significant differences between the two groups via a t-test: * P<0.05, ** P<0.01, *** 

P<0.001, **** P<0.0001; the grey asterisks indicate a significant effect in the opposite direction (controls with higher eclosion rate 

than treatment groups). Three possible mechanisms that could benefit the second  mated male:  (A) additive effect, (B) priming effect, 

(C) protective effect (see Discussion). 
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Acps due to an extension of the time that offspring are produced. This is most likely due 

to the competing Acps increasing the survival of the second male's sperm, allowing 

thefemale to continue laying fertilized eggs, and increasing total productivity by about 

9%.  This is possible if some Acps have a generally protective effect that is not male 

specific -- that is, if their function does not act specifically to benefit the male they came 

from.  This type of across-male benefit has previously been shown for sterile Acp-less 

males (who produce sperm but no Acps), whose fertility is partially restored if a female 

first mates with a male that provides Acps (Xue and Noll 2000). However, this benefit 

was previously thought to only apply to the severe case of sterile Acp-less males, who 

gain minimal fertility from the presence of a competitor's Acps, a benefit that presumably 

would not apply to males with functioning Acps of their own. Here, I show that this is not 

the case, and an intact male benefits from having a competitor's Acps present.  

I found no significant three-way interaction of female line, male line, and treatment 

effects in the LMM, indicating that male success (productivity) does not depend on the 

genotype of the female that he mates with.  Instead, significant male line and treatment 

interaction effects indicate that certain male genotypes perform better than others when in 

sperm competition (competition with spermless, Acp-producing males).  This 

performance in the presence of competition has a strong positive association with how 

males perform without competition (Figure 5.1).  Additionally, the increase in 

productivity due to the presence of additional Acps equally affects low-producing and 

high-producing males (Supplementary Figure B.3).  This indicates that the increase in 

average offspring production due to the presence of additional Acps is not merely due to 

a 'rescue' of the productivity of poorly-performing males (that may have less effective 
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Acps).  Instead, males that perform poorly when singly mated perform slightly better in 

the presence of additional Acps, and males who perform well also have a slight increase 

in offspring production.    

One possible explanation for the results is simply that second male advantage is a result 

of males preferentially allocating their resources to increase ejaculate size.  Drosophila 

melanogaster males transfer 15% more sperm to mated females (835 ± 29) than virgin 

females (728 ± 31) (Lüpold et al. 2010).  Drosophila melanogaster males are able to 

assess the mating status of females due to changes in her cuticular hydrocarbon profile 

after mating (Everaerts et al. 2010).  However, this is very unlikely to explain the 

"protective effects" observed for the first male's Acps.  Drosophila melanogaster females 

store only about 1/5 of the sperm that males transfer (Lefevre and Jonsson 1962) and a 

maximum of ~530 sperm can reside in the sperm storage organs (Manier et al. 2010).  

Thus, the increased transfer of sperm to a mated female does not have a corresponding 

increase in sperm storage. Therefore, the increased productivity of second males in the 

presence of competing Acps is unlikely to be due to female's initial exposure to more 

sperm from that male.  An ideal test of this hypothesis would involve repeating these 

experiments by first mating females to males that do not produce Acps or sperm, but are 

otherwise wildtype.  Unfortunately, all available mutations of this type have some leaky 

expression of Acps, precluding this test (M. Wolfner, pers. comm.). 

These finding appears to contradict previous findings that have demonstrated that Acps 

are harmful for a competitor's sperm.  Remated females store less sperm from the first 

mated male in their sperm storage organs compared to singly mated females (Price et al. 

1999).  The increase of second male sperm in the sperm storage organs occurs 
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simultaneously as the first male's residing sperm decreases; the second male's sperm is 

thought to physically displace the residing first male's sperm (Manier et al. 2010).   

Additionally, the presence of the residing first male's sperm can be seen in the bursa (the 

female organ where male ejaculates are initially expelled into) during the second mating, 

either before sperm transfer or after sperm transfer but before sperm storage (Manier et 

al. 2010).  This leads the authors to conclude that either the mechanical act of copulation 

itself or the second male's Acps can trigger the female to eject the residing first male's 

sperm (Manier et al. 2010).  Acps from the second male are also reported to be capable of 

incapacitating the residing first male's sperm.  When females were initially mated to a 

wildtype male and remated to a spermless, Acp-producing mutant male (the opposite 

mating order to what I report here), females produced a lower number of offspring than 

when they were singly mated to the wildtype male (Harshman and Prout 1994; Price et al. 

1999).   This loss of productivity is not a result of sperm availability as there was no 

significant difference in the number of sperm stored in the sperm storage organs.  Since 

first male sperm numbers do not decrease when the second male only deposit Acps, but 

do decrease when he deposits sperm and Acps (Manier et al. 2010), this is further support 

that the first male's sperm is physically displaced by the second male's sperm, rather than 

Acps.  Therefore, the second mated male's sperm physically displaces the first male's 

sperm, and second male's Acps incapacitate the remaining residing first male's sperm.  

These mechanisms reveal the offensive traits of the second male and how they contribute 

to second male advantage.  These offensive mechanisms (Figure 5.4; shown in red) are 

harmful to the first male.   



 

 

 

 

 

 

 

 

 

 

 

 

  

 

Displacement 
(Price et al. 1999; 
Manier et al. 2010)  

Sperm dumping  
(Manier et al. 2010) 

Incapacitation    
(Price et al. 1999) 

Figure 5.4 Mechanisms underlying sperm competition and 

Arrow heads represent the target male, arrow ends represent the component re

for the mechanism.  Red arrows represent harmful mechanisms, green arrows represent 

beneficial mechanisms.   

Protective

Mechanisms underlying sperm competition and second male advantage.  

Arrow heads represent the target male, arrow ends represent the component re

Red arrows represent harmful mechanisms, green arrows represent 
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second male advantage.  

Arrow heads represent the target male, arrow ends represent the component responsible 

Red arrows represent harmful mechanisms, green arrows represent 
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It should be noted however, that while some studies have found instances of sperm 

incapacitation (Harshman and Prout 1994; Price et al. 1999), others have not detected this 

phenomenon (Snook and Hosken 2004; Manier et al. 2010).  Snook and Hosken (2004) 

argued that the incapacitation phenomonon could be better explained by sperm death 

caused by aging, sperm-storage effects, or that the effect is female mediated. They 

measured the proportion of dead sperm found in the seminal receptacle of females and 

found no significant difference in the proportion of dead sperm between singly mated 

females and females remated to spermless Acps producing males, indicating that 

competing seminal fluid had no effect on resident sperm death (Snook and Hosken 2004).  

However, this finding does not eliminate the possibility of sperm incapacitation through 

mechanisms that do not cause death, such as through reducing competitor sperm motility. 

Here I present for the first time an effect of the first mated male's ejaculate acting on the 

second male's ejaculate. In this scenario, the Acps from the first male are beneficial to his 

competitor (Figure 5.4; shown in green) by a protective mechanism that increases the 

longevity of their sperm survival.  Why are Acps protective when provided by the first 

male, but detrimental when provided by the second male?  One option is that the males 

tailor their ejaculates to contain harmful proteins only when they know that a female has 

previously mated.  While this is possible, I think that a more likely explanation is that the 

age of the ejaculate impacts the effectiveness of any harmful components.  When a 

second male deposits his ejaculate, the first male's sperm immediately comes into contact 

with it, and any harmful components can be at full efficacy.  In contrast, the first male's 

ejaculate was at least one day old before the second male mated, and it is likely that some 

harmful proteins within the ejaculate lost their potency in this time, and only the 
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protective proteins remain.  Regardless of the mechanism, this beneficial protective 

mechanism by the first mated male further contributes to and reinforces the second male 

advantage.   
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Chapter 6 

6 Assessing male quality in precopulatory and 
postcopulatory sexual selection 

Although males and females have different reproductive strategies to increase their 

reproductive success, the variation in reproductive success is usually larger for males 

than it is for females.  Not only do males have to compete for matings, but they also have 

to compete after mating for fertilization.  Due to intense competition, males have evolved 

reproductive strategies to increase their reproductive success.  To assess male 

reproductive strategies, I used 10 isofemale lines of Drosophila melanogaster to 

determine male quality based on five fitness measures: (1) productivity, (2) productivity 

of F1 sons, (3) productivity of F1 daughters, (4) mating success in competition, and (5) 

combined fitness traits.  I then measured high quality and low quality male performance 

in both pre- and postcopulatory sexual selection.  The most consistent results across 

treatments are for males ranked using a combined fitness measure (fitness measure 5), 

emphasizing the importance of using a composite measurement in determining fitness.  

High quality males were not more successful at acquiring matings as females did not 

accept high quality male courtship more readily.  However, high quality males courted 

earlier and more often than low quality males and copulated for a longer period of time.  

High quality males also outcompeted low quality males in sperm competition, whether 

they were competing with Acps (Accessory gland proteins) alone or with sperm and 

Acps. 
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6.1 Introduction 

Sexual selection is a branch of natural selection that explains evolution through 

differential reproductive success.  The first barrier of sexual selection is being able to 

successfully acquire mates.  The conventional view of sexual selection involves female 

mate choice, and males have evolved reproductive strategies that increase their chances 

of reproductive success through either increasing the likelihood of being chosen by the 

female or by circumventing her ability to choose.  For instance, to increase their chances 

of being chosen by a female, males can provide direct benefits to females.  Direct 

benefits increase the direct fitness of the female, such as through increased paternal care 

(reducing the cost of parental care for the female), enhanced fertility and fecundity, and 

better quality of resources through territory or nuptial gifts (Moller and Jennions 2001; 

Wagner et al. 2001; Wedell and Ritchie 2004).  While males usually provide direct 

benefits to females in resource-based mating systems, these benefits may also be present 

in non-resource-based mating systems.  For example, there is significant variation in 

lifetime reproductive success for female Drosophila melanogaster due to male line 

effects (Nguyen and Moehring, in press), indicating that females in this non-resource-

based mating system could potentially gain direct benefits in increased fecundity through 

mate choice. 

While it is known that males are usually less discriminating in mating than females, the 

occurrence of adaptive male mate choice is plausible since there is mounting evidence 

that mating is also costly for males (Pitnick and Markow 1994; Pitnick et al. 1995; Snook 

2005).  In the fruit fly, D. melanogaster males preferentially mate and remate with larger 

females, where size is positively correlated with fecundity (Byrne and Rice 2006).  This 
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preference was intensified in resource-depleted males, where the cost of mating for males 

was higher (Byrne and Rice 2006).  Not only are males interested in obtaining high 

quality mates, but they can also alter their copulation behaviour to increase their 

fertilization success.  Drosophila melanogaster males copulate with females longer when 

males perceive them to be non-virgin and therefore a high sperm competition risk 

(Friberg 2006).  This longer copulation duration reduced the female's remating frequency 

and increased the male's fitness by siring more offspring (Friberg 2006).       

Males can also possess traits that are indirectly linked to fitness benefits for offspring.  

For example, in D. melanogaster, male body size is an important indicator of fitness and 

also a predictor of mating success (Partridge and Farquhar 1983).  It is possible for this 

male phenotype (size) to be correlated with indirect benefits if this increased size is 

inherited by the offspring.  In the collared flycatcher Ficedula albicollis (Passeriformes: 

Muscicapidae), males with a larger white forehead patch, a secondary sexually selected 

trait, produce offspring of better condition (Sheldon et al. 1997).  Genetic models of 

indirect fitness benefits include good genes obtained through additive genetic variation 

and compatible genes through non-additive genetic variation (Neff and Pitcher 2005).  In 

the spotted cucumber beetle, Diabrotica undecimpunctata howardi (Coleoptera: 

Chrysomelidae), fast-stroking males, who stroke females using their antennae, are more 

successful at transferring sperm than slow-stroking males (Tallamy et al. 2003).  These 

males provide indirect good gene benefits by producing sons who are also fast-stroking, 

and therefore more successful at acquiring mates and gaining fertilizations.  Direct and 

indirect benefits can occur simultaneously in a given mating system.  For example, in the 

striped ground cricket Allonemobius socius (Orthoptera: Gryllidae), females who mated 
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multiply acquired direct benefits through an increase in nutritional resources via more 

nuptial gifts, and indirect genetic benefits through increased hatching success of offspring  

(Fedorka and Mousseau 2002). 

In the event where female mate choice does not occur or fails due to forced copulation, 

and in cases where females gain benefits by having additional control over fertilization, 

both direct and indirect fitness benefits can be acquired through postcopulatory sexual 

selection.  Postcopulatory sexual selection allows selection to persist after mating.  This 

has a particularly strong impact on males, who not only have to compete to acquire 

matings, but also have to compete for fertilization after successfully mating.  Similarly to 

how males have reproductive tactics to increase their probability of mating, they also 

have strategies to increase their probability of successful fertilization after mating.  When 

two or more ejaculates reside in a female reproductive tract, sperm competition can occur 

(Parker 1970).  In many species, second male sperm precedence occurs where the second 

male to mate fertilizes the majority of eggs (P2).  However, this value can vary from 2% 

to 100% of P2 fertilization between species (Ridley 1989) and 0% to 100% within species 

(Lewis and Austad 1990), emphasizing the complex nature of sperm competition.  

Therefore, it is important to tease apart the mechanisms of sperm competition and how 

they contribute to the variation of P2 values.  

 Sperm competition most commonly takes the form of sperm displacement, where a male 

removes a rival male's sperm, or sperm incapacitation, where the use of rival sperm for 

fertilization is inhibited.  Sperm competition involves both the sperm itself and the 

seminal fluid, which contains accessory gland proteins (Acps).  In D. melanogaster, Acps 

can have a wide range of effects that can significantly influence fertilization (Ram and 
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Wolfner 2007).  Some of these effects can alter female behaviour.  Examples include 

increasing female egg laying rate and therefore producing more eggs fertilized by the 

given male or delay female remating in order to reduce the exposure to competition.  

These effects can also be context dependent.  For example, Acps' effect on fertilization 

depends on the order of mating, and may involve separate mechanisms from those 

induced by the sperm themselves (Nguyen and Moehring, Chapter 5).  In addition, males 

can also adjust their ejaculates to be better competitors.  Male crickets Gryllus veletis 

(Orthoptera: Gryllidae) transferred more sperm when in competition with a single male in 

order to increase his fertilization success, in comparison to when there was no 

competition (Schaus and Sakaluk 2001).  Not only can males vary their sperm quantity, 

but can also vary their quality.  In the Australian field cricket Teleogryllus oceanicus 

(Orthoptera: Gryllidae), males mated to virgin or singly mated females transfer the same 

amount of sperm but with more viable sperm than when mated to multiply mated 

females, as the cost of producing high quality sperm in the letter case would outweigh the 

benefits in the presence of intense competition (Thomas and Simmons 2007).  

The interaction between female and male genotypes is important to take into 

consideration when examining sexual selection mechanisms.  For example, both male 

(Clark et al. 1995) and female (Clark and Begun 1998) genotypes can affect variation in 

sperm displacement in D. melanogaster.  Females are not passive vessels in this process 

and can play an active role in postcopulatory sexual selection since it takes place within 

the female reproductive tract.  When a female can bias the paternity of her offspring or 

influence the preferential use of sperm after copulation has occurred, cryptic female 

choice is exhibited (Eberhard 1996).  Perhaps in an evolutionary response to cryptic 
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female choice, males have evolved counter adaptations to manipulate females to 

preferentially use their sperm for fertilization.  In the red flour beetle Tribolium 

castaneum (Coleoptera, Tenebrionidae), a male uses the tarsi of his legs to rub the lateral 

edge of the female's elytra.  Males who were manipulated by having their legs truncated, 

and therefore could not rub the female's elytra, had a lower fertilization success and P2 

values compared to unmanipulated males even though both transfer the same amount of 

sperm (Edvardsson and Arnqvist 2000).  Furthermore, the intensity at which rubbing 

occurred by unmanipulated males was positively correlated to his fertilization success.  

This demonstrates the ability of males to increase their fertilization success by 

manipulating female behaviour.      

There may be a link between precopulatory and postcopulatory sexual selection since 

there is some evidence that males who are more successful during precopulatory selection 

are also more likely to succeed during postcopulatory selection.  In D. simulans, males 

who had a lower copulation latency, and therefore were more attractive and preferred by 

females, were also more competitive in sperm competition as they had a higher paternity 

share (Hosken et al. 2008).  However, the mechanism for this is often unknown; 

attractive males could be better competitors in sperm competition due to superior 

ejaculate and/or females could bias paternity towards attractive males through cryptic 

female choice.  It is often difficult to disentangle the reproductive success of males as the 

nature of mating systems are complex, where both male traits and female influence can 

occur simultaneously and cooperate or conflict.  The goal of this paper is to assess the 

reproductive success of males at both pre- and postcopulatory stages and to determine 
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possible connections between them using males with varying fitness measures in D. 

melanogaster. 

6.2 Methods 

6.2.1 Drosophila strains and maintenance 

Ten isofemale lines of D. melanogaster were collected from the wild in Sudbury, Ontario 

Canada, in 2011 by T. Merritt.  Flies were maintained in the laboratory on standard 

cornmeal agar media (Bloomington Drosophila Stock Center, Indiana) in 8-dram vials on 

a 14:10 light-dark cycle, at 24ºC and approximately 75% relative humidity.   

6.2.2 Measures of fitness 

To rank the quality of males, five fitness measures were used: (1) productivity, (2) 

productivity of F1 sons, (3) productivity of F1 daughters, (4) mating success in 

competition, and (5) combined fitness traits.  The ten isofemale lines of Drosophila 

melanogaster (Nguyen and Moehring, in press) were previously measured in a full 

factorial breeding design for fitness measures 1-3 ((Nguyen and Moehring, in press; 

Nguyen and Moehring, submitted).  Male mating success (fitness measure #4) on these 

same lines was previously measured in a mating arena that allowed for competition 

(Nguyen and Moehring, Chapter 4).  Males were ranked for their combined (overall) 

fitness measure (#5) by using an average ranking score of the first four measures of 

fitness.  A high quality male and a low quality male were identified for each of the five 

measures of fitness for each isofemale line.  Therefore, the high and low quality males 

are fitness measure specific and isofemale line specific (Supplementary Table C.1).  

Isofemale line 4 was unable to be used here due to loss of the line.  Therefore, if males 
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from line 4 were determined to be the highest or lowest ranking male for a specific 

female line, the second highest or lowest male line was chosen instead. 

6.2.3 No-choice mating assay 

To determine how high and low quality males perform in mating without competition, a 

no choice mating assay was performed.  Individual virgin males and females were 

collected upon eclosion from density controlled vials to control for size (as in Nguyen 

and Moehring, Chapter 4) and aged 4-6 days.  A single female was placed in an 8-dram 

vial without food with a single male that was the corresponding high or low quality male 

for that isofemale line as determined by each of the five fitness measures (Supplementary 

Table C.1).  Measurements that were recorded are: (1) time it took until the male started 

courting, (2) time it took to start copulation, and (3) time it took for copulation to end.  

From these measurements, courtship duration can be calculated to determine female 

preference.  If copulation was not initiated within 1 hour, the experiment was terminated 

and repeated the following day with new mating pairs.  Mated experiments continued 

until there was 20 replicates of successful copulation for each mating pair combination.  

Males were taken and thorax was measured as a control for male size.   

6.2.4 Postcopulatory performance assay 

To assess male quality on postcopulatory performance, high and low quality males were 

exposed to two types of competition: (1) Acps competition, and (2) Sperm and Acps 

competition.  To determine how males perform in Acps competition, virgin isofemale 

line male and females used were collected upon eclosion from density controlled vials to 

control for size (as in Nguyen and Moehring, Chapter 4) and aged 4-6 days.  Females 

from each line were initially mated to sons of tudor mothers, aged 4-6 days, who produce 
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no sperm and are therefore sterile, but produce Acps (See detailed methods in Nguyen 

and Moehring, Chapter 5).  Mating was scored in an assay with a single male and female 

in a vial.  Males who mated were removed by aspiration.  Mated females were remated to 

either a corresponding high or low quality male, aged 4-6 days, the following day.  The 

total number of offspring produced from the double mating event were counted in a 

similar manner as Nguyen and Moehring (in press).  A total of 20 replicates were 

performed for each isofemale line combination.   

To determine how males perform in sperm and Acps competition, high and low quality 

males were competed against each other. A female from each isofemale line containing a 

recessive visible marker (kni; see detailed methods in Chapter 5) was crossed to a high 

and low male, alternating which male also contained the recessive marker : (1) highkni, 

low, (2) high, lowkni, (3) lowkni, high and (2) low, highkni.  Mating was scored in the same 

manner as above.  The total number of offspring from the second male to mate (P2) was 

counted using the homozygous recessive marker as an indicator of paternity.  Ten 

replicates for each order were performed for a total of 40 replicates for each isofemale 

line combination.  Virgin males and females were collected from isofemale density 

controlled vials and aged 4-6 days, as above.  Mated females were remated after 24 

hours.  Females who did not remate were paired again the following day to allow for 

remating.  Females who did not remate in 24-48 hours after the initial mating were 

discarded.  Mating was scored in a no-choice mating assay where males were removed 

immediately after mating was completed.  The total number of offspring produced from 

the single pair mating combination was scored in a similar manner as Nguyen and 
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Moehring, (in press).  Only offspring produced after females were remated to a second 

male were scored and counted. 

6.2.5 Statistical analysis 

Differences in high quality vs. low quality males 

To determine significant differences between high quality and low quality male 

phenotypes, a one-way ANOVA for each female line for four fitness measures were 

performed: (1) productivity, (2) productivity of F1 sons, (3) productivity of F1 daughters, 

(4) mating success in competition.  For those that did not fit the assumptions for the 

parametric test, a Kruskal-Wallis was performed.  

High quality vs. low quality males' performance in mating 

To analyze high quality and low quality males' performance in mating, the percent of 

males that courted, the percent of males that mated out of those that courted and out of 

the total number of replicates was analyzed using three separate Generalized Linear 

Mixed Models (GLMMs) with a binomial distribution for all five measures of fitness.  

The terms were male quality (high or low) as fixed factors, female line and male thorax 

size as random factors.  The  interactions between male quality and female line and male 

quality and thorax size were also included.  Terms that were not significant using a 

likelihood ratio test were removed in the final reduced model.  The time taken for males 

to start courting, courtship duration, and copulation duration were analyzed using three 

separate GLMMs in a similar manner as above, but with a negative binomial distribution, 

for all five measures of fitness.   
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The percent of males that successfully mated out of the total number of replicates 

performed is the male mating success without competition.  The male mating success 

without competition for the single mating pair isofemale line combinations performed 

here were compared to the corresponding male mating success combinations with 

competition data presented in Nguyen and Moehring, Chapter 4.   A Generalized Linear 

Model (GLM) with a quasipoisson distribution was used to analyze mating success with 

competition as a response variable and male mating success without competition as the 

predictor variable.  

High quality vs. low quality males' performance in post-copulatory selection 

To analyze how these high and low quality males perform in postcopulatory sexual 

selection (e.g., cryptic female choice or sperm competition), a Linear Mixed Model 

(LMM) was performed to analyze the lifetime reproductive success of males competing 

with a spermless but Acps producing male for all five measures of fitness.  The response 

variable is the total number of offspring produced, male quality (high or low) was used as 

a fixed factor, female line and male quality and female line interaction was used as 

random factors.  To determine how high quality and low quality males performed against 

each other, a GLMM with a binomial distribution was performed for all five measures of 

fitness to analyze the fertilization success of the second male.  Each replicate is weighted 

by the total number of offspring to control for brood size.  The total number of offspring 

was used as the binomial denominator.  Male quality (high or low) was used as the fixed 

factor, female line and male quality and female line interaction was used as the random 

factor variable.  Due to overdispersion, individual observations were included as a 

random effect (Bolker et al. 2009).     
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To determine how low quality males perform in relation to high quality males, the ratio 

of low quality and high quality male performance was compared across postcopulatory 

treatments of Acps competition and sperm and Acps competition for all five measures of 

fitness.  The ratio performance was compared to two previously-reported measures of 

control where the performance of low quality and high quality males were individually 

measured without competition  (Nguyen and Moehring, in press): (1) lifetime 

reproductive success when a female was mated to a focal high quality or low quality male 

in a single mating and (2) lifetime reproductive success when a female was mated to a 

focal high quality or low quality male when allowing for multiple matings.  Ratio 

performance across treatments was compared in a One-way ANOVA followed by a 

Tukey's multiple comparisons post hoc or Kruskal-Wallis if parametric assumptions were 

not met.   

6.3 Results 

Determining high quality vs. low quality males  

Male quality was measured using five fitness measures: (1) productivity, (2) productivity 

of F1 sons, (3) productivity of F1 daughters, (4) mating success in competition, and (5) 

combined fitness traits.  For fitness measure (1) productivity, the only statistically 

significant difference in high quality and low quality male performance were for female 

line 5 (Figure 6.1A; F (9, 30) = 2.972, P = 0.0119).  Productivity of F1 sons (2) had no 

statistically significant differences between high quality and low quality males for any of 

the female lines.  For fitness measure (3) productivity of F1 daughters, there were 

significant differences between a high quality and low quality male for female line 1 
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Figure 6.1 Performance of high quality (diamonds) and low quality (squares) male lines for four fitness measures: (A) productivity of 

parentals cross, (B) productivity of F1 sons, (C) productivity of F1 daughters, and (D) mating success.  Error bars represent SE.  

Asterisks represent significant differences between high and low quality males. 
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(Figure 6.1C; F (9, 30) = 2.354, P = 0.0380) and female line 4 (Figure 6.1C; F (9, 30) = 2.719, 

P = 0.0191).  The fitness measure of  (4) mating success in competition had significant 

differences in high and low quality males for female line 2, 5, 7, 8, and 10 (Figure 6.1D; 

2: F (9, 190) = 3.282, P = 0.0009, 5: F (9, 190) = 2.812, P = 0.0040, 7: F (9, 190) = 1.925, P = 

0.0507, 8: F (9, 190) = 3.417, P = 0.0006, 10: F (9, 190) = 3.625, P = 0.0003). 

High quality vs. low quality males' performance in mating  

 High quality males defined by (1) productivity, (2) productivity of F1 sons, and 

(5) combined fitness traits initiated courtship significantly more often (Figure 6.2A; χ2
(1) 

= 19.1070, P < 0.0001, Figure 6.2B; χ2
(1) = 12.8720, P = 0.0003, Figure 6.2E; χ2

(1) = 

11.5140, P = 0.0006), and had a faster initiation of courtship (Figure 6.3A; χ2
(1) = 4.2276, 

P = 0.0397, Figure 6.3B; χ2
(1) = 9.5710, P = 0.0019, Figure 6.3E; χ2

(1) = 14.2680, P = 

0.0007) than low quality males.  However, there is no significant difference in how long 

males courted (courtship duration) between high quality and low quality males for any 

measures of fitness (Figure 6.4).  The proportion of males that copulated, when only 

considering those males that courted, there are no significant differences between high 

quality and low quality males for any of the five measures of fitness used to determine 

male quality (Figure 6.5).  However, when all males are considered (whether they courted 

first or not), high quality males defined by (2) productivity of F1 sons mated significantly 

more often than low quality males (Figure 6.6B; χ2
(1) = 4.4465, P = 0.0349).  The 

copulation duration of high quality males defined by (2) productivity of F1 sons and (5) 

combined fitness traits was significantly longer than the copulation duration of low 

quality males (Figure 6.7B; χ2
(1) = 7.9129, P = 0.0049, Figure 6.7E; χ2

(1) = 7.2763, P =  
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Figure 6.2 Box plots for percent of high quality and low quality males that courted for all 

five fitness measures: (A) productivity, (B) productivity of F1 sons, (C) productivity of F1 

daughters, (D) mating success, and (E) overall fitness traits.  Boxes represent the upper 

(third) quartile and lower (first) quartile range. The thick horizontal line represents the 

median.  Whiskers represent minimum and maximum values.  Circles represent minor 

outliers (1.5 × Interquartile Range) and stars represent major outliers (3.0 × Interquartile 

Range).   

P < 0.0001 P = 0.0003 P = 0.2201 P = 0.997 P = 0.0006 
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Figure 6.3 Box plots for time taken for high quality and low quality males to start 

courting for all five fitness measures: (A) productivity, (B) productivity of F1 sons, (C) 

productivity of F1 daughters, (D) mating success, and (E) overall fitness traits.  Boxes 

represent the upper (third) quartile and lower (first) quartile range. The thick horizontal 

line represents the median.  Whiskers represent minimum and maximum values.  Circles 

represent minor outliers (1.5 × Interquartile Range) and stars represent major outliers (3.0 

× Interquartile Range).    

P = 0.0397 P = 0.0019 P = 0.1249 P = 0.5953 P = 0.0007 
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Figure 6.4 Box plots for a measure of female preference: courtship duration.  When 

males started to court, the time taken for females to accept the male's courtship and start 

mating.  Performance of high and low quality males are shown for all five fitness 

measures: (A) productivity, (B) productivity of F1 sons, (C) productivity of F1 daughters, 

(D) mating success, and (E) overall fitness traits.  Boxes represent the upper (third) 

quartile and lower (first) quartile range. The thick horizontal line represents the median.  

Whiskers represent minimum and maximum values.  Circles represent minor outliers (1.5 

× Interquartile Range) and stars represent major outliers (3.0 × Interquartile Range).    

 

P = 0.5060 P = 0.0780 P = 0.1510 P = 0.5840 P = 0.1210 
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Figure 6.5 Box plots for a measure of male success: percent of high and low quality 

males that mated out of those that courted.  High quality and low quality male 

performance for all five fitness measures are shown: (A) productivity, (B) productivity of 

F1 sons, (C) productivity of F1 daughters, (D) mating success, and (E) overall fitness 

traits.  Boxes represent the upper (third) quartile and lower (first) quartile range. The 

thick horizontal line represents the median.  Whiskers represent minimum and maximum 

values.  Circles represent minor outliers (1.5 × Interquartile Range) and stars represent 

major outliers (3.0 × Interquartile Range).    

P = 0.9919 P = 0.0970 P = 0.5700 P = 0.5415 P = 0.7500 
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Figure 6.6 Box plots for a measure of male success: percent of high and low quality 

males that mated out of the total number of replicates performed.  High quality and low 

quality male performance for all five fitness measures are shown: (A) productivity, (B) 

productivity of F1 sons, (C) productivity of F1 daughters, (D) mating success, and (E) 

overall fitness traits.  Boxes represent the upper (third) quartile and lower (first) quartile 

range. The thick horizontal line represents the median.  Whiskers represent minimum and 

maximum values.  Circles represent minor outliers (1.5 × Interquartile Range) and stars 

represent major outliers (3.0 × Interquartile Range).     

P = 0.9994 P = 0.0349 P = 0.2680 P = 0.5319 P = 0.3096 
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Figure 6.7 Box plots for the length of copulation duration for high and low quality males 

for all five fitness measures: (A) productivity, (B) productivity of F1 sons, (C) 

productivity of F1 daughters, (D) mating success, and (E) overall fitness traits.  Boxes 

represent the upper (third) quartile and lower (first) quartile range. The thick horizontal 

line represents the median.  Whiskers represent minimum and maximum values.  Circles 

represent minor outliers (1.5 × Interquartile Range) and stars represent major outliers (3.0 

× Interquartile Range).      

P = 0.3420 P = 0.0049 P = 0.550 P = 0.1782 P = 0.0069 
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0.0069).  Individual female line effects for high quality and low quality males' 

performance in mating are shown in supplementary Figures C.1-C.6.  Individual results 

of each parameter for each model are summarized in a supplementary Table C.2.  Male 

mating success without competition was not significantly correlated with male mating 

success with competition (Figure 6.8; pseudo R2 = 0.0114, d.f. = 45, P = 0.4700) 

High quality vs. low quality males' performance in postcopulatory selection 

 High quality males based on (5) combined fitness traits produce significantly 

more offspring than low quality males when competing against a spermless Acp 

producing male (Figure 6.9E; χ2
(1) = 4.6018, P = 0.0319).  There were no significant 

differences in high quality and low quality male performance based on any other fitness 

measure.  Similarly, when high quality and low quality males were in competition with 

each other (both sperm and Acp competition), high quality males fertilized more 

offspring as the second male to mate in comparison to low quality males when high and 

low quality males were defined using (5) combined fitness traits (Figure 6.10E; χ2
(1) = 

17.5640, P < 0.0001). Individual female line effects for high quality and low quality male 

performance in postcopulatory selection are shown in supplementary Figure C.7 and 

Figure C.8.  Individual results of each parameter for each model are summarized in 

supplementary Table C.3.   

  The difference between high vs. low male productivity (low/high) was compared 

across treatments to allow for an assessment of how the degree of difference between the  
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Figure 6.8 Comparison of male mating success without competition to male mating 

success with competition.  Dashed lines represent 95% CI. 

 

 

 

 

 

 

P = 0.4700 
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Figure 6.9 Box plots for lifetime reproductive success for high and low quality males 

when in competition with a spermless Acps producing male for all five fitness measures: 

(A) productivity, (B) productivity of F1 sons, (C) productivity of F1 daughters, (D) mating 

success, and (E) overall fitness traits.  Boxes represent the upper (third) quartile and 

lower (first) quartile range. The thick horizontal line represents the median.  Whiskers 

represent minimum and maximum values.  Circles represent minor outliers (1.5 × 

Interquartile Range) and stars represent major outliers (3.0 × Interquartile Range).      

P = 0.7087 P = 0.3449 P = 0.2813 P = 0.0755 P = 0.0319 
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Figure 6.10 Box plots for the proportion of offspring sired by the second male as high or 

low quality males when in competition with each other for all five fitness measures: (A) 

productivity, (B) productivity of F1 sons, (C) productivity of F1 daughters, (D) mating 

success, and (E) overall fitness traits.  Boxes represent the upper (third) quartile and 

lower (first) quartile range. The thick horizontal line represents the median.  Whiskers 

represent minimum and maximum values.  Circles represent minor outliers (1.5 × 

Interquartile Range) and stars represent major outliers (3.0 × Interquartile Range).      

P = 0.1329 P = 0.1080 P = 0.1005 P = 0.0756 P < 0.0001 
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Figure 6.11 The productivity ratio of 

low/high quality males for singly and 

multiply mated controls, as well as 

competition treatments involving Acps only 

and sperm and Acps for all five fitness 

measures: (A) productivity, (B) productivity 

of F1 sons, (C) productivity of F1 daughters, 

(D) mating success, and (E) overall fitness 

traits.  Note that values of 1 indicate equal 

productivity of high and low males. Error 

bars represent 95% CI. 
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two categories may increase or decrease based on the assay being performed.  In 

comparing the ratio performance of low quality and high quality males across treatments, 

there was a significant effect of treatment for high quality and low quality males defined 

by (1) productivity (Figure 6.11A; F3,32 = 19.17, P < 0.0001) and (5) overall fitness 

measure (Figure 6.11E; F3,32 = 10.85, P < 0.0001).  This effect is caused by a significant 

increase in the difference between low and high male productivity  when those males are 

paired alone with a female but allowed to multiply mate (Figure 6.12).  The benefits from 

multiply mating are apparent even at day 1 of eclosion, where high quality males paired 

alone with a female but allowed to multiply mate produced more offspring than females 

who singly mated to high quality males (Figure 6.12 A-C; t = 3.056, d.f. = 39.510, P = 

0.004).  Similarly, females multiply mated to high and low quality males have 

significantly different productivity beginning immediately at day 1 of eclosion (Figure 

6.12 A-B; t = 2.626, d.f. = 57.392, P = 0.011), whereas females singly mated to high and 

low quality males only reveal significant differences of productivity after day 10 of 

eclosion (Figure 6.12 C-D; t = 2.111, d.f. = 318.167, P = 0.036). 

6.4 Discussion 

A male’s reproductive success can be measured in a variety of ways, but the most 

accurate measurement is thought to be one that includes male mating success, the amount 

of offspring that are produced, and the quality of the offspring that are produced.  When 

examining the data between high and low quality males for all five fitness measures (1: 

productivity, 2: productivity of F1 sons; 3: productivity of F1 daughters, 4: mating success 

in competition, and 5: overall fitness), the most consistent results that show significant 

differences between high and low quality males was indeed that of the combined fitness  
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Figure 6.12 Average cumulative daily number of offspring for singly mated (C,D) and 

multiply mated (A, B) female controls.  Solid lines represent high quality males, dashed 

lines represent low quality males based on combined fitness traits measure. Error bars 

represent 95% CI.  
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traits measure.  This demonstrates, as expected, that both productivity and mating success 

contribute to an individual's total overall fitness (Stearns 1992), and that neither measure 

independently demonstrates a male’s true fitness level.  Thus, whether 'good genes' result 

in an increase in productivity or an increase in mating success is irrelevant (Zahavi 1975) 

as both contribute to an individual's reproductive success.  This stresses the importance of 

measuring an inclusive and comprehensive set of fitness components as possible, 

including multi-generational fitness measurements of F1 sons and daughters.  Similarly to 

these results, significant differences when females were mated to attractive vs. 

unattractive males were not seen using individual fitness components, but were only 

revealed when the combined effects of son's attractiveness and daughters' fecundity were 

included in the model, further emphasizing the importance of using a multi-generational 

comprehensive set of fitness components (Head et al. 2005).   The focus of the discussion 

will be on high and low quality male performances based on the overall combined fitness 

traits measure. 

High quality males court faster and more often than low quality males.  Although high 

quality males court earlier and more often, they were not more successful and females did 

not prefer them.  This is surprising as there was a significant male quality and thorax size 

interaction; high quality males were larger than low quality males (Table C.2).  Male 

thorax size is known to significantly correlate with an increase in fitness and mating 

success (Partridge and Farquhar 1983).  Significant differences in thorax size would have 

given females a male trait to select upon.  These results conflict with Partridge and 

Farquhar (1983) who showed larger males have faster mating speeds (time from 

courtship to copulation) (Partridge and Farquhar 1983).  A lack of female preference 
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could be explained by using virgin female.  It is possible that virgin females should not 

be choosy since they currently have no sperm storage and mating with any male should 

be beneficial and result in an increased fitness.  The trade-up hypothesis states that 

females should only remate with higher quality males when she has already mated and 

therefore can afford to be choosy (Jennions and Petrie 2000).  Furthermore, there was 

significant female and male line interaction for mating success (Table C.2), indicating the 

mating success of males depends on the female that he's courting.  It is interesting to note 

that the mating success of males in this study did not correlate to their mating success 

when they were in a high density environment resulting in intense competition (Figure 

6.8).  Typical laboratory-based studies measuring mating success of D. melanogaster 

may not be indicative of what occurs in natural populations.  

High quality males have a higher fertilization success as P2 than low quality males 

(Figure 6.2E).  Although there was no significant interaction between male quality and 

female line (P = 0.1908), P2 values vary across female line even when using the same 

high or low quality male line (supplementary Figure C.8).  Since sperm competition and 

postcopulatory sexual selection occurs in the female reproductive tract, this variation in 

P2 success is likely influenced by the female environment.  In Callosobruchus maculatus 

(Coleoptera: Bruchidae), male mating pairs that were mated to genetically similar 

females (full-siblings) had more repeatable P2 values than if they were mated to unrelated 

females (Wilson et al. 1997); there was more variation in P2 values when females were 

more variable.  This suggests that females are capable of influencing male fertilization 

success.  Cryptic female choice is more likely to occur when female mate choice is too 

costly (Birkhead and Pizzari 2002).  Females can still rely on cryptic female choice for 
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preferential fertilization.  For instance, in the feral fowl, Gallus gallus domesticus 

(Galliformes: Phasianidae), dominant and subordinate males had no difference in their 

mating success (Pizzari and Birkhead 2000).   However, females who copulations with 

subordinate males were more likely to expel their ejaculates (Pizzari and Birkhead 2000).  

In this study, I did not detect any female mate choice as both low quality and high quality 

males had equal mating success, even though high quality males initiated courtship more 

often and earlier.  In perceived competition when focal males were competed with a 

sterile spermless--Acp producing male, similar results were observed where high quality 

males fertilized more offspring than low quality males.  Furthermore, there was 

significant female and male line interaction under perceived competition.  This 

significant interaction indicates female influence in male success depending on the male, 

evidence for cryptic female choice (Pitnick and Brown 2000).  However, this result could 

also be due to sperm competition in the instance of Acps.  The presence of cryptic female 

choice under perceived competition (Acps competition) and the absence of cryptic female 

choice under direct sperm competition (sperm and Acps competition) indicates that the 

sperm itself may have a stronger influence than cryptic female choice on the outcome of 

sperm competition than. 

These results do not agree with Bilde et al. (2009), whose study is very comparable.  The 

authors found that high quality males based on productivity and productivity of daughters 

(comparable to my fitness measurements 1 and 3) performed worse when in competition 

with low quality males as they had a lower fertilization success (Bilde et al. 2009).  I 

show no significant difference in fertilization success when male quality was based on 

productivity (fitness measure 1) and productivity of daughters (fitness measure 3).  These 
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conflicting results may be due to the different species that were measured as their study 

was performed in the seed beetle Callosobruchus maculatus (Coleoptera: 

Chrysomelidae); different species may have different sexual selection strategies.  

However, when male quality was measured using a combined fitness trait, high quality 

males had higher fertilization success than low quality males.  This highlights the 

importance of how the fitness measure used can impact the perception of high and low 

quality males.       

Although high quality males started courting faster and courted longer, they were not 

more successful at mating compared to low quality males; females did not choose to mate 

with high quality males.  This is surprising as high quality males outcompeted low 

quality males in both instances of sperm competition, indicating their superior quality.  

One would expect females to be able to recognize superior quality males and 

preferentially mate with them and/or a positive relationship between attractiveness and 

sperm quality.  It is possible for postcopulatory sexual selection to reinforce 

precopulatory choice.  The interaction between pre- and post-copulatory sexual selection 

has been examined in the guppy, Poecilia reticulata (Cyprinodontiformes: Poecilidae).  

Females prefer to mate with the more attractive colourful orange males who also court 

more readily.  In an artificially inseminated experiment using equal amounts of ejaculates 

from two males, the more colourful male had the greatest share of paternity (Evans et al. 

2003).  These results demonstrate that when female mate choice is prevented, 

postcopulatory sexual selection can compensate, biasing traits that females desire since 

colourful males also have superior ejaculates.  In contrast to the findings by Evans et al. 

(2003), my results may indicate a tradeoff between postcopulatory and precopulatory 
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performance; perhaps being superior in postcopulatory selection is expensive, and 

therefore little resources are left to allocate to precopulatory advantage.  

A possible explanation for why high quality males may perform better in postcopulatory 

competition but do not excel in mating success may be due to females storing more 

sperm from males that are higher quality.  In an experiment where the relative 

attractiveness of males was manipulated, female guppies contain 68% more sperm from 

males when they were perceived to be more attractive (Pilastro et al. 2004).  Therefore, 

either females retain more sperm from attractive males or are able to manipulate the 

amount of sperm transferred from males.  This is another example where postcopulatory 

sexual selection, in this case cryptic female choice, reinforces female mate choice.  

Another explanation would be that the ejaculates of high quality males contain more 

sperm than that of low quality males in this study.  In the phenotype-linked fertility 

hypothesis, there is a positive correlation between male phenotype and functional fertility 

(Sheldon 1994).  For instance, male guppies that are more colourful and therefore more 

attractive transfer more sperm to females, even though there was no significant difference 

between sperm stores of attractive and unattractive males at rest (Pilastro et al. 2002).  

However, I do not believe this to be the case as I did not detect any differences in male 

attractiveness in this study.  Furthermore, the productivity for a high quality male line for 

a particular female line would be a low quality male line for a different female line (see 

supplementary Table C.1), indicating a female line interaction and that male quality is 

dependent on female line.  It is possible that males can vary the amount of sperm 

transferred to a female.  In the cricket Acheta domesticus and Gryllodes supplicans 

(Orthoptera: Gryllidae), males transferred more sperm to females when there was a 
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presence of increasing competition (Gage and Barnard 1996).  A. domesticus males can 

also vary their sperm transfer with respect to female quality; they transferred more sperm 

when mating to larger females who are likely more fecund (Gage and Barnard 1996).  In 

the guppy, males transfer different ejaculate sizes in solicited vs. forced copulations, 

indicating female control in ejaculate size for solicited copulations as there was a 

significant negative correlation between ejaculate size and mating speed (Pilastro et al. 

2002).  In this study, although high quality males did not have a greater mating success, 

they did have a longer copulation duration.  This longer copulation duration may allow 

them to transfer more sperm, which would result in high quality males having a higher 

productivity when in sperm competition, perceived competition, and even no competition 

controls than compared to their low quality male counterparts (Figure 6.10, Figure 6.9, 

Figure 6.12 respectively).  High quality males may be able to maintain a longer 

copulation due to their higher general fitness, or the increased copulation duration could 

potentially be a mechanism of cryptic female choice where females allow more attractive 

high quality males to mate longer.  Similar results are seen in the damselfly, Ceriagrion 

tenellum (Odonata: Coenagrionidae) where males who copulated longer had a greater 

fertilization success (Andrés and Cordero Rivera 2000).  In double mating experiments, 

smaller male orb-web spiders, Argiope keyserlingi (Araneae: Araneidae) had a higher 

fertilization success (P2) with higher copulation duration -- a female controlled trait since 

females wrap the males in silk before cannibalizing them, ending copulation (Elgar et al. 

2000).  These studies demonstrate female manipulation of paternity through control of 

copulation duration. 
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Although low quality males had a lower performance than high quality males in all 

treatments, the performance of low quality males in relation to high quality males 

remained the same in the singly mated control and both treatments of competition (Figure 

6.11E).  This indicates low quality males do not suffer a loss in performance and high 

quality males do not perform better when in competition.  However, low quality males 

will perform significantly worse when males are allowed to multiply mate.  A cumulative 

curve (Figure 6.12) illustrates that  high quality males have a longer period of 

productivity (a longer time until productivity plateaus) than low quality males when 

singly mated.  When multiply mated, high quality males have both a greater initial 

productivity and longer productivity than low quality males.  Therefore the greater effect 

on productivity when multiply mated (compared to singly mated) appears to be driven by 

both increased initial offspring production and increased duration of offspring 

production. 

These results emphasize the importance of measuring an inclusive and comprehensive set 

of fitness components when assessing male quality as the fitness measure used can 

impact the perception of high and low quality males.  When high quality males were 

defined using a combined fitness measure which incorporated both mating success and 

offspring fitness, high quality males performed consistently better than low quality males 

in both pre- and postcopulatory sexual selection. 

6.5 Chapter acknowledgements  

I thank Ben Rubin for his statistical assistance.  This work would not be completed 

without the assistance of Amanda Tong, Pria Mahabir, Anes Kwon, Hannah Guiang, 

Amanda Morgan, Chaewon Jung, David Jo, Hassan Shahbaz, Hemani Patel, James Lim, 



151 

 

 

Jonwook Kim, Josh Skapinker, Josh Tordjman, Mathew Mathew, Patrick Zhang, Stephen 

Lu, Yoni Balboul, Sarah Kim, Injun Seo, and Alice Lee  This work was supported by an 

NSERC Discovery Grant and a Canada Research Chair to Amanda J. Moehring. 

6.6 References 

 

Andrés, J. A., and A. Cordero Rivera. 2000. Copulation duration and fertilization success 

 in a damselfly: an example of cryptic female choice? Anim. Behav. 59:695–703. 

Bilde, T., A. Foged, N. Schilling, and G. Arnqvist. 2009. Postmating sexual selection 

 favors males that sire offspring with low fitness. Science 324:1705–1706. 

Birkhead, T. R., and T. Pizzari. 2002. Postcopulatory sexual selection. Nat. Rev. Genet. 

 3:262–273. 

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, 

 and J.-S. S. White. 2009. Generalized linear mixed models: a practical guide for 

 ecology and evolution. Trends Ecol. Evol. 24:127–135. 

Byrne, P. G., and W. R. Rice. 2006. Evidence for adaptive male mate choice in the fruit 

 fly Drosophila melanogaster. Proc. R. Soc. Lond. B Biol. Sci. 273:917–922. 

Clark, A. G., M. Aguadé, T. Prout, L. G. Harshman, and C. H. Langley. 1995. Variation 

 in sperm displacement and its association with accessory gland protein loci in 

 Drosophila melanogaster. Genetics 139:189–201. 

Clark, A. G., and D. J. Begun. 1998. Female genotypes affect sperm displacement in 

 Drosophila. Genetics 149:1487–1493. 

Eberhard, W. G. 1996. Female control: sexual selection by cryptic female choice. 

 Princeton University Press, Princeton, New Jersey. 

Edvardsson, M., and G. Arnqvist. 2000. Copulatory courtship and cryptic female choice 

 in red flour beetles Tribolium castaneum. Proc. R. Soc. Lond. B Biol. Sci. 

 267:559–563. 



152 

 

 

Elgar, M. A., J. M. Schneider, and M. E. Herberstein. 2000. Female control of paternity 

 in the sexually cannibalistic spider Argiope keyserlingi. Proc. R. Soc. Lond. B 

 Biol. Sci. 267:2439–2443. 

Evans, J. P., L. Zane, S. Francescato, and A. Pilastro. 2003. Directional postcopulatory 

 sexual selection revealed by artificial insemination. Nature 421:360–363. 

Fedorka, K. M., and T. A. Mousseau. 2002. Material and genetic benefits of female 

 multiple mating and polyandry. Anim. Behav. 64:361–367. 

Friberg, U. 2006. Male perception of female mating status: its effect on copulation 

 duration, sperm defence and female fitness. Anim. Behav. 72:1259–1268. 

Gage, A. R., and C. J. Barnard. 1996. Male crickets increase sperm number in relation to 

 competition and female size. Behav. Ecol. Sociobiol. 38:349–353. 

Head, M. L., J. Hunt, M. D. Jennions, and R. Brooks. 2005. The indirect benefits of 

 mating with attractive males outweigh the direct costs. PLoS Biol 3:e33. 

Hosken, D. J., M. L. Taylor, K. Hoyle, S. Higgins, and N. Wedell. 2008. Attractive males 

 have greater success in sperm competition. Curr. Biol. 18:R553–R554. 

Jennions, M. D., and M. Petrie. 2000. Why do females mate multiply? A review of the 

 genetic benefits. Biol. Rev. 75:21–64. 

Lewis, S. M., and S. N. Austad. 1990. Sources of intraspecific variation in sperm 

 precedence in red flour beetles. Am. Nat. 135:351–359. 

Moller, A. P., and M. D. Jennions. 2001. How important are direct fitness benefits of 

 sexual selection. Naturwissenschaften 88:401–415. 

Neff, B. D., and T. E. Pitcher. 2005. Genetic quality and sexual selection: an integrated 

 framework for good genes and compatible genes. Mol. Ecol. 14:19–38. 

Nguyen, T., and A. Moehring. (in press). Accurate alternative measurements for female 

 lifetime reproductive success in Drosophila melanogaster. PLoS ONE. 



153 

 

 

Parker, G. A. 1970. Sperm competition and its evolutionary consequences in the  

 insects. Biol. Rev. 45:525–567. 

Partridge, L., and M. Farquhar. 1983. Lifetime mating success of male fruitflies 

 (Drosophila melanogaster) is related to their size. Anim. Behav. 31:871–877. 

Pilastro, A., J. P. Evans, S. Sartorelli, and A. Bisazza. 2002. Male phenotype predicts 

 insemination success in guppies. Proc. R. Soc. Lond. B Biol. Sci. 269:1325–1330. 

Pilastro, A., M. Simonato, A. Bisazza, and J. P. Evans. 2004. Cryptic female preference 

 for colorful males in guppies. Evolution 58:665–669. 

Pitnick, S., and W. D. Brown. 2000. Criteria for demonstrating female sperm choice. 

 Evolution 54:1052–1056. 

Pitnick, S., and T. A. Markow. 1994. Large-male advantages associated with costs of 

 sperm production in Drosophila hydei, a species with giant sperm. Proc. Natl. 

 Acad. Sci. 91:9277–9281. 

Pitnick, S., T. A. Markow, and G. S. Spicer. 1995. Delayed male maturity is a cost of 

 producing large sperm in Drosophila. Proc. Natl. Acad. Sci. 92:10614–10618. 

Pizzari, T., and T. R. Birkhead. 2000. Female feral fowl eject sperm of subdominant 

 males. Nature 405:787–789. 

Ram, K. R., and M. F. Wolfner. 2007. Seminal influences: Drosophila Acps and the 

 molecular interplay between males and females during reproduction. Integr. 

 Comp. Biol. 47:427–445. 

Ridley, M. 1989. The incidence of sperm displacement in insects: four conjectures, one 

 corroboration. Biol. J. Linn. Soc. 38:349–367. 

Schaus, J. M., and S. K. Sakaluk. 2001. Ejaculate expenditures of male crickets in 

 response to varying risk and intensity of sperm competition: not all species play 

 games. Behav. Ecol. 12:740–745. 



154 

 

 

Sheldon, B. C. 1994. Male phenotype, fertility, and the pursuit of extra-pair copulations 

 by Female Birds. Proc. R. Soc. Lond. B Biol. Sci. 257:25–30. 

Sheldon, B. C., J. Merilö, A. Qvarnström, L. Gustafsson, and H. Ellegren. 1997. Paternal 

 genetic contribution to offspring condition predicted by size of male secondary 

 sexual character. Proc. R. Soc. Lond. B Biol. Sci. 264:297–302. 

Snook, R. R. 2005. Sperm in competition: not playing by the numbers. Trends Ecol. 

 Evol. 20:46–53. 

Stearns, S. C. 1992. The evolution of life histories. Oxford University Press, New York. 

Tallamy, D. W., M. B. Darlington, J. D. Pesek, and B. E. Powell. 2003. Copulatory 

 courtship signals male genetic quality in cucumber beetles. Proc. R. Soc. Lond. B 

 Biol. Sci. 270:77–82. 

Thomas, M. L., and L. W. Simmons. 2007. Male crickets adjust the viability of their 

 sperm in response to female mating status. Am. Nat. 170:190–195. 

Wagner, W. E., R. J. Kelley, K. R. Tucker, and C. J. Harper. 2001. Females receive a 

 life-span benefit from male ejaculates in a field cricket. Evolution 55:994– 1001. 

Wedell, N., and M. G. Ritchie. 2004. Male age, mating status and nuptial gift quality in a 

 bushcricket. Anim. Behav. 67:1059–1065. 

Wilson, N., S. C. Tubman, P. E. Eady, and G. W. Robertson. 1997. Female genotype 

 affects male success in sperm competition. Proc. R. Soc. Lond. B Biol. Sci. 

 264:1491–1495. 

Zahavi, A. 1975. Mate selection—A selection for a handicap. J. Theor. Biol. 53:205–214. 

 

 

 



155 

 

 

Chapter 7 

7 Overview 

Sexual selection results in differential reproductive success, where reproductive success 

can be defined as the number of offspring an individual produces over its lifetime.  

Various factors can affect lifetime reproductive success including genetic quality, mating 

success, and postcopulatory sexual selection.  Here I determined how to accurately 

measure lifetime reproductive success and its genetic architecture in a multi-generational 

study.  I quantified mating success using a novel approach and correlated it to lifetime 

reproductive success to determine the direct and indirect benefits females may receive.  

To further incorporate an inclusive view of sexual selection, I assessed male quality using 

various fitness traits and measured male performance in both pre- and postcopulatory 

sexual selection.  I also teased apart the mechanisms of sperm competition and the role 

that sperm and proteins found in the seminal fluid (Accessory gland proteins, Acps) play 

in the second male advantage in gaining fertilizations.     

7.1 Lifetime reproductive success 

Sexual selection studies often measure phenotypic variation of a fitness trait.  Studies 

attempting to measure fitness often measure more tractable surrogates of fitness such as 

body size, survivability, viability, growth rate, mating success, longevity, fecundity, or 

fertility (Reid et al. 2004; Anderson et al. 2007; Hosokawa et al. 2007).  Of these 

alternative measurements, the number of offspring an individual produces over its 

lifetime (lifetime reproductive success) is generally considered to be an acceptable 

estimate of fitness (Stearns 1992; Brommer et al. 2004; Hunt and Hodgson, D. 2010).   
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However, these studies are very rarely multi-generational as measuring fitness traits such 

as lifetime reproductive success can be very time consuming and often not feasible.  To 

make the fitness measure of lifetime reproductive success more feasible within a 

commonly-used model system, I examined alternative measurements of lifetime 

reproductive success in Drosophila melanogaster.  I determined that measuring the short 

term cumulative productivity of a singly mated female for five days can accurately 

predict her total lifetime reproductive success (Nguyen and Moehring, in press).  

However, it is important to note that using this short term measure of five days as a 

surrogate for total lifetime reproductive success applies to singly mated females only, as 

no correlation between singly and multiply mated females was found (Nguyen and 

Moehring, in press). 

Since reproductive success involves both the reproductive output of both the parents and 

their offspring, to obtain accurate measurements of reproductive success it is important to 

examine breeding values and the phenotypic variation in the grandchildren.  An initial 

decline in fitness can often be compensated for in future generations, and this would not 

be reflected in single-generation studies (Kokko et al. 2003).  Therefore, the lifetime 

reproductive success of F1 sons and F1 daughters was obtained and quantitative genetic 

analysis was performed using the Cockerham and Weir Biomodel (Cockerham and Weir 

1977; Lynch and Walsh 1988).  Results show that although there was no genetic variation 

in lifetime reproductive success in the parental generation, there is significant variation in 

the F1 generation which would not have been detected in a single generation study 

(Nguyen and Moehring, submitted).   
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7.2 Genetics of sexual selection 

As genetic tools are becoming more available, studies of sexual selection are focusing 

more on the underlying genetic causes of selection and phenotypic traits. Quantitative 

genetic analysis of phenotypic traits in sexual selection is often not feasible as they 

involve lifetime reproductive success measurements (the number of offspring an 

individual produces throughout its lifetime).  However, the genetic architecture of 

phenotypic traits in sexual selection can be estimated by partitioning the variance into 

additive, non-additive, and parental affects (Cockerham and Weir 1977; Lynch and 

Walsh 1988). 

Mating is costly for both sexes, although usually more for females (Turner and Anderson 

1983; Fowler and Partridge 1989; Magurran and Nowak 1991; Pitnick and Markow 1994; 

Rowe 1994; Chapman et al. 1995; Pitnick et al. 1995; Snook 2005).  Females can benefit 

by selectively mating to provide indirect genetic benefits to offspring.  Models of genetic 

benefits come in the form of good genes through additive genetic variation or in compatible 

genes through non-additive genetic variation (Neff and Pitcher 2005).  Very few studies 

have examined the relationship between parental fitness and the fitness of each sex of 

resulting offspring (Kokko 2001).  When assessing this relationship, I found that lifetime 

reproductive success was a result of additive genetic variation (good genes) for F1 

daughters (Nguyen and Moehring, submitted).  Furthermore, F1 females were also more 

sensitive to inbreeding depression (Nguyen and Moehring, submitted).  These results 

indicate a sex specific effect as F1 daughters were most strongly influenced by good 

genes and inbreeding depression.  
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Due to the increasing focus of quantitative genetic analysis, several studies have 

identified the genetic basis for phenotypes involving fitness (Bilde et al. 2008), mating 

(Lawniczak and Begun 2005; Hughes and Leips 2006; Lew et al. 2006), and sperm 

competition (Civetta and Clark 2000).  Although these studies have identified genomic 

regions that contribute to some of the phenotypic traits involved in sexual selection, few 

individual candidate genes have been identified.  Identifying polymorphic genes in 

natural populations causing phenotypic variation in sexually selected traits would be a 

significant contribution to the field of sexual selection.  For instance, although we know 

that sperm precedence is a result of non-additive genetic variation (Hughes 1997), very 

little is known about the molecular basis of this variation.  Genetic variation in sperm 

precedence likely involves seminal fluid proteins (Accessory gland proteins, or Acps), as 

Acps are known to be involved in sperm transfer and are required for sperm storage 

(Tram and Wolfner 1999), but a direct link between variation in Acps and variation in 

sperm precedence has not yet been shown.   

7.3 Accessory gland proteins in sperm competition 

Sperm competition consists of not only sperm itself but also of the proteins found in the 

seminal fluid, Acps (Accessory gland proteins).  Acps are known to have a variety of 

affects on female behaviour, and consequently increase the male's reproductive success 

(Ram and Wolfner 2007).  Second male advantage is a widespread phenomenon where 

the second male to mate fathers the majority of offspring (P2).  Several mechanisms have 

been identified to explain second male advantage, of which both sperm and Acps are 

thought to play a significant role (Price et al. 1999; Manier et al. 2010).  Acps from the 

second mated male can cause females to eject the first male's sperm  (Manier et al. 2010) 
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and can cause incapacitation of residing sperm from the first male (Price et al. 1999).  In 

Chapter 5, I identified an additional mechanism that contributes to second male 

advantage. Acps from the first mated male have a  "protective effect" on the sperm from 

the second mated male, increasing sperm longevity and extending the female's egg laying 

duration (Nguyen and Moehring, Chapter 5).  However, it is unclear how this is achieved 

on a molecular level.  There is very little knowledge on the function of Acps.  Out of 112 

Acps identified in D. melanogaster, only a handful of them are characterized (Ram and 

Wolfner 2007).  

Association tests can be used to identify polymorphic regions or candidate genes in the 

variation of natural populations and link them to a phenotype.  Using these tests, several 

Acps have been identified to associate with sperm competition.  P2 values and offensive 

traits in sperm competition are associated with Acp29AB, Acp33A, CG17331, CG6168, 

Acp26Aa and Acp62F, (Fiumera et al. 2005, 2007), while P1 values and defensive traits 

are associated with  CG8137, CG6168, Acp33A, Acp26Aa/Ab, Acp29B, Acp36DE and 

Acp53E (Clark et al. 1995; Fiumera et al. 2005).  However, association studies merely 

provide a correlation for identifying candidate genes.  To prove the causality of these 

candidate genes, transgenics involving targeted mutation, knock-down/knock-out, and 

genetic rescue experiments need to be performed.   

The detailed mechanism by which Acps achieve their function is unknown.  Although it 

is clear Acps play an important role in sperm competition through incapacitation, 

displacing, dumping, and causing behavioural changes in females, very little is known 

about the molecular mechanisms and pathways of Acps.  Furthermore, the majority of 

our knowledge on Acps are limited to D. melanogaster, with the exception of Acps being 
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identified in a few other insects (Ram and Wolfner 2007).  The first step after gene 

identification would therefore be to characterize how these proteins function in sperm 

competition within a model system.  The tests of candidate genes and their functions 

would then need to be repeated in other species in order to determine whether these 

functions are conserved across taxa.  With improved genetic tools and increased interest 

in sexual selection, the identification and characterization of Acps and their roles in 

sexual selection will expand, increasing our knowledge of the molecular interplay 

between males and females.    

7.4 Inclusive view of sexual selection 

The Fisherian and good genes models have often been pitted against each other in the 

field of sexual selection.  In the Fisherian model, the attractive trait is arbitrary and only 

increases a male's mating success, whereas in the good genes model, the attractive trait is 

an honest indicator of male quality and condition (Fisher 1930; Zahavi 1975; Hamilton 

and Zuk 1982).  If attractive males produce sons of higher fitness and vitality, it is often 

assumed to be a result that aligns with the good genes theory.  A lack of this relationship 

or a negative correlation would indicate that the Fisherian model is more likely to be 

correct.  However, it is possible that females still gain a fitness benefit by mating with 

these males with lower survival.  Males possessing 'good genes' can invest more heavily 

in mating success than other fitness traits, causing a reduction in survival and lifespan 

(Kokko 2001). However, it is irrelevant whether a male is of high quality due to 

survivorship or an increased mating success as both are indicators of high breeding value 

and total fitness (Kokko et al. 2003).  A more inclusive approach to understanding sexual 

selection and female mate choice should therefore be adopted that defines good genes as 
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a combination of both mating success and the success of the offspring that are produced 

(sexy sons hypothesis)  (Kokko 2001; Kokko et al. 2003).  In Chapter 4, I quantified an 

inclusive measure of sexual selection by correlating male mating success to male quality.  

To measure male mating success, I used a novel experimental design representative of 

what occurs in nature that allowed for intense male-male and female-female interactions 

within a mating arena.  Furthermore, I incorporated the indirect fitness benefits to 

offspring as a part of my measure of male quality.  This is one of the few studies that has 

measured male attractiveness and the direct fitness effects on females as well as the 

indirect benefits females may gain in their offspring.  Surprisingly, I found that males 

with a high mating success produced low quality sons (Nguyen and Moehring, Chapter 

4).  This is most likely due to differential allocation of resources, as it is costly for males 

to possess both a mating advantage and be of high quality. 

As previously stated, both productivity and mating success contribute to an individual's 

total overall fitness (Stearns 1992).  An inclusive and comprehensive set of fitness 

components, including the multi-generational fitness of F1 sons and daughters, also 

contribute to overall reproductive success.  Likewise, the environment (i.e., male and 

female condition, presence of competition, mating order, etc.) can alter reproductive 

strategies (Byrne and Rice 2006; Wigby et al. 2009; Nguyen and Moehring, Chapter 5).  

To study sexual selection in varying context and environments, in Chapter 6 I identified 

high and low quality males using the five fitness measures across 10 female lines: (1) 

productivity, (2) productivity of F1 sons, (3) productivity of F1 daughters, (4) mating 

success in competition, and (5) combined fitness traits.  Therefore, high and low quality 

males used in experimentation are fitness measure specific and female line specific.  The 
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five fitness measures incorporated an inclusive view of male quality and the use of 

multiple isofemale lines accounted for genotypic variation.   

In assessing high and low quality male performance in both pre- and postcopulatory 

sexual selection, I noticed the most consistent results across treatments for the combined 

fitness measure (measure 5) (Nguyen and Moehring, Chapter 6).  I determined that high 

quality males courted earlier and more often, but not longer than low quality males; 

females did not accept high quality male courtship more readily.  However, high quality 

males did copulate longer.  Furthermore, high quality males produced more offspring 

when in sperm competition (competing with Acps alone, or sperm and Acps) than low 

quality males.  Females do not play a passive role in postcopulatory sexual selection.  

Male (Clark et al. 1995) and female (Clark and Begun 1998) genotypes, and their 

interactions (Clark et al. 1999) can affect postcopulatory sexual selection and sperm 

displacement.  I found significant female x male interactions when focal males were 

competing with Acps, indicating the presence of cryptic female choice.  However, no 

significant female x male interactions were detected when focal males were competing 

with both sperm and Acps.  These outcomes suggest the possibility of sperm competition 

interactions having a stronger influence on fertilization success than cryptic female 

choice. The results in Chapter 6 emphasize the importance of measuring an inclusive and 

comprehensive set of fitness components when assessing male quality and the 

significance of studying sexual selection across varying genotypes, specifically female 

genotypes since female x male interactions can significantly affect reproductive success.  
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7.5 Concluding remarks  

Sexual selection, an important branch of natural selection, results in variation of 

reproductive success.  Both males and females have evolved reproductive strategies to 

increase their fitness.  Inclusive views of sexual selection that incorporate components of 

male fitness, female fitness, and their interactions are likely the most accurate.  

Comprehensive sets of fitness components should be measured in a multi-generational 

study, where genetic quality incorporates mating success, survivorship, and the 

reproductive success of the offspring.   
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Appendices 

 

 

 

 

 

Figure A.1  Heat map of 

mean productivity for the 

dialell cross of (A) parentals, 

(B) F1 sons and (C) F1 

daughters. The numbers on 

the X and Y axis represent 

the ten isofemale lines; the 

heat map values represent 

the number of offspring that 

were produced. 

 

Appendix A: Chapter 3 supplemental material  
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Appendix B: Chapter 5 supplementary material  

Table B.1 The daily eclosion for the control (without competition) was compared to the 

experimental treatment (competition where the first male has only Acps).  Day 1-24 was 

performed with independent 2-group t-tests, while day 25-31 was performed with a one-

sample one sided t-test. 

 

Eclosion day t d.f. P 

1 -0.362 1791.956 0.717 

2 1.714 1762.417 0.087 

3 2.102 1789.072 0.036 

4 1.551 1745.321 0.121 

5 1.681 1791.709 0.093 

6 1.861 1751.826 0.063 

7 -1.605 1759.321 0.109 

8 -7.587 1741.396 <0.0001 

9 5.883 1654.000 <0.0001 

10 -0.460 1791.452 0.646 

11 1.126 1787.319 0.260 

12 -0.598 1787.063 0.550 

13 -1.200 1739.345 0.230 

14 -2.757 1774.737 0.006 
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15 -10.614 1346.436 <0.0001 

16 -5.244 1743.795 <0.0001 

17 -4.922 1678.305 <0.0001 

18 -2.232 1788.604 0.026 

19 -3.836 1545.065 <0.0001 

20 -1.819 1490.661 0.069 

21 -2.706 1688.127 0.007 

22 -1.381 1789.793 0.167 

23 -3.925 1643.22 <0.0001 

24 -3.665 1474.442 <0.0001 

25 5.8316 931 <0.0001 

26 4.9018 931 <0.0001 

27 3.2931 931 0.0005 

28 3.8316 931 <0.0001 

29 2.9707 931 0.0015 

30 1.9468 931 0.0259 

31 1.8638 931 0.0313 
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Figure B.1 Colored lines link the average productivity (number of offspring produced) of 

females from an isofemale line when mated to a single male (without competition) to the 

same isofemale line when mated first to a spermless, Acp-producing male and then an 

isofemale line male (with competition).   LMM reveals non significant three way 

interaction of male line, female line, and treatment effects.  
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Figure B.2 Productivity (number of offspring produced) when sorted by sex and line.  

Individuals were either singly mated (without competition, light bars) or were mated in 

competition (dark bars) where females were initially mated to a spermless, Acp-

producing male and then the isofemale line male.  LMM reveals significant male line and 

treatment interaction effects as well as female line and treatment interaction effects.   
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Figure B.3  Difference in lifetime reproductive success (LRS, a measure of productivity) 

between the experimental treatment (competition where the first male has only Acps) and 

the control (without competition) regressed on productivity of the control treatment 

(without competition).  This detects whether the increase in productivity due to 

competition was greater for males who have low productivity or high productivity when 

not in competition. A Linear Model (LM) regression was used (R2 = 0.036, d.f. = 45, P = 

0.196). Dashed lines represent 95% CI. 
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Appendix C: Chapter 6 supplementary material  

 

Table C.1 Identity of high and low quality male lines for each isofemale line for all five 

fitness measures.  Shaded combination crosses were not performed.  Isofemale line 4 was 

lost at the time of experiment.  Therefore, any female line that had a corresponding male 

line 4 as a high or low quality male was replaced with the next highest or lowest male 

line (as shown in parenthesis). 

 

Female 

Line 

Male Line 

Productivity Productivity of 

F1 sons 

Productivity 

of F1 

daughters 

Mating 

success 

Overall 

fitness 

measure 

High Low High Low High Low High Low High Low 

1 10 1 8 7 9 1 1 10 8 4(7) 

2 1 3 10 7 3 2 3 7 10 7 

3 10 2 8 4(5) 8 3 1 6 8 4(2) 

4           

5 9 1 5 1 10 5 8 7 9 1 

6 8 1 6 1 1 6 2 9 8 9 

7 4(9) 1 4(8) 9 8 7 2 5 8 7 

8 3 1 7 1 10 8 1 7 3 1 

9 8 2 8 2 8 2   8 2 

10 8 4(9) 8 4(2) 8 9 3 9 8 9 
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Table C.2 Various models for mating analysis.  Variables that were not significant from the log likelihood test were removed in the 

reduced model unless they were significant in a higher order interaction.    
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Model Respone variable 

Percentage of high 
quality and low 
quality males that 
courted  

(See Figure 6.2) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 19.1070 <0.0001 26.3020 <0.0001 1.1145 0.2911 9.1646 0.0024 7e-04 0.9792 

B. Productivity of 
sons 

12.8720 0.0003 0.4481 0.5033 0.8979 0.3433 0.0808 0.7762 0 1 

C. Productivity of 
daughters 

1.5039 0.2201 0 1 3.0500 0.0807 0.5764 0.4477 0.1760 0.6748 

D. Mating success 0 0.9977 0.4375 0.5084 6.6291 0.0100 0.4740 0.4912 0 1 

E. Combined fitness 
traits 

11.5140 0.0006 2.4148 0.1202 0 1 9.8984 0.0016 0 1 
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Model Respone variable 

Time taken for high 
quality and low 
quality males to 
start courting  

(See Figure 6.3) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 4.2276 0.0397 0 1 47.3160 <0.0001 59.0760 <0.0001 0.2102 0.6466 

B. Productivity of 
sons 

9.5710 0.0019 2.5488 0.1104 5.0240 0.0250 13.6080 0.0002 0 1 

C. Productivity of 
daughters 

2.355 0.1249 0.8232 0.3642 7.8714 0.0050 55.9730 <0.0001 0 1 

D. Mating success 0.2821 0.5953 0 1 23.7500 <0.0001 44.3170 <0.0001 0 1 

E. Combined fitness 
traits 

14.2680 0.0007 27.5530 <0.0001 0 1 0 1 4.4306 0.0353 
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Model Respone variable 

Courtship duration  

(See Figure 6.4) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 0.4424 0.5060 0.8296 0.3624 0.5553 0.4562 62.1460 <0.0001 0 1 

B. Productivity of 
sons 

3.0886 0.0788 0.3331 0.5639 0.4560 0.4995 14.5440 0.0001 0 1 

C. Productivity of 
daughters 

2.0623 0.1510 4.8185 0.0281 0 1 63.7320 <0.0001 0 1 

D. Mating success 0.2990 0.5845 2.0968 0.1476 0 1 47.8060 <0.0001 0 1 

E. Combined fitness 
traits 

2.3991 0.1214 5.0120 0.0251 2.0442 0.1528 42.1750 <0.0001 0.4049 0.5246 
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Model Respone variable 

Percentage of high 
and low quality 
males that mated 
out of those that 
courted               

    (See Figure 6.5) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 1e-04 0.9919 0 1 5.6797 0.01716 4.5922 0.0321 0 1 

B. Productivity of 
sons 

2.7492 0.0973 0.2089 0.6477 9.6254 0.0019 0.2004 0.6544 0 1 

C. Productivity of 
daughters 

0.3225 0.5701 0.0925 0.761 5.7772 0.0162 5.4680 0.0193 0 1 

D. Mating success 0.3727 0.5415 5.1265 0.0235 0 1 1.1900 0.2753 0 0.9999 

E. Combined fitness 
traits 

0.1015 0.7501 0.5986 0.4391 6.8154 0.0090 0.7877 0.3748 0 1 
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Model Respone variable 

Percentage of high 
and low quality 
males that mated 
out of total 
replicates           

 (See Figure 6.6) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 1.2245 0.2685 0 1 10.9230 0.0009 5.0531 0.0245 0 1 

B. Productivity of 
sons 

4.4465 0.0349 0.1968 0.6573 11.1160 0.0008 0.4278 0.5131 0 1 

C. Productivity of 
daughters 

0 0.9994 0 0.9999 9.8994 0.0016 5.5963 0.0180 0 1 

D. Mating success 0.3909 0.5319 1.4179 0.2338 1.8422 0.1747 1.5907 0.2072 0 1 

E. Combined fitness 
traits 

1.0323 0.3096 0.8762 0.3492 5.8594 0.0154 4.3479 0.0370 0 1 
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Model Respone variable 

Copulation duration 

 (See Figure 6.7) 

Male quality Female line Female line * Male 

quality 

Male thorax size Male quality * 

Male thorax size 

χ
2

(1) P  χ
2

(1) P χ
2

(1) P χ
2

(1) P χ
2

(1) P 

A. Productivity 0.9025 0.3421 0 1 0.8735 0.3500 111.470
0 

<0.0001 0 1 

B. Productivity of 
sons 

7.9129 0.0049 0 1 0 1 13.7790 0.0002 0 1 

C. Productivity of 
daughters 

0.3478 0.5553 0 1 0 1 112.630
0 

<0.0001 0 1 

D. Mating success 1.3497 0.2453 1.8122 0.1782 0 0.9999 85.0350 <0.0001 0 1 

E. Combined fitness 
traits 

7.2763 0.0069 0 1 3.7529 0.05272 92.0690 <0.0001 0 1 
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Table C.3 Various models for postcopulatory selection analysis.  Variables that were not 

significant from the log likelihood test were removed in the reduced model unless they 

were significant in a higher order interaction. 

 

Model Response variable 

  Male quality Female line Female line * Male 
quality 

  χ
2

(1) P  χ
2

(1) P χ
2

(1) P 

Productivity in Acps 
competition        
(See Figure 9) 

      

 A. Productivity 0.1396 0.7087 0.3694 0.5433 9.6090 0.0019 

 B. Productivity 
of sons 

0.8922 0.3449 0.5398 0.4625 21.4820 <0.0001 

 C. Productivity 
of daughters 

1.1608 0.2813 0.1893 0.6635 12.2020 0.0004 

 D. Mating 
success 

3.1591 0.0755 0 1 16.863 <0.0001 

 E. Combined 
fitness traits 

4.6018 0.0319 0.9664 0.3256 8.7383 0.0031 

Fertilization success 
of the second mated 
male in sperm and 
Acps competition 
(See Figure 10) 

      

 A. Productivity 2.2579 0.1329 0 1 0 1 

 B. Productivity 
of sons 

2.5764 0.1085 13.2420 0.0002 0.6300 0.4274 

 C. Productivity 
of daughters 

2.6979 0.1005 0 1 0.3518 0.5531 
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 D. Mating 
success 

3.1554 0.0756 0 1 4.4753 0.0343 

 E. Combined 
fitness traits 

17.5640 <0.0001 1.3867 0.2390 1.7111 0.1908 
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Figure C.1 Percent of high (H) and low 

(L) quality males that courted, separated 

by female line, for all five fitness 

measures: (A) productivity, (B) 

productivity of F1 sons, (C) productivity of 

F1 daughters, (D) mating success, and (E) 

overall fitness traits.  (See Figure 6.2) 
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Figure C.2 Time taken for high (H) and        

low (L) quality males to start courting, 

separated by female line, for all five 

fitness measures: (A) productivity, (B) 

productivity of F1 sons, (C) productivity 

of F1 daughters, (D) mating success, and 

(E) overall fitness traits.  (See Figure 

6.3) 



186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 A measure of female 

preference: courtship duration separated by 

female line.  The time taken for females to 

accept high (H) or low (L) quality male's 

courtship and start mating for all five 

measures of fitness: (A) productivity, (B) 

productivity of F1 sons, (C) productivity of 

F1 daughters, (D) mating success, and (E) 

overall fitness traits.  Error bars represent 

95% CI.  (See Figure 6.4) 
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Figure C.4 A measure of male success: 

percent of high (H) and low (L) quality 

males that mated out of those that 

courted separated by female line for all 

five measures of fitness: (A) 

productivity, (B) productivity of F1 sons, 

(C) productivity of F1 daughters, (D) 

mating success, and (E) overall fitness 

traits.  (See Figure 6.5) 
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Figure C.5 A measure of male success: 

percent of high (H) and low (L) quality 

males that mated out of the total 

number of replicates performed 

separated by female line for all five 

measures of fitness: (A) productivity, 

(B) productivity of F1 sons, (C) 

productivity of F1 daughters, (D) 

mating success, and (E) overall fitness 

traits.  (See Figure 6.6) 
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Figure C.6 The length of copulation 

duration for high (H) and low (L) quality 

males separated by female line for all five 

measures of fitness: (A) productivity, (B) 

productivity of F1 sons, (C) productivity 

of F1 daughters, (D) mating success, and 

(E) overall fitness traits.  Error bars 

represent 95% CI.  (See Figure 6.7)
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Figure C.7 Lifetime reproductive success 

for high and low quality males when in 

competition with a spermless male 

separated by female line for all five 

fitness measures: (A) productivity, (B) 

productivity of F1 sons, (C) productivity 

of F1 daughters, (D) mating success, and 

(E) overall fitness traits.  Error bars 

represent 95% CI. (See Figure 6.9) 
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Figure C.8 The proportion of offspring 

sired by the second male for high and 

low quality males when in competition 

with each other separated by female line 

for all five fitness measures: (A) 

productivity, (B) productivity of F1 sons, 

(C) productivity of F1 daughters, (D) 

mating success, and (E) overall fitness 

traits.  Error bars represent 95% CI. (See 

Figure 6.10)
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Figure C.9 Cumulative daily number of offspring for multiply mated female controls for 

each female line.  Solid lines represent high quality males, dashed lines represent low 

quality males.  Males are categorized as either high or low quality based on the combined 

fitness traits measure.  Error bars are not shown as they would obscure the ability to 

visualize differences among the averages.  
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Figure C.10 Cumulative daily number of offspring for singly mated female controls for 

each female line.  Solid lines represent high quality males, dashed lines represent low 

quality males.  Males are categorized as either high or low quality based on the combined 

fitness traits measure.  Error bars are not shown as they would obscure the ability to 

visualize differences among the averages.  
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Figure C.11 Total lifetime reproductive success (productivity) in (A) singly mated controls and (B) multiply mated controls for high 

and low quality males defined by all five fitness measures.  A t-test was performed to detect differences in productivity between low 

quality and high quality males.  Asterisks represent significant differences (P < 0.05) between low quality and high quality males 

defined by the particular fitness measure. Error bars represent 95% CI.  (Single mating control: Parents; t = -1.862, d.f. = 319.690, P = 

0.064, Sons; t = -2.464, d.f. = 334.634, P = 0.014, Daughters; t = -0.262, d.f. = 333.953, P = 0.793, Mating; t = 0.019, d.f. = 298.415, 

P = 0.985, Overall; t = -3.270, d.f. = 314.395, P = 0.001.  Multiple mating control: Parents; t = -7.611, d.f. = 66.208, P < 0.0001, Sons; 

t = -3.887, d.f. = 62.755, P < 0.0001, Daughters; t = -1.126, d.f. = 64.481, P = 0.265, Mating; t = 0.919, d.f. = 61.852, P = 0.362, 

Overall; t = -5.628, d.f. = 62.910, P < 0.0001).  

* * 

* * 
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Figure C.12 Summary of potential relationships of productivity with various treatments.  

All y-axis values were without competition with other males and all x-axis values were 

with competition.  A LM was performed.  For those that did not meet the criteria for a 

LM, a GLM was performed with a quasipoisson distribution.  (A; F(1, 45) = 23.94, R2 = 

0.3327, P < 0.0001, B; F(1, 45) = 27.10, R2 = 0.3620, P < 0.0001, C; pseudo R2 = 0.0112, 

d.f. = 45, P = 0.4860, D; pseudo R2 = 0.0089, d.f. = 45, P = 0.5340, E; pseudo R2 = 

0.0006, d.f. = 45, P = 0.8600, F; pseudo R2 = 0.0101, d.f. = 45, P = 0.5010, G; F(1, 45) = 

0.3464, R2 = -0.0144, P = 0.5591, H; pseudo R2 = 0.0023,  d.f. = 45, P = 0.7450). 
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P < 0.0001 P < 0.0001 

P = 0.4860 P = 0.5340 

P = 0.8600 P = 0.5010 

P = 0.5590 P = 0.7450 
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