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Abstract 

 

The objective of this work was to develop a computational model that could 

accurately predict blood flow in skeletal muscle arteriolar trees in the 

absence of complete boundary data. We used arteriolar trees in the rat 

gluteus maximus muscle (GM) that were reconstructed from montages 

obtained via intravital videomicroscopy, and incorporated a recently 

published method for approximating unknown boundary conditions into our 

existing steady-state model of two-phase blood flow. For varying numbers of 

unknown boundary conditions, we used the new flow model and GM 

arteriolar geometry to approximately match red blood cell (RBC) flows 

corresponding to experimental measurements. We showed that this method 

gives errors that decrease as the number of known boundary conditions 

increases. We also showed that specifying total blood flow into the arteriolar 

tree decreases the mean RBC flow error and its variance. By varying the 

target values of pressure and wall shear stress required by the model, we 

showed that results are less sensitive to the target pressure and, in addition, 

proposed a method for estimating the optimal target shear stress.    

 

Key words: Mathematical Model, Skeletal Muscle, Arteriolar Tree, Intravital 

Videomicroscopy, Blood Flow, Fry Method, Streak Method 
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Chapter 1  

1 Introduction & Background  

Blood is a complex fluid that contains a mixture of liquid plasma, made up of water, 

proteins, and other dissolved substances, and particulate elements, mainly red blood cells 

(RBCs), white blood cells (WBCs), and platelets.  In response to the pressure gradient 

generated by the heart, blood flows through the blood vessels of the systemic circulation 

to transport oxygen and carbon dioxide between the lungs and the tissues. When blood 

leaves the heart, it first flows into arteries, which are relatively large vessels. Arteries 

branch to progressively smaller vessels until reaching arterioles and then capillaries. 

These capillaries have very thin walls that allow oxygen to diffuse easily to nearby cells 

and carbon dioxide to diffuse from nearby cells into the blood. Capillaries are drained by 

venules that form from joining capillaries together. Smaller venules join to form 

progressively larger venules and eventually veins, until blood is returned from the 

systemic circulation to the heart by the vena cava. 

As noted above, blood is a non-homogeneous fluid, but in some cases it can be treated as 

homogenous, in particular when studying blood flow in large arteries.  However, when 

studying blood flow in small vessels like arterioles and capillaries we must consider 

blood as a suspension.  This is because when vessel diameters approach the same order of 

magnitude as the diameter of RBCs unique rheological effects occur that substantially 

affect blood flow [14].  

1.1  The Microcirculation 

The microcirculation is the part of blood circulation that consists of the smallest vessels 

in the body, with diameters ~100 𝜇m or less, which are classified as arterioles, capillaries, 

or venules based on their anatomical location and physiological role [53]. The first major 

function of the microcirculation is exchange of gases (oxygen and carbon dioxide), 

nutrients, water, hormones, and metabolic waste products between blood and the 
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surrounding tissue, which means that the microcirculation is also involved in regulation 

of oxygen consumption and metabolism in all the body’s cells [6][53].  

Arterioles and venules have smooth muscle cells in their walls that control changing of 

their diameters (contraction or dilation) and hence blood flow (Q), since flow resistance is 

inversely proportional to the fourth power of diameter [53] according to Poiseuille’s Law: 

𝑄 = ∆𝑃/ℜ                                                         Eq.1 

where: 

∆𝑃 is the pressure drop 

ℜ = 8𝐿𝜂/𝜋𝑟!  is the resistance 

𝐿 is the vessel length 

𝜂  is the blood viscosity 

𝑟 is the vessel radius 

 

Arterioles are the most important vessels in controlling blood flow, since they have 

smaller diameters and higher resistance than venules, while venules are more important in 

controlling vascular volume via changes in their smooth muscle tone and diameter. 

Capillaries do not have smooth muscle cells surrounding the endothelial layer and 

therefore cannot directly control blood flow. The main function of capillaries is exchange 

of O2, CO2 and water between blood and the surrounding tissue. It has also been proposed 

that capillaries are the sites where oxygen-dependent flow regulation signals originate 

(via ATP release from O2-depleted RBCs), which are then conducted upstream along the 

capillary endothelium and cause arteriolar dilation [10][11].  

It is believed that RBC perfusion of individual capillaries is regulated by passive 

mechanisms [8]. This means that in a given capillary bed spatial heterogeneity of RBC 
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flow is high under low flow conditions, but becomes lower as flow increases. Moreover, 

besides being spatially heterogeneous, the RBC flow within each capillary is not steady, 

but varies with time (temporal heterogeneity) [8]. 

1.2  Arterioles and Regulation of Flow and Resistance 

Arterioles are the smallest arteries. The inner walls of arterioles (made up mainly of 

endothelial cells) are surrounded by a layer of smooth muscle cells [6][53]. The smooth 

muscle cells are partially controlled by the sympathetic nervous system (SNS) which 

modulates their level of contraction according to signals from baroreceptors in the brain 

to increase or decrease overall vascular resistance [6]. Thus, the first major role of the 

arteriolar microcirculation is controlling systemic blood pressure.           

The second major role of the arteriolar microcirculation is controlling local blood flow, at 

the level of individual tissues and tissue sub-regions, via the response of their smooth 

muscle cells and endothelial cells to different local factors, such as changes in shear 

stress, local pressure (myogenic effect), and blood oxygen level [6][14]. 

1.2.1  Arteriolar Regulation in Skeletal Muscle 

To study microcirculatory regulation, it is desirable to consider tissues that have the 

ability to greatly alter their blood flow and metabolism. One important tissue that has this 

characteristic is muscle. Muscles have three main types: skeletal muscle, heart muscle, 

and (vascular) smooth muscle.  

Skeletal muscle makes up 40% of body mass, which means it has more microvessels than 

any other organ in the body. According to the microvascular structure in skeletal muscle, 

it is the most dynamic tissue in the body, because it has the ability to increase blood flow 

and metabolic rate about 20- to 50-fold, respectively [27][45]. Another main function of 

skeletal muscle, besides locomotion, is based on its microvascular resistance and linked 

to systemic blood flow and pressure regulation [29]. This a compelling reason for 

studying the microcirculation in skeletal muscle, because it integrates very sensitive local 
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regulation (to meet its own metabolic demands) and very strong global regulation (to 

maintain systemic blood pressure and flow).  

1.3  Blood Flow in Microvessels 

Hemodynamics is the study of the forces involved in circulating blood through the body.  

The main motor behind the blood circulation is the heart, which induces arterial pressure 

to pump the blood. The heart is two pumps (right and left) and each pump has two 

chambers, the upper chambers called the atria and the lower chambers called the 

ventricles. There are valves between the chambers to prevent the blood from reversing 

direction and to enable the systemic arterial pressure to be much higher than the blood 

pressure in the lungs [53].  

When the heart pumps the blood, there is an oscillating pressure force generated to drive 

blood through the vasculature. The oscillations due to the cardiac cycle are not very 

strong in the microcirculation, and are often not explicitly considered when studying 

steady-state flow in arterioles, venules and capillaries.  

Measuring blood flow gives an idea of the function of the cardiovascular system and the 

capability of the heart and lungs to supply oxygenated blood to the tissues [53].  The 

microvasculature plays an important role in the transport of materials by the blood 

through exchange of materials (e.g., O2, CO2) with tissues across microvessel walls [37].  

Blood flow in the microcirculation differs from that in larger vessels in three main ways. 

First, hematocrits are variable due to the plasma skimming effect [13][32][35], which 

means blood volume flow and RBC flow (or discharge hematocrit) must be considered 

separately.  Second, due to both hematocrit variability and vessel size effects, the 

effective blood viscosity varies in microvessels (Fahreaus-Lindqvist effect) [33][37].  

This is primarily important in theoretical modeling, since it affects the pressure-flow 

relationship, but is also important in understanding the basic biophysics of microvascular 

flow.  Finally, in microvessels the apparent hematocrit (volume-averaged or tube 

hematocrit) is lower than in larger vessels (Fahraeus effect) [37], due to the fact that 

RBCs travel more near the center of vessels and hence have higher average velocities 
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than plasma.  Thus, in microvessels the tube hematocrit is typically lower than the 

discharge (or flow-weighted) hematocrit, which tends to be closer to the value of 

systemic hematocrit. 

Blood flow in large vessels can be measured directly (e.g., using Doppler ultrasound 

[13][53], or estimated from measured values of parameters such as blood pressure and 

cardiac output, and values of overall tissue perfusion can also be obtained by similar 

methods [13].  However, these methods are not applicable to the microcirculation, and it 

is much more difficult to measure blood flow in individual microvessels or microvascular 

networks, due to the small length scales (~10 microns) and complex geometries and flow 

patterns usually involved [37].  For this reason, blood flow in microvessels has been 

studied by using a combination of experimental methods (in vivo and in vitro) and 

theoretical models [37]. 

1.3.1  Experimental Methods 

Measuring blood flow experimentally in microvessels means obtaining topological 

(connectivity), morphological (diameter and length), and hemodynamic (RBC velocity 

and hematocrit) information for all network vessels, although this information 

(particularly hemodynamics) will usually be incomplete based on in vivo studies alone 

[39]. Since the present work is focused on blood flow in arterioles, we focus on 

experimental methods for larger microvessels that typically have multiple RBCs across 

the lumen, rather than methods for capillaries [7][9][20][21], which typically have single-

file RBC flow.   

One particularly important experimental study of the microcirculation was published by 

Pries et al. in 1990 [39].  Data was obtained for three microvessel networks that consisted 

of 913, 546, and 436 vessel segments [39]. Intravital microscopy was used to scan 

mesenteric areas (50-80 mm2) in male Wistar rats for 40 minutes, and obtain photographs 

and video recordings from each field [39]. The photographs were used to get 

photomontages of the networks and determine diameter and vessel length at each 

bifurcation [39]. A microphotometric method [31][33] was used to determine tube 

hematocrit and discharge hematocrit values from the corresponding video recording [39]. 
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These parameters were used as a basis for studying blood flow in microvessels by 

applying theoretical models, discussed in the following section.  

Note that the streak length method is another, more recent technique for measuring blood 

flow experimentally, and will be discussed in detail in Section 1.4.  

1.3.2  Theoretical Models 

To estimate microvascular blood flow distributions, there are many components that 

should be determined first, such as the vessel diameter, lengths, and topological 

arrangement of all segments [23][39].  If possible, each model must be validated, by 

comparing calculated results with experimental results [39], before being used to predict 

the blood flow properties of a given microvascular network.  

There are several models that have been developed to simulate blood flow in 

microvessels based on information obtained from experimental methods. Schmid-

Schönbein et al. [47] developed a model to track individual blood cells (RBCs and 

WBCs). Furman and Olbricht [15] worked on simulating RBC and WBC motion in a 

small network. Papenfuss and Gross [26] simulated blood flow in a small network (seven 

segments) using a continuum model, which laid the basis for most subsequent flow 

simulations in larger networks. 

Biophysical models of blood flow in microvascular networks must consider the pressure-

flow relationship in individual vessels, as well as how the RBC and plasma (and possibly 

other) components of blood are distributed at diverging bifurcations. The pressure-flow 

relationship is usually described by assuming Poiseuille’s law with a variable viscosity 

(due to the Fahraeus-Lindqvist effect) that depends on vessel diameter and hematocrit and 

is obtained from experimental data.  The distribution of RBCs at diverging bifurcations 

(plasma skimming effect) is usually described by an experimentally obtained dependence 

on diameters, blood flow distribution to the daughter vessels, and hematocrit of the parent 

vessel. 
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In 1990, Pries et al. [39] presented a network flow model that included empirical relations 

for blood viscosity (based on published human data) and plasma skimming (obtained 

earlier based on data in rat mesentery, Pries et al. 1989 [32]). They described an iterative 

procedure in which linear solutions for network blood flow (which affects hematocrit 

distribution) and hematocrit (which affects viscosity and hence blood flow) were 

alternated until steady-state values were obtained in all vessel segments.  A very similar 

model was later published with an improved ‘in vivo’ viscosity relation [40] based on 

additional data in microvascular networks of the rat mesentery.   

The above model [40] has been cited over 250 times and used in many studies of blood 

flow [13][19][36][41][46], mass transport [4][17][22] and structural changes of the 

microvasculature [30][34][38][42][43].  It has also been used to investigate the role of the 

endothelial surface layer (‘glycocalyx’) in microvascular blood flow (Pries and Secomb 

2005) [35] and, in particular, to show that in vivo flow resistance can be explained by in 

vitro blood viscosity and the presence of an endothelial surface layer (ESL). 

The models described in this section assume that all needed boundary conditions 

(pressure or flows at inflow and outflow vessels) are known.  The Fry method [13] is an 

example of a blood flow model that addresses the more realistic case where not all 

boundary conditions are known, and will be explained in Section 1.5.  

1.4  Streak Length Method 

Recently in our laboratory, a novel experimental method was developed to measure blood 

flow in the skeletal muscle arteriolar tree [1]. This method can be used to obtain the 

profile of RBC axial velocity across the lumen, and thereby calculate the blood volume 

flow rate at any given location. This work also measured the velocity ratio (VRatio), which 

is the maximum RBC velocity (Vmax) divided by the mean blood flow velocity (Vmean).   

Since Vmean times the vessel cross-sectional area gives the blood flow rate, while Vmax 

(~centerline RBC velocity) is more easily measured, knowing VRatio provides a 

convenient means of measuring blood flow in microvessels via the equation Q=

𝜋𝑅!×𝑉!"#/𝑉!"#$% where R is the lumen radius.  Until the very recent development of the 
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‘streak length’ method (described below), most researchers used the constant value 

VRatio=1.6 (versus 2 for Newtonian fluid) to calculate blood flow from Vmax.  This value 

was estimated by Baker and Wayland [2] using the dual-slit/sensor cross-correlation 

technique.  However, it was later shown by Pittman and Ellsworth [28] that VRatio could 

vary substantially and depended on blood vessel diameter and the bluntness of the RBC 

velocity profile, as well as on the relative size of the sensor for the cross-correlation 

technique. 

In addition, as pointed out in [1], in past studies there was a relatively small range of 

vessel diameters (~17 𝜇m to 40 𝜇m) over which blood velocity was measured because of 

experimental and technical limitations.  These past studies, in which microvascular RBC 

velocity profiles were obtained experimentally, considered rabbit omentum arterioles and 

venules [48], rabbit mesentery arterioles [25][49][50][51], and rat skeletal muscle venules 

[3][5]. 

The preceding issues motivated the study described in this section [1], in which an 

experimental method was developed (Streak Length Method) to provide better 

measurements of RBC velocity profiles in a broad range of diameters and at multiple 

levels of arteriolar networks. These accurate velocity profiles facilitated the process of 

calculating arteriolar blood flow and the RBC velocity ratio over a wider range of 

diameters than had previously been possible. 

1.4.1  Method Description 

In the streak length method, intravital videomicroscopy (IVVM) of the rat gluteus 

maximus muscle (GM) was used to obtain the velocity of fluorescently labeled RBCs 

flowing through arterioles of 6-7 week old male Sprague-Dawley rats. The arteriolar 

networks used provided data in 37 vessel segments with diameters ranging from 21 𝜇m to 

115 𝜇m. 

Streaks in IVVM images (frames) were produced by fluorescing RBCs, which were 

labeled with fluorescein isothiocyanate (FITC 0.4mg/mL) dye solution and injected at 1% 

of the animal’s total blood volume [1]. The exposure time over which these optical 
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images were collected was low (5 ms) for fast flow in large arterioles and higher (20 ms) 

for slower flow in smaller arterioles, so that ‘streaks’ could be obtained in single video 

frames for estimation of RBC velocities. Radial profiles of RBC velocity across the 

lumen were obtained from measuring the average of velocity in each lane, where lanes 

were obtained by dividing the cross-section of the arteriolar lumen into discrete regions 

approximately the width of a flowing RBC. 

RBC velocities were calculated by following this equation: 

𝑉!"# =
𝐿𝑠!"# − 𝐿!"#

𝑇                                                                                                     Eq.  2 

 

where:  

VRBC is RBC velocity  

LsRBC is length of fluorescent RBC streak 

LRBC is length of RBC 

T is exposure time  

Since the RBC biconcave characteristic is conserved, the RBC thickness is almost 

constant. Additionally, RBCs have elliptical cross-section during the flow, so RBC width 

was set to the width of each streak. The length of the RBC along the flow direction was 

calculated using this equation: 

 

𝐿!"# =
4  𝐴!"#
𝜋  𝑊!"#

                                                                                                              Eq.  3 
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where ARBC  is the coronal cross-sectional area for RBC, which was calculated from the 

average RBC diameter of 7.18 𝜇m, and WRBC is the measured RBC width. 

Using the VRBC values across the lumen given by Eq. 2, the streak method integrates the 

velocity profile numerically (using Matlab) with the assumption that velocity is zero at 

the vessel wall.  This gives the blood flow rate, and Vmean is then obtained by dividing 

blood flow by vessel cross-sectional area (𝐴 = 𝜋𝐷!/4).  Finally VRatio is obtained by 

dividing the measured Vmax (RBC velocity on centerline) by Vmean:    

𝑉!"#$% =
𝑉!"#

𝑉!"#$                                                                                                     Eq.  4 

 

1.4.2 Results and Summary 

Using the streak length method, arteriolar blood flow was estimated over a diameter 

range of 21-115 µm, and was shown to obey a form of Murray’s Law [24] with blood 

flow Q ∝ D2.63 where D is the lumen diameter. VRatio was shown to vary substantially 

(~1.3 to 2.0) over this range of diameters, and the dependence of VRatio on diameter was 

shown to be well-approximated by the equation: 

VRatio = 0.0071 * D + 1.15                                             Eq. 5 

The streak length method is an in vivo method that has been developed and validated 

successfully to quantify blood flow rates throughout the rat GM arteriolar tree, and has 

been used to derive a novel relationship between the velocity ratio and arteriolar 

diameter. While the streak length method has many other possible applications, the 

VRatio(D) relationship above can be used to obtain more accurate values of blood flow in 

arterioles independent of how Vmax is measured. 

1.5  Fry Method 

Most previous modeling of blood flow in microvascular networks has either used a 

complete set of measured boundary flows [40] or (more commonly) assumed a fixed 
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pressure drop between the network entrance(s) and exit(s) [17]. Recently, a mathematical 

method was presented that can estimate blood flow distributions using incomplete 

information about blood flow boundary conditions [13]. The data used to develop this 

method were obtained from a previous experimental study with four microvascular 

networks [39].  

1.5.1  Approach 

This method depends on determining target values of wall shear stress and intravascular 

pressure from independent information about typical network hemodynamic properties, 

and then minimizing the squared deviations of shear stresses and pressures from these 

values.  This minimization allows determination of pressure and flow throughout the 

microvascular network of interest, including at any boundary nodes where flow or 

pressure data were previously unknown. 

The Fry method is based on the mathematical description used to solve for blood flow in 

a microvascular network when all boundary conditions are known. In particular, the M 

and K matrices described below are used. 

The matrix 𝑀 describes the conductance (inverse of Poiseuille resistance) of each 

segment and is defined as: 

 

𝑀!"= 

+
𝝅𝒓𝒋

𝟒

𝟖𝝁𝒋𝓵𝒋
,      if  𝒌  is  the  start  node  of  segment  𝒋    

−
𝝅𝒓𝒋

𝟒

𝟖𝝁𝒋𝓵𝒋
,          if  𝒌  is  the  end  node  of  segment  𝒋

𝟎,        otherwise

                                                            Eq. 6 

 

where 𝑟! is the radius and ℓ𝓁! is the length of segment 𝑗. 𝜇! is effective viscosity which is 

assumed to be known. Blood flow in a given segment is then 

𝑄! = 𝑀!"   𝑃!                                                                                                                                                                  !∈! Eq. 7 
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where 𝑁 is the set of all nodes and 𝑃! is the nodal pressure. 

The 𝐾  matrix describes blood flow conservation at each node and is defined as: 

𝐾!" =    𝐿!"𝑀!"!∈!                                                   Eq. 8 

where 𝑆 denotes all segments in the network, and 𝐿!" is defined as: 

 

𝐿!" =
−1,          if  𝑖  is  the  start  node  of  segment  𝑗
+1,          if  𝑖  is  the  end  node  of  segment  𝑗

0,          otherwise
                                                            Eq. 9 

When all boundary conditions are known, the following linear problem is solved to obtain 

the pressures at all nodes. 

𝐾!"𝑃! = −𝑄!!     for  𝑖 ∈ 𝑁
!∈!

                                                                                Eq. 10 

where 𝑄!! is defined as the inflow or outflow (if negative) if 𝑖 is a boundary node, and 0 

otherwise.  

The blood flows calculated above are used to update the hematocrit of each segment, 

using an equation describing the plasma skimming effect at diverging bifurcations [32] 

and the conservation of RBC flow at each node: 

𝐿!"𝑄!𝐻!"!∈! = 0  for  𝑖 ∈ 𝑁                                                                                Eq. 11 

where HDj is the discharge hematocrit in segment j, and for inflow segments Eq. 11 is 

replaced by specifying the inflow value of HD.   

After solving for hematocrits, the effective viscosity is recalculated using an expression 

for the Fahraeus-Lindqvist effect [33][37][44] and these new hematocrit values. As 

described in Section 1.3, the flow and hematocrit solution steps are then repeatedly 

alternated until convergence is reached for blood flow, hematocrit, and effective viscosity 

in each vessel segment and pressure at each node. 
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When the pressure or flows are not known at every boundary node, then a constrained 

minimization problem is solved such that all the equations in Eq.10 with known right-

hand side (i.e., internal nodes and known boundary conditions) are satisfied. 

For this method it is necessary to define target shear stresses 𝜏!! and pressures 𝑃!!.  

Ideally, these target values are typical for each vessel (e.g., as a function of size), but they 

should at least be in the physiological range to ensure that the resulting solution values 

are reasonable. These target values are then used to minimize the total squared deviation: 

𝐷 = !
!
𝑘! 𝑤!(𝑃! − 𝑃!!)! +

!
!
𝑘! ℓ𝓁!(𝜏! − 𝜏!!)!!∈!!∈!                     Eq. 12 

 

where 𝜏! is the wall shear stress, 𝑘!  and 𝑘! are weighting factors associated with the 

pressure and shear deviations from the target values, and 𝑤! is the vessel length 

associated with node 𝑘 and defined as: 

𝑤! = 1/2 ℓ𝓁!                                                      Eq. 13 

where the sum is over all segments connected to node k. The wall shear stress 𝜏! is 

defined as 

𝜏! = 𝑐!𝑄! = 𝑐! 𝑀!"𝑃!!∈!                                         Eq. 14 

where 

𝑐! = 4𝜇/𝜋𝑟!!                                                  Eq. 15 

 

The Lagrangian objective function below is used to obtain a system of equations for all 

the pressures 𝑃! in the network and the Lagrange multipliers 𝜆! are used to ensure that the 

fully determined equations in Eq. 10 are satisfied: 
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𝐿 =
1
2 𝑘! 𝑤!(𝑃! − 𝑃!!)! +

1
2 𝑘! ℓ𝓁!(𝜏! − 𝜏!!)! + 𝜆!( 𝑘!"𝑃! + 𝑄!,!)  

!∈!!∈!∪!!∈!!∈!

Eq. 16 

The governing equations are obtained by making 𝐿 stationary with respect to the 

unknowns 𝑃! and 𝜆!. Taking 𝜕𝐿/𝜕𝜆! = 0 gives the equations in Eq. 10 with known right-

hand sides, while taking 𝜕𝐿/𝜕𝑃! = 0 gives the remaining equations needed to solve for 

all the Pk and 𝜆!.  

In this method there are two approaches to set the magnitudes of the target wall shear 

stresses 𝜏!!. The first approach is using one fixed value for all segments, while the second 

approach is to calculate the target shear stress as a function of the pressure. These two 

approaches were shown in [13] to give very similar results.  

1.5.2  Results 

The goal of this study was to estimate blood flow distribution based on incomplete 

information in the microvascular network. Four microvascular networks were used with a 

range of segment numbers from 383 to 547 and a range of boundary nodes from 22 to 40. 

This method gave good results overall, when comparing the estimated results with the 

true values, but showed that the error increases substantially when there are a high 

number of unknown boundary conditions. 

1.5.3  Implications 

The Fry method was developed using microvascular networks from the mesentery (Figure 

1-1), which differ both topologically and geometrically from the arteriolar networks we 

are considering in skeletal muscle (Figure 1-2).  In particular, the mesenteric networks 

had multiple inlets, multiple flow paths between nodes, and relatively large vessels with 

diameters that did not decrease progressively from the network inflow(s) to outflows.  In 

contrast, we are mainly interested in skeletal muscle arteriolar trees having a single 

inflow, unique flow paths between nodes, and a progressive increase in vessel number 

and decrease in vessel size as the network is traversed in the downstream direction.  

Therefore, it was necessary to determine if the Fry method is also applicable to these 
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arteriolar trees, and if so to determine the dependence of errors in flow estimation on the 

number of unknown boundary conditions.     
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Figure 1–1. Computer-generated map of network I in Fry et al. [13]. Flow directions 

predicted with two known boundary conditions known. Black: correct flow direction. Red: 

reversed flow direction. (Reproduced with permission, see Appendix.) 
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Figure 1–2. Computer-generated network geometry obtained from montages of rat skeletal 

muscle (gluteus maximus) arteriolar tree in our study. Details given in Chapter 2. 
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1.6  Motivation and Objectives 

Our motivation for this project is to develop a realistic mathematical model of steady-

state blood flow in skeletal muscle arteriolar trees that can be used to analyze flow 

resistance and predict blood flow patterns, in order to facilitate studies of microvascular 

flow regulation in health and in diseases such as diabetes.  This method will be based on 

in vivo data on microvascular network structure, but needs to be robust to the absence of 

complete hemodynamic boundary data (obtained via the streak method).  Therefore, we 

are developing our method based on the work of Fry described above [13] and on our 

group’s previous work on simulating steady-state two-phase (RBCs and plasma) flow in 

microvascular networks [52][16][12][17][18]. 

The specific objectives of this project are: 

1- To show, when some or all boundary data are unknown, that our flow model can 

predict blood flow patterns in skeletal muscle arteriolar trees with an error that decreases 

as the number of unknown boundary conditions decreases.   

2- To determine, when some or all boundary data are unknown, if the error in predicted 

blood flow patterns depends on the location (in terms of arteriolar order) of the unknown 

boundary conditions. 

3- To determine, when some or all boundary data are unknown, how sensitive the error in 

predicted blood flow patterns is to the target pressure and wall shear stress values. 
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1.7  Thesis Outline 

Chapter 2 provides an analysis of how we can apply the Fry method, which was 

developed by using mesenteric networks, to estimate blood flow in arteriolar trees in 

skeletal muscle.  In particular, it addresses Objectives 1-3 described above.  

Chapter 3 provides a review of important findings as well as insight into future work 

related to this project. 
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Chapter 2  

2 Estimating Blood Flow in Skeletal Muscle Arteriolar Trees 

Reconstructed from In Vivo Data Using the Fry Approach  

2.1  Introduction 

Skeletal muscle makes up approximately 40% of human body mass, and besides being 

necessary for locomotion its dense arteriolar networks contribute greatly to total 

peripheral resistance, a key component of blood pressure regulation [5][6]. Skeletal 

muscle has the capacity to greatly increase its blood flow rate and rate of aerobic 

metabolism (about 20- to 50-fold, respectively) [3][5][13]. Branching arteriolar networks 

in skeletal muscle are also able to control distribution of blood flow to terminal arterioles 

and capillary networks and to the specific groups of muscle fibers they supply [6].  On the 

other hand, given its large volume of vasculature and its ability to greatly alter resistance, 

skeletal muscle is strongly innervated by the sympathetic nervous system (SNS) to 

maintain/increase vascular tone in inactive muscles and organs, which serves to 

maintain/increase blood pressure.  This mechanism buffers steep decreases in blood 

pressure in the face of orthostatic/exercise stress while increasing blood flow to active 

muscle and vital organs [1].  

Our group has been focused on studying SNS control of arteriolar diameter and blood 

flow in rat skeletal muscle using intravital videomicroscopy (IVVM).  In particular, we 

have been studying the action of various SNS receptor types at different levels in the 

arteriolar tree under a range of conditions, including diabetes [3][4].  We have recently 

developed a novel rat gluteus maximus (GM) preparation that allows observation of 

complete arteriolar trees, from first-order feed arterioles down to fifth- and sixth-order 

arterioles which supply the terminal arterioles [1].  We have also developed a novel 

streak-length method [1] that uses fluorescently labeled red blood cells (RBCs) to 

measure RBC velocities and blood flow rates over large portions of the GM arteriolar 

tree.  However, it is difficult and time-consuming to apply the streak-length method to 
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entire arteriolar trees.  This makes it desirable to have a computational model that can 

approximate any missing flow data, and also integrate available flow data to enforce mass 

conservation and address any measurement errors or fluctuations during the time it takes 

to capture data over a complete tree. Although methods have been developed for selecting 

vessels in which to measure flow in microvascular networks [14], these methods do not 

give estimates of missing flows or boundary data, or the error caused by missing 

boundary conditions.  

Steady-state two-phase (RBCs and plasma) models of blood flow in microvascular 

networks have existed for some time [11][12], but they generally require complete data 

on the boundaries of the network (inflow and outflow segments).  However, since in our 

work on arteriolar trees in the GM some of the missing flow data are on the boundaries, 

we needed a blood flow model that does not require complete boundary data.  Such a 

method was recently published by Fry et al [2] and validated using microvascular 

geometry and blood flow data from IVVM experiments on the rat mesentery.  Since 

mesentery microvasculature has completely different geometry, topology, and regulation 

compared to arteriolar trees in skeletal muscle, it was the objective of the present work to 

apply the Fry approach to arteriolar trees in the rat GM to determine how well it would 

perform.  We also wanted to find methods that would optimize the performance of a Fry-

type blood flow model given the GM arteriolar geometry and the types of flow data we 

expect to be available in our ongoing IVVM experiments. 

2.2  Experimental Method  

The experimental data used in this study was obtained from previous in vivo experiments 

performed in our laboratory on the rat gluteus maximus (GM) muscle.  The animal 

preparation and intravital videomicroscospy (IVVM) techniques used are described in 

detail in [1].  Also described in [1] is the ‘streak length method’ used to obtain RBC 

velocity measurements and estimates of blood flow within arteriolar trees in the GM 

under steady-state resting (i.e., control) conditions.   
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Multiple fields of view acquired to obtain blood flow data were aligned manually using 

Photoshop into montages, which allowed for reconstruction of continuous portions of the 

arteriolar tree.  Lengths, diameters and connectivities of arterioles, from a single first 

order vessel (1A) down through several levels of bifurcations, were obtained via 

measurements made on montages using Matlab.  These data were then assembled into 

network data files that could be input into our blood flow simulation codes. 

For the present work, two reconstructed networks were used.  The small network (SN) 

consisted of 9 arteriolar vessels.  For this network, experimental measurements of blood 

flow were obtained in all vessels including those on the boundaries (inflow and outflow 

vessels).  To ensure compatibility with our blood flow model, adjustments were made 

manually so that blood flow was conserved at all nodes joining two or three vessels.   

The large network (LN) consisted of 49 arteriolar vessels.  For this network, experimental 

measurements of blood flow were not obtained in all vessels, but flows throughout the 

network were estimated manually to maintain consistency with the flow-diameter 

relationship established in [1].  Our blood flow model (described below) was then applied 

(with manual adjustment of boundary pressures) to ensure that blood flow was conserved 

at all nodes.   

To evaluate the importance of the location within the network of unknown boundary 

conditions, we determined the order of vessels (1A-6A) in SN and LN using centrifugal 

ordering, with an increase in vessel order being induced by a daughter-to-parent branch 

angle greater than 18 degrees or a daughter-to-parent diameter ratio less than 0.8.   

2.3  Computational Method 

2.3.1  Blood flow model  

 The two-phase (RBCs and plasma) continuum blood flow model used in this study 

consisted of two component models that were solved alternately until a steady-state 

solution was reached for all variables.  The first model described the intravascular 
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pressures and blood volume flow rates throughout the arteriolar network, assuming fixed 

viscosity in each vascular segment.  

Our blood flow model utilized the approach of Fry et al. [2] to solve for blood flow both 

when all boundary conditions (flows or pressures at all inflow and outflow vessels) are 

known and when some boundary conditions are unknown.  For clarity, we reproduce 

below the key equations originally presented in [2]. 

When all boundary conditions are known, the following linear system of equations is 

solved: 

𝐾!"𝑃! = −𝑄!!     for  𝑖 ∈ 𝑁
!∈!

                                                                                          Eq. 17 

where N is the set of nodes, Pk is the pressure at node k, Q0i are known blood flow rates at 

boundary nodes and zero for internal nodes, and 𝐾!" =    𝐿!"𝑀!"!∈!  where S is the set of 

vessel segments.  The conductivity matrix Mjk is given by   

 

𝑀!"= 

+
𝝅𝒓𝒋

𝟒

𝟖𝝁𝒋𝓵𝒋
,      if  𝒌  is  the  start  node  of  segment  𝒋    

−
𝝅𝒓𝒋

𝟒

𝟖𝝁𝒋𝓵𝒋
,          if  𝒌  is  the  end  node  of  segment  𝒋

𝟎,        otherwise

                                        Eq. 18 

where rj is the radius of segment j, ℓ𝓁! is the length of segment j, and µj is the local blood 

viscosity in segment j.  Finally, mass conservation is described by the matrix Lij : 

𝐿!" =
−1,          if  𝑖  is  the  start  node  of  segment  𝑗
+1,          if  𝑖  is  the  end  node  of  segment  𝑗

0,          otherwise
                          Eq. 19 

(Note that in Eq. 17 a pressure condition can be applied at boundary node i by setting 

Kii=1 and Kij=0 for j≠i, and replacing Q0i by –P0i.) 
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When some boundary conditions are unknown, Eq. 17 cannot be solved for boundary 

nodes with unknown conditions.  In this case, target values for the wall shear stresses 𝜏0j 

and the intravascular pressures P0k are used to obtain an error minimization problem that 

results in a linear system of equations at all the nodes.  In particular, the error to be 

minimized is defined as 

𝐷 =
1
2 𝑘! 𝑤! 𝑃! − 𝑃!! ! +

1
2 𝑘! ℓ𝓁! 𝜏! − 𝜏!!

!

!∈!!∈!

                                        Eq.  20 

where 𝜏! is the wall shear stress, 𝑘!  and 𝑘! are weighting factors associated with the 

deviations from the target pressures and shear stresses, respectively, and 𝑤! is the vessel 

length associated with node 𝑘, which is defined as 𝑤! = 1/2 ℓ𝓁! where the sum is over 

all segments connected to node k.  The wall shear stress 𝜏! is defined as 

𝜏! = 𝑐!𝑄! = 𝑐! 𝑀!"𝑃!
!∈!

                                                                                          Eq. 21 

where 𝑐! = 4𝜇!/𝜋𝑟!! . 

  

Including the constraint that Eq.17 is satisfied at all nodes that are internal or have known 

boundary values leads to the additional equations 

𝑘! 𝐻!"𝑃! + 𝑘!𝑤! 𝑃! − 𝑃! + 𝐾!"𝜆! =
!∈!∪!

𝑘! 𝜏!!𝑐!𝑀!"ℓ𝓁!
!∈!!∈!

  for    𝑖 ∈ 𝑁                        Eq. 22   

where I and B are the sets of internal nodes and boundary nodes with known conditions, 

respectively, λk are the Lagrange multipliers, and 𝐻!" = 𝑐!!𝑀!"𝑀!"ℓ𝓁!!∈! .   

The number of pressures Pi to be determined equals the number of elements in N, which 

is the size of the linear system given by Eq. 22. The number of Lagrange multipliers λk to 

be determined equals the number of elements in 𝐼 ∪ 𝐵, which is the size of the fully 
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determined system given by Eq. 17.  Therefore, solving these two equations 

simultaneously yields all the required Pi and λk. 

It was shown in [2] that similar results are obtained for the following two approaches: i. 

assuming τ0j is a function of segment pressure Pj (mean of pressure at two end nodes) 

based on previous experimental data and ii. assuming 𝜏0j  has a single fixed value 𝜏0.  We 

have used the second approach, taking a single shear stress target value 𝜏0 for each 

network considered, since it is simpler and does not require a known relation between 

segment pressure and wall shear stress.  For SN we used τ0= 18.41 dyne/cm2 and P0= 

76.38 mmHg, while for LN we used τ0= 27.24 dyne/cm2 and P0= 40.05 mmHg, with all 

target values given by the mean values when all boundary conditions where known. For 

both networks, we used 𝑘!= 0.4 and kp= 0.1 based on the results in Fry et al. [13]. 

2.3.2  Hematocrit distribution 

The second model used in our calculation of two-phase blood flow determined the 

hematocrit distribution and hence the effective viscosity throughout the arteriolar 

network.  To calculate the hematocrit distribution, blood flow values from the flow model 

are used to enforce conservation of RBC flow at each node.  In addition, an empirical 

bifurcation rule [7][9] is used at diverging bifurcations to determine RBC flow 

distributions to the two daughter branches as a function of the blood flow distribution at 

the bifurcation, the daughter diameters, and the hematocrit in the parent vessel.  Solution 

of the resulting linear system of equations yields discharge hematocrit values throughout 

the network, which allow calculation of the local blood viscosities based on an empirical 

description of the Fahraeus-Lindqvist effect [8][10].  Blood flows are then re-calculated 

using these new viscosity values, and the flow and hematocrit solution steps are repeated 

until all pressures, blood flows and hematocrits converge to constant values [2].   

2.3.3  Boundary conditions   

To solve for the blood flow rates in a given network, a pressure value must be set for at 

least one of the boundary nodes, since it is only pressure differences that are determined 

by the blood flow model equations.  In our flow simulations we set the pressure at the 
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inflow node, and then consider flow conditions for the remaining boundary values.  

Although both pressure and flow cannot be set at the inflow node in the above 

framework, we consider cases where total flow into the network is also fixed by 

specifying flow in one of the internal segments in the first-order arteriole.  To solve for 

the hematocrits in a given network, hematocrit must be set at all the inflow segments.  In 

our flow simulations, we set the discharge hematocrit in the single inflow segment (first 

segment of first-order arteriole) to 0.42.   

2.3.4  Error measures   

To compare RBC flow distributions obtained with one or more unknown boundary 

conditions to those obtained with all known boundary conditions (assumed to represent 

the exact experimental RBC flow distribution), the root mean square RBC flow error 

across all segments in the network (SN or LN) was computed: 

𝑅𝐹𝐸!"# =
1
𝑁 𝑄!!""𝐻!"!"" − 𝑄!!"#$𝐻!"!"#$

!
!

!!!

                                                    Eq.  23 

where N is the number of segments in the network of interest, 𝑄!!"" and  𝐻!"!"" are the flows 

and discharge hematocrits (respectively) in the network with all known boundary 

conditions, and 𝑄!!"#! and  𝐻!"!"#$ are the flows and discharge hematocrits (respectively) 

in the network with a given set of Nunk ≥ 1 unknown boundary conditions.  The relative 

RMS RBC flow error is defined as 𝑅𝐹𝐸!"#!"# = 𝑅𝐹𝐸!"#/𝑅𝐹!"# where 

𝑅𝐹!"# =
!
!

𝑄!!""𝐻!"!""
!!

!!!                                                Eq. 24 

We also use the error in total blood flow to the network, 𝑇𝐹𝐸 = 𝑄!!"" − 𝑄!!"#$ ,  where 

i=1 is the inflow segment to the network of interest.  When more than one case (i.e., set) 

of missing boundary conditions is considered for a given network and value of Nunk, the 

mean error (either 𝑅𝐹𝐸!"#!"#   or  𝑇𝐹𝐸) over all cases simulated is considered. 
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2.4  Results 

2.4.1 Network Structure and Flow Data  

Parameters for the reconstructed small (SN) and large (LN) arteriolar networks are given 

in Table 2-1, and the networks are shown in Figures 2-1.  In Figure 2-1, the two top 

panels show montages of IVVM video frames used to obtain arteriolar geometry.  The 

bottom panels contain the skeletonized forms showing node locations, segment lengths 

and vessel connectivities obtained from these montages.  Figure 2-2 shows segment 

diameters and the blood flow distributions that were taken to represent experimental flow 

data, as well as the centrifugal ordering of each vessel.  The complete boundary data 

(pressures and/or flows) needed to obtain these flow distributions using our hemodynamic 

model are considered to be the correct (known) boundary conditions.  In addition, the 

RBC flow distributions obtained by applying our flow model to these networks with all 

known boundary conditions are taken to be the experimental values. 

 

Table 2-1. Properties of small (SN) and large (LN) arteriolar networks reconstructed from 

montages of IVVM video frames. 

 

Net-

work 

Order 

Range 

Segments 

 

Total 

Length 

(cm) 

Diameter 

Range 

(µm) 

Boundary Segments Total 

Flow 

(ml/s) 
2A 3A 4A 5A 6A 

SN 1A-4A   37 1.02 36-95 1 3 1 0 0 4.93 10-5  

LN 1A-6A 222 6.41 10-125 0 6 9 7 3 5.34 10-5  
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Figure 2–1. Arteriolar network geometries reconstructed from IVVM. Top Row: Montages 

of video frames covering small network (SN, left) and large network (LN, right). Bottom 

Row: Skeletonized networks showing segments and nodes for SN (left) and LN (right). 
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Figure 2–2. Arteriolar vessel orderings and reference blood flow rates in small (SN, top) and 

large (LN, bottom) reconstructed networks. Orders not shown are the same as for parent 

vessels. 
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2.4.2  Dependence of RBC Flow Error on Number and Location of 

Unknown Boundary Conditions 

To determine how well our flow method would perform when not all boundary conditions 

are known, we simulated blood flows in SN and LN for increasing numbers of 

unspecified boundary conditions.  As described above, fixed values for τ0 and P0 were 

used for each network, based on the mean values obtained for the flow solutions when all 

boundary conditions were specified.  In all cases for SN and LN the inlet pressure was 

specified (80 mmHg for SN, 50.5 mmHg for LN), meaning the maximum number of 

unknown boundary conditions was one less that the total number of boundary nodes (5 

and 25 for SN and LN, respectively).  Figure 2-3 shows the deviation from the 

experimental flow distributions for two cases of solutions obtained with unknown 

boundary conditions.  Figure 2-4 compares the average blood flow rates obtained for SN 

and LN with 2 and 10 unknown boundary conditions, respectively, to the corresponding 

blood flow rates for all known boundary conditions.   
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Figure 2–3. Blood flow vs. segment number for all known boundary conditions 

(‘experimental flows’) and single cases of unknown boundary conditions. Top: SN with 

unknown conditions in segments 27 and 32. Bottom: LN with unknown conditions in 

segments 93, 97, 129, 141, 143, 144, 169, 190, 217, and 220. 
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Figure 2–4. Blood flow rates for unknown boundary conditions vs. blood flow rates for all 

known boundary conditions. Top: Blood flow for SN (mean+/-SD) for 2 missing boundary 

conditions (10 cases). Bottom: Blood flow for LN (mean+/-SD) for 10 missing boundary 

conditions (100 cases). Deviation of regression lines from Y=X indicates error due to 

unknown boundary conditions.  
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Figure 2-5 shows how 𝑅𝐹𝐸!"#!"#  increases as the number of unknown boundary conditions 

increases.  For SN, all possible combinations of unknown boundary conditions were 

simulated, since the number of combinations (Ncases) varied between 1 (for Nunk=5 

unknown boundary conditions) and 10 (for Nunk=2 and 3).  For LN, Ncases quickly 

becomes intractably large (e.g., Nunk=5 gives Ncases=[25 choose 5]= 53130), so the 

number of cases considered for each value of Nunk was set to a maximum of 100.  This 

meant that for LN all possible combinations were only simulated for Nunk=1.  For both 

SN and LN, 𝑅𝐹𝐸!"#!"#  decreased as Nunk decreased.  Although the standard deviations in 

Figure 2-5 are large, the trends are clear and showed statistical significance in both 

networks (p=0.0014 and p=0.0001 for SN and LN, respectively). 
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Figure 2–5. RMS RBC flow error (mean+/-SD) as a function of the number of unknown 

boundary conditions for SN (top) and LN (bottom). Linear regression lines show how 

average error increases with number of unknown boundary conditions. 
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To test the effect of taking Ncases≤100 with LN, for Nunk=10 we looked at 𝑅𝐹𝐸!"#!"#  and its 

standard deviation 𝑠𝑡𝑑  (𝑅𝐹𝐸!"#!"# ) for Ncases=25, 50, 100, 200, and 400.  As seen in Figure 

2-6, there were only minor changes in 𝑅𝐹𝐸!"#!"#  and 𝑠𝑡𝑑  (𝑅𝐹𝐸!"#!!" ) for Ncases≥50. 

 

 

 

 

 

 

 

 

 

Figure 2–6. RMS RBC flow error (mean+/-SD) as a function of the number of cases 

considered.  Results shown are for LN with Nunk=10 and Ncases=25, 50, 100, 200 and 400. 
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To determine whether the flow estimation error depends on the location of unknown 

boundary conditions, we separated boundary conditions according to the centrifugal order 

of the vessels involved.  Figure 2-7 shows how 𝑅𝐹𝐸!"#!"#  changes as a function of order, 

where for each order all possible values of Nunk (from 1 to number of boundary conditions 

for that order) and all possible cases for each Nunk were considered and the errors 

averaged.  In addition, the highest two orders in each network were combined to represent 

all the most distal vessels in the reconstructed network.  For SN there was no significant 

change in 𝑅𝐹𝐸!"#!"#  with order (p=0.38), but for LN there was an increase with increasing 

order including orders 5 and 6 combined (p=0.03).   

To further investigate the dependence of 𝑅𝐹𝐸!"#!"#  on the order of the vessels with 

unknown boundary data, we considered 𝑅𝐹𝐸!"#!"#  as a function of Nunk within each order 

for LN.  These results, shown in Figure 2-8, indicate that 𝑅𝐹𝐸!"#!"#  does not increase 

substantially with Nunk for 1A-5A, but does for 6A and 6A combined with 5A.   

Since 6A vessels are the most distal in LN, we examined whether total flow changed 

more when 6A boundary data was unknown.  The results for TFE as a function of Nunk 

within each order, shown in top panel of Figure 2-9, confirm this.  We therefore 

recalculated 𝑅𝐹𝐸!"#!"#  as a function of Nunk within orders 5A, 6A, and 5A+6A with total 

flow to the network fixed.  These results, presented in the bottom panel of Figure 2-9, 

show that 𝑅𝐹𝐸!"#!"#  is greatly reduced and becomes comparable to (or slightly smaller 

than) the values found for unknown boundary conditions of orders 3-5 (c.f. Figure 2-8), 

for which TFE increased only slightly with Nunk.    
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Figure 2–7. RMS RBC flow error (mean+/-SD) as a function of the order of unknown 

boundary conditions for SN (top) and LN (bottom). Linear regression line for LN shows 

how average error increases with arteriolar order of unknown boundary conditions. 
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Figure 2–8. RMS RBC flow error (mean+/-SD) for LN as a function of the number of 

unknown boundary conditions for each arteriolar order.  
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Figure 2–9. Total flow error in ml/s (top) and RMS RBC flow error with total flow fixed 

(bottom) for LN as a function of the number of unknown boundary conditions for each 

arteriolar order. 
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Given the above results for 𝑅𝐹𝐸!"#!"#  with unknown 5th and/or 6th order boundary 

conditions when total flow is fixed, we compute 𝑅𝐹𝐸!"#!"#  for the full range of possible 

unknown boundary conditions (100 cases per Nunk).  These results, shown in Figure 2-10, 

demonstrate that knowing total flow substantially decreases 𝑅𝐹𝐸!"#!"#  as well as its 

standard deviation (c.f. Figure 2-5).   
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Figure 2–10. RMS RBC flow error (mean+/-SD) as a function of the number of unknown 

boundary conditions for LN with total flow fixed. 
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Figure 2–11. RMS RBC flow error (mean+/-SD) as a function of deviations in the target 

intravascular pressure P0 (top) and the target wall shear stress τ0 (bottom). 
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2.5  Discussion 

Using data from the mesentery, Fry et al. [2] developed a method for estimating blood 

flow in microvascular networks when some boundary conditions are unknown. We have 

shown that the Fry approach can also be applied to arteriolar trees in skeletal muscle.  In 

particular, we have shown (Figure 2-5) that the average relative RBC flow error in a 

given network decreases as the number of unknown boundary conditions decreases.   

The preceding average results were quite promising; however, the variability of the error 

(as measured by standard deviation) was quite large, an issue which was not addressed in 

[2].  This suggested that either most boundary conditions must be known (e.g., 20/25) to 

reliably approximate network blood flow, or boundary conditions at specific key 

locations (or arteriolar orders) in the network must be known.  

Using centrifugal ordering of the arterioles in the small network (SN) and the large 

network (LN), we showed that the average RBC flow error does not depend strongly on 

the order of the vessels where boundary conditions are unknown (Figure 2-7), except 

when the vessels are the most distal ones (i.e., 6A) in a large arteriolar tree (Figure 2-8).  

However, boundary data on the highest order arterioles in a network (with diameters of 

~10-15 µm) is challenging to obtain, and these vessels are generally more numerous (e.g., 

if 5A and 6A are combined) than lower order vessels.   

To address the above issue, we considered the error in estimated total blood flow to LN, 

and found that it was related to missing 6A boundary data (Figure 2-9).  In particular, we 

found that if total blood flow was specified (which would require data in a single 1A 

vessel or small number of 2A vessels), then average RBC flow error due to missing 6A 

(or 5A and 6A) boundary data was significantly reduced. This effect can be seen by 

comparing the results in Figure 2-8 to the lower panel in Figure 2-9.   

As can be seen by comparing Figure 2-10 to the lower panel of Figure 2-5, setting total 

blood flow in LN leads to a more rapid decrease in the average RBC flow error as the 

number of unknown boundary conditions decreases (without considering orders).  It also 

leads to a more consistent decrease in the error, and this holds even when standard 
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deviations are considered.  For Nunk=10 (the total number of 5A and 6A boundary 

conditions in LN), setting total flow gives an average error of ~0.085 with a standard 

deviation of ~0.050, compared to an average error of ~0.150 with a standard deviation of 

~0.100 when total flow is unspecified.  Similarly, for Nunk=19 (the total number of 4A, 

5A and 6A boundary nodes), setting total flow gives an average error of ~0.158 with a 

standard deviation of ~0.040, compared to an average error of ~0.215 with a standard 

deviation of ~0.050 when total flow is unspecified.  Thus, in the situation where enough 

data are available to estimate total flow directly, the Fry approach yields estimates of the 

RBC flow distribution within the network that increase in accuracy with the amount of 

additional boundary flow data available.   

An important practical issue we tried to address was selecting target values for the wall 

shear stress τ0 and pressure P0 as required in the Fry method.  Our results (Figure 2-11) 

suggest that the RBC flow error is less sensitive to P0 than to 𝜏0.  They also show that 

lower values of P0 give better results, which suggests that P0 should reflect typical 

outflow pressures rather than averages over the entire network.  In contrast to our results 

for P0, our results for the dependence of the RBC flow error on 𝜏0 show that the target 

shear stress should be close to the average wall shear stress over the entire network.  We 

have not explored how this value for 𝜏0 might be found for a given network, but since 

average shear stress and total network flow should be proportional to each other, it might 

be possible to vary 𝜏0 without fixing total flow until the measured value of total flow is 

obtained.       

Although we believe the results presented are reliable, they do have two limitations that 

need to be discussed.  First, blood flow was not measured throughout LN and therefore 

what we have considered as the exact flow distribution is only an approximation.  

However, this approximation was developed independent of the present work, based on 

the flow and diameter relationship established in [1], and did not consider target shear 

stress or pressure values as in the Fry approach.  A similar approach to estimating missing 

network flow data for the purpose of testing a hemodynamic model was used by Pries et 

al. [11]. In addition, SN, for which we did have complete measured flow data, was also 

used in our study.  As can be seen in Figure 2-5, SN showed a similar decrease in RBC 
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flow error with increasing number of known boundary conditions, which supports the 

results using LN.  Second, although it should be possible to measure hematocrit using the 

streak method, the methodology for doing so has not yet been developed, and therefore 

hematocrit data were not available for either SN or LN.  Despite this, we felt that RBC 

flow was a better (and possibly more sensitive) quantity to use for measuring the error 

than blood flow, considering that: i. the empirical relation describing RBC distribution at 

diverging bifurcations [7][9] is well established and ii. hematocrit needed to be calculated 

in order to estimate local viscosity and blood flow distributions.    

2.6  Conclusions 

We have shown that the Fry method [2] can be used for estimating blood flow in 

arteriolar trees in skeletal muscle when the boundary data are incomplete, and that the 

average RBC flow error decreases as the number of known boundary conditions 

increases.  We have also shown that setting total blood flow in such microvascular 

networks increases the rate at which the average RBC flow error decreases with 

increasing number of known boundary conditions, and also decreases the variability in 

the error.  Since measuring the total flow in an arteriolar tree is usually possible during 

IVVM experiments (using the streak method), the approach described here can be applied 

to actual experiments and should yield more complete results on hemodynamics in large 

arteriolar trees (particularly in the numerous higher order arterioles) than was previously 

possible.   
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Chapter 3  

3  Conclusions and Future Work  

3.1  Conclusions 
As demonstrated by the results in Chapter 2, we have accomplished most of the 

objectives of this study.  In particular, we have shown that our flow model can predict 

RBC flow distribution in skeletal muscle arteriolar trees with an error that decreases as 

the number of unknown boundary conditions decreases.  We extended the results 

obtained by Fry et al. [1] in mesentery networks to arteriolar trees in skeletal muscle, and 

calculated the mean and variance of the RBC flow error for a large number of cases 

which was not done in [1].  We have also shown that for large arteriolar trees (i.e., LN) 

the RBC flow distribution is most sensitive to missing boundary conditions in 5th and 

especially 6th order arterioles.  We demonstrated that this sensitivity was related to the 

total flow error, and showed how it could be overcome by specifying total blood flow.  

Finally, we have calculated the dependence of the results on the target pressure P0 and 

target shear stress τ0, and found the dependence on P0 for arteriolar trees was somewhat 

different from that in mesentery (where higher rather than lower P0 gave better results).  

The RBC flow error was shown to be more sensitive to τ0 than to P0, and we therefore 

proposed a practical method for estimating τ0 based on total flow.  Thus, we have 

developed and validated a method for estimating blood flow in arteriolar trees of skeletal 

muscle that can be applied to data on geometry and blood flow being obtained in the 

IVVM experiments on skeletal muscle in our own laboratory and in similar microvascular 

research laboratories elsewhere.   

3.2  Future Work 

Although the present results are a significant advance in estimating arteriolar 

hemodynamics in skeletal muscle, there are several types of future studies that are 

needed.  It would be an important confirmation of the present results to apply our flow 

estimation method to a large network (such as LN) with full blood flow data for all 

vessels in the network.  It would also be worthwhile to apply our method to a network in 
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which both volume flow and hematocrit had been measured.  A future direction would be 

applying our method in an arteriolar tree to which a vasoconstrictor or vasodilator has 

been applied.  In this case, it should still be possible to estimate P0 and τ0 (given data on 

total flow), and the method should then give similar accuracy to that found in the present 

work.  However, the accuracy of our method would again need to be shown by 

comparison to full network blood flow data. Similarly, the performance of our method 

could be tested in a disease state (such as diabetes) to determine whether changes in flow 

regulation or other factors would decrease the accuracy.  One other area of possible future 

application of our method is to venular trees in the GM, which have geometry similar to 

that of the arteriolar trees and for which it should be possible to obtain blood flow data 

using the streak length method. 
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