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Abstract 

In this thesis, we study light-matter interaction in the contexts of coherent population 

trapping (CPT) and the ac Stark effect in nanoparticles embedded (doped) in two important 

classes of reservoirs -- photonic crystals and dispersive materials. These materials have gaps 

in their energy spectra and are studied widely due to their unusual optical properties and 

potential for novel applications. We consider that the reservoirs are doped with an ensemble 

of five-level nanoparticles, each with a single Λ core (consisting of a lower doublet and an 

upper energy level), which interact with both the host reservoir and external radiation fields. 

We have also included studies of cases where the nanoparticles interact with each other as 

well via dipole-dipole interaction (DDI), which is included in the mean field approximation. 

This only happens when the doping concentration is high (~      per cubic meter). 

In studying CPT, we have developed a novel technique of optical switching by devising a 

system whereby the doped nanoparticles become stable against absorption from the radiation 

field(s) i.e. they switch to their ground states. We have confirmed the occurrence of CPT in 

both types of reservoir and have also identified a number of important contrasting features 

which have markedly different utilities. Most significantly, we have found that the strength 

of the DDI between the nanoparticles plays a very important role in determining the 

conditions required for CPT in both materials.  In studying the ac Stark effect in photonic 

crystals, we have used an ensemble of five-level nanoparticles, each with a single cascade 

core [ladder configuration], both with and without DDI. We found that, in the ac Stark 

regime, resonance tuning of the transitions within the nanoparticles, in relation to the band 

structure of these crystals, offers a new mechanism for switching the nanoparticle system 

from an inverted to a non-inverted state. Specifically, a doped nanoparticle can effectively 

become transparent to any radiation field tuned to the probed transition. Under DDI, we 

found that the absorption in the system decreases with increasing DDI strength. These 

findings have very exciting potential for applications in optical switching. 

Keywords 

Quantum coherence, quantum interference, photonic crystals, dispersive materials, coherent 

population trapping, ac Stark effect, dipole-dipole interaction 
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Chapter 1  

1 Introduction 

Over the course of the last century, studies of quantum coherence and interference have 

garnered increasing interest in the fields of quantum optics and radiation physics. These 

phenomena are recognized as being essential for controlling and suppressing the 

occurrence of spontaneous emission, which is the primary source of undesirable noise in 

optical devices. This has great relevance in the contexts of quantum computation, 

teleportation and quantum information processing [1]. Many interesting effects have been 

predicted in these areas using the ideas of quantum coherence and a wide range of 

practical applications have been proposed. 

This thesis presents our study of the phenomenon of coherent population trapping (CPT) 

and the ac Stark effect, which occur due to quantum coherence and interference effects in 

two important classes of materials – namely, photonic crystals and dispersive materials. 

These materials are doped with an ensemble of nanoparticles which interact with the 

electromagnetic excitations present in them. Furthermore, when the concentration of the 

doped nanoparticles is high, they interact with each other via dipole-dipole interaction 

(DDI). Consequently, we have also studied the effect of DDI on CPT and the ac Stark 

effect. 

1.1 Photonic Crystals 

Under the framework of quantum coherence, the past two decades have seen crystalline 

media such as photonic crystals come under intense research scrutiny. These materials 

have gaps in their photon energy spectra and are studied widely due to their unusual 

optical properties and great potential for novel applications. 

Since their emergence at the end of the 1980s, there has been a growing push towards 

studying the properties of photonic crystals [2–4], which have wide-ranging applications 

in photonics and nanotechnology [5–9]. The most significant of these is the phenomenon 

of light localization, which was first predicted by Sajeev John [10]. 
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A current major area of study involving photonic crystals focuses on the modifications of 

the radiative properties of nanoparticles doped within the crystal reservoir [11–29]. More 

specifically, these investigations consider how the optical properties of atoms and 

molecules embedded in these crystals are altered. Numerous experimental techniques 

have been developed for doping nanoparticles in photonic crystals and their optical 

properties have been studied [30–35]. These have important applications in quantum 

computing and cryptography. 

The structure of a photonic crystal is achieved by a periodic arrangement of dielectric 

materials with differing dielectric constants [2–12]. The resulting periodicity in the 

dielectric constant function of the crystal leads to the formation of band gaps [2–4], 

analogous to the energy gaps in the electronic band structures of semiconductors. In other 

words, photonic crystals facilitate the micromanipulation of photons in much the same 

way semiconductors manipulate the flow of electrons [36, 37]. Due to the presence of the 

stop bands in the energy spectra of photonic crystals, photons with energies in the gap 

regions are not able to propagate in these systems. 

The existence of band gaps in photonic crystals is due to multiple photon scattering by 

spatially correlated scatterers. These gaps may extend over the entire Brillouin zone, 

known as absolute (isotropic) band gaps, where wave propagation is forbidden 

irrespective of the direction. If the same is applicable over only a limited domain of wave 

vectors, the gap is classified as incomplete. The first absolute band gap in a three-

dimensional crystalline structure possessing the symmetry of an fcc lattice was 

independently proposed by John [2] and Yablonovitch [3]. Recently one- [38], two- [39–

41] and three- dimensional [42–45] photonic crystals have been fabricated by several 

groups in the world. 

1.2 Dispersive Materials 

In addition to photonic crystals, energy gaps also exist in dispersive materials. Examples 

of this type of materials include II–IV, III–V, IV–IV semiconductors (e.g. GaAs and 

SiC), oxide crystals (e.g. MgO), etc. The gaps in these materials are caused by photons 

coupling to elementary excitations of the media, i.e. excitons, optical phonons, etc. [46–
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48]. When the external field and the excitation of the medium are approximately at 

resonance, the coupling between the photons (field) and phonons/excitons (medium) 

changes the character of the propagation and creates a forbidden energy band. We have 

only considered dielectric materials which have energy gaps in their polaritonic energy 

spectra confirmed by experiments. 

It is important to note that the presence of the energy gap in a dispersive material is not 

related to any intrinsic periodicity [49]. It is, in fact, due to the phonon-photon coupling 

in these materials, whereby a quantum of the combined phonon-photon field is formed, 

known as a polariton. Consequently, materials of this kind are also known as dispersive 

polaritonic band-gap materials. The discoveries of new phenomena related to the 

polaritonic energy gap have opened up many new and exciting avenues of research in 

dispersive materials [20, 21, 50] and numerous potentially applicable effects have been 

investigated [2–4, 50–52]. 

For example, Rupasov and Singh have studied the quantum electrodynamics of a single 

[20, 50] or two identical [22] two-level atom(s) – i.e. nanoparticle(s) – placed within a 

dispersive material. For either system, due to the presence of the energy gap, only 

solitons containing an even number of polaritons are found to propagate within the gap, 

while a soliton with an odd number of polaritons is pinned to the atom and forms a many-

polariton-atom bound state. As a result, a significant suppression of spontaneous 

emission is observed. Also, in the case of an identical pair of atoms separated by a 

relatively small distance, the polariton-atom bound state lying within the gap is shown to 

be split into a doublet due to an effective atom-atom interaction [21]. 

If the dopant is an ordered chain of identical two-level atoms instead, an impurity band is 

found within the energy gap when the resonance frequencies of the two-level atoms lie 

inside the gap [54]. It is also observed that, as the interatomic distances increase, the 

polariton energy bandwidth decreases, along with the effective mass of the polariton. 

Finally, if the dopant pair of two-level atoms are not identical, a pair of impurity states is 

formed within the gap [55]. They found that, for small interatomic distances, the 
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polariton-atom system exhibits superradiance while in the symmetric state, and 

subradiance (suppression of emission) while in the antisymmetric state. 

Recently, Singh [56] has developed a theory of nonlinear two-photon absorption in 

dispersive materials doped with an ensemble of three-level nanoparticles. He has 

considered that the nanoparticles are interacting with the polaritonic material. An 

expression of two-photon absorption has been obtained by using the density matrix 

method. The DDI effect has also been included in the formulation, which leads to 

interesting phenomena. More specifically, it has been found that the phenomenon of two-

photon absorption can be turned on and off when the resonance energies of the three-

level nanoparticles are moved within the lower energy band. It has also been found that 

the inhibition effect can also be achieved by controlling the strength of the DDI. 

1.3 Dipole-dipole Interaction 

Another important focus of investigations in the field of quantum coherence is the role 

played by the interaction between the electric dipoles, in different optical properties of 

multi-level systems [57–61]. When the density of the particles in a system is very high, 

they interact with each other via DDI. For example, Dowling and Bowden [57, 58] have 

studied the effect of DDI in the presence of a single laser field on a three-level atomic 

gas. They found that the observed absorption peak changes from a symmetric shape to an 

asymmetric shape in the presence of DDI. They also found an enhancement of 

inversionless gain and absorptionless refractive index for certain values of the 

nanoparticle density. 

Manka et al. [59] have used the theory of Dowling and Bowden [57, 58] to study the 

effect of atomic nonlinearities on an atomic gas system subject to a single laser field. 

They predicted a density-dependent switching between absorption and amplification. 

Calderón et al. [60], on the other hand, have studied DDI in the presence of both one and 

two laser fields in V–type nanoparticles. They found that the absorption profiles are 

deformed due to the presence of DDI. They also found that the system changes from 

absorption to gain due to the phase difference between the probe and the pump fields. In 

a similar set-up, Afansev et al. [61] have derived the expression for nonlinear 
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macroscopic polarization in V–type nanoparticles, in the presence of DDI and a 

bichromatic field. 

More recently, Li et al. [62] have performed a theoretical study of the response of 

nonlinear absorption and population dynamics in optically dense media of four-level 

atoms driven by a single laser field, subject to near DDI. They found that, with increasing 

DDI, it is possible to achieve transient amplification with probe-field transparency and 

ground-state trapping in the steady-state limit. Zhang and Chen [63] have found that the 

sudden death of the entanglement between atoms in the non-degenerate two photons 

Travis-Cummings model can be weakened by introducing DDI. Also, Reboiro [64] and 

Civitarese et al. [65] have demonstrated the DDI dependence of the phenomenon of 

atomic squeezing in three-level atoms. 

Very recently, Vlasov et al. [66] have shown that DDI has a significant effect on the 

resonance fluorescence spectra of multi-level atoms, in general, interacting with an 

external field of constant intensity. They have observed the dynamics of the ensemble as 

compared to that of a single atom and discovered new components in the fluorescence 

related to auto-oscillations of the level populations. And, most notably, Ablayev et al. 

[67] have proposed an effective system of elementary quantum gates based on multi-

atomic coherent ensembles or quantum dots (QDs) featuring DDI. They showed the 

advantages of the system in accelerating quantum computation for these gates. 

Some work has also been done to study the effect of DDI on photonic crystals and 

dispersive materials [13, 68–77]. For example, John and Quang [13] have studied self-

induced transparency due to DDI in a photonic crystal doped with two-level 

nanoparticles. Singh and Haque [68, 69] have done some preliminary work on the effect 

of DDI on CPT. Also, Singh [70] has studied the effect of DDI on the enhancement of the 

refractive index in a photonic crystal doped with five-level nanoparticles, driven by one 

laser field. 

Recently, Singh [71] has studied the effect of DDI on electromagnetically induced 

transparency (EIT) and spontaneous emission cancellation [72] in an ensemble of four-

level nanoparticles doped in a photonic crystal driven by a probe and a pump laser field 
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and found that the particle density influences the absorption profile and can be used as a 

switching mechanism. He has also studied nonlinear two-photon absorption in a similar 

system [73, 74] and discovered the inhibition of two-photon absorption to be related to 

DDI strength. Also, Novitsky and Mikhnevich [75, 76] have studied the bistability of the 

optical response of a one-dimensional photonic crystal with a dense resonant medium as 

a defect, both theoretically and experimentally, and showed that the structure and spectral 

properties of the crystal determines the bistable response. Finally, Wang et al. [77] have 

studied the entangle dynamics of two atoms subject to DDI coupled to a common 

photonic band gap and showed that the detuning conditions and the DDI both play crucial 

roles in controlling entanglement in a two-qubit system. 

DDI has also been studied in nonlinear photonic crystal systems doped with nanoparticles 

in recent years [78–80]. Such a crystal is made up of nonlinear dielectric spheres. The 

refractive indices of these spheres can be changed upon application of a strong pulsed 

laser (pump) field. The background material is taken as a linear dielectric material whose 

refractive index does not change. Singh [78] has observed that the absorption spectrum 

has two peaks and a minimum at zero detuning in the absence of DDI. However, in the 

presence of this interaction, the two peaks disappear and a single peak appears near zero 

detuning. When the pump field is applied, the peak near the zero detuning mark 

disappears and a new peak appears at a different detuning location. This happens because 

the refractive index of the system changes due to the pump field and, in turn, the location 

of the defect mode is altered. This means that the pump field and the DDI effect can be 

used, in tandem, to switch the location of the absorption peak. 

In the present decade, notably, Singh et al. [79] have investigated the effect on the energy 

transfer and photoluminescence in donor and acceptor QDs, which interact via DDI, 

doped in a nonlinear photonic crystal. They have predicted a hybrid system than can be 

used to fabricate ultrafast switching and sensing nanodevices. Also, Cox et al. [80] have 

considered the DDI between a QD and a graphene nanodisk embedded in a similar 

crystal. They found that, in the presence of DDI, the power spectrum of the QD shows 

that that the energy transfer between the QD and the graphene nanodisk can be switched 
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on and off either through the application of the pump laser or by adjusting the strength of 

the DDI. 

1.4 Coherent Population Trapping 

Studies of coherence and interference effects in quantum systems have recently become 

very active research areas in optics, photonics, radiation and condensed matter physics, 

and even in many fields of chemistry. One phenomenon that has received significant 

attention is CPT [81]. Many other interesting phenomena have also been discovered 

using ideas derived from quantum coherence and interference including, lasing without 

inversion [82, 83], the Hanle effect [84], coherent Raman beats [84], photon echo [84], 

self-induced transparency [84], etc. 

In the CPT effect, under certain conditions, the application of two continuous wave 

radiation fields to a nanoparticle leads to its preparation in a coherent superposition of 

states, which is stable against absorption from the radiation field. This phenomenon was 

first observed in 1976 by Alzetta et al. [85] as a decrease in the fluorescent emission in a 

laser optical pumping experiment on sodium atoms. The experiment involved a three-

level system with two ground levels and one excited level. Almost concurrently, Whitley 

and Stroud [86] performed a theoretical investigation of the pumping and trapping 

originated by two laser fields resonant with the two coupled transitions in a three-level 

nanoparticle in cascade configuration. 

Eventually, in 1978, Gray et al. [87] carried out extensive experimental studies of CPT in 

sodium atoms with two ground levels and one excited level. Subsequent theoretical 

analyses pointed out that the sodium atoms were pumped in a non-absorbing state due to 

quantum interference effects. The complete designation of CPT appeared for the first 

time in the abstract of a paper by Agrawal [88], dealing with the possibilities of using 

three-level systems for optical bistability [81]. 

Recently, the CPT phenomenon has been studied in atomic gases, semiconductor 

nanostructures and photonic crystals. It is of particular importance in lasing [89, 90], 

pulse propagation [91, 92] and quantum information processing [93, 94]. Generally, CPT 
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is studied in multi-level nanoparticles, which could be conventional atoms or artificial 

systems with quantized energy states such as QDs, wires, wells, etc. 

The typical system used for CPT studies consists of an ensemble of multi-level 

nanoparticles doped in a host material. These nanoparticles have quantized energy levels 

and interact with the photons which are inside the host reservoir. The CPT effect arises 

due to the coherent superposition of two energy levels in a nanoparticle. The electrons in 

this coherent state are pumped by means of an external radiation field to an excited level, 

which initially has no electrons. During this process, two photons are absorbed which 

subsequently interfere with each other. Under certain conditions, this interference is 

destructive; leading to zero absorption and the electrons become trapped in the coherent 

state. Consequently, the CPT phenomenon is sometimes also referred to as photon 

trapping. 

It is important to note that the study of CPT can involve more complicated systems, such 

as nonlinear condensates. For example, Ling et al. [47] have analyzed the collective 

excitation spectrum of the CPT state in a coupled atom-molecule condensate system. 

They found that collisions between particles can cause the CPT state to be dynamically 

unstable, which is a unique feature of the nonlinear system. They obtained a set of 

analytical criteria for determining the stability properties of the CPT state in the long-

wavelength limit. 

Another variation on CPT studies involves using non-optical radiation fields. Godone et 

al. [51] have examined the spectral characteristics of a CPT maser. They carried out a 

theoretical investigation of the coherent microwave emission associated with the trapping 

phenomenon by taking into account the impact of the various noise contributions on the 

physical principle of operation. They compared their theory with experimental results 

obtained with a laboratory prototype of Rb CPT maser. 

Initial studies of the CPT effect almost invariably used two-level nanoparticles in 

vacuum. For example, Gateva et al. [95, 96] have studied CPT resonance on the 

degenerate two-level system of the 
87

Rb D1 line by means of a Hanle effect configuration 

in an uncoated vacuum cell. They found that the measured fluorescence resonance has a 
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complex shape. They have also measured the dependence of the width and amplitude of 

the CPT resonance structures at different laser power densities in the fluorescence and 

transmission regimes. Also, they found that the shape of the resonances is different in 

different cells [97]. 

A bulk of the focus in the study of CPT has been centered on three-level nanoparticles. 

For example, Guo et al. [98] have studied CPT when Λ–type three-level nanoparticles are 

interacting with a two-mode cavity field. They found the CPT effect when the 

nanoparticles are initially in coherent superpositions of their lower states and the cavity 

field is in coherent superposition of photon numbers. Affolderbach et al. [99] have found 

the CPT effect in a thermal vapor of three-level nanoparticles irradiated by two co-

propagating laser beams of suitable frequencies. 

Recently, Obada et al. [100] and Mortezapour et al. [101] have studied the effects of 

cavity damping and coupling field on the entanglement dynamics for a three-level atomic 

system. Macovei et al. [102] considered a collection of V– and Λ–type three-level 

nanoparticles co-interacting with two strong coherent driving fields. They found that the 

trapping state of the ensemble can be rapidly populated or depopulated by changing the 

phase difference between the two fields.  

More recently, Gao et al. [103] have investigated steady-state squeezing in the phase of 

the resonance fluorescence emitted from a three-level V–type atom driven by two 

coherent fields and damping in common vacuum and found that the squeezing of the 

observed driven transition between the excited state and the ground state is strongly 

affected by the decay rate of the controlling transition, detuning and intensity of the 

fields, and the phase quadrature of the fluorescent light.  

Morigi [104] has studied the quantum dynamical effect of the centers of mass of trapped 

three-level nanoparticles on CPT. They considered that the internal degrees of the 

nanoparticles are driven in Λ–type configurations with the laser tuned at a two-photon 

resonance and found that transient CPT occurs when the motion of the wave packet is 

well-localized over the laser wavelength. Also, Arkhipkin and Timofeev [105] have 

studied the spatial and temporal evolution of two strong laser pulses interacting with 
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dense Λ–type three-level nanoparticles under the trapping regime. More recently, Hou et 

al. [106] and Yang et al. [107] have studied the effects of vacuum-induced coherence on 

dispersion and absorption properties in moving Λ–type atomic systems. The other effects 

of note which have been studied in relation to CPT in Λ–type three-level atomic systems 

include coherence induced by an incoherent pump field and vacuum decay [108] and 

spontaneous emission with the two transitions coupled to separate reservoirs [109]. 

CPT has also been studied in four-level [48, 110–126] and five-level [127–129] atomic 

systems. Hou et al. [48], for example, have considered the effects of vacuum-induced 

coherence on population trapping against single- and two-photon absorption in four-level 

Y–type nanoparticles. They found that the coherence can give probe gain without 

incoherent pumping and suppress two-photon transparency. They also showed that the 

absorption profiles are related to the relative phase between the probe and coupling 

lasers. Ladrón de Guevara and Orszag [115], in contrast, have investigated CPT and its 

effects on fluorescence in Y–type nanoparticles. They showed that the CPT effect 

produces fluorescence along the coupled transitions with an incoherent component at a 

frequency different than the driving frequency. 

More recently, Sandhya [116] has studied the absorption profile of a four-level Ξ-type 

atomic system interacting with three driving fields analytically and found that the ground-

state absorption is influenced by upper-level couplings. Entezar et al. [117] have 

investigated the effect of a modified reservoir on the nature of the quantum interference 

in the spontaneous emission of a driven double V– type four-level system where the 

transitions interact with a free vacuum and a modified reservoir, leading to two possible 

types of quantum interference. Their results show that the type of interference in the free 

vacuum reservoir depends on the type of and the absence or the presence of interference 

in the modified reservoir. In a similar atomic configuration, Yu et al. [118] have found 

that nonlinear optical behaviors in pulse propagation lead to double-dark resonances, 

which can be used to dynamically control light propagation. In a cold double Λ–type 

four-level system driven by two counter propagating laser fields, Xie and Yang [119] and 

Yang et al. [120] have studied decoherence and enhanced-coherence actions and the 

enhancement of population transfer efficiency, respectively. Ou et al. [121] have used a 
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laser-driven four-level closed-loop diamond-shape atomic system to investigate the 

phenomenon of spontaneously generated coherence. Experimentally, Mahmoudi et al. 

[122] have analyzed the behavior of optical bistability and CPT in a four-level mercury 

atomic system, whereas and Aumiler [123] has demonstrated that the same can be 

achieved in room-temperature in four-level 
87

Rb atoms with up to 95% efficiency. Also, 

Shen [124] and Qi [125] have utilized the four-level Y-configuration double-control 

atomic system to study the potential application of the destructive (or constructive) 

quantum interference between the control transitions in designing logic gates for quantum 

computing. Finally, very recently, Fang and Gao [126] have employed the four-level N–

type system to establish that the CPT effect can be used to overcome the limitation of 

two-photon absorption.   

Using five-level systems, Doery et al. [127] have proposed a CPT scheme in under two-

frequency laser excitations. They found that the trapped state has a time-dependent nature 

and its stability can be controlled by selective detuning of the laser beams. Kanokogi and 

Sakurai [128] have examined the position and resonance width of the CPT state in a 

symmetric five-level system with two lasers and two RF fields. They found that narrower 

trapped states due to the RF fields appear at positions that depend on the Rabi frequencies 

and the detuning of the fields. And, recently, Gu et al. [129] have studied the interaction 

of two pairs of near-resonant laser fields with a five-level M–type atom and found both 

EIT and CPT to occur under conditions of two two-photon resonances. 

It should be noted that, in general, the physical make-up of the nanoparticle offers an 

additional level of latitude in the possible utilization of the CPT effect. For example, 

QDs, wires or well structures fabricated using semiconductor materials provide a 

convenient platform for CPT studies. Dynes et al. [130] have investigated the CPT effect 

in quantum wells, with each well having only three transitions which are all dipole 

allowed due to their asymmetrical nature. These artificial atomic systems are driven 

coherently by two infrared optical fields. One of these fields simultaneously couples with 

two of the three transitions which are nearly degenerate. The other field couples with the 

remaining transition. They found that the absorption strength of the weak probe field 

increases by a factor of over an order of magnitude as the coupling strength of the second 
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field is increased. The results are shown to be due to an optically mediated CPT effect. A 

similar study was performed by Sadeghi and Li [46] which dealt with the trapping of 

electron-hole excitons in In0.43Ga0.57As/InP quantum well structures interacting with a 

single infrared laser near resonance. Concurrently, Imamoğlu [131] has shown that CPT 

in a single hole charged QD could provide a powerful spectroscopic tool for 

understanding and controlling spin decoherence mechanisms. Also, Chua et al. [132] 

have studied two-mode photon-assisted transport through coupled non-identical QDs, 

modulating the shape and size of dots by applying electric field. They found that the CPT 

effect leads to the phenomenon of current antiresonance phenomenon. 

In three-level Λ–type quantum well structures, Patnaik et al [133] have examined the role 

of ground-state coherence on the fluorescence from the excited state under continuous-

wave excitation. They found that, when resonantly pumped, the fluorescence is strongly 

affected by any perturbation in the ground-state CPT. More recently, Maialle and Degani 

[134] have performed numerical simulations of the photocurrent generated by 

intersubband optical transitions in a double quantum well of a similar type coupled with a 

continuum of extended states. They found that the resonance between the exciting fields 

and the quantum states leads to coherent effects such as Rabi-dressed states, EIT and 

CPT. Litvinov et al. [135] have studied the phase sensitivity of CPT in tunneling-coupled 

quantum wells and found that the effect can be switched on or off depending on the 

algebraic sum of the phases of the exciting fields.  

Some studies have used novel atomic schemes to obtain new interesting effects. For 

example, Araujo [136] considered the interaction of two matched ultra-short pulses with 

a Λ–type system in which the upper intermediate level is replaced by a collection of 

discrete energy levels. The scheme further assumed many of these levels being 

simultaneously accessed by the broad bandwidth of the two excitation pulses. It is 

predicted that, under appropriate conditions, this "multi-Λ" system can exhibit coherence 

effects such as population trapping and electromagnetically induced transparency of one 

of the excitation pulses. 
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A considerable portion of the work that has been done on CPT involves various systems 

under the influence of magnetic fields. For example, Fu et al. [137] have investigated the 

CPT effect in high-purity n–type GaAs subject to a strong magnetic field. They isolated a 

Λ–type system composed of two Zeeman states of neutral donor-bound electrons and the 

lowest Zeeman state of bound excitons. As a result, they observed a pronounced dip in 

the excited-state photoluminescence coinciding with zero two-photon detuning of the 

system, which indicates the creation of a CPT state. Bevilacqua et al. [138] have reported 

on the effects induced by an alternating magnetic field on CPT resonances. They showed 

that the oscillating field produces sidebands of these resonances, which have very small 

linewidths. They also found that these bands are resolved even for very low field 

frequencies. Finally, Kolesov [139] has observed CPT at the ground-state Zeeman sub-

levels of the Cr
3+

 ion in 
87

Rb at room temperature. He has also investigated a mechanism 

of CPT in a situation when the optical pulse duration is shorter than the population decay 

time from the excited optical state. 

Very recently, Margalit et al. [140] have studied CPT transients induced by an ac 

magnetic field for a realistic three-level Λ system in the D1 line of 
87

Rb. They have also 

analyzed the effect of a transverse magnetic field (TMF) on the absorption spectra of 

degenerate two-level systems in the D2 line of 
87

Rb [141]. In the latter case, they showed 

that the absorption spectra in both configurations are split in the presence of a TMF and 

that the splitting is proportional to its magnitude. The CPT dip in the pump-probe 

configuration is also shifted by the longitudinal magnetic field (LMF), so that the effects 

of the LMF and TMF can be distinguished from each other. Most recently, they have 

performed theoretical calculations of CPT transients induced by a modulated transverse 

magnetic field (TMF). They found that the application of a TMF causes the appearance 

of new Λ subsystems, creation of new dark states, and rearrangement of the population 

among the Zeeman sublevels.  

There have also been many recent studies concerning the effects of bulk properties on 

CPT. For example, Post et al. [52] have investigated the effect of pressure on trapping 

both theoretically and experimentally. They found that the optimum waveforms produce 

strong CPT signals at low buffer-gas pressures, where the hyperfine structure (HFS) 
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splitting of the optical absorption lines is well resolved and at high buffer-gas pressures, 

where the HFS is not optically resolved due to pressure broadening. They also found that 

CPT resonances from frequency-modulated waves are severely degraded for high-

pressure conditions. 

Increasingly, practical applications of the CPT effect are being developed, particularly in 

the fabrication of novel optical devices. A prime example is the optical atomic clock 

scheme in 
88

Sr proposed by Santra et al. [53] using the idea of coherent trapping. The 

scheme uses two lasers to establish a coherent coupling between the 5s
2
 
1
S0 ground state 

and the first excited state, 5s5p 
3
P0 of 

88
Sr. The coupling is mediated by the broad 5s5p 

1
P1 state. The effective linewidth of the clock can be controlled by adjusting the laser 

intensity. A clock accuracy of better than 2 × 10
–17

 seconds is predicted. Very recently, 

Yang et al. [143] have proposed and experimented with a scheme for a Ramsey-CPT 

atomic clock driven by a periodically microwave modulated current. Their experimental 

results suggest that the implementation of such a clock would have better frequency 

stability. 

1.5 ac Stark Effect 

Recent efforts in studying quantum coherence and interference in quantum optical 

systems have led to the discoveries of many interesting phenomena [82, 144–198]. These 

include lasing without inversion [82, 147–149], electromagnetically induced transparency 

[150–153], enhancement of nonlinear susceptibility [154–157], the ac Stark effect [158–

183, 192–198], etc. 

The ac Stark effect – also known as Autler–Townes (A–T) splitting – occurs due to 

nonlinear interactions between light and matter in the presence of one or more strong 

variable radiation field(s) [158–160]. Irradiation by a strong field leads to dynamic 

splitting of the energy levels of nanoparticles [161]. The split states are said to be dressed 

by the strong radiation field. The splitting phenomenon is particularly well resolved when 

the Rabi frequency of the strong field is larger than the decay rates of the energy levels 

[162]. 
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In the past four decades, the ac Stark effect has been studied – theoretically and 

experimentally – in many different types of systems, such as atomic gases [163–176], 

laser-cooled atoms [177–189], ions [190–193], gas-phase molecules [194–200] and solid 

state materials [201–203], under both steady-state and transient [205, 206] conditions. In 

particular, there has been considerable interest in studying the effect in three-level 

nanoparticles [163–167, 207–210], which are taken in either of the Λ, V or Ξ (cascade or 

ladder) configurations. 

Recently, investigations of the ac Stark effect have been extended to semiconductor 

nanostructures, such as QDs, wells, wires, etc. These nanostructures are essential for the 

fabrication of devices for quantum computing. QDs, in particular, have been widely 

studied in this regard, when doped in semiconductors [211–218]. Studies of the ac Stark 

effect in these structures have addressed both theoretical and experimental aspects. For 

example, a recent theoretical study has shown that the optical absorption spectra due to 

excitons in a QD superlattice embedded in a nanowire exhibit ac Stark splitting [219, 

220]. On the experimental side, a similar splitting effect has been observed in the 

intersubband transitions in semiconductor quantum wells and it has been shown that the 

dephasing mechanisms associated with these transitions have characteristics which make 

the wells behave as artificial atoms [221]. 

Much of the existing work on the ac Stark effect involves gases consisting of three-level 

atomic systems. The nanoparticles are taken in either of the Λ, V or Ξ (cascade or ladder) 

configurations [163–167, 211–220]. Recently, these studies have encompassed four-level 

nanoparticles as well. Most notably, Wei et al. [222] have carried out an extensive 

analysis of this system and found that the resulting spectrum has up to three-peaks 

(dynamic splitting), which can be explained in terms of the dressed state formalism. 

Other types of four-level systems that have been used in ac Stark effect studies include 

doubly-driven Rb and Ba atoms. For example, density matrix calculations of the 

fluorescence obtained from a four-level Rb atomic system have shown A–T split states 

and transparency effects, which have been confirmed experimentally [223, 224]. Further 

empirical evidence of the effect has been found in the two-photon resonant spectrum 
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obtained in the presence of a strong coupling field from the non-degenerate four-wave 

mixing in a four-level Ba system (dressed cascade configuration) [225]. It has also been 

shown theoretically that tuning of the power of a single pump field interacting with a 

four-level nanoparticle can induce mixing and crossing of A–T components of closely-

spaced transitions [171, 223, and 224]. 

1.6 Recent Related Developments in Photonic Crystals and 
Dispersive Materials 

Recently, Singh [226] has investigated the effect of DDI on absorption processes in 

photonic nanowires manufactured by embedding a photonic crystal into another. Using 

an ensemble of three-level QDs doped within the embedded crystal, he has calculated the 

absorption coefficient of a probe field after a control field has been applied to induce 

dipole moments, taking into account the DDI between the induced dipoles and the 

interaction of the QDs with the bound photon states of the nanowire via electron-photon 

interactions. He has found that, by changing the locations of the resonant energies in the 

QDs, the DDI can be controlled which, in turn, acts as a switching mechanism for the 

absorption coefficient. 

Hatef and Singh [227] have developed a theory for the decay of a two-level QD doped in 

a two-dimensional metallic photonic crystal consisting of two different metallic columns 

periodically arranged in air. The photonic crystal has an isotropic band gap with suitable 

choices for the sizes of the metallic columns. The density of states and the optical 

properties of the crystal can be controlled by changing the plasma energies of the 

contrasting metals. They calculated the linewidth broadening and the spectral function of 

the spontaneous emission and showed that these can be controlled by changing the 

plasma energies of the metals. 

Cox et al. [228] have investigated the acousto-optic effect in polaritonic nanofibers made 

by embedding a single cylindrical polaritonic doped nanowire, made of either a phonon-

polaritonic or excitons-polaritonic material, within a photonic crystal. The dopants are 

noninteracting QDs, which only interact with the nanofiber via excitons-polariton 

interaction. They have found that, for certain acoustic strain intensity, the nanofiber has a 
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localized-to-delocalized polariton transition similar to metal-to-insulator transitions in 

doped semiconductors. Furthermore, the nanofiber can be rendered transparent to applied 

radiation fields due to the excitons-bound polariton couplings. The transparency can be 

switched on/off by the external acoustic strain intensity. 

Goban et al. [229] have developed a “novel integrated optical circuit with a photonic 

crystal capable of both localizing and interfacing atoms with guided photons.” The 

optical bands of the photonic crystal waveguide are aligned with selected atomic 

transitions. From the measured reflection spectra, they were able to infer that atoms are 

localized within the waveguide by means of optical dipole forces. The importance of this 

work is amplified by the fact that it represents a first step towards surmounting the 

challenges in nanofabrication and atomic manipulation, which would ultimately bring 

about the integration of nanophotonics and atomic physics, including novel quantum 

transport and many-body phenomena with photon-mediated atomic interactions. 

The most productive area of study involving photonic crystals over the last one and a half 

decade has focused on the modifications in the radiative properties of nanoparticles 

doped within the host environment of these materials, in relation to the coherent 

interaction between the particles and external laser fields. 

Nihei and Okamoto [230] have investigated the spontaneous emissions from a singly-

driven V–type three-level nanoparticle doped within an anisotropic photonic crystal 

which has a band-edge energy midway between the two upper levels of the particle. 

Using a more elaborate setup, Zhang et al. [231, 232] have studied two distinct types of 

quantum interferences in the spontaneous emission spectra obtained from a double V–

type four-level nanoparticle embedded in a double-band photonic crystal. Also of note 

are related earlier investigations by Zhu et al. [233] and Yang and Zhu [234]. 

The spontaneous emission from two-level [235–240], three-level [241–244], four-level 

[245–247] and five-level [248] atoms embedded in anisotropic photonic crystals have 

been studied extensively in both single- and double-band reservoir setups. Some 

interesting features such as narrowing, enhancement and suppression of spectral lines and 

the occurrence of dark lines in the spontaneous emission have been observed universally. 
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Most notably, Wu et al. [238] have investigated the spontaneous emission from a two-

level atom embedded in an anisotropic photonic crystal using fractional calculus where 

the spectrum is obtained analytically by solving the fractional kinetic equations. They 

found that, unlike the spontaneous emission phenomenon obtained from atoms doped in 

isotropic photonic crystals, the emission near the band edge of an anisotropic reservoir 

does not feature a photon-atom bound state. The same mathematical technique has been 

used by Huang et al. [241] to study the spontaneous emission dynamics of a V–type 

three-level atom. 

Other notable studies include that by Yang et al. [240] which focuses on studying the 

spontaneous emission of a two-level atom in an anisotropic photonic crystal without the 

limitations of the rotating wave approximation (RWA) and de Vega and Alonso [249] 

which uses a similar atomic system embedded in a general non-Markovian reservoir. 

Also, Entezar [250] has used a quantum entropy model to study the entanglement of a 

two-level atom and its radiation field near the edge of a photonic band gap. Finally, 

Takeda and John [251] have recently performed a theoretical study of the phenomenon of 

population switching in quantum dots doped in both one- and two-dimensional photonic 

crystals by solving the semi-classical Maxwell-Bloch equations self-consistently. 

Similar studies have also been done in three-level [252–254], four-level [255 – 259] and 

five-level [260] atoms in isotropic photonic crystals. Most notably, Zhang et al. [260] 

have studied the spontaneous emission spectra of a five-level atom being driven by two 

external fields, doped in a photonic crystal. They found that the interference effects 

produced by the two fields lead to spectra with different characteristics compared to that 

obtained from the case of only one driving field. 

In dispersive materials, Singh [261] has studied the optoelectronics of a polaritonic 

nanowire fabricated by embedding a polaritonic crystal into another, with the condition 

that the band gap of the embedded crystal lies within the band gap of the host. To satisfy 

this band-gap condition, GaP and MgO crystals can be used with MgO as the host crystal. 

He has calculated the bound states of the confined polaritons in the embedded crystal 

using the transfer-matrix method and evaluated the bound polariton energies for a GaP-
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MgO nanowire. He showed that the number of bound states in the wire depends on its 

size, the depth of the potential well, and height of the potential barrier. He also calculated 

the absorption coefficient of the system using the time-dependent Schrödinger equation 

method and performed numerical simulations for the GaP-MgO nanowire showing that 

when the resonant energy of doped QD lies near the bound states, its absorption spectrum 

has several transparent states. As a result, the nanowire can be switched between 

transparent and absorbing states by tuning the resonant state of the QD.  

Finally, Singh and Racknor [262] have studied the acousto-optic effect on photon 

transmission and spontaneous emission in a polaritonic photonic crystal fabricated from 

polaritonic materials such as GaP, MgO, LiNbO3, and LiTaO3. By doping a two-level QD 

in the polaritonic crystal, they calculated the decay rate of the spontaneous emission, the 

band structure, and the photon transmission coefficient. They found that the “band-gap 

width and the decay rate of QD depend strongly on the high-frequency dielectric constant 

of the polaritonic crystal while the photonic band edges vary inversely by the ratio of 

longitudinal- to transverse-optical phonon energies”. They also showed that the 

spontaneous decay rate of the QD can be controlled by the application of the external 

acoustic strain field and the system can be switched from a transmitting state to a 

reflecting state by the same means. 

In both contrast and complement to these existing works, the theoretical developments 

presented in this thesis focus on the roles played by the decay rates of the energy levels of 

the nanoparticles and the DDI between the nanoparticles (in densely doped ensembles) in 

photon trapping (for both photonic crystal and dispersive material reservoirs) and the ac 

Stark effect (for photonic crystal reservoir only). 

We show that the CPT effect is sensitive to the decay rates of the energy levels of the 

nanoparticles, allowing us to establish two distinct controls (via coherence and via 

manipulation of the decay rate) on the population densities of the upper levels of the 

doped nanoparticles. 

In studying the ac Stark effect, we propose a new technique for obtaining transparency in 

quantum optical systems, making use of the unique properties of the band structures of 
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photonic crystals. Unlike comparable work in the literature, it is important to note that we 

do not consider the Stark splitting to be generated due to the coupling of the transitions 

between the energy levels of a nanoparticle to the density of states of the reservoir. 

Instead, the splitting in our proposed model occurs due to the external laser fields. This 

important distinction allows for greater control in achieving the desired transparency 

effect.  

1.7 Outline of the Thesis 

The aim of the thesis is to study the CPT phenomenon (in photonic crystals and 

dispersive materials) and the ac Stark effect (only in photonic crystals). We consider that 

an ensemble of nanoparticles is doped in these materials. These nanoparticles are taken to 

be interacting with either a photonic crystal or a dispersive material – both of which act 

as reservoirs – and are subject to probe and pump fields. We also consider cases where 

the nanoparticles interact with each other, as well, via DDI. 

Chapter 2 details our investigation of the phenomenon of photon trapping in 

nanoparticles doped within photonic crystals. Primarily, we found that, in these materials, 

when the resonance energy lies within the lower and upper bands, one observes the CPT 

effect at certain values of the relative Rabi frequency for a given initial configuration of 

the energy levels of the nanoparticle. It is also found that the CPT effect can be controlled 

by moving the resonance energies of the nanoparticles within the lower and upper bands 

of the photonic crystal.  

Chapter 3 presents our study of polariton trapping in a dispersive material doped with an 

ensemble of nanoparticles. These materials have band gaps, like photonic crystals, but the 

origin of the band gaps is very different comparatively. As a result, we obtain markedly 

different and interesting effects on photon trapping. Most usefully, we found that the 

steady-state atomic population in the upper level of a doped nanoparticle depends 

sensitively on the coherence conditions and the decay rate; increasing the decay rate can 

increase the fraction of population trapped in the system. In this way, the same population 

density in the upper level can be obtained for a range of values of the resonance energy 

simply by adjusting the intensity of the coupled field. It should be emphasized here that, 
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as photons and polaritons have different properties and the energy ranges for photonic 

and polaritonic band gaps are located in different regions, there are significant 

dissimilarities between photonic and polaritonic devices. 

Chapter 4 deals with the effect of DDI on a photonic crystal and a dispersive material 

when the number density of the doped nanoparticles is very high. For both the photonic 

crystal and the dispersive material, we found that when the resonance energies lie away 

from the band edges and within the lower or upper bands, trapping is observed at certain 

values of the relative Rabi frequency, which vary depending on the strength of the DDI 

between the nanoparticles. Also, in both media, as DDI becomes stronger, the population 

density of the uppermost level increases. Moreover, the CPT effect can be switched on 

and off due to the effect of DDI. However, when the resonance energies lie in the upper 

band of the photonic crystal and the dispersive material, converse effects are observed. 

More specifically, in the dispersive material reservoir, the population density vanishes 

when the resonance energy lies near the lower band edge. But, this effect is not observed 

if the resonance energy lies near the upper band edge. In the case of the photonic crystal, 

the population density of the uppermost level is seen to vanish near both the upper and 

lower band edges. This is explained by the symmetric and asymmetric structures of the 

photonic crystal and dispersive material form factors, respectively, about the 

corresponding band gaps. 

Chapter 5 details our study of the ac Stark effect, which occurs due to quantum coherence 

and interference, in photonic crystals. The photonic crystal is lightly doped with an 

ensemble of nanoparticles which are not interacting with each other. The ac Stark effect 

is a nonlinear quantum optical phenomenon where an intense pump field is applied. We 

found that the manipulation of the decay rates of the energy levels of a doped 

nanoparticle offers a new mechanism for switching the particle from an inverted to a non-

inverted state (and vice versa), with regards to the population of the ground level of the 

nanoparticle. Our calculations have also shown that due to the role played by the band 

structure of the photonic crystal, the doped nanoparticle effectively becomes transparent 

to any radiation field tuned to the resonance energy of the probed transition. 
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Chapter 6 presents our study of the effect of DDI on dynamic Stark splitting in a photonic 

crystal doped with an ensemble of five-level nanoparticles. It is found that, when the 

concentration of the particles is high, the induced dipoles interacting with each other via 

DDI decreases the absorption in the system with increasing interaction strength. Also, the 

absorption peaks shift to new positions due to the DDI effect. In addition, the system can 

be switched from a three-peak spectral profile to that featuring two peaks, simply by 

changing the DDI parameter. This property can be used to make new types of photonic 

devices (such as switches). 

The thesis is concluded by making a few closing remarks in Chapter 7 and briefly 

addressing the potential for future work in the areas discussed in Chapters 2 – 6.  
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Chapter 2  

2 Population Trapping in Photonic Crystals 

For nearly a century, the phenomenon of photon trapping in atomic gases has been 

extensively studied. The aim of this chapter is to investigate this trapping effect in 

nanoparticles doped within photonic crystals
1
. 

2.1 Introduction 

A major area of study involving photonic crystals is focused on the modifications in the 

radiative properties of nanoparticles doped within the host environment of these 

materials, in addition to the coherent interaction between the particles and external laser 

fields. Notably, prominent workers such as Quang et al. [14] and Woldeyohannes and 

John [15, 17] have studied the coherent control of spontaneous emission in a doubly-

driven three-level nanoparticle located within a photonic crystal, with one resonant 

frequency near the band edge of the crystal.  

The present chapter details our study of the phenomenon of coherent population trapping 

(CPT) in photonic crystals. First, we provide pertinent background information on 

photonic crystals (Section 2.2) and the CPT effect (Section 2.3). Next, we propose a 

theory of CPT for a photonic crystal lightly doped with an ensemble of identical five-

level nanoparticles. These particles interact with the photonic crystal reservoir and two 

external photon fields. But, due to the light nature of doping, they do not interact with 

one another. The level scheme of the doped nanoparticles is shown in Fig. 2-1. The 

energy levels are labeled as a , b , c , d  and e . The energy difference between 

levels i  and j  is denoted as 
ij . The interaction between the nanoparticles and the 

reservoir causes both levels b  and c  to spontaneously decay to level e , with 

                                                 

1
 The work presented in this chapter has been published in: M. R. Singh and I. Haque, J. Mod. Opt. 52, 

1857 (2005). 
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corresponding decay rates b  and c , respectively, and level a  to spontaneously decay 

to level d , with decay rate a . The magnitudes of the Rabi frequencies corresponding 

to the two fields are denoted as 1  and 2 . 

 

Figure 2-1: Level scheme of a five-level nanoparticle; 
ij is the energy difference 

between levels i  and j . Here, i
 
and j  stand for a , b , c , d  and e . Levels 

b  and c  both spontaneously decay to level e  and level a  spontaneously decays to 

level d , due to nanoparticle-reservoir interaction. a , b  and c  denote the linewidths 

of levels a , b  and c , respectively. 1
 
and 2  are the magnitudes of the Rabi 

frequencies corresponding to the two fields. 

Our calculations illustrate the role played by the decay rates of the energy levels of the 

nanoparticles in photon trapping. We use the Schrödinger equation and the Laplace 

transform method to calculate the expressions for the population densities of the energy 

levels. Numerical simulations are performed for a photonic crystal with a gap-midgap 

ratio of 5%. The results show that when the resonance energies lie within the propagation 

bands of the crystal, the population density of the uppermost level vanishes at a specific 

value of the intensity ratio of the two fields, indicating the occurrence of CPT. The initial 
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states of the nanoparticles are chosen such that this particular value of the intensity ratio 

is 1. 

We proceed to show that the CPT effect is sensitive to the decay rates of the energy 

levels of the nanoparticles. More specifically, when one of the resonance energies lies 

near the lower band edge of the photonic crystal, the population density vanishes at all 

intensities of the fields. This is due to the very large values of the density of states near 

the lower band edges of these materials and is not an evidence of CPT. A similar result is 

found when the resonance energy lies near the upper band edge of the photonic crystal. 

The study of CPT in photonic crystals has great potential for implementation in the 

design of novel optical devices such as low-threshold switches, all-optical transistors, 

quantum memory devices, etc., owing to the unusual properties of these crystals. The 

potential for applications of the newly predicted effect lies in the fact that it facilitates 

two distinct modes of control on the population densities of the uppermost levels of the 

doped nanoparticles. 

This study is very timely as, very recently, Gozzini et al. [263] have reported the first 

experimental observation of CPT in thermal potassium vapour in a Λ–type three-level 

scheme. Potassium required a lower modulation frequency with a large resonance 

contrast which is an advantage over other alkalis, making it very promising for future 

CPT and EIT applications, in particular where optical pumping losses are limiting factors. 

Also, last year, Zhang and George [264] have shown that the CPT effect can occur in 

buckminsterfullerene (C60) radiated with a pair of coupling laser pulses which render the 

atom transparent to a weak probe field. The stability of the CPT state depends sensitively 

on the laser field amplitudes, pulse durations and the time delay between the coupling 

pulses. 

2.2 Photonic Crystals 

This section describes a few basic concepts pertaining to photonic crystals and provides a 

brief outline for the calculation of their dispersion relations. 
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A photonic crystal represents a class of nanomaterials in which two dielectric materials 

with differing dielectric constants or refractive indices are arranged in a periodic 

structure. The resulting periodicity in the dielectric constant function of the crystal leads 

to the formation of energy gaps, where linear electromagnetic wave propagation is 

forbidden [12]. This is analogous to the energy gaps observed between the valence and 

the conduction bands of an electronic (semiconductor) crystal. The primary distinction 

between these two types of crystals is the scale of the lattice constant. For electronic 

crystals, the lattice constant is on the sub-nanometer scale. In the case of photonic 

crystals, it is on the order of the wavelengths of the relevant electromagnetic waves. 

 

Figure 2-2: Schematic representation of a photonic crystal with three-dimensional 

periodicity. It consists of a periodic arrangement of dielectric spheres in air. The lattice 

constant is denoted as L . 

Photonic crystals can have different spatial periodic arrangements of the regions of high 

and low refractive indices. The periodicity can be one-, two- or three-dimensional. A 

schematic representation of a three-dimensional photonic crystal is shown in Fig. 2-2. It 

consists of a periodic lattice of dielectric spheres in air, with lattice constant L . If the 

energy gap in a photonic crystal extends over the entire Brillouin zone, it is known as an 

absolute (isotropic) band gap. In this case, the band gap is not dependent on the direction 

of the wave vector. In an absolute band gap, the density of photon states goes to zero. In 
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contrast, if wave propagation is forbidden over only a limited domain of wave vectors, 

the gap is classified as partial or incomplete. 

The band structure of a photonic crystal relates the energies of the photons to the wave 

vectors. It depends primarily on the dielectric contrast, the lattice constant and the 

structure of the crystal. It is possible to gain an intuitive understanding of the concept of 

the band structure by studying a three-dimensional isotropic photonic crystal [18, 19]. For 

simplicity, we consider a photonic crystal made up of dielectric spheres of radius a  and 

refractive index n , periodically arranged in air with lattice constant 2L a b  , where b  

is the spacing between the spheres [19]. Since the crystal is isotropic, the one-

dimensional Maxwell equations can be used to calculate the dispersion relation, ignoring 

the vector nature of the electromagnetic field. 

The one-dimensional scalar wave equation for the crystal can be written as (discussed in 

Appendix A): 

 

 
2 2

2

2 2
x

c c

 
       (2.1) 

where   represents a scalar wave function,   denotes frequency, c  is the speed of light 

and  x  is the dielectric constant function with periodicity: 

    x x L     

As the scalar wave equation resembles the time-independent Schrödinger equation, it is 

possible to re-write the periodic dielectric constant function as: 

 

   
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m
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where 

  

 

2 1 for

0 otherwise

u x n x a

u x

   

 
  

Eqn. (2.1) can, therefore, be solved analytically, giving the following energy dispersion 

relation for the photonic crystal [18, 19] (discussed in Appendix B): 
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(2.2) 

where k  and k  denote the energy and the wave vector of the photons, respectively. A 

schematic representation of this dispersion relation is shown in Fig. 2-3. 

 

Figure 2-3: Plot of the photon energy k  as a function of the wave vector k  for a 

photonic crystal. Note that there is an energy gap between c  and v . 

The photonic band gap is located at: 

 

0k k
L


    

Note that, as the wave vector k  repeats itself outside the Brillouin zone, the dispersion 

curves fold back into the zone at reaching its edges. 

2.3 Coherent Population Trapping 

This section defines the CPT phenomenon, in the context of quantum coherence, and 

provides a brief description of the mechanism behind the trapping effect. 
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A process is said to be coherent if it is characterized by the existence of some well-

defined deterministic phase relationship, independent of any phenomena which induce 

random noise [84]. In quantum mechanical systems, coherences between states are 

generated whenever an external interaction renders the system in a superposition of the 

energy eigenstates. In such circumstances, the presence of coherence produces quantum 

interference phenomena, which are widely exploited in spectroscopy and quantum optics 

[81]. 

Many interesting effects have been predicted using the ideas of quantum coherence and a 

wide range of practical applications have been proposed. In particular, it has been found 

that, under certain conditions, the application of two continuous wave radiation fields to a 

nanoparticle leads to its preparation in a coherent superposition of states, which is stable 

against absorption from the radiation field. This phenomenon has been designated as 

coherent population trapping owing to the presence of the coherent superposition of the 

energy states and the stability of the population. 

Alternatively, CPT can also be described as the process of pumping the nanoparticle to a 

non-absorbing state. The exciting radiation creates a coherence such that the evolution of 

the nanoparticle is prepared exactly out of phase in relation to the incoming radiation, 

cancelling all absorption events. 

 

Figure 2-4: Level scheme of a  –type three-level nanoparticle. The energy difference 

between levels i  and j  is denoted as ij . Levels a  and b  are coupled by a field of 

frequency 1  and amplitude 1E ; a  and c  are coupled by a probe field of frequency 2  

and amplitude 2E . 
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In order to understand the mechanism behind the CPT effect, we consider a  –type 

three-level system, in which there are two coherent routes for absorption that interferes 

destructively, leading to the cancellation of absorption [84]. A schematic representation 

of the system is shown in Fig. 2-4. 

The upper level a  and level b  are coupled by a field of frequency 1  and amplitude 

1E  and levels a  and c  are coupled by a probe field of frequency 
2  and amplitude 2E

. Transitions between the lower doublet states are dipole forbidden. Due to selection rules 

produced by a proper choice of the polarizations, each laser field – considered to be 

perfectly monochromatic and coherent – acts only on one dipole transition [81]. 

The detunings of the radiation fields are defined as:  

 
1 1 ab   

 
 

 
2 2 ac   

 
 

The nanoparticle maintains a coherent phase relationship with the applied fields. 

The coherence is preserved in terms of the Rabi frequencies:  

 
1 1abE   h

 
 

 
2 2acE   h

 
 

where ab  and ac  are the induced electric dipole moments between states a  and b , 

and a  and c , respectively. 1  and 2  are also characterized by complex phase 

factors 1i
e

  and 2i
e

 , respectively. 

The initial state (coherent superposition) of the nanoparticle can be written as:  

 
0 cos sin

2 2

ib e c 
    
     

   
  

where cos( 2)   and sin( 2)   are the initial amplitudes of levels b  and c , 

respectively, with a phase factor of ie  . 

In the present system, CPT occurs under conditions of two-photon resonance, i.e.:  
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1 2    

which means that trapping can be achieved here by simply altering the laser frequencies, 

provided that:  

 2     

 
1 2         

When the condition for two-photon resonance is satisfied, corresponding to the formation 

of coherently trapped population in b  and c , the population of a  becomes zero. 

If the intensities of the two lasers are increased, one must tune increasingly further from 

resonance to obtain appreciable excitation to level a . The CPT effect observed here is 

due to the destructive quantum interference between the two transitions. 

2.4 Population Density and Photon Trapping 

This section provides a detailed theoretical background of the system under scrutiny and 

describes the calculations performed in order to study the phenomenon of CPT. We 

consider that an ensemble of non-interacting five-level nanoparticles are doped within a 

photonic crystal. As shown in Fig. 2-1, the energy levels of a doped nanoparticle are 

denoted as a , b , c , d  and e . The two lower levels b  and c  are coupled to 

the excited level a . Levels b  and a  are coupled by a photon field of frequency 1  

and amplitude 1E  and levels c  and a  are coupled by that of frequency 2  and 

amplitude 2E . The transition from level b  to c  is dipole forbidden. Due to the 

interaction between the nanoparticle and the reservoir, levels b  and c  both decay 

spontaneously to level e  and level a  decays spontaneously to level d .  

For simplicity, the photonic crystal is taken to consist of an isotropic periodic 

arrangement of identical dielectric spheres, in a background dielectric medium which has 

a distinct dielectric constant. The background material in this case is taken as air which 

has a refractive index of 1.  
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Recently, John and co-workers have proposed a band structure theory for three-

dimensional photonic crystals (see Section 2.1). According to this theory, the energy 

dispersion relation for the photonic crystal can be written as [18, 19]: 

 

 
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kL
n c n


 
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 (2.3) 

where, as before, k  is the photon wave vector inside the crystal, k  is the photon energy 

corresponding to the wave vector k , n  is the refractive index of the dielectric spheres, a  

is the radius of each sphere and c  is the speed of light. L  is the lattice constant of the 

crystal and is defined as (taking the special case where 2b na ): 

  2 1L a n    

A plot of the dispersion relation is given in Fig. 2-5.
 

 

Figure 2-5: Plot of the dispersion relation of the photonic crystal with 1 082n   , 

0 24a L    and 300L   nm. The quantities v  and c  are the maximum energy of the 

valence band and the minimum energy of the conduction band, respectively. The 

horizontal axis is the ratio of the energy k  to the maximum valence band energy v . The 

band gap of the crystal lies between 1k v    and c v  , shown by the vertical dashed 

lines. 



33 

 

The quantities 
v  and 

c  represent the maximum energy of the valence band and the 

minimum energy of the conduction band, respectively. The band gap of the crystal lies 

between these two energy values, 1 94v    eV and 2 04c    eV (approximately), and 

its gap-midgap ratio is 5%. This energy gap corresponds to the optical region of the 

electromagnetic spectrum. 

The Hamiltonian for the system is written in energy space as (this equation is discussed 

in Appendix C): 

 
A R AF ARH H H H H     (2.4) 

where the first term is the Hamiltonian of the five-level nanoparticle and is given by 

(discussed in Appendix D): 

 1 1 1 1

2 2 2 2

z z z z

A ab ab ac ac ad ad be beH        
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              
       

h h h h  (2.5) 

The second term in Eqn. (2.4) represents the Hamiltonian of the reservoir. It can be 

written as: 

 

( ) ( )
2

q

R q q q
C

d
H p p


  



   (2.6) 

The integration contour C  consists of two intervals: 
q v     and 

c q     [20, 

21, 50]. 

The third term in H  denotes the interaction Hamiltonians between the nanoparticle and 

the two photon fields of frequencies 1  and 2 . It is given by: 

 

1 2( )[ ] ( )[ ]
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(2.7) 

The final term in Eqn. (2.4) is the nanoparticle-reservoir interaction Hamiltonian and is 

responsible for the decays from level a  to d , b  to e  and c  to e . It can be 

written as:  
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(2.8) 

where the terms ( )qp 
 and ( )qp   denote the photon creation and annihilation operators 

in energy space, respectively. 

It is important to note that the interaction Hamiltonians given in Eqns. (2.7, 2.8) are 

obtained in the dipole and rotating-wave approximations [20, 21, and 50] (discussed in 

Appendix E and Appendix F, respectively).  

The remaining terms in the expressions of the Hamiltonians given above are defined as:  

 z

ij i i j j     

 
ij i j     

 
ij j i     

 
1ab ab   

 
 

 
2ac ac   

 
 

 2 3(4 3)ij ij ij   
 

 

where 
ij  and 

ij  are the dipole matrix element and the energy difference, respectively, 

between levels i  and j . Note that 
ij ij  h .  

The magnitudes of the Rabi frequencies corresponding to the two fields are: 

 
1 1abE   h

 
 

 
2 2acE   h

 
 

where the phase factor between 1  and 2  is taken as ie  .  

( )ijZ   is known as the form factor for the transition from i  to j . For photonic 

crystals, the form factor has been calculated in Reference [20, 21] using the isotropic 

model proposed in Reference [19]. It is written as (discussed in Appendix G):  
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where ( )ij   is defined as: 
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A plot of the form factor is given in Fig. 2-6. As before, the band gap of the crystal lies 

between 1k v    and 
c v  , shown by the vertical dashed lines. 

 

Figure 2-6: Plot of the form factor ( )kZ   of the photonic crystal. The choices of the 

crystal parameters and the horizontal axis are identical to those for the dispersion relation 

in Fig. 2-5. 

Initially, the five-level nanoparticle is prepared such that it is in coherent superposition of 

the two levels b  and c : 

 0 (0) (0) iB b C e c  
 

(2.10) 
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where (0)B  and (0)C  are the initial amplitudes of levels b  and c , respectively. The 

phase factor between (0)B  and (0)C  is taken as ie .  

The state of the nanoparticle and the polariton field at a later time t  is written as: 

 ( ) ( ) ( )t A t a B t b C t c   
 

(2.11) 

Writing the Schrödinger equations for ( )A t , ( )B t  and ( )C t , we get:   

 

1 2

( )
( ) ( ) ( ) ( ) ( )

2 2

i a
ab ac

dA t i
Z B t e Z C t A t

dt

 
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   

(2.12a) 
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  
   

   

(2.12b) 
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( ) ( ) ( )

2 2

i c
ac

dC t i
e Z A t C t

dt

 
  

       
   

(2.12c) 

where a , b  and c  are the decay rates for a , b  and c , respectively, and are 

written as:    

 
21

( )
2

a ad adZ  
 

(2.13a) 

 
21

( )
2

b be beZ  
 

(2.13b) 

 
21

( )
2

c ce ceZ  
 

(2.13c) 

In Eqns. (2.12a, 2.12b, 2.12c), we have neglected the real part of the self-energy 

associated with each of levels a , b  and c . From here onwards, we will write ( )ijZ   

as simply 
ijZ , to avoid clutter.  

It must be noted here that Eqns. (2.13a, 2.13b, 2.13c) are obtained when the resonance 

energies lie within the propagation bands of the photonic crystal. When the resonance 

energy lies within the band gap, 0i   [20, 21].  

Applying the Laplace transform method (discussed in Appendix H) to Eqns. (2.12a, 

2.12b, 2.12c), we can calculate ( )A t  as follows:   
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(2.14) 

In Eqn. (2.14), s  is given by: 
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and s  and s  are found to be:  
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In the above, 
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The variables 1A , 2A  and 3A  appearing in Eqn. (2.14) are given by:  
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Similarly, the expressions for ( )B t  and ( )C t  are found as:  
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Without compromising any physical integrity of the problem, we consider the case when 

b c   . Under this simplification, we have found the following analytical expressions 

for ( )A t , ( )B t  and ( )C t : 
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and 
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 

2 2
2 42

1 1
2

a b ta b abZ
G e

                   

 

   4

1 2
2 1 2

a b t

ac ab
ac ab

Z Z e
G Z Z

   
 

   
  

 

 
 

2

42 2 1
1

2

a b

i
ta b ab ace Z Z

H e


                    

 

  2 42
2 22

2 2

a b t

ac

ac

Z e
H Z

   
 

  
  

 

with 

 
 

2

sin cos
2 2 2

a b t t      
     

     

 

The physical interpretation of 
2

( )A t  is that it gives the probability of finding two 

photons in level a , when they are excited from levels b  and c  to a . This leads to 

the trapping of the two photons in the system. The next section describes the calculation 

of the value of 
2

( )A t .  

2.5 Results and Discussions 

For all calculations in this section, we let (0)B  and (0)C  be cos( 2)   and sin( 2)  , 

respectively, with 0    . We also let the combined phase factor     . The 

numerical simulations are performed at a scaled arbitrary time 0 6adt   . 

As in the cases of Figs. (2-5, 2-6), we choose a photonic crystal characterized by the 

following set of parameters [15, 17]: 
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 1 082n     

 300 nmL 
 

 

   0 24a L  
 

 

It is important to note that the main findings of this section do not depend on the choice 

of the photonic crystal. 

As in Reference [48], we assume that: 

 1 3be ad ce ad       
 

 

All frequencies are subsequently measured with respect to ad .  

It is important to note that, in the present calculations, we have only investigated the role 

of a . The decay rates of the energy levels of the nanoparticles depend on the location of 

the resonance energies 
ij  in relation to the band structure of the photonic crystal, as 

evident from Eqns. (2.13a, 2.13b, 2.13c). Whereas the value of a  is calculated for 

different cases – e.g. resonance energy at mid-band, at band edge, etc. – b  and c  are 

calculated when the resonance energy lies near the middle of the band. Hence, b  and 

c  act as constants, as in other works. Consequently, the five-level system reduces to a 

four-level system. 
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Figure 2-7: Plot of aa  against varying r  and ad  for the photonic crystal – displays 

symmetric response about the band gap. 

We calculate the population density of level a  (
2

( )aa A t  ) when the resonance 

energies lie within the lower band of the crystal ( ab   0 97ac be ce       eV) and 

2    (see Fig. 2-7). We define the magnitude of the relative Rabi frequency 

2 1r    and let 1 1 8   . Numerical calculations for aa  are plotted as a function of 

r  and ad . 

Note that the population density in Fig. 2-7 becomes zero for all values of the resonance 

energy ad  at 1r  . This demonstrates the occurrence of the CPT effect in these 

materials. Similar results are also found when the resonance energies lie within the upper 

band of the crystal.  

However, it is important to note that aa  vanishes at all values of the relative Rabi 

frequency when ad  approaches either of the edges of the band gap. This is due to the 

fact that the decay rates of the energy levels of the nanoparticle depend on the density of 
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states of the photonic crystal and the energy difference between levels (i.e. the resonance 

energy). More precisely, a  depends on the resonance energy 
ad . As this energy goes 

from the mid-band regions to the band edges, a  becomes large, as reflected in Fig. 2-7. 

This means, in this case, 0aa   is a consequence of the decay from level a  to d  and 

cannot be interpreted as an indicator of CPT. 

The plot in Fig. 2-7 shows that the CPT effect can be observed by fixing   and changing 

r . It is evident that the same result can be obtained by fixing r  and changing  . 

However, in photonic crystals, the presence of the form factor – related to the band 

structure of the photonic crystal – generates a more interesting scenario. One can also get 

the CPT effect by fixing   and r  and varying ab  and ac . Numerical calculations for 

this case have not been performed.  

The study of CPT in photonic crystals has great potential for application in the design of 

novel optical devices such as low-threshold switches, all-optical transistors, quantum 

memory devices, etc., owing to the unusual properties of these crystals. The potential for 

applications of the newly predicted effect described in this chapter lies in the fact that it 

allows us to establish two distinct controls on the population densities of the upper levels 

of the doped nanoparticles:  

1. Control via coherence i.e. by changing the relative intensity of the driving 

fields.  

2.  Control via manipulating the decay rate of the upper level by changing the 

relative position of level d .  

As the steady state population in the upper level is sensitive to the coherence conditions 

and the decay rate, increasing the latter can increase the fraction of population trapped in 

the system. In this way, the same population density in the upper level can be obtained 

for a range of values of the resonance energy ad  simply by adjusting the intensities of 

the coupled fields (see Fig. 2-7).  
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2.6 Summary and Conclusion 

In summary, we found that, in a photonic crystal, when the resonance energy lies within 

the lower and upper propagation bands, one observes the CPT effect at certain values of 

the relative Rabi frequency for a given initial configuration of the energy levels of the 

doped nanoparticle. We also discussed the possibility of obtaining CPT by preparing the 

nanoparticles in a coherent superposition of states for a given ratio of the Rabi 

frequencies of the coupled fields. Particularly interesting results are found when one of 

the resonance energies lies near the upper or lower band edges. In this case, the 

population density of the excited level of the five-level system becomes zero for all 

values of the intensity ratio of the driving fields due to the effect of the form factor, 

which is related to the band structure of the material.  

This concludes the description of our study of the CPT phenomenon in identical, non-

interacting nanoparticles doped within a photonic crystal. The next chapter presents our 

investigation of this particular phenomenon in a similar ensemble of dopants within a 

dispersive material reservoir. 
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Chapter 3  

3 Population Trapping in Dispersive Materials 

Chapter 2 details our study of the phenomenon of photon trapping in an ensemble of 

doped nanoparticles within a photonic crystal reservoir. The discussions in this chapter 

are focused on our study of polariton trapping in a dispersive material doped with an 

identical ensemble of five-level nanoparticles
2
. Polaritons are formed due to the coupling 

of phonons and photons. This means that they have markedly different properties 

compared to those of photons. Therefore, polaritons exhibit significantly different physics 

relative to photons.  

3.1 Introduction 

In recent years, dispersive materials have come under scrutiny due to the presence of 

interesting features in their energy band structures, in the same vein as photonic crystals. 

For example, Rupasov and Singh [20–22] have shown that there is a suppression of 

spontaneous emission due to the decay of an energy level of an atom (or a nanoparticle) 

when it is coupled with a system of polaritons and placed within the reservoir of a 

dispersive material. They have also shown that, if the atomic resonance frequency lies 

near the energy gap of the dispersive material reservoir, the spectrum of the system 

contains a novel polariton-atom bound state with energy lying within the gap, with the 

radiation and medium polarization of the bound state localized in the vicinity of the atom 

[50]. Furthermore, the formation of this bound state leads to a significant suppression of 

spontaneous emission. 

The aim of the present chapter is to study the phenomenon of coherent population 

trapping (CPT) in dispersive materials, in contrast with that in photonic crystals detailed 

in the previous chapter. As noted earlier, in dispersive materials [20, 21], the existence of 

energy gaps is due to photons coupling to elementary excitations of the media. First, we 

                                                 

2
 The work presented in this chapter has been published in: M. R. Singh and I. Haque, J. Mod. Opt. 52, 

1857 (2005). 
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provide a detailed primer on dispersive materials, concentrating mainly on developing the 

Hamiltonians of the medium and its interaction with external radiation fields, leading to 

the formulation of a dispersion relation.  

Next, we consider that the dispersive material is doped with an ensemble of five-level 

nanoparticles. These particles do not interact with each other. Two external laser fields 

are applied and the population density is calculated for the uppermost level. The 

nanoparticles interact with the dispersive material and the two external photon fields. The 

schematic structure of the nanoparticle considered here and the configuration of the 

transitions and decay channels are shown in Fig. 3-1. 

 

Figure 3-1: Level scheme of a five-level nanoparticle; 
ij  is the energy difference 

between levels i  and j . Here, i  and j  stand for a , b , c , d  and e . Levels 

b  and c  both spontaneously decay to level e  and level a  spontaneously decays to 

level d , due to nanoparticle-reservoir interaction. a , b  and c  denote the linewidths 

of levels a , b  and c , respectively. 1  and 2  are the magnitudes of the Rabi 

frequencies corresponding to the two fields.  
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The configuration is similar to that considered in the previous chapter. However, the 

energy scale is significantly different as the current chapter deals with polaritons instead 

of photons.  

Using the mathematical techniques outlined in the previous chapter , we proceed to 

calculate the expression for the population densities of the energy levels of the 

nanoparticles. Numerical simulations are performed for a SiC reservoir. The occurrence 

of CPT is again observed, in agreement with the results found for photonic crystals. Also, 

when one of the resonance energies lies near the lower band edge, the population density 

vanishes at all intensities of the fields for the dispersive material, similar to the case for 

photonic crystals, with the same analyses applicable.  

In Chapter 2, it can be seen that the density of states in a photonic crystal has singularities 

at the band edges. It also has a symmetrical shape. Therefore, the population of the upper 

level vanishes at all values of the relative Rabi frequency when the resonance energies of 

the nanoparticles lie at both the lower and upper band edges. This is a consequence of the 

symmetrical nature of the density of states.  

However, the density of states in a dispersive material has an asymmetric shape. It 

features a singularity near the lower band edge and a zero value at the upper band edge. 

Therefore, the population of the upper level vanishes at all values of the relative Rabi 

frequency only when the relevant resonance energy of the nanoparticle lies at the lower 

band edge. This is because a dispersive material has different signatures in the lower and 

upper bands due to the nature of its density of states.  

We conclude by noting that, in contrast to the case detailed in the previous chapter, for a 

dispersive material, the population density of the upper state does not become zero when 

one of the resonance energies lies near the upper band edge, except due to the CPT effect 

brought on by unit intensity ratio of the photon fields.  
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3.2 Dispersive Materials 

This section provides an outline of the mathematical model of the Hamiltonian of a 

dispersive medium and describes the steps leading to the formulation of an appropriate 

dispersion relation, as detailed in Reference [265].  

We consider that an electromagnetic field is interacting with a dispersive material. A 

model Hamiltonian of these materials has been derived in References [21, 41]. For 

notational convenience, in this section, it is assumed that  2 1h   h  and 1c  , 

where the quantities h  and c  represent Planck’s constant and the speed of light, 

respectively.  

A dispersive material consists of molecules or atoms, which can be considered as a 

continuous set of charged harmonic oscillators. Letting each molecule have a frequency 

 , charge e , and mass 0m , the Hamiltonian of the material can be written as:  

 
2 2 2 2

0

0

1
( ) ( )

2
MH d m

m
     r P r Q r

 

(3.1) 

where ( )Q r  and ( )P r  are the displacement and the momentum of an oscillator, 

respectively, and are well-known to obey a specific set of commutation relations. 

The Hamiltonian of the electromagnetic field propagating within the dispersive material 

can be written as: 

 
2 21
( ) ( )

8
FH d


    r E r H r

 

(3.2) 

where E  and H  denote the electric and magnetic components of the radiation field, 

respectively.  

The molecules of the dispersive material possess electric dipoles. The electric dipole 

moment of a molecule at position r  can be written as ( )eQ r . The interaction 

Hamiltonian between the electric dipoles of the dispersive material and the 

electromagnetic field is written, in the dipole approximation, as:  

 
( ) ( )MFV e n d  rQ r E r

 
(3.3) 
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where n  is the number density of the oscillators in the material. The total Hamiltonian of 

the system, then, is:  

 
MF F M MFH H H V  

 
(3.4) 

It is useful to write the above Hamiltonian in terms of the second quantized notation (i.e. 

raising and lowering operators). Following the method of References [21, 41], the 

Hamiltonian of the electromagnetic field can be written as:  

 

0
( ) ( )

2
F

dk
H k c k c k




 

 

(3.5) 

where k  is the wave vector of the electromagnetic field. The operators ( )c k  and ( )c k  

are called the photon creation and annihilation operators, respectively, and obey the 

commutation relations for boson operators.  

Similarly, Eqn. (3.1) can be written in the second quantized notation as:  

 

0
( ) ( )

2
M

dk
H b k b k






 

(3.6) 

where ( )b k  and ( )b k  are the phonon creation and annihilation operators, respectively, 

and also obey the well-known commutation relations applicable for boson operators.  

Finally, the interaction Hamiltonian can also be converted to the second quantized form 

(in the rotating wave approximation): 

 

0
[ ( ) ( ) ( ) ( )]

2
MF

dk
V k c k b k b k c k




   

 

(3.7) 

where  

 2

0

e n

m


 


 

 

The total Hamiltonian of the system can then be written as: 

 

0 0

0

( ) ( ) ( ) ( )
2 2

     [ ( ) ( ) ( ) ( )]
2

MF

dk dk
H k c k c k b k b k

dk
k c k b k b k c k

 



 
 


 

 

  

 



 (3.8) 
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At this stage, it is useful to introduce the polariton operators ( )p k  and ( )p k

  ( 1   

and 2   correspond to the lower and upper branches of the polariton spectrum, 

respectively). These are written as follows:   

 1 2 1 2

1 2
1

2 1 2 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

k k
p k c k b k

k k k k

 

   

 

    
    

      

(3.9a) 
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 
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 

    
    

      

(3.9b) 
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      
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(3.10a) 

 1 2 1 2

2 1
2

2 1 2 1

( ) ( )
( ) ( ) ( )
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 
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      
    

      

(3.10b) 

3The polariton operators are seen to be combinations of phonon and photon operators. 

The expression for the operator ( )p k

  is obtained from that for ( )p k  by taking the 

Hermitian conjugate. These operators can be shown to obey the following commutation 

relations:   

 [ ( ) ( )] 2 ( )

[ ( ) ( )] 0

[ ( ) ( )] 0

p k p k k k

p k p k

p k p k

  

 

 

 





  



  

  

 

 
 

 

The total Hamiltonian given in Eqn. (3.8) can be diagonalized in terms of the polariton 

operators. To this end, the photon and phonon operators are first expressed in terms of 

these new operators by using Eqns. (3.9, 3.10). Substituting the results in Eqn. (3.8), the 

following Hamiltonian is obtained:  

 

0
( ) ( ) ( )

2
MF

dk
H k p k p k  









 

(3.11) 

where ( )k  is the energy of the polariton spectrum, given by:   

 
2

1

1
( ) ( ) ( ) 4

2
k k k k

 
 
  

     
 

(3.12a) 

 
2

2

1
( ) ( ) ( ) 4

2
k k k k

 
 
  

     
 

(3.12b) 

The polariton spectrum is seen to have two branches 1( )k  and 2 ( )k .  
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Defining   

 
v

c

c v





 

 

 

  
 

 

Eqns. (3.12a, 3.12b) can be re-written as:   

 
 2

1

1
( ) ( ) ( ) 4

2
c c c vk ck ck ck    

 
 
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     h h h
 

(3.13a) 

  
 2

2

1
( ) ( ) ( ) 4
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c c c vk ck ck ck    

 
 
  

     h h h
 

(3.13b) 

where v  and c  denote the maximum energy corresponding to the lower polariton 

branch and the minimum energy corresponding to the upper polariton branch, 

respectively. The above expressions give the dispersion relation for polaritons in a 

dispersive material. Note that, in Eqns. (3.13a, 3.13b), h  and c  have been re-inserted.  

 

Figure 3-2: Plot of the dispersion relation for SiC. The parameters used are 0 098v    

eV, 0 118c    eV and 510   eV. 
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We have calculated the dispersion relation for SiC, which is a dispersive material. The 

results are plotted in Fig. 3-2. 

The parameters chosen are 0 098v    eV and 0 118c    eV. The relaxation parameter 

510   eV. Note that the band gap lies between v  and c . 

The dispersion relation given in Eqn. (3.13) can be re-written in combination as:   

 ( )

( )

c

v

k
  

 





 

(3.14) 

It is mathematically more convenient to transform the expression of the polariton 

Hamiltonian from k -space to energy space by using Eqn. (3.14). To this end, the 

polariton operators in energy space are first expressed in terms of their corresponding 

representations in k -space:   
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(3.16a) 
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(3.16b) 

Using the commutation relations for the polariton operators, they can be shown to satisfy 

the following new set of relations:   

 [ ( ) ( )] 2 ( )
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Putting Eqns. (3.15, 3.16) into Eqn. (3.11) and changing the integration from k -space to 

energy space, the polariton Hamiltonian can finally be written as:  
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This can be further simplified as follows:  
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

 
 

(3.17) 

where the integration contour C  consists of the two allowed polariton branches, 

0 v    and c    .  

There is a gap between energies v  and c  with size  c v  . The polaritons propagate 

in the medium when their energies lie within the lower and upper bands. Within the gap, 

the propagation of polaritons is forbidden.  

3.3 Dispersive Materials as Reservoirs 

In our model, we consider that the doped nanoparticles are interacting with the dispersive 

material, which acts as a reservoir. This interaction is responsible for the decays from 

levels a  to d , and b  and c  to e . The transition from level b  to c  is dipole 

forbidden. Due to the interaction between the nanoparticle and the reservoir, levels b  

and c  both decay spontaneously to level e  and level a  decays spontaneously to 

level d . The interaction Hamiltonian between the nanoparticles and the polaritons is 

written as: 

 

( )[ ( ) ] ( )[ ( ) ]
2 2

q q

AR be ie q ie ad ad q ad
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i b c

d d
H Z p Z p c c
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       

 

 

 

       
 

(3.18) 

where c.c. denotes the complex conjugate.  

Note that, in the lower branch, the polariton energy varies from zero to v , whereas in the 

upper branch, the energy ranges from c  to  . Here, ( )qp   and ( )qp 
 are the 

polariton annihilation and creation operators, respectively.  

The form factor for the dispersive material can be obtained from its dispersion relation. 

This is done in Reference [49] and is given as: 

 2

2 2
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Z
 


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
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 
 

(3.19) 
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where   accounts for relaxation processes in the medium. 

We have calculated the form factor for SiC. The results are plotted are in Fig. 3-3. The 

parameters chosen are 0 098v    eV and 0 118c    eV. The relaxation parameter 

510   eV. It is interesting to note that the polaritonic band-gap energy for the SiC 

crystal corresponds to the infrared region of the electromagnetic spectrum. 

 

Figure 3-3: Plot of the form factor ( )Z   of the dispersive material reservoir. The choices 

of parameters are identical to those for the dispersion relation shown in Fig. 3-2. 

It is important to observe that the form factor has a singularity near the lower band edge, 

identical to the case for photonic crystals. However, it does not have a singularity at the 

edge of the upper band. In contrast, photonic crystals have singularities near both band 

edges.  

3.4 Population Density and Polariton Trapping 

The theory of photon trapping has been developed in Chapter 2. We consider that, 

initially, the five-level nanoparticle is prepared such that it is in coherent superposition of 

the two levels b  and c : 
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 0 (0) (0) iB b C e c  
 

(3.20) 

where (0)B  and (0)C  are the initial amplitudes of levels b  and c , respectively. The 

phase factor between (0)B  and (0)C  is taken as ie .  

Following the method of the preceding chapter and Eqns. (3.17, 3.18, and 3.19), we get 

the following expression for the population density aa  for energy level a  : 
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(3.21) 

where 
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(.) 

Note that the above expression depends on the form factor of the dispersive material.  

3.5 Results and Discussions 

As for the case of the photonic crystal reservoir, we again let (0)B  and (0)C  be 

cos( 2)   and sin( 2)  , respectively, with 0    , for all calculations in this section. 

We also let the combined phase factor     . The numerical simulations are again 

performed at a scaled arbitrary time 0 6adt   .  

It is important to note that, in the present calculations, we have only investigated the role 

of a . Whereas the value of a  is calculated for different cases – e.g. resonance energy 

at mid-band, at band edge, etc. – b  and c  are calculated only for the case when the 

resonance energy lies near the middle of the band. Hence, b  and c  act as constants, as 

in other works. Because of this, the five-level system reduces to a four-level system. 



55 

 

 

Figure 3-4: Plot of aa  against r  and ad  for the dispersive material – shows different 

behaviors at the two band edges. 

First, we calculate aa  for SiC – a dispersive material. The values of the parameters are 

taken from References [2–4, 232] as 0 098v    eV, 0 118c    eV and 510   eV. The 

gap energy corresponds to the infrared region of the electromagnetic spectrum.  

Numerical values of aa  are plotted as a function of r  and ad  in Fig. 3-4, when the 

remaining resonance energies lie within the lower propagation band ( ab   

0 049ac be ce       eV) and 2   . In this case, across the lower band, the 

population density becomes zero for all values of the resonance energy ad  at 1r  , 

giving evidence of the CPT effect in these materials. This is also true for the upper band, 

at the same value of the relative Rabi frequency. Moreover, these findings are similar to 

those for the photonic crystal, described in Chapter 2. 
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Note that the nature of the curves in the lower and upper bands are asymmetric and 

display very different behaviours. This is because the form factor has an asymmetric 

nature in the upper and lower bands of the dispersive material (plotted in Fig. 3-3). In 

contrast, in photonic crystals, the curves are symmetric both in the lower and upper 

bands. This is due to the fact that the form factor for a photonic crystal is symmetric 

about the band gap. 

A closer look at the band edges in Fig. 3-4 reveals that, although aa  vanishes at all 

values of the relative Rabi frequency when 
ad  approaches the lower band edge, the same 

does not apply to the case when it gets close to the upper band edge. This can be 

understood by considering that the form factors for both the photonic crystal and the 

dispersive material have the same physical behavior when energy values lie within the 

lower propagation band (both have very large values near the band edge). But, for 

energies close to the upper band edge, the form factor for the dispersive material has 

small values. This means that, across the upper energy band of the dispersive material 

(both close to and away from the band edge), aa  vanishes only at 1r  , due 

exclusively to the CPT effect.  

3.6 Summary and Conclusion 

The study of CPT in dispersive materials has great potential in the design of novel 

polaritonic devices such as low-threshold switches, all-optical transistors, quantum 

memory devices, etc., owing to the unusual properties of these materials. The potential 

for applications of the newly predicted effect lies in the fact that it allows us to establish 

controls on the population densities of the upper levels of the doped nanoparticles either 

by changing the relative intensity of the driving fields, or by manipulating the decay rate 

of the upper level by changing the relative position of level d . As the steady-state 

atomic population on the upper level depends sensitively on the coherence conditions and 

the decay rate, increasing the latter can increase the fraction of population trapped in the 

system. In this way, the same population density in the upper level can be obtained for a 
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range of values of the resonance energy 
ad , simply by adjusting the intensities of the 

coupled fields, as seen in Fig. 3-4. 

The work described in this chapter establishes that the nature of the population density 

curves in a dispersive material reservoir is asymmetric. This is because the form factor 

has an asymmetric form in the upper and lower bands of the dispersive material. In 

photonic crystals, however, the curves are symmetric in nature owing to a symmetric 

form factor. This particular contrast leads to distinct trapping behaviours in dispersive 

materials compared to those observed for photonic crystals.  

This concludes the discussion of our study of CPT in an ensemble of nanoparticles doped 

within a dispersive material. The next chapter details the extension of our investigations 

of the CPT phenomenon to include the effect of dipole-dipole interaction between the 

nanoparticles in the doped ensemble for both photonic crystal and dispersive material 

reservoirs.  
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Chapter 4  

4 Dipole-dipole Interaction and Coherent Trapping in 
Photonic Crystals and Dispersive Materials 

The phenomenon of coherent population trapping (CPT) in multi-level nanoparticles 

doped within photonic crystals and dispersive materials has been dealt with extensively in 

Chapters 2 and 3, respectively. In the discussions in these two chapters, the concentration 

of the doped nanoparticles is assumed to be very low so that they do not interact with 

each other. In this chapter
3
, however, the concentration of the nanoparticles is assumed to 

be high and they interact with each other via dipole-dipole interaction (DDI). 

4.1 Introduction 

The literature reviews and the discussions in the preceding chapters make it evident that 

the discoveries of photonic crystals and dispersive materials have re-invigorated the study 

of quantum coherence and correlation in condensed matter physics [14, 235]. Similar 

investigations in quantum optics and radiation physics have led to many interesting and 

unexpected consequences such as the Hanle effect, lasing without inversion, coherent 

Raman beats, photon echo and self-induced transparency [58, 266–269].  

Continuing with this theme, this chapter presents our theory of the trapping of photons 

and polaritons in photonic crystals and dispersive materials, respectively, in the presence 

of DDI, taken in the mean field approximation. The nanoparticles are prepared as 

coherent linear combinations of the two lower levels. We consider the interaction 

between the nanoparticles to be due to their intrinsic dipole moments. This is known as 

dipole-dipole interaction. The absorption of photons from these lower levels to the 

uppermost level is allowed and other transitions are dipole forbidden.  

                                                 

3
 The work presented in this chapter has been published in: i) M. R. Singh and I. Haque, Phys. Stat. Sol. (c) 

2, 2998 (2005), ii) I. Haque and M. R. Singh, AIP Conf. Proc. 772, 1246 (2005), and iii) I. Haque and M. 

R. Singh, Photonics 2004, Cochin, SPIE Elec. Conf. Proc. (2004). 
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First, we calculate the population density of the uppermost level by using the Schrödinger 

equation and the Laplace transform method. It is found that, the DDI between the 

nanoparticles plays a very important role in determining the conditions required for CPT. 

It is also observed that this interaction directly influences the population densities of the 

excited levels of the nanoparticles. More precisely, under certain conditions, the electron 

population is trapped in the lower levels and there is no absorption even in the presence 

of external resonant photon fields.  

We have also found that the photon and polariton trapping effects undergo shifts in 

locations due to the DDI effect. This is a very interesting result and can be used to make 

photonic and polariton switching devices. In addition, we have established that the 

trapping of photons and polaritons disappear in certain situations in both photonic 

crystals and dispersive materials, due to the influence of DDI. This happens when the 

resonance energies of the nanoparticles are located in the lower bands of these materials.  

However, when the resonance energies lie in the upper bands of the photonic crystal and 

the dispersive material, converse effects are observed. More specifically, in the dispersive 

material reservoir, the population density vanishes when the resonance energy lies near 

the lower band edge. But, this effect is not observed if the resonance energy lies near the 

upper band edge. This is in contrast with the case for the photonic crystal, where the 

population density of the uppermost level is seen to vanish near both the upper and lower 

band edges. This interesting phenomenon is explained by the symmetric and asymmetric 

structures of the photonic crystal and dispersive material form factors, respectively, about 

the corresponding band gaps.  

Finally, we have also observed in general that, for both the photonic crystal and 

dispersive material reservoirs, as the number density of the doped nanoparticles 

increases, the population densities of the uppermost energy levels also increase, when the 

photon fields are held constant. This is a direct consequence of the increasing strength of 

the DDI between the nanoparticles.  



60 

 

4.2 Dipole-dipole Interaction 

This section describes the theoretical framework behind the DDI effect. The presence of 

the electromagnetic fields induces electric dipole moments in the doped nanoparticles. 

These dipole moments interact with each other. The DDI in our model is calculated using 

mean field theory. The details of the relevant formulation can be found in Reference 

[270].  

The energy levels of a doped nanoparticle are denoted by a , b , c , d  and e . The 

atomic scheme is shown in Fig. 4-1. 

 

Figure 4-1: Level scheme of a five-level nanoparticle. 
ij  is the energy difference 

between the levels i  and j . Here i  and j  stand for a , b , c , d  and e . The 

levels b  and c  both spontaneously decay to level e  and level a  spontaneously 

decays to level d . 

We consider that a probe field with amplitude 0E  and energy p  is applied between 

levels a  and b . The electric field for the probe laser can be written as:  

 
0( ) cos( )pE t E t  h

 
(4.1) 
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The probe laser field excites a transition between levels a  and b  and it induces a 

dipole moment in each nanoparticle. These dipoles are interacting with each other via 

DDI. The polarization due to the induced dipoles can be written as [271]: 

  0( ) cos pP t P t  h
 

(4.2) 

where 0P  is the polarization amplitude. 

We assume that there are N  nanoparticles per unit volume and the induced dipole 

moment in the thi  particle is denoted by the operator 
i . The DDI Hamiltonian can be 

written as [272]: 

 1

2

T

dd ij i j

i j

H J  


  
 

(4.3) 

where 
ijJ  is the DDI coupling constant.  

According to mean field theory, the thi  dipole sees the mean electric field ME  created by 

all other dipoles. In other words, the electric field does not depend on the positions of the 

particles. The field, then, can be written as: 

 
1

( )
2

M ij i

j

E J   r

 

(4.4) 

where   denotes the ensemble average. Generally, in the mean field approximation, 

ME  is written as [272]: 

 

0

( )
( )

3
M

P t
E t 


 (4.5) 

where 0  denotes the vacuum permittivity. 

Putting the expression for ( )P t  from Eqn. (4.2) into ( )ME t , we get: 

  0

0

cos
( )

3

p

M

P t
E t

 




h
 (4.6) 
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For identical nanoparticles, we consider the case where 
i  . Combining Eqns. (4.3, 

4.4, and 4.6), we get: 

  0

0

cos

3

pT

dd

P t
H N




 
  
 
 

h
 (4.7) 

The above expression can be written in quantized form as follows: 

 
0

03

T

dd ab ab

N P
H


   
 
 

 
   

 
 (4.8) 

where ab a b     and ab b a     are the raising and lowering operators, respectively. 

The quantities ab a b     and ab b a      are the matrix elements of the dipole 

operator between levels a  and b .  

The expression for 0P  is given by: 

  0 ab baP    
 

(4.9) 

Finally, we get the following expression for the DDI Hamiltonian: 

 

 
2

0

cos
3

T

dd ab ab ba ab p

N
H t


      
 
 

 
    

 
h  (4.10) 

Note that the DDI effect depends on the number density N  and the coherence matrix 

element ab    

4.3 Population Density and Coherent Population Trapping 

This section describes the theoretical framework of our study of CPT in a doped five-

level atomic ensemble in photonic crystals and dispersive materials, in the presence of 

DDI. 

The nanoparticles are prepared in coherent superpositions of levels b  and c : 

 0 (0) (0) iB b C e c  
 

(4.11) 
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where (0)B  and (0)C  are the initial amplitudes of the lower doublet b  and c , 

respectively. The phase factor between (0)B  and (0)C  is taken as ie . Level b  and the 

upper level a  are coupled by a coupling field of frequency 
1  and amplitude 

1E  and 

levels c  and a  are coupled by a weak probe field of frequency 2  and amplitude 2E  

(see Fig. 4-1). The transition from level b  to c  is dipole forbidden. Due to the 

interaction between the nanoparticle and the reservoir, levels b  and c  both decay 

spontaneously to level e  and level a  decays spontaneously to level d . It is assumed 

that the decay rates of levels b  and c  are identical. 

It is important to note that the dopants can be any of quantum dots, quantum wells, etc. 

Recently, semiconductor quantum dots and quantum wells have been used as multi-level 

nanoparticles to study Stark splitting, quantum coherence and electromagnetically 

induced transparency [273]. Furthermore, quantum dots have also been used to study 

electron-hole DDI [274]. 

The nanoparticles in the doped ensemble are taken to interact with each other via DDI. 

The interaction Hamiltonian has been derived in the previous section (see Eqn. (4.10)). 

The nanoparticles also interact with the reservoir. Under the dipole and rotating-wave 

approximations, the Hamiltonian for this interaction is given in Eqn. (2.8) in Chapter 2 

for photonic crystals, and in Eqn. (3.17) in Chapter 3 for dispersive materials.  

The state of the system at a later time t  can be written as: 

 ( ) ( ) ( )t A t a B t b C t c   
 

(4.12) 

Using the Schrödinger equation and the Laplace transform method (discussed in 

Appendix H), we obtained the following expressions for the amplitudes, in the mean field 

approximation: 

 
   

 4 ( )

1 2

sin
( ) (0) (0)a b t i

m ab ac

t
A t ie Z B Z C e  



     
 
 

   

 

(4.13) 
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(4.14) 

where  

 

   
2

2 22 2

1 2
2

a b
ab acm Z Z

  
      

   

(4.15) 

 22 ( ) ( )ab
m

N A t B t  
   

 h
 

(4.16) 

and  

 
 

2 2
2 42

1 1
2

a b ta b ab
m

Z
e
                    

(4.17) 

 

 
    4

1 2

2 1 2

a b t

m ac ab

m ac ab

Z Z e
Z Z

   
   

      
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(4.18) 

with  

 
 

2

sin cos
2 2 2

a b t t      
     

     

(4.19) 

In the above, N  and   are the number density of the nanoparticles and the mean-field 

parameter related to the coupling parameter 
ijJ , respectively. a  and b  are the decay 

rates for a  and b , respectively, and are written as:   

 21 2 ( )a ad ad adZ   
 

(4.20a) 

  21 2 ( )b be be beZ   
 

(4.20b) 

The expression for the form factor for the photonic crystal has been derived in Chapter 2 

and is given by (see Fig. 4-2, discussed in Appendix G):   

 

 
1 2
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(4.21) 

  42 2(1 ) cos (1 )
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(4.22) 
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In plotting Fig. (4.2), we choose a photonic crystal with 1 082n   , 300L   nm, 

  0 24a L    and a gap-midgap ratio of 5% [24].  

 

Figure 4-2: Plot of the form factor ( )kZ   of the photonic crystal. The choices of the 

crystal parameters and the horizontal axis are identical to those for the dispersion relation 

in Fig. 2-5. 

 

Figure 4-3: Plot of the form factor ( )Z   of the dispersive material reservoir. The choices 

of parameters are identical to those for the dispersion relation shown in Fig. 3-2. 
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Similarly, the expression for the form factor for the dispersive material is given in 

Chapter 3 and is written as (see Fig. 4-3): 

 2

2 2

( )
( )

( )

c

v

Z
 


  




 
 

(4.23) 

For Fig. (4.3), we choose a SiC crystal with 0 098v    eV and 0 118c    eV and a gap-

midgap ratio of around 18%.  

Note that Eqns. (4.13, 4.14) have the term ( ) ( )A t B t  on their right hand sides. Therefore, 

in order to calculate the population densities of the energy levels, these two equations 

have to be solved self-consistently.  

Finally, the population density of level a  can be obtained as: 

 2
( )aa A t 

 
(4.24) 
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(4.25) 

4.4 Results and Discussions 

This section presents the results of our numerical calculations of CPT in photonic crystals 

and dispersive materials doped with ensembles of five-level nanoparticles. A major focus 

of these calculations is to study the effect of the DDI between the nanoparticles in the 

ensemble on the population densities of the energy levels of the nanoparticles and, hence, 

the trapping phenomenon.  

4.4.1 Photonic Crystals 

First, for photonic crystals, numerical calculations for aa  are shown in Figs. (4-4, 4-5). 

As before, (0) cos( 2)B    and (0) sin( 2)C   , respectively, where 0    . We 

also let     .  

The numerical simulations are performed at a scaled arbitrary time 0 6adt   . We choose 

a photonic crystal with 1 082n   , 300L   nm,   0 24a L    and a gap-midgap ratio of 
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5% [24]. It is important to note that the main findings of this section do not depend on the 

choice of photonic crystal. We also assume that 1 3be ad ce ad         and measure all 

other frequencies with respect to ad .  

We calculate the population density ( aa ) when the resonance energies lie near the 

middle of the lower band of the photonic crystal, taking 2 3    and 5

1 10ad    . 

 

Figure 4-4: Plot of aa  against r  for N  = 10 18  (dash-dotted curve), N  = 210 18  

(dotted curve) and N  = 310 18  (solid curve), for a photonic crystal reservoir. 

In Fig. 4-4, aa  is plotted against the relative Rabi frequency ( )r  for three different 

values of N . For each case, aa  becomes zero at a different value of r . This shows the 

CPT effect in these materials. More interestingly, as N  increases, the value of r  at 

which trapping occurs decreases. This means that the phenomenon of photon trapping 
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switches from one position to another due to the effect of the DDI. This is a very 

interesting result and can be used to make photonic switching devices.  

Also, in Fig. 4-4, the intensity of the weak probe field required for the occurrence of CPT 

increases with increasing number density of the doped nanoparticles. This is because a 

large value of N  implies strong DDI between the nanoparticles, which intensifies the 

coupling between levels b  and a . This, in turn, means that a large probe intensity is 

required for destructive interference between the two transitions. Similar results are also 

found when the resonance energies lie within the upper band. 

 

Figure 4-5: Plot of aa  against ad  for the values of N  as in Fig 4.4, for a photonic 

crystal reservoir. 
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Next, we plot aa  against ad  in Fig. 4-5 for 5

1 10ad     and 6

2 10ad    . The 

other parameters are kept the same, as in Fig. 4-4. It is found that aa  becomes zero as 

ad  approaches either of the edges of the band gap of the photonic crystal. This is due to 

the effect of the form factor, given in Fig. 4-2, which becomes very large near the band 

edges and, in turn, broadens the level width substantially (see Eqn. (4.20)). Hence, the 

population density of the upper level becoming zero in this case cannot be interpreted as 

a signature of CPT.  

The plot shows further that, as the number density of the doped nanoparticles increases, 

the population density of level a  also increases, when the photon fields are held 

constant. This is a consequence of the DDI between the nanoparticles. 

 

Figure 4-6: Three-dimensional plot of aa  against r  (relative Rabi frequency) and N  

(number density of doped nanoparticles), for a photonic crystal reservoir. 

Figs. (4-6, 4-7) show the above plots in three dimensions. In Fig. 4-6, it is found that, as 

N  increases, the value of r  at which the trapping occurs decreases. This is because a 

large value of N  implies strong DDI, thus requiring only a small relative frequency for 

destructive interference between the two transitions (see Eqn. (4.25)). Results are similar 
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irrespective of whether the resonance energies lie within the lower or upper band of the 

photonic crystal.  

In Fig. 4-7, we observe that aa  becomes zero as the resonance energy ( )ad  approaches 

either of the edges of the band gap. This is due to the effect of the form factor (see Fig. 4-

2) – which becomes very large at the band edges – and cannot be interpreted as CPT. 

 

Figure 4-7: Three-dimensional plot of aa  against ad  (energy) and N  (number density 

of doped nanoparticles), for a photonic crystal reservoir. 

Fig. 4-7 shows further that as the number density of the doped nanoparticles increases, 

the population density of level a  also increases, when the photon fields are held 

constant. This is a direct consequence of the DDI between the nanoparticles.  

4.4.2 Dispersive Materials 

Next, we calculate the DDI effect in dispersive materials. For our simulations, we choose 

a SiC crystal with 0 098v eV    and 0 118c eV    and a gap-midgap ratio of around 
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18%. It is important to note that the main findings of this section do not depend on the 

choice of dispersive material.  

First, we evaluate aa  when the resonance energies lie near the middle of the lower band, 

taking (4 5)    and 5

1 1 9 10ad      . In Fig. 4-8, aa  is plotted against the relative 

Rabi frequency ( )r  for three different values of the nanoparticle density. 

 

Figure 4-8: Plot of aa  against r  for 1810N   (dotted curve), 182 10N    (dash-dotted 

curve) and 183 10N    (solid curve), for a dispersive material reservoir. 

In Fig. 4-8, for each curve, aa  vanishes at a different value of r . This demonstrates 

the CPT effect in these materials. We also note that, as N  increases, the value of r  at 

which the trapping occurs decreases. This is because a larger value of N  implies a higher 

DDI strength, thus requiring only a small relative frequency for the destructive 

interference effect between the two transitions. Results are similar irrespective of whether 

the resonance energies lie within the lower or upper band of the dispersive material. 
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Figure 4-9: Plots of aa  against ad  for 182 8 10N     (dotted curve), 182 9 10N     

(dash-dotted curve) and 183 0 10N     (solid curve) showing the lower energy band, for a 

dispersive material reservoir. 

Note that this behavior is similar to that for the photonic crystal, when the resonance 

energies lie within both its upper and lower bands. 

Next, we evaluate aa  against ad  in Figs. (4-9, 4-10) for 1 4r ad    . The other 

parameters are kept the same as in the simulation presented in Fig. 4-8. 

In Fig. 4-9, it can be seen that aa  becomes zero as ad  approaches the lower edge of the 

band gap. This is due to the effect of the form factor for the dispersive material (see Fig. 

4-3), which becomes very large near the lower band edge and, in turn, broadens the level 

width substantially. This becomes obvious from the nature of Eqns. (4.20a, 4.20b).  
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Figure 4-10: Plots of aa  against ad  for 182 8 10N     (dotted curve), 182 9 10N     

(dash-dotted curve) and 183 0 10N     (solid curve) showing the upper energy band, for a 

dispersive material reservoir. The band gap is not shown. 

Consequently, the vanishing population density of the upper level, in this case, cannot be 

interpreted as CPT. This finding is similar to that for the photonic crystal, whose form 

factor (see Fig. 4-2) displays similar behaviours in the lower band and near the lower 

band edge.  

However, interestingly, the situation is quite distinct when ad  gets close to the upper 

band edge (see Fig. 4-10) of the dispersive material. In this case, the population density 

does not become zero, as in the case near the upper band edge of the photonic crystal.  

This can be understood by considering that the form factor for the dispersive material has 

small values for energies close to the upper band edge. This means that, across the upper 

energy band of the dispersive material (both close to and away from the band edge), the 
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population of the upper level vanishes exclusively due to the CPT effect and is not a 

signature of the band structure. These results are very different compared to those found 

for photonic crystals. 

This is explained by the symmetric and asymmetric structures of the photonic crystal and 

dispersive material form factors, about the corresponding band gaps (see Figs. (4-2, 4-3)), 

respectively. For the photonic crystal, the form factor has large values as the relevant 

resonance energy approaches either the lower or the upper band edge. But, for the 

dispersive material, this only happens when the relevant resonance energy approaches the 

lower band edge. At the upper band edge of the dispersive material, the form factor has 

relatively small values. These contrasting behaviours near the upper and lower band 

edges in the dispersive material, can be utilized in the fabrication of novel switching 

devices.  

Figs. (4-9, 4-10) show further that, as the number density of the dopants increases, the 

population density of the uppermost energy level also increases, when the photon fields 

are held constant. This is a direct consequence of the increasing strength of the DDI 

between the nanoparticles.  

However, the behavior is seen to be asymmetric, as opposed to the case for the photonic 

crystal. More specifically, the population density of the uppermost level vanishes when 

the resonance energy is near the lower band edge of the dispersive material; but, both in 

the upper band and near the upper band edge of this material, the population density does 

not become zero. This is a very interesting phenomenon and can, again, be understood by 

considering the asymmetric nature of the form factor of the dispersive material, about the 

band gap, as given in Fig. 4-3 and discussed above. This case is markedly different 

compared to that for the photonic crystal as, in the latter case, the form factor is 

symmetric about the band gap (see Fig. 4-2).  

4.5 Summary and Conclusion 

The discussion in this chapter detailed our study of one-photon absorption due to 

quantum coherence and interference in a photonic crystal and a dispersive material, when 
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they are doped with an ensemble of five-level nanoparticles. The nanoparticles are 

considered to interact with the pump and probe laser fields and a reservoir. The photon 

absorptions produce induced dipole moments in the nanoparticle systems and they 

interact with each other via DDI.  

We consider the interaction between these induced dipole moments in the mean field 

approximation and utilize a self-consistent density matrix approach to calculate the 

population density of the uppermost level of the doped nanoparticle. The nanoparticles 

are prepared in coherent superpositions of the two lower levels and interact with a 

reservoir and two photon fields. The Schrödinger equation and the Laplace transform 

method are used to calculate the expressions for the population densities of the energy 

levels of the nanoparticle. 

Numerical simulations for a photonic crystal reveal that when the resonance energies lie 

away from the band edges and within the lower or upper bands, trapping is observed at 

certain values of the relative Rabi frequency, which vary depending on the strength of the 

DDI between the nanoparticles. Also, if the photon fields are held constant, the 

population densities of the uppermost levels of the nanoparticles increase with increasing 

DDI. 

For the dispersive material, when the resonance energy lies within the lower and the 

upper bands, one observes the CPT effect at certain values of the relative Rabi frequency, 

which vary depending on the strength of the DDI between the nanoparticles, as in the 

case for the photonic crystal. Also, as this interaction becomes stronger, the population 

density of the uppermost level increases. 

This concludes the discussion of our study of the CPT phenomenon in photonic crystals 

and dispersive materials doped with ensembles of identical nanoparticles, both with and 

without the presence of DDI. The phenomenon of CPT has great potential for 

applications in engineering and optical computing. For example, interacting impurities in 

dispersive media can be used to coherently manipulate multi-atom collective states. The 

entangled superpositions of such states can be used to implement quantum logic gates 

using optically excited nanoparticles [274]. Another useful application would be to 
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exploit the effect of the relative phase of the driving laser fields on the coherently trapped 

state of the nanoparticle ensemble. This way, the ensemble can be used as a fast phase-

controlled optical switching device [102]. 
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Chapter 5  

5 The ac Stark Effect in Photonic Crystals 

Discussion in Chapters 2 and 4 have focused the interaction between nanoparticles doped 

within photonic crystals and external radiation fields in the linear regime. Principally, we 

have investigated the phenomenon of photon trapping in these particles, both in the 

absence (Chapter 2) and presence (Chapter 4) of dipole-dipole interaction (DDI). 

This chapter details our study of the phenomenon of ac Stark effect due to quantum 

coherence and interference in a photonic crystal, in the absence of DDI
4
. This means that 

we consider the crystal to be lightly doped with an ensemble of identical nanoparticles. 

5.1 Introduction 

In the literature, along with other similar phenomena such as lasing without inversion 

[147–149], electromagnetically induced transparency [150–153], enhancement of 

nonlinear susceptibilities [154–157], etc., the ac Stark effect has primarily been studied in 

the contexts of quantum superposition and life-time broadening in atomic gases in the 

presence of multiple fields [158–208, 219–225]. Furthermore, much of the existing work 

on the ac Stark effect involves gases consisting of three-level systems. The nanoparticles 

are taken in either of the  , V or   (cascade or ladder) configurations [163–167, 211–

220]. Recent studies in this area, however, have included four-level atomic gases [222–

225].  

A four-level system that has been found to be remarkably advantageous for the 

investigation of the diverse features of the ac Stark effect features the nanoparticle being 

driven by two pump fields and a weak probe field. At the core of this configuration is a 

 –type three-level sub-system. The weak field can be configured to probe the transition 

to the level external to the cascade from either the ground or the intermediate level. Wei 

                                                 

4
 The work presented in this chapter has been published in: I. Haque and M. R. Singh, J. Phys.: Condens. 

Matter 19, 156229 (2007). 
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et al. [222] have carried out an extensive analysis of this system and found that the 

resulting spectrum has up to three peaks (dynamic splitting), which can be explained in 

terms of the dressed state formalism. They also found that the positions and relative 

intensities of the spectral components are affected strongly by the intensities of the pump 

fields and the detuning of the pump and probe fields. 

The present chapter deals with the study of the ac Stark effect in a three-dimensional 

photonic crystal doped with an ensemble of five-level nanoparticles, which leads to 

several new phenomena with great potential for applications. The crystal is taken to 

possess isotropic geometry and the nanoparticles in the doped ensemble are considered to 

be identical and non-interacting. However, these particles are assumed to interact with the 

photonic crystal, which plays the role of a reservoir. 

First, we provide a brief description of the fundamental mechanism behind the ac Stark 

effect. Then, we construct our theoretical framework based on two distinct configurations 

of five-level nanoparticles, driven by two strong pump fields and a weak probe field (see 

Fig. 5-1). Due to the interaction between the particles and the reservoir, the excited levels 

decay spontaneously to the lower levels. 

Next, we calculate the expressions for the susceptibility associated with the probed 

transitions using the master equation method. Numerical simulations for the level 

populations and the imaginary part of the susceptibility are performed for a photonic 

crystal with a gap-midgap ratio of around 20%. It is found that, by manipulating the 

decay rate with resonance tuning, the nanoparticle can be switched between an inverted 

and a non-inverted state, with regards to the population of the ground level of the 

cascade. 

Furthermore, the band structure of the photonic crystal is found to have a major influence 

on the ac Stark effect observed in the doped nanoparticles. In particular, the probed 

transition of a doped nanoparticle could be rendered transparent to any resonant radiation 

field i.e. the nanoparticle can be switched between an absorption and a non-absorption 

state, simply by manipulating the location of the resonance energy. 
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Figure 5-1: Schematic diagrams for the five-level atom, driven by two pump laser fields 

with Rabi frequencies   and  . The levels are denoted as a , b , c , d  and e . 

The probe field with Rabi frequency p  drives the (a) c   e  or (b) b   e  

transition. The detuning of the two pump fields and the probe field are denoted as ab , 

bc  and (a) ec  or (b) eb , respectively. The dashed arrows represent the decay channels 

and i  denotes the decay rate of level i . 
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Finally, we briefly discuss the distinct features of the work presented in this chapter in 

comparison to other studies of transparency and splitting of energy levels in doped 

photonic crystals found in the literature and address its potential for applications. The 

findings of our calculations indicate that it is possible to switch between an absorption 

state and a non-absorption state of a nanoparticle doped within a photonic crystal 

reservoir, by controlling the resonance energy. This provides a new technique of 

rendering material systems transparent to resonant laser radiation, which is very desirable 

in the fabrication of novel optical and photonic devices.  

5.2 The ac Stark Effect 

This section provides some brief background information on the ac Stark effect and 

describes the basic mechanism behind this particular phenomenon.  

The shifting and splitting of atomic energy levels in a static electric field is known as the 

dc Stark effect, discovered by Johannes Stark in 1913 [160]. In 1955, Autler and Townes 

[158] proposed a theory of the Stark effect in rapidly varying fields. In the 1960s, the 

advent of lasers initiated extensive work on the shifting and splitting effects of atomic 

energy levels subject to variable electromagnetic fields. When the shifting and splitting of 

levels occur due to a variable monochromatic electric field, the phenomenon is known as 

the ac Stark effect (also known as Autler–Townes (A–T) splitting) [160]. 

The mechanism behind the ac Stark effect is best understood in the dressed-state 

formalism [275]. We consider the simplest case of a two-level nanoparticle and denote 

the ground and excited levels as g  and e , respectively. In the presence of a radiation 

field consisting of a single mode, the bare state of this system is characterized by a 

photon number and the state of the nanoparticle, which can be either in its ground or 

excited state (see Fig. 5-2). This leads to the formation of a degenerate pair of states 

g N  and 1e N  , where N  and 1N   are photon numbers. By adding an extra 

photon, we get another pair of degenerate states – namely, 1g N   and e N . Each 

pair of these degenerate states leads to the formation of a pair of dressed states, as shown 
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in Fig. 5-2. Therefore, four transitions are now allowed between the dressed states, 

indicated by the dashed, solid and dash-dotted arrows. 

 

Figure 5-2: Schematic representation of the two-level nanoparticle, with ground level g  

and excited level e , showing the bare and dressed states. The dashed, solid and dash-

dotted arrows indicate transitions between the dressed states. 

 

Figure 5-3: Plot of the spectral intensity against the frequency, obtained by application of 

the probe beam, showing the Mollow triplet. 
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The splitting effect described above can be monitored via obtaining a spectral profile 

produced by the application of a probe field connecting the ground level to an additional 

(third) level. This is shown in Fig. 5-3. From Fig. 5-2, it can be seen that the two 

transitions indicated by the solid arrows are degenerate. Therefore, the spectral signature 

consists of three peaks, known as the Mollow triplet [276].  

In Fig. 5-3, the left and right side-peaks correspond to the transitions represented by the 

dashed and dash-dotted arrows, respectively, in Fig. 5-2. Note that the central peak is 

more intense as it originates from two transitions [277], as indicated by the two solid 

arrows in the figure.  

5.3 Formulation of Susceptibility 

This section describes the theoretical framework of our investigations and details our 

calculations of the susceptibility for both nanoparticle schemes.  

The photonic crystal is considered to be doped with an ensemble of identical, non-

interacting five-level nanoparticles. The crystal structure consists of a three-dimensional 

isotropic arrangement of dielectric spheres of radius a . The refractive index of the 

dielectric material 1 4n   . The lattice constant of the crystal 300L   nm and the ratio 

0 2a L   . The band structure equation for this particular type of photonic crystal has 

been calculated [18, 19] and is given by Eqn. (2.3) in Chapter 2. The energy dispersion 

relation given by this equation is plotted in Fig. 5-4 (top panel). 

For the given crystal parameters, the gap energy corresponds to the near infrared and the 

optical regions of the electromagnetic spectrum. Photonic crystals are commonly 

characterized by their gap-midgap ratio, which is defined as    2 c v c v      . For this 

particular crystal, this ratio is around 20%. The parameters have been chosen to emulate 

the gap-midgap ratio obtained in Yablonovite crystals [4]. It is important to emphasize 

that the findings in the present chapter are independent of the choice of the photonic 

crystal.  
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Figure 5-4: Plots of the dispersion relation (top panel) and the form factor  kZ   (bottom 

panel) of the photonic crystal with 1 4n   , 0 2a L    and 300L   nm, where k  

denotes the wave vector. The quantities v  and c  are the maximum energy of the 

valence band and the minimum energy of the conduction band, respectively. The 

horizontal axis is the ratio of the energy k  to the maximum valence band energy v . The 

band gap of the crystal lies between 1k v    and c v  , shown by the vertical dashed 

lines. 

The energy levels of a nanoparticle in the doped ensemble are denoted by a , b , c , 

d  and e . The quantities ab   bc  and ec  (or eb ) are the transition energies 
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corresponding to the b   a , c   b  and c   e  (or b   e ) transitions, 

respectively (see Fig. 5-1). The energy difference between levels a  and d  is denoted 

as ad . For our calculations and numerical simulations, it is considered that the transition 

energies ab , bc  and ec  (or eb ) lie in a region away from the band gap of the photonic 

crystal, where its density of states is constant and does not influence the coupling of the 

laser fields with the doped nanoparticles.  

We consider that the nanoparticles in the ensemble interact with the photonic crystal 

reservoir. Due to this interaction, level a  decays to level d  and levels b  and d  

decay to level c . Level e  decays to level c  (in Fig. 5-1(a)) or level b  (in Fig. 5-

1(b)). It is important to note that the arrangement described above is similar to the 

experimental double resonance scheme used in Reference [278], with the exception that 

the present configuration has an extra level e  which is used to study the absorption 

spectrum.  

The pair of excited levels a  and b  and the ground level c  are taken in   

configuration, as shown in Fig. 5-1. The transition b   a  is driven by a strong pump 

laser field of energy   and Rabi frequency  . Similarly, the transition c   b  is 

driven by a second strong pump laser field of energy   and Rabi frequency  . A weak 

tunable probe field of energy 
p  and electric field amplitude 

pE  is applied between the 

ground level c  (or the middle level b ) and another excited level e , as seen in Fig. 5-

1(a) (or Fig. 5-1(b)). This weak field facilitates the study of the absorption spectrum of 

the nanoparticle. Other transitions are dipole forbidden. 

It is important to note that this type of atomic configuration has been previously used in 

Reference [222]. A significant difference is that our model has a fifth level d  which 

acts as the base level in the decay channel originating from the excited level a . The 
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addition of this extra level produces very interesting results which are used to propose 

new switching techniques. These are discussed in the next section.  

The Hamiltonian of the system, for the configuration in Fig. 5-1(a), is written in energy 

space as (discussed in Appendix B):  

 
A R A F A RH H H V V    

 
(5.1) 

where (discussed in Appendix I) 
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(5.2) 

is the Hamiltonian of the five-level nanoparticle, 
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is the Hamiltonian of the crystal reservoir, 
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 (5.5) 

denotes the nanoparticle-reservoir interaction. 

In the above equations, i  denotes the energy of level i  and 
ij i j    . Also, 

ii i i   and ij i j   , where i  and j  denote levels a , b , c , d  and e .  

The interaction Hamiltonians A FV   and A RV   given in Eqn. (5.4) and Eqn. (5.5), 

respectively, are obtained under the electric dipole and rotating wave approximations [18, 

19]. The  kp   and  †

kp   operators denote the annihilation and creation of photons, 

respectively, where k  is the photon energy seen in Eqn. (2.3) in Chapter 2. The 
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integration contour C  consists of two intervals: k v     and 
c k    . The 

quantity 
0  is the vacuum decay rate, as defined in References [22–24]. All frequencies 

discussed in this chapter are measured with respect to 0 . 

Note that the Hamiltonian for the nanoparticle in Fig. 5-1(b) can be written as in Eqns. 

(5.1–5.5) with 
ec   in Eqns. (5.4, 5.5) replaced by 

eb  .  

 kZ   is the form factor which is derived from Eqn. (2.3) and is written as [20–21] 

(discussed in Appendix G):  
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(5.6) 

Note that the form factor, plotted in the bottom panel of Fig. 5-4, depends on the 

refractive index n  and the ratio a L . Also of note is the fact that it has a constant value 

of almost unity when k  is away from the band gap; it has a very large value when k  

lies near either of the band edges.  

The form factor in Fig. 5-4 has the same overall shape and characterizes the same 

behavior as that shown in Fig. 2-6 in Chapter 2. More specifically, it reflects the band 

structure of the photonic crystal through its asymptotic nature near the edges of the band 

gap and has a value close to unity away from the gap region. Any difference in the visual 

appearances of the two form factors is entirely due to the different sets of parameters 

used for the respective plots. 

It is important to emphasize that, in the present chapter, we have considered an isotropic 

photonic crystal. The difference between an isotropic and an anisotropic crystal is that the 

former has a band gap which is identical in all directions, whereas the latter’s band gap is 

direction-dependent. The band structure of an anisotropic photonic crystal, as seen from 

the point of view of a doped particle, varies with its location.  
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The form factor given in Eqn. (5.6) depends on the density of states which is determined 

by the energy gap of the crystal. As a result, the form factor for an anisotropic crystal has 

anisotropic values in different crystal directions. The predictions made in the present 

chapter using the band structure of an isotropic crystal are valid for all types of photonic 

crystals which have energy gaps in their dispersion relations. 

As stated before, the primary aim of this section is to obtain an expression for the 

susceptibility due to the weak probe field. For the case of the nanoparticle in Fig. 5-1(a), 

the susceptibility can be written as [84]: 
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where 
ij  and 

ij  denote the elements of the density matrix and the dipole operator 

associated with the transition j   i , respectively, and 0  is the dielectric constant of 

the medium. The density matrix elements can be calculated using the master equation 

method.  

The system is prepared in such a way that initially the nanoparticles are in ground level 

c . As the pump fields are switched on, the excited levels become populated. Using 

Eqns. (5.1–5.5) and following the method used in References [70, 84, 222, 273, and 279], 

the equations of motion for the density matrix elements can be written as follows:  

   2aa a aa ab bai         
 

(5.8a) 

     2bb b bb ab ba bc cbi        
 
 

       
 

(5.8b) 

     2cc b bb d dd e ee bc cb p ec cei         
 
 

         
 

(5.8c) 

 
dd a aa d dd    

 
(5.8d) 

   2ee e ee p ec cei        
 

(5.8e) 

   2ab ab ab ab aa bb aci i        
     

       
 

(5.8f) 

   2 2ac ab bc a ac bc ab p aei i       
 
 

             
(5.8g) 

   2ad ab bc ad ad bdi i    
  

      
 

(5.8h) 

    2 2bc bc b bc ac bb cc p bei i        
 
 

         
 

(5.8i) 

 2bd bc bd bd ad cdi i       
     

      
 

(5.8j) 



88 

 

 2 2dc d dc db p dei     
 
 

      
 

(5.8k) 

   2ea ec ab bc ae ea eb p cai i      
     

        
 

(5.8l) 

   2eb ec bc be eb ea ec p cbi i        
     

        
 

(5.8m) 

    2 2ec ec e ec eb p cc eei i      
 
 

        
 

(5.8n) 

 2ed ec de ed p cdi i   
  

     
 

(5.8o) 

where   

 2ij i j

 
 
 

    
 

 

and the Rabi frequency 
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The real detuning terms appearing in the differential equations in Eqn. (5.8) are given by: 
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The i  terms in the density matrix equations are the reservoir-mediated decay rates. 

These are obtained, assuming that the resonance energies lie within the bands of the 

photonic crystal ( 0i   otherwise), as follows [22–24]:   

 2
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The density matrix element ec  has been calculated, under the steady state approximation 

in the first order of the Rabi frequency 
p , using the method in Reference [222]. The 

calculation includes all orders of the pump field Rabi frequencies   and  . The 

susceptibility, which is a complex quantity, is written as   
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with 
1
  and 

1
  denoting the real and imaginary parts, respectively. The real part of the 

susceptibility corresponds to the refractive index of the material. The imaginary part 

corresponds to the absorption coefficient.  

Using the definition in Eqn. (5.7), 
1
  and 

1
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can be expressed as follows:   
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where   
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The terms 
1G  , 

1G  , 
1H  , and 

1H   appearing in Eqn. (5.11) are real-valued and are given 

by:   
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     2 2

1 2 2 4ec ae be ea eb e be ea ae eb ea eH  

  
 
 

                    (5.12d) 

where the detuning terms are defined as:   

 
ea ec ab bc

eb ec bc

    

  
 

 

The 
cbP , 

cbP , 
caP  and 

caP  terms in Eqns. (5.12a, 5.12b) have been derived as follows:   

      0 0 0

cb cb bb cb aa cb dd cbP X Y S Z         
 

(5.13a) 

      0 0 0

cb cb bb cb aa cb dd cbP X Y S Z         
 

(5.13b) 

      0 0 0

ca ca bb ca aa ca dd caP X Y S Z         
 

(5.13c) 

      0 0 0

ca ca bb ca aa ca dd caP X Y S Z         
 

(5.13d) 

where the zeroth-order density matrix elements (0)

aa , (0)

bb  and (0)

dd  appearing in Eqns. 

(5.12, 5.13) are written as:    
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 (0) 2 (0) 2aa aa bb aaX Z  
 
 

  
 

(5.14a) 

 (0) 2 (0) 2dd a aa bb aa dX Z 
  
  

  
     

 
(5.14b) 

  

 

2 2

(0)

2 2

2 2

2 2

aa d bc

bb

d b bc aa

Z Z

X X

 

 






     


          

(5.14c) 

with    

 

2 2

d ab
aa

d a d ab a ab

X
X

Y S



  
 
 



     

 

(5.15a) 

 

2 2

d ab
aa

d a d ab a ab

Z
Z

Y S



  
 
 



     

 

(5.15b) 

    2 2d bc a bc aY S  
 
 

      
 

(5.15c) 

The density matrix element (0)

cc  is obtained from:   

 (0) (0) (0) (0)1cc aa bb dd      
 

 

The complex-valued terms ij ij ijX X iX   , ij ij ijY Y iY   , ij ij ijZ Z iZ    and ij ij ijS S iS    

appearing in Eqns. (5.13, 5.14, and 5.15) are derived as: 

 2 22 4bc ac
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d d
X

D
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d d
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D
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   

 2 22 2 4ca ba

cb

d d
X

D
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   

 2 24 4bc ac
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d d
Y

D

    
   

 
ba cb
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d d
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D
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   

 2 24 4ca ba
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d d
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D

    
   
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d d
Z S
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with  

 2 24 4cb ba ca ba cbD d d d d d       
 

(.) 

where 
ij ij ijd i   , which denotes the complex detuning of the laser field coupled to 

the transition i   j .  

Similar calculations have also been performed for the nanoparticle in Fig. 5-1(b), where 

the weak field probes the b   e  transition. The corresponding equations of motion of 

the density matrix elements are written as:   

   2aa a aa ab bai         
 

(5.16a) 

    

 

(121)
2

ab ba bc cb

bb b bb e ee

p eb be

i
    

  
 

 
 
 
 
  

   
    

 
 

(5.16b) 

   2cc b bb d dd bc cbi           
 

(5.16c) 

 
dd a aa d dd    

 
(5.16d) 

   2ee e ee p eb bei        
 

(5.16e) 

   2ab ab ab ab aa bb ac p aei i         
     

        
 

(5.16f) 

   2 2ac ab bc a ac bc abi i      
 
 

            
(5.16g) 

   2ad ab bc ad ad bdi i    
  

      
 

(5.16h) 

    2 2bc bc b bc ac bb cc p eci i        
 
 

         
 

(5.16i) 

 2bd bc bd bd ad cd p edi i        
     

       
 

(5.16j) 

 2 2dc d dc dbi        
 

(5.16k) 

   2ea eb ab ae ea eb p bai i      
     

       
 

(5.16l) 

   2eb eb be eb ea ec p ee bbi i         
     

        
 

(5.16m) 

   2 2ec eb bc e ec eb p bci i     
 
 

            
(5.16o) 

   2ed eb bc de ed p bdi i   
  

      
 

(5.16n) 

where the decay rate   

 2

0 ( )e ebZ  
 

 

The modified probe field detuning is given by: 

 
eb p eb  

 
 

    h   
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and the Rabi frequency 

 2p eb pE   h   

Apart from these exceptions, all other quantities are defined as for the previous 

nanoparticle configuration.  

In this case, we can write the real and imaginary parts of the susceptibility as:   

 
0 2 1 2 1

2 2 2

1 1

G H G H

H H




    
 

  

    
   
   





 

(5.17a) 

 
0 2 1 2 1

2 2 2

1 1

G H G H

H H




    
 

  

    
   
   





 

(5.17b) 

where it has been assumed that eb ec  . 

The real-valued terms 
2G   and 

2G   appearing in Eqn. (5.17) are given by:    

 

   

2

0

2 2 2

   2

ea cb ae cb e ab ec ab

cc e ea ae ec

G P P P P 



       
   
   

          

     
 (5.18a) 

 

   

2

0

2 2 2

   2

ea cb ae cb e ab ec ab

cc e ae ea ec

G P P P P 



       
   
   

          

     
 (5.18b) 

where    

      0 0 0

ab ab bb ab aa ab dd abP X Y S Z         
 

(5.19a) 

      0 0 0

ab ab bb ab aa ab dd abP X Y S Z         
 

(5.19b) 

The detuning terms in this case are calculated as:   

 
ec eb bc

ea eb ab

   

  
 

 

The complex-valued terms abX , abY , abZ  and abS  are identical to those in the case of the 

first nanoparticle scheme. The density matrix elements (0)

aa , (0)

bb , (0)

cc  and (0)

dd  

appearing in Eqns. (5.18, 5.19) are also as defined earlier.  
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5.4 Results and Discussions 

This section presents numerical simulations of the density matrix elements and the 

imaginary part of the susceptibility for the isotropic photonic crystal discussed in the 

previous section.  

First, we calculate the time evolution of the level populations of the doped nanoparticles. 

Our primary aim is to study the effect of the band structure of the crystal reservoir on the 

population densities of the energy levels of the nanoparticles. The differential equations 

for the density matrix elements given in Eqn. (5.8) are solved numerically, using a 

Fehlberg fourth-fifth order Runge-Kutta method (discussed in Appendix J). As an initial 

condition, it is assumed that  0 1cc   and all other levels are unpopulated. 

The numerical solutions are obtained for the atomic scheme in Fig. 5-1(a) and are shown 

in Fig. 5-5. The two pump laser fields are considered to be resonant i.e.: 

 
0 0 0ab bc      

 
 

and the detuning of the probe field 0 10ec    . The Rabi frequencies of the pump and 

probe fields are taken as: 
0 0 2        and 

0 0 2p     . The plots in Figs. (5-

5(a)–5-5(d)) show the population densities aa , dd , bb  and cc , respectively. The solid 

and dotted curves in these figures represent the cases where the resonance energy ad  is 

away from ( 80 00ad v %    ) and close to ( 99 99ad v %    ) the lower edge of the 

band gap of the photonic crystal, respectively. 

After the laser fields are turned on, the population densities of the atomic levels exhibit 

Rabi oscillations. Eventually, the oscillations are observed to stabilize and the level 

populations reach steady state. 
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Figure 5-5: Numerical plots of the time evolution of the population densities (a) aa  (b) 

dd  (c) bb  and (d) cc  of the atom in Fig. 5-1(a). The horizontal axes show 

dimensionless time 0t . The solid curves are drawn for the case where 80 00ad v %    . 

The dotted curves represent the case where 99 99ad v %    . All other resonance 

energies are kept far from either of the band edges. 
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It can be seen from the transient plots in Figs. (5-5(a), 5-5(b)) that the steady-state 

population densities aa  and dd  decrease as the resonance energy 
ad  approaches the 

lower band edge. On the other hand, as seen in the plots in Figs. (5-5(c), 5-5(d)), the 

population densities bb  and cc  have higher steady-state values, under the same 

scenario. The explanations behind these observations are given below.  

With increasing proximity of the resonance energy 
ad  to the lower band edge, the decay 

rate a  given in Eqn. (5.9a) becomes larger due to the growing value of the form factor 

(see Fig. 5-4). A larger value of a  has the effect of depopulating level a  with 

increasing rapidity, as seen from Eqn. (5.8a). This, in turn, leads to a substantial decline 

in the steady state level population aa . 

Using Eqn. (5.8d) and assuming steady-state conditions, the population density dd  can 

be written as  dd a aa d     . This indicates that dd  is directly proportional to both 

a  and aa . Although the decay rate a  increases as the resonance energy ad  

approaches the lower band edge, the range of its values remains within the same order of 

magnitude. In contrast, for the same change in the resonance energy, the decrease in aa  

is over several orders of magnitude as it is proportional to an exponentially decaying 

function of a . Consequently, dd  is observed to decrease.  

The reason behind the increase in the steady-state population density cc  is its 

dependence on dd , as seen from Eqn. (5.8c). Since level d  decays to level c , a 

decrease in dd  implies an increase in cc . Similarly, the steady-state population density 

bb  is observed to increase as ad  approaches the band edge. This is due to the fact that 

an increase in the population in level c  means that more particles are pumped up to 

level b , as seen from the last term in Eqn. (5.8b). It is worthwhile to note that this effect 

is also expected in the case of level e , albeit to a much smaller degree (not plotted).  
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The most important result concerning the steady-state level populations is obtained from 

Fig. 5-5(d). It can be seen that, as 
ad  approaches the band edge, an inversion occurs in 

the population density of the ground level c . Therefore, it is possible to switch the 

system from an inverted state to a non-inverted state (and vice versa), with respect to 

level populations, by manipulating the resonance energy between levels a  and d . 

This is a very significant new finding of our theory, which can be used to make new types 

of photonic switches.  

Fig. 5-6 shows the time evolution of 
1 0    for the nanoparticle in Fig. 5-1(a), at 

resonance energies away (solid curve) and close (dotted curve) to the (lower) band edge. 

The curves are drawn using the same detuning parameters and probe field strength as in 

Fig. 5-5. The Rabi frequencies of the pump fields in this case are 
0 0 15       . 

Due to the relatively large values of these frequencies, one can now see a greater number 

of oscillations. A similar set of values for these Rabi frequencies will be used later in our 

analyses of the system in the steady state. 

 

Figure 5-6: Numerical plots of the time evolution of 
1 0    for 80 00ad v %     (solid 

curve) and 99 99ad v %     (dotted curve), using the atomic scheme in Fig. 5-1(a). All 

other resonance energies are kept away from either of the band edges at all times. The 

horizontal axis shows scaled time 0t . 

In Fig. 5-6, it is interesting to note that, as ad  approaches the band edge and the decay 

rate a  increases, 
1 0    reaches its steady-state value comparatively earlier and with 

fewer oscillations (see dotted curve). This can be understood by considering the fact that 
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1 0    depends on the level population cc , which attains steady state earlier for large 

values of a  [see Eqn. (5.8n) and Fig. 5-5(d)].  

Finally, with regards to the transient calculations presented above, it must be noted that 

similar results can also be obtained for the second atomic scheme given in Fig. 5-1(b).  

 

Figure 5-7: Plots of 
1 0    against probe field detuning 0ec    for the atom in Fig. 5-1 

(a), in steady state. In (a) 0 0 0ab bc        and in (b) 0 2ab     and 0 0bc    . 

The Rabi frequencies of the laser fields are taken as 0 0 10        and 

0 0 2p     . The solid curves are drawn for the case where all resonance energies are 

away from either of the band edges and 80 00ad v %    . The dash-dotted curves 

represent the case where 99 99ad v %     while all other energies remain far from the 

band edges. 
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Next, we present an analysis of the ac Stark effect in the doped nanoparticles and study 

how it is influenced by the band structure of the photonic crystal. The absorption profiles 

of the probe beams for the two atomic configurations in Fig. 5-1 have been calculated in 

Figs. (5-7, 5-8), using Eqns. (5.11b, 5.17b), respectively. The Rabi frequencies in this 

case are: 
0 0 10        and 

0 0 2p     . The larger Rabi frequencies for the 

pump fields have been chosen to make the splitting effect more pronounced. For Figs. (5-

7(a), 5-8(a)), the pump fields are considered to be resonant i.e.  

 
0 0 0ab bc      

 
 

whereas in Figs. 5-7(b) and 5-8(b), 0 2ab     and 0 0bc    . These parameters are 

similar to those used in Reference [222]. 

As before, the solid and dash-dotted curves in Figs. (5-7, 5-8) correspond to the cases 

when 80 00ad v %     and 99 99ad v %    , respectively.  

In Fig. 5-7, one can see that the absorption profiles represented by the two solid curves 

are each characterized by three peaks. This is an evidence of ac Stark splitting (dynamic 

Stark effect) in this system. The mechanism that gives rise to this effect is briefly 

explained below.  

When ad  lies away from the band edge of the crystal, we have the condition where the 

decay rate a  is small compared to the Rabi frequencies   and  . In this situation, 

we get strong nanoparticle-field coupling and the dressed state of the system, which are 

in linear combinations of the states a , b  and c , splits into three states. As a result, 

one can now observe three transitions from ground level c  to excited level e  (see 

solid curves in Fig. 5-7). This splitting of energy levels has also been clearly explained 

using the idea of dressed states in Reference [222], where similar results were obtained in 

atomic gases.  

In both Figs. (5-7(a), 5-7(b)), as ad  approaches the band edge, the central peak 

disappears and the heights of the two side peaks increase (dash-dotted curves). In 
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addition, one can observe shifts in the locations of the side peaks. These are very 

interesting observations which have not been made previously in this system.  

The disappearance of the central peak can be explained as follows. In the presence of 

strong pump field Rabi frequencies   and  , the system has three dressed states, as 

mentioned before. Note that the three peaks in Fig. 5-7(a) are located at: 
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When the resonance energy lies near the band edge, we have a     and the effect of 

  disappears. In other words, the effect of the pump field with Rabi frequency   is 

inhibited by the band structure of the photonic crystal. Now the system has two dressed 

states which are in linear combinations of states b  and c . As a result, we get two 

transitions located at: 
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Similar explanations are applicable to the dash-dotted curve in Fig. 5-7(b), except the 

locations and the relative heights of the peaks will be different owing to the non-zero 

detuning parameter 0ab   .  

In Fig. 5-8, we have plotted the imaginary part of the susceptibility for the atomic 

configuration in Fig. 5-1(b), where the probe field sweeps the b e  transition. For 

Fig. 5-8(a), both the pump fields are considered to be resonant, whereas for Fig. 5-8(b), 

the pump field with Rabi frequency   has non-zero detuning. When ad  lies away from 

the band edge, one can see that the absorption profile seen in the solid curve in Fig. 5-

8(a) is characterized by two strong peaks. In contrast, in Fig. 5-8(b), the solid curve has 

three peaks. However, as the resonance energy approaches the band edge of the crystal, 
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we observe two peaks for each of the plots in Fig. 5-8 (dash-dotted curves) and the 

locations of the peaks shift towards the zero detuning mark. 

 

Figure 5-8: Plots of 
2 0    against probe field detuning 0eb    for the atom in Fig. 5-1 

(b), in steady state. In (a) 0 0 0ab bc        and in (b) 0 2ab     and 0 0bc    . 

The Rabi frequencies of the laser fields are taken as 0 0 10        and 

0 0 2p     . The solid curves are drawn for the case where all resonance energies are 

away from either of the band edges and 80 00ad v %    . The dash-dotted curves 

represent the case where 99 99ad v %     while all other energies remain far from the 

band edges. 
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In order to understand the effect in Fig. 5-8(a), we recall that the system can have three 

dressed states due to the strong coupling of the pump fields. If both pump fields are 

resonant, the transition from the middle dressed state is forbidden. In this case, the 

locations of the peaks are: 
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When the resonance energy lies near the band edge and the decay rate a  is large 

compared to  , we get two transitions located at: 
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Fig. 5-8(b) can be explained in a similar way as Fig. 5-7(b). It can also be seen from this 

figure that the central peak is significantly weak compared to the side peaks. This can be 

explained by the fact that, at zero detuning, the transition from the middle state of the 

three dressed states of the system is forbidden (see discussion above). As the detuning is 

increased, the transition from the middle state becomes allowed. The dash-dotted curve in 

Fig. 5-8(b) can be explained in the same manner as that in Fig. 5-8(a), except the 

locations of the peaks will be different due to the non-zero 0ab    parameter.  

In all of Figs. 5-7 and 5-8, we have shown that, due to the role played by the band 

structure of the photonic crystal, the doped nanoparticle effectively becomes transparent 

to any radiation field tuned to the resonance energy of the probed transition. In fact, we 

have demonstrated that it is possible to switch from an absorption state to a non-

absorption state (and vice versa) for the nanoparticle system, by controlling the resonance 

energy. More precisely, the transparency is seen to be directly dependent on the location 

of the resonance energy with respect to the band gap of the crystal. This is a very 

important finding as techniques of rendering material systems transparent to resonant 

laser radiation are very desirable for applications in quantum optics and radiation physics. 



102 

 

For example, the transparency effect can be used to enhance the properties and efficiency 

of physical processes such as nonlinear frequency conversion, optical phase conjugation, 

squeezed-light generation, low-light level photonic switching, etc. [280].  

A survey of relevant studies reveals that the most common techniques employed in 

producing the transparency effect include the manipulation of atomic response through 

adjusting the intensity-ratio of pump fields [207, 223–226], changing the amplitude and 

phase of the driving field(s) [208], tuning the pump field [281], etc. In the calculations 

presented in this chapter, a new technique for obtaining transparency has been shown, 

making use of the unique properties of the band structures of photonic crystals. This has 

great potential for applications in creating new photonic devices for quantum computing.  

The discussion in this chapter concerns the ac Stark effect caused by two external strong 

pump fields in a photonic crystal doped with five-level nanoparticles. The transparency 

obtained in our theory is an effect of the modified decay rate, the two pump fields and the 

probe field. There have been many other studies of transparency and splitting of energy 

levels in doped photonic crystals using physical systems and methods which are different 

from those considered in this chapter. For example, Petrosyan and Kurizki [282] have 

studied four-level nanoparticles where they have applied a control probe field and a pump 

field. They observed electromagnetically induced transparency due to the coupling of a 

resonant transition of the nanoparticle to the localized density of states within the band 

gap and at the band edge of the crystal. The splitting of the energy level, in their case, is 

not due to the external field. It is a result of the coupling to the density of states. Similar 

studies have also been performed by other researchers [283–286].  

In contrast to these works, we do not consider the splitting of the resonance energy due to 

the coupling of the transition to the density of states. Instead, the A–T splitting 

demonstrated here occurs due to the external laser fields. This is a very important 

distinction.  

Electromagnetically induced transparency has also been achieved by Singh in four-level 

nanoparticles doped in a photonic crystal with the application of only one laser field 

[273]. It is found that the medium can be transformed from a transparent to a non-
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transparent state just by changing the location of the resonance energy. More recently, the 

induced transparency phenomenon have been used in a similar set-up to demonstrate the 

switching of a single signal photon by a single gating photon of a different frequency, via 

cross-phase modulation [287]. It has also been shown to feature in the spontaneous 

emission spectra obtained from both V–type three-level and double V–type four-level 

nanoparticles embedded in a double-band photonic crystal [234]. The spectra has been 

observed to contain both dark and narrow spectral lines, arising from a destructive 

interference or singularities of the density of states of the radiation field and population 

transfer under joint constructive interferences, respectively.  

The isotropic model of the photonic crystal leads to a divergent density of states at a band 

edge [5–9, 13, 288–293]. It is important to specify how far from the divergent band edge 

the resonance energy needs to be in order to facilitate the Markovian approximation. 

Analyses of the decay of a nanoparticle with the resonance energy close to the band-edge 

energy have shown that the band-edge modes behave like a cavity and the nanoparticle-

band-edge modes interaction splits the atomic resonance into a doublet [213–220]. One 

component of the doublet falls in the continuum of states and decays. The other 

component falls inside the band gap giving rise to a photon-atom bound state. The 

magnitude of the splitting is a function of nanoparticle-band-edge detuning. For some 

values of this detuning, the splitting disappears or its influence on the nanoparticle 

becomes negligible.  

If the resonance energy is inside the band gap, the isotropic model guarantees the 

existence of a photon-atom bound state. This becomes evident through oscillations in the 

atomic inversion. However, discussions in the present chapter do not consider cases 

where the resonance energy lies in the band gap. In fact, the largest value of the 

resonance energy ad  is 0 9999 v . It is important to note that for large detunings from 

the band edge, the magnitude of the oscillations in the atomic inversion becomes 

negligibly small [5]. 

It is known that the typical signature of non-Markovian effects [5–9, 13, 289–293] is a 

non-exponential decay [5, 294]. It can be deduced from References [5, 294] that, in the 



104 

 

isotropic photonic crystal considered in this chapter, the system behaves in a Markovian 

fashion if the detuning  v ad      approximately satisfies the following relation:  

 50 I

v v



 
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where I  is defined as the characteristic frequency of the nanoparticle-photon interaction 

[5]. In other words, the Markovian approximation is valid when the density of states can 

be considered smooth on the frequency scale determined by this characteristic frequency.  

Using References [5] and [294], I  can be approximated as:  
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with the constant IA  obtained in Reference [18, 19] as:  
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By putting the parameters in the equation for IA  and substituting the value in that for I , 

we found that 510v
  h , approximately. In this chapter, the largest value of ad  gives 

  40 9999 10v v v v          h . Therefore, from the above calculations, it can be 

concluded that the Markovian approximation performs relatively well.  

Finally, it is interesting to note that the formalism and results obtained for the isotropic 

model also apply to one-dimensional systems. This can be very advantageous as these 

systems can be implemented as waveguide channels in three-dimensional photonic 

crystals [295].  

5.5 Summary and Conclusion 

This chapter details the study of the time evolution of the level populations and both the 

transient and the steady-state behaviors of the imaginary part of the susceptibility in an 

isotropic photonic crystal doped with doubly-driven five-level nanoparticles. The 

nanoparticles in the ensemble interact with the crystal which acts as a reservoir and are 
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coupled with two strong pump fields and a weak probe field. Each nanoparticle has three 

levels in cascade configuration. The transition between the bottom level of the cascade 

and another level with higher energy than that of the cascade levels is studied with a 

weak probe field. Numerical simulations are performed, using the density matrix method, 

to obtain the absorption spectrum of this transition at large Rabi frequencies of the 

driving fields.  

It was found that the manipulation of the decay rate offers a new mechanism for 

switching the nanoparticle system from an inverted to a non-inverted state (and vice 

versa), with regards to the population of the ground level of the nanoparticle. We have 

also performed numerical simulations for the imaginary part of the susceptibility. Our 

calculations have shown that, due to the role played by the band structure of the photonic 

crystal, the doped nanoparticle effectively becomes transparent to any radiation field 

tuned to the resonance energy of the probed transition. Therefore, due to the role played 

by the band structure of the photonic crystal, it is possible to switch between an 

absorption state and a non-absorption state of the atomic system, by controlling the 

resonance energy. This is a very important finding as techniques of rendering material 

systems transparent to resonant laser radiation are very desirable for applications in 

quantum optics and radiation physics.  

This concludes the description of our investigation of the ac Stark effect in photonic 

crystals when the doped ensemble of nanoparticles are non-interacting. The next chapter 

details the extension of our study of the splitting phenomenon in these materials to 

include the effect of DDI between the doped nanoparticles. 
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Chapter 6   

6 Dipole-dipole Interaction and the ac Stark Effect in 
Photonic Crystals  

The previous chapter focused on the study of the ac Stark effect in a doped photonic 

crystal, neglecting the presence of dipole-dipole interaction (DDI). In this chapter, the 

work is extended to include the DDI effect.  

6.1 Introduction 

Chapter 5 detailed our study of the ac Stark effect in a three-dimensional photonic crystal 

with isotropic geometry. The crystal is doped with an ensemble of identical, non-

interacting five-level nanoparticles. These nanoparticles interact with the photonic crystal 

which plays the role of a reservoir. We have considered two distinct configurations of 

five-level nanoparticles, driven by two strong pump fields and a weak probe field. Due to 

the interaction between the particles and the reservoir, the excited energy levels decay 

spontaneously to the lower levels. It is found that, by manipulating the decay rate with 

resonance tuning, the nanoparticle can be switched between an inverted and a non-

inverted state, with regards to the population of the ground level of the cascade core of 

the five-level configuration. Furthermore, the band structure of the photonic crystal is 

found to have a major influence on the ac Stark effect observed in the doped 

nanoparticles. In particular, the probed transition of a doped nanoparticle could be 

rendered transparent to any resonant radiation field i.e. the nanoparticle can be switched 

between an absorption and a non-absorption state, simply by manipulating the location of 

the resonance energy.  

In recent years, there has been considerable interest in studying the role of DDI in multi-

level atomic gases [57–61]. For example, Dowling and Bowden [57, 58] have studied the 

effect of DDI in a three-level atomic gas, and found that the absorption peak changes 

from a symmetric to an asymmetric shape. Manka et al. [59] have extended the work of 

Dowling and Bowden [57, 58] to study the effect of atomic nonlinearities on the atomic 

gas system. They found a density-dependent switching between absorption and 
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amplification. Calderón et al. [60], on the other hand, have studied DDI in V–type 

nanoparticles. They found that the system changes from absorption to gain due to the 

phase difference between the probe and the pump fields, in the presence of DDI. 

The effect of DDI on photonic crystals and dispersive materials has also been 

investigated [13, 69, 70, and 296]. John and Quang [13] have studied the phenomenon of 

self-induced transparency due to DDI in two-level nanoparticles. Singh and Haque [54] 

have done some preliminary work on DDI in CPT. Singh [70] has studied the effect of 

DDI on the enhancement of the refractive index in a photonic crystal doped with five-

level nanoparticles.  

This discussion in this chapter considers a photonic crystal densely doped with an 

ensemble of five-level nanoparticles. A schematic diagram of the five-level particle is 

shown in Fig. 6-1. A probe laser field applied to the system measure its absorption 

coefficient. The probe induces a dipole moment in each nanoparticle in the ensemble. A 

pump field and a control laser field are also applied to introduce an interference effect in 

the system. These fields also induce dipole moments in the nanoparticles. When the 

concentration of the particles is high, the induced dipoles interact with each other via 

DDI [272]. We use the mean field approximation in order to include the effect of the DDI 

in the calculation of the absorption coefficient. Numerical simulations are performed on 

the absorption coefficient in the presence of DDI. We have observed many interesting 

effects in the densely doped system. Most notably, we found that the absorption in the 

system decreases as the strength of the DDI increases. The absorption peaks shift to new 

positions due to the DDI effect. Furthermore, the widths and the heights of the peaks also 

depend on the strength of the DDI.  

We have also investigated the role of the decay rate in our calculations i.e. the effect of 

the band structure of the photonic crystal on the doped nanoparticles. We have calculated 

the absorption coefficient when the relevant resonance energies of the nanoparticles lie 

away from the band edges of the crystal. Under such conditions, we obtain a pair of peaks 

in the spectral profile. However, when the resonance energies of the nanoparticles lie 

near a band edge of the photonic crystal, the system is observed to have only one peak. 



108 

 

We have found that the system can be switched from a one-peak to a three-peak profile, 

simply by changing the location of the resonance energy. This phenomenon can be used 

to fabricate novel photonic switching devices.  

6.2 The Dipole-dipole Interaction Hamiltonian 

In a similar vein to the studies presented in preceding chapters, we consider that a 

photonic crystal is made up of dielectric spheres periodically arranged in air. As 

mentioned in the previous section, there has been considerable recent interest in doping 

nanoparticles in photonic crystals. The crystal, in this case, is doped with an ensemble of 

identical five-level nanoparticles The energy levels of a five-level nanoparticle in the 

doped ensemble are denoted by a , b , c , d  and e . The level scheme is shown in 

Fig. 6-1. The Hamiltonians of the doped nanoparticle and the nanoparticle-field 

interactions are identical to those given by Eqns. (5.2, 5.4), respectively, in Section 5.3 in 

the previous chapter. 

In order to study the ac Stark effect, we apply three external laser fields to the system. A 

tunable probe field of energy 
p  and electric field amplitude 

pE  is applied to monitor the 

absorption coefficient between the ground level c  and the excited level e . The 

magnitude of the corresponding Rabi frequency is denoted as p . A strong pump laser 

field of energy   and Rabi frequency   is applied between levels c  and b . A 

control field of energy   and Rabi frequency   is applied between levels b  and a . 

The application of the three fields leads to the three transitions c   e , c   b  and 

b   a , which induce the three electric dipole moments ec , bc  and ab , 

respectively, in each nanoparticle. It is considered that the concentration of the 

nanoparticles is large enough so that the induced dipoles interact with each other via 

DDI. The expression of the DDI Hamiltonian has been obtained for a single field and a 

two-level system, in the mean field approximation, in Section 4.2 in Chapter 4. 
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Figure 6-1: Schematic diagram for the five-level nanoparticle, driven by two pump laser 

fields with Rabi frequencies   and  . The levels are denoted as a , b , c , d  

and e . The probe field with Rabi frequency p  drives the c   e  transition. The 

detuning of the two pump fields and the probe field are denoted as ab , bc  and ec , 

respectively. The dashed arrows represent the decay channels and i  denotes the decay 

rate of level i . 
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The system discussed in this chapter has three external laser fields. We have generalized 

the theory of Section 4.2 for three fields and have obtained the following DDI 

Hamiltonian:  

      p ecbcab
i ti ti t

dd ab ba bc cb ec ceH h e h e h e h c
   

  
       
 
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      
hhh

 (6.1) 

where ij j i    , with i  and j  denoting a , b , c  and e . The quantities ab   bc  and 

ec  are the transition energies corresponding to the b   a , c   b  and c   e  

transitions, respectively. The energy difference between levels a  and d  is denoted as 

ad . The remaining parameters appearing in the above expression are given as: 
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In the above, 0N  is the concentration of the doped nanoparticles and 0  is the dielectric 

constant of the medium. The quantity 0  is the vacuum decay rate, as defined in 

References [18, 19]. All frequencies discussed in this chapter are measured with respect 
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to 
0 . In order to get the expression for the DDI, we have neglected the non-diagonal 

terms as they are much smaller compared to those on the diagonal.  

In addition to DDI, the nanoparticles interact with the photonic crystal reservoir. Due to 

this interaction, level a  decays to level d  and levels b , d  and e  decay to level 

c . The Hamiltonian of the photonic crystal reservoir and the nanoparticle-reservoir 

interaction Hamiltonian is written, as in the previous chapter, as follows (discussed in 

Appendix B): 
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 (6.2) 

In the above, the first term is the Hamiltonian of the photonic crystal and the remaining 

three terms are the Hamiltonian for the nanoparticle-reservoir interaction. The  kp   and 

 †

kp   operators denote the annihilation and creation of photons, respectively, where k  

is the energy of the photon with corresponding wave vector k . As before, the integration 

contour C  consists of two intervals: k v     and c k    . The expression for 

the form factor  kZ   is given by Eqn. (5.6) in Chapter 5. A representative plot of the 

form factor is shown in Fig. 5-4 (bottom panel).  

6.3 Absorption Coefficient and Density Matrix 

The aim of this section is to obtain an expression for the susceptibility due to the weak 

probe field. For the case of the nanoparticle in Fig. 6-1, the susceptibility can be written 

as [84]: 
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where 
ij  and 

ij  denote the elements of the density matrix and the dipole operator, 

respectively, associated with the transition j   i . The density matrix elements can be 

calculated using the master equation method. The system is prepared in such a way that, 

initially, the nanoparticles are in ground level c . As the pump fields are switched on, 

the excited levels become populated. Following the master equation method implemented 

in the previous chapter and Eqns. (6.1, 6.2), the equations of motion for the density 

matrix elements can be written as follows:  
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dd a aa d dd      (6.4d) 
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ac ac ac bc ab p ae ba bc cb ab be aed ix ix ix i i i                   (6.4g) 

 
ad ad ad bd ba bdd ix i        (6.4h) 

    bc bc bc ac bb cc p be ba ac cb bb cc ea bed ix ix ix i i i                     

 
(6.4i) 

 
bd bd bd ad cd ba ad cb cdd ix ix i i              (6.4j) 

 
dc dc dc db p de cb db ea ded ix ix i i              (6.4k) 

 
ea ea ea eb p ca ba eb ea cad ix ix i i             (6.4l) 

 

   

eb ec eb ea ec p cb ba ea cb ec

ea cb

d ix ix ix i i

i

       



       

 
 

(6.4m)

) 

    ec ec ec eb p cc ee cb eb ea cc eed ix ix i i                 (6.4n) 

 
ed ed ed p cd ea cdd ix i        (6.4o) 

The complex detuning terms appearing in Eqn. (6.4) are given by: 

 
ij ij ijd i  

 
 

where  
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The remaining parameters are defined as:  

 

0

2

2

2
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i i

p ec p

ij i j

ij

ij

x

E
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



 
 
 

  

  

    

 

h

  

where the i  terms are the reservoir-mediated decay rates:   
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0
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( )

( )

d dc

e ec

Z
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 

 

 

 
 

 

The 
ij  terms appearing in Eqn. (6.4) account for the inclusion of the DDI effect. The 

absorption coefficient can then be calculated by evaluating the value of ec  from these 

density matrix equations.  

6.4 Results and Discussions 

This section presents our numerical simulations on the absorption coefficient for the 

photonic crystal. The parameters of the crystal are taken as in Reference [24]:   

 1 082

300 nm

0 24

n

L

a L

 



  
 

 

All the energies in the calculation are measured with respect to the decay rate energy 0  

of a nanoparticle in free space. The Rabi frequencies used in these calculations are: 

0 0 10        and 0 0 02p     . Also, the pump fields are considered to be 

resonant. 
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In these calculations, we have used the normalized susceptibility  0   and the 

normalized detuning parameter  0ab  . The imaginary susceptibility 
0  

 
 

  is 

calculated both in the absence and presence of DDI due only to the probed transition 

(DDI parameter cC ). It is directly related to the absorption coefficient. 

 

Figure 6-2: Plots of the absorption coefficient against the detuning parameter. The solid 

and the dashed curves correspond to 0cC   and 5cC  , respectively. 

The absorption coefficient is plotted as a function of the detuning parameter  0ab   in 

Fig. 6-2. The solid and the dashed curves correspond to 0cC   and 5cC  , respectively. 

The solid curve has three peaks and two minima. The peaks are located symmetrically 

about the zero detuning mark. In the presence of DDI, the peaks become asymmetric. 

This behavior has also been found in other systems [57–60, 296].  

Note that the positions of the peaks shift towards the left in the presence of DDI. The 

height of the left peak decreases as opposed to that of the right peak. This is due to the 

presence of an extra detuning term appearing in the absorption coefficient. The type of 

behaviour described above has also been found in atomic gases. 
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Figure 6-3: Plots of the absorption coefficient against the detuning parameter. The solid 

and the dashed curves correspond to 5cC   and 10cC  , respectively. 

 

Figure 6-4: Plots of the absorption coefficient against the detuning parameter when the 

relevant resonance energy of the nanoparticle lies away from (solid curve) and near a 

band edge (dashed curve) of the photonic crystal. The DDI parameter 5cC  . 
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We have also plotted the absorption coefficient under strong DDI coupling conditions. 

The results are shown in Fig 6.3. The solid and the dashed curves correspond to 5cC   

and 10cC  , respectively. Note that, in the presence of strong DDI coupling, the right 

peak disappears and the absorption spectrum has only two peaks. This means that the 

system can be changed from a three-peak spectral profile to that featuring two peaks by 

increasing the strength of the DDI coupling.  

In addition to the above, we have also investigated the role of the band structure of the 

photonic crystal in our calculations. In Fig. (6.2), we have calculated the influence of the 

DDI effect on the absorption coefficient when the relevant resonance energy of the 

nanoparticle lies away from either of the band edges of the photonic crystal. Next, we 

consider that this resonance energy lies near the lower band edge. The results are shown 

in Fig 6.4 (with 5cC  ). 

The solid curve in Fig. 6-4 corresponds to when the resonance energy lies away from the 

band edge (dashed curve in Fig. 6-2). Note that this curve has three peaks. The dashed 

curve in the figure is plotted when the resonance energy lies near the lower band edge. In 

contrast, this curve has only one peak. The physics behind the disappearing side peaks is 

explained below.  

The decay rate of an energy level of a doped nanoparticle is very large when the 

corresponding resonance energy lies near one of the band edges of the photonic crystal. 

Consequently, all three peaks merge into one solitary spectral feature. This means that, by 

moving the resonance energy, the number of absorption peaks appearing in the spectrum 

can be controlled. Therefore, the system can be switched from a one-peak to a three-peak 

profile, simply by changing the location of the relevant resonance energy.  

6.5 Summary and Conclusion 

This chapter details our study of the effect of DDI on the ac Stark effect in a photonic 

crystal doped with an ensemble of five-level nanoparticles. A probe laser field is applied 

to measure the absorption coefficient by inducing a dipole moment in each particle. A 

pump and a control laser field are applied to introduce an interference effect in the 
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system. They also induce dipole moments in each nanoparticle in the ensemble. When the 

concentration of the nanoparticles is high, the induced dipoles interact with each other via 

DDI [272]. The mean field approximation is used to include the effect of DDI.  

Numerical simulations are performed on the absorption coefficient in the presence of 

DDI. We found that the absorption in the system decreases as the strength of the DDI 

increases. The absorption peaks also shift to new positions due to the effect of DDI. 

Moreover, the system can be switched from a three-peak profile to that featuring two 

peaks (and vice versa) by changing the DDI parameter. The width and the height of the 

peaks are also found to depend on the strength of the DDI. From the point of view of the 

influence of the photonic crystal band structure, we also found that the system can be 

switched from a one-peak to a three-peak profile by changing the location of the relevant 

resonance energy.  

This concludes our study of the ac Stark effect in a photonic crystal doped with an 

interacting ensemble of nanoparticles.  
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Chapter 7  

7 Concluding Remarks  

In the works presented in this thesis, we have studied the phenomenon of coherent 

population trapping (CPT) and the ac Stark effect in photonic crystals and dispersive 

materials doped with nanoparticles. The nanoparticles are interacting with the photonic 

crystal and dispersive material reservoirs. In certain cases, they are also taken to be 

interacting with each other via dipole-dipole interaction (DDI). Both of these materials 

have energy gaps in their dispersion relation. We have used the density matrix method to 

facilitate our investigation of these phenomena.  

First, we have investigated the phenomenon of photon trapping in nanoparticles doped in 

photonic crystals. These materials feature energy gaps due to the periodicity of the 

dielectric constant. We found that, in photonic crystals, when the resonance energy lies 

within the lower and upper bands, one observes the CPT effect at certain values of the 

relative Rabi frequency for a given initial configuration of the energy levels of the 

nanoparticle. The CPT effect can be controlled by moving the resonance energies of the 

nanoparticles within the lower and upper bands of the photonic crystal.  

We have also investigated the CPT effect in dispersive materials. These materials have 

energy gaps in their dispersion spectra as well. However, the band gap in these materials 

is due to phonon and photon coupling. The most useful thing we found from our 

calculations is that the steady-state population on the upper level of a doped nanoparticle 

depends very sensitively on the coherence conditions. It is also found that increasing the 

decay rate can increase the fraction of population trapped in the system. In this way, the 

same population density in the upper level can be obtained for a range of values of the 

resonance energy simply by adjusting the intensities of the coupled field.  

The influence of DDI has also been investigated on the CPT effect. For a photonic 

crystal, we found that, when the resonance energies lie away from the band edges and 

within the lower or upper bands, trapping is observed at certain values of the relative 
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Rabi frequency. Moreover, this effect varies depending on the strength of the dipole-

dipole interaction between the nanoparticles.  

For a dispersive material, it can be seen that when the resonance energy lies within the 

lower and upper bands, one observes the CPT effect at certain values of the relative Rabi 

frequency, which vary depending on the strength of the DDI between the nanoparticles. 

Also, in both media, as this interaction becomes stronger, the population density of the 

uppermost level increases. We have also observed that the CPT effect can be switched on 

and off due to the presence of DDI.  

We proceed to extend our study of doped nanoparticles in these materials to include 

nonlinear quantum optical phenomena – in particular, the ac Stark Effect. We found that 

manipulation of the decay rate offers a new mechanism for switching the doped 

nanoparticle from an inverted to a non-inverted state (and vice versa), with regards to the 

population of the ground level of the nanoparticle. Our calculations have also shown that, 

due to the role played by the band structure of the photonic crystal, the doped 

nanoparticle effectively becomes transparent to any radiation field tuned to the resonance 

energy of the probed transition.  

We also study the effect of DDI on dynamic Stark splitting in a photonic crystal doped 

with an ensemble of five-level nanoparticles. It is found that, when the concentration of 

the particles is high, the induced dipoles – interacting with each other via DDI – 

decreases the absorption in the system with increasing interaction strength. The 

absorption peaks shift to new positions due to the effect of DDI. The system can also be 

switched from a three-peak spectral profile to that featuring two peaks simply by 

changing the DDI parameter.  

In the latter works presented in this thesis, we have used the density matrix formulation in 

order to calculate the absorption coefficients of applied probe fields. The method of 

density matrix is developed from the Schrödinger equation, accounting for the 

temperature of the system. As a result, the density matrix contains correlations functions 

between its elements (referred to as coherence terms of the density matrix), which are 

time-dependent. In the literature, most works use the Markovian approximation in order 
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to simplify the time-dependent correlation functions. In this approximation, the damping 

present in the system is assumed to destroy the memory of the past, leading to a very 

short correlation time, i.e. the state of the system at any given time is taken to depend 

only on the state immediately preceding it. The theory presented in this thesis for the 

five-level nanoparticles take the Markovian approximation into account. Furthermore, in 

all the calculations presented in the thesis, we account for the decay rates of the energy 

levels of the nanoparticles analytically. 

Due to the two approximations mentioned above (the Markovian approximation and the 

analytical inclusion of the decay rates), our proposed theories have a number of 

limitations insomuch as that they may not be able to predict experimental outcomes with 

quantitative accuracy. But, importantly, the qualitative aspects of the findings of the 

works in this thesis remain perfectly valid and provide very useful insights into the 

behaviours of the systems under study. 

It is useful to note here that, for most modern optoelectronic devices, the energy required 

per switching operation is an important consideration in studying light-matter 

interactions. Consequently, it is crucial and, indeed, very informative to estimate the 

switching power required by the systems studied in this thesis, in relation specifically to 

the photonic crystal reservoir. This has been done in Appendix K. 

The present work can quite easily be extended to metallic photonic crystals (MPCs). 

Recently, there has been considerable experimental and theoretical research done on 

MPCs because of their ability to control electronic and photonic resonances 

simultaneously [297]. They are more reflective than the crystals made of dielectric or 

semiconductor materials over a broader range of frequencies. Therefore, they are more 

likely to possess a complete photonic band gap compared to their dielectric counterparts.  

The presence of band gaps in MPCs is the result of a combination of plasma screening 

effects and Bragg scattering. In order to have a complete photonic band gaps in a 

dielectric photonic crystal, a high dielectric contrast is required. This restriction causes a 

great deal of difficulty in the fabrication of these crystals. Materials with energy-

dependent dielectric constants are the best alternative to overcome this obstacle and 
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metals are known to possess this much desired property. Also, photons interact much 

more strongly with metals than dielectrics, making MPCs more useful for developing 

integrated photonic devices.  

MPCs are fabricated with the combination of dielectric and metallic nano-layers or 

spheres in the form of one-, two-, or three dimensional systems. For example, Kuo et al. 

[297] fabricated opaline gold photonic crystals possessing complete photonic band gaps 

in the optical regime. Recently, Hatef and Singh [298] have studied the effect of plasma 

energy on the absorption coefficient of MPCs doped with an ensemble of three-level 

nanoparticles, which are taken to interact with each other via DDI. It should be 

emphasized here that the phenomenon of CPT and the ac Stark effect have not been 

studied in these crystals.  

The present work can also be extended to dispersive material nanowires. Recently there 

has been considerable interest in studying the optoelectronic properties of waveguides 

and nanowires made from polaritonic materials [299]. Most commonly, polaritonic 

waveguides and nanowires are fabricated through the femtosecond laser machining of 

holes or trenches which are carved through LiNbO 3  or LiTaO 3  host crystals [300]. 

Recently, Singh [299] has proposed the fabrication of polaritonic nanowires and wave 

guides by embedding one polaritonic material into another. He has considered that the 

embedded polaritonic material has a smaller band gap than the host material. For 

example, the semiconductor GaP has a smaller band gap than that of MgO. Because of 

this band-gap engineering, the polaritons have bound states in the embedded materials. It 

is found that the number of bound polariton states depends on the size of the nanowire. It 

has also been found that the absorption spectrum splits into many peaks due to the 

coupling between the nanoparticles and the bound polariton states. In other words, the 

polaritonic nanowire can be switched from one transparent state to another. This is a very 

interesting discovery which can be used to make polaritonic switches and transistors.  

The study of polaritonic nanowires and waveguides is a new field of research which will 

prove to be very useful as the field of electronics faces increasingly insurmountable 

technological and physical barriers in increasing the speed of processing networks, 
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whereas photonics requires lossy integration of a light source and guiding structures. This 

field bridges the gap between electronics and photonics. It has a wide range of 

applications, including high bandwidth signal processing, THz imaging and THz 

spectroscopy. However, the phenomenon of CPT and the ac Stark effect have not been 

studied in these crystals. Such future investigations have great potentials for developing 

new types of quantum optical devices in these new polaritonic systems. 
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Appendices 

Appendix A: One-dimensional Scalar Wave Equation 

The one-dimensional scalar wave equation is obtained from the general Maxwell 

equation for electromagnetic waves in a medium with three-dimensional dielectric 

function ( )x
 
[12]: 

 

 
2

2
( ) ( ) ( )E x x E x

c


      

But, according to the property of the del operator: 

     2( ) . ( ) ( )E x E x E x      

Using the result on right hand side of this equation and simplifying to a scalar potential 

  in one dimension, we get: 

 

 
2

2

2
( )x

c


       

Rearranging, we can write: 

 

 
2

2

2
( )x

c


         

But the gradient of 
2

2c


    [11], which gives: 

 2 2
2

2 2
( )x

c c

 
        

Appendix B: Photon Dispersion Relation in the Photonic Crystal Reservoir 

The derivation of the photon dispersion relation is given in the Appendix of Reference 

[18]. The author considers the well-known Schrödinger equation in one dimension with a 

single potential well 0( )V x V   for x a  ( ( ) 0V x   otherwise): 

 2
2 ( )

2
V x E

m
    

h
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 where a , the diameter of the dielectric spheres in the photonic crystal, establishes the 

analogy between the sphere and the potential well. From Reference [301], the dispersion 

relation can then be obtained in terms of the transmission and reflection coefficients t  

and r , respectively, as follows: 

 2 2 1
cos( )

2 2

i L i Lt r
kL e e

t t

 
     

with 

 2mE
 

h
  

Then, using the scattering matrix approach of Reference [302], the transmission and 

reflection coefficients can be determined from the wave function   (since 

( ) i x i xx e re     for x a 
 
and ( ) i xx te   , for x a ) as follows: 

     

     

2

2

cos 2 sin 2 sin 2
2 2 0

1
sin 2 cos 2 sin 2

2 2

i a

i

i i
a a e a

r

ti i
a a a e





 
  

 

 
  

 

 

 


  
    

              
     

    

 

with  2 2 /       , where  02 /m E V   h . 

Multiplying the matrices on the right-hand side of this equation, equating corresponding 

components of the resulting matrix to those of the matrix on the left-hand side, and 

rearranging, the following relations can be obtained: 

    
*2 2

2 1
2cos 2 sin 2

2 2

i at r
e a i a

t t

  
  

      
 

 

The superscript * denotes the complex conjugate. Using these in the expression for the 

dispersion relation gives: 

cos( ) cos(2 )cos(2 ) sin(2 )sin(2 )
2

kL a L a a L a


     


      
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For the model of the photonic crystal used in this thesis (see the Appendix of Reference 

[18]),  /k c  h ,  /kn c   h  and  21 /n n   . Substituting these expressions 

in the preceding equation: 

 21(2 ) 2 (2 ) 2
cos( ) cos cos sin sin

2

k k k k
na L na a L na

kL
c c n c c

           
       

       h h h h
 

But, 2L a b  ,    sin sin     and    cos cos   . Therefore: 

 212 2
cos( ) cos cos sin sin

2

k k k k
nb na b na

kL
c c n c c

          
        

       h h h h
 

or 

 22 2
2 cos( ) 2 cos cos 1 sin sink k k kb na b na

n kL n n
c c c c

          
         

       h h h h
 

Using the trigonometric identities        1 2 1 2 1 2cos cos cos cos / 2            and 

       1 2 1 2 1 2sin sin cos cos / 2           , the preceding equation can be written 

as follows: 

   

 
   2

2 2
4 cos( ) 2 cos cos

2 2
                    1 cos cos

k k

k k

na b na b
n kL n

c c

na b na b
n

c c

 

 

     
      

    

     
       

    

h h

h h

 

Noting that  
2 21 1 2n n n     and  

2 21 1 2n n n    , the expression finally yields: 

   
 

 
 2 22 2

4 cos 1 cos 1 cos
k kna b na b

n kL n n
c c

      
        

    h h
 

Appendix C: Reservoir, Field, and Interaction Hamiltonians 

Without loss of generality, we consider a two-level atom as the doped nanoparticle, with 

states a  and b . 

The interaction between the doped nanoparticle and the photonic crystal is written in the 

dipole approximation as [303]: 
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 .AR pH p E    

where p  is the dipole moment induced in the nanoparticle due to a reservoir photon with 

field amplitude 
pE . Then, using the raising and lowering operators: 

 

, , , ,

AR p ij p ij ij p

i j i a b j a b i a b j a b

H i i p j j E i j p E p E
   

            

where ijp i p j  are the matrix elements of the dipole operator. 

But, since 0aa bbp p  : 

  AR ab ba ba pH p E       

with 

 
ij

ij

i j

j i












  

These are the raising and lowering operators, respectively. 

The interaction Hamiltonians can now be obtained by considering the electric field of the 

reservoir photon in the second quantized form. 

Appendix D: Hamiltonian of the Nanoparticle I 

Without loss of generality, we consider a two-level atom as the doped nanoparticle, with 

states a  (ground) and b  (excited), and the preserving, raising and lowering operators, 

respectively, as: 

 z b b a a

b a

a b











 





  

These are Pauli operators, obeying the following commutation relations: 

 , 2

, 2

,

z z

z z

z

i

i

  

  

  





 

    

    

   
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Then, the Hamiltonian of the two-level nanoparticle can be written as: 

 1

2

z

A abH  
 

  
 

  

where 
ab b a    . 

Appendix E: Dipole Approximation 

In the dipole (or E1) approximation [60], for a vector potential  

  0 0 0.(r r) .r .r.r

0(r r, ) ( ) ( ) ( ) 1 .r ...
ik ik ikikA t A t e A t e e A t e ik


        

the .rk  and higher terms are ignored, reducing the potential to 

 0.r

0(r r, ) ( )
ik

A t A t e    

Appendix F: Rotating Wave Approximation (RWA) 

In the rotating wave approximation (RWA) [60], in deriving the interaction Hamiltonian 

between an atom and a field, the counter-rotating terms proportional to ( )i te   

 
in the 

equations of motion of the amplitudes of the wave functions representing the atom 

pumped to different levels are ignored. In fact, in many cases, the counter-rotating terms 

never appear. Nevertheless, in all cases, the RWA gives a very good approximation for 

simplifying the analysis of complex atom-field systems 

Appendix G: Photonic Crystal Form Factor 

The form factor of the photonic crystal is related to its density of states (DOS). Its 

derivation is as follows [303]:  

In the equation for the density of states for photons in a photonic crystal, the summation 

over the photon wave vector k  is written as 

 
( )k k

k

D d     

where ( )kD   is density of states. The summation over k  can be replaced by 
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 

24
3

3
2

2k

k dk




 
    

where   is the volume of the photonic crystal. The integration over k  can be replaced 

by that over the photon energy k  as follows  

 
2

2
( )

3
k k k

k k

dk
k d D d

d
  

 

 
  

 
     

So, ( )kD   is written as: 

 
2

2
( )

3
k

k

dk
D k

d


 


   

This expression can be rewritten in the following form:  

 

 

2

22
( )

3

k
k

k

dk
D

dc









h
  

 

 
 

2

32
( )

3

k
k

k

dk
D c

dc






  
      

h
h

 

 

where we have replaced 2k  as  
22

k c  h .  

The expression within the first bracket above is the DOS of photons in free space. We 

denote it as D 0  and write it as 

 

 

2

0 22
( )

3

k
kD

c









h
  

Now, the DOS of photons in the photonic crystal can be written as  

 

 0( ) ( )k k

k

dk
D D c

d
 



 
  

 
h   

The expression in the bracket above is expressed as  

 

 ( )k

k

dk
Z c

d



 h   

This is called the form factor of the photonic crystal. Now the DOS can be expressed in 

terms of the form factor as  
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 2

0( ) ( )k kD D Z    

The form factor can also be expressed in terms of ( )kD   as  

 

0

( )
( ) k

k

D
Z

D


    

Note that the form factor depends on the DOS.  

Now, the band structure of photonic crystals made from dielectric spheres (refractive 

index sn and diameter a ) and a background material (refractive index bn  and spacing b ) 

can be obtained as 

 cos ( )kkL F    

where 

 
   

2
2 ( )( )

( ) cos
4 ( )

k s k bs k b

k

s k b

n a n bn n
F

n n c

 




     
          

   

This equation can be re-written as: can rewrite the eqn. (A9) in the following form  

 
11

cos ( ( ))kk F
L

   

Finally, the form factor is calculated by differentiating this expression with respect to k .   

Appendix H: The Laplace Transform Method 

The Laplace Transform Method [304] is an algebraic technique of obtaining a particular 

solution of a differential equation given specific initial conditions. The Laplace transform 

( ( ))L f t  of a function ( )f t  is defined as the function , ( )F s  given as follows: 

 

0

( ) ( ( )) ( ).stF s L f t e f t dt



     

The transforms used in this thesis make use of following two properties: 

 (a ( ) b ( )) a ( ( )) b ( ( ))L f t g t L f t L g t     

 

0

( ( )) ( ).stL f t e f t dt



    
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These give the following results: 

 ( ( )) ( ( )) (0)L f t sL f t f     

The particular transforms of interest as far as the calculations in chapters 2 – 4 are 

concerned can be found in Reference [304]. 

Appendix I: Hamiltonian of the Nanoparticle II 

Without loss of generality, we consider a two-level atom as the doped nanoparticle, with 

states a  and b , having energies a  and b , respectively. 

The Hamiltonian of the nanoparticle is written as: 

 

,

A i ii

i a b

H  


    

where ii  is the number operator giving ii ii i  . 

This gives: 

 
A a bH a a b b     

Appendix J: Fehlberg Fourth-fifth Order Runge-Kutta Method (RKF45) 

This method is widely used to ensure accuracy in obtaining the solutions of systems of 

ordinary differential equations [305]. It is based on the precept of solving the system 

twice using step sizes S and S/2. This is followed by a comparison of the solutions at the 

mesh points associated to the larger step size S. The comparison process is the key behind 

the efficiency of this method as it determines if the step size being used is optimum. 

At each step of the procedure, two different approximations for the solution are obtained. 

The subsequent comparison process has three possible outcomes: 

1. If the two approximations are in agreement within the specified order (in this 

case, fifth) of accuracy, they are accepted as solutions. 

2. If the preceding is not true, the step size is decreased. 

3. If the approximations agree to within a higher order of accuracy than required, the 

step size is increased. 
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Appendix K: Switching Power 

In Reference [306], Majumdar et al. have analyzed the performance of an electro-optic 

modulator based on a single quantum dot (nanoparticle) strongly coupled to a nano-

resonator. They have obtained the following formula for the control energy per switching 

operation ( devU ) as follows: 

2

0

1

2
dev r d extU V E   

where dV  is the volume (in cubic nanometer units) of the nanoparticle, extE  is the 

external laser field applied to the nanoparticle (in V/m), 12

0 8.85 10    F/m is the 

absolute permittivity constant and r  is the dielectric constant of the material constituting 

the resonator.  

For the pulse frequency lf  (in Hz) of the applied laser field, Majumdar et al. [306] have 

calculated the operating power of the device (nanoparticle) as  

2

0

1

2
power l dev r l d extO f U f V E  

 

Using the above equation, they have estimated the operating power for a device with 

volume dV 1 μm × 1 μm × 200 nm when an external laser field with 45 10extE    V/cm 

is applied. They have taken 13r   and 10lf   GHz.  

Putting the above parameters in the preceding equation, they found that devU  = 0.5 femto-

Joules and 5powerO   μW. These energy scales are of the same order of magnitude as all 

other optical switching devices operating at the single-photon level [307, 308].  

In the present thesis, we have studied systems consisting of nanoparticles (QDs) and 

photonic crystals. The advantage of using a photonic crystal reservoir is that one can 

easily manipulate the dielectric constant of the system and the intensity of the radiation 

fields within the crystal reservoir. In Chapter 2, we have shown that there is a band gap 

present in the photon dispersion relation of the photonic crystal, which can be used to 

change the intensity of the radiation field within the crystal. This is due to the fact that the 
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density of states within the photonic crystal is very large near the upper and lower band 

edges and has a value of zero within the band gap. This means that an external radiation 

field applied to the system having frequencies lying within the band gap does not 

propagate within the device; hence, the device will not operate. Conversely, if the 

frequency of the external field lies outside the band gap, the field will propagate freely. 

This property can be used for making switching devices by changing the frequencies of 

the applied fields.  

Note that the expressions of the devU  and 
powerO  given above are expressed in terms of 

amplitude extE  of the laser field. In the works presented in this thesis, we have denoted 

the amplitude of the laser field in terms of the Rabi frequency ext . This can defined, in 

general, as:  

ab ext
ext

P E
 

h  

where abP  refers to the dipole moment between states a  and b . The value of abP  is in 

the order of magnitude of the product between the electronic charge (
191.602 10  C) and 

the Bohr radius (
115.29 10  m). 

We can use the above equation for ext  to rewrite the expressions for devU  and 
powerO , in 

terms of the Rabi frequency:  

2 2
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
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l r d ext
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f V
O
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
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Now, we can calculate the energy per switching operation devU  and the operating power 

powerO  of our optoelectronic device consisting of the QD and the photonic crystal 

reservoir. The typical size (volume) of our device is taken as 910dV  cubic nm. Without 

loss of generality and accounting for the most intense laser field considered in the thesis, 

we have calculated the Rabi frequency of the external field ext   2.6
610 Hz (the 
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magnitude of the electric field is taken as 
62.0 10  V/m, as in the literature), where the 

vacuum decay rate 0  is taken as in Reference [306]. The dielectric constant of the 

spheres constituting the photonic crystal is taken as 5 5r    and 15lf   GHz. Using 

these values, we estimate the values of devU  and 
powerO  as 0.097 femto-Joules and 1 46  

μW, respectively. These values, crucially, are well within the acceptable limit of energy 

and power consumption mentioned earlier in this appendix. 
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