
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

2-11-2015 12:00 AM

Metagenome Assembly Metagenome Assembly

Wenjing Wan, The University of Western Ontario

Supervisor: Lucian Ilie, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Wenjing Wan 2015

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wan, Wenjing, "Metagenome Assembly" (2015). Electronic Thesis and Dissertation Repository. 2681.
https://ir.lib.uwo.ca/etd/2681

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F2681&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F2681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/2681?utm_source=ir.lib.uwo.ca%2Fetd%2F2681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

METAGENOME ASSEMBLY

(Thesis format: Monograph)

by

Wenjing Wan

Graduate Program in Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Wenjing Wan 2014

Abstract

The advent of the next generation sequencing technology (NGS) makes it possible

to study metagenomics data which is directly extracted and cloned from assemblage

of micro-organisms. Metagenomics data are diverse in species and abundance. Because

most genome assemblers are designed for single genome assembly, they could not perform

well on metagenomics data. To deal with the mixed and not uniformly distributed

metagenomics reads, we developed a novel metagenomic assembler named MetaSAGE,

on the platform of the existing SAGE assembler. MetaSAGE finds contigs from the

overlap graph based on the minimum cost flow theory and uses mate-pair information to

extract scaffolds from the overlap graph. When facing chimeric nodes, the MetaSAGE

splits them separately according to the coverage of edges. MetaSAGE exhibits good

performance compared to existing metagenomic assemblers.

Keywords: genome assembly, metagenome, overlap graph, minimum cost flow

i

Acknowlegements

I would like to express my sincere gratitude to everyone who was involved in the com-

pletion of this thesis. First of all, I would like to express my deep appreciation to my

supervisor Dr. Lucian Ilie. He guided me into this research area, taught me the method

and attitude to do scientific research. His diligence and preciseness show me a good

example to my future work.

I would like to express my thankfulness to Michael Molnar who helped me a lot in

understanding and testing this program.

I also would like to thank to Nilesh Khiste. I learned a lot from the discussion with

you. I would like to say thank you for the help from all my lab-mates and colleagues,

and the support from my friends and family.

ii

Contents

Titlepage i

Abstract i

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background 4

2.1 Sequencing . 5

2.2 Next generation sequencing . 6

2.3 De novo genome assembly . 7

2.3.1 Problem description . 7

2.3.2 Reads . 8

Coverage . 8

Complement . 9

Insert and mate pairs . 9

Contigs and scaffolds . 10

2.4 Overlap graph . 10

2.4.1 Type of edges . 11

2.4.2 Transitive edge . 14

2.5 De Bruijn graph . 14

iii

2.6 Metagenome assembly . 15

2.6.1 MetaVelvet . 16

2.6.2 Meta-IDBA . 16

2.6.3 Omega . 18

2.6.4 Genovo . 18

3 MetaSAGE 20

3.1 Overview of MetaSAGE . 21

3.2 Error correction . 21

3.2.1 RACER and MetaRACER . 21

3.2.2 Evaluation of error correction results 22

3.3 Overlap graph construction and composition 24

3.3.1 Hash table . 25

3.3.2 Inserting edges . 26

3.3.3 Removing transitive edges . 27

3.3.4 Compressing paths . 27

3.3.5 Bubbles and dead-ends remove 27

3.4 Chimeric node splitting . 32

3.5 Copy count estimation . 35

3.5.1 Minimum cost flow . 35

3.5.2 Cost function . 36

3.5.3 Flow bounds . 37

3.6 Tree reductions . 37

3.7 Mate-pair information . 38

3.8 The algorithm . 40

4 Experiments 42

4.1 Datasets . 42

4.2 Environment . 47

4.3 Evaluation . 47

Indels and Mismatches . 47

iv

N50 . 48

NG50 . 48

Misassemblies . 48

NGA50 . 49

4.4 Results and analysis . 49

4.5 Time and Memory . 55

5 Conclusions 56

Bibliography 62

Curriculum Vitae 62

v

List of Figures

2.1 Chromosome, DNA, gene and protein. 5

2.2 Hydrogen bonds on DNA. 6

2.3 Nucleotides on DNA sequence. 6

2.4 Concatenation of the reads. 8

2.5 Shortest superstring of the reads. 8

2.6 Reads, mate pair, insert length . 10

2.7 A Set of 10 Reads . 12

2.8 Overlapping reads . 13

2.9 Overlap graph with 10 reads. 13

2.10 Transitive edge. 14

2.11 De Bruijn Graph . 15

3.1 Flowchart of MetaSAGE. 21

3.2 An example of error correction. 22

3.3 Minimum Overlap Window. 26

3.4 Overlap in an edge. 27

3.5 Before removing transitive edges. 28

3.6 After removing transitive edges. 28

3.7 Composite graph. 28

3.8 Dead-end removing. 30

3.9 Bubble removing. 31

3.10 Chimeric node. 33

3.11 Chimeric node splitting. 34

3.12 In-tree simplification. 38

vi

3.13 Loop reduction. 38

3.14 Ambiguous node. 40

3.15 Ambiguous node. 40

4.1 The FASTQ file. 44

4.2 Indels and mismatches . 47

4.3 The difference between N50 and NGA50. 49

vii

List of Tables

2.1 Sequencing technologies. 9

3.1 Comparison between RACER and MetaRACER using the four measures. 24

4.1 Order-level and Family-level datasets . 45

4.2 Genus-level and Species-level datasets . 46

4.3 Comparison of the four metagenome assemblers; best results in bold. . . 50

4.4 Order level comparison. 51

4.5 Family level comparison. 52

4.6 Genus level comparison. 53

4.7 Species level comparison. 54

4.8 Running time and space; best results in bold. 55

viii

Chapter 1

Introduction

The mechanism of life is complex and evokes curiosity. After scientists discovered the

structure of the nucleus, the public understood that it is genes that control the birth,

fading, disease, death and all other processes of life. Modern biology theories tell us that

genes are some functional parts on chromosomes, which are made up of sequences of

DNA (Deoxyribonucleic acid). When the double helix structure of DNA sequences was

discovered, the studies of the DNA sequences began to boom. A DNA sequence is made

up of pairs of nucleotides binding with the hydrogen bounds. It is very important to

know the order of those nucleotides because it has been proved that their order controls

the construction and function of organisms. Due to their huge size, biologists need

some tools to help them understand the structure of DNA sequences. The study of

developing mathematical methods and software tools for understanding biology data is

called bioinformatics.

DNA sequences must be encoded before we study them. Scientists use four charac-

ters A, T, G, C to represent the nucleotides on a DNA sequence. In order to obtain

the structure of a DNA sequence, biologists will first break a long DNA sequence into

manageable pieces. Then they clone these fragments and sequence them individually.

So the fragments are represented as a set of short strings, which are called reads. The

process of obtaining reads from DNA sequences is called DNA sequencing. After produc-

ing those fragments, scientists will try to reconstruct the DNA sequence with the reads

they encoded. The process of reconstructing DNA sequences from reads is called genome

1

Chapter 1. Introduction 2

assembly. Genome assembly became a very important topic as it can give biologists the

first-hand references of unknown genomes. In the last several years, many genome assem-

blers have been published, such as Velvet [40], ALLPATHS [5], ABySS [37], SOAPdenovo

[17], SGA [36] and so on. Most of them are applications of one or more of the following

strategies: greedy, overlap graph and de Bruijn graph. These assemblers build a graph

on the set of reads, connect overlaped edges and then extract contigs (definition are given

in Chapter 2.3.2) from the graph.

Recently, new sequencing technologies were developed by scientists, such as Roche/454

[18], Illumina/Solexa [8, 38] and SOLiD sequencing [35], which are generally referred to

as next generation sequencing (NGS). Compared to the old Sanger sequencing method,

the NGS methods generate short reads with hundreds of base pairs (bp) or even less than

one hundred bp. However they can sequence very fast and generate high coverage. A

number of new applications of sequencing technologies have become available because of

these new seqencing methods. One of these applications is metagenomics.

Metagenomics is defined as “the genomic analysis of micro-organism by direct extrac-

tion and cloning of DNA from an assemblage of micro-organisms”, and its importance

stems from the fact that 99% or more of all microbes are deemed to be unculturable

[13]. Goals of metagenomic studies include assessing the coding potential of environ-

mental organisms, quantifying the relative abundances of specific species, and estimat-

ing the amount of unknown sequences. Such studies are made possible by the use of

next-generation sequencing technologies. Metagenomic assemblers are similar to classic

genomic assemblers, since both of them look for the optimal assembly of the reads and

try to produce long contigs or scaffolds from short reads. However, metagenomic assem-

blers are faced with more difficulties because of the uncertainty of the abundance and

composition of metagenomic data.

In this thesis, we proposed a new metagenomic assembler, MetaSAGE, which is based

on the recent assembler SAGE [14]. In Chapter 2 we introduce the background and some

notions in DNA sequencing and genome assembly, as well as a brief overview of the next

generation sequencing (NGS) technologies. Subsequently, we introduce two paradigms

used in genome assembly: overlap graph and de Bruijn graph. At the end of Chapter 2,

Chapter 1. Introduction 3

a review of several popular metagenomic assemblers is provided.

In Chapter 3 we introduce our novel metagenomic assembler, MetaSAGE. An overview

of this program is provided at the beginning of this chapter, followed by the algorithm

and technical details of each step of this program. We discuss also our algorithm for

correcting errors in reads, MetaRACER, which is a modification of the existing RACER

program [15], adapted to the features of metagenomics data.

In Chapter 4, a comparison between MetaSAGE and three top metagenomic assem-

blers is made. We introduce the criteria used in the comparison and present the detailed

results of this comparison. The datasets we used were artificially generated by MetaSim

[32]. We generated input data in 4 taxonomic levels to make the comparison comprehen-

sive.

In Chapter 5, a conclusion about this program is made, including the analysis of our

work and its prospect for the future.

Chapter 2

Background

In 1953, James Watson and Francis Crick [39] suggested the first correct double-helix

model of DNA structure. Since then scientists have been trying to understand the infor-

mation stored in DNA. DNA is a double-helix sequence composed of many small units

called nucleotides. Each nucleotide has a nitrogen-containing nucleobase, either guanine,

adenine, thymine, or cytosine. In short we denote them as G, A, T, C. These nucleotides

in the DNA molecule are also known as bases. The order of four bases appearing in a

DNA molecule provides the instructions for making proteins. This order spells the genetic

information and controls all biological functions of a living organism. Within cells, DNA

is organized into long structures called chromosomes. On a given chromosome, there are

specific sequences of nucleotides at given positions that code for some proteins. We call

them genes. In another word, genes are some functional parts of a DNA sequence. They

determine the construction of protein, known as the basic functional component of living

things. Figure 2.1 [2] indicates the relationship between chromosome, DNA, and gene. It

is very important to understand DNA sequence because it helps scientists to understand

how a living organism is constructed and what is its function. For example, scientists can

use DNA sequence of an organism to identify and predict health risks. Hence, knowing

the DNA sequence of an individual could help discover diseases long before they might

be identified otherwise.

In a DNA double helix, each type of a nucleotide will typically bond to another type

of a nucleotide forming a base pair. Adenine (A) always bonds to thymine (T) with two

4

Chapter 2. Background 5

Figure 2.1: Chromosome, DNA, gene and protein.

hydrogen bonds, and cytosine (C) bonds to only to guanine (G) with three hydrogen

bonds. Figure 2.2 from [4] shows a G-C base pair with three hydrogen bonds and an A-T

base pair with two hydrogen bonds. Non-covalent hydrogen bonds between the pairs are

shown as dashed lines. The back bone of a DNA is made from alternating phosphate and

sugar residues. The sugar in DNA is 2-deoxyribose, which is a five-carbon sugar. The

sugars are joined together with bonds between the third and fifth carbon. This means

that the DNA sequence has two different ends. We denote the two ends as 5’(five prime)

and 3’ (three prime). Directions on DNA usually start from 5’-end to 3’-end. Figure 2.3

[1] describes how nucleotides are located on the DNA sequence.

2.1 Sequencing

In 1977 the first full genome was sequenced. This remarkable achievement was attained by

Frederick Sanger [7] and his team, who sequenced the genome of bacteriophage phiX174,

which is about 5 kb in size. This technology is known as Sanger sequencing, or first

generation sequencing technique. To sequence a genome, first DNA is broken into man-

ageable pieces. Second, the fragments are multiplied through a process called cloning,

and then individual fragments are sequenced. In the end, a library of DNA subsequences

is generated. However the Sanger sequencing technique has a few disadvantages. The

Chapter 2. Background 6

Figure 2.2: Hydrogen bonds on DNA.

Figure 2.3: Nucleotides on DNA sequence.

major one is that it is a costly and time consuming process. At about $1 per kpb (kilo

base pairs), it would cost about $30,000,000 to sequence a complete human genome with

10x coverage (for an explanation of the notion coverage, see Section 2.3.2). The cover-

age of the Sanger sequencing is usually low, meaning that it is impossible to sequence

the parts of a genome which are not sampled. Moreover, it is not possible to clone some

parts of a chromosome with the Sanger method because its cloning method is biologically

biased.

2.2 Next generation sequencing

Even though the Sanger sequencing method was a really significant breakthrough in

technology and it has been widely used in biochemistry, the incentive for developing en-

Chapter 2. Background 7

tirely new strategies for DNA sequencing has emerged on at least four levels [34]. First,

in the wake of the Human Genome Project, it was hard make a significant reductions

in the cost of conventional DNA sequencing methods. Second, with the success of the

whole genome assemblies, potential utility of short-read sequencing has been tremen-

dously strengthened. Third, high-throughput DNA sequencing methods make a wide

range of biological phenomena accessible. And fourth, alternative strategies have been

made in disparate fields, including microscopy, surface chemistry, nucleotide biochem-

istry, polymerase engineering, computation, data storage and others, making the new

DNA sequencing increasingly practical to use.

Under the promotion of the incentives mentioned above, several new sequencing tech-

niques were developed by scientists, such as Roche/454 [18], Illumina/Solexa [8, 38] and

SOLiD sequencing [35]. Generally they are referred to as next generation sequencing

(NGS). Compared to the old Sanger sequencing method, the NGS methods generate

short reads with hundreds bp or even less than one hundred bp. However they can

sequence very fast and generate high coverage. These features made many applications

become possible with reads coming from NGS. In the past several years there has been an

accelerating flurry of publications in which NGS is applied for a variety of goals. Many of

these applications rely on the possibility to assemble the reads to reconstruct the original

genome. This procedure is called genome assembly, which is one of the most difficult and

widely investigated problems in bioinformatics. It is also the topic of this thesis.

2.3 De novo genome assembly

In this section, the problem of genome assembly is introduced, along with several basic

concepts of DNA sequencing.

2.3.1 Problem description

Genome assembly refers to reconstructing the original DNA sequence from the reads.

In biology, the nucleotides are represented as the four characters A, T, G, C. So the

assembly of genome can be regarded as merging short string reads to form a long string

Chapter 2. Background 8

(the genome) over the alphabet Σ = {A, T,G,C}.

Formally, suppose we are given a set R = {r1, r2, . . . , rn} of n reads, where the length

of the reads is |ri| = l. The goal of assembly is to construct a string G such that all reads

in R are substrings of G (supposing the reads error free).

Example Consider the set R ={ACG, CGA, CGC, CGT, GAC, GCG, GTA, TCG} of

n = 8 reads of length l = 3. Concatenating all the reads in R produces the string of

length 24 shown in Figure 2.4. Clearly, this is very far from the actual genome sequence.

A much better solution would be the shortest superstring that has all reads as substrings,

shown in Figure 2.5. As we shall see, we are not looking for the shortest superstring but

of the most probable one.

ACGCGACGCCGTGACGCGGTATCG
012345678901234567890123

Figure 2.4: Concatenation of the reads.
TCGACGCGTA
0123456789

Figure 2.5: Shortest superstring of the reads.

2.3.2 Reads

The original genome sequence is referred to as the reference genome. Genome sequencing

techniques cannot read the whole reference genome at one time. They generate fragments

of the reference genome which are called reads. As mentioned before, NGS methods

usually generate reads of hundreds bp in size. The size of reads that are generated by

sequencing technology is called read length. Table 2.1 (from [25]) indicates the read

lengths generated by several widely used NGS technologies.

Coverage

The technology generates many short reads, R = {r1, . . . , rn} which are all supposed to

be subsequences of the genome sequence G . Usually, the total length of reads is much

larger than the reference genome length. Suppose the reference genome length |G | is L.

Chapter 2. Background 9

Technology Read length (bp) Output per run Error rate Paired-end
ABI/Solid 75 120 GB Low(˜2%) Yes
Illumina/Solexa 100-150 1000 GB Low(<2%) Yes
Roche/454 400-600 700 MB Medium(˜4%) No
Sanger Up to ˜2000 84 KB Low(˜2%) Yes

Table 2.1: Sequencing technologies.

We define the coverage as:

coverage =

∑n
i |ri|
|G |

=
nl

L
. (2.1)

The coverage shows the concentration when sequencing the reference genome. It repre-

sents the expected number of times that each position of the reference genome appears

in the reads.

Complement

DNA sequence has two ends, the 5’-end and the 3’-end. The reads are always in the 5’-3’

direction, but may come from either strand. Shown in Figure 2.6 are two reads, r1 is the

prefix of the top insert and r2 is the suffix of the bottom strand. These are typical reads

generated by the sequencing software of 20 bp long each. Since the DNA sequence is

double stranded, every nucleotide on one string of DNA has a complementary nucleotide

on the other string. The sequence made from the complementary nucleotides of a read

is called the complement of that read. Because two complementary sequences in DNA

are in reverse order, we call them reverse complements. The reverse complement of a

sequence w is denoted as w.

Insert and mate pairs

The sequencer brakes the reference genome into fragments to generate reads. The frag-

ments are called inserts. The length of the insert is insert size. Insert is the unit for

sequencing and it is double-stranded. The sequencer produces paired reads from both

sides of one insert on its two complemented strands. The reads are always generated

from 5’-end to 3’-end. The paired reads are called mate pairs. The mate pair is very

Chapter 2. Background 10

important for genome assembly because it keeps the information about the original lo-

cation of reads, which can help assemblers improve their accuracy. Figure 2.6 [12] shows

an example of mate pair obtained from the genome sequence.

Figure 2.6: A mate pair is obtained from the genome sequence. The insert size is 61 bp
and the two reads (coloured in blue), each on one end of the insert, are of length of 20
bp.

Contigs and scaffolds

After assembling, a set of output sequences is obtained. We call those contiguous pieces

of DNA contigs. After assemblers obtain the contigs, they link those contigs that could

be ordered to get the scaffolds. A scaffold is a series of contigs that are in the right order

but not necessarily connected in one continuous stretch of sequence. The goal of the

genome assembly is to produce long and accurate contigs and scaffolds, covering as much

as possible of the reference genome.

2.4 Overlap graph

In genome assembly, short reads that overlap in suffix or prefix will be connected into

longer contigs. To achieve this, most algorithms will represent the reads as vertices in

the graph, connecting the vertices corresponding to overlapping reads by edges. There

Chapter 2. Background 11

are two kinds of graphs used in today’s genome assembly algorithms: one is the overlap

graph and the other one is the de Bruijn graph. In this chapter, we first discuss the

overlap graph.

2.4.1 Type of edges

An overlap graph is a bidirected graph G(V,E). Each node v in the overlap graph

represents a read and each edge e = (u, v) represents the overlap between the reads

corresponding to two nodes u and v. Edges in the overlap graph have two arrowheads,

one at each point. Since the DNA sequence has two ends 5’ and 3’, the arrowhead

shows the orientation of the read, always from 5’ to 3’. According to the combinations

of different arrowheads, there are 3 kinds of edges (overlaps); note the that the reverse-

reverse overlap is the same as the forward-forward overlap.

Forward-Forward Overlap

Read r1 : CACGTGCTGCCGATAATGTGGTTTCAGTAT
Read r2 : GTGCTGCCGATAATGTGGTTTCAGTATAAT

r1 r2

Reverse-Forward Overlap

Read r1 : CACGACGGCTATTACACCAAAGTCATATTA
Read r2 : GCTGCCGATAATGTGGTTTCAGTATAATGA

Read r1 : GTGCTGCCGATAATGTGGTTTCAGTATAAT
Read r2 : GCTGCCGATAATGTGGTTTCAGTATAATGA

r1 r2

Chapter 2. Background 12

Forward-Reverse Overlap

Read r1 : GCTGCCGATAATGTGGTTTCAGTATAATGA
Read r2 : GACGGCTATTACACCAAAGTCATATTACTC

Read r1 : GCTGCCGATAATGTGGTTTCAGTATAATGA
Read r2 : CTGCCGATAATGTGGTTTCAGTATAATGAG

r1 r2

Figure 2.7 shows a set of reads. The read length is 30 bp. Figure 2.8 indicates the

overlaps among these reads. If we represent those reads as vertices in the overlap graph

and insert edges according to the overlaps among them we will obtain the overlap graph

shown in Figure 2.9.

Read r1 : CACGTGCTGCCGATAATGTGGTTTCAGTAT
Read r2 : TGCACGACGGCTATTACACCAAAGTCATAT
Read r3 : CACGACGGCTATTACACCAAAGTCATATTA
Read r4 : GCTGCCGATAATGTGGTTTCAGTATAATGA
Read r5 : GACGGCTATTACACCAAAGTCATATTACTC
Read r6 : GCCGATAATGTGGTTTCAGTATAATGAGGG
Read r7 : ATAATGTGGTTTCAGTATAATGAGGGCAAT
Read r8 : ACGACGGCTATTACACCAAAGTCATATGCA
Read r9 : GCTGCCGATAATGTGGTTTCAGTATACGTA
Read r10 : ACGGCTATTACACCAAAGTCATATGCATAC

Figure 2.7: A Set of 10 Reads

Formally the overlap length between two strings s1 and s2 is defined as the longest

common substring that is a suffix of one string and a prefix of the other string. Consider

two reads in Figure 2.8, r1 and r2. The suffix of length |r1| − 1 of r1 is the same as the

prefix of length of |r2| − 1 of r2 and is the longest overlap between that two strings. So

the overlap length between r1 and r2 is 29. After finding all overlaps between all reads,

the overlap graph in Figure 2.8 will be obtained.

When overlapping reads, minimum overlap length is defined as a threshold to control

the overlap: only overlaps longer than the minimum length are considered. The structure

Chapter 2. Background 13

Read r1 : CACGTGCTGCCGATAATGTGGTTTCAGTAT
Read r2 : ACGTGCTGCCGATAATGTGGTTTCAGTATA
Read r3 : GTGCTGCCGATAATGTGGTTTCAGTATAAT
Read r4 : GCTGCCGATAATGTGGTTTCAGTATAATGA
Read r5 : CTGCCGATAATGTGGTTTCAGTATAATGAG
Read r6 : GCCGATAATGTGGTTTCAGTATAATGAGGG
Read r7 : ATAATGTGGTTTCAGTATAATGAGGGCAAT
Read r8 : TGCTGCCGATAATGTGGTTTCAGTATACGT
Read r9 : GCTGCCGATAATGTGGTTTCAGTATACGTA
Read r10 : TGCCGATAATGTGGTTTCAGTATACGTATG

Read Length l : 30bp
Overlap Length : 26bp

Figure 2.8: Overlapping reads

r1 r2 r3 r4

r5

r6

r7

r8 r9 r10

Figure 2.9: Overlap graph with 10 reads.

of the overlap graph is significantly influenced by the length of the overlapping. The

smaller the overlap length, the higher the number of overlaps between reads and the

overlap graph will produce more contigs because of the increase of density. However the

overlap graph will be tangled and more mistakes will be made if we assemble reads with

a very short overlap. On the other hand, if we choose a larger overlap length, the graph

will become simpler, and the number of mistakes will decrease. However the sensitivity

of the algorithm will change since the more overlaps we abandon the more information

we lose. So choosing a good overlap length is very important for an assembly algorithm.

Chapter 2. Background 14

2.4.2 Transitive edge

In the overlap graph, if there are three reads r1, r2 and r3 (Figure 2.10) connected by edges

(r1, r2) , (r2, r3) and (r1, r3), a triangle can be found in the overlap graph which is made

from the three edges among r1, r2 and r3. We call this triangle transitive triangle. The

edge (r1, r3) is called transitive edge. This transitive triangle (edge) contains redundant

information. In the above case, edge (r1, r3) can be removed to make the graph simpler

without causing any loss of information, see Figure 2.10. There are several algorithms to

remove transitive edges [3, 24].

r1 r3

r2

CACGTGCT CGTGCTGC

CACGTGCTGC

ACGTGCTG

Figure 2.10: Transitive edge.

2.5 De Bruijn graph

The de Bruijn graph [31, 30] is another popular data structure used for genome assembly.

It is quite similar with the overlap graph in that vertices represent sequences of nucleotides

while edges represent the overlap between sequences. However the vertices in the de

Bruijn graph correspond usually to shorter strings than the edges in the overlap graph.

A k-mer is any string of k letters. A k-mer de Bruijn graph has as vertices all k-mers in

the reads. Another difference between the overlap graph and the de Bruijn graph is in

the length of the overlap. In an overlap graph, vertices can have any length of overlap

longer than the minimum overlap. However in de Bruijn graph, all k-mers are linked

with a fixed k − 1 overlap. A example of the de Bruijn graph is shown in Figure 2.11.

Chapter 2. Background 15

This is a 3-mer de Bruijn graph of the reads ACCGTCAGAAT and ACCGTGAGAAT.

All edges represent an overlap of 2bp.

ACC

CCG

CGT

GTG TGA GAG

GTC TCA CAG

AGA

GAA

AAT

Figure 2.11: De Bruijn Graph

2.6 Metagenome assembly

A variety of software tools are available for analysing next-generation sequencing data

[34]. Alignment and assembly are particularly interesting problems. Many assemblers

were designed in the past several years, such as Velvet [40], ABySS [37], SOAPdenovo

[17], SGA [36]. However, despite the many improvements in single genome assembly,

assembly of a metagenomic sequence is still a nontrivial task.

The advent of next generation sequencing (NGS) has allowed an explosion in se-

quencing of individual genomes, and started a revolution in a new area: metagenomic

sequencing and analysis. The increased throughput and decrease in costs of sequenc-

ing, coupled with additional technological advances have transformed the landscape of

DNA research and related areas ([33]). With NGS, scientists could sequence a whole

microbial community or a sample obtained directly from the environment. So the task

in metagenomic assembly can be described as assembly of multiple species in a microbial

community [26]. The goal for any metagenome sequencing project is the full characteri-

zation of a community, and scientists are trying to understand:

• the composition and structure of a community, including the relative abundance of

various species;

Chapter 2. Background 16

• genetic contribution of each member of the community, including the functional

capacity;

• intra-species or intra-population difference of genes.

The remaining part of this section describes several popular metagenomic assemblers.

2.6.1 MetaVelvet

MetaVelvet [26] is extended from Velvet [40], a well known single-genome assembler us-

ing the de Bruijn graph. MetaVelvet consists of four major steps: [a] Construction of

a de Bruijn graph from the input reads. [b] Detection of multiple peaks on k-mer fre-

quency distribution. [c] Decomposition of the constructed de Bruijn graph into individual

subgraphs. [d] Assembly of contigs and scaffolds based on the decomposed subgraphs.

In Step [a], MetaVelvet constructs the main de Bruijn graph by Velvet from a given

set of mixed sequence reads generated from multiple species. In Step [b], MetaVelvet cal-

culates the histogram of k-mer frequencies and detects multiple peaks on the histogram.

Those peaks indicates the different frequencies of different species. The expected fre-

quencies of k-mer occurrences in a single-genome follow a Poisson distribution. Because

the frequency of different genome species can be regard as independent, the expected

k-mer frequencies in metagenome assembly follow a mixture of several separated Poisson

distributions. After that, MetaVelvet draws histograms of k-mer frequencies from a mix-

ture of Poisson distributions and detects those condensed regions as peaks on the chart.

Furthermore, MetaVelvet clusters nodes into different groups based on their frequency,

and maps each group to a peak in the chart. In Step [c], MetaVelvet merges those nodes

belonging to the same peak as a subgraph and then removes those edges linked between

different subgraphs. In step [d], MetaVelvet builds contigs and scaffolds based on the

decomposed subgraphs using Velvet functions.

2.6.2 Meta-IDBA

Meta-IDBA [28] is extended from IDBA [27], also a single-genome assembler using the de

Bruijn graph. The idea of Meta-IDBA is simple but practical that it iterates on a range

Chapter 2. Background 17

of k values from k = kmin to k = kmax and maintains accumulated de Bruijn graph hk at

each iteration. On each iteration, Meta-IDBA adds or removes some edges to make the

graph more reliable.

Meta-IDBA defines two types of branches in de Bruijn graph to help readers under-

stand its process: sp-branches, cr-branches. Sp-branches indicates those branches caused

by the polymorphism of similar subspecies which consist of very similar sequences with

a few variations and each variation introduces a branch in the de Bruijn graph. Another

source of branches is due to the common or similar genomic regions, shared by different

species which are called cr-branches.

There are 4 steps in Meta-IDBA. Initially it constructs a de Bruijn graph from se-

quencing reads. Each simple path in the de Bruijn graph might represent a contig of the

genome. As there are some sequences appearing in multiple species, the de Bruijn graph

of reads from different species are interconnected by cr-branches. In the second step,

Meta-IDBA divides the de Bruijn graph into many small connected components by re-

moving cr-branches. Meta-IDBA assumes that one genome sequence is more similar with

one genome sequence from the same species or subspecies than the one from a different

species. So Meta-IDBA will group those highly similar sequences, as they may be from

the same species or close subspecies, to obtain separate components in the de Bruijn

graph. These components are then merged into bigger components, which represent

longer consensus contigs using paired-end information. In the last step of Meta-IDBA,

each component is transformed to a multiple alignment of similar contigs of different

subspecies.

Based on Meta-IDBA, the authors updated another version named IDBA-UD [29].

IDBA-UD extends and enhances the idea of variable thresholds of Velvet-SC [6] to filter

out erroneous contigs. To cater to very extreme sequencing depths, instead of using

a global average of the multiplicity of all k-mers as the threshold, they adopt variable

’relative’ thresholds depending on the sequencing depths of their neighbouring contigs

tend to be erroneous.

Chapter 2. Background 18

2.6.3 Omega

Omega [11] is a newly released metagenomic assembler, also based on SAGE [14]. Since

our new metagenomic assembler MetaSAGE is also based on SAGE, Omega is in some

sense our direct competitor. Omega is therefore based on the overlap graph and cost flow

analysis, inherited from SAGE. Omega has four steps in logic. First, it constructs the

overlap graph from a set of reads. To improve the efficiency of the construction, Omega

builds the hash table for all reads in advance. Second, Omega makes some reductions on

the overlap graph, including removing some dead-ends and bubbles, which are caused by

the errors in the reads. Third, it estimates the copy count of each edges in the overlap

graph by the minimum cost flow theory. In the end, it improves contigs and scaffolds

from the overlap graph using pair-end information.

2.6.4 Genovo

Genovo [16] is another de novo sequence assembler that discovers likely sequence recon-

structions under a generative probabilistic model. Genovo’s approach is different from

the algorithms we mentioned above. First, it introduces a probabilistic model of a read

set. The model associates a probability to each possible list of sequences that could have

given rise to this readset. The model simulates the process of constructing a number of

sequences and sampling reads from the reference genome. So the assembly of sequences

can be seen as a reasonable summary of the read set. The model estimates the size of

genome automatically without setting any parameter in advance. Second, Genovo de-

scribes an algorithm that reconstructs a likely assembly from a read set. The algorithm

accomplishes this by seeking the most probable assembly iteratively, moving between in-

creasingly likely assemblies via a set of moves designed to increase the probability of the

assembly. After the move, reads are rearranged into a more compact assemblies, and they

still represent the whole read set. Crucially, the moves are not all greedy, thus allowing

some undoing of potential erroneous moves. The process is iterated until no reasonable

move is available. At this point, the assembly is regarded with the best probability. This

is the assembly that best trades off the compactness and read set representation from

Chapter 2. Background 19

among the assemblies that the algorithm explored, thus being a likely candidate for the

true set of sequences that generated the reads.

Unlike the other methods, Genovo does not throw away reads. So it is able to extract

more information from the data, especially when works on low-abundance sequences.

Another special point in Genovo is its joint denoising. Genovo does not make a decision

about the error correction until the end of assembling process which is hopefully leading

to a better assembly. However it will be at a higher computational cost.

Chapter 3

MetaSAGE

In this chapter, our new metagenomic assembler MetaSAGE is introduced. MetaSAGE

is based on SAGE [14], a well designed single genome assembler using the overlap graph.

As SAGE has good performance on single genome assembly, we preserve the general

structure of SAGE and add several metagenomic-specific changes concerning error cor-

rections and node-splitting in the overlap graph. Compared with other genome assem-

blers, MetaSAGE has three main improvements. First, MetaSAGE does not build the

overlap graph directly from the entire collection of reads. Instead, it removes transi-

tive edges while building the overlap graph, which significantly reduces the amount of

memory used. Second, MetaSAGE uses minimum cost flow theory to estimate the copy

count of each edge and assembles edges based on their copy count. Third, in order to

adapt to the metagenomic assembly, MetaSAGE not only does graph trimming, splitting

and simplification used in typical single genome assemblers, but also splits edges from

different species according to their coverage. This process extends the contigs obtained

from the overlap graph as well as reduces the number of misassemblies.

In this chapter an overview of MetaSAGE is given, followed by detailed description

of all steps of MetaSAGE. In order to maintain readability, the steps that are inherited

from SAGE are descibed as well, although in less details.

Genome assembly is always preceded by error correction of the reads. SAGE uses the

RACER program [15] for this purpose. We have adapted RACER as well for metagenome

assembly and the new program, MetaRACER, is described also in this section.

20

Chapter 3. MetaSAGE 21

3.1 Overview of MetaSAGE

MetaSAGE has five steps. First, input reads are corrected by MetaRACER which is

modified from the RACER program [15]. Second, a bidirected graph is built from the

input dataset using a hash table. Third, the overlap graph is simplified and edges coming

from different species are split. Then MetaSAGE makes the copy count estimation based

on the minimum cost flow theory and extracts contigs from the overlap graph. In the last

step, MetaSAGE extracts scaffolds from the overlap graph using mate-pair information.

In the following sections, we describe these steps one by one. A flowchart of MetaSAGE

is shown in Figure 3.1.

Reads Corrected
Hash Table

Overlapping

Graph SimplificationScaffolding
Flow computing

by MetaRACER

Figure 3.1: Flowchart of MetaSAGE.

3.2 Error correction

3.2.1 RACER and MetaRACER

The main idea of the error correction methods is as follows. NGS provides reads in high

coverage which implies that each position of the genome is sequenced multiple times.

Since the errors happen in a minority of case, error correction software will use the

majority reads to correct the minority. RACER counts k-mers from the reads and stores

them into a hash table. For each k-mer, RACER counts all possible nucleotides on both

Chapter 3. MetaSAGE 22

sides. Then a threshold t is used to check whether one position is correct. The criterion

is that if a nucleotide a following a k-mer is counted over t times, it will be regarded as

correct, otherwise wrong.

Figure 3.2: An example of error correction.

RACER gives good performance on reads from a single genome. However, when it

comes to the metagenomic data, the test results are far from satisfactory. Because the

metagenomic data is diverse not only with respect to species but also with abundance,

the correction criterion mentioned above no longer works because it will miss-correct very

many reads that have low coverage. So modifications are needed to make RACER less

aggressive in detecting errors. In order to preserve the information from genome in low

coverage, we need two thresholds, tc and te. A count larger than tc indicates a correct

position, while one below te indicates an error. We keep tc = t from RACER and set

te = 1, that is, the strictest condition for correcting an error. The new error correction

software is called MetaRACER. In order to give a detailed evaluation of MetaRACER, in

the following subsection, we introduce the evaluation methods from the study of Molnar

and Ilie [23] and perform several tests to compare the correction using RACER with that

of MetaRACER.

3.2.2 Evaluation of error correction results

According to the study of Molnar and Ilie [23], a dataset has two main parameters

that can be improved by the correction programs: ’depth of coverage’ (the number of

times each base is covered on the average) and ’breath of coverage’ (the proportion of

the genome that is covered). Each parameter can be evaluated using the proportion of

Chapter 3. MetaSAGE 23

correct reads or correct k-mers. Therefore, four criteria are obtained to evaluate the

performance of the error correction software: ReadDepthGain, KmerDepthGain,

ReadBreathGain and KmerBreathGain. These four criteria indicate how much

the depth or breadth as given by correct reads or k-mers, respectively, increases after the

error correction. Before understanding these four criteria, we need to introduce several

notions we used.

Suppose we have a read set R = {ri|1 ≤ i ≤ n} generated from the reference genome

G . A read ri is considered as “correct” if it is a substring of G , and “erroneous” otherwise.

Based on this definition, we can make a binary classification on the dataset G . We can

obtain four classes true-positive(TP), true-negative(TN), false-positive(FP) and false-

negative(FN), where TP is the number of reads that are erroneous before correction and

correct after correction, TN is number of reads correct both before and after correction,

FP counts reads correct before and erroneous after correction and FN counts reads

erroneous both before and after correction. Then we can define

ReadDepthGain =
TP − FP

P
=

TP − FP

TP + FN
.

Concerning breadth, TP becomes the number of reads that are not covered before cor-

rection but covered afterwards; with TN , FP and FN correspondingly defined. We have

then ReadBreathGain= TP−FP
TP+FN

. We refer the reader to [23] for more details.

KmerDepthGain and KmerBreathGain are similar to the above cases where

TP , TN , FP and FN represent the corresponding value for k-mers instead of reads;

again, see [23].

We compare RACER and MetaRACER using the above mentioned criteria by testing

the two programs on the four read sets used also later for testing metagenome assemblers;

the datasets are artificial and are described in detail in Chapter 4. The results are listed

in Table 3.1. We can see that metaRacer is less sensitive but also less aggressive than

RACER. RACER has higher performance with respect to ReadDepthGain, Read-

BreadthGain, and KmerDepthGain for all datsets; the difference is particularly

large for the “depth” measures. However, for KmerBreadthGain, RACER destroys a

Chapter 3. MetaSAGE 24

lot more k-mers than MetaRACER. Note that both programs have only negative values

for KmerBreadthGain on all datasets, which is expected behaviour, already noted as

such in the original study of Molnar and Ilie [23].

The higher the threshold, the higher the number of corrections applied in the read sets

and so RACER miss-corrects many reads in low coverage, destroying the read diversity.

However, it is expected that MetaRACER can keep more information of those reads in

low coverage which is essential for metagenomic assembly.

The direct comparison between RACER and MetaRACER is insufficient to decide

which one is better for metagenome assembly. It gives only some insight in their expected

performance, that was proven correct by the superior behaviour of MetaSAGE when used

on MetaRACER-corrected reads.

Data RACER MetaRACER

ReadDepthGain

orderLevel 97.13 53.39
familyLevel 91.12 41.30
genusLevel 96.09 60.70
speciesLevel 96.64 53.40

Data RACER MetaRACER

ReadBreadthGain

orderLevel 46.79 36.01
familyLevel 42.81 32.31
genusLevel 44.34 36.29
speciesLevel 45.18 34.60

Data RACER MetaRACER

KmerDepthGain

orderLevel 98.00 64.17
familyLevel 94.20 49.44
genusLevel 97.26 71.18
speciesLevel 97.81 65.07

Data RACER MetaRACER

KmerBreadthGain

orderLevel -9.39 -3.94
familyLevel -3.01 -2.71
genusLevel -10.15 -4.92
speciesLevel -34.11 -9.60

Table 3.1: Comparison between RACER and MetaRACER using the four measures.

3.3 Overlap graph construction and composition

The overlap graph is composed of overlapping read pairs. If there are n reads in the

input data set, comparing all possible pairs of reads will take O(n2) time which is too

time-consuming. What we do is build a hash table for fixed-length prefixes and suffixes

Chapter 3. MetaSAGE 25

of each read ri and its reverse complement r̄i. Then we search for these prefixes and

suffixes as substrings of the reads in the hash table instead of making an O(n2) search.

MetaSAGE sets a threshold named minimum overlap to control the minimum overlap

length in the graph. If two reads r1 and r2 have an overlap larger than minimum overlap,

a suffix or prefix of r1 can be found that matches a suffix or prefix of r2 at length larger

than the minimum overlap. Therefore, in order to find overlap efficiently, MetaSAGE

stores a prefix and suffix of length h = min{minimum overlap, 64} for each read and

its reverse complement. We choose 64 here because most of the reads generated by NGS

are around 100 bp. MetaSAGE only stores prefixes or suffixes of length up to 64 bp

and represents them with two 64-bit integers. In the following part, we introduces the

encoding methods and the process of building the hash table.

3.3.1 Hash table

For each read ri and its reverse complement r̄i, MetaSAGE stores their suffixes and

prefixes of length h into the hash table. Supposing there are n reads, 2n suffixes and 2n

prefixes will be stored into the hash table. For efficiency, MetaSAGE encodes each base

with 2 bits in the array (A=00, C=01, G=10, T=11). So the 4n suffixes and prefixes

will be stored into an array of 8n 64-bit integers and each suffix or prefix is represented

as 2 64-bit integers. The size of hash table is set to a prime number p > 8n to reduce

the number of hashing collisions. The algorithm is shown in Algorithm 1.

Algorithm 1: Algorithm for building hash table

input : Read set R = {r1, r2, . . . , rn} and minimum overlap length minOverlap
output: Hash table hashTable

1 Create an empty hashTable
2 h← min{64,minOverlap}
3 for each read r ∈ R do
4 compute the prefix and suffix of r and r̄
5 Store them in the hashTable

6 end
7 return hashTable

Chapter 3. MetaSAGE 26

3.3.2 Inserting edges

After the hash table is built, we start to build the overlap graph. As mentioned before,

each read is a vertex in the overlap graph and we insert an edge between two vertices if

they have overlap longer than the minimum overlap. Suppose the read length is l. For

each read r in R, MetaSAGE will scan it from the beginning to the end with a “window”

in size of minimum overlap, see Figure 3.3. For every subsequence caught by the window,

MetaSAGE will check whether it appears in the hash table. If there is a subsequence s

(caught by the window) on the read r being found in the hash table, supposing it hits

the prefix of read rh, we will know that r and rh share an overlap to be inserted into

the overlap graph. Then MetaSAGE will continuously enlarge the size of the window,

including the following bases on both reads if they overlap, to obtain the longest overlap

between r and rh. Until the window reaches the end of one sequence or no more bases

can be added, the longest overlap sl between r and rh is obtained. Finally an edge (r, rh)

can be inserted into the overlap graph along with the longest overlap sl between them.

An example is shown in Figure 3.4. In this example, we suppose the hash size is 10 bp,

then the window size is set as 10. At first, we move the scanning window on r from

the left to the right and search it in the hash table. Then we obtain a hit which is in

green color in the figure. We keep on enlarging the size of the window, and includes all

matching bases, shown with blue color in that figure. In the end, we have the largest

overlap as both of the blue and the green sequences.

Read sequence

MinimumOverlap Hit

Figure 3.3: Minimum Overlap Window.

Chapter 3. MetaSAGE 27

Read r: TCAGACGCTAATGCAGCCATTATTAGAACACAGAT
Read rh: CGCTAATGCAGCCATTATTAGAACACAGATGCTAA

Figure 3.4: Overlap in an edge.

3.3.3 Removing transitive edges

Transitive edges contain redundant information making the graph more complex. There

is an algorithm to reduce transitive edges in linear time given by Myers [24]. Myers’

algorithm performs an iteration over all edges in the graph G = (V,E). For each edge

e it marks all its neighbours w as inplay. Then it goes on checking all neighbours of w

with an increasing order of the length of the string spelled by the edge (v, w), marking

those neighbours as eliminated if they are already in status inplay. In the end, the

program removes all edges (v, x) with x is marked with eliminated. Reusing the set of

reads shown in Figure 2.7 in Chapter 2, the overlap graph is shown again for convenience

in Figure 3.5, and then in Figure 3.6 after removing transitive edges. The algorithm is

shown in Algorithm 2.

3.3.4 Compressing paths

We notice that in the reduced graph, some nodes have only one in-edge and one out-edge,

such as nodes r2, r3, r5, r6, r8 and r9 in Figure 3.6. A path consisting only of such vertices

except the beginning and the end is a simple path and can be compressed so that only the

initial and final vertices are kept, the rest are removed, and the obtained edge stores the

entire sequence spelled by all the reads involved: such a new edge is called a composite

edge. An edge that is not composite is called simple edge. Compressing simple paths to

obtain composite edges for the graph in Figure 3.6 produces the graph in Figure 3.7 that

contains four vertices and three composite edges.

3.3.5 Bubbles and dead-ends remove

No error correction software can correct all errors in genome reads. Even after error

correction by MetaRACER, reads are not error free in regarding of the huge size and

the unexpectedness of the genome sequence. Most errors in genome reads will cause

Chapter 3. MetaSAGE 28

r1 r2 r3 r4

r5

r6

r7

r8 r9 r10

Figure 3.5: Before removing transitive edges.

r1 r2 r3 r4

r5

r6

r7

r8 r9 r10

Figure 3.6: After removing transitive edges.

r1 r4

r7

r10
{r2, r3} {r8, r9}

{r
5 ,r

6 }

Figure 3.7: Composite graph.

dead-ends in the overlap graph. Usually dead-ends are short because it is very unlikely

that a sequencer generates many errors in the same region. In MetaSAGE, a composite

edge containing more than 5 reads will not be considered as a dead-end. Assume that

the sequencing of each read is independent, and the error rate on one base is p. If a

composite edge has 5 reads on it, the possibility that all these 5 reads contain an error

Chapter 3. MetaSAGE 29

Algorithm 2: Linear time transitive edge reduction

input : Overlap graph G = (V,E)
output: Transitively reduced overlap graph

1 for each v ∈ V do
2 mark[v]← vacant for each (v, w) ∈ E do
3 reduce[(v, w)]← false
4 end

5 end
6 for each v ∈ V do
7 for each (v, w) ∈ E do
8 mark[w]← inplay
9 end

10 for each (v, w) ∈ E in increasing order of length of the string spelled do
11 if mark[w]← inplay then
12 for each (w, x) ∈ E in increasing order of length of the string spelled do
13 if mark[x] = inplay then
14 mark[x]← eliminated
15 end

16 end

17 end

18 end
19 for each (v, w) ∈ E do
20 if mark[w] = eliminated then
21 reduce[(v, w)]← true
22 end
23 mark[w]← vacant

24 end

25 end
26 for each edge e ∈ E do
27 if reduce[e] = true then
28 Remove e from E
29 end

30 end
31 return G

on the same position is (p
3
)5(1− p)5(l−1), where l is the read length. According to Table

2.1, the error rate of NGS is less than 2% and the read length l is around 100. So the

possibility of a composite edge containing 5 or more reads being a dead-end is very small;

about 6× 10−16 according to our formula. Figure 3.8 (from [12]) shows that how a dead-

end appears in the overlap graph. In that graph, reads r11, r12, r13, and r14 are dead-ends

Chapter 3. MetaSAGE 30

caused by errors in reads.

r1 r2 r3 r4 r5 r6 r7 r8 r9

r12

r11

Subsequence in G :

. . . TCGAGCCTTGTCAG . . .

TCGAG

CGAGC

GAGCC

AGCCT

GCCTT

CCTTA

CCTTG

CTTGT

CTTAT

TTATC

r10

TATCAATCAG

r13

r14 TATGA

TTATG

Figure 3.8: Dead-end removing.

Apart from dead-ends, another complication in the overlap made by errors is the

bubble. A bubble is made from two (or more) edges sharing both the beginning and the

end on the overlap graph. Bubbles occur due to various reasons. Some of them are caused

by errors in reads while some of them occur because of the repeats in reference genome.

We only reduce bubbles caused by errors. Edges of low coverage will be considered

as erroneous and set as removable in bubbles. Figure 3.9 gives an example of bubble

made by errors in reads. The reference genome sequence is ACGCGTATCCGGTATC

on this area. However, the edge in the above spells ACGCGTAGCCGGTATC. In this

case MetaSAGE will detect the coverage of both edges, and keep the edge with higher

coverage because the higher coverage has lower possibility to be erroneous.

The algorithms for removing dead-ends and bubbles [12] are shown in Algorithm 3

and Algorithm 4.

Chapter 3. MetaSAGE 31

r1 r2 r3 r4 r5 r6 r7 r8 r9

Subsequence in G :

. . . ACGCGTATCCGGTATC . . .

ACGCGTA

CGCGTAT

GCGTATC

CGTATCC

GTATCCG

TATCCGG

ATCCGGT

TCCGGTA

r10

CCGGTAT

CGGTATC

r11

CGTAGCC

r12

AGCCGGT

Figure 3.9: Bubble removing.

Algorithm 3: Remove Dead Ends

input : Overlap graph G = (V,E)
output: Overlap graph after removing dead-ends

1 for each node u ∈ V do
2 inDegree← 0
3 outDegree← 0 for each neighbour v of u do
4 if (u, v) has more than 5 reads in it then
5 inDegree← 0
6 outDegree← 0
7 break

8 end
9 if (u, v) is an in-edge of u then

10 inDegree← inDegree + 1
11 end
12 else
13 outDegree← outDegree + 1
14 end

15 end
16 if inDegree = 0 and outDegree > 0 then
17 Remove u and all its edges from G
18 end
19 if inDegree > 0 and outDegree = 0 then
20 Remove u and all its edges from G
21 end

22 end
23 return G

Chapter 3. MetaSAGE 32

Algorithm 4: Remove Bubbles

input : Overlap graph G = (V,E)
output: Overlap graph after removing bubbles

1 for each pair of edge e = (u, v) and e′ = (u, v) ∈ G with the same endpoint do
2 if string spelled by e ≈ string spelled by e′ then
3 if number of reads in e ≤ 1

2
number of reads in e′ then

4 Remove e from G
5 end
6 else if number of reads in e′ ≤ 1

2
number of reads in e then

7 Remove e′ from G
8 end

9 end

10 end
11 return G

3.4 Chimeric node splitting

After dead-end removing and bubble reducing, we have the step of splitting of reads

coming from different species. However, it is hard to tell apart whether two sequences

are coming from different species. Our approach is to use the coverage difference in

different genomes. Because genome sequencers generate reads uniformly on the reference

genome, if one genome is more abundant than others in the sample, sequences from that

genome are hopefully in a higher coverage. Using the genome coverage, we can tell apart

two reads or two edges in the overlap graph that are coming from different reference

genomes if they have a big difference in their coverage. That is not to say that two reads

or two edges having the same coverage come from the same reference genome.

Similar to Equation 2.1, the coverage of an edge can be defined as follows. Suppose

there is a composite edge e = (u, v), and the reads on this edge are r1, r2, . . . , rn. If the

read length is l and length of edge e is L, then the coverage of this edge is

coverage(e) =
nl

L
(3.1)

After computing the coverage of each edge, MetaSAGE will split intersections con-

sisting of edges of mixed coverage, see Figure 3.10. A chimeric node is the node whose

outgoing edges and incoming edges have mixed coverage. By connecting edges with sim-

Chapter 3. MetaSAGE 33

ilar coverage, chimeric nodes can be reduced into different paths; see Figure 3.10 for an

example.

a

b

a

b

a+b

a

b

a

b

a

splitting

b

Figure 3.10: Chimeric node.

However, in metagenomic assembly, due to the mixing of different species in different

abundance, chimeric nodes will not be as simple as the case shown in Figure 3.10. When

dealing with those complex chimeric nodes, we split pairs of edges gradually. Suppose

there is a chimeric node like the one shown in Figure 3.11. On the left side, there is a set

of incoming edges {u1, u2, . . . , u8} and another set of outgoing edges {v1, v2, . . . , v6} on

the right side. In the first figure (u3, v3) and (u3, v5) are two pairs of edges having similar

coverage c, coloured in yellow. Those edges in black color are in different coverage. In

this case, we cannot decide how to split this chimeric node because the merging of (u3, v3)

and (u3, v5) are both applicable. In the second figure, only (u3, v3) are coloured in yellow

which means they have some similar coverage that is different from those edges coloured

in black. So we can split (u3, v3) from the original graph and merge them into a new

edge. In the algorithm, the similarity of coverage between edges will be checked by a

threshold; two edges are considered to have similar coverage if the coverage difference is

below the threshold. Precisely, if the coverage of an edge is ce, then, for two edges e1 and

e2, the coverage difference was computed as 2
∣∣∣ ce1−ce2ce1+ce2

∣∣∣ and the experimentally determined

threshold was 0.05. The algorithm of splitting chimeric node is shown in Algorithm 5.

Chapter 3. MetaSAGE 34

can not merge more than one possible edge pairs (u3, v3) and (u3, v5)

(u3, v5) will be merged

u1
u2
u3
u4
u5
u6
u7
u8

u1
u2
u3
u4
u5
u6
u7
u8

v1
v2
v3
v4
v5
v6

v1
v2
v3
v4
v5
v6

Figure 3.11: Chimeric node splitting.

Algorithm 5: Chimeric node Splitting

input : Overlap graph G = (V,E)
output: Overlap graph after chimeric node splitting

1 for each node n in G do
2 Compute the coverage of all incoming and outgoing edges contacting on this

node.
3 end
4 for each node n G do
5 for each edge ein incoming to node n do
6 for each edge eout outgoing from node n do
7 if difference(coverage(ein), coverage(eout)) ≤ threshold then
8 if no other edges with similar coverage then
9 Mark edge ein and edge eout

10 end

11 end

12 end

13 end
14 Merge all marked pairs of edges

15 end
16 return G

Chapter 3. MetaSAGE 35

3.5 Copy count estimation

Even after the bubble reducing and chimeric node splitting, the overlap graph is still

a criss-cross graph because the genome sequence contains repeats itself. To assemble

genomes well, assemblers must know how many times one piece of a subsequence appears

in the original reference genome sequence. The number of times a certain subsequence

appears is called its copy count. In MetaSAGE, the copy count is estimated by the

combination of the minimum cost flow model and the convex cost function ce(k). The

convex cost function represents the maximum likelihood of the sequence e appearing k

times in the reference sequence. Details of this process will be described in the following

sections.

3.5.1 Minimum cost flow

The minimum-cost flow problem is to find the cheapest possible way of sending a certain

amount of flow through a flow network. Given a network G = (V,E) and the cost c(u, v)

on each edge (u, v) in this graph, the minimum cost theory wants to produce the flow

f(u, v) on each edge such that the total cost
∑

(u,v)∈E f(u, v)c(u, v) is minimum subject

to the following constraints:

Capacity constraint

f(u, v) ≤ flowUpperBound(u, v)

Skew symmetry

f(u, v) = −f(v, u)

Flow conversation∑
w∈V f(u,w) = 0 all u 6= s, t and

Required flow∑
w∈V f(s, w) = d and

∑
w∈V f(w, t) = d

Chapter 3. MetaSAGE 36

3.5.2 Cost function

The maximum likelihood genome assembly was proposed by Medvedev et al. [19, 20,

21, 22]. This algorithm uses the bidirected network flow to model double-stranded DNA

structure and aims to assemble a genome that is most likely the source of a given set

of reads. In genome assembly, each subsequence is supposed to be assembled the same

number of times as it appears in the reference genome. However the number of times each

subsequence appears in the reference genome is unknown. If a subsequence is present

multiple times in the reference genome sequence, reads from that sequence are more

likely to be sampled more often than the other subsequences in the reference genome.

The maximum likelihood genome assembly is looking for the most likely copy count of

each subsequence. A convex min-cost function ce(k) : N → R, is associated with every

edge e reflecting the likelihood that the sequence represented by e appears k times in

the genome for each k ≤ 1. The goal is to compute a flow function f that minimizes∑
e ce(f(e)), where the flow through edge e is f(e). The value we compute for f(e) is

the approximation of the number of times the sequence associated with e occurs in the

genome.

Consider a set R of n reads from a genome G of length L. Let xr denote the times

that read r ∈ R appears in the dataset R and cr denote the times that read r appears in

the genome G . The actual copy counts cr are unknown. What is known is the observed

values xr. Then, if n reads are sampled uniformly from G , the probability that r is

sampled xr times is

Prob(Freq(r) = xr) =

(
n

xr

)(cr
L

)xr
(

1− cr
L

)n−xr

(3.2)

Here, Freq(r) denotes the number of times read r appears in the dataset R. This is

also the likelihood that the copy count of read r is cr, given the observed values xr. This

likelihood needs to be maximized, which is the same as minimizing the negative log of

Equation 3.2.

−log(Prob(Freq(r) = xr)) = K + cr(cr)

Chapter 3. MetaSAGE 37

where,

K = −log
(
n

xr

)
+ nlogL

and

cr(cr) = −xrlogcr − (n− xr)log(L− cr) (3.3)

Note that K does not depend on the number of times that the read r appears in the

genome, so it can be regarded as constant for our genome copy count estimation here.

Equation 3.3 is used as the convex function.

There are several algorithms for solving the minimum cost flow problem in directed

graphs. In MetaSAGE, software called CS2 [9] is used. We refer the reader to [20] for all

details on the flow approach.

3.5.3 Flow bounds

In SAGE [14], the authors used a generalization of the A-statistics of Myers [24] to

estimate the upper bound and lower bound of copy count before they calculate the

minimum cost flow. The A-statistics were based on the assumption that the coverage is

uniform. One of the most important differences between single genome and metagenome

assembly is that the coverage of the latter in not uniform and therefore the A-statistics

of SAGE cannot be used. We have used in MetaSAGE the lower bounds as 1 and the

upper bounds as 1000.

3.6 Tree reductions

After computing the flow on each edge in the overlap graph, MetaSAGE will perform

in-tree and out-tree reductions. In the overlap graph, a node that has only one outgoing

edge and more than one incoming edges is called an in-node, and this structure in the

graph is called in-tree; out-node and out-tree are defined similarly. In Figure 3.12, on the

left is an in-tree. The flow on its outgoing edge is 2 while the two incoming edges have

flow 1. This in-tree can be simplified into the tree on the right of the graph.

Besides in-tree and out-tree reduction, MetaSAGE also removes loops in the graph.

Chapter 3. MetaSAGE 38

r1 r2

r3

r4

r1

r3

r4

f(e1) = 2
f(e2)

= 1

f(e3) = 2

f(e4) = 1

f(e5) = 1

Figure 3.12: In-tree simplification.

In Figure 3.13, on the left an edge having the same end points is called a loop in the

overlap graph. If there is only one valid path travel through these edges, MetaSAGE

replaces these edges with an new edge, as shown in the right figure in Figure 3.13. The

algorithm for in-tree/out-tree reduction and loop reduction [12] is shown in Algorithm 6.

r2

r1 r3

r1 r3

f(
e 1

)
=

1

f(e2) = 1

f(e
3)

=
1

f(e) = 1

Figure 3.13: Loop reduction.

3.7 Mate-pair information

After tree reduction, the overlap graph will be less complex. However there might be

many “ambiguous” nodes which could be merged in more than one way. In Figure

3.15 node r2 is an ambiguous node because there are two ways to merge the edges

adjacent to r2. The edge e1 = (r1, r3) can be merged with any of the two outgoing edges

e3 = (r3, r4) and e4 = (r3, r5) and similar situation happens for all the edges. Using

Chapter 3. MetaSAGE 39

Algorithm 6: In-tree, out-tree and loop reduction

input : Overlap graph G = (V,E)
output: Tree after reduction

1 for each node u ∈ V do
2 inDegree← number of incoming edges incident on u outDegree← number of

outgoing edges incident on u if inDegree = 1 and outDegree > 1 then
3 for each out-edge e1 = (u, uout) do
4 merge edges e = (uin, u) and e1
5 end

6 end
7 else if inDegree > 1 and outDegree = 1 then
8 for each in-edge e2 = (u, uin) do
9 merge edges e = (u, uout) and e2

10 end

11 end

12 end
13 for each loop (u, u) in G do
14 if u has only two edges (x, u) and (u, y) incident on it then
15 if there is only one possible path p = x, u, u, y according to the flow then
16 Remove p from G Add (x, y) to G
17 end

18 end

19 end
20 return G

mate-pair information is a good way to solve this problem.

As mentioned in Section 2.3.2, a mate pair refers to two reads coming from the same

subsequence of the reference genome. One of them is the suffix and the other is the

prefix. In sequences generated by NGS, mate-pairs are stored together in the output file.

MetaSAGE uses this mate-pair information to resolve ambiguous nodes in the overlap

graph. Suppose the reads are generated from a reference genome shown in Figure 3.14.

The reads on edge e1 and on edge e3 are mate-pairs, while, the reads on edge e2 and edge

e4 are also mate-pairs. With this information we can merge e1 with e4 and e2 with e3,

then remove the ambiguous node r2 from the overlap graph.

Chapter 3. MetaSAGE 40

mate pair

mate pair

r1

r4

r3

r5

r2

r2

Figure 3.14: Ambiguous node.

r2

r4 r5 r4 r5

f(
e 2

) =
1 f(e

4) =
1

f(e6) = 1

r1 r3 r1 r3
f(e5) = 1

f(e
1) =

1

f(
e 3

) =
1

Figure 3.15: Ambiguous node.

3.8 The algorithm

The overall algorithm of MetaSAGE is shown in Algorithm 7. (The FASTA file format is

described in the next chapter.) We have described in detail all new steps of MetaSAGE

and included the most important steps of SAGE that were carried over into MetaSAGE

such that the structure of MetaSAGE becomes clear; however, we refer the reader to [12]

and [14] for the complete description of the steps of MetaSAGE that were inherited from

SAGE.

Chapter 3. MetaSAGE 41

Algorithm 7: MetaSAGE

input : Read set R = {r1, r2, . . . , rn}, minimum overlap minOverlap
output: Set C = c1, c2, . . . , ck of contigs

1 call RACER(R)
2 build overlap graph
3 repeat
4 composite graph
5 remove bubbles and dead-ends

6 until no edge is removed from G ;
7 split chimeric node
8 estimate genome size L
9 compute minimum cost flow on each edge

10 repeat
11 do tree reduction
12 remove loops

13 until no edge is removed from G ;
14 merge contigs using pair-end information
15 extract contigs in to C
16 write C into FASTA file

Chapter 4

Experiments

In this chapter a comparison is made between MetaSAGE and three other metagenomic

assembly programs, IDBA-UD [29], MetaVelvet [26] and Omega [11]. In our tests, Gen-

ovo [16] failed to give a result within a tolerable time on our datasets, so we do not

discuss it here. IDBA-UD is an upgraded version of meta-IDBA [28] released in 2013.

MetaVelvet is software based on Velvet [40], released in 2012. They both use the de

Bruijn graph. Omega is a newly released program. It is also based on the overlap graph

approach of SAGE, similar to MetaSAGE. In this comparison, four datasets were gen-

erated using sequencing simulation software MetaSim[32]. The results obtained by the

competing programs were compared using several criteria. In this chapter, the datasets

used in the experiments and the evaluation criteria are introduced, and the performance

of the four metagenome assemblers is compared.

4.1 Datasets

As mentioned before, metagenomic data was sequenced directly from a sample of living

community, usually bacteria, obtained from the environment. Because there is no refer-

ence of those genome sequences, we cannot make a full evaluation on those datasets. In

order to make a careful evaluation of our program, artificial datasets were used in this

thesis. Those artificial datasets were generated by MetaSim[32]. MetaSim is a genome

sequence simulator released in 2008. It can generate sequences based on different param-

42

Chapter 4. Experiments 43

eters and error models. In this thesis, the read length was set at 100 bp, and the error

model was set as the error model of Illumina [8]. The average and standard deviation of

insert size were set at 500 bp and 50 bp.

To test the performances on various taxonomic levels of diversity, the test datasets

were set in four different taxonomic levels of diversity, that is, “order-level”, “family-

level”, “genus-level” and “species-level”. In general, on lower taxonomic level, the

genomes are more similar to each other. So it is more difficult to do assembly on a

lower taxonomic level. In each level, 20 species genomes were selected randomly in dif-

ferent coverage.

We followed the procedure indicated in the MetaVelvet paper [26]. Here are the steps

of our procedure:

1. Download the simulator MetaSim [32].

2. Download the database of bacteria from the NCBI1 and imported it into MetaSim.

3. Set the profiles in MetaSim, indicating which genome sequence I would use and the

coverage ratio between each reference sequence.

4. Set the read length, total number of reads, set the error module as Illunima; the

error module is set by a profile in MetaSim.

5. Generate datasets by the MetaSim.

The details of the datasets are given in Table 4.1 and Table 4.2.

The input file format for a genome assembler is usually FASTQ. FASTQ format is

a text-based format for storing both a biological sequence (usually nucleotide sequence)

and its corresponding quality scores. Both the sequence letter and quality score are

encoded with a single ASCII character for brevity. An example of FASTQ file is shown

in Figure 4.1 (from: http://drive5.com/usearch/manual/fastq files.html).

The output is FASTA, which is very similar to FASTQ except that there are no

quality scores (there are only two lines instead of four for each sequence) and the “@” at

the beginning of the description is replaced by “>”.

1ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.fna.tar.gz

Chapter 4. Experiments 44

Figure 4.1: The FASTQ file.

Chapter 4. Experiments 45

O
rd

er
-l
ev

el
d
a
ta
se
t

D
o
m
a
in

P
h
y
lu
m

C
la
ss

O
rd
er

F
a
m
il
y

G
en

u
s

S
p
ec
ie
s

S
tr
a
in

L
en

g
th

co
v
er
a
g
e

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

C
au

lo
b
ac
te
ra
le
s

C
a
u
lo
ba
ct
er
a
ce
a
e

C
a
u
lo
ba
ct
er

cr
es
ce
n
tu
s

N
A
1
0
0
0

4
,0
4
2
,9
2
9

8
9
.2
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

P
ar
v
u
la
rc
u
la
le
s

P
a
rv
u
la
rc
u
la
ce
a
e

P
a
rv
u
la
rc
u
la

be
rm

u
d
en

si
s

H
T
C
C
2
5
0
3

2
,9
0
2
,6
4
3

5
9
.5
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
ob

ia
le
s

R
h
iz
o
bi
a
ce
a
e

R
h
iz
o
bi
u
m

et
li

C
F
N

4
2

4
,3
8
1
,6
0
8

2
9
.7
4

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
o
d
ob

ac
te
ra
le
s

R
h
od

o
ba
ct
er
a
ce
a
e

D
in
o
ro
se
o
ba
ct
er

sh
ib
a
e

D
F
L

1
2

3
,7
8
9
,5
8
4

2
2
7
.9
9

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
o
d
os
p
ir
il
la
le
s

R
h
od

o
sp
ir
il
la
ce
a
e

A
zo
sp
ir
il
lu
m

sp
.

B
5
1
0

3
,3
1
1
,3
9
5

4
9
.5
1

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

S
p
h
in
go
m
on

ad
al
es

E
ry
th
ro
ba
ct
er
a
ce
a
e

E
ry
th
ro
ba
ct
er

li
to
ra
li
s

H
T
C
C
2
5
9
4

3
,0
5
2
,3
9
8

5
9
.3
9

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
ci
d
it
h
io
b
ac
il
la
le
s

A
ci
d
it
h
io
ba
ci
ll
a
ce
a
e

A
ci
d
it
h
io
ba
ci
ll
u
s

fe
rr
oo

xi
d
a
n
s

A
T
C
C

2
3
2
7
0

2
,9
8
2
,3
9
7

3
5
6
.5
4

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
er
o
m
on

ad
al
es

A
er
o
m
o
n
a
d
a
ce
a
e

A
er
o
m
o
n
a
s

h
y
d
ro
p
h
il
a

h
y
d
ro
p
h
il
a
A
T
C
C

7
9
6
6

4
,7
4
4
,4
4
8

2
9
.7
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
om

on
ad

al
es

A
lt
er
o
m
o
n
a
d
a
ce
a
e

A
lt
er
o
m
o
n
a
s

m
a
cl
eo
d
ii

D
ee
p
ec
o
ty
pe

4
,4
8
0
,9
3
7

5
9
.4
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

C
ar
d
io
b
ac
te
ri
al
es

C
a
rd
io
ba
ct
er
ia
ce
a
e

D
ic
h
el
o
ba
ct
er

n
od

o
su

s
V
C
S
1
7
0
3
A

1
,3
8
9
,3
5
0

4
4
.5
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

C
h
ro
m
at
ia
le
s

E
ct
o
th
io
rh

od
o
sp
ir
a
ce
a
e

A
lk
a
li
li
m
n
ic
o
la

eh
rl
ic
h
ei

M
L
H
E
-1

3
,2
7
5
,9
4
4

2
9
.7
1

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
b
ac
te
ri
al
es

E
n
te
ro
ba
ct
er
ia
ce
a
e

E
sc
h
er
ic
h
ia

co
li

K
-1
2
su

bs
tr
.
M
G
1
6
5
5

4
,6
4
1
,6
5
2

1
4
3
.6
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

L
eg
io
n
el
la
le
s

L
eg
io
n
el
la
ce
a
e

L
eg
io
n
el
la

p
n
eu

m
o
p
h
il
a

st
r.

P
a
ri
s

3
,5
0
3
,6
1
0

2
9
.6
8

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

M
et
h
y
lo
co
cc
al
es

M
et
h
y
lo
co
cc
a
ce
a
e

M
et
h
y
lo
co
cc
u
s

ca
p
su

la
tu
s

st
r.

B
a
th

3
,3
0
4
,5
6
1

1
3
3
.6
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

O
ce
an

os
p
ir
il
la
le
s

H
a
lo
m
o
n
a
d
a
ce
a
e

C
h
ro
m
o
h
a
lo
ba
ct
er
.

sa
le
xi
ge
n
s

D
S
M

3
0
4
3

3
,6
9
6
,6
4
9

2
9
.6
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

P
as
te
u
re
ll
al
es

P
a
st
eu

re
ll
a
ce
a
e

P
a
st
eu

re
ll
a
.

m
u
lt
oc
id
a

m
u
lt
oc
id
a
st
r.

P
m
7
0

2
,2
5
7
,4
8
7

9
9
.2
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

P
se
u
d
o
m
on

ad
al
es

P
se
u
d
o
m
o
n
a
d
a
ce
a
e

P
se
u
d
o
m
o
n
a
s

p
u
ti
d
a

W
6
1
9

5
,7
7
4
,3
3
0

8
9
.1
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

T
h
io
tr
ic
h
al
es

P
is
ci
ri
ck
et
ts
ia
ce
a
e

T
h
io
m
ic
ro
sp
ir
a

cr
u
n
og
en

a
X
C
L
-2

2
,4
2
7
,7
3
4

9
9
.0
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

V
ib
ri
on

al
es

V
ib
ri
o
n
a
ce
a
e

V
ib
ri
o

ch
o
le
ra
e

O
1
bi
o
va

r
el
to
r
st
r.

N
1
6
9
6
1

2
,9
6
1
,1
4
9

1
7
3
.2
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

X
an

th
om

on
ad

al
es

X
a
n
th
o
m
o
n
a
d
a
ce
a
e

X
a
n
th
o
m
o
n
a
s

ca
m
pe
st
ri
s

p
v.

ca
m
pe
st
ri
s

5
,0
7
9
,0
0
2

2
7
2
.3
2

F
a
m
il
y
-l
ev

el
d
a
ta
se
t

D
o
m
a
in

P
h
y
lu
m

C
la
ss

O
rd

er
F
am

il
y

G
en

u
s

S
p
ec
ie
s

S
tr
a
in

L
en

g
th

co
v
er
a
g
e

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

A
li
cy
cl
ob

ac
il
la
ce
ae

A
li
cy

cl
o
ba
ci
ll
u
s

a
ci
d
oc
a
ld
a
ri
u
s

a
ci
d
oc
a
ld
a
ri
u
s
D
S
M

4
4
6

3
,0
1
8
,7
5
5

3
4
.9
4

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
ac
il
la
ce
ae

B
a
ci
ll
u
s

su
bt
il
is

su
bs
p
.
su

bt
il
is

st
r.

1
6
8

4
,2
1
5
,6
0
6

5
9
.8
4

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

L
is
te
ri
ac
ea
e

L
is
te
ri
a

m
o
n
oc
y
to
ge
n
es

st
r.

4
b
F
2
3
6
5

2
,9
0
5
,1
8
7

3
9
.8
4

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

P
ae
n
ib
ac
il
la
ce
ae

B
re
vi
ba
ci
ll
u
s

br
ev
is

N
B
R
C

1
0
0
5
9
9

6
,2
9
6
,4
3
6

5
4
.8
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

B
ar
to
n
el
la
ce
ae

B
a
rt
o
n
el
la

ba
ci
ll
if
o
rm

is
K
C
5
8
3

1
,4
4
5
,0
2
1

1
2
4
.6
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

B
ei
je
ri
n
ck
ia
ce
ae

M
et
h
y
lo
ce
ll
a

si
lv
es
tr
is

B
L
2

4
,3
0
5
,4
3
0

2
9
.8
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

B
ra
d
y
rh
iz
ob

ia
ce
ae

N
it
ro
ba
ct
er

h
a
m
bu

rg
en

si
s

X
1
4

4
,4
0
6
,9
6
7

2
9
.9
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

B
ru
ce
ll
ac
ea
e

B
ru

ce
ll
a

su
is

1
3
3
0

2
,1
0
7
,7
9
4

2
9
.8
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

H
y
p
h
om

ic
ro
b
ia
ce
ae

H
y
p
h
o
m
ic
ro
bi
u
m

d
en

it
ri
ca
n
s

A
T
C
C

5
1
8
8
8

3
,6
3
8
,9
6
9

2
9
.9
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

M
et
h
y
lo
b
ac
te
ri
ac
ea
e

M
et
h
y
lo
ba
ct
er
iu
m

ch
lo
ro
m
et
h
a
n
ic
u
m

C
M
4

5
,7
7
7
,9
0
8

4
8
3
.5
8

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

P
h
y
ll
ob

ac
te
ri
ac
ea
e

M
es
o
rh

iz
o
bi
u
m

lo
ti

M
A
F
F
3
0
3
0
9
9

7
,0
3
6
,0
7
1

1
4
9
.5
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

R
h
iz
ob

ia
ce
ae

R
h
iz
o
bi
u
m

et
li

C
F
N

4
2

4
,3
8
1
,6
0
8

3
0
.5
6

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

A
lp
h
a
p
ro
te
o
ba
ct
er
ia

R
h
iz
o
bi
a
le
s

X
an

th
ob

ac
te
ra
ce
ae

A
zo
rh

iz
o
bi
u
m

ca
u
li
n
od

a
n
s

O
R
S
5
7
1

5
,3
6
9
,7
7
2

9
9
.8
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

A
lt
er
om

on
ad

ac
ea
e

A
lt
er
o
m
o
n
a
s

m
a
cl
eo
d
ii

D
ee
p
ec
o
ty
pe

4
,4
8
0
,9
3
7

2
9
.2
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

C
ol
w
el
li
ac
ea
e

C
o
lw
el
li
a

p
sy
ch

re
ry
th
ra
ea

3
4
H

5
,3
7
3
,1
8
0

4
1
3
.7
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

F
er
ri
m
on

ad
ac
ea
e

F
er
ri
m
o
n
a
s

ba
le
a
ri
ca

D
S
M

9
7
9
9

4
,2
7
9
,1
5
9

1
1
9
.7
5

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

Id
io
m
ar
in
ac
ea
e

Id
io
m
a
ri
n
a

lo
ih
ie
n
si
s

L
2
T
R

2
,8
3
9
,3
1
8

5
9
.8
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

P
se
u
d
oa
lt
er
om

on
ad

ac
ea
e

P
se
u
d
oa

lt
er
o
m
o
n
a
s

h
a
lo
p
la
n
kt
is

T
A
C
1
2
5

3
,2
1
4
,9
4
4

3
9
.8
6

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

P
sy
ch
ro
m
on

ad
ac
ea
e

P
sy
ch

ro
m
o
n
a
s

in
gr
a
h
a
m
ii

3
7

4
,5
5
9
,5
9
8

1
4
0
.6
1

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

A
lt
er
o
m
o
n
a
d
a
le
s

S
h
ew

an
el
la
ce
ae

S
h
ew

a
n
el
la

o
n
ei
d
en

si
s

M
R
-1

4
,9
6
9
,8
1
1

4
9
.8
4

T
ab

le
4.

1:
O

rd
er

-l
ev

el
an

d
F

am
il
y
-l

ev
el

d
at

as
et

s

Chapter 4. Experiments 46

G
en

u
s-
le
v
el

d
a
ta
se
t

D
o
m
a
in

P
h
y
lu
m

C
la
ss

O
rd

er
F
a
m
il
y

G
en
u
s

S
p
ec
ie
s

S
tr
a
in

L
en

g
th

co
v
er
a
g
e

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

C
an

d
id
at
u
s

M
o
ra
n
el
la

en
d
o
bi
a
P
C
IT

5
3
8
,2
9
4

2
5
6
.3
9

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

C
it
ro
b
ac
te
r

ko
se
ri

A
T
C
C

B
A
A
-8
9
5

4
,7
2
0
,4
6
2

3
1
.3
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

C
ro
n
ob

ac
te
r

sa
ka

za
ki
i

A
T
C
C

B
A
A
-8
9
4

4
,3
6
8
,3
7
3

3
1
.4
1

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

D
ic
ke
y
a

d
a
d
a
n
ti
i

E
ch

7
0
3

4
,6
7
9
,4
5
0

1
0
4
.5
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

E
d
w
ar
d
si
el
la

ic
ta
lu
ri

9
3
-1
4
6

3
,8
1
2
,3
0
1

8
3
.6
6

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

E
n
te
ro
b
ac
te
r

a
sb
u
ri
a
e

L
F
7
a

4
,8
1
2
,8
3
3

7
8
.4
5

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

E
rw

in
ia

bi
ll
in
gi
a
e

E
b6

6
1

5
,1
0
0
,1
6
7

3
1
.3
1

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

E
sc
h
er
ic
h
ia

co
li

st
r.

K
-1
2
su

bs
tr
.
M
G
1
6
5
5

4
,6
4
1
,6
5
2

8
3
.6
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

K
le
b
si
el
la

va
ri
ic
o
la

A
t-
2
2

5
,4
5
8
,5
0
5

3
1
.3
9

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

P
an

to
ea

va
ga

n
s

C
9
-1

4
,0
2
4
,9
8
6

2
5
0
.9
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

P
ec
to
b
ac
te
ri
u
m

a
tr
o
se
p
ti
cu

m
S
C
R
I1
0
4
3

5
,0
6
4
,0
1
9

3
1
.4
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

P
h
ot
or
h
ab

d
u
s

a
sy
m
bi
o
ti
ca

su
bs
p
.
a
sy
m
bi
o
ti
ca

A
T
C
C

4
3
9
4
9

5
,0
6
4
,8
0
8

6
7
.9
7

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

P
ro
te
u
s

m
ir
a
bi
li
s

H
I4
3
2
0

4
,0
6
3
,6
0
6

8
8
.9
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

R
ah

n
el
la

sp
.

Y
9
6
0
2

4
,8
6
4
,2
1
7

6
2
.7
0

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

S
al
m
on

el
la

bo
n
go

ri
N
C
T
C

1
2
4
1
9

4
,4
6
0
,1
0
5

3
1
.3
4

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

S
er
ra
ti
a

p
ro
te
a
m
a
cu

la
n
s

5
6
8

5
,4
4
8
,8
5
3

1
0
4
.5
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

S
h
ig
el
la

ex
n
er
i

5
st
r.

8
4
0
1

4
,5
7
4
,2
8
4

8
3
.6
3

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

S
o
d
al
is

gl
o
ss
in
id
iu
s

m
o
rs
it
a
n
s

4
,1
7
1
,1
4
6

9
9
.3
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

X
en

or
h
ab

d
u
s

bo
vi
en

ii
S
S
-2
0
0
4

4
,2
2
5
,4
9
8

1
7
7
.6
2

B
a
ct
er
ia

P
ro
te
o
ba
ct
er
ia

G
a
m
m
a
p
ro
te
o
ba
ct
er
ia

E
n
te
ro
ba
ct
er
ia
le
s

E
n
te
ro
ba
ct
er
ia
ce
a
e

Y
er
si
n
ia

pe
st
is

A
n
go

la
4
,5
0
4
,2
5
4

4
0
7
.5
8

S
p
ec
ie
s-
le
v
el

d
a
ta
se
t

D
o
m
a
in

P
h
y
lu
m

C
la
ss

O
rd

er
F
a
m
il
y

G
en

u
s

S
p
ec
ie
s

S
tr
a
in

L
en

g
th

co
v
er
a
g
e

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

am
y
lo
li
q
u
ef
ac
ie
n
s

D
S
M

7
3
,9
8
0
,1
9
9

9
1
.1
4

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

an
th
ra
ci
s

A
m
es

5
,2
2
7
,2
9
3

3
0
.3
6

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

at
ro
p
h
ae
u
s

1
9
4
2

4
,1
6
8
,2
6
6

2
7
3
.4
1

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

ce
ll
u
lo
si
ly
ti
cu

s
D
S
M

2
5
2
2

4
,6
8
1
,6
7
2

3
0
.4
0

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

ce
re
u
s

Q
1

5
,2
1
4
,1
9
5

1
0
1
.2
0

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

cl
au

si
i

K
S
M

K
1
6

4
,3
0
3
,8
7
1

1
1
6
.4
3

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

co
ag
u
la
n
s

3
6
D
1

3
,5
5
2
,2
2
6

2
1
7
.6
1

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

cy
to
to
x
ic
u
s

N
V
H

3
9
1
9
8

4
,0
8
7
,0
2
4

1
0
1
.1
2

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

h
al
o
d
u
ra
n
s

C
1
2
5

4
,2
0
2
,3
5
2

5
0
.6
3

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

G
eo
ba
ci
ll
u
s

ka
u
st
op

h
il
u
s

H
T
A
4
2
6

3
,5
4
4
,7
7
6

3
0
.3
5

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

li
ch
en

if
or
m
is

A
T
C
C

1
4
5
8
0

4
,2
2
2
,5
9
7

3
0
.3
3

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

m
eg
at
er
iu
m

D
S
M
3
1
9

5
,0
9
7
,4
4
7

1
2
6
.5
8

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

p
se
u
d
or
m
u
s

O
F
4

3
,8
5
8
,9
9
7

3
0
.2
8

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

p
u
m
il
u
s

S
A
F
R

3
2

3
,7
0
4
,4
6
5

3
0
8
.5
6

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

se
le
n
it
ir
ed

u
ce
n
s

M
L
S
1
0

3
,5
9
2
,4
8
7

1
6
2
.0
8

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

su
b
ti
li
s

su
bs
p
.
su

bt
il
is

st
r.

1
6
8

4
,2
1
5
,6
0
6

3
0
.3
9

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

G
eo
ba
ci
ll
u
s

th
er
m
og

lu
co
si
d
as
iu
s

C
5
6
Y
S
9
3

3
,8
9
3
,3
0
6

4
5
.6
0

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

th
u
ri
n
gi
en

si
s

A
l
H
a
ka

n
5
,2
5
7
,0
9
1

2
4
2
.9
8

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

tu
sc
ia
e

D
S
M

2
9
1
2

3
,3
8
4
,7
6
6

3
0
.3
8

B
a
ct
er
ia

F
ir
m
ic
u
te
s

B
a
ci
ll
i

B
a
ci
ll
a
le
s

B
a
ci
ll
a
ce
a
e

B
a
ci
ll
u
s

w
ei
h
en

st
ep

h
an

en
si
s

K
B
A
B
4

5
,2
6
2
,7
7
5

3
0
.3
8

T
ab

le
4.

2:
G

en
u
s-

le
ve

l
an

d
S
p

ec
ie

s-
le

ve
l

d
at

as
et

s

Chapter 4. Experiments 47

4.2 Environment

In our test, all programs were running on the SHARCNET system. It is a distributed

computing system. The nodes we used is working on Linux, containing 12 cores, 256GB

RAM.

4.3 Evaluation

All genome assemblers output a collection of contigs or scaffolds which are assembled

from the input reads. The goal of genome assembly is to generate long and correct

DNA sequences. So the length of the contigs or scaffolds obtained from the assembler

is an important criterion to judge their performance. Besides the length of contigs,

another important criterion is the correctness of the output. In this thesis, we evaluate

assemblers both by the length of contigs or scaffolds they generate and the correctness of

their assembly. The evaluation in this thesis was executed by a software named QUAST

(Quality Assessment Tool for Genome Assemblies) [10] which is the current state-of-the-

art in genome assembly evaluation.

We introduce below some useful notions for evaluating an assembler.

Indels and Mismatches

An indel is either an insertion or a deletion. It refers to a character that appears in the

assembled sequence while is does not appear in the reference genome, or a character in

the reference genome that does not appear shows in the assembled sequence. Mismatch is

a character in an assembled sequence that does not match the reference genome sequence.

Figure 4.2 shows an example of indels. Sequence S1 is the reference genome sequence

and S2 is the assembled sequence. The indels are in red and mismatches in blue.

S1: AGCTA-GCATTTACGATAGCCGATAGCTAAATTAC
|||||||||||||||||||||||||||||||||||

S2: AGCTAAGCATGTA-GATAGCCGATCGCTAAATTAC

Figure 4.2: Indels and mismatches

Chapter 4. Experiments 48

N50

N50 is an important criterion for evaluating the length of the assembled result. It pro-

vides an overview of the length of contigs produced by an assembler. Assuming that an

assembler produces a set C = c1, c2, . . . , ck of contigs, where the length of the contig ci

is li. The N50 of the set C is defined as

N50(C) = max{ l |
∑
li≥l

li ≥
1

2

∑
li>0

li }.

In other words, N50 is defined as the maximum length l such that the collection of contigs

of length at least l includes at lest half of the total length of all contigs. N75 is defined

similarly.

NG50

NG50 is defined as max{l |
∑

li≥l li ≥
1
2
L}, where L is the length of the reference genome.

Compared to N50, NG50 only considers the collection of contigs that cover at least half

the reference genome.

Misassemblies

According to the description in QUAST, missassemblies are the contigs that satisfy one

of the following criteria:

• the left flanking sequence aligns over 1kbp away from the right flanking sequence

on the reference;

• flanking sequences overlap on more than 1kpb;

• flanking sequences align to different strands or different chromosomes.

So the number of misassemblies indicates how many times the assembler merges contigs

that are not close to being adjacent.

Chapter 4. Experiments 49

NGA50

NA50, NGA50 (“A” stands for “aligned”) are similar to the corresponding metrics with-

out “A”, but in this case aligned blocks instead of contigs are considered. In other words,

QUAST will firstly break the contigs into shorter contigs at those positions where they

make misassemblies and then compute the N50 and NG50 with those broken shorter

contigs. Figure 4.3 indicates the difference between N50 and NGA50.

N50 NGA50

Figure 4.3: The difference between N50 and NGA50. On the left, colour change indicates
a misassembly.

4.4 Results and analysis

In the tests, most parameters of comparing software are set as default, except for k-

mer length in MetaVelvet and minimum overlap length in Omega and MetaSAGE. We

tried several different values on those adjustable parameters, choosing the one which got

highest NGA50. Table 4.3 shows the comparison of NGA50, the largest alignment, the

number of misassemblies, and the number of mismatches and indels between those four

programs, since these four parameters are usually considered the most important ones.

The complete list of results can be found in Tables 4.4 - 4.7. Generally, on a lower

taxonomic level, genome sequences are more similar with each other and it is harder for

an assembler to tell apart whether reads are coming from the same genome sequence.

Chapter 4. Experiments 50

So, all software produce smaller values NGA50 in lower taxonomic levels.

In the comparison between software, we can see that IDBA-UD and MetaSAGE both

have an obvious advantage in terms of both NGA50 and largest alignment over the other

two programs. MetaVelvet has the lowest NGA50, up to six times lower than that of

MetaSAGE.

As far as misassemblies are concerned, IDBA-UD and MetaVelvet produce the fewest

and Omega the most by very far. MetaSAGE is in between, and its performance in this

respect needs to be improved. On the other hand, MetaSAGE and IDBA-UD have the

lowest number of mismatches and indels with MetaVelvet coming in the third place and

Omega a distant last.

IDBA-UD MetaVelvet Omega MetaSAGE
Order Level
NGA50 175,984 54,887 54,559 175,460
Largest alignment 948,840 791,046 649,618 977,953
Number of misassemblies 21 20 483 87
Mismatches & indels per 100 kbp 3 18 104 3
Family Level
NGA50 212,106 36,949 53,219 180,872
Largest alignment 1,435,467 1,036,840 752,788 1,177,673
Number of misassemblies 21 22 672 68
Mismatches & indels per 100 kbp 3 32 97 3
Genus Level
NGA50 94,287 17,613 26,246 104,837
Largest alignment 1,100,736 544,812 479,171 1,326,766
Number of misassemblies 104 146 1,864 282
Mismatches & indels per 100 kbp 20 51 163 8
Species Level
NGA50 88,957 16,319 20,161 94,395
Largest alignment 1,101,923 373,412 619,278 1,203,389
Number of misassemblies 98 104 3,426 803
Mismatches & indels per 100 kbp 21 48 183 21

Table 4.3: Comparison of the four metagenome assemblers; best results in bold.

Chapter 4. Experiments 51

Table 4.4: Order level comparison.

Parameter IDBA-UD MetaVelvet Omega MetaSAGE

contigs (>= 0 bp) 782 894 2,197 2,567
contigs (>= 1000 bp) 694 593 1,941 1,494
Total length (>= 0 bp) 71,138,737 71,565,561 70,897,828 73,697,930
Total length (>= 1000 bp) 71,074,201 71,361,886 70,716,725 72,961,141
contigs 782 894 2,197 2,567
Largest contig 2,076,502 1,525,931 1,285,269 1,366,496
Total length 71,138,737 71,565,561 70,897,828 73,697,930
Reference length 71,999,807 71,999,807 71,999,807 71,999,807
GC (%) 58 58 58 58
Reference GC (%) 58 58 58 58
N50 265,476 303,142 160,126 188,294
NG50 251,222 293,013 154,413 190,827
N75 125,344 144,808 41,706 61,599
NG75 121,771 143,896 39,408 68,255
L50 70 65 92 88
LG50 72 66 95 83
L75 170 152 330 262
LG75 175 154 351 243
misassemblies 21 87 20 483
misassembled contigs 16 66 14 239
Misassembled contigs length 3,484,075 11,333,649 1,990,216 26,780,944
local misassemblies 203 577 418 6,754
unaligned contigs 3 + 2 part 4 + 23 part 1 + 23 part 58 + 94 part
Unaligned length 2,710 16,399 17,913 85,239
Genome fraction (%) 99 99 98 99
Duplication ratio 1 1 1 1
N’s per 100 kbp 17 126 127 11
mismatches per 100 kbp 2 2 16 102
indels per 100 kbp 1 1 2 2
Largest alignment 948,840 977,953 791,046 649,618
NA50 181,638 176,960 87,551 51,867
NGA50 179,939 175,460 86,205 54,559
NA75 94,797 94,717 34,684 13,339
NGA75 92,050 92,578 32,369 14,543
LA50 105 113 186 288
LGA50 107 114 192 272
LA75 238 251 518 1,052
LGA75 245 255 542 961

Chapter 4. Experiments 52

Table 4.5: Family level comparison.

Parameter IDBA-UD MetaVelvet Omega MetaSAGE

contigs (>= 0 bp) 1,008 4,524 3,858 1,009
contigs (>= 1000 bp) 885 3,880 2,373 714
Total length (>= 0 bp) 83,401,681 82,787,516 87,248,861 83,955,104
Total length (>= 1000 bp) 83,312,562 82,330,312 86,220,769 83,760,804
contigs 1,008 4,524 3,858 1,009
Largest contig 1,435,467 1,205,272 2,008,080 1,752,732
Total length 83,401,681 82,787,516 87,248,861 83,955,104
Reference length 84,622,471 84,622,471 84,622,471 84,622,471
GC (%) 53 53 54 53
Reference GC (%) 53 53 53 53
N50 294,468 81,152 176,064 330,866
NG50 283,448 76,026 189,475 324,189
N75 132,286 20,348 55,721 155,698
NG75 128,250 18,701 64,971 152,468
L50 77 188 110 68
LG50 79 199 102 69
L75 182 742 324 162
LG75 189 812 291 166
misassemblies 21 22 672 68
misassembled contigs 21 15 329 54
Misassembled contigs length 4,666,233 2,943,935 38,948,050 14,342,351
local misassemblies 266 506 9,539 954
unaligned contigs 4 + 3 part 0 + 19 part 88 + 154 part 6 + 32 part
Unaligned length 4,875 9,379 152,702 26,536
Genome fraction (%) 99 98 99 99
Duplication ratio 1 1 1 1
N’s per 100 kbp 23 134 14 163
mismatches per 100 kbp 2 30 95 1
indels per 100 kbp 1 2 2 2
Largest alignment 1,435,467 1,036,840 752,788 1,177,673
NA50 218,651 53,666 49,302 183,011
NGA50 215,196 51,573 53,219 180,872
NA75 97,409 18,472 12,482 84,319
NGA75 94,917 17,305 14,483 83,384
LA50 101 339 329 121
LGA50 104 356 303 123
LA75 245 1,019 1,252 287
LGA75 255 1,096 1,106 293

Chapter 4. Experiments 53

Table 4.6: Genus level comparison.

Parameter IDBA-UD MetaVelvet Omega MetaSAGE

contigs (>= 0 bp) 4,086 7,393 6,403 10,304
contigs (>= 1000 bp) 2,796 4,512 4,784 3,677
Total length (>= 0 bp) 83,163,523 81,883,399 89,312,843 88,119,228
Total length (>= 1000 bp) 82,242,237 79,876,033 88,146,342 83,742,000
contigs 4,086 7,393 6,403 10,304
Largest contig 1,566,923 1,685,916 1,897,906 1,583,954
Total length 83,163,523 81,883,399 89,312,843 88,119,228
Reference length 88,597,813 88,597,813 88,597,813 88,597,813
GC (%) 52 52 52 52
Reference GC (%) 52 52 52 52
N50 167,968 119,734 95,297 200,609
NG50 151,790 99,353 97,599 200,590
N75 57,396 26,071 26,348 51,238
NG75 42,780 14,599 27,305 49,997
L50 115 137 212 107
LG50 132 168 208 108
L75 328 502 645 324
LG75 411 764 625 331
misassemblies 104 146 1,864 282
misassembled contigs 94 79 852 210
Misassembled contigs length 4,040,598 14,371,190 52,733,484 11,632,453
local misassemblies 786 2,244 9,330 6,536
unaligned contigs 82 + 50 part 11 + 140 part 39 + 175 part 377 + 348 part
Unaligned length 136,414 76,966 172,777 579,741
Genome fraction (%) 94 92 95 95
Duplication ratio 1 1 1 1
N’s per 100 kbp 107 650 14 1,345
mismatches per 100 kbp 14 45 159 5
indels per 100 kbp 6 6 4 3
Largest alignment 1,100,736 544,812 479,171 1,326,766
NA50 111,420 39,975 26,001 105,277
NGA50 100,133 34,481 26,246 104,837
NA75 45,427 14,144 8,064 35,790
NGA75 34,573 9,646 8,365 35,054
LA50 176 493 785 204
LGA50 202 584 771 206
LA75 471 1,363 2,323 561
LGA75 575 1,794 2,258 571

Chapter 4. Experiments 54

Table 4.7: Species level comparison.

Parameter IDBA-UD MetaVelvet Omega MetaSAGE

contigs (>= 0 bp) 5,565 7,978 5,948 10,157
contigs (>= 1000 bp) 4,074 5,072 4,214 4,234
Total length (>= 0 bp) 78,450,823 70,339,748 86,175,820 82,276,972
Total length (>= 1000 bp) 77,358,497 68,352,669 84,956,564 78,329,313
contigs 5,565 7,978 5,948 10,157
Largest contig 2,107,658 707,687 916,330 3,761,321
Total length 78,450,823 70,339,748 86,175,820 82,276,972
Reference length 85,451,411 85,451,411 85,451,411 85,451,411
GC (%) 42 43 42 42
Reference GC (%) 42 42 42 42
N50 146,659 47,820 71,384 147,954
NG50 124,643 28,532 71,759 138,933
N75 40,928 13,462 20,787 33,990
NG75 18,590 3,251 21,328 23,833
L50 125 330 245 110
LG50 151 538 240 121
L75 387 1,057 829 397
LG75 587 2,746 803 480
misassemblies 98 104 3,426 803
misassembled contigs 86 62 1,599 572
Misassembled contigs length 2,511,518 3,972,632 40,748,439 11,192,816
local misassemblies 1,014 1,469 13,862 7,543
unaligned contigs 72 + 71 part 15 + 24 part 69 + 214 part 212 + 527 part
Unaligned length 146,779 33,571 205,425 607,138
Genome fraction (%) 91 82 94 92
Duplication ratio 1 1 1 1
N’s per 100 kbp 144 106 24 1,739
mismatches per 100 kbp 12 43 177 17
indels per 100 kbp 9 5 6 4
Largest alignment 1,101,923 373,412 619,278 1,203,389
NA50 112,491 33,515 19,833 105,924
NGA50 88,997 21,324 20,161 94,395
NA75 29,163 10,310 5,750 23,659
NGA75 15,072 2,746 5,929 17,777
LA50 170 470 825 165
LGA50 205 750 807 181
LA75 514 1,422 2,941 576
LGA75 763 3,485 2,848 691

Chapter 4. Experiments 55

4.5 Time and Memory

The comparison with respect to time and memory consumption is presented in Table

4.8. IDBA-UD and MetaSAGE require the lowest amount of memory, significantly lower

than Omega and MetaVelvet. MetaSAGE is the fastest, followed by the MetaVelvet,

than IDBA-UD, and very far from the top three, Omega. For the species level test,

Omega took 10 days to complete, as opposed to the two hours of MetaSAGE.

IDBA-UD MetaVelvet Omega MetaSAGE
Order Level
Running time (h) 18.7 5.7 59.7 1.6
Running space (GB) 40.4 108.2 117.5 35
Family Level
Running time (h) 18.7 6.2 99.8 2.3
Running space (GB) 51.6 133.8 165.0 49.7
Genus Level
Running time (h) 9.9 6.3 96.5 2.2
Running space (GB) 21.7 119.3 132.1 39.0
Species Level
Running time (h) 8.8 5.5 235.2 2.0
Running space (GB) 43.4 121.7 134.9 40.4

Table 4.8: Running time and space; best results in bold.

Chapter 5

Conclusions

In this thesis, a new metagenome assembler, MetaSAGE, was introduced. MetaSAGE is

based on SAGE [14] and preserves its main structure. It uses the hash table to build the

overlap graph from a set of reads, splits chimeric nodes according to coverage difference,

estimates copy count of edges in the overlap graph by the minimum cost flow theory

and builds scaffolds using pair-end information. We generated four realistic data sets in

different taxonomic levels for our experiments and compared MetaSAGE against three of

the top metagenomic assemblers. We show that MetaSAGE is a competitive metagenome

assemblers, its main advantages being:

• Very long aligned contigs: the NGA50 and the largest alignment of MetaSAGE are

often the largest compared with top metagenome assemblers.

• Lowest number of mismatches and indels, tied with IDBA-UD.

• The most memory efficient, tied with IDBA-UD and the fastest of the metagenome

assemblers tested.

Room for improvement remains in the area of misassemblies. Reducing the number

of misassemblies while retaining long aligned contigs will be the main focus of future

research.

56

Bibliography

[1] http://microbe.net/simple-guides/fact-sheet-dna-rna-protein/.

[2] http://www.fragilex.org/fragile-x-associated-disorders/genetics-and-

inheritance/fmr1-gene/.

[3] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction

of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[4] Thomas J Bandy, Ashley Brewer, Jonathan R Burns, Gabriella Marth, ThaoNguyen

Nguyen, and Eugen Stulz. DNA as supramolecular scaffold for functional molecules:

progress in DNA nanotechnology. Chemical Society Reviews, 40(1):138–148, 2011.

[5] Jonathan Butler, Iain MacCallum, Michael Kleber, Ilya A Shlyakhter, Matthew K

Belmonte, Eric S Lander, Chad Nusbaum, and David B Jaffe. Allpaths: de novo

assembly of whole-genome shotgun microreads. Genome Research, 18(5):810–820,

2008.

[6] Hamidreza Chitsaz, Joyclyn L Yee-Greenbaum, Glenn Tesler, Mary-Jane Lombardo,

Christopher L Dupont, Jonathan H Badger, Mark Novotny, Douglas B Rusch,

Louise J Fraser, Niall A Gormley, et al. Efficient de novo assembly of single-cell

bacterial genomes from short-read data sets. Nature Biotechnology, 29(10):915–921,

2011.

[7] S. Nicklen F. Sanger and A.R. Coulson. A DNA sequencing with chain-terminating

inhibitors. Proceedings of the National Academy of Sciences, 74(12):5463–5467, 1977.

57

BIBLIOGRAPHY 58

[8] Milan Fedurco, Anthony Romieu, Scott Williams, Isabelle Lawrence, and Gerardo

Turcatti. Bta, a novel reagent for DNA attachment on glass and efficient generation

of solid-phase amplified DNA colonies. Nucleic Acids Research, 34(3):e22–e22, 2006.

[9] Andrew V Goldberg. An efficient implementation of a scaling minimum-cost flow

algorithm. Journal of Algorithms, 22(1):1–29, 1997.

[10] Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast:

quality assessment tool for genome assemblies. Bioinformatics, 29(8):1072–1075,

2013.

[11] Bahlul Haider, Tae-Hyuk Ahn, Brian Bushnell, Juanjuan Chai, Alex Copeland,

and Chongle Pan. Omega: an overlap-graph de novo assembler for metagenomics.

Bioinformatics, page btu395, 2014.

[12] Md Bahlul Haider. A new algorithm for de novo genome assembly. PhD thesis, The

University of Western Ontario, 2012.

[13] Jo Handelsman. Metagenomics: application of genomics to uncultured microorgan-

isms. Microbiology and Molecular Biology Reviews, 68(4):669–685, 2004.

[14] Lucian Ilie, Bahlul Haider, Michael Molnar, and Roberto Solis-Oba. SAGE: String-

overlap Assembly of GEnomes. BMC Bioinformatics, 15(1):302, 2014.

[15] Lucian Ilie and Michael Molnar. RACER: Rapid and accurate correction of errors

in reads. Bioinformatics, page btt407, 2013.

[16] Jonathan Laserson, Vladimir Jojic, and Daphne Koller. Genovo: de novo assembly

for metagenomes. Journal of Computational Biology, 18(3):429–443, 2011.

[17] Ruiqiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,

Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, et al. De novo assembly

of human genomes with massively parallel short read sequencing. Genome Research,

20(2):265–272, 2010.

BIBLIOGRAPHY 59

[18] Marcel Margulies, Michael Egholm, William E Altman, Said Attiya, Joel S Bader,

Lisa A Bemben, Jan Berka, Michael S Braverman, Yi-Ju Chen, Zhoutao Chen,

et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,

437(7057):376–380, 2005.

[19] Paul Medvedev and Michael Brudno. Ab initio whole genome shotgun assembly with

mated short reads. In Research in Computational Molecular Biology, pages 50–64.

Springer, 2008.

[20] Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. Journal

of Computational Biology, 16(8):1101–1116, 2009.

[21] Paul Medvedev, Marc Fiume, Misko Dzamba, Tim Smith, and Michael Brudno.

Detecting copy number variation with mated short reads. Genome Research,

20(11):1613–1622, 2010.

[22] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael Brudno. Com-

putability of models for sequence assembly. In Algorithms in Bioinformatics, pages

289–301. Springer, 2007.

[23] Michael Molnar and Lucian Ilie. Correcting illumina data. Briefings in Bioinfor-

matics, page bbu029, 2014.

[24] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21(suppl

2):ii79–ii85, 2005.

[25] Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews

Genetics, 14(3):157–167, 2013.

[26] Toshiaki Namiki, Tsuyoshi Hachiya, Hideaki Tanaka, and Yasubumi Sakakibara.

Metavelvet: an extension of velvet assembler to de novo metagenome assembly from

short sequence reads. Nucleic Acids Research, 40(20):e155–e155, 2012.

[27] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. IDBA–a practical

iterative de bruijn graph de novo assembler. In Research in Computational Molecular

Biology, pages 426–440. Springer, 2010.

BIBLIOGRAPHY 60

[28] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. Meta-IDBA: a de

novo assembler for metagenomic data. Bioinformatics, 27(13):i94–i101, 2011.

[29] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. IDBA-ud: a de

novo assembler for single-cell and metagenomic sequencing data with highly uneven

depth. Bioinformatics, 28(11):1420–1428, 2012.

[30] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An eulerian path ap-

proach to DNA fragment assembly. Proceedings of the National Academy of Sciences,

98(17):9748–9753, 2001.

[31] Benjamin Raphael, Degui Zhi, Haixu Tang, and Pavel Pevzner. A novel method

for multiple alignment of sequences with repeated and shuffled elements. Genome

Research, 14(11):2336–2346, 2004.

[32] Daniel C Richter, Felix Ott, Alexander F Auch, Ramona Schmid, and Daniel H

Huson. Metasim—a sequencing simulator for genomics and metagenomics. PloS

One, 3(10):e3373, 2008.

[33] Matthew B Scholz, Chien-Chi Lo, and Patrick SG Chain. Next generation sequenc-

ing and bioinformatic bottlenecks: the current state of metagenomic data analysis.

Current Opinion in Biotechnology, 23(1):9–15, 2012.

[34] Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnol-

ogy, 26(10):1135–1145, 2008.

[35] Jay Shendure, Gregory J Porreca, Nikos B Reppas, Xiaoxia Lin, John P Mc-

Cutcheon, Abraham M Rosenbaum, Michael D Wang, Kun Zhang, Robi D Mitra,

and George M Church. Accurate multiplex polony sequencing of an evolved bacterial

genome. Science, 309(5741):1728–1732, 2005.

[36] Jared T Simpson and Richard Durbin. Efficient de novo assembly of large genomes

using compressed data structures. Genome Research, 22(3):549–556, 2012.

BIBLIOGRAPHY 61

[37] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM

Jones, and Inanç Birol. Abyss: a parallel assembler for short read sequence data.

Genome Research, 19(6):1117–1123, 2009.

[38] Gerardo Turcatti, Anthony Romieu, Milan Fedurco, and Ana-Paula Tairi. A new

class of cleavable fluorescent nucleotides: synthesis and optimization as reversible

terminators for DNA sequencing by synthesis. Nucleic Acids Research, 36(4):e25–

e25, 2008.

[39] J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure for

deoxyribose nucleic acid. Nature, 171:737–738, 1953.

[40] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read

assembly using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

Curriculum Vitae

Name: Wenjing Wan

Post-Secondary University of Western Ontario
Education and London, Ontario, Canada
Degrees: 2013 - present M.Sc. candidate

Nanjing University
Nanjing, Jiangsu, China
2008 - 2012 B.Sci.

Honours and First Place of Morgan Stanley Global Programming Contest
Awards: 2014

Third prize of China Undergraduate Mathematical Contest in Modelling
2010

Third prize scholarship for academic in Nanjing University
2009,2010,2011

Related Work Teaching Assistant
Experience: The University of Western Ontario

2013 - present

Research Assistant
The University of Western Ontario
2013 - present

62

	Metagenome Assembly
	Recommended Citation

	Titlepage
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Sequencing
	Next generation sequencing
	De novo genome assembly
	Problem description
	Reads
	Coverage
	Complement
	Insert and mate pairs
	Contigs and scaffolds

	Overlap graph
	Type of edges
	Transitive edge

	De Bruijn graph
	Metagenome assembly
	MetaVelvet
	Meta-IDBA
	Omega
	Genovo

	MetaSAGE
	Overview of MetaSAGE
	Error correction
	RACER and MetaRACER
	Evaluation of error correction results

	Overlap graph construction and composition
	Hash table
	Inserting edges
	Removing transitive edges
	Compressing paths
	Bubbles and dead-ends remove

	Chimeric node splitting
	Copy count estimation
	Minimum cost flow
	Cost function
	Flow bounds

	Tree reductions
	Mate-pair information
	The algorithm

	Experiments
	Datasets
	Environment
	Evaluation
	Indels and Mismatches
	N50
	NG50
	Misassemblies
	NGA50

	Results and analysis
	Time and Memory

	Conclusions
	Bibliography
	Curriculum Vitae

