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Abstract 

 

ATRX is a chromatin remodeling protein important for neural development, and ATRX 

inactivation leads to genomic instability, mitotic defects and TP53-mediated apoptosis. In 

the last few years, ATRX mutations were identified in a large proportion of paediatric and 

adult gliomas that often coincide with mutations in the tumor suppressor TP53. The present 

work shows that combinatorial loss of ATRX and TP53 function in vitro leads to excessive 

genomic instability albeit improving cell viability, identifying potential early events in 

gliomagenesis. Furthermore, several gene transcripts associated with glioma development 

and known oncogenic pathways were significantly upregulated in the Atrx-null neonatal 

mouse forebrain. Finally, a mouse model of Atrx and Tp53 deficiency in the mouse CNS 

was generated, providing a tool for future investigations.  
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CHAPTER 1 – Introduction 

 

1.1 Glioma 

Gliomas are the most common primary brain malignancies and constitute a wide and 

heterogeneous population of tumours (Furnari 2007). Despite being defined across various 

malignancy states – from low-grade, benign tumours to highly aggressive and invasive 

glioblastoma multiforme (GBM) tumours – gliomas are extremely challenging to treat in 

the clinic because of their infiltrative nature and high tendency for recurrence (Wen 2008). 

Recent work has identified numerous genetic and epigenetic alterations that define various 

subtypes of glioma (Verhaak 2010). However, the underlying mechanisms of glioma 

initiation and progression have yet to be fully elucidated, and this may be achieved through 

the development of novel in vitro and in vivo model systems. 

 

1.1.1 Histology and Pathology of Glioma 

Classically, gliomas can be categorized based on their histology as astrocytomas, 

oligodendrogliomas, or mixed-lineage oligoastrocytomas, and subsequently graded on the 

World Health Organization (WHO) scale based on their degree of malignancy (Marumoto 

2012). The majority of high grade glial tumours are termed glioblastomas and display 

several features of malignancy, including vascularization, necrosis, and pleomorphism. 

Glioblastomas can be further subdivided into primary and secondary GBMs based on their 

clinical presentation; however, histologically these two tumour subtypes are 

indistinguishable. Primary GBMs typically arise de novo in older patients, while secondary 

GBMs are most commonly seen in younger patients (below age 45) and develop from lower 

grade tumours about 5-10 years following diagnosis (Marumoto 2012).  

Contrastingly, low-grade gliomas (LGGs) are classified as grade I or II on the WHO 

grading scale and constitute 30-50% of all central nervous system (CNS) solid tumours in 

children (Stieber 2001; Louis 2007). Again, LGGs can be histologically categorized into 
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pilocytic or low-grade astrocytomas, oligodendrogliomas, or oligoastrocytomas; however, 

these tumour types have prolonged survival and reduced recurrence rates compared to their 

high-grade counterparts. Low-grade gliomas are also considerably heterogeneous in nature 

and often undergo anaplastic dysplasia (Louis 2007).  

 

1.1.2 Key Players in Glioma Pathogenesis 

Genetically, both primary and secondary GBMs commonly show alterations in tumour 

suppressor protein 53 (TP53), phosphatase and tensin homolog deleted from chromosome 

10 (PTEN), and epidermal growth factor receptor (EGFR), including loss or mutation of 

either TP53 or PTEN and/or amplification or overexpression of EGFR (Marumoto 2012). 

Additionally, both primary and secondary GBMs commonly show abnormal activation of 

growth factor signalling, leading to aberrant signalling through the mitogen activated 

protein kinase (MAPK) and phosphoinositide-3-kinase (PI3K)-AKT pathways, as well as 

cell cycle checkpoint dysregulation, including retinoblastoma protein (pRB) and/or 

p16INK4A inactivation (Marumoto 2012). 

Until recently, high-grade gliomas (HGGs) – including glioblastoma multiforme and 

anaplastic astrocytomas – were distinguished solely by their histological properties. 

However, recent evidence indicates that these histological subtypes may represent several 

sub-classes of HGG that can be further defined based on their molecular and genetic 

profiles. From this, four subtypes of primary GBMs have emerged based on tumour gene 

expression/mutation profiles. These subtypes have been termed ‘proneural’, ‘neural’, 

‘classical’, and ‘mesenchymal’, and are distinguished by their unique pattern of genetic 

changes (Phillips 2006; Verhaak 2010). While two major features in proneural GBM 

subtype tumours are alterations in the expression of Platelet Derived Growth Factor Alpha 

(PDGFA) as well as point mutations in Isocitrate Dehydrogenase 1 (IDH1), the neural 

subtype demonstrates expression of neuron markers like NEFL, GABRA1, SYT1, and 

SLC12A5 (Verhaak 2010). Alternatively, classical GBM tumours typically show 

amplification of chromosome 7 along with loss of chromosome 10 and overexpression of 
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EGFR (Verhaak 2010). Finally, mesenchymal tumours generally show loss of NF1 and/or 

PTEN, both of which impact signalling through the AKT pathway (Verhaak 2010). 

The underlying genetic mechanisms surrounding LGG pathogenesis have not been 

extensively studied; however, mutation of the Isocitrate Dehydrogenase 1 or 2 (IDH1/2) 

genes appears to be a common pathogenic initiating event (Sanson 2009; Hartmann 2009; 

Ducray 2009) associated with massive changes to the epigenomic landscape (Turcan 2012). 

Additionally, coordinated loss of chromosomes 1p and 19q (1p/19q co-deletion) appears to 

converge with mutations in IDH1/2 and delineates a prognostically favourable outcome 

within oligodendrogliomas and some oligoastrocytomas (Cairncross 1998). Tumours 

harbouring intact 1p/19q but mutated IDH1/2 commonly overlap with mutations in TP53 

and display a much more diverse genomic landscape (Thon 2012). 

 

1.1.3 TP53 Mutations in Glioma 

Alterations in TP53 were one of the first recurrent mutations discovered within gliomas, 

and have now become the most common genetic abnormalities observed across the glioma 

tumour spectrum. TP53 is a transcription factor that regulates a large number of genes 

involved in cell cycle control, DNA damage response, metabolism, cellular senescence, 

autophagy and apoptosis (Guimaraes 2002), along with its other non-transcriptional roles 

in the regulation of autophagy and apoptosis (Green 2009). The TP53 protein can be 

activated by a number of internal and external stimuli, including DNA damage, aberrant 

growth factor signalling, oncogene activation, and hypoxia (Vousden 2009). Failure to 

activate TP53 in response to tumorigenic stimuli, like DNA damage or oncogene activation, 

will prevent the initiation of downstream DNA repair, cellular senescence and apoptotic 

pathways which may allow cells to become oncogenic. 

The TP53 protein is also pivotal in the regulation of stem cell self-renewal, potency, and 

differentiation. In fact, inhibition of the TP53 protein in induced pluripotent stem cells 

(iPSCs) caused a 100-fold increase in proliferative capacity (Krizhanovsky 2009) and a 

concomitant increase in genetic instability at levels similar to that seen in cancer stem cells 
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(CSCs; Marión 2009). A variety of mouse models harbouring complete loss of Tp53, or 

loss of specific codons/exons of Tp53, show increased susceptibility to spontaneous tumour 

formation and decreased overall survival (Pohl 1988; Donehower 1992; Jacks 1994). 

Deletion of TP53 in conjunction with loss of other tumour suppressor genes or 

overexpression of oncogenes further promotes tumour development, progression, as well 

as aggressiveness and metastatic potential, specifically in high-grade adult astrocytoma 

(Chow 2011). However, in glioma patients, it is uncertain how the loss of TP53 affects 

prognostic outcome, as TP53 mutations do not correlate with patient survival or time-to-

recurrence (Houillier 2006; Weller 2009). 

Inhibitors of TP53 have been developed and are beginning to be widely used to examine 

the cytotoxic effects of TP53 inhibition both in vitro and in vivo. One such inhibitor, called 

Pifithrin-α (PFTα) was originally discovered in a broad screen of approximately 10,000 

compounds to inhibit cell death induced by γ-irradiation (Komarov 1999). Although the 

complete mechanism of TP53 inhibition has not been explored, studies showed that PFTα 

treatment was associated with reduced nuclear, but not cytoplasmic, levels of TP53 

(Komarov 1999). This indicates that PFTα acts to modulate the nuclear import and/or 

export of TP53, thereby preventing TP53 from binding to its transcriptional targets. PFTα 

was later shown to prevent apoptosis in mouse embryonic fibroblasts (MEFs) transformed 

with E1a+ras, a cell line that undergoes rapid TP53-mediated apoptosis in response to 

treatment with various genotoxic stressors, including doxorubicin, etoposide, UV light, and 

γ-irradiation (Komarov 1999). Additionally, PFTα prevented the appearance of apoptotic 

cells in doxorubicin-treated human umbilical vein endothelial cells (HUVECs) along with 

blocking promoter induction and protein up-regulation of CD95 in response to doxorubicin 

treatment (Lorenzo 2002). Following several years of development, new isoforms of PFTα 

have been developed. The cyclic form of PFTα (cPFTα) is a more stable analog of PFTα 

with similar biological activities and reduced cytotoxicity, and studies have shown that 

cPFTα sensitizes wildtype TP53 tumour cells to antimicrotubule agent-induced apoptosis 

(Zuco 2008). Thus, these drugs have been described throughout the literature as being 

effective and specific inhibitors of the transcriptional activation activities of TP53 and their 

use has enabled the discovery of novel TP53 functions in carcinogenesis. 
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1.1.4 IDH1/2 Involvement in Glioma Initiation and Progression 

Mutations in the Isocitrate Dehydrogenase 1 and 2 (IDH1/2) genes were first identified in 

2008 from the analysis of over 20,000 genes in 22 GBM samples (Parsons 2008). Since 

then, IDH1 mutations have become an extremely prominent player in gliomagenesis, as 

other studies identified IDH1 alterations in up to 80% of grade 2 and 3 gliomas as well as 

secondary GBMs (Hartmann 2009; Sanson 2009; Yan 2009; Watanabe 2009; Kanamori 

2013). Mutations in IDH2 are also found within the glioma spectrum; however, they arise 

at a much lower frequency and are mutually exclusive from IDH1 modifications (Hartmann 

2009; Yan 2009).  

To date, mutations in IDH1 or IDH2 can be narrowed down to a single amino acid residue 

(R132 in IDH1; R172 in IDH2). The R132 residue in IDH1, as well as the analogous R172 

residue in IDH2, lies in the active site of the enzyme and is critical for isocitrate binding 

(Xu 2004). Mutation at this residue abolishes the ability of IDH to perform its catalytic 

activities, resulting in reduced levels of α-ketoglutarate (α-KG) and nicotinamide adenine 

dinucleotide phosphate (NADPH; Xu 2004). Exactly how IDH mutation leads to oncogenic 

transformation remains unclear; however, recent evidence suggests that mutated IDH is 

able to bind and convert α-KG into (R)-2-hydroxyglutarate (2-HG; Dang 2009). Whether 

reduced activity of IDH or elevated 2-HG levels leads to tumorigenesis is unknown, but 

evidence suggests that the mutated IDH genes act as oncogenes, while 2-HG acts as an 

oncometabolite. Regardless of the mechanism, it is known that introduction of mutated IDH 

into normal cells leads to increased cellular proliferation, reduced differentiation, and 

increased colony formation (Koivunen 2012). 

Though mutations in IDH appear to be an early event in oncogenic transformation, further 

mutations in other tumour suppressors (like TP53) or genomic instability events (like 

1p/19q co-deletion) are necessary for cells to fully gain their oncogenic potential. Within 

astrocytic tumours, co-mutation of IDH1 and TP53 is common, with up to 80% of 

secondary GBMs and anaplastic astrocytomas harbouring both mutations (Yan 2009). On 

the other hand, oligodendrogliomas that harbour 1p/19q co-deletion typically show 
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mutations in IDH1 but not TP53 (Kanamori 2013; Watanabe 2009; Yan 2009). Finally, 

although commonly seen alongside mutations that are associated with LGGs and secondary 

GBMs, mutations in IDH rarely overlap with alterations common to primary GBMs (like 

mutation of EGFR; Watanabe 2009), which is indicative of a role for IDH mutation as an 

early event in gliomagenesis, but not as a driver of primary GBM. 

 

1.1.5 ATRX: a new player in Gliomagenesis 

Mutations in alpha thalassaemia mental retardation X-linked (ATRX) were first identified 

in gliomas through an association with the alternative lengthening of telomeres (ALT) 

phenotype (Heaphy 2011) – a telomerase independent mechanism whereby cells can 

lengthen their telomeres. ATRX mutations were detected in various tumours of the central 

nervous system (CNS), including pediatric GBM (14.3%), adult GBM (7.7%), and 

medullobastoma (1.5%) (Heaphy 2011). Other studies used whole exome sequencing of 

pediatric GBMs and identified mutations in ATRX in 33.3% of cases, and these mutations 

significantly overlapped with alterations in TP53 (Schwartzentruber 2012). 

Immunostaining of patient tissue microarrays for ATRX in 124 samples identified 35% 

lacking detectable ATRX staining, indicative of impaired ATRX transcription/translation 

resulting in low or no ATRX protein expression and function (Schwartzentruber 2012). 

Thus, these two studies first identified a role for ATRX perturbation in pediatric 

glioblastoma multiforme. 

Since then, research has delved into the field of both adult and pediatric glioma, and ATRX 

mutations have been identified across the glioma landscape (Jiao 2012; Liu 2012; Kannan 

2012; Wiestler 2013). Alterations in ATRX were identified by Sanger sequencing in 67% 

of WHO grade II astrocytomas, 73% of WHO grade III astrocytomas, 57% of secondary 

GBMs, and 68% of mixed oligoastrocytomas (Jiao 2012), and these tumours almost always 

showed co-mutation of TP53 and/or IDH1 (Jiao 2012; Liu 2012). Mutations in ATRX were 

rare, however, in primary GBMs (4%) (Jiao Y et al 2012). Within LGGs, ATRX mutations 

were discovered in three out of four WHO grade II gliomas that harboured IDH mutations, 

and this correlated with mutation in TP53 and intact 1p/19q (Kannan 2012). Investigation 
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of another 28 WHO grade II and III gliomas identified ATRX mutations in 43% of samples, 

and these mutations again significantly correlated with alteration of IDH and TP53 (Kannan 

2012). Collectively, these studies identify ATRX as a potential biomarker for glioma 

subtype classification when investigated in combination with IDH, TP53, and 1p/19q 

mutation status. 

 

1.2 Alpha Thalassaemia Mental Retardation X-Linked 

The ATRX gene lies on the long arm of the X-chromosome (Xq13.3; Fig. 1.1) and spans 

approximately 300kb of genomic sequence (Picketts 1996). In humans, the ATRX gene has 

been mapped between the gene for Menkes disease (MNK) and the X-chromosome region 

DXS56 (Stayton 1994); whereas in mice, the Atrx homolog maps between the 

Phosphoglycerate kinase-1 (Pgk1) and X-inactivation specific transcript (Xist) genes (Gecz 

1994). This gene gives rise to the large ATRX protein (approximately 280kDa), which 

contains an N-terminal ADD (ATRX-DNMT3-DNMT3L) domain as well as a C-terminal 

SWI/SNF2-like motif (Fig. 1.1; Picketts 1996). The ADD domain of ATRX shows 

homology to the DNMT (DNA methyltransferase) family of proteins (Picketts 1996; 

Argentaro 2007) and consists of three regions, including a GATA-like zinc finger, an 

imperfect PHD-like zinc finger, and a C-terminal helix that packs together using 

hydrophobic interactions (Argentaro 2007). In this way, the ADD domain of ATRX can 

bind directly to the tail of histone 3 (H3) using two binding pockets: one that reads 

unmethylated lysine 4 (H3K4me0) and one that reads di- or trimethylated lysine 9 

(H3K9me2 or H3K9me3) (Iwase 2011; Eustermann 2011). This combinatorial readout, 

which is further enhanced by HP1α binding, allows for ATRX recruitment to 

heterochromatin (Eustermann 2011). At the other end of ATRX, the SWI/SNF2-like 

domain contains an ATPase/helicase motif, and this region is necessary for the nucleosome 

remodelling and translocase activity of ATRX (Picketts 1996). ATRX also harbours many 

binding sites for various protein-protein interactions (Fig 1.1), including DAXX (death 

domain associated protein 6; Tang 2004; Xue 2003), HP1α (heterochromatin-associated 

protein 1 alpha; McDowell 1999), and MeCP2 (methyl CpG binding protein 2; Nan 2007). 

An   additional,   truncated   isoform   of  ATRX   (called ATRXt)   was   discovered   when 
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Figure 1.1 Overview of the ATRX gene and protein. (A) Outline of the human X 

chromosome and location of the ATRX gene, indicated in red. (B) Schematic of the 

ATRX protein including its conserved protein domains (coloured in dark blue) and 

protein interaction sites (coloured in red). The yellow line indicates the placement of the 

neo cassette in our Atrx floxed mice. (C) Cre/loxP targeting of the Atrx mouse gene. The 

top line indicates the wildtype Atrx allele (AtrxWT). The middle line shows the insertion 

of loxP target sites flanking exon 18 along with a neo marker (Atrxflox). The bottom line 

demonstrates the recombination of Atrx upon Cre recombinase activation in which exon 

18 and the neo cassette have been removed (AtrxΔ18Δneo). 
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immunoblots using ATRX N-terminal antibodies consistently detected a shorter protein 

product of about 180kDa (Bérubé 2000; McDowell 1999). This short isoform results from 

an alternative splicing event that leads to the creation of a premature stop codon within 

intron 11 (Fig 1.1; Garrick 2004). Due to the truncation, the resulting short polypeptide still 

contains the ADD domain but lacks the Swi/Snf C-terminal domain, PML targeting region, 

and the interaction sites for DAXX and MeCP2 (Fig 1.1). As expected, ATRXt can localize 

to regions of the nucleus dictated by the ADD domain, like pericentromeric 

heterochromatin, but is no longer found in PML bodies (Garrick 2004). Biologically, the 

function of ATRXt still remains elusive; however, it is predicted that ATRXt may interact 

with the full-length ATRX protein (Garrick 2004) and could modulate the activity of ATRX 

at heterochromatin. 

 

1.2.1 ATRX and Neuronal Development 

ATRX is expressed in the proliferating neuroprogenitor cells of the brain and retina during 

development. ATRX exhibits a typical punctate staining pattern that overlaps with 

heterochromatic foci (Bérubé 2005), and upon differentiation, ATRX protein levels 

increase within the nucleus (Bérubé 2005; Ritchie 2008). Studies over the past decade or 

so have determined that incorrect expression or activity of ATRX is clearly detrimental to 

development in both humans and mice. Mutations in ATRX in humans results in ATR-X 

syndrome (alpha thalassaemia mental retardation, X-linked; OMIM: #30032), 

characterized by mild to severe mental retardation, distinct facial dysmorphisms, urogenital 

abnormalities, loss of white matter, and α-thalassaemia (Weatherall 1981; Gibbons 2006). 

The majority of disease mutations map within the ADD and Swi/Snf domains of ATRX, 

resulting in reduced protein expression levels (hypomorphic) rather than a complete loss-

of-function, which is presumed to be lethal (Gibbons 1995; Picketts 1996). 

Study of ATRX gain- and loss-of-function in mice provided insights into the role of ATRX 

during development. Examination of ATRX overexpression led to a wide array of 

developmental abnormalities, including embryonic lethality and disorganization of the 

proliferative neuroepithelium (Bérubé 2002). The few surviving ATRX transgenic pups 
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exhibited craniofacial abnormalities and spontaneous seizures (Bérubé 2002). On the other 

hand, loss of ATRX in mouse embryonic stem cells (mESCs) resulted in reduced cellular 

proliferation and survival (Garrick 2006). Complete ATRX loss in the mouse via early 

inactivation at the morula stage prevented the formation of a normal trophectoderm and 

resulted in embryonic lethality around E9.5 (Garrick 2006). 

To better investigate the loss of ATRX specifically in the developing mouse brain, the 

Cre/loxP system was utilized to ensure precise spatial and temporal ablation of ATRX 

function (Bérubé 2005). This system incorporates loxP sites flanking exon 18 of Atrx along 

with Cre-mediated recombination and silencing of Atrx using a specific Cre-driver line (Fig 

1.1). For example, when the Cre recombinase gene is placed under the control of the 

Forkhead box G1 (FoxG1) promoter, Cre recombinase expression is confined to the mouse 

forebrain beginning at E8.5 (Hebert 2000). As a result of ATRX loss in the developing 

telencephalon, a significant increase in apoptosis was observed along with a profound size 

reduction of the frontal cortex, hippocampus, and a loss of the dentate gyrus structure 

(Bérubé 2005). At birth, ATRX-null male mice are also much smaller in length and weight 

than their littermate-matched control male counterparts (Bérubé 2005). This result indicates 

the importance of ATRX for the survival of neurons during corticogenesis, as a loss of 

ATRX in proliferating cells was succeeded by an increase in TP53 activation along with 

downstream TP53 target genes (Seah 2008). Combined loss of ATRX with TP53 in mice 

demonstrated a rescue of cell death embryonically; however, overall brain and body size at 

birth were not rescued (Seah 2008), indicating that TP53 activation is responsible for some 

but not all of the ATRX-null phenotypes observed. 

 

1.2.2 Cellular Functions of ATRX 

The finding of an N-terminal nuclear localization signal (NLS) within the ATRX protein 

led to the discovery that ATRX is associated with pericentromeric heterochromatin during 

all stages of the cell cycle (Bérubé 2000; McDowell 1999). This soon led to the finding that 

ATRX is phosphorylated mainly on serine residues and in a cell cycle-dependent manner 

(Bérubé 2000). In fact, depletion of ATRX in human HeLa cells (cervical cancer cell line) 
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using both stable shRNA constructs and transient small interfering RNA (siRNA) led to 

nuclear blebbing, chromosomal bridging, and poorly resolved chromatin during interphase 

(Ritchie 2008). Additionally, ATRX-depleted HeLa cells exhibited prolonged 

prometaphase to metaphase transitions during mitosis, leading to an overall lengthening of 

the time required to complete mitosis compared to ATRX wildtype HeLa cells (Ritchie 

2008). This was accompanied by abnormal sister chromatid congression to the metaphase 

plate, reduced sister chromatid cohesion at metaphase, and chromosome decondensation 

(Ritchie 2008). These results were further validated in vivo where DAPI staining revealed 

pyknotic nuclei, micronuclei, and misaligned chromosomes within the hippocampal hem, 

the hippocampal primordium, and the dorsal cortical neuroepithelium in embryonic brain 

sections (Ritchie 2008). Furthermore, ATRX is required for proper meiotic spindle 

organization and chromosome alignment during metaphase II in mouse oocytes (De La 

Fuente 2004; Ritchie 2014). Thus, ATRX is necessary for the maintenance, organization, 

and architecture of the chromosomes at the metaphase plate in both meiosis and mitosis. 

During S-phase, ATRX has been shown to localize to G-rich tandem repetitive DNA like 

G-quadruplexes, satellite repeats, and telomeres, and ATRX depletion results in delays in 

S-phase and replication stress (Wong 2010; Huh 2012; Leung 2013; Watson 2013). In 

myoblasts, ATRX depletion led to alterations in cell cycle checkpoint proteins (p107, 

cyclin E, cyclin A, and p27), along with TP53 accumulation (Huh 2012). ATRX loss in 

mESCs, mouse embryonic fibroblasts (MEFs) and somatic cell lines was also associated 

with sensitivity to hydroxyurea (HU) and aphidicolin (APH) genotoxic treatments, but not 

to γ-irradiation (Clynes 2014; Watson 2013; Leung 2013), indicating that ATRX-null cells 

demonstrate a specific sensitivity to drugs that induce replication fork stalling. Replication 

stress was observed in conjunction with significant increases in genomic instability and 

DNA damage (Clynes 2014; Leung 2013; Watson 2013), along with ATRX localization to 

DNA double-stranded break (DSB) sites (Leung 2013) and increased fork stalling during 

replication (Leung 2013; Watson 2013; Clynes 2014).  

Significant increases in DNA damage were also observed in the ATRX-null embryonic 

telencephalon and in the neonatal hippocampus (P0.5), which remains proliferative at this 

timepoint (Watson 2013). However, by postnatal day 7 (P7), DNA damage was no longer 
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present in both control and ATRX-null brains (Watson 2013), suggesting that endogenous 

DNA damage from ATRX loss occurs primarily in replicating cells. Interestingly, the cells 

in the embryonic telencephalon that harboured γH2A.X foci also showed staining for 

cleaved caspase 3 (AC3), a canonical marker for apoptosis activation (Watson 2013), 

indicating that cell death is likely a downstream consequence of DNA damage 

accumulation. Assessment of DNA DSBs in ATRX/TP53 compound mutant mice 

demonstrated a further increase in γH2A.X immunostaining embryonically (Watson 2013), 

along with a rescue of cell death in the hippocampal hem and basal telencephalon at E13.5 

(Seah 2008). This result demonstrates that ATRX loss is associated with increased genomic 

instability that leads to TP53 stabilization and activation of its downstream apoptotic 

pathways. Thus, ATRX is necessary for proper mitotic and meiotic integrity, as well as for 

maintaining chromatin stability and architecture, particularly during S-phase. 

 

1.2.3 ATRX and Histone Variants 

In addition to its ability to target heterochromatin by directly binding to histone tails, ATRX 

also influences the histone composition of chromatin. Firstly, recent research identified a 

link between ATRX and a histone variant known as macroH2A (Ratnakumar 2012). 

MacroH2A is typically associated with transcriptionally inert DNA, and is frequently found 

within heterochromatin (Zhang 2005). ATRX was found to interact with macroH2A in a 

chromatin-free cellular fraction, and loss of ATRX resulted in altered levels of macroH2A 

(Ratnakumar 2012). Targeted knockdown of ATRX in HEK293 cells (human embryonic 

kidney cells) led to a global increase in macroH2A levels in chromatin, but not total cellular 

levels, indicating a role for ATRX as a negative regulator of macroH2A incorporation into 

chromatin (Ratnakumar 2012). Chromatin immunoprecipitation (ChIP) analysis identified 

increased levels of macroH2A at the telomeres upon loss of ATRX, as well as an 

accumulation at the α-globin gene cluster (Ratnakumar 2012). While still unclear, ATRX-

mediated prevention of macroH2A deposition at telomeres may act to ensure telomeric 

integrity. 
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In addition to its role with macroH2A, ATRX also works with its binding partner DAXX 

to mediate histone 3.3 (H3.3) deposition into pericentric, telomeric and ribosomal repeat 

chromatin (Drané 2010; Goldberg 2010). H3.3 is a replication-independent histone variant 

predominantly associated with active and open chromatin (Loyola 2006), while 

phosphorylation of H3.3 at serine 31 (H3.3S31P) is enriched in heterochromatin and acts 

as a mitosis-specific marker (Hake 2005). During H3.3 deposition, DAXX acts as a highly 

specific histone chaperone that can discriminate between H3 isoforms H3.1, H3.2, and H3.3 

(Drané 2010). ATRX can subsequently bind with DAXX/H3.3 and target this complex to 

repetitive sequences to enhance H3.3 deposition (Drané 2010; Lewis 2010). Remodeling 

assays also identified the ability of the ATRX-DAXX complex to successfully mobilize 

H3.3-containing nucleosomes along DNA templates (Lewis 2010).  

At the telomeres, ATRX has been shown to colocalize with H3.3 in mES cells, and ATRX 

knockdown led to a significant increase in telomere induced dysfunction foci (TIF; a 

marker for DNA damage at the telomeres identified by γH2A.X staining) as well as an 

extreme reduction of HP1α localization (Wong 2010). ATRX-null ESCs exhibit an extreme 

loss of H3.3 at the telomeres but maintain the ability of DAXX to associate with H3.3, 

indicating that ATRX is not necessary for the interaction between DAXX and H3.3 but 

may be necessary for H3.3 localization to telomeres (Lewis 2010). In contrast, DAXX-null 

ES cells showed no interaction between ATRX and H3.3 and showed no change in H3.3 

incorporation at telomeres, indicating that DAXX mediates the H3.3-ATRX interaction but 

is not required for specific H3.3 deposition at telomeres (Lewis 2010).  

Further studies in ATRX-null myoblasts identified a significant increase in DNA damage 

at the telomeres as well as increased levels of telomere bridging, duplications and merging 

(Huh 2012). This result is further supported by ATRX-null primary neuroprogenitor cells 

(NPCs) which showed a significant increase in γH2A.X staining at the telomeres along with 

increased telomere-centromere/telomere-telomere fusions (Watson 2013). Loss of 

telomeric integrity is commonly associated with replicative disruption at the telomeres 

(Sampathi 2011), and G-rich DNA sequences, like telomeres, have been recently shown to 

form G-quadruplex (G4) structures which are difficult to replicate (Wu 2010). ATRX has 

been demonstrated to bind to G-quadruplexes, and may potentially help to resolve these 
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secondary DNA structures during cellular replication (Watson 2013; Levy 2014). Thus, it 

appears that ATRX is required for telomere stability and integrity, and this could be due to 

its roles in facilitating replication fork bypass within these G-rich regions. 

 

1.3 ATRX and Cancer 

Mutations in chromatin remodeling proteins are not common alterations in the pathology 

of cancer; nevertheless, ATRX mutations have recently become a hot topic in the field of 

cancer biology. After cataloguing the outcomes of ATRX loss within the cell, however, it 

is clear to see how the loss of ATRX function could allow for the transformation of cells 

towards tumorigenesis. Not only does ATRX loss correlate with replication stress (Clynes 

2014; Watson 2013) and mitotic defects (Ritchie 2008; Ritchie 2014), ATRX-null cells 

also show significant increases in DNA damage both across the genome (Clynes 2014; 

Watson 2013) as well as specifically at the telomeres (Huh 2012; Wong 2013; Watson 

2013). Finally, ATRX loss also leads to an increase in TP53-mediated cell death following 

the accumulation of DNA damage (Watson 2013; Conte 2012). These phenotypes are well 

known hallmarks of tumorigenesis, and combinatorial alterations in ATRX and other tumor 

suppressors or oncogenes, like TP53 and IDH1/2, may reveal an underlying genetic 

mechanism for some subtypes of glioma and neuroendocrine tumours. 

 

1.3.1 Early Findings for ATRX Loss in Tumorigenesis 

Gene expression profiling of de novo childhood acute myeloid leukemia (AML) patients 

first identified ATRX loss of expression as a predictor of patient outcome (Lacayo 2004). 

Mutations in Fms-like tyrosine kinase 3 (FLT3) are a known prognosticator of poor 

outcome in AML patients, but further diagnostic markers were needed to distinguish 

between patients who were at high-risk for treatment failure versus those who were not. 

Among those patients who harboured FLT3 mutations, high expression of Runt related 

transcription factor 3 (RUNX3) and low expression of ATRX correlated with worse 

outcome and were more likely to resist treatment (Lacayo 2004). On the contrary, patients 
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with higher ATRX expression demonstrated a more favourable outcome (Lacayo 2004). 

Thus, this was the first study to identify ATRX expression levels as a predictor of patient 

prognosis during tumorigenesis. 

 

1.3.2 ATRX Loss in Neuroendocrine Tumours 

Several years after the finding of ATRX mutations in AML patients, alterations in ATRX 

were discovered again in a significant population of pancreatic neuroendocrine tumours 

(panNETs; Jiao 2011). PanNETs are the second most common pancreatic malignancy with 

a ten-year survival rate of only 40% (Fendrich 2009). Currently, surgical resection of these 

tumours is the front-line of treatment, but many patients present with unresectable tumours 

or extensive metastatic disease which is not responsive to current medical therapies 

(Fendrich 2009). Whole-exome sequencing was used to identify commonly mutated genes 

within a subset of panNETs, and 17.6% harboured mutations in ATRX, 25% had alterations 

in DAXX, and 3% showed TP53 mutations (Jiao 2011). They concluded that mutations in 

the DAXX/ATRX pathway are the second most common alteration after mutations in 

Multiple endocrine neoplasia type 1 (MEN1), and ATRX mutations were most commonly 

insertion/deletions leading to frameshifts within the resulting polypeptide (Fig 1.2; Jiao 

2011). Additionally, DAXX and ATRX alterations were mutually exclusive, and both 

correlated with an earlier age of diagnosis as well as better overall patient survival (Jiao 

2011). In fact, 100% of patients with metastatic disease and mutations in DAXX/ATRX and 

MEN1 survived at least 10 years, versus over 60% of patients without these mutations 

succumbing to their tumours within five years of diagnosis (Jiao 2011). This may indicate 

that ATRX/DAXX mutations could define a molecular subgroup of panNETs and may serve 

to aid prognosis and prioritize patients for treatment. 

Subsequent studies of panNETs identified further alterations in ATRX and DAXX 

expression. Firstly, immunohistochemical analysis of well-differentiated neuroendocrine 

carcinomas (NECs), also considered panNETs, demonstrated a loss of ATRX nuclear 

staining in 36.4% of tumours and a loss of DAXX staining in 9.1% (Yachida 2012). Again,  
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Figure 1.2 Overview of mutations identified within the ATRX gene in various 

glioma/panNET patient studies. Triangles represent frameshift mutations, circles 

denote nonsense mutations, and squares signify missense mutations. Symbols coloured 

in red were mutations described in Jiao 2012 (glioma), symbols in blue were mutations 

described in Schwartzentruber 2012 (pediatric GBM), and symbols in green denote 

mutations described in Jiao 2011 (panNETs). 
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loss of ATRX and DAXX immunostaining was mutually exclusive in these tumours; 

however, immunostaining for both ATRX and DAXX was intact in the small- and large-

cell NECs investigated, which are not considered to be panNETs (Yachida 2012). These 

findings identify panNETs as genetically distinct entities from other pancreatic neoplasms, 

and that ATRX and/or DAXX mutation status may aid in the distinction between pancreatic 

tumour subtypes. More recently, a large panNET sample collection (243 patient samples 

across a variety of hospitals) identified a loss of DAXX in 15% and a loss of ATRX in 28% 

of samples, with only two samples harbouring a loss of both proteins (Marinoni 2014). Loss 

of ATRX/DAXX was also shown to correlate with chromosomal instability (CIN), which is 

a characteristic of malignant panNETs (Marinoni 2014). Prognostically, in contrast to the 

findings by Jiao (2011), Marinoni (2014) correlated ATRX/DAXX loss as a predictor of 

inferior outcome, and did not find a correlation with age of diagnosis. It is evident that loss 

of ATRX/DAXX defines a biologically specific subgroup of panNETs, but it is unclear 

whether ATRX/DAXX mutations are prognostically useful to predict patient outcome. 

Finally, a study by Chen (2013B) examined neuroendocrine tumours originating from 

various organ systems, including gastric, duodenal, rectal, pancreatic, and pulmonary 

tissues. Immunostaining for ATRX and DAXX showed loss of these proteins in at least one 

sample within neuroendocrine tumours (NETs) from all organs examined (Chen 2013B). 

For example, loss of nuclear labelling of either ATRX or DAXX was found in 16.1% of 

lung NETs, 7.3% of stomach NETs, 10.9% of duodenum NETs, 51% of panNETs, and 

14.6% of rectal NETs; however, no samples showed loss of staining for both proteins (Chen 

2013B). Therefore, loss of ATRX and/or DAXX may not only be relevant to pancreatic 

lesions, but can also be found within neuroendocrine tumours across many organ systems. 

 

1.3.3 ATRX Mutations Across the Glioma Spectrum 

Mutations in ATRX are highly prominent across the glioma tumour landscape (Table 1.1). 

First associations linked mutations in ATRX to pediatric glioblastoma multiforme, where 

14.3% of samples harboured alterations in the ATRX gene along with 0% showing mutation 

in DAXX  (Heaphy 2011). This study also examined the U2-OS osteosarcoma cell line and   
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Table 1.1 List of ATRX mutations identified in cancers within the literature. 

 

 

 

Tumor Type, Grade Mutation Mutation 

Type 

Reference 

Diffuse Astrocytoma, II p.E1702* Nonsense Cryan, J.B., et al. 2014 

Diffuse Astrocytoma, II p.K971fs Frameshift  

Diffuse Astrocytoma, II p.R808* Nonsense  

Diffuse Astrocytoma, II p.F2113fs Frameshift  

Anaplastic Astrocytoma, III p.R781* Nonsense  

Anaplastic Astrocytoma, III p.R2197C Missense  

Anaplastic Astrocytoma, III p.E2265A Missense  

Anaplastic Astrocytoma, III p.E2277A Missense  

Anaplastic Astrocytoma, III p.L1602* Nonsense  

Anaplastic Astrocytoma, III p.D789V Missense  

Anaplastic Astrocytoma, III p.S118fs Frameshift  

Anaplastic Astrocytoma, III p.R418* Nonsense  

Anaplastic Astrocytoma, III p.S1387* Nonsense  

Anaplastic Astrocytoma, III p.R808* Nonsense  

Anaplastic Astrocytoma, III p.K1332fs Frameshift  

Oligoastrocytoma, II p.R1426* Nonsense  

Oligoastrocytoma, II p.K1332fs Frameshift  

Oligoastrocytoma, II p.R418* Nonsense  

Oligoastrocytoma, II p.K2283splice Splice Variant  

Oligoastrocytoma, III p.R781* Nonsense  

Oligoastrocytoma, III p.G1937E Missense  

Oligoastrocytoma, III p.Y2083C Missense  

Oligoastrocytoma, III p.R1426* Nonsense  

Oligoastrocytoma, III p.E935* Nonsense  

Oligoastrocytoma, III p.E884D Missense  

Oligodendroglioma, II p.D1051E Missense  

Oligodendroglioma, III p.G2075R Missense  

High Grade Glioma p.F2113fs Frameshift Huether, R., et al. 2014 

High Grade Glioma p.D1791H Missense  

High Grade Glioma p.T1610R Missense  

High Grade Glioma p.D2144G Missense  
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High Grade Glioma p.R188* Nonsense  

Neuroblastoma p.L407F Missense  

Neuroblastoma p.A1690D Missense  

Neuroblastoma p.E555* Nonsense  

Neuroblastoma p.R2188Q Missense  

Neuroblastoma p.E426fs Frameshift  

Adrenocortical Carcinoma p.R2164S Missense  

Adrenocortical Carcinoma p.Q811* Nonsense  

Adrenocortical Carcinoma p.E2253* Nonsense  

Osteosarcoma p.Y266* Nonsense  

Osteosarcoma p.D1383fs Frameshift  

Osteosarcoma p.R1803C Missense  

Osteosarcoma p.S213* Nonsense Chen, X., et al. 2014 

Osteosarcoma p.Y266* Nonsense  

Osteosarcoma p.D1383fs Frameshift  

Osteosarcoma p.L1755V Missense  

Osteosarcoma p.R1803C Missense  

Cutaneous Melanoma p.E453K Missense Qadeer, Z.A., et al. 2014 

Cutaneous Melanoma p.R444Q Missense  

Cutaneous Melanoma p.H756Y Missense  

Cutaneous Melanoma p.S334F Missense  

Cutaneous Melanoma p.D1263E Missense  

Cutaneous Melanoma p.A1790fs Frameshift  

Cutaneous Melanoma p.D1487N Missense  

Cutaneous Melanoma p.E2050K Missense  

Cutaneous Melanoma p.S342F Missense  

Cutaneous Melanoma p.K1936R Missense  

Cutaneous Melanoma p.S925F Missense  

Cutaneous Melanoma p.M1005I Missense  

Cutaneous Melanoma p.R2150I Missense  

Cutaneous Melanoma p.E2351* Nonsense  

Cutaneous Melanoma p.L639F Missense  

Cutaneous Melanoma p.E641K Missense  

Cutaneous Melanoma p.E2333K Missense  

Cutaneous Melanoma p.E1258* Nonsense  

Cutaneous Melanoma p.R2153C Missense  

Cutaneous Melanoma p.S576L Missense  
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Cutaneous Melanoma p.L2069F Missense  

Cutaneous Melanoma p.P657K Missense  

Cutaneous Melanoma p.P97S Missense  

Anaplastic Astrocytoma p.S871* Nonsense Aihara, K., et al. 2014 

Glioblastoma, IV p.K923* Nonsense  

Pilocytic Astrocytoma p.E991K Missense Zhang, J., et al. 2013 

PanNET p.E990* Nonsense Pugh, T.J., et al. 2013 

PanNET p.L1645* Nonsense  

PanNET p.S2017P Missense  

PanNET p.R2188Q Missense  

PanNET p.R2197C Missense  

PanNET p.F2113fs Frameshift  

Oligoastrocytoma, II p.R1426* Nonsense Kannan, K., et al. 2012 

Oligoastrocytoma, II p.R907* Nonsense  

Oligoastrocytoma, II p.E1010fs Frameshift  

Astrocytoma, II p.L639fs Frameshift  

Astrocytoma, II p.K1001fs Frameshift  

Astrocytoma, II p.E991fs Frameshift  

Astrocytoma, III p.K1018fs Frameshift  

Astrocytoma, III p.R1302fs Frameshift  

Astrocytoma, III p.R221K Missense  

Glioblastoma, IV p.Y187* Nonsense Jiao, Y., et al. 2012 

Glioblastoma, IV p.R1504* Nonsense  

Glioblastoma, IV p.R1803H Missense  

Glioblastoma, IV p.R2153C Missense  

Glioblastoma, IV p.W263* Nonsense  

Oligodendroglioma, II p.R221M Missense  

Oligodendroglioma, II p.R1514* Nonsense  

Astrocytoma, II p.Q292* Nonsense  

Astrocytoma, II p.E533* Nonsense  

Astrocytoma, II p.R808* Nonsense  

Astrocytoma, III p.R781* Nonsense  

Astrocytoma, III p.S788* Nonsense  

Astrocytoma, III p.R808* Nonsense  

Astrocytoma, III p.V2189L Missense  

Astrocytoma, III p.R937* Nonsense  

Astrocytoma, III p.Y1115* Nonsense  
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Astrocytoma, III p.S125* Nonsense  

Astrocytoma, III p.T1747K Missense  

Astrocytoma, III p.A1804P Missense  

Astrocytoma, III p.L253* Nonsense  

Oligoastrocytoma, II p.G551* Nonsense  

Oligoastrocytoma, III p.E2172G Missense  

Oligoastrocytoma, III p.R1426* Nonsense  

Oligoastrocytoma, III p.R1739* Nonsense  

Neuroblastoma p.L407F Missense Cheung, N.K., et al. 2012 

Neuroblastoma p.K425fs Frameshift  

Neuroblastoma p.E555* Nonsense  

Neuroblastoma p.A1690D Missense  

Neuroblastoma p.R2188Q Missense  

Glioblastoma, IV p.E1757* Nonsense Schwartzentruber, J., et al. 

2012 Glioblastoma, IV p.K1057fs Frameshift 

Glioblastoma, IV p.R1739* Nonsense  

Glioblastoma, IV p.M1800T Missense  

Glioblastoma, IV p.C1122fs Frameshift  

Glioblastoma, IV p.S1394fs Frameshift  

Glioblastoma, IV p.E1757* Nonsense  

Glioblastoma, IV p.H2254R Missense  

Glioblastoma, IV p.R2111* Nonsense  

Glioblastoma, IV p.G1589V Missense  

Glioblastoma, IV p.R1426* Nonsense  

Glioblastoma, IV p.K1584fs Frameshift  

Glioblastoma, IV p.N2443D Missense  

Glioblastoma, IV p.R1302fs Frameshift  

Glioblastoma, IV p.D2136N Missense  

Glioblastoma, IV p.W263* Nonsense Heaphy, C., et al. 2011 

Glioblastoma, IV p.R2153C Missense  

Glioblastoma, IV p.R1803H Missense  
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identified a homozygous deletion of exons 2 to 19 within ATRX (Heaphy 2011). 

Schwartzentruber (2012) surveyed four pediatric GBMs that harboured mutations in the 

histone variant H3.3. Two recurrent mutations were found, G34R and K27M, both of which 

lie near the tail of the protein that undergoes important post-translational modifications 

involved with transcriptional repression or activation. Interestingly, all four of these 

samples also harboured mutations in ATRX that may indicate an underlying dysfunction in 

the ATRX/DAXX/H3.3 histone deposition pathway. Whole-exome sequencing analysis 

was performed in 42 additional pediatric GBMs and identified ATRX/DAXX/H3.3 

mutations in 50% of samples (15/42 H3.3; 14/42 ATRX; 2/42 DAXX) (Schwartzentruber 

2012). The majority of ATRX mutations were insertions/deletions leading to frameshifts, 

followed by nonsense and missense mutations, and these mutations localized either within 

the C-terminal SWI/SNF2 domain of ATRX or led to a truncation of the protein upstream 

of this domain (Fig 1.2; Schwartzentruber 2012). Notably, mutations in ATRX and H3.3 

overlapped significantly with mutations in TP53, and eight samples had mutations in all 

three genes (Schwartzentruber 2012). These data indicate a central role for the 

ATRX/DAXX/H3.3 axis in normal cellular morphology, and perturbation of this axis may 

underlie the pathology of a subset of pediatric GBM. 

Research was soon extended into adult glioma samples, including WHO grade II and III 

astrocytomas and oligodendrogliomas, WHO grade III and IV anaplastic astrocytomas, 

oligoastrocytomas, and WHO grade IV primary and secondary GBMs. For example, 

mutations in ATRX were identified in 93 out of 363 (26%) gliomas samples ranging across 

all age groups and tumour grades (Jiao 2012). Specifically, ATRX alterations were found in 

67% of grade II astrocytomas, 73% grade III astrocytomas, 57% secondary GBMs, 68% 

oligoastrocytomas, and 20% pediatric GBMs (Jiao 2012). The majority of ATRX mutations 

in pediatric GBMs clustered again in the C-terminal SWI/SNF2 domain, while adult 

gliomas displayed an even distribution across the ATRX gene; however, both adult and 

pediatric gliomas showed a bias towards frameshift and nonsense mutations (Fig. 1.2; Jiao 

2012).  Another study identified ATRX mutations by Sanger sequencing in 47.8% of adult 

glioma samples distributed across age and subtype, with again the majority of mutations 

being insertions/deletions leading to frameshift mutations in the ATRX polypeptide (Liu 

2012). Further immunohistochemical staining for ATRX in another 96 samples showed a 
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loss of nuclear ATRX staining in 32% of adult glioma samples, while ATRX staining 

remained intact in 34 pilocytic astrocytomas (Liu 2012). Finally, a study that examined 

low-grade gliomas identified ATRX mutations in 12/32 samples ranging across grade II and 

III astrocytomas and oligoastrocytomas (Kannan 2013). Thus, it is clear that ATRX 

mutations represent a recurring abnormality not only in pediatric GBM, but also in adult 

gliomas across the tumour spectrum. 

Worthy of note is the frequent overlap of ATRX mutations with mutations in other genes, 

like TP53 and IDH1/2. One study identified 100% of grade II astrocytomas, grade III 

astrocytomas, and grade IV secondary GBMs that harboured ATRX mutations also showed 

alteration of IDH, and 94% showed alteration of TP53 (Jiao 2012). Conversely, ATRX 

mutations were mutually exclusive from mutations in Homolog of Drosophila capicua 

(CIC) as well as 1p/19q co-deletion (Jiao 2012). Furthermore, out of 51 samples with ATRX 

mutations, 47 samples had concurrent mutations in IDH1/2, and within this population of 

IDH-mutated tumours, ATRX mutations were associated with tumours that also harboured 

alterations in TP53 (Liu 2012). Lastly, Kannan (2013) identified 25% of adult glioma 

samples distributed across age and subtype that harboured all three mutations (IDH1, 

ATRX, and TP53). Taken together, these findings reveal a strong overlap between ATRX 

mutations and alteration of IDH and/or TP53, signifying that loss of ATRX alone is unlikely 

to direct tumorigenesis and requires additional alteration of known tumour 

suppressors/oncogenes to drive carcinogenesis. 

 

1.3.4 Association of ATRX Mutations and Alternate Lengthening of Telomeres 

(ALT) 

Cells undergoing tumorigenic transformation have the difficult job of acquiring 

immortality and this requires counteracting the gradual telomeric attrition that accompanies 

semi-conservative DNA replication. To do this, most carcinogenic cells will reactivate the 

telomerase enzyme, which is a ribonucleoprotein that can add TTAGGG nucleotides to the 

ends of chromosomes mainly through the activity of its catalytic subunit TERT (telomerase 

reverse transcriptase) (Morin 1989; Harley 2008; Günes 2013). Approximately 10-15% of 
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tumours, however, do not reactivate telomerase and instead use a mechanism called 

alternative lengthening of telomeres to maintain the length of their telomeres using 

homologous recombination mechanisms (Bryan 1995; Conomos 2012). Cells that have 

activated the ALT pathway exhibit numerous characteristics that are distinct from cells that 

express the telomerase subunit TERT. Differences include telomere length heterogeneity 

(Bryan 1995), abundant extrachromosomal linear and circular DNA (Ogino 1998), high 

frequency of telomeric sister chromatid exchange (T-SCE) events (Bechter 2004), and the 

presence of a specific subclass of PML bodies that contain telomeric DNA, shelterin 

proteins, and homologous recombination factors (Yeager 1999). Little is known about the 

molecular details of the ALT pathway, and even less about how the ALT pathway is 

initially activated in cells. Nevertheless, we do know that ALT is commonly associated 

with high amounts of genomic instability, especially at the telomeres (Lovejoy 2012), along 

with remodeling of the telomere architecture (Conomos 2012), and occurs in a particularly 

high fraction of certain tumour types like sarcomas, panNETs and brain tumours. 

As we know from loss-of-function studies, ATRX plays a major role in maintaining 

telomere stability and structure, particularly during S-phase (Watson 2013; Lovejoy 2012). 

Loss of ATRX leads to a significant increase in telomeric DNA damage and telomeric 

abnormalities, like bridging and fusions (Watson 2013; Lovejoy 2012). Given this potential 

role for ATRX in modulating telomeric chromatin, it is perhaps not surprising that ATRX 

mutation in glioma samples was highly correlated with the activation of the ALT pathway 

(Heaphy 2011; Schwartzentruber 2012; Jiao 2012; Kannan 2013). Furthermore, evaluation 

of mutations in either the ATRX gene or the TERT promoter revealed a mutual exclusivity 

of these two events, supporting the strong link between ATRX loss and the activation of 

ALT (Killela 2013). Tumours harbouring a loss of ATRX commonly show heterogeneous, 

ultrabright telomere FISH (fluorescence in situ hybridization) foci (Heaphy 2011; 

Schwartzentruber 2012; Kannan 2013), which is an established marker of ALT activation. 

As well, many human ALT cancer cell lines show a loss of ATRX function, though loss of 

ATRX alone in normal cell lines was not sufficient to induce ALT activation (Lovejoy 

2012). Thus, ATRX is required for the maintenance of the ALT phenotype, while activation 

of the ALT pathway likely requires additional genetic or epigenetic changes. 
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1.4 Hypothesis and Summary of Findings 

ATRX loss of function induces cellular phenotypes that are associated with tumorigenic 

conversion, yet it also leads to an increase in TP53-mediated cell death. Therefore, the aim 

of this study was to determine whether the deletion of both ATRX and TP53 can prevent 

apoptosis but still induce genomic instability in neuroprogenitor cells. I hypothesize that 

Atrx deletion in conjunction with the loss of TP53 function both in vitro and in vivo will 

lead to cellular phenotypes conducive to tumor development. This hypothesis was 

addressed using several mouse models that are described in subsection 2.1. 

Chapter 3 describes two in vitro systems that were developed to model the initiation and 

progression of glioma in patients harbouring mutations in Atrx and Tp53. These systems 

consist of cultured mouse neuroprogenitor cells and take advantage of the Cre/loxP system 

to recombine and silence either the Atrx gene alone, in combination with a TP53 inhibitor, 

or to silence both the Atrx and Tp53 genes simultaneously. The development and validation 

of these systems is described in subsections 3.1 and 3.3, while the phenotypic 

characterization of sequential or simultaneous loss of ATRX and TP53 function in cultured 

neuroprogenitor cells is described in subsections 3.2 and 3.4, respectively. 

Subsection 4.1 assesses available online patient data in correlation with ATRX expression 

levels or copy number variation at the ATRX locus. Genetic alteration analysis upon the 

loss of Atrx alone in the differentiated cells of the neonatal frontal cortex is examined in 

subsection 4.2.1. Finally, subsection 4.2.2 describes an in vivo model system following Atrx 

and Tp53 heterozygosity in the murine central nervous system to determine whether 

combined Atrx and Tp53 loss in vivo would affect the survival of the mice because of 

oncogenic phenotypes in the CNS.  
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CHAPTER 2 – Materials and Methods 

 

2.1 Animal Husbandry and Genotyping 

Several mouse lines were used throughout the following studies and these are summarized 

in Table 2.1. Conditional deletion of Atrx in the mouse forebrain was achieved by crossing 

AtrxloxP female mice (129Sv background) with heterozygous FoxG1-Cre recombinase 

knock-in males (129Sv/FVBN mixed background). AtrxloxP mice contain loxP sites 

flanking intron 18 of Atrx (see Fig. 1.1). The FoxG1-Cre recombinase gene directs 

recombination and silencing of Atrx specifically in the mouse forebrain beginning at 

embryonic day 8.5 (E8.5; Hebert 2000). Control male animals harbour the FoxG1-Cre 

recombinase gene, but lack the AtrxloxP allele (Atrxwt/y Cre+), while experimental male 

animals have both the AtrxloxP allele along with the FoxG1-Cre recombinase knock-in gene 

(AtrxloxP/y Cre+) (Table 2.1). AtrxloxP mice were kindly provided by D. Higgs (Weatherall 

Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom) and 

the FoxG1-Cre recombinase mice were provided by R. Slack (Ottawa Hospital Research 

Institute, Ottawa, Ontario) from a line originally obtained from S. McConnell (Stanford 

University, Stanford, California, USA).  

A second approach was taken to achieve conditional deletion of Atrx using the Nestin-Cre 

recombinase transgenic driver line (Tronche 1999). The Nestin promoter drives the 

expression of Cre recombinase across the entire mouse central nervous system (CNS) 

beginning at E11.5. Thus, combination of Nestin-Cre recombinase with the AtrxloxP mice 

results in recombination and silencing of Atrx throughout the mouse CNS starting at 

embryonic day 11.5. Control female animals carry one copy of the floxed Atrx allele and 

one wildtype Atrx allele, and do not carry the Nestin-Cre recombinase gene (AtrxloxP/wt Nes-

Cre-). Experimental females still carry one Atrx floxed allele and also harbour the Nestin-

Cre recombinase gene (AtrxloxP/wt Nes-Cre+). 

To achieve Atrx and Tp53 heterozygosity in the mouse CNS, mice harbouring a Tp53-null 

allele   (Tp53-/-; Jacks 1994)   (Jackson Laboratories)   were  mated  with  the  AtrxloxP/wt  
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Table 2.1   Summary of mouse genotypes used within this thesis. 

 

Genotype Description Short Form 

Atrxwt/y FoxG1-Cre+ Cre recombinase positive male 

control 

Cre+ control 

AtrxloxP/y FoxG1-Cre+ Atrx-null male experimental Atrx-null 

Atrxwt/y Tp53wt/wt Wildtype male control Wildtype 

AtrxloxP/y Tp53wt/wt Atrx floxed, Tp53 wildtype 

male control 

Atrx floxed 

Atrxwt/y Tp53loxP/loxP Atrx wildtype, Tp53 floxed 

male control 

Tp53 floxed 

AtrxloxP/y Tp53loxP/loxP Atrx floxed, Tp53 floxed male 

experimental 

Double floxed 

AtrxloxP/wt Nestin-Cre- Tp53+/+ Cre recombinase negative 

wildtype female control 

Wildtype 

AtrxloxP/wt Nestin-Cre+ Tp53+/+ Atrx heterozygous, Tp53 

wildtype female control 

Atrx het 

 

AtrxloxP/wt Nestin-Cre- Tp53+/- Atrx wildtype, Tp53 

heterozygous female control 

Tp53 het 

AtrxloxP/wt Nestin-Cre+ Tp53+/- Atrx heterozygous, Tp53 

heterozygous female 

Double het 
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Nes-Cre+ mice to create AtrxloxP/wt Nes-Cre+ Tp53+/- experimental mice. These mice are 

heterozygous for Atrx and are mosaic for ATRX expression within the entire CNS. 

Additionally, these mice carry a loss of one Tp53 allele throughout the entire body. Control 

animals were also created from these crosses, including fully wildtype mice (AtrxloxP/wt Nes-

Cre- Tp53+/+), mice heterozygous for only Atrx (AtrxloxP/wt Nes-Cre+ Tp53+/+) and mice 

heterozygous for only Tp53 (AtrxloxP/wt Nes-Cre-T Tp53+/-) (Table 2.1). 

To achieve conditional and inducible deletion of both Atrx and Tp53 in vitro, we had to 

first generate AtrxloxP/loxP Tp53loxP/loxP double floxed mice. Tp53loxP/loxP mice (Jackson 

Laboratories, Bar Harbour, Maine, USA) carry two Tp53 alleles with loxP sites flanking 

exons 2 to 10 of the gene (Marino 2000). Tp53loxP/loxP mice were crossed with the previously 

described AtrxloxP/loxP mice to eventually generate AtrxloxP/loxP Tp53loxP/loxP double floxed 

mice. These mice were used for in vitro studies, and thus mating of AtrxloxP/wt Tp53loxP/wt 

females with AtrxloxP/y Tp53loxP/wt males could generate AtrxloxP/loxP Tp53loxP/loxP double 

floxed embryos, along with the necessary controls: AtrxloxP/loxP Tp53wt/wt (Atrx floxed), 

Atrxwt/wt Tp53loxP/loxP (Tp53 floxed), and Atrxwt/wt Tp53wt/wt (wildtype) embryos (Table 2.1). 

For embryonic studies, midday of the day of vaginal plug discovery was considered E0.5. 

At scheduled gestational time points, typically E13.5, pregnant dams were euthanized by 

CO2 suffocation. For postnatal studies, midday of the day of birth was considered P0.5. 

Animals younger than P10 were euthanized by cervical dislocation, and older animals were 

euthanized by CO2 suffocation. All animal studies were conducted in compliance with the 

regulations of The Animals for Research Act of the province of Ontario, the guidelines of 

the Canadian Council for Animal Care and the policies and procedures approved by the 

University of Western Ontario Council on Animal Care (Appendix A). 

For genotyping, tail or ear notch samples from mice were digested and genomic DNA was 

extracted using DirectPCR and proteinase K (Thermo Scientific). DNA from these samples 

was then genotyped by PCR using primer sets for Atrx (17F, 18R and neoR), Tp53 

(Tp53floxF and Tp53floxR; AM3, AM4 and neoF), Cre (Cre3b and Cre5b), and Sry (SryF 

and SryR), as listed in Table 2.2. 
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Table 2.2   List of oligonucleotides used in genotyping, qRT-PCR and in situ 

hybridization. 
 

Primers used for genotyping of animals 

17F:  5`- AGAACCGTTAGTGCAGGTTCA - 3` 

18R:  5`- TGAACCTGGGGACTTCTTTG - 3` 

neoR:  5`- CCACCATGATATTCGGCAAG - 3` 

Cre3b:  5`- TGACCAGAGTCATCCTTAGCG - 3` 

Cre5b:  5`- AATGCTTCTGTCCGTTTGCC - 3` 

SryF:  5`- GCAGGTGGAAAAGCCTTACA - 3` 

SryR:  5`- AAGCTTTGCTGGTTTTTGGA - 3` 

Tp53floxF: 5`- GGTTAAACCCAGCTTGACCA - 3` 

Tp53floxR: 5`- GGAGGCAGAGACAGTTGGAG - 3` 

AM3:  5`- ATAGGTCGGCGGTTCAT - 3` 

AM4:  5`- CCCGAGTATCTGGAAGACAG - 3` 

neoF:  5`- GATCGGCCATTGAACAAGAT - 3` 

 

 

Primers used to amplify cDNA for RT-PCR 

Atrx F:  5` - AGAACCGTTAGTGCAGGTTCA - 3` 

Atrx R: 5` - TGAACCTGGGGACTTCTTTG - 3` 

Gapdh F: 5` - GACAAGCTTCCCGTTCTCAG - 3` 

Gapdh R: 5` - GAGTCAACGGATTTGGTCGT - 3` 

βactin F: 5` - CTGTCGAGTCGCGTCCACCC - 3` 

βactin R: 5` - ACATGCCGGAGCCGTTGTCG - 3` 

Cxcl12 F: 5` - GTCCTCTTGCTGTCCAGCTC - 3` 

Cxcl12 R: 5` - AGATGCTTGACGTTGGCTCT - 3` 

Mmp2 F: 5` - ACCAGAACACCATCGAGACC - 3` 

Mmp2 R: 5` - AAAGCATCATCCACGGTTTC - 3` 

Mmp14 F: 5` - CCCAAGGCAGCAACTTCAG - 3` 
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Mmp14 R: 5` - ATCAGCCTTGCCTGTCACTT - 3` 

Igfbp2 F: 5` - CACATCCCCAACTGTGACAA - 3` 

Igfbp2 R: 5` - GCTGGGGTTTACTGCACACT - 3` 

Gsn F:  5` - TGCTGCCATCTTTACTGTGC - 3` 

Gsn R:  5` - AAACTGTCCCAGGACACAGG - 3` 

Lox F:  5` - TAGGGCGGATGTCAGAGACT - 3` 

Lox R:  5` - CCTTCAGCCACTCTCCTCTG - 3` 

Mdk F:  5` - CCTGCAACTGGAAGAAGGAA - 3` 

Mdk R: 5` - GAGGTGCAGGGCTTAGTCAC - 3` 

ErbB3 F: 5` - TACTGGTGGCCATGAATGAA - 3` 

ErbB3 R: 5` - CTCAATGTAAACGCCCCCTA - 3` 

FoxC1 F: 5` - AGTTCATCATGGACCGATTC - 3` 

FoxC1 R: 5` - TCCTTCACTGCGTCCTTCTT - 3` 

FoxC2 F: 5` - ATGTTCGAGAATGGCAGCTT - 3` 

FoxC2 R: 5` - GGGCACATCCTTCTTCTTGA - 3` 

S100A11 F: 5` - GCATTGAGTCCCTGATTGCT - 3` 

S100A11 R: 5` - ATCTAGCTGCCCGTCACAGT - 3` 

Ahnak F: 5` - TGAGCAGAGTCCTGCAAAGA - 3` 

Ahnak R: 5` - ACTGGGTCACCTCACCAGAC - 3` 

Wnt5a F: 5` - GGTGCCATGTCTTCCAAGTT - 3` 

Wnt5a R: 5` - CTTCGCACCTTCTCCAATGT - 3` 

Wnt7b F: 5` - GCGTCCTCTACGTGAAGCTC - 3` 

Wnt7b R: 5` - GGAGTTCTTGCCCGAAGAC - 3` 

Fzd7 F: 5` - GCTTCCTAGGTGAGCGTGAC - 3` 

Fzd7 R: 5` - CAACCCGACAGGAAGATGAT - 3` 

Akt F:  5` - GGCAGGAAGAAGAGACGATG - 3` 

Akt R:  5` - CCTGTGGCCTTCTCTTTCAC - 3` 

Erk1 F: 5` - TCCTTTTGAGCACCAGACCT - 3` 

Erk1 R: 5` - AGCAGATGTGGTCATTGCTG - 3` 

Erk2 F: 5` - ACACGCAGCTGCAGTACATC - 3` 

Erk2 R: 5` - AACATTCTCATGGCGGAATC - 3` 
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Primers used to create DIG-labelled anti-sense RNA probes for ISH 

ErbB3 SP6 F: 5` - CGATTTAGGTGACACTATAGAATA-

GAAGTGTGAGGTGGTCATGGGTAAC - 3` 

ErbB3 T7 R: 5` - GTAATACGACTCACTATAGGG-

CACGAACCCATCGATATTGCTAGAG - 3` 
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2.2 Quantitative Real Time PCR (qRT-PCR) 

Control and experimental mouse forebrains were dissected at birth (P0.5), tissue was 

homogenized, and RNA was extracted using the RNeasy® Mini or Micro Kit (Qiagen). 

Extracted RNA was subsequently reverse transcribed into cDNA using the following 

conditions: RNA (1ug), DEPC-H2O and random primers were heated for ten minutes at 

65°C, and then incubated on ice for two minutes. Following this, 5X first strand buffer, 

100mM DTT, 25nM dNTPs, Superscript Reverse Transcriptase, RNA guard and more 

DEPC-H2O are added to the reaction mixture and then incubated first for ten minutes at 

30°C and then for forty-five minutes at 42°C. Resulting cDNA was quantified and stored 

at -20°C. Control reactions omitting reverse transcriptase enzyme were prepared in parallel. 

cDNA prepared from extracted RNA was used for qRT-PCR using the primers listed in 

Table 2.2. Amplification of cDNA was done by mixing cDNA with primers, H2O and iQTM 

SYBR® Green mastermix (BioRad) and placing the reaction mixture under the following 

conditions: 30-35 cycles of 95°C for 10 seconds, 55°C for 20 seconds, 72°C for 30 seconds, 

and a final melting curve generated in increments of 1°C per plate read. Experiments were 

performed on a Chromo-4 thermocycler, and gene expression levels were analyzed with 

Opticon Monitor 3 and GeneX (BioRad) software. Gene expression analysis was repeated 

in duplicate for each primer set, and all primer data were corrected against β-actin or Gapdh 

expression levels as an internal control. To confirm correct gene amplification, 20µL of 

qRT-PCR product was size-sorted on a 1.5% agarose gel by electrophoresis. 

 

2.3 In Situ Hybridization 

DIG-labelled (dioxygenin; Roche Diagnostics) anti-sense RNA probes were made using 

gel extracted cDNA (1ug), T3 5x buffer, RNase Guard (Qiagen), 10X DIG-UTP, T7 RNA 

polymerase (Affymetrix) and DEPC-H2O. The resulting DIG-labelled RNA probes, diluted 

in hybridization buffer, were mixed and heated at 70°C for 10 minutes, and subsequently 

overlaid onto 8µm brain cryosections and incubated overnight at 65°C. Following the 

overnight incubation, hybridized cryosections were then washed several times in wash 
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buffer and 1x MABT. Slides were then blocked in sheep serum plus blocking solution for 

1 hour, and then incubated in anti-DIG antibody diluted in blocking solution overnight at 

room temperature. Following anti-DIG incubation, slides were then washed several times 

in 1x MABT and prestaining buffer, and subsequently incubated in staining buffer – 

including 315µL of NBT and 245µL of BCIP (Roche Diagnostics) – for 4 to 24 hours in 

the dark. Once the correct staining end point was achieved, slides were then washed in 

various concentrations of ethanol and xylene, and coverslips were placed over stained 

sections using Permount mounting medium (Fischer Scientific). Stained and coverslipped 

sections were visualized with a Leica CTR 6500 microscope, and images were manipulated 

using Volocity® software (PerkinElmer Inc., Massachussets, USA). 

 

2.4 Western Blot Analysis 

Fresh tissue or cells in culture were mixed with ice cold RIPA buffer (3mL per gram of 

tissue, or 50µL per well of a 4-well plate of cultured cells) and homogenized. Cells in RIPA 

buffer were then incubated on ice for 30 minutes, transferred to a cold 1.5 mL Eppendorf 

tube, and then spun in a cold centrifuge at 13000 RPM for 20 minutes. The supernatant was 

then transferred to a new, cold 1.5mL Eppendorf tube, and the cell pellet was discarded. 

Protein concentration was measured using a Bradford assay (BioRad), and protein extracts 

were stored at -80°C. 

Polyacrylamide gels, including a separating gel (6, 10, 12, or 15%) and a stacking gel (4%), 

were made, and protein samples were thawed and denatured at 90°C for 10 minutes. 25µL 

of samples in 1x loading buffer were loaded into the gel, along with 8µL of protein ladder 

(BioRad), and gels were run at 90V for 30 minutes followed by 125-130V for 2 hours in 

1X running buffer. Following protein separation, gels were transferred to nitrocellulose 

membranes (BioTraceTM, Pall Life Sciences) at 75V for 2 hours in 1X transfer buffer. 

Transferred nitrocellulose membranes were then blocked with 5%-milk-TBST or 5% BSA 

for 1 hour, and incubated with the primary antibody diluted in either 5%-milk-TBST or 5% 

BSA overnight at 4°C. Following primary antibody incubation, membranes were washed 

in 1X TBST and incubated with the secondary antibody diluted in 5%-milk-TBST or 5% 
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BSA for 1 hour at room temperature. Membranes were then washed, incubated in ECL 

(enhanced chemiluminescence) for approximately 1 minute, and subsequently imaged onto 

film using a Konica Minolta SRX-101A developer. 

 

2.5 Immunofluorescence 

Brains dissected at birth (P0.5) were embedded in OCT (optimal cutting temperature) 

medium, snap frozen in liquid nitrogen, and stored at -80°C. Brains were subsequently 

cryosectioned coronally at a thickness of 8uM. Coronal cryosections (Fig. 2.1) were thawed 

at room temperature for one hour and subsequently rehydrated in 1X PBS for five minutes. 

Antigen retrieval was performed, if necessary, by placing slides in warm sodium citrate and 

heated at a low level for ten minutes. Still in sodium citrate, slides were then left to cool for 

20 minutes and subsequently washed two times in 1X PBS and two times in 1X PBS+0.3% 

TritonX-100 to permeabilize the cell membranes. Following permeabilization, slides were 

incubated with primary antibody diluted in 1X PBS+0.3% TX-100 and 1% BSA overnight 

at 4°C. Primary antibody was then washed off with 1X PBS plus 0.3% TritonX-100 and 

slides were incubated in secondary antibody diluted in 1X  PBS+0.3% TritonX-100 and 

1% BSA for 1 hour at room temperature in the dark. Following secondary antibody 

incubation, slides were washed with 1X PBS+0.3% TritonX-100, counterstained with 

DAPI, and subsequently mounted and visualized with a Leica CTR 6500 microscope. 

Cells in culture were washed with 1X PBS and fixed in ice cold 4% PFA for ten minutes. 

Following fixation, cells were was two times in 1X PBS and then two times in 1X 

PBS+0.3% TritonX-100 to permeabilize cell membranes. Cells were then incubated in 

primary antibody diluted in 1X PBS+0.3% TritonX-100 for 1 hour at room temperature. 

Primary antibody was washed off with 1X PBS+0.3% TritonX-100, and cells were 

subsequently incubated in secondary antibody diluted in 1X PBS+0.3% TritonX-100 for 

45 minutes at room temperature in the dark. Following secondary antibody incubation, cells 

were washed, counterstained with DAPI, and visualized using a Leica CTR 6500 

microscope. Image analysis was performed using Volocity® and ImageJ Software® 

(National Institutes of Health, Maryland, USA). 
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Figure 2.1 Regions of the mouse brain used for experimental analyses. (A) Image of 

the mouse brain with the cortical lobes outlined, along with axes indicating coronal and 

sagittal section orientations. (B) Sagittal view of the adult brain at one year of age. 

Images were adapted from the Allen Brain Atlas website, available online at www.brain-

map.org.  
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2.6 Haematoxylin and Eosin Staining 

Sagittal cryosections (8uM; Fig. 2.1) were rehydrated in 70% ethanol for 2 minutes and 

subsequently stained with CAT Haematoxylin and Eosin Y (H&E; BioCare Medical) for 2 

minutes each. Next, slides were dehydrated in increasing ethanol concentrations followed 

by xylene washes. Coverslips were then placed onto stained sections using Permount, and 

H&E stained and coverslipped cryosections were then viewed and imaged using a Leica 

CTR 6500 microscope. 

 

2.7 Neuroprogenitor Cell (NPC) Culture 

Pregnant dams were anesthetized and euthanized at embryonic day 13.5 (E13.5) and mouse 

embryonic frontal cortices were dissected. At this timepoint, the embryonic cortex is 

undergoing a major wave of neurogenesis followed by a period of neuronal differentiation 

which terminally differentiates the neuroprogenitors of the brains into cortical neurons 

(Slack 1998). Cortical dissection at E13.5 was followed by trituration and plating of cortical 

cells onto poly-L-lysine coated 4-well plates. Neuroprogenitor cells were cultured in vitro 

in proliferation media – 1% N2 Supplement, 1% penstrep, and 1% glutamax in Neurobasal 

media (Gibco®, Life Technologies Inc.) – for two days. After two days in vitro (DIV), 

proliferation media was removed and cells were differentiated through the addition of 2% 

B-27 Supplement, 1% penstrep, 1% glutamax, and 0.1% bFGF in Neurobasal media 

(Gibco®, Life Technologies Inc.) for a further 4 to 8 DIV. In some cases, either 20µM 

DMSO or 20µM cPFTα (Sigma) diluted in DMSO was added upon cellular differentiation. 

Drugs were administered every 24 hours, and media was changed every 48 hours. 

 

2.8 Adenovirus-Cre Recombinase Infection of Neuroprogenitor Cells 

Pregnant dams were anesthetized and euthanized 13.5 days following plug detection 

(E13.5), and embryos were removed. Embryonic cortices were dissected, triturated, and 

neuroprogenitor cells were cultured in vitro in proliferation media for two days. After two 

DIV, cells were infected with an adenovirus expressing either only the Green Fluorescent 
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Protein (GFP) (ad-GFP) or expressing the Cre Recombinase gene linked to GFP (ad-

CreGFP) for 1.5 to 2 hours at 37°C. 

Following adenovirus infection, cells were differentiated through the addition of 

differentiation media for a further 4 to 8 DIV. Differentiation media was changed every 48 

hours, and cells were viewed and imaged using a Leica CTR 6500 microscope to look for 

correct GFP expression, indicating adenoviral infection. 

 

2.9 Trypan Blue Dye Exclusion Assay 

Neuroprogenitor cells in culture were trypsinized for 25 to 30 minutes at 37°C in 1X trypsin 

(Gibco) diluted in 1X PBS. Cells were lifted off the plate through mechanical perturbation, 

and cell suspensions were placed into 1.5mL Eppendorf tubes and spun in a cold centrifuge 

at 1400 RPM for 10 minutes. Cell pellets were then resuspended in 1X PBS and mixed at 

a 1:1 ratio with Trypan Blue (Sigma). The number of blue versus white cells was then 

counted using a haemocytometer, and percent viability was calculated as follows: % 

viability = (# white cells) / (# white + blue cells). 

 

2.10 Database Mining 

Data was collected from The Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/; 

n=483) and Catalogue of Somatic Mutations in Cancer (COSMIC; 

http://cancer.sanger.ac.uk/; n=24) databases for tumour samples across the glioma 

spectrum. Expression levels and copy number variation (CNV) for ATRX was examined 

and compared to the expression of other tumour suppressor genes, like TP53, or oncogenes, 

like IDH. ATRX expression and CNV was also compared to survival time and age of 

diagnosis of patients, as well as to tumor grade. Statistical analysis was performed using 

GraphPad Prism® software (GraphPad Software, Inc., California, USA). 
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CHAPTER 3 – In Vitro Modelling of Gliomagenesis 

 

3.1 Sequential inactivation of Atrx and Tp53 in cultured NPCs 

Previous studies identified a significant overlap between mutations in ATRX and TP53 in 

glioblastoma multiforme patients (Schwartzentruber 2012; Liu 2012; Kannan 2013). We 

know from work in our lab that the loss of Atrx in primary mouse NPCs is detrimental to 

cellular viability, genomic stability, and telomeric maintenance (Bérubé 2005; Watson 

2013). Furthermore, combined loss of Atrx and Tp53 in vivo is associated with a further 

increase in genomic instability, along with a rescue in cell death in cortical neurons at an 

embryonic timepoint (Seah 2008). Thus, combinatorial loss of Atrx and Tp53 promotes 

NPC survival in vivo, and I propose that loss of both ATRX and TP53 protein expression 

may lead to the onset of tumorigenic phenotypes. To test this in vitro, we set up a cell 

culture system with sequential loss of ATRX and TP53 function in primary NPCs. 

To examine the effects of ATRX and TP53 deficiency in mouse NPCs grown in vitro, 

primary cultures were established from Atrx-null (Atrxf/y FoxG1-Cre+) and control (Atrxwt/y 

FoxG1-Cre+) embryonic cortices. After two days in vitro (DIV), the cells were 

differentiated and treated with either 20µM cyclic Pifithrin-α (cPFTα), a reversible 

inhibitor of the transcriptional activation activities of TP53 (Zuco 2008), or with DMSO 

alone as a control, for four DIV. To confirm the genotyping results, I performed western 

blot analysis of protein extracts obtained from cultured Atrx-null and Cre+ control NPCs 

treated with either DMSO or with 20µM cPFTα (Fig. 3.1). Control cells, despite carrying 

the FoxG1-Cre recombinase gene, do not harbour the floxed Atrx allele, and thus express 

wildtype levels of ATRX protein. This result was validated for control cells treated with 

either DMSO alone or 20µM cPFTα diluted in DMSO (Fig. 3.1). NPCs obtained from Atrx-

null (Atrxf/y FoxG1-Cre+) embryos show a loss of the ATRX protein, indicating excellent 

dissection specificity. Again, this result was seen in Atrx-null cells treated both with DMSO 

or cPFTα (Fig. 3.1). As expected, levels of TP53 protein expression remained constant 

across both the control and Atrx-null cultured NPCs treated with either DMSO or cPFTα 

(Fig. 3.1).   These  results  validate the  ability of  FoxG1-Cre recombinase  in deleting the 
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Figure 3.1. Immunoblot validation of ATRX and TP53 protein expression levels in 

DMSO- and cPFTα-treated neuroprogenitor cells in culture. Control and Atrx-null 

neuroprogenitor cells were grown in vitro and treated with either DMSO alone or with 

20µM cPFTα. Protein extracts were taken from cells in culture after six DIV, and the 

expression levels of ATRX and TP53 were assessed. 
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floxed Atrx allele in our cell model while not affecting expression levels of TP53. As well, 

these results indicate the sensitivity and specificity of the Cre/loxP system in recombining 

and silencing specific gene targets in cultured mouse NPCs. 

 

3.2 Characterization of sequential Atrx and Tp53 inactivation in mouse NPCs 

Loss of ATRX in NPCs is associated with genomic insult, indicated by an increased number 

of cells with γH2A.X foci, some of which overlap with telomeres (Watson 2013). We 

further demonstrated that this genomic instability is exacerbated upon the combinatorial 

loss of Atrx and Tp53 in vivo (Watson 2013). I therefore wanted to establish whether this 

occurs in vitro. Control NPCs grown for six DIV and treated with either DMSO or cPFTα 

exhibit a basal level of genomic instability indicated by low levels of immunostaining for 

the histone variant γH2A.X, which marks sites of DNA damage, measured on the sixth 

DIV. Atrx-null mouse NPCs treated with DMSO alone show amplified DNA damage 

qualitatively (Fig. 3.2), as demonstrated by an increase in γH2A.X foci. As well, the relative 

number of γH2A.X stained pixels in the images were quantified using ImageJ Software®, 

and an increase in the relative mean gray value compared to control NPCs was seen (Fig. 

3.2). Administration of 20µM cPFTα to Atrx-null NPCs in culture lead to a further, albeit 

slight, quantitative increase in γH2A.X immunostaining (Fig. 3.2), suggestive of an 

increased number of surviving cells despite enhanced DNA damage upon the loss of both 

ATRX and TP53 function in mouse NPCs in vitro. 

I next examined the effect of sequential ATRX and TP53 inactivation on NPC survival in 

vitro, using the trypan blue dye exclusion assay. NPCs were grown in culture for 2 DIV 

followed by differentiation and treatment with either DMSO alone or cPFTα every 24 hours 

for another 4 DIV. Cellular viability was then measured at 6 DIV. Atrx-null mouse NPCs 

treated with DMSO alone had reduced cellular viability compared to Cre+ control cells 

treated with DMSO (Fig. 3.3). However, Atrx-null mouse NPCs treated with 20µM cPFTα 

showed restored cellular viability comparable to Cre+ control cells treated either with 

DMSO or cPFTα (Fig. 3.3). These results demonstrate that the loss of ATRX alone in 

mouse NPCs  in vitro is associated with reduced cellular viability,  and that loss of  ATRX  
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Figure 3.2. Immunofluorescence assessment of DNA damage foci in DMSO- or 

cPFTα-treated neuroprogenitor cells. Control (Atrxwt/y FoxG1-Cre+) and Atrx-null 

(Atrxf/y FoxG1-Cre+) neuroprogenitor cells were grown in vitro for 6 days and treated 

with either DMSO or 20µM cPFTα. (A) Cells were fixed and immunostained for 

γH2A.X (green), a histone variant that marks double stranded DNA breaks. Cell nuclei 

were counterstained with DAPI (blue), and images were taken at 10X magnification. 

Scale bar = 200µm. (B) Quantification of γH2A.X staining density relative to total DAPI 

staining intensity. n=3, p<0.05. 

  



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

         ATRX
wt/y

 Cre
+

        ATRX
f/y

 Cre
+

 
 

  
  
  
 c

P
F

T
α

 
 

 
  

  
  
  
D

M
S

O
 

γH2A.X 

A 

B 

R
el

at
iv

e 
M

ea
n
 G

ra
y
 V

al
u
e
 

* 
* 

Cre+ CTRL 

Atrx-null 

   DMSO  cPFTα 



 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Cellular viability in DMSO- and cPFTα-treated neuroprogenitor cells in 

vitro. Control and Atrx-null neuroprogenitor cells were grown in culture for 6 days and 

treated with either DMSO alone or 20µM cPFTα. Cellular viability was measured after 

six DIV using a trypan blue dye exclusion assay. n=4, *p<0.05. 
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followed by TP53 inhibition enables these cells to survive despite high levels of genomic 

instability. 

Thus, loss of ATRX alone in mouse NPCs causes an accumulation of DNA damage and 

reduces cellular viability compared to control cells grown in the same conditions. However, 

genetic loss of Atrx, paired with inhibition of TP53 through administration of cyclic-PFTα, 

is associated with restored levels of cellular viability, explaining the accumulation of NPCs 

exhibiting excess DNA damage. These results indicate that inhibition of the transcriptional 

activation activities of TP53, in combination with genetic inactivation of Atrx, induces 

genomic instability and promotes cellular survival in vitro. 

 

3.3 Simultaneous deletion of Atrx and Tp53 in cultured NPCs  

A second in vitro system was developed following the generation of Atrx and Tp53 double 

floxed mice in order to provide a more complete and sustained inactivation of both genes. 

This second system uses the Cre/loxP system and adenoviral infection to simultaneously 

delete Atrx and Tp53 in cultured NPCs in vitro. Atrxf/y Tp53f/f (double floxed) NPCs are 

hemizygous for the Atrx floxed allele and homozygous for the Tp53 floxed allele. Atrx-

floxed (Atrxf/y Tp53wt/wt), Tp53-floxed (Atrxwt/y Tp53f/f), and wildtype (Atrxwt/y Tp53wt/wt) 

NPCs were also grown in vitro and used as controls. After two DIV, cultured NPCs were 

differentiated and infected with an adenovirus carrying Cre recombinase linked to the 

Green fluorescent protein gene (ad-CreGFP), which will recombine and delete sequences 

flanked by loxP sites. Infected cells will also fluoresce green because of the expression of 

GFP. Through this approach, NPCs lacking ATRX and TP53 proteins (double-null) were 

created, along with cells harbouring a loss of only ATRX (ATRX-null) or only TP53 

(TP53-null). Wildtype cells infected with ad-CreGFP were used to control for effects of 

Cre recombinase expression. Additionally, an adenovirus carrying only the GFP gene and 

lacking the Cre recombinase gene (ad-GFP) was used on cultured NPCs to control for any 

effects of adenovirus infection. 
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Green fluorescence was observed in NPCs of all genotypes infected with either ad-GFP or 

ad-CreGFP, indicating that adenovirus infection was successful. Examination of cellular 

appearance indicated that adenovirus infection did not affect cell morphology after four 

DIV (Fig. 3.4). As NPCs differentiate in vitro, they begin to develop characteristics of 

neurons: long finger-like processes reaching out in all directions, large cell bodies, groups 

of cells growing in clumps, and cell colonies growing flat (horizontally) along the plate 

(Leach 2011). The wildtype, Atrx-floxed, Tp53-floxed, and double floxed cells treated with 

ad-GFP demonstrated these characteristics, indicating that adenovirus infection does not 

affect cellular morphology at a qualitative level. Additionally, wildtype NPCs infected with 

ad-CreGFP also showed these neuronal characteristics, indicating that Cre recombinase 

expression does not affect cellular morphology (Fig. 3.4). Thus, adenovirus infection of 

NPCs was successful and was not associated with gross cellular morphological alterations. 

I next performed western blot analyses to verify deletion of ATRX and TP53 in the 

appropriate cells. Immunoblot analysis was performed on cellular extracts obtained from 

wildtype (Atrxwt/y Tp53wt/wt), Atrx-floxed (Atrxf/y Tp53wt/wt), and double floxed (Atrxf/y 

Tp53f/f) cells in culture infected with either ad-GFP or ad-CreGFP. ATRX and TP53 

proteins were present in all genotypes treated with ad-GFP, demonstrating that adenovirus 

infection alone does not lead to alterations in ATRX or TP53 protein levels (Fig. 3.5). 

Wildtype (Atrxwt/y Tp53wt/wt) NPCs treated with ad-CreGFP also show normal ATRX and 

TP53 protein levels. Upon ad-CreGFP infection, Atrx-floxed (Atrxf/y Tp53wt/wt) NPCs show 

a reduction of ATRX alone, while double floxed (Atrxf/y Tp53f/f) NPCs show a reduction of 

both ATRX and TP53 protein expression (Fig. 3.5). These results validate efficient Cre-

mediated recombination of the Atrx and Tp53 floxed alleles. The substantial decrease in 

protein levels upon ad-CreGFP infection relative to ad-GFP infection indicates a high 

infection and recombination efficiency in NPCs using this approach. 

 

3.4 Characterization of simultaneous ATRX and TP53 loss in mouse NPCs 

Following successful validation of adenovirus infection in mouse NPCs, 

immunofluorescence  staining  was  performed  for  the  histone  variant  γH2A.X  to  assess  
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Figure 3.4.  Green fluorescence validation of adenovirus infection in ad-GFP and ad-

CreGFP infected neuroprogenitor cells. Wildtype (Atrxwt/y Tp53wt/wt; A, A’), Atrx-

floxed (Atrxf/y Tp53wt/wt; B, B’), Tp53-floxed (Atrxwt/y Tp53f/f; C, C’), and double floxed 

(Atrxf/y Tp53f/f; D, D’) neuroprogenitor cells were grown in culture for two DIV and 

subsequently differentiated and infected with either ad-GFP (A, B, C, D) or ad-CreGFP 

(A’, B’, C’, D’). GFP expression (green) was assessed after four DIV to examine 

adenovirus infection efficiency. Scale bar=200µm.  
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Figure 3.5.  Immunoblot validation of Cre recombinase activity in infected 

neuroprogenitor cells. Wildtype (Atrxwt/y Tp53wt/wt), Atrx-floxed (Atrxf/y Tp53wt/wt), and 

double floxed (Atrxf/y Tp53f/f) neuroprogenitor cells were grown in vitro for two days 

and subsequently infected with either ad-GFP or ad-CreGFP. After six DIV, protein 

extracts were taken from cells in culture, and ATRX and TP53 protein levels were 

assessed via immunoblotting techniques. INCENP and α-tubulin were assessed as 

loading controls. 
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genomic instability upon the simultaneous loss of ATRX and TP53 in NPCs in vitro. Ad-

GFP infected double floxed NPCs in culture are comparable to wildtype cells, as they do 

not show loss of ATRX or TP53 protein expression and appear morphologically similar to 

controls. Staining for γH2A.X in these cells was minimal, indicative of very little DNA 

damage occurring in these double floxed cells treated with ad-GFP (Fig. 3.6). However, 

double floxed NPCs treated with ad-CreGFP and immunostained for γH2A.X show an 

increase in the number of cells with DNA damage foci, indicative of the induction of 

excessive genomic instability in these cells upon loss of ATRX and TP53 expression (Fig. 

3.6). Similar to the results seen in the previous in vitro system outlined in section 3.1, the 

simultaneous loss of ATRX and TP53 in NPCs grown in culture leads to a much more 

robust and significant increase in genomic insult. 

Cellular viability was measured in wildtype (Atrxwt/y Tp53wt/wt), Atrx-floxed (Atrxf/y 

Tp53wt/wt), and double floxed (Atrxf/y Tp53f/f) NPCs infected with either ad-GFP or ad-

CreGFP using the trypan blue dye exclusion assay. All genotypes infected with ad-GFP 

alone showed high levels of cellular viability (Fig. 3.7), demonstrating that adenovirus 

infection does not have disruptive effects on cell survival. Additionally, wildtype cells 

treated with ad-CreGFP showed no reduction in cellular viability, indicating that Cre 

recombinase expression in NPCs does not have negative effects on cellular survival relative 

to ad-GFP infected controls (Fig. 3.7). However, Atrx-floxed NPCs treated with ad-

CreGFP show reduced cellular viability, consistent with previous results showing 

decreased cellular survival in Atrx-null NPCs. Simultaneous loss of ATRX and TP53 via 

ad-CreGFP infection of double floxed NPCs results in restored cellular viability, 

comparable to ad-GFP infected and wildtype controls (Fig. 3.7). These results indicate that 

the additional loss of TP53 allows ATRX-null NPCs to survive despite the massive 

induction of genomic instability in these cells. 

 

3.5 Summary of Results 

To summarize, research is identifying large cohorts of glioma patients harbouring 

mutations  in  both  ATRX  and  TP53.  We  know  that  ATRX  loss  alone  does  not  induce 
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Figure 3.6.  Immunofluorescence assessment of DNA damage in ad-GFP and ad-

CreGFP infected neuroprogenitor cells in vitro. Double floxed (Atrxf/y Tp53f/f) 

neuroprogenitor cells were grown in culture for two days and subsequently infected with 

either ad-GFP or ad-CreGFP. After six DIV, cells were fixed and immunostained for 

γH2A.X (red) to assess DNA damage. GFP expression (green) indicates cells that have 

been successfully infected with the adenovirus. Scale bar=200µm. 
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Figure 3.7.  Cellular viability of ad-GFP and ad-CreGFP infected neuroprogenitor 

cells in vitro. Wildtype (Atrxwt/y Tp53wt/wt), Atrx-floxed (Atrxf/y Tp53wt/wt), and double 

floxed (Atrxf/y Tp53f/f) cells were grown in culture for two days and subsequently 

differentiated and infected with either ad-GFP or ad-CreGFP. After six DIV, cellular 

viability was assessed using a trypan blue dye exclusion assay. n=3, *p<0.05. 
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carcinogenesis; in fact, ATRX loss is associated with the stabilization of TP53 and 

activation of its downstream apoptotic pathways (Seah 2008; Watson 2013). Examination 

of Atrx and Tp53 inactivation in cultured NPCs, both sequentially and simultaneously, 

identified increased genomic insult and restored cellular viability in both systems. These 

phenotypes are common characteristics of tumorigenic cells and may provide a model of 

early events in gliomagenesis. Furthermore, these results may afford insight into the 

molecular mechanisms of subpopulations of glioma that carry a loss of both ATRX and 

TP53 expression in vivo.  
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CHAPTER 4 – In Vivo Modelling of Gliomagenesis 

 

4.1 Database Mining to Investigate Known ATRX Loss-of-Function Mutations 

ATRX mutations have been identified in different types of cancers, and several web 

databases have begun cataloguing ATRX mutations, expression levels, and copy number 

variation across the cancer spectrum. The Cancer Genome Atlas (TCGA), curated by the 

National Institutes of Health (NIH) and the National Institute of Cancer (NIC) run by the 

U.S. Department of Health and Human Services, has catalogued relative expression levels 

for a wide array of genes across several hundred glioblastoma multiforme tissue samples. 

Using these data, expression levels for the ATRX gene was compared between all of the 

GBM patient samples, and tumours harbouring overexpression, normal, or underexpression 

of ATRX were catalogued. 

Of the 483 total GBM patient samples available on TCGA, the majority of these tumours 

harboured wildtype expression levels for ATRX, according to log2 expression cutoff values 

generated from past literature that used expression level data from TCGA (Cancer Genome 

Atlas Research Network, 2008). There were, however, several patient samples that did 

harbour either low (n=27) or high (n=13) expression of ATRX, and when correlated with 

patient survival, tumours harbouring lower expression of ATRX demonstrate better overall 

survival (p=0.065; Fig. 4.1a). As well, patient tumour samples with low ATRX expression 

demonstrated a significantly earlier age of diagnosis compared to tumour samples with 

normal or high expression of ATRX (Fig. 4.1b). These results are consistent with a previous 

report that identified an earlier age of diagnosis as well as better overall patient survival for 

patient with ATRX-null pancreatic neuroendocrine tumours (Jiao 2011). Thus, although 

detrimental to genome stability and normal mitosis, ATRX mutations may represent a subset 

of GBM tumours that demonstrates an earlier age of diagnosis as well as a better overall 

patient survival compared to tumours with normal or high expression of ATRX. 

Data from the Catalogue of Somatic Mutations in Cancer (COSMIC) database include copy 

number variation status and mutation analysis for ATRX for established glioma cell lines. 

Several  mutations  in  ATRX  were  identified,  spanning  across  the  entire  ATRX  gene,  
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Figure 4.1. Mining of The Cancer Genome Atlas database for glioblastoma 

multiforme tumour patients. (A) ATRX expression correlated with patient age of 

diagnosis. *p<0.05, n=483 tumour samples. (B) Expression of ATRX in GBM patients 

was correlated with patient time to death. p=0.065, n=483 tumour samples.   
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demonstrating the non-specificity and wide variety of ATRX mutations that are relevant to 

glioma development (Fig. 4.2). Additionally, the number of segments as well as abnormal 

segments throughout the genome of each glioma cell line could be counted from the copy 

number variation data on the COSMIC database (Fig. 4.3a,b), which can be used as a 

marker for genomic instability in these tumours. Cell lines created from female patients 

were not used in the analysis because of the lack of expression data for ATRX. Since female 

cells undergo random X-chromosome inactivation, there would be no way to know whether 

these cells had gained or lost the active or inactive copy of the ATRX locus. Given that only 

male samples were used, the total number of tumour samples included in the analysis was 

low (n=24).  

Interestingly, none of the included male glioma cell lines harboured a loss of the ATRX 

gene locus; however, there were a number of samples that carried a gain (2 or 3+ copies; 

n=15 and 4, respectively) of the ATRX locus. ATRX copy number was correlated with the 

total number of segments across the genome, the number of abnormal segments, as well as 

the number of whole chromosome gain/loss events (Fig. 4.3), and even the gain of ATRX 

genomic loci may be detrimental to both genomic stability and normal chromosome 

segregation. Samples with added copies of the ATRX locus showed significant increases in 

the number of segments as well as the number of abnormal segments, indicative of 

enhanced genomic instability. As well, additional ATRX copies also correlated with an 

increase in whole chromosome gain or loss events (Fig. 4.3c), indicative of chromosome 

misseggregation events during mitosis. These results indicate a dose-dependence for ATRX, 

demonstrating that both loss of ATRX expression or gain of the ATRX locus is associated 

with genomic instability and chromosome misseggregation. 

 

4.2 Using In Vivo Model Systems to Gain Insights into Gliomagenesis 

The findings outlined in Chapter 3 of this thesis suggest that the combined inactivation of 

ATRX and TP53 promotes NPC survival in the presence of genomic instability, which is a 

hallmark of cancer. In this chapter, we explored the possibility that loss of ATRX alone, or 

in combination with TP53 loss, could be conducive to gliomagenesis. 
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Figure 4.2 Mutation distribution for ATRX within catalogued glioma samples. Data 

from the Catalogue of Somatic Mutation in Cancer (COSMIC; 

http://cancer.sanger.ac.uk/) database was analyzed and ATRX mutation distribution 

within glioma samples was organized. Colours within the pie chart correspond to the 

colours described in the table below, and mutation types are listed in order of frequency. 
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Colour Mutation Type Percentage 

 Deletion Frameshift 32.62 

 
Substitution Nonsense 28.88 

 Substitution Missense 20.86 

 Insertion Frameshift 7.49 

 Substitution Synonymous 2.67 

 Deletion In-frame 0.53 

 Complex 0.53 

 

  



 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Mining of the Catalogue of Somatic Mutations in Cancer (COSMIC) 

database examining established glioma cell lines. The total number of segments 

within the genome (A), the number of abnormal segments (B), and the number of whole 

chromosome gains/losses (C) were counted in glioma cell lines originating from male 

tumour patients. Glioma cell lines with normal ATRX copy number (one copy, red) were 

compared with those cell lines harbouring two copies (purple) or three copies (blue) of 

the ATRX gene locus. n=24, *p<0.05  
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4.2.1 Transcriptional Profiling of the Atrx-null Neonatal Mouse Forebrain 

To determine the transcriptional effects of Atrx loss alone in the mouse forebrain, a 

microarray was performed on control and Atrx-null mouse forebrains at birth (P0.5) (Levy 

2008). Mice carrying the Atrx gene harbouring loxP sites surrounding exon 18 were mated 

to mice carrying the Cre recombinase gene under the control of the FoxG1 promoter to 

inactivate the Atrx gene specifically in the mouse forebrain beginning at embryonic day 8.5 

(E8.5) (Bérubé 2005). FoxG1-Cre+ Atrxwt/y control mice were used to compare expression 

levels of genes across the genome upon the loss of ATRX in the neonatal mouse forebrain. 

In total, 861 genes were significantly upregulated on the microarray by 1.3-fold or more in 

the Atrx-null neonatal mouse forebrain, and many of these genes are involved in the 

development of glioma based on previous literature. Gene ontology (GO) term analysis of 

the top 100 increased targets in the Atrx-null neonatal mouse forebrain identified commonly 

upregulated pathways, a number of which are related to cancer development (Table 4.1). 

For example, genes involved in the WNT pathway were most significantly upregulated 

(including Wnt7b, Wnt5a, and Fzd7), while pathways involved in stem cell characteristics 

(Role of NANOG in Embryonic Stem Cell Pluripotency and Human Embryonic Stem Cell 

Pluripotency) and angiogenesis (Factors Promoting Cardiogenesis in Vertebrates) were 

also significantly upregulated. These results suggest that the loss of Atrx expression 

embryonically in the mouse forebrain is associated with the upregulation of a number of 

signaling pathways involved in cancer development in the differentiated and surviving cells 

of the neonatal mouse frontal cortex. 

Further literature searches identified that several upregulated targets from the microarray 

are involved in the regulation of cellular processes important to gliomagenesis. For 

example, genes involved in migration/invasion (Cxcl2, Mmp2, Mmp14, Igfbp2, Gsn, Lox, 

Mdk, and ErbB3), epithelial-to-mesenchymal transition (EMT; FoxC1, FoxC2, S100A11, 

and Ahnak), and the WNT pathway (Wnt5a, Wnt7b, and Fzd7) were significantly 

upregulated on the microarray and have an established role in glioma development 

(Kamino 2011; Li 2013; Chen 2013A; Rahme 2014; Ulasov 2014; Han 2014A; Han 2014B; 

Luo  2014).   These  glioma-related  genes  were  validated  using  quantitative  real  time  
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Table 4.1 GO term analysis of upregulated targets from the Atrx-null and control P0.5 

microarray. 

 

 

  

  Canonical Pathways p-value Molecules 

1 Wnt/β-catenin 

Signaling 

4.72E+00 FZD8,SFRP2,CDH5,WNT7B,TGFBR3,TL

E4,SFRP1,PPP2R1B,SOX5,FZD7,WNT5A 

2 Basal Cell Carcinoma 

Signaling 

4.34E+00 FZD8,WNT7B,BMP7,BMP6,BMP5,FZD7,

WNT5A 

3 Factors Promoting 

Cardiogenesis in 

Vertebrates 

3.69E+00 FZD8,TGFBR3,BMP7,BMP6,BMP5,PRKD

1,FZD7 

4 Role of NANOG in 

Mammalian Embryonic 

Stem Cell Pluripotency 

3.11E+00 FZD8,WNT7B,BMP7,BMP6,BMP5,FZD7,

WNT5A 

5 Role of Osteoblasts, 

Osteoclasts and 

Chondrocytes in 

Rheumatoid Arthritis 

3.08E+00 FZD8,SFRP2,MMP14,WNT7B,BMP7,SFR

P1,BMP6,BMP5,FZD7,WNT5A 

6 Human Embryonic 

Stem Cell Pluripotency 

2.73E+00 FZD8,WNT7B,BMP7,BMP6,BMP5,FZD7,

WNT5A 

7 Aryl Hydrocarbon 

Receptor Signaling 

2.62E+00 TGM2,GSTM1,GSTM2,NFIA,ALDH1A2,

CDKN1A,NFIB 

8 Complement System 2.30E+00 SERPING1,C1QC,CFH 

9 Role of Wnt/GSK-3β 

Signaling in the 

Pathogenesis of 

Influenza 

1.95E+00 FZD8,WNT7B,FZD7,WNT5A 

10 Leukocyte 

Extravasation Signaling 

1.95E+00 CDH5,CLDN1,CXCL12 (includes 

EG:20315), 

MMP14,MMP2,CLDN2,PRKD1 
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polymerase chain reaction (qRT-PCR) showing significantly increased mRNA expression 

levels in the ATRX-null mouse forebrain at birth (Fig. 4.4). 

Due to the infiltrative and aggressive nature of gliomas, misregulation of cellular processes 

like migration/invasion and EMT could initiate the development and progression of glioma. 

ErbB3 – a member of the epidermal growth factor receptor (EGFR) family – was the most 

upregulated target by qRT-PCR, and increased expression of this gene was validated further 

using both in situ hybridization (ISH) and immunoblotting of control and Atrx-null 

forebrain cryosections (Fig. 4.5). Qualitative analysis of ErbB3 ISH performed on control 

and Atrx-null cryosections demonstrated a consistent upregulation of ErbB3 mRNA (Fig. 

4.5a). Western blots were then performed to examine whether ERBB3 and phosphorylated-

ERBB3 protein levels were altered in the Atrx-null mouse forebrain at birth. Three out of 

four control and Atrx-null forebrain pairs demonstrated an increase in the protein 

expression of the 100kDa isoform of both ERBB3 and p-ERBB3 (Fig. 4.5b). The ERBB3 

protein is known to lie at the top of a signalling cascade involved in promoting cell growth, 

migration, protein synthesis, and invasion (Kim 1998; Kamalati 2000; Jones 2006). 

Activated p-ERBB3 signals through the AKT pathway, and phosphorylated-AKT was also 

upregulated in the same three control/Atrx-null pairs. One pair that showed very low levels 

of ATRX protein, however, did not demonstrate increased expression of ERBB3, and thus 

downstream molecules like p-AKT also lacked increased expression in this pair. Therefore, 

ATRX loss is associated with the upregulation of several gene targets related to glioma 

development. We propose that Atrx loss may create a cellular environment conducive to 

tumorigenesis through the direct or indirect upregulation of gene targets known to be 

associated with cellular phenotypes common to glioma development, including the 

upregulation of ERBB3 and p-ERBB3 in some cases. 

 

4.2.2 In Vivo Model of ATRX and TP53 Inactivation 

As Atrx-null male mice have been shown in the literature to die postnatally around P17-21 

or earlier (Bérubé 2005), using these mice for a long-term tumour study was not feasible. 

Therefore, female  Atrx  mosaic  mice  were  used, as  these  mice do survive long-term and  
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Figure 4.4 Validation of P0.5 microarray target genes using quantitative real time 

PCR. RNA was extracted from neonatal mouse control (Atrxwt/y FoxG1-Cre+) and Atrx-

null (cKO; Atrxf/y FoxG1-Cre+) forebrains, and qRT-PCR was performed to examine the 

expression status of target genes shown to be overexpressed on the P0.5 microarray. 

Target genes known to be involved in glioma development were examined, and these 

genes are involved in the regulation of such cellular processes as migration/invasion (A), 

epithelial-to-mesenchymal transition (B), and the WNT pathway (C). n=6-8, *p<0.05  
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Figure 4.5 Validation of increased ErbB3 mRNA and ERBB3 protein levels in the 

Atrx-null neonatal mouse forebrain. In situ hybridization (ISH; A) was performed on 

8µm thick coronal cryosections from Atrx-null (cKO) and control neonatal mouse 

forebrains using a DIG-labeled ErbB3 mRNA probe, Immunoblotting (B) was 

completed on protein extracts from the P0.5 forebrains of four control and Atrx-null 

pairs. Scale bars= 200µm.  
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have a life expectancy similar to that of controls (Bérubé 2005). These female mice have 

one wildtype Atrx allele and one Atrx-floxed allele, and were mated with a mouse line 

harbouring the Cre recombinase gene under the control of the Nestin promoter (Atrxf/wt 

Nes-Cre+). The Nestin promoter directs expression of Cre recombinase throughout the 

entire mouse CNS beginning at embryonic day 11.5 (Tronche 1999). However, because of 

random X-chromosome inactivation, female mice heterozygous for the floxed Atrx allele 

will show complete inactivation of Atrx in 50% of cells in the brain, while the other 50% 

will retain wildtype Atrx levels. This, therefore, creates a mosaic pattern of Atrx-expressing 

and Atrx-non-expressing cells in the CNS. Mice harbouring the floxed Atrx allele but 

negative for the Nes-Cre recombinase gene (Atrxf/wt Nes-Cre-) were used as controls. 

Mice with mosaic expression of ATRX in the brain (Atrxf/wt Nes-Cre+) were then crossed 

to a mouse line heterozygous for the Tp53 gene (Jacks 1994). Consequently, these mice 

harbour a compete loss of one Tp53 allele in every cell of the body, and this expression is 

not affected by the presence of the Cre recombinase gene. Together, experimental (double 

heterozygous) mice contain one floxed Atrx allele along with the presence of the Nes-Cre 

gene, and they also harbour a deletion of one Tp53 allele beginning from conception 

(Atrxf/wt Nes-Cre+ Tp53+/-). Mice heterozygous for Atrx or Tp53 alone were used to control 

for the effects of each gene (Atrxf/wt Nes-Cre+ Tp53+/+ or Atrxf/wt Nes-Cre- Tp53+/-, 

respectively), along with fully wildtype mice as a negative control (Atrxf/wt Nes-Cre- 

Tp53+/+). 

Weight measurements were taken weekly for each genotype and averaged between each 

cohort (Fig. 4.6a). Both wildtype and Tp53 heterozygous mice demonstrated a typical 

growth pattern, and the weights of these two cohorts were not significantly different from 

one another. Additionally, both the double heterozygous and Atrx heterozygous mice 

shared a similar growth pattern, and the weights of these two cohorts were also not 

significantly different from one another. However, the double heterozygous and Atrx 

heterozygous mice demonstrated reduced average weights compared to the wildtype and 

Tp53 heterozygous mice, and many of the timepoints showed a significant difference 

between these two groups of mice. This shows that mice lacking the Atrx gene in half of 

their  brain  cells  starting  from  E11.5  exhibit  reduced  postnatal  growth  over time, while  
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Figure 4.6. Effect of Atrx and Tp53 heterozygosity on mouse weight and survival over 

time. (A) Wildtype (black, n=8), Tp53 heterozygous (blue, n=9), Atrx heterozygous 

(green, n=10), and double heterozygous (red, n=9) mice were weighed weekly from 10 

weeks of age. Weights for each cohort were averaged and tracked over time. (B) 

Survival of wildtype (black, n=8), Tp53 heterozygous (blue, n=9), Atrx heterozygous 

(green, n=10), and double heterozygous (red, n=9) mice was noted and cohort’s survival 

was compared using a Mantel-Cox curve comparison test. *p<0.05  
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heterozygosity of Tp53 does not affect overall growth. Combined heterozygosity of the 

Atrx and Tp53 genes does not appear to affect the growth of these mice in a positive or 

negative way compared to the Atrx heterozygous mice alone (Fig. 4.6a). 

Mouse growth and behaviour was examined throughout their lifetime, and mice were 

euthanized at endpoints deemed suitable according to the Canadian Council for Animal 

Care. For example, excessive lesions affecting the comfort level of the mouse or changes 

in the mouse’s gait affecting its ability to feed properly would be deemed as appropriate 

endpoints for the mouse. The overall survival curves on each cohort was tracked, and 

survival was compared between genotypes (Fig. 4.6b). With the exception of a few outliers, 

the wildtype and Atrx heterozygous mice survived at a similar rate, with the majority 

surviving past 600 days. Additionally, the double heterozygous and Tp53 heterozygous 

mice showed similar survival curves, with the majority or entirety of the cohort dying by 

around 600 days and a mean survival for both cohorts of around 500 days. Taken together 

the results show that heterozygosity of the Tp53 gene (but not Atrx) leads to reduced 

lifespan in these mice. Combined Atrx and Tp53 heterozygosity did not influence the 

survival of these mice in a positive or negative way compared to the Tp53 heterozygous 

mice alone (Fig. 4.6b). 

Prior to euthanasia, mice were perfused with 4% paraformaldehyde (PFA) and images were 

taken of the internal organs of each mouse to determine whether the onset of death was due 

to the presence of internal tumours or lesions, which are known to develop in Tp53 

heterozygous mice (Table 4.2). As expected, the majority of wildtype and Atrx 

heterozygous mice showed few or no internal lesions, lacked enlarged organs like the 

spleen and liver, and maintained normal internal organ function throughout their lifetime. 

However, both the Tp53 heterozygous and Atrx/Tp53 double heterozygous cohorts showed 

a large amount of internal dysfunction, including one or more of the following: intestinal, 

renal, thymic and hepatic lesions, enlarged spleens and livers, distended abdomens, and 

odd gaits (Table 4.2). 

These results validate the likelihood that the internal lesions and abnormalities in the Tp53 

heterozygous and Atrx/Tp53 double heterozygous mice were the cause of death, rather than 

any  severe  neurological  phenotypes.   However,  there  is  a  possibility  of  the  combined  
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Table 4.2 Outline of internal abnormalities in Atrx and Tp53 heterozygous mice. 

 

Genotype DOB 

(m/d/y) 

Internal Lesions/Abnormalities 

Liver Kidneys Intestines Spleen Thymus Limbs Other 

Double Het 08/28/12 None None None None Yes Yes None 

Double Het 10/24/12 None None None None None Yes None 

Double Het 10/24/12 None None None None Yes None None 

Double Het 11/16/12 None None Yes None None None None 

Double Het 12/06/12 None Yes Yes None None None None 

Double Het 12/06/12 None Yes None None None None Growth on 

spine 

Double Het 12/09/12 None None Yes Enlarged None None None 

Double Het 12/09/12 None None None None Yes None None 

Double Het 12/09/12 None None None None None None None 

Atrx Het 08/28/12 Yes Yes None Enlarged None None None 

Atrx Het 09/05/12 None None None None None None None 

Atrx Het 10/01/12 None None None None None None None 

Atrx Het 10/01/12 None None Yes None None None None 

Atrx Het 10/01/12 None None Fluid-

filled 

None None None None 

Atrx Het 12/27/12 None None None None None None None 

Atrx Het 12/27/12 None None None None None None None 

Atrx Het 01/01/13 None None None None None None None 

Atrx Het 01/01/13 None None None None None None None 

Tp53 Het 08/28/12 None None None None None Yes None 

Tp53 Het 08/28/12 Yes Yes Yes None None None None 

Tp53 Het 09/05/12 None Yes Yes None None None None 

Tp53 Het 09/05/12 None None None Enlarged None None None 

Tp53 Het 11/16/12 None Yes Yes Enlarged None None None 

Tp53 Het 12/06/12 Yes Yes Yes Enlarged None None Distended 

abdomen 

Tp53 Het 12/27/12 None None None None None None None 

Tp53 Het 12/27/12 None None None Enlarged Yes None None 

Tp53 Het 01/01/13 None None Yes Enlarged None None None 

Wildtype 08/28/12 None None None None None None None 

Wildtype 09/12/12 None None None None None None None 

Wildtype 10/01/12 None None None None None None None 

Wildtype 11/16/12 None None None None None None None 

Wildtype 11/16/12 None None None None None None None 

Wildtype 12/06/12 None None None None None None None 

Wildtype 01/01/13 None None None None None None None 

Wildtype 01/01/13 None None None None None None None 
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heterozygosity of Atrx and Tp53 in the brain leading to abnormal proliferation, potentially 

due to enhanced genomic instability in these cells as was seen in the in vitro systems 

developed and discussed in chapter 3. Brain sagittal cryosectioning and H&E staining is 

underway in order to investigate the brain histology of these mice cohorts and determine 

whether combined ATRX and TP53 loss leads to dysplasia or tumours. This in vivo model 

represents a tool that can be used in future studies to determine the interplay between Atrx 

and Tp53 mutations in the development of glioma. 
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CHAPTER 5 – Discussion and Conclusions 

 

5.1 Summary of Thesis Findings 

The main objective of the experiments conducted in this thesis was to establish whether the 

loss of Atrx in combination with the loss of TP53 function, both in vitro and in vivo, could 

lead to genetic and molecular changes capable of transforming normal neurons in the 

central nervous system (CNS) into tumorigenic cells. To test this in vitro, two model 

systems were set up using primary mouse neuroprogenitor cell (NPC) cultures. These NPCs 

lacked either Atrx alone or lacked both Atrx and TP53 function. The first in vitro system 

harboured the genetic loss of the floxed Atrx allele embryonically, followed by the 

inhibition of TP53 using a reversible inhibitor drug called cyclic Pifithrin-α (cPFTα) in 

culture. The findings from these experiments showed that the loss of Atrx alone in mouse 

NPCs reduced cellular viability significantly in vitro after six days of culturing, as 

described previously (Bérubé 2005). However, Atrx-null cells treated with 20µM cPFTα to 

inhibit TP53 function demonstrated restored cellular viability, similar to viability levels of 

control cells treated with either DMSO or cPFTα. Despite restored cellular viability, Atrx-

null cells treated with cPFTα demonstrated increased DNA damage, as shown by increased 

γH2A.X immunostaining. Atrx-null cells grown in culture treated with DMSO also showed 

increased genomic instability; however, this instability was trending towards a further 

increase when both ATRX and TP53 functions were ablated. Thus, despite further genomic 

insult upon the sequential loss of function of both ATRX and TP53 in vitro, these 

ATRX/TP53 double-null cells exhibited restored cellular survival – a phenotype commonly 

noted in tumorigenic cells. 

A second in vitro system was created that examined a more robust and simultaneous genetic 

inactivation of both Atrx and Tp53 in culture. This system used Atrx and Tp53 double floxed 

mouse NPCs grown in culture, and infected with an adenovirus harbouring the Cre 

recombinase gene linked to the Green fluorescence protein (Gfp) gene, along with 

appropriate controls. Expression of Cre recombinase enabled the genetic silencing of either 

Atrx alone, Tp53 alone, or both Atrx and Tp53 simultaneously. NPCs lacking only ATRX 
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expression showed reduced cellular viability compared to control cells. However, NPCs 

lacking both ATRX and TP53 expression had cellular viability comparable with controls 

and excessive genomic instability. This second in vitro system reiterates the abnormal 

cellular phenotypes shown in the first system; however, it appears that this second system 

may be more robust and reproducible likely because of the specificity of the adenovirus 

Cre recombinase infection versus the addition of a reversible TP53 inhibitor drug. 

Examination of available data from online databases allowed us to identify patient tumor 

samples that harboured low, normal, and high gene expression levels of ATRX, as well as 

to assess copy number variation (CNV) at the ATRX locus. Examination of ATRX gene 

expression indicated that glioblastoma multiforme tumours harbouring low ATRX 

expression had a significantly earlier age of diagnosis, along with a trend towards longer 

overall survival, compared to those patients that had tumours carrying normal or even high 

expression levels for ATRX. As well, CNV analysis at the ATRX locus indicated that glioma 

tumour cell lines carrying an excess number of copies of ATRX had a significant increase 

in genomic instability – as signified by an increase in the total number and the number of 

abnormal segments. In addition, glioma cell lines carrying higher copy numbers for the 

ATRX locus also showed a trend towards more whole chromosome gains or losses, 

indicative of chromosomal congression and separation defects during mitosis. 

Experiments conducted in vivo examined the effects of Atrx loss, both alone and in 

combination with Tp53, in the mouse CNS. Analysis of a microarray performed at birth 

(P0.5) on control and Atrx-null mouse forebrains indicated a significant increase in the 

expression of a number of genes known to be associated with glioma development and 

progression in the Atrx-null neonatal mouse forebrain. A number of these genes were 

validated by qRT-PCR based on their relevance to glioma, and were shown to be 

significantly upregulated in the P0.5 Atrx-null mouse forebrain compared to Cre-positive 

controls. Increased expression of the ErbB3 gene was further validated using in situ 

hybridization (ISH) and immunoblotting techniques, as it is a member of the epidermal 

growth factor receptor (EGFR) family of proteins and signals through the AKT and MAPK 

pathways. Western blots indicated an increase in ERBB3 and phospho-ERBB3 proteins, as 
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well as phospho-AKT – a signalling molecule downstream of ERBB3 – showed an increase 

in the majority of Atrx -null mouse forebrains at P0.5. 

Examination of Atrx and Tp53 loss in vivo showed that mosaic expression of Atrx in the 

mouse brain leads to reduced postnatal growth of the mice, while Tp53 heterozygosity 

caused tumours and abnormalities of several organs and reduced survival. 

 

5.2 In vitro NPC Culture Systems as a Model of Glioma Development 

Tumours within the glioma spectrum are highly heterogeneous, and the cell of origin for 

gliomas is a greatly disputed topic among scientists (Furnari 2007). Additionally, the 

underlying genetic and molecular alterations leading to glioma formation are vast and not 

well understood (Furnari 2007). Because of this complexity, the creation of systems to 

model the development of glioma has been extremely difficult. The present study describes 

two in vitro NPC culture systems that may be useful in modelling the initial steps of 

gliomagenesis. 

Several studies have identified a significant overlap between mutations in ATRX, or loss of 

ATRX protein expression, and mutations in TP53 (Schwartzentruber 2012; Liu 2012; 

Kannan 2013; Wu 2014). However, whether mutations in ATRX occur first and act to drive 

tumorigenesis, or are a result of other prior mutations, is unknown. Thus, the development 

of in vitro model systems allowing for different temporal inactivation of both TP53 and 

ATRX function in mouse NPCs was important to identify whether sequential or 

simultaneous loss of ATRX and TP53 function would better drive tumorigenic 

characteristics. 

Mouse NPCs were used for both in vitro culture systems described in the present study. 

While the cell of origin for gliomas is still hotly debated within this field, recent evidence 

is pointing towards NPCs, or neural stem cells (NSCs), as potential targets. Several studies 

have now identified glioblastoma stem cells, or initiating cells (GICs), as playing a major 

role in tumor development, tumour maintenance, and therapeutic resistance (Salmaggi 

2006; Johannessen 2009; Kroonen 2011). Furthermore, these GICs demonstrate many 
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properties akin to NSCs (Stiles 2008), creating the link between NSCs and glioma tumour 

formation. Finally, the adult brain harbours several NSC niches that retain the ability to 

produce neurons and glia throughout life, thus providing a source of progenitor cells in 

adults that could become oncogenic following mutagenesis (Luskin 1993; Lois 1994). This 

evidence justifies the use of NPCs in vitro as a model system for glioma development, and 

was the reason behind using this cell type for both the sequential and simultaneous in vitro 

systems described in the present study. 

 

5.2.1 Sequential Loss of ATRX and TP53 Function in Mouse NPCs 

The first in vitro model system took advantage of the FoxG1-Cre+ Atrxf/y mouse NPC 

culturing system set up on our lab. Atrx-null NPCs in culture undergo massive TP53-

mediated cell death at 6-7DIV (Bérubé 2005; Seah 2008; Watson 2013). To combat cell 

death in vitro, the reversible inhibitor of TP53 called cyclic Pifithrin-α (cPFTα) was added 

to the culture media after two days in vitro. Therefore, following genetic loss of Atrx at 

E8.5, TP53 protein function was ablated using cPFTα approximately 7 days later in culture. 

Trypan blue viability assays indicated that cellular survival in these Atrx-null/cPFTα-

treated NPCs was restored to control levels. 

Previous studies have shown that Atrx loss in cortical neurons during embryogenesis leads 

to an increase in replication-associated DNA damage foci, and this genomic instability is 

further enhanced upon the combined loss of ATRX and TP53 embryonically in vivo 

(Watson 2013). In the present study, genomic instability is shown to be significantly 

increased upon the loss of Atrx in NPCs, and this DNA damage is increased further upon 

the treatment of Atrx-null cells with cPFTα. Qualitatively, this enhancement of genomic 

instability can be easily seen; however, quantifying immunofluorescence signals in 

growing NPCs is a difficult task. This is because NPCs tend to grow in clumps and in small 

colonies, rather than creating a confluent cell monolayer across the culture plate (Leach 

2011). Therefore, performing cell counts is challenging, and so the mean gray value of the 

DAPI stain (which stains the nuclei of all cells) was compared to the mean gray value of 

the γH2A.X immunostain (which marks sites of double-stranded DNA breaks). This 
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quantification methodology is not as robust and reproducible as performing cell counts 

would be, and this may explain why the quantification for DNA damage foci in Atrx-null 

cells treated with cPFTα is not significantly higher than DNA damage foci in Atrx-null cells 

treated with only DMSO. However, this result does indicate that the loss of Atrx alone is 

associated with the induction of genomic instability, and this instability is maintained or 

even increased upon the loss of TP53 function. Furthermore, despite the maintenance of 

DNA damage in these double null cells, their ability to survive in culture is retained at 

levels comparable to controls – both of which are hallmarks of tumorigenic cells. 

One advantage of this sequential in vitro system is that it models more realistically the 

series of early events that may unfold in a cell undergoing tumorigenic transformation. We 

know from previous literature that cells lacking Atrx expression alone do develop 

characteristics of tumorigenic cells – like mitotic defects, mis-segregated chromosomes, 

and DNA replication stress (Seah 2008; Ritchie 2008; Watson 2013). However, Atrx-null 

cells both in vitro and in vivo also activate the TP53 response pathway, leading to apoptosis 

(Seah 2008; Watson 2013). Thus, it is unlikely that a “single-hit” mutation in ATRX would 

to lead to tumorigenic transformation in cells, supporting the requirement for a second 

mutation to promote carcinogenesis. Our in vitro system models the sequential loss of Atrx 

followed by TP53 inhibition, and we can see that this system does allow for increased 

cellular survival despite the accumulation of DNA damage foci. However, a disadvantage 

of this system is the use of a reversible drug to inhibit a specific protein’s function. Protein 

inhibitors are notorious for having off-target effects and for not always generating 

reproducible results. Cyclic Pifithrin-α is a more specific and less cytotoxic form of the 

original non-cyclic drug Pifithrin-α (Zuco 2008); however, it is still a reversible inhibitor 

of TP53 and may not produce as robust of a response as a more permanent and reproducible 

inactivation of TP53 function would. Thus, a more efficient and specific system to 

sequentially inactivate both ATRX and TP53 function would allow for a more robust and 

reproducible response in vitro. 
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5.2.2 Simultaneous Loss of ATRX and TP53 Function in Mouse NPCs 

The second in vitro system allowed for the simultaneous genetic silencing of both the Atrx 

and Tp53 genes using adenovirus-CreGFP infected NPCs. A reduction in cellular viability 

was identified, as expected, in Atrx-floxed ad-CreGFP infected NPCs in culture. Again, as 

was similarly seen in the first in vitro system, Atrx/Tp53 double floxed cells infected with 

ad-CreGFP demonstrated restored cellular viability. This result demonstrates that Atrx-null 

NPCs are likely undergoing cell death via a TP53-dependent pathway, a result found 

previously in embryonic cortical neurons in vivo (Seah 2008). Loss of both TP53 and 

ATRX protein expression was therefore able to restore cellular survival, indicating TP53 

activity as the main player in the reduction of Atrx-null cellular viability. Furthermore, the 

maintenance of high cellular viability in all NPC genotypes infected with ad-GFP alone 

indicates that neither adenoviral infection nor GFP expression affected cell survival on its 

own. 

Atrx/Tp53 double floxed cells infected with only ad-GFP show basal levels of DNA 

damage foci, while infection of double floxed NPCs with ad-CreGFP leads to a 

qualitatively significant enhancement in γH2A.X immunostaining throughout many cells 

in culture, indicative of an increase in genomic instability in these double-null cells in 

culture. Previous literature has identified that the loss of Atrx is associated with 

dysregulation in DNA damage repair and/or with proper DNA replication, thereby leading 

to the accumulation of DNA damage foci (Lovejoy 2012; Leung 2013; Watson 2013; 

Clynes 2014). Thus, cells that have lost both ATRX and TP53 protein expression no longer 

undergo apoptosis, but concomitantly acquire further genomic insult leading to massive 

chromosomal instability. Enhanced cellular survival and accumulation of DNA damage are 

two major hallmarks of cells undergoing tumorigenic transformation (Hanahan 2011), 

indicating that the combined loss of ATRX and TP53 simultaneously may be sufficient to 

drive NPCs into a tumorigenic state. 

This second in vitro system is temporally different from the first system in that the 

expression of both Atrx and Tp53 are lost simultaneously in cultured NPCs, rather than the 

stepwise loss of ATRX and TP53 function described in the first system. This simultaneous 

in vitro system may not as closely recapitulate genetic events that happen in vivo, as 
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typically patients will gain mutations in genes over time rather than acquire two “hits” at 

the exact same time. However, the use of an adenovirus carrying Cre recombinase is a 

much more robust and reproducible methodology in generating Atrx/Tp53 double-null 

cells. Cells that fluoresce green are easily identified, and because the Gfp gene is tagged 

onto the end of the Cre recombinase gene, we know that all green cells will also be 

expressing Cre. The Cre gene is highly precise and efficient, thus enabling us to gain high 

specificity and efficacy in recombining and silencing both floxed genes in NPCs in vitro, 

as seen by the western blotting validation of ATRX and TP53 protein expression levels. 

Enhanced robustness resulted in a much more profound visual increase in γH2A.X 

immunostaining, indicative of a more intense induction in genomic instability in this 

system. 

Overall, both in vitro systems demonstrate two major phenotypic characteristics required 

in order to define a cell as cancerous (Hanahan 2011). Firstly, carcinogenic cells display 

changes, either genetic or epigenetic, to the so-called healthy genome (Hanahan 2011). This 

condition is met in both systems, whereby excess genomic instability is demonstrated upon 

the loss of both ATRX and TP53 function in cultured NPCs compared to controls.  

Secondly, cells must exhibit an atypical survival advantage despite the presence of excess 

DNA damage (Hanahan 2011). This condition is met in both systems whereby cells that 

have lost only Atrx expression show significantly reduced cellular survival, whereas cells 

that have lost both ATRX and TP53 function appear to have reduced apoptosis, and thus 

restored cellular survival, similar to levels of control cells along with enhanced genomic 

instability. Thus, these double-null NPCs in culture demonstrate abnormal survival in 

culture compared to their Atrx-null counterparts in vitro, indicating that these cells have 

acquired a survival advantage. I conclude that loss of ATRX and TP53 function in vitro, 

either sequentially or simultaneously, is capable of inducing characteristic phenotypes 

common to carcinogenic cells. 
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5.2.3 Future Directions for In Vitro Model Systems of Glioma 

Although the previously described in vitro systems appear to have acquired important 

characteristics of tumorigenic cells upon the loss of both ATRX and TP53 function, there 

are many other characteristic phenotypes common to carcinogenesis that would be 

interesting to examine in these cells. Firstly, cellular viability and survival was measured 

in the present study, but proliferation was not. Examination of cell growth and proliferation 

over time, or monitoring for the presence of neurospheres, would indicate whether 

ATRX/TP53 double-null cells demonstrate enhanced proliferation in vitro. Additionally, 

cancerous cells will commonly demonstrate increased invasion or migration phenotypes, 

as tumorigenic cells typically migrate throughout and invade healthy tissues in order to 

spread and metastasize (Hanahan 2011). Placing Atrx/Tp53 double-null NPCs in a 

Transwell migration and/or Matrigel invasion assay to determine whether these cells show 

higher levels of these phenotypes would be quite interesting, as gliomas in humans tend to 

have a highly invasive and infiltrative nature (Marumoto 2012). Additionally, tumorigenic 

cells in vivo are often capable of activating angiogenesis, in order to stimulate blood vessel 

growth to provide the growing tumour mass with a source of nutrients and oxygen as well 

as a source for depositing metabolic waste and carbon dioxide (Hanahan 2011). Injection 

of Atrx/Tp53 double-null NPCs grown in culture back into nude, immuno-compromised 

mice would indicate whether these tumour-like NPCs are capable of attaching to tissue in 

vivo and continue growing, while at the same time promoting blood vessel growth towards 

the emerging tumour mass. 

Finally, as was discussed in the introduction, glioma and PanNET patients with tumours 

carrying mutations in ATRX or harbouring a loss of ATRX staining via 

immunohistochemistry show a significant association with the activation of the alternative 

lengthening of telomeres (ALT) phenotype (Heaphy 2011; Jiao 2011; Schwartzentruber 

2012; Abedalthagafi 2013). As well, loss of Atrx alone is associated with an increase in 

telomere dysfunction, DNA damage foci at the telomeres, and telomere fusions (Watson 

2013), and ATRX loss of function in somatic cell hybrids also segregated with the activation 

of the ALT pathway (Bower 2012). These results are consistent with ATRX playing a role 

in telomere maintenance and acting as a repressor of ALT in vivo. It will be important in 
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the future to determine the presence of ALT in our culture systems using telomere-FISH to 

identify whether prolonged ATRX loss of function in vitro could promote excessive 

telomere recombination.  

 

5.3 In Vivo Analysis of Atrx deletion in the mouse brain 

Previous studies have characterized several phenotypes upon the loss of Atrx expression 

both in vivo and in vitro (reviewed in Bérubé 2011). Many characteristics of Atrx-null cells 

are shared by tumorigenic cells – like excessive DNA replication stress, mitotic defects, 

chromosomal fusions and misseggregation (Seah 2008; Ritchie 2008; Watson 2013) – and 

thus it was not surprising that mutations in ATRX were found within a significant subset of 

gliomas (Jiao 2011; Schwartzentruber 2012; Liu 2012; Kannan 2013). Examination of 

glioma patient databases, as well as analysis of genetic and molecular changes in vivo upon 

the loss of ATRX expression, may provide evidence to decipher whether mutations in ATRX 

act as drivers or as passengers of tumorigenesis. 

 

5.3.1 Dysfunction of ATRX in Glioma Patients 

Analysis of ATRX expression in a large cohort of glioblastoma multiforme patient samples 

from The Cancer Genome Atlas database indicated that patients harbouring low expression 

levels of ATRX demonstrated a significantly earlier age of diagnosis as well as a trend 

towards better overall survival compared to tumours with normal or high levels of ATRX. 

These results have been both supported and opposed in the literature. For example, 

mutations in ATRX were associated with similar findings (earlier age of diagnosis and better 

overall patient survival) in patients with pancreatic neuroendocrine tumours (PanNETs; 

Jiao 2011). As well, ATRX loss defined a sub-population of astrocytic tumours with a more 

favourable prognosis demonstrating a time to treatment failure of 55.6 months versus 31.8 

months in ATRX wildtype tumours (Weistler 2013). Other studies found no correlation 

between ATRX status and age of diagnosis or patient prognosis, but this may be due to small 

sample sizes or the specific tumour populations studied (Abedalthagafi 2013). Oppositely, 
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further studies of ATRX loss in panNETs have demonstrated a correlation with reduced 

time of relapse-free survival and decreased time of tumour-associated survival (Marinoni 

2014). While it is still unclear how ATRX mutations influence patient progression, it is 

likely that ATRX mutation or expression status may be beneficial in defining discrete 

subsets of gliomas associated with treatment response and patient survival. 

Furthermore, examination of copy number variation data for glioma cell lines on the 

Catalogue of Somatic Mutations in Cancer (COSMIC) database identified an association 

between amplification of the ATRX locus and increased genomic instability and whole 

chromosome gains/losses genome-wide. Unfortunately, as there was no mRNA expression 

data to correlate with the CNV data, we had to rule out cell lines originating from female 

patients as we would not be able to tell if the ATRX locus from the active or inactive 

chromosome was amplified. Additionally, even in males harbouring amplification of the 

ATRX locus on the X chromosome, without expression analysis we are unable to know 

whether these cells are gaining functional or non-functional copies of the ATRX gene. 

Nevertheless, glioma cell lines harbouring excessive copies of the ATRX locus 

demonstrated significantly more genomic instability, as quantified by increased numbers 

of abnormal genomic segments, as well as a trend towards increased whole chromosome 

events. We know from previous literature that not only does ATRX loss lead to cellular 

dysfunction, but overexpression of ATRX is also associated with severe developmental and 

cellular deficits (Bérubé 2002). Increased ATRX expression in transgenic mice led to 

abnormal growth and organization of the ventricular zone in E10.5 embryos, as well as 

growth retardation, neural tube defects, and a high incidence of embryonic death (Bérubé 

2002). Therefore, ATRX dosage is likely crucial for proper neuronal development, and thus 

overexpression of ATRX may also be associated with phenotypes relative to cancer 

development, like enhanced genomic instability. 

 

5.3.2 Atrx Loss in the Brain is Associated with Alterations in Cancer-Related 

Signalling Pathways 

ATRX is a known chromatin-associated protein, using its N-terminal ADD domain to direct 

binding to sites of heterochromatin (Bérubé 2011; Dhayalan 2011; Argentaro 2007). ATRX 
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can be directed to specific sequences within the genome via histone modifications or 

protein recruitment (Dhayalan 2011; Nan 2007), and these sites are typically GC-rich and 

repetitive regions, like telomeres and G-quadruplexes (Law 2010). Given the roles of 

ATRX at chromatin, it comes as no surprise that ATRX loss leads to alterations in gene 

transcript levels both in cells undergoing mitosis and in non-dividing cells (Levy 2008). 

For example, analysis of the Atrx-null neonatal mouse forebrain identified consistent 

downregulation of ancestral pseudoautosomal region genes (Levy 2008; Levy 2014), as 

well as differential expression of many imprinted genes (Kernohan 2010; Kernohan 2014). 

Recent evidence indicates that at a subset of genes, ATRX is capable of binding G-rich 

secondary DNA structures called G-quadruplexes (G4) to enable bypass of transcriptional 

machinery and mRNA elongation (Levy 2014). As well, ATRX has been shown to be 

involved in chromatin looping, enabling the contact between distant enhancers and 

promoters in order to encourage gene expression (Kernohan 2014). Thus, although the full 

range of the ability of ATRX to affect gene expression changes has not yet been elucidated, 

it is clear that the loss of Atrx expression is associated with alterations in gene expression 

through both chromatin looping and through the resolution of secondary DNA structures. 

Microarray analysis of control versus Atrx-null neonatal mouse forebrains identified 

numerous significant gene expression changes. GO term analysis for these genes indicated 

a large number as being involved in stem cell pluripotency, the WNT pathway, and 

cardiogenesis. Further literature searches identified several candidate genes within these 

GO pathways as known effectors of glioma initiation and progression. Real time PCR 

analysis validated the upregulation of many gene targets demonstrated in the literature to 

be associated with cellular characteristics common in glioma, like cellular migration and 

invasion (Cxcl2, Mmp2, Mmp14, Igfbp2, Gsn, Lox, Mdk, and ErbB3), epithelial-to-

mesenchymal transition (EMT; FoxC1, FoxC2, S100A11, and Ahnak), and the WNT 

pathway (Wnt5a, Wnt7b, and Fzd7). Consistent upregulation of these targets indicates that 

Atrx loss in the surviving differentiated neurons of the neonatal mouse cortex may lead to 

the development of a cellular environment conducive of tumorigenesis. 

One gene, ErbB3, was further validated by in situ hybridization and western blotting and 

was shown again to be upregulated in the Atrx-null neonatal mouse forebrain at both the 
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mRNA and protein levels. The ERBB3 protein is a member of the epidermal growth factor 

receptor (EGFR) family and lies upstream of a signalling cascade known to promote 

cellular migration, invasion, protein synthesis, and cell growth (Kim 1998; Kamalati 2000; 

Jones 2006). Dysregulation in ERBB3 protein has also been shown in gliomagenesis, as 

overexpression of ERBB3 is associated with pilocytic astrocytoma progression (Addo-

Yobo 2006) and radiation-induced glioblastomas (Donson 2007), and prominent 

expression of ERBB3 was seen in CD-133 positive putative glioblastoma tumour stem cells 

(Duhem-Tonnelle 2010). Western blots for p-AKT also showed upregulation in the 

presence of upregulated p-ERBB3 indicating enhanced signalling through downstream 

oncogenic pathways. The consistent upregulation of ErbB3 mRNA and p-ERBB3 protein 

in our system indicates that the loss of Atrx expression in cells of the neonatal mouse cortex 

induces the expression of genes known to promote glioma development and increase 

signalling through oncogenic pathways, therefore creating a cellular environment 

conducive to tumorigenesis. 

 

5.4 In Vivo Modelling of Combined Atrx and Tp53 Loss 

Recent patient studies have indicated a common and consistent overlap between mutation 

of ATRX and TP53 in a significant number of gliomas (Jiao 2011; Schwartzentruber 2012; 

Kannan 2013), indicating that the combined loss of ATRX and TP53 function in vivo may 

enable cells to acquire tumorigenic characteristics while also avoiding cell death. This 

combinatorial genetic mutation may thus be the driving force of tumorigenesis in a specific 

subset of glioma patients. 

The in vivo model developed in the present study used mice heterozygous for Tp53, along 

with heterozygosity for Atrx in the brain. Tp53 heterozygosity in mice is known to confer 

a low spontaneous tumour incidence up to approximately 12 months of age (Harvey 1993; 

Donehower 1996), with about half of the heterozygous mice developing tumours by 18 

months of age (Donehower 1996). This is because the mice retain a single, functional copy 

of the Tp53 allele and therefore a second mutagenic event must occur to remove the 

remaining Tp53 allele in order for cancer to develop (Harvey 1993). Tp53 heterozygous 
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mice preferentially develop osteosarcomas, lymphomas, and soft-tissue sarcomas, which 

affect the supporting tissue (fat, blood vessels, nerves and ligaments) surrounding the body 

organs (Donehower 1996). These mice are useful in carcinogenesis studies with chemicals 

or additional mutagenic hits to study whether additional mutations can drive tumorigenesis 

in these mice at an enhanced rate. In the present study, CNS-specific loss of one Atrx allele 

was performed to identify whether combined Atrx/Tp53 loss could drive tumorigenesis in 

the mouse CNS before developing tumours throughout the body. 

Current work in our lab has identified that Nes-Cre+ Atrx+/- mice display reduced growth 

and decreased overall weight compared to wildtype mice, associated with reduced levels 

of circulating IGF-1 (unpublished data). Thus, it was not surprising to find that both the 

Atrx heterozygous and double heterozygous mice showed these same characteristics in the 

present study. Additionally, as explained above, Tp53 heterozygous mice have been shown 

to succumb to their tumours around 12-18 months of age (Donehower 1996; Harvey 1993), 

and these results were reiterated in the present study in which the Tp53 heterozygous and 

double heterozygous mice demonstrated a similar mean survival of around 500 days, or 15 

months. These results indicate that heterozygosity of Atrx in the mouse CNS beginning at 

E11.5, as driven by Nes-Cre expression, is likely driving the reduced weight in the double 

heterozygous mice, while heterozygosity of Tp53 is likely responsible for the reduced 

survival of these mice. Combined heterozygosity of Atrx and Tp53 does not appear to 

further affect overall weight or survival in these mice. 

Both the Tp53 heterozygous and double heterozygous mice developed internal lesions 

consistent with previous reports. These mice harboured tumours in the soft tissue of one or 

more organs including the intestines, liver, kidneys, and thymus, with a few even 

developing tumours in the hind limbs. As the double heterozygous mice did not 

demonstrate reduced survival compared to the Tp53 heterozygous mice alone, it is likely 

that these internal lesions are the cause of the early death of these mice. Future examination 

of the brain tissue of these mice will reveal if abnormal proliferation, increased DNA 

damage and tumour formation occur. 

My studies have shown that combined loss of ATRX and TP53 function, both sequentially 

and simultaneously, was capable of increasing cell survival and genomic instability in 
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cultured NPCs; however, the phenotypic effects were relatively slight. This evidence 

indicates that perhaps ATRX loss is capable of driving tumorigenic phenotypes, but this loss 

may require further time or additional mutational hits to fully drive cells into a tumorigenic 

state. For example, the large majority of glioma patient studies have indicated a link 

between ATRX mutation, or a loss of ATRX immunostaining, and the presence of the 

alternative lengthening of telomeres phenotype (Jiao 2011; Schwartzentruber 2012; Liu 

2013). As mouse telomeres are significantly longer than human telomeres, perhaps the loss 

of Atrx in the mouse is not leading to ALT activation as it does in human cells. The use of 

a mouse line harbouring already shortened telomeres may help in discovering whether the 

Atrx loss drives gliomagenesis through telomere destabilization and ALT activation. 

Furthermore, a more specific loss of Tp53 in the mouse would bypass any non-specific 

tumour development and allow for precise examination of combined Atrx and Tp53 loss in 

the brain. 

 

5.4.1 Future Directions for In Vivo Modelling of Combined Atrx/Tp53 Loss 

Further experiments looking for markers of overproliferation and stem-cell characteristics 

would indicate whether heterozygosity of Atrx and Tp53 in the mouse brain could lead to 

tumorigenesis. For example, immunostaining for the presence of cell proliferation markers, 

like Ki67, or cell cycle analysis dyes, like propidium idodide (PI), would indicate regions 

of the mouse brain showing enhanced proliferation – a hallmark of tumorigenic cells. As 

well, immunostaining for γH2A.X, a marker of double stranded DNA breaks, would 

identify areas of the mouse brain harbouring increased DNA damage, indicative of 

amplified genomic instability. Furthermore, as these heterozygous mice are mosaic for the 

loss of Atrx due to random X-chromosome inactivation, immunostaining for both ATRX 

and TP53 would detect whether cells that harbour enhanced genomic instability and/or 

proliferative capacity are also negative for both ATRX and TP53 proteins. This 

immunostaining would also further validate the mouse genotypes and indicate whether the 

double heterozygous mice show expansion of neurons harbouring a loss of both ATRX and 

TP53. 
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Other members of the lab are now developing a new mouse model of inducible Atrx and 

Tp53 inactivation in neural stem cells and astrocytes. This mouse carries floxed alleles for 

both Atrx and Tp53 and also includes the Cre recombinase gene under the control of the 

Slc1a3 or Glast3 promoter, which directs recombination of Atrx and Tp53 specifically in 

the glial stem cells and radial glia of the mouse brain (Mich 2014). As well, this mouse 

model harbours a tamoxifen-inducible Cre recombinase gene under the control of the 

Slc1a3 promoter, allowing for a more specific spatial and temporal deletion of Atrx and 

Tp53 expression. This mouse model will drive Atrx and Tp53 loss specifically in glial stem 

cells. The use of a more specific mouse model will allow for the direct and robust 

inactivation of both Atrx and Tp53 in the glial stem cells of the brain, which are potential 

cells of origin for GBM, in order to determine whether these two mutagenic hits can lead 

to glioma development in the mouse brain. 

 

5.5 Conclusions 

In conclusion, combined loss of both ATRX and TP53 function in vitro leads to increased 

NPC survival and enhanced genomic instability (Fig. 5.1). Furthermore, Atrx loss in the 

neonatal mouse brain resulted in a consistent transcriptional upregulation of cancer-related 

genes involved in migration/invasion, EMT, and the WNT pathway – cellular pathways 

common in oncogenic cells (Fig. 5.1). Examination of available online data indicated that 

low expression of ATRX in GBM patients was associated with an earlier age of diagnosis 

and trended towards better overall survival compared to patients demonstrating normal or 

high expression of ATRX. Additionally, dosage of the ATRX locus appears to affect 

genomic instability, as glioma cell lines harbouring a gain of the ATRX locus demonstrated 

enhanced DNA damage and an increased number of whole chromosome gains and losses. 

Finally, an in vivo system was created that combined loss of Atrx and Tp53 deficiency. 

Future studies will determine whether these mice develop cellular abnormalities or tumors 

in the brain. The use of mouse models with spatiotemporal control of Atrx and Tp53 

expression will provide a more robust and precise model in which to study glioma 

development in vivo. 
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Figure 5.1 Visual summary of the conclusions from this thesis. Cells harbouring intact 

ATRX and TP53 expression (A) demonstrate undamaged double stranded DNA and 

correct chromosome architecture within the nucleus (light blue), along with basal levels 

of ERBB3 (orange shapes) and AKT (green hexagons) protein expression in the 

cytoplasm of the cell (dark blue). Upon mutation of ATRX or loss of ATRX expression 

(B), DNA acquires a significant amount of double stranded breaks, marked by the 

histone γH2A.X (red lines). ATRX loss is also associated with an increase in both 

ERBB3 and phosphorylated (yellow circles) ERBB3 protein expression, along with a 

subsequent increase in phosphorylated AKT within the cytoplasm. The presence of 

significant genomic instability leads to the activation of TP53 (red stars) and the 

subsequent initiation of apoptosis (C). Cells double-null for ATRX and TP53 survive, 

and thus cell progeny harbour excessive genomic instability and chromosomal 

abnormalities within the nucleus leading to proliferative advantage and gliomagenesis 

(D). 
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