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ABSTRACT: 

 

Acute Lung Injury (ALI) is a pulmonary inflammatory disorder resulting in respiratory 

failure that is initiated by a number of different insults to the lung. Despite very high 

mortality, there are still no effective pharmacological therapies for this disease, and the 

main supportive treatment, mechanical ventilation (MV), can further lung injury and 

inflammation, contributing to ALI progression.  

The overall objective of this work was, therefore, to broaden the knowledge of ALI 

pathophysiology in an attempt to improve outcomes for this disorder. To this end, the roles 

of two key players in the disease process were evaluated, namely: i) lung surfactant, a 

material essential for minimizing the work of breathing and for pulmonary immuno-

modulation, and ii) matrix metalloproteinase 3 (MMP-3), protease involved in the 

inflammatory response associated with ALI. The experimental approach consisted of 

exposing mice to different models of ALI, in order to investigate: i) the effects of 

exogenous surfactant administration on lung inflammation and injury progression 

associated with MV, ii) the role of MMP-3 in the pulmonary inflammatory response 

associated with ALI, and iii) the potential interactions between MMP-3-related 

inflammatory changes, surfactant function, and pulmonary mechanics in ALI.  

The results demonstrated that exogenous surfactant treatment did not impact inflammatory 

outcomes of ALI that are associated, clinically, with mortality. Further research is therefore 

required to improve such potential therapy. The data also illustrated the contribution of 

MMP-3 to the pulmonary inflammation associated with ALI, specifically in female mice. 

Furthermore, the complexity of the interactions between lung inflammation, surfactant 

function, and mechanics of the lung was demonstrated.  

Overall, this evidence underscored the challenges faced in the treatment of ALI; 

nonetheless, a broader knowledge of ALI complex pathophysiology will be beneficial to 

the design of new therapies and the improvement of ALI outcomes. 
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CHAPTER 1:  

General introduction and literature review 
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1.1. General overview  

Most of the metabolic processes taking place in the human body require oxygen and 

generate carbon dioxide as a waste product that needs to be eliminated. The lung is the 

organ responsible for exchange of gases, providing oxygen to the blood for delivery to all 

systems in the body, and allowing for carbon dioxide removal to the external environment 

[1]. This process, essential for life, can become impaired as a result of a variety of diseases 

affecting the lung, such as asthma, chronic bronchitis, fibrosis and, central to this thesis, 

acute lung injury. 

Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS) is a pulmonary 

disorder with a complex pathophysiology and no proven therapeutic option available for 

its treatment [2]. Throughout the years, understanding of this disorder has been hampered 

by the multiplicity of lung insults potentially causing ALI/ARDS, the wide range of patient 

population, which includes both pediatric and adult subjects, and a complex disease 

progression [3, 4]. Two aspects of its pathophysiology and treatment support, however, are 

common to all patients with ALI/ARDS: i) the use of mechanical ventilation, necessary to 

support impaired gas exchange, and ii) the development of an overwhelming pulmonary 

inflammatory response. 

As explained more extensively throughout this doctoral thesis, persisting and 

overwhelming lung inflammation negatively affects lung function, and has been shown to 

correlate with poor prognosis and outcome in patients with ALI/ARDS [5, 6]. This scenario 

is further aggravated by the effects of mechanical ventilation on the injured lung. 

Mechanical ventilation has been shown to alter lung surfactant [7], a substance lining the 

inner pulmonary surface, with biophysical and immune-modulatory properties essential for 

lung function [8, 9]. Ventilation-induced impairment of lung surfactant leads to impaired 

lung function [10], which can often be rescued by administration of exogenous surfactant 

[11]. The effects of mechanical ventilation, however, are not limited to surfactant, as 

ventilation can further pulmonary inflammation, and participate in the progression toward 

the development of an inflammatory response in the systemic circulation [12–14]. These 

events can, ultimately, affect distal organ function causing multi-organ failure, the major 

cause of death in ALI/ARDS patients [15, 16]. 
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In light of these issues, the first scientific problem addressed in chapter two is related to 

the assessment of a lung-targeted strategy aimed at mitigating the effects of 

ventilation on the inflamed lung. The strategy of interest is exogenous surfactant 

administration. The objective of chapter two is to determine whether exogenous surfactant 

administration can mitigate ventilation-induced pulmonary and systemic inflammation, in 

different mouse models of ALI/ARDS. 

The second aspect highlighted by the lack of suitable treatment is the need for a better 

understanding of ALI/ARDS pathophysiology, specifically focused on identifying key 

mediators in the pulmonary inflammatory response that may serve as future potential 

therapeutic targets. Among the multiple mediators involved in ALI/ARDS, chapter 3 

focuses on the protease matrix metalloproteinase-3 for its role in inflammation and 

inflammatory diseases [17]. The objective of chapter three is to assess the role of matrix 

metalloproteinase-3 in the development of the pulmonary inflammation associated with 

ALI/ARDS. The results of matrix metalloproteinase-3 contribution to inflammation in two 

different mouse models of lung injury prompted the investigation of further aspects of 

disease development. 

Chapter four focuses on the examination of the potential role of matrix 

metalloproteinase-3 in the interplay between pulmonary inflammation and lung 

function. The objective of chapter four is in fact to investigate whether such protease, 

mediator of lung inflammation, can affect the surfactant system and overall lung function. 

The remaining of this first chapter provides general information on lung structure and 

function, and illustrates in greater detail the pathophysiology of ALI/ARDS, touching on 

the inflammatory response, lung surfactant, and matrix metalloproteinase-3, before closing 

with a brief description of the animal models available for the study of this disorder. 
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1.2. Lung function and structure 

The primary function of the lung is gas exchange. During breathing, oxygen entering the 

lungs diffuses into the blood, while carbon dioxide diffuses from the blood into the lung to 

be exhaled in the external environment. Lung function is facilitated by a number of 

anatomical features, namely the presence of an extremely large pulmonary surface area 

available for diffusion, close proximity of the inhaled air to blood vessels at the alveolar 

level, and the very low thickness of the alveolo-capillary barrier through which oxygen and 

carbon dioxide diffuse [1].  

Such anatomical features are the final result of a tree-like structure that starts at the nose 

and mouth, and proceeds within the thoracic cavity via a semi-flexible tube, the trachea, 

which divides into left and right main primary bronchi. Each bronchus branches multiple 

times into progressively narrower and shorter bronchi/bronchioles down to the terminal 

bronchioles, thereby generating a very large number of conducting airways. The process 

of subsequent divisions continues further into the distal regions of the lung, until millions 

of individual lung units, known as alveoli, generate a very large surface area suitable for 

gas exchange. Diffusion of oxygen and carbon dioxide is also favored by the vast network 

of capillaries wrapped around the alveoli, with the capillary endothelial cells laying in very 

close proximity to the epithelial cells of the alveoli [1].  

As mentioned, epithelial cells form the alveolar wall; precisely, alveoli are mainly made of 

flat, squamous type I alveolar epithelial cells and some cuboidal type II epithelial cells. 

The type II cells produce and secrete pulmonary surfactant at the air-liquid interface [18]. 

Surfactant, a protein-lipid mixture, is very important for reducing the surface tension in the 

alveoli, thereby optimizing lung compliance and facilitating the work of breathing [8]. In 

addition to type I and type II epithelial cells, some resident alveolar macrophages (AM) are 

found within the alveolar space, where they act as a first line defense against pathogens 

and participate in surfactant metabolism [19, 20]. 
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1.3. Lung mechanics 

In addition to the structure of the lung, the process of ventilation is important for gas 

exchange. Ventilation refers to the process by which a volume of air, known as tidal 

volume, enters and leaves the lung with each breathing cycle. The mechanics of this 

process are closely linked to the properties of the lungs and those of the thoracic cavity in 

which the lungs are located. Within this enclosed space, the base of the lungs comes in 

contact with the diaphragm, a dome-shaped muscle that separates the lungs from the 

abdominal contents. Pleural membranes surround the outer surface of each lung and line 

the inside of the chest wall, forming a thin intra-pleural space that is normally filled with a 

small volume of fluid. The intra-pleural space provides connection between the lung and 

the chest wall, and given the natural tendency of the chest wall to expand and the lung to 

collapse, this space has a slightly sub-atmospheric pressure or, in other words, a negative 

pressure [1].  

During inspiration, contraction of the inspiratory muscles (diaphragm and external 

intercostals) causes an increase in the volume of the thoracic cavity. With the increase in 

volume, the negative intra-pleural pressure becomes more negative leading to the 

expansion of the lung and a fall in alveolar pressure to a slightly sub-atmospheric value. 

This pressure gradient promotes flow of air from the atmosphere to the alveoli. In tidal 

breathing (non-exertional), expiration, unlike inspiration, is a passive process resulting 

from the relaxation of the inspiratory muscles, with subsequent decrease in the thoracic 

and lung volumes. These changes affect the alveolar pressure, now slightly greater than 

atmospheric pressure, providing the driving force necessary for air to flow from the alveoli 

back to the atmosphere [1].  

The work of breathing can be affected by two main factors: the resistance to airflow within 

the conducting airways and the distensibility of the lung tissue. In healthy subjects, the 

medium to larger airways offer a negligible degree of resistance to the airflow. Narrowing 

of these airways, however, as a result of bronchial constriction or obstruction such as in 

asthma, will increase the resistance and impair airflow [21]. 



6 

 

The distensibility of the lung tissue, known as compliance, refers to the ability of the lung 

to inflate and stretch during inspiration. Lung compliance is an indicator of the stiffness of 

the lungs, and it is defined as volume change per unit pressure change [1]. Two principal 

factors can influence compliance: the elastic properties of the lung and the surface tension 

of the alveolar lining fluid. The elastic properties can be described essentially as the 

tendency of the lung to recoil to the resting volume after distention. Lung elasticity arises 

from the elastin and collagen fibers in the pulmonary tissue, and any alteration of these 

fibers can cause changes in lung compliance [1]. As mentioned, compliance is also 

influenced by the surface tension arising from attractive forces between water molecules 

at the air-liquid interface within the alveoli. In healthy lungs, surface tension has very low 

values attributable to the presence of a material lining the alveoli called pulmonary 

surfactant. Secreted by alveolar type II cells at the air-liquid interface, lung surfactant is a 

protein-lipid mixture that lowers surface tension, thereby stabilizing the alveoli and 

reducing the work of breathing [8, 22]. Whole lung compliance is therefore strongly 

affected by the presence of a functioning surfactant system. The relationship between an 

impaired surfactant system and consequently poor lung compliance is most evident in a 

disease called the neonatal respiratory distress syndrome, where preterm infants are born 

with insufficient amounts of surfactant and struggle to breath [23]. Alterations of the 

surfactant system in a mature lung can occur in the acute respiratory distress syndrome, 

which is the focus of this thesis.  

A more detailed overview of surfactant composition, function and alterations during 

disease will be provided in the following sections of this thesis. 

 

1.4. Lung insults: the Acute Lung Injury / Acute Respiratory Distress Syndrome 

(ALI/ARDS) paradigm. 

1.4.1. ALI/ARDS definition 

This thesis focuses on the clinical problem of acute lung injury (ALI) and on ALI’s more 

severe form, the acute respiratory distress syndrome (ARDS). An adult respiratory-distress 
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syndrome was first described in 1967 by Ashbaugh in twelve adults presenting with acute 

onset of rapid breathing, hypoxia, and poor lung distensibility [24]. The extensive research 

that followed improved the knowledge of this disease’s pathophysiology, leading to a 

renaming of the disease to acute respiratory distress syndrome and a clear clinical definition 

in 1994 by the American-European Consensus Conference. ARDS and ALI were defined 

as acute in onset and characterized by bilateral radiologic infiltrates with no evidence of 

heart failure, and hypoxemia, as determined by the ratio of arterial partial pressure of 

oxygen (PaO2) to fraction of inspired oxygen (FIO2). Specifically, ALI was defined by a 

PaO2/ FIO2 ≤ 300mmHg, while the cut off for the more severe ARDS was a PaO2/ FIO2 ≤ 

200mmHg [25]. In more recent years, some of the limitations of this definition have been 

addressed with the updated “Berlin definition”, which has removed the term ALI and 

instead distinguishes between three mutually exclusive ARDS subgroups (mild, moderate, 

or severe ARDS) based on the severity of the hypoxemia [26]. While this new definition 

constitutes an improvement to the clinical practice allowing for better stratification of 

patients in clinical trials, it poses some challenges in its application to animal models of 

lung injury since there is no reference to underlying pathophysiology. The terminology 

acute lung injury, instead, traditionally includes a broader spectrum of the disease, 

encompassing both patients and experimental models. For this reason, the term ALI will 

be used to refer to the acute lung injury/acute respiratory distress syndrome throughout the 

remainder of this thesis. 

A broadly accepted definition of this disease has allowed for the collection of useful 

epidemiological information. Recent estimates suggest an ALI incidence of approximately 

60-80 new cases per 100,000 person-years in the United States [4, 27]. Importantly, 

mortality from ALI is still very high at 40%, with distal organ failure, rather than 

respiratory failure, being the main cause of death for these patients [15, 16, 28].  

1.4.2. ALI overview 

Despite a relatively simple clinical definition based on physiological parameters, ALI is a 

complex pulmonary disorder characterized by decreased compliance, persistent and 

elevated lung inflammation, a high mortality, and no available therapeutic options [29–31]. 
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After many years of clinical and basic research, many aspects of ALI pathophysiology are 

still elusive and challenge the development of effective pharmacological therapies. To add 

to the complexity, disease progression is associated with the development of systemic 

inflammation and multi-organ failure which is, as previously mentioned, the most common 

cause of death in ALI [15, 32].  

Affecting patients of all ages, ALI is initiated by a variety of lung insults of different origin 

[2]. For example, potential threats and pathogens can come from the external environment, 

to which the lung is continuously exposed [33, 34]. On the other hand, the lung receives 

the entire cardiac output through its vasculature and can therefore be affected indirectly by 

damage-associated molecules or invading organisms found in the pulmonary circulation 

[33, 34]. In most cases, the lung can manage and effectively clear such threats. On occasion, 

however, the host response to a lung insult can become maladaptive. As a result, patients 

with ALI present with lung edema, altered pulmonary surfactant, decreased compliance 

with an associated hypoxemia, and a sustained pulmonary inflammatory response [2, 35, 

36]. 

The progressive hypoxemia affecting these patients ultimately requires the use of 

mechanical ventilation (MV), the main supportive treatment for this disorder. Even though 

essential, MV can contribute to lung injury and inflammation, thereby promoting ALI 

progression [12]. The role of MV in ALI became strongly evident in a large, multi-center 

randomized clinical trial conducted in 2000 [37]. In this study, the ARDS Network assessed 

the effect of ventilation using different tidal volumes in patients with ALI. Patients received 

MV with either a ‘conventional’ tidal volume (Vt=12mL/kg predicted body weight) or a 

low tidal volume (Vt=6mL/kg predicted body weight) strategy. The trial was stopped early 

due to the significantly lower mortality in the low Vt group (31.0%) compared to the group 

receiving conventional Vt ventilation (39.8%) [37]. The underlying pathophysiological 

mechanism responsible for such outcome was suggested to stem from the effects of MV 

on the inflammatory response in ALI. An earlier clinical study by Ranieri et al. had in fact 

shown that, at 36 hours post randomization, more injurious ventilation strategies caused 

greater increases in both pulmonary and systemic inflammation in ALI patients, compared 

to concentrations at study entry and in patients ventilated with lung-protective MV [12]. 
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Overall, these clinical studies have highlighted that MV is a potential contributor to disease 

progression, by enhancing lung inflammation and leading to a systemic inflammatory 

response and peripheral organ failure. As such, MV could represent an ultimately effective 

target in ALI treatment. 

Additionally, this evidence shifted the focus from oxygenation, the traditional “clinical 

outcome” of patients with ALI/ARDS, to inflammation, as it became clear that a persistent, 

excessive lung inflammatory response is the culprit for disease progression [5, 6]. In this 

respect, Meduri et al. demonstrated that at the onset of ARDS, non-survivors had 

significantly higher pulmonary inflammatory mediators (i.e. IL6, IL8, TNF-α) levels than 

survivors, stressing the association between lung inflammation and disease outcome [6].  

Lastly, the evidence of a central role of inflammation in ALI would suggest that a lung-

targeted treatment, aimed at reducing pulmonary and systemic inflammation, could be 

extremely beneficial and more effective than strategies merely aimed at improving 

oxygenation. In this sense, exogenous surfactant administration is a lung-targeted 

treatment whose role in affecting the inflammatory response associated with ALI has been 

insufficiently characterized. Moreover, the study of key mediators of pulmonary 

inflammation (such as, for example, matrix metalloproteinase-3) could help identify 

new potential therapeutic targets for this disorder.  

1.4.3. Treatment of ALI  

Treatment of ALI is based on supporting gas exchange through MV, careful monitoring 

and stabilization of these critically ill patients, and management of the initiating insult 

when possible [38]. Unfortunately, no pharmacological treatment is yet available for this 

disorder, and even though many therapies have been promising experimentally, they have 

failed to improve outcomes clinically [39]. Among these, exogenous surfactant 

administration led to exciting improvements in oxygenation and compliance for ALI 

patients in Phase 2 trials and smaller Phase 3 trials [40, 41]. This treatment, however, did 

not appear to improve mortality in more recent, larger Phase 3 trials, possibly due to 

surfactant administration occurring too late in the paradigm of ALI development [40]. A 
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more in depth description of surfactant in ALI pathogenesis and treatment will be described 

in section 1.6. 

To date, the only approach shown to reduce mortality in ALI is the use of low tidal volume/ 

protective MV, likely due to lower pulmonary and systemic inflammation elicited by this 

strategy compared to higher Vt ventilation [37]. Since ALI is characterized by a persistent, 

excessive pulmonary inflammatory response [42, 43], anti-inflammatory treatments such 

as corticosteroids, statins and activated protein C could theoretically decrease mortality. 

The results from clinical trials however have been disappointing, showing no clear benefits 

of such treatments [44, 45]. It is therefore imperative to expand our knowledge of ALI 

pathophysiology and the associated inflammatory response, as well as to re-examine some 

of its treatments, in order to effectively interfere with disease progression and improve 

mortality.  

In summary, examination of the clinical studies performed to date suggest that ALI, 

although defined by physiological criteria, is a complex inflammatory disease in which its 

essential therapeutic intervention (MV) can actually contribute to disease progression. 

Despite the complex pathophysiology of ALI, recent animal and clinical studies have 

started to provide insight into the development of this disease. The current state of 

knowledge, and areas requiring further research, are described below with a specific focus 

on inflammation.  

 

1.4.4. Development of ALI: the ALI paradigm 

The current model for ALI development and progression, based on clinical, in vivo, and in 

vitro studies, is shown in figure 1.1. Briefly, the model illustrates how multiple insults (or 

hits) to a normal lung can lead to the development of ALI, and exemplifies the disease 

progression from lung injury to multi-organ failure, which is the main cause of death for 

ALI patients. More detailed information on the different steps in the multiple hit paradigm 

of ALI is provided in the upcoming sections.  
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Figure 1.1: Multiple hit paradigm of ALI development. 

 

1.4.4.1. Primary insults and ALI pathogenesis  

In the multiple hit paradigm of ALI, a normal lung is first exposed to an initiating or 

primary insult, which can be classified as either direct or indirect (Fig. 1.1) [2]. Indirect 

insults such as sepsis or trauma primarily affect the pulmonary vasculature, given the 

presence in the circulation of pathogens and inflammatory molecules from various 

potential sources. On the other hand, insults such as pneumonia or gastric acid aspiration 

represent direct injuries to the lung, and are the main focus of this thesis [2]. Numerous 

animal studies have shown that such direct injuries cause greater damage to the alveolar 

epithelium, and a more robust inflammatory response within the alveolar space compared 

to indirect insults [33, 46]. Overall, the response of the lung to any insult is a rather 
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complicated process involving a multitude of soluble mediators, multiple cells types, and 

a complex integration of intracellular pathways. For this reason, a simplification of the 

major pathophysiological steps involved in this disease is necessary to better understand 

ALI. 

Following the initial lung insult, the disruption of the alveolo-capillary barrier allows the 

abnormal leakage of a protein-rich edema into the alveolar space [29, 47]. This, in turn, 

inhibits surfactant function [48] and leads to a profound decrease in lung compliance [49]. 

Importantly, alveolar macrophages and, to some extent, epithelial cells respond to the 

injurious event by mounting an inflammatory response within the alveolar space [50]. Up-

regulation of pulmonary cytokines and chemokines results in the recruitment of 

polymorphonuclear neutrophils (PMNs), cells of the innate immune system that are first 

responders in tissue injury and infection [51]. While this initial inflammatory response is a 

homeostatic process important for injury resolution, the severity and persistence of 

inflammation in ALI can cause tissue injury, impair effective resolution, and correlate with 

poor outcomes. Occurrence of the latter processes may be promoted if the lung is exposed 

to a secondary insult. 

1.4.4.2. Secondary insult, systemic inflammation and   

 multi-organ failure 

The elevated pulmonary inflammation, alveolar flooding and surfactant alterations that 

follow a primary insult make the lung susceptible (predisposed lung) to the effects of other 

secondary insults, such as sepsis, trauma or, most commonly, mechanical ventilation (Fig. 

1.1). As mentioned earlier, decreased compliance and hypoxemia are hallmarks of ALI 

[25], and MV is necessary to support gas exchange. The contribution of MV as a secondary 

insult has been extensively highlighted in both clinical studies and animal models of lung 

injury [12, 14, 52, 53], many of which have also shed light on the three different ways MV 

participates in ALI progression.  

First, MV contributes to lung surfactant inactivation, with consequent alveolar collapse and 

worsening lung compliance [7, 54]. Second, due to the overstretching of the more aerated 

and compliant alveolar units, MV causes increased release of inflammatory mediators, 
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thereby exacerbating lung injury [55–57]. Third, ventilation itself is an important 

contributor in ALI progression toward systemic inflammation (Fig. 1.1) [13, 58].  

A vast body of experimental evidence has in fact shown that MV promotes the de-

compartmentalization of pulmonary inflammatory mediators into the systemic circulation, 

and that exacerbation of pulmonary inflammation by MV enhances the development of 

systemic inflammation [58–60]. Importantly, the severity of the systemic inflammatory 

response correlates with mortality in ALI [37]. Inflammatory molecules in the circulation 

are, in fact, biologically active and exert a pathogenic role on extra-pulmonary organs (i.e., 

liver and kidneys) ultimately leading to multi-organ failure [14, 52, 61–63]. An interesting 

study from our lab has in fact demonstrated that circulating inflammatory mediators 

released from injured lungs can activate distal cell populations, namely mouse liver 

endothelial cells and leukocytes, leading to a pro-inflammatory and pro-adhesive 

phenotype in these cells [64]. 

Since inflammation is a crucial component of ALI pathophysiology, an overview of the 

inflammatory response associated with ALI is necessary, before addressing in greater 

details the specific variables manipulated for the study of lung injury in this thesis. 

1.5. Inflammation and inflammatory mediators in acute lung injury 

As mentioned above, inflammation plays a central role in ALI. Inflammation is a complex, 

highly regulated adaptive response to tissue injury or infection, mounted to re-establish 

homeostatic conditions. The inflammatory response involves a variety of cellular and 

soluble mediators cooperatively working to eliminate the detrimental stimuli, thereby 

progressing toward phases of resolution and tissue repair [65]. Sometimes, however, for 

reasons that are not yet clear, the inflammatory process persists, becomes maladaptive, and 

may lead to organ injury and dysfunction as in the case of ALI.  
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1.5.1. Cellular components in the inflammatory process  

Among the different cell types participating in the inflammatory process, neutrophils are 

particularly relevant in the settings of ALI. Neutrophils are recruited to the injured lung 

and migrate into the air space shortly after a primary insult [51]. These cells are essential 

players in the innate immune response to injury and/or infection, and within the alveolar 

environment these cells can contribute to the development of ALI through the release of 

pro-inflammatory cytokines and production of reactive oxygen species [51, 66]. Moreover, 

activated neutrophils can secrete potent proteolytic enzymes, such as elastase, collagenase 

(i.e., matrix metalloproteinase-8) and gelatinases (i.e., matrix metalloproteinase-9), 

potentially responsible for alterations of the lung extracellular matrix [66]. The pathogenic 

role of neutrophils in ALI has been shown in animal models of lung injury [67, 68]; 

moreover, pulmonary accumulation and persistence of neutrophils appear to correlate with 

disease severity in patients with ALI [69]. Nonetheless, the evidence that neutropenic 

patients can develop lung injury as well [70], suggests that other cell populations may be 

involved in ALI. In fact, important contributors to this elaborate inflammatory response 

are also the parenchymal cells, namely endothelial cells, alveolar epithelial cells, 

fibroblasts, and the alveolar macrophages [50].  

As a first line of defense, the alveolar macrophages phagocytose pathogens and dead cells, 

can secrete anti-microbial peptides, and release proteases such as matrix metalloproteinases 

(including matrix metalloproteinase-3), thereby orchestrating the inflammatory and 

immune response, and contributing to the later reparative phase [71]. Additionally, alveolar 

macrophages can also release a variety of soluble mediators of inflammation, 

proteinaceous and/or lipidic in nature, responsible for many of the pathophysiological 

events occurring in ALI, including neutrophils recruitment [71].  

Migration and influx of leukocytes to the injured lung is also facilitated by the activated 

endothelium, which expresses surface adhesion molecules necessary for cell to cell 

interaction [72]. Epithelial cells participate to the immune response in ALI through the 

secretion of collectins (SP-A, SP-D) associated with surfactant and, additionally, via the 

release of inflammatory mediators (i.e. IL-1β, IL-8, TNF-α) in response to multiple stimuli, 

including stretch associated with MV [73–76].  
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1.5.2. Overview of soluble inflammatory mediators 

In addition to the cellular component, soluble mediators are a second key pathological 

feature in the development and progression of ALI. Following insults to the lung (Fig. 1.1), 

a broad variety of pro- and anti-inflammatory molecules are released from the 

aforementioned cellular sources within the lung and in the bloodstream. For the sake of 

brevity, only inflammatory signals relevant to this thesis will be reviewed in this section. 

Mediators of interest include: i) cytokines, ii) chemokines, and iii) lipid mediators. A list 

of such mediators with an indication of their main respective biological functions is given 

in Table 1.1.  
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Inflammatory Mediators Biological Activity 

Cytokines  

G-CSF Granulocyte survival/growth 

GM-CSF 

Host defense; 

granulocyte/monocyte/AM survival & 

growth  

IL-1β 
Pro-inflammatory; fever; neutrophil 

migration 

IL-6 

Pro-inflammatory; acute-phase 

response; leukocytes 

growth/differentiation 

IL-10 Dual role; pro- and anti- inflammatory 

IL-13 
Anti-inflammatory; asthma and allergic 

disease 

TNF-α 
Pro-inflammatory; hypotension/shock; 

cell cytotoxicity; fever 

Chemokines  

(alternative name) 
 

Eotaxin (CCL11) 

Pro-inflammatory; chemoattractant for 

eosinophils & basophils; allergic 

airways inflammation 

IP-10 (CXCL10) 
Pro-inflammatory; chemoattractant for 

activated T cells 

KC (CXCL1) 
Pro-inflammatory; chemoattractant for 

neutrophils 

LIX (CXCL5) 
Pro-inflammatory; chemoattractant & 

activator of neutrophils 

MCP-1 (CCL2) 
Pro-inflammatory; chemoattractant for 

monocytes 

MIP-2 (CXCL2) 
Pro-inflammatory; neutrophils 

chemoattractant/activator  

Lipid Mediators  

8-Isoprostane Marker of oxidative stress 

Leukotriene B4 
Pro-inflammatory; neutrophils 

chemoattractant/activator 

Prostaglandin E2 
Inflammation; vascular tone & 

permeability 

Thromboxane A2 
Pro-inflammatory; neutrophils 

chemoattractant/activator 
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Table 1.1: Summary of inflammatory mediators involved in ALI and most relevant in this 

thesis. KC, MIP-2 are considered murine equivalent of human IL-8. For further 

information, see Bathia M. et al. [43], Puneet P. et al. [77], and “Principles of internal 

medicine”, Harrison, 15th edition [78]. AM, alveolar macrophages. 

G-CSF = granulocyte colony-stimulating factor, GM-CSF = granulocyte-macrophage 

CSF, IL-6 = interleukin-6, IP-10 = interferon-γ-induced protein 10, KC = keratinocyte 

chemoattractant, LIX = lipopolysaccharide-induced CXC chemokine, MCP-1 = monocyte 

chemotactic protein-1, MIP-2 = macrophage inflammatory protein 2 and TNF-α = tumor 

necrosis factor-alpha. 

 

1.5.2.1. Cytokines and chemokines 

Cytokines and chemokines are small proteins secreted by immune and non-immune cells. 

Once released in the extracellular environment, cytokines will affect the activity and 

function of other, target cells [65]. Chemokines work as chemoattractant and activators of 

leukocytes, and are generally classified based on the position of the first two cysteine 

residues at the N-terminal: CC chemokines for adjacent residues, CXC if an amino acid 

separates them [77]. Together, cytokines and chemokines coordinate the inflammatory 

response through cell activation, changes in gene expression, and recruitment of 

inflammatory cells to the site of injury. These events are extremely significant in the 

pathogenesis of ALI, where increases of chemokine levels in alveolar fluid lead to massive 

recruitment and infiltration of neutrophils, potentially contributing to lung dysfunction [42, 

66]. In the multiple hit paradigm of ALI development, changes in pulmonary cytokine and 

chemokine levels are induced at first by a primary insult of variable nature [2]; invariably, 

however, MV is applied to the predisposed lung contributing to overwhelming cytokine 

release. Numerous experimental studies confirm the exacerbation of lung inflammation by 

MV and point out the ventilation-induced de-compartmentalization of mediators such as 

TNF-α, IL-8, MCP-1 in the systemic circulation, with consequent development of distal 

organ failure [13, 58, 60, 61, 79]. It appears, therefore, that alterations of the inflammatory 

milieu resulting from MV can worsen ALI outcomes. The pathogenic role of cytokines and 

chemokines in ALI is in fact substantiated by clinical evidence that elevated lavage and 
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plasma levels of IL-6, TNF-α, IL-1β, and IL-8 correlate with disease gravity and poor 

outcomes in these patients [6, 12, 80–82]. Importantly, the concentration of these pro-

inflammatory cytokines was found persistently elevated in the lung of non-survivors, while 

ALI survivors observed lower IL-6, TNF-α, IL-1β, and IL-8 levels at the onset of ALI, and 

over the course of the disease [6]. Overall, this evidence indicates the necessity to modulate 

pulmonary and systemic cytokine/ chemokine levels in order to improve ALI outcomes.  

1.5.2.2. Lipid mediators in ALI  

The complex inflammatory scenario associated with ALI is not limited to the above-

mentioned small, protein mediators, but also includes lipid mediators of inflammation 

(Table 1.1). Lipid mediators, or eicosanoids, are derived from the metabolism of 

arachidonic acid by different enzymes: the cyclooxygenases pathway leads to the 

production of mediators such as isoprostanes, prostaglandin E2 (PGE2) and thromboxane 

A2 (TXA2), while the activity of lipoxygenases generates, among others, leukotriene B4 

(LTB4) [83]. The contribution of these mediators to ALI pathogenesis can be inferred by 

both clinical and experimental data. 

Elevated concentrations of leukotrienes have been detected in lavage samples from 

ALI/ARDS patients [84]; moreover, LTB4 levels have been shown to correlate with the 

occurrence of lung injury in trauma patients [85]. Eicosanoids play a role in vascular tone, 

activation and permeability, and serve as potent chemoattractants and activators for 

neutrophils. In this regard, Zarbock et al. have demonstrated that TXA2 is responsible for 

the recruitment and accumulation of neutrophils to the injured lung in a mouse model of 

acid-induced ALI [67]. Moreover, experimental work performed by Jaecklin et al. has 

shown the pathogenic role of circulating lipid mediators in a model of ventilation-induced 

lung injury. The group observed that, when perfused in the pulmonary circulation of 

recipient mice, lung-derived mediators isolated from mice with ventilation-induced lung 

injury could worsen permeability and compliance of recipient mice ventilated with non-

injurious modes of MV [86]. Subsequent analysis of these soluble mediators revealed their 

protein and lipid nature, thereby strengthening the role of cytokines, chemokines and 

eicosanoids in ALI pathogenesis.  
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1.5.3. Targeting inflammation as a therapy for ALI 

Despite the convincing evidence that overwhelming inflammation is an important 

pathophysiological feature contributing to the progression of ALI, interfering with this 

process has not been successful to date. For example, strategies involving the depletion of 

inflammatory cell types (i.e. alveolar macrophages or neutrophils) not only have shown 

conflicting experimental results [87–90], but would translate poorly into clinical practice 

due to issues of safety and feasibility, given the undeniable importance of innate immunity 

in host defense and tissue repair.  

The rather intuitive approach of targeting individual cytokines or chemokines to down-

modulate the inflammatory response has also proven ineffective in both experimental and 

clinical studies. The work of Nakamura et al. showed that mice lacking the expression of 

the cytokine IL-6 had similar physiological impairments than wild type mice, following 

exposure to three different models of ALI [91]. A more recent study by Markovic et al. 

demonstrated that, while solutions containing lung-derived inflammatory mediators caused 

liver endothelial cell dysfunction, the neutralization of IL-6 or TNF-α found in such 

solutions was ineffective in rescuing the alterations in endothelial cells [64]. Clinically, an 

antibody against TNF-α or administration of IL-1β Receptor Antagonist have been tested 

for the treatment of severe sepsis, a known cause of ALI (Fig. 1.1), but failed at reducing 

mortality in this patient population [92, 93].  

Attempts at modulating the inflammatory response associated with ALI have also been 

made with the clinical evaluation of corticosteroids. As emerges from a recent meta-

analysis of several clinical studies, corticosteroid therapy in ALI showed no effect on long 

term mortality, and even appeared to significantly harm patients with influenza-related 

lung injury [94]. 

Taken together, this evidence underscores the necessity for further understanding of the 

inflammatory response and the need for new therapeutic strategies. In this regard, we 

believe that lung surfactant and the protease matrix metalloproteinase-3 might be such 

potential strategies. An overview dedicated to their role in inflammation and ALI is given 

in the following sections of this introductory chapter.  
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1.6. The pulmonary surfactant system 

Being an important contributor in the pathogenesis of ALI and a marker of disease 

progression, the pulmonary surfactant system has been the focus of intense in vitro, in vivo, 

and clinical research over the last five decades. 

As mentioned earlier, the biophysical role of pulmonary surfactant is to reduce the surface 

tension at the air-liquid interface, thereby ensuring optimal lung compliance [1]. The 

decrease in pulmonary compliance typical of ALI generally results from the impairment of 

surfactant activity [95].  

In addition to its surface tension reducing properties, lung surfactant has also an important 

role in immune modulation and host defense within the alveolar environment [9]. 

Interestingly, less is known about this function in the context of ALI. 

1.6.1. Surfactant composition 

The composition of surfactant is conserved across mammalian species and consists of 

approximately 90% lipids, primarily phospholipids, and 10% surfactant associated proteins 

[8]. The most abundant phospholipid component is phosphatidylcholine (PC), half of 

which is dipalmitoylphosphatidycholine (DPPC), a disaturated species important for 

achieving low surface tension values at the end of expiration [8]. 

The protein components include four surfactant associated proteins: surfactant protein-A 

(SP-A), surfactant protein-B (SP-B), surfactant protein-C (SP-C) and surfactant protein-D 

(SP-D) [96, 97]. The large, hydrophilic SP-A and SP-D proteins are members of the 

collectin family and participate in the innate immune response [98]. SP-B and SP-C are 

small, highly hydrophobic proteins very intimately associated with the lipids. SP-B and 

SP-C proteins are important for promoting the formation of the surface film and supporting 

its biophysical function [99]. 
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1.6.2. Surfactant metabolism 

All of the surfactant components are synthesized and secreted by the alveolar type II cells 

(Fig. 1.2) [100]. Surfactant is exocytosed into the alveolar space from storage organelles, 

the lamellar bodies, found within type II cells [101]. SP-B and SP-C are assembled and 

secreted together with the lipids, while synthesis and release of SP-A and SP-D is mainly 

independent from lipid metabolism [102, 103]. There is some evidence, however, that SP-

A may be secreted in association with the lamellar bodies as well (Fig. 1.2) [104, 105].  

 

Figure 1.2: Surfactant metabolism. Surfactant is a protein-lipid mixture synthesized by 

type II alveolar cells, stored in lamellar bodies and secreted into the liquid hypophase. 

Tubular myelin is then generated and adsorption of phospholipids to the interface creates 

a surface film enriched in DPPC. Breathing motion causes formation of small vesicles, 

which are up-taken by type II cells or cleared by alveolar macrophages (AM). LA, large 

aggregates; SA, small aggregates.  
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Following secretion, the surfactant from the lamellar bodies undergoes reorganization into 

tubular myelin, a lattice-like structure that is then adsorbed rapidly to the air-liquid 

interface where it forms a monolayer film [102]. Upon ventilation, the changes in the 

alveolar surface area favor the conversion of surfactant into small vesicles with poor 

biophysical activity. Pulmonary surfactant can be collected through lung lavage, and the 

vesicular forms can be subsequently isolated via differential centrifugation of lung lavage 

samples. The process leads to the separation of a larger, heavier sub-fraction named large 

aggregates (LA) and small, lighter vesicles called small aggregates (SA) [106, 107]. The 

LA component consists of structures from the lamellar bodies, tubular myelin, surfactant 

proteins SP-A, SP-B, and SP-C and has excellent surface tension reducing properties [108, 

109]. As mentioned, changes in the pulmonary surface area determine the conversion of 

large aggregates into SA, the latter being the biophysically inactive sub-fraction with lower 

content of surfactant-associated proteins [108]. Lastly, clearance of inactive surfactant 

occurs via reuptake and recycling from alveolar type II cells, or through phagocytosis and 

degradation within alveolar macrophages (Fig. 1.2) [102, 103].  

1.6.3. Surfactant function 

As previously mentioned, the biophysical function of surfactant consists in lowering the 

surface tension at the air-liquid interface [8]. Without surfactant, the water molecules at the 

very surface of the liquid hypophase would experience a net inward force, attracting them 

to the bulk of the liquid. In this situation, as the surface area decreases (ie. during 

exhalation), the high surface tension would resist lung expansion and a relatively high 

pressure would be necessary to re-open the lung. This would decrease alveolar stability 

and promote alveolar collapse. The presence of the surfactant film at the air-liquid interface 

assures a reduction of the surface tension to values near zero mN/m, with DPPC being the 

primary component contributing to alveoli stabilization at low lung volume [110, 111]. 

Importantly, the hydrophobic proteins SP-B and SP-C also participate in this process by 

promoting lipid adsorption at the interface and facilitating the re-spreading of surfactant 

during inspiration (corresponding to an expansion in surface area) [22, 99, 112]. The roles 

of SP-B and SP-C in surfactant function become particularly evident when analyzing the 

phenotype of mice in which the expression of either protein had been knocked out. Mice 
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lacking SP-B are not viable and die shortly after birth due to respiratory distress. Lack of 

SP-B impairs the generation of lamellar bodies and tubular myelin, highlighting the 

essential role of this surfactant protein in lipid organization [99, 113]. Conversely, the 

phenotype of mice with SP-C deficiency is not as dramatically altered, with pulmonary 

surfactant from these mice exhibiting minor biophysical changes at low lung volume, 

thereby supporting the importance of SP-C in film stabilization at the end of expiration 

[114]. 

The collectin SP-A contributes as well to the biophysical function of surfactant. SP-A aids 

in lipid adsorption and in the structural organization of the surfactant film undergoing 

cycles of compression and expansion [115, 116]. This surfactant-associated protein is also 

important for limiting the impairment in biophysical function consequent to intra-

pulmonary leakage of serum albumin [117]. 

SP-A, however, together with SP-D, is primarily involved in the immuno-modulatory 

functions of surfactant [9]. SP-A and SP-D can opsonise viruses and bacteria and promote 

their clearance via phagocytosis by inflammatory cells within the lung; in line with this 

evidence, mice genetically modified to lack SP-A or SP-D expression succumb more easily 

to bacterial infection [118–120]. In addition to such activities, SP-A can influence the 

secretion of inflammatory mediators by peripheral immune cells and alveolar 

macrophages, the production of reactive oxygen species, and can inhibit lymphocyte 

proliferation [76, 121]. 

Furthermore, SP-B, SP-C, and some of the surfactant phospholipids have been shown to 

contribute to the immuno-modulatory properties of surfactant, as they can regulate the 

inflammatory response elicited by a variety of stimuli both in vitro and in vivo [122–125]. 

Of note, the aforementioned SP-C deficient mice appear to mount a more robust 

inflammatory response, and to be more severely impacted by bacterial or viral infections 

than wild type mice, thereby unraveling the anti-microbial and anti-inflammatory 

properties of SP-C [126, 127]. 
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Overall, both the immuno-modulatory and biophysical properties of surfactant are essential 

for lung homeostasis, and the importance of a functional surfactant system is particularly 

relevant in the pathogenesis of ALI. 

1.6.4. Surfactant alterations in ALI 

Surfactant impairment can be considered one of the hallmarks of ALI. Analyses of lung 

lavage samples from numerous animal models and patients with ALI have shown changes 

in phospholipid composition with decreased DPPC, decreased levels of SP-A, SP-B, SP-

C, and higher conversion of large aggregates into functionally inactive SA (Fig 1.3) [95, 

128–131]. These alterations are likely dependent on a number of factors.  

Firstly, injury to the alveolar type II cells during ALI can hinder any of the steps in 

surfactant metabolism, affecting phospholipid species, surfactant protein levels, and 

availability of functional large aggregates [128, 132].  

Secondly, mechanical ventilation and the broad milieu of inflammatory mediators within 

the alveolar space contribute to the aforementioned alterations. Specifically, it has been 

observed that the changes in alveolar surface area associated with MV increase the 

conversion of LA into SA pools, and this is particularly relevant when ventilation with high 

tidal volumes is utilized [133–135]. The inflammatory mediators in the injured lung can 

degrade the different surfactant components via phospholipases and proteases released by 

immune cells or invading pathogens. For example, enzymes secreted by Pseudomonas 

Aeruginosa have been shown to degrade surfactant lipids as well as SP-A, SP-B and SP-

D, and increase LA to SA conversion in vitro [136–138].  

Lastly, leakage of serum proteins into the lung due to the more permeable alveolo-capillary 

barrier considerably contributes to surfactant alterations in ALI. Albumin, hemoglobin, and 

the accumulation of fibrin rich material favored by reduced fibrinolytic activity largely 

contribute to surface film impairment (Fig. 1.3) [48, 139]. 
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Figure 1.3: Surfactant alterations in ALI. The figure represents the increased conversion 

of LA into SA, dysfunction of type 2 cells, and inhibition of surfactant due to leakage of 

serum proteins. 

 

The functional implications of surfactant alterations in ALI result in higher surface tension, 

lower lung compliance, hypoxemia, and possible loss of surfactant immuno-modulatory 

and host defense properties. It is important to note that the alterations of surfactant are not 

just the consequence of the disease process, but they also directly contribute to injury 

progression. Surfactant changes occur, in fact, relatively early in ALI pathophysiology, as 

demonstrated by the work of Maruscak and colleagues [10]. In this study, surfactant 

dysfunction was assessed in rats exposed to one hour or two hours of high Vt MV. Changes 

such as increase in SA content, decrease in percent LA, and impaired ability of isolated 
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surfactant to reduce surface tension occurred within the first hour of injurious MV, in the 

early stages of injury and before any physiological dysfunction (such as hypoxemia or low 

compliance) was detectable [10]. This experimental evidence is also supported by clinical 

observations, in which lung lavage collected from ALI patients within 24 hours from 

intubation showed already significantly lower PC and DPPC levels, lower SP-A/SP-B/SP-

C, and higher minimum surface tension compared to healthy, spontaneously breathing 

controls [131].  

Overall, this evidence suggests that alterations and impairment of the endogenous 

surfactant system contributes to lung dysfunction in ALI resulting in decreased compliance 

and hypoxemia. These findings constitute the main rationale for exogenous surfactant 

administration as a potential treatment of this disorder. 

1.6.5. Exogenous surfactant treatment in ALI 

The concept of exogenous surfactant treatment in ALI stems from the necessity to 

overcome endogenous surfactant alterations impairing the function of the lung. Throughout 

the years, different surfactant preparations have been investigated in both experimental and 

clinical settings. Such preparations differ in terms of source of surfactant (natural versus 

synthetic, or different animal origin) and content of surfactant associated proteins; 

however, none of them contains SP-A or SP-D, for reasons related to the purification 

process of natural surfactants or commercial considerations. Natural surfactant 

preparations are derived from either porcine (Curosurf, HL-10) or bovine (bLES, 

Alveofact, Infasurf, Survanta) sources, and contain natural lipids as well as SP-B and SP-

C, while synthetic surfactants are protein-free (Exosurf and ALEC) or contain recombinant 

SP-C protein or a SP-B like peptide (Venticute and KL4, respectively) [40].  

Extensive animal studies have been performed to evaluate the efficacy of exogenous 

surfactant administration in models of ALI, leading to exciting results with improvements 

in oxygenation and compliance in the treated animals [11, 140–142]. In line with the 

experimental findings, initial case reports and small clinical trials evidenced a beneficial 

effect of exogenous surfactant on oxygenation in patients with ALI [40, 143]. The 

subsequent controlled, multi-center, prospective, randomized trials focused on clinical 
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outcomes such as ventilator-free days (VFD) and mortality. Even though surfactant 

treatment proved to be safe and led to acute improvements in oxygenation, these trials 

showed no change in VFD or mortality in the surfactant treated patients compared to 

patients exposed to standard care [40, 144–146].  

The factors that may have affected the outcomes of exogenous surfactant treatment are 

multiple, and include: the dose and method of surfactant delivery, the type of surfactant 

preparation used, and the severity of the underlying injury.  

An additional factor that may have influenced the efficacy of surfactant treatment is the 

timing of administration [40]. It is in fact possible that exogenous surfactant was 

administered too late into ALI progression, when systemic inflammation and distal organ 

failure may have already developed (Fig. 1.1); therefore, administration at earlier time 

points may prove more beneficial.  

Lastly, it is important to note that improvements in oxygenation following surfactant 

treatment did not correlate with a mortality benefit. Remarkably, the only approach (low 

Vt MV) achieving a decrease in mortality was associated with lower systemic 

inflammation [12, 37]. It would be, therefore, of interest to investigate the relationship 

between exogenous surfactant treatment and inflammation during ALI. In this respect, 

recent data from our lab suggests that elevated endogenous surfactant pool sizes can 

mitigate the inflammation associated with ALI, in mice exposed to injurious MV only or 

to a combination of lipopolysaccharide instillation and MV [147, 148]. The intriguing 

question of whether exogenous surfactant treatment can mirror those findings and have an 

impact on the inflammatory response during ALI will be addressed in chapter 2 of this 

thesis. 
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1.7. Overview on matrix metalloproteinases (MMPs) 

As previously discussed, mitigation of the inflammation in ALI is central to hindering 

disease progression. As mediators of inflammation and potential therapeutic targets, matrix 

metalloproteinases are of particular interest, with one of these proteases, namely MMP-3, 

being the experimental variable under investigation in this thesis (chapters 3 and 4). 

The matrix metalloproteinase family consists of 25 zinc-dependent endopeptidases 

produced by immune cells, epithelial cells, and fibroblasts, and characterized by similar 

structural features [17, 149–151]. The initial view on the function of MMPs was that of 

proteases exclusively dedicated to matrix remodeling. A growing body of research, 

however, has now shown that a large part of the MMP substrates are non-matrix molecules, 

and that MMPs play important roles in many different physiologic and pathologic 

processes. The functions of MMPs span, in fact, from organogenesis to wound repair, 

fibrosis, and, above all, inflammation [152–154]. Importantly, and contrary to the original 

view, advancements in the biology of MMPs suggest distinct and non-overlapping 

functions for these proteases in vivo. The original misconception mainly originated from 

in vitro observations, where different MMPs were shown to cleave the same substrates. 

The case against such redundant/overlapping roles for MMPs is supported by differences 

in MMPs cell expression and their diverse pericellular localization, which affects substrate 

availability in vivo. Additionally, it should be noted that there are emerging non-enzymatic 

activities for several MMPs that further undermine the concept of functional overlap for 

these enzymes [155–157].  

Due to the potential effects of MMPs on multiple molecules and biological events, their 

activity undergoes different levels of regulation. For instance, MMPs are released as latent 

pro-enzymes and, once activated, their activity is limited by alpha 2 macroglobulin or 

specific endogenous inhibitors such as the tissue inhibitors of metalloproteinases (TIMPs). 

MMPs are also regulated at the transcriptional level, with their expression being typically 

low in healthy tissue, and up-regulated in pathological conditions such as infection, injury 

and, most importantly, inflammation [17, 158].  
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Elevated levels and activity of various MMPs have been observed in inflammatory 

conditions such as atherosclerosis, asthma, sepsis, and acute lung injury [159–162]. Far 

from being simple by-standers, these enzymes actively participate in the inflammatory 

process, through regulation of the activation and availability of several cytokines and 

chemokines [152].  

Several clinical studies have in fact observed elevated levels of some MMPs, including 

MMP-1, -2, -3, -8, and -9, in lavage fluids of patients with ALI [163–165]. Importantly, 

one of this studies showed that MMP-3 levels correlated with disease severity, incidence 

of multi-organ failure, and mortality [163]. In light of this evidence, it is of interest to 

specifically investigate MMP-3 contribution to the pathophysiology of ALI. 

 

1.8. Matrix metalloproteinase-3 (MMP-3) 

1.8.1. Characteristics of MMP-3 

Matrix metalloproteinase-3, also called stromelysin-1, is an extracellular, secreted MMP 

whose levels are low in healthy tissue, but increase following injury or inflammation. 

Within the lung, MMP-3 is expressed by epithelial cells, alveolar macrophages, and 

fibroblasts [151, 166]. 

MMP-3 structure consists of a pro-domain, a catalytic domain, a hinge region and a 

hemopexin domain. The pro-domain contains a conserved cysteine residue, whose thiol 

group interacts with a zinc (Zn2+) ion coordinated by the catalytic domain [167, 168]. The 

interaction between the thiol group of the conserved cysteine and the Zn2+ maintains MMP-

3 in a zymogen state, and activation occurs through the proteolytic removal of the pro-

domain or the disruption of the Zn2+-cysteine interaction via a chaotropic agent [169]. As 

mentioned, MMP-3 also has a flexible hinge region, and a C-terminal hemopexin-like 

domain that is important in substrate recognition [168].  

Since its first description in the ‘70s and isolation in the mid ‘80s, the knowledge about 

MMP-3 in physiology and disease has substantially increased, and new emerging roles for 

this protease are still being discovered. Like other members of this family, MMP-3 has 
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multiple and diverse substrates. It can degrade components of the extracellular matrix 

(ECM), such as cross-linked fibrin, fibrinogen, fibronectin, elastin, laminin, collagens and 

proteoglycans [162, 170–172]. Consistent with a role in ECM remodeling, MMP-3 

participates in wound healing where it regulates wound contraction and speed of wound 

closure [173, 174]. Beside the ECM, MMP-3 has also been shown to cleave non-matrix 

substrates. For example, it degrades protease inhibitors, and takes part in the proteolytic 

activation of other MMPs such as MMP-1, -8 and MMP-9 [162, 175–178].   

Cell-to-cell contacts are also affected by MMP-3 through cleavage of E-cadherin, protein 

situated at the junctions between epithelial cells and important for maintenance of the 

integrity of the alveolo-capillary barrier [151, 170]. While shedding of E-cadherin could 

contribute to the development of lung injury, MMP-3 role in the regulation of inflammation 

is of greater importance in the pathogenesis of ALI. 

1.8.2. MMP-3 in the inflammatory process  

MMP-3 has a widespread effect on the inflammatory signaling. MMP-3 can proteolytically 

activate the latent forms of TGF-β and TNF-α, and is responsible for both activation and 

subsequent degradation of IL-1β [17, 179, 180]. Moreover, MMP-3 cleaves several CC 

and CXC chemokines generating receptor antagonists (RANTES, MCP-1, MCP-2, MCP-

3, and MCP-4), leading to inactivation (SDF-1), or generating chemotactic gradients [152]. 

It has in fact been shown that MMP-3 is essential to the generation of an unknown 

macrophage chemo-attractant in a model of herniated disc resorption and may participate, 

among other MMPs, to the activation of NAP-2, a potent neutrophils chemo-attractant 

[181, 182]. This considerable involvement in the inflammatory response is possibly the 

reason for a role of MMP-3 in various inflammatory diseases, such as atherosclerosis, 

endometriosis, sepsis and, importantly, ALI.  

1.8.3. MMP-3 in ALI 

The involvement of MMP-3 in ALI is suggested not only by the aforementioned clinical 

evidence, but also by some experimental data. These studies have utilized Mmp3 wild type 

(Mmp3+/+) and knock out mice (Mmp3-/-) to specifically assess the role of such protease in 

injury development. In the study by Warner et al, Mmp3+/+ and Mmp3-/- mice were exposed 
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to a model of acute alveolitis; subsequently, histological analysis and measurements of 

protein content and cellularity in lavage were performed [183]. The authors observed 

reduced protein levels and neutrophils number in the lavage of injured Mmp3-/- mice 

compared to Mmp3+/+ controls, thereby suggesting a role for MMP-3 in the development 

of injury [183]. These findings are supported by a later study in which lung injury was 

induced through the intra-tracheal instillation of the chemokine CXCL2/MIP-2 [184]. In 

this model as well, Mmp3-/- mice appeared to develop milder injury, indicating a role for 

MMP-3 in lung permeability and neutrophil recruitment following an inflammatory injury 

[184]. 

Even though these experimental findings are of great interest, they are characterized by 

some important limitations. First, these models of lung injury lack clinical relevance, since 

the primary insults utilized to initiate ALI do not closely resemble common ALI etiologies 

[2]. Second, both models are essentially based on neutrophilic infiltration, while models 

reflecting more of the hallmarks of ALI (see section 1.9) would be desirable. Lastly, in-

depth analyses of pulmonary inflammation and ALI outcomes such as surfactant alterations 

and changes in lung mechanics have not yet been performed and are necessary to the 

understanding of MMP-3 role in such complex disease.   

1.8.4. Study tool: Mmp3 knock-out mouse 

As pointed out previously, the use of genetically modified mice lacking the expression of 

Mmp3 is a powerful tool to investigate, specifically, MMP-3 contribution to injury and 

inflammation.  

The first MMP-knock out to be developed, Mmp3-/- mice are viable, fertile, and have 

normal lung structure and function under unchallenged conditions (chapter 4 of this thesis 

and [151]). Following injury, however, Mmp3-/- mice present different phenotype from 

wild type mice, and examples of the inflammatory phenotype of Mmp3-/- mice in several 

injury models are listed in Table 1.2.  

Overall, the Mmp3-/- mouse appears to be an adequate and reliable tool to expand the 

understanding of MMP-3 role in the pathogenesis of ALI and, for such reasons, has been 

the model of choice in our studies (chapters 3 and 4). 
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Mouse Inflammatory phenotypes Ref. 

Mmp3-/- 

Reduced neutrophils count in immune complex induced lung 

injury 
[183] 

Decreased pulmonary fibrosis following bleomycin instillation [151] 

Increased susceptibility to collagen induced arthritis [185] 

Inhibited macrophage infiltration in an in vitro model of 

herniated disc resorption 
[181] 

Impaired contact hypersensitivity and T cell response to 

intestinal bacterial infection 
[186] 

Table 1.2: Examples of inflammatory phenotypes described in Mmp3-/- mice. 

 

1.9. Animal models of ALI 

To effectively interfere with lung injury development and progression, the use of animal 

models reproducing the biological and physiological characteristics of ALI is essential. 

Animal models allow the use of specific research tools, for example the utilization of 

genetically modified animals, to elucidate specific mechanistic pathways involved in the 

disease, which would be otherwise impossible to directly study in human patients. A sole 

animal model, however, cannot resemble all of the disease features due to the variety of 

initiating insults and the complex pathophysiology of ALI. The optimal solution for the 

study of this disease resides, then, in the use of different experimental models, exposed to 

different initiating lung insults, and resembling the multiple hit paradigm of ALI 

development (Fig. 1.1). Most importantly, any animal model utilized should mirror the 

hallmarks of ALI (described below) to adequately reflect the disease pathophysiology. 

1.9.1. Hallmarks of ALI in animal models 

The hallmarks of ALI, ideally addressed by experimental models to mimic human lung 

injury, stem from the definition and clinical evidence for such disorder. These hallmarks 

include: i) acute onset, ii) physiological dysfunction, iii) pulmonary (and systemic) 
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inflammation, iv) increased pulmonary permeability, and v) histological evidence of lung 

injury [187, 188]. 

Specifically, in valid models of ALI lung injury should develop shortly after the exposure 

to the insults (acute onset), and lead to the manifestation of physiological dysfunction. The 

latter implies the presence of pulmonary surfactant alterations, impaired gas exchange, and 

changes in lung mechanics [2]. Analyses of pulmonary surfactant can be readily performed 

on isolated samples of lung lavage undergoing differential centrifugation. Following 

isolation of total surfactant, large, and small aggregates, the abundance of each sub-fraction 

can be determined through well-established biochemical assays [189, 190]. Moreover, 

surfactant biophysical properties can be evaluated in vitro, by monitoring the minimum 

surface tension achieved by LA samples exposed to repeated cycles of compression and 

expansion via captive bubble surfactometer [191] (chapter 2) or constrained sessile drop 

surfactometer [192] (chapter 4). With the exception of surfactant analyses, assessment of 

physiological dysfunction can pose a technical challenge, especially in mice, and may not 

be always feasible. Measurements of oxygenation often require the use of invasive arterial 

catheters, and are limited by a small total blood volume. Physiological parameters are also 

hard to measure in spontaneously breathing animals, but can be assessed in mechanically 

ventilated mice. MV allows in vivo and ex vivo monitoring of changes to peak pressure 

and/or lung compliance [193]; furthermore, as previously mentioned, MV augments the 

pulmonary inflammation associated with ALI, and contributes to the systemic 

inflammatory response [13, 58].  

Pulmonary inflammation, a definite hallmark of ALI, comprises increased lavage 

inflammatory mediators and neutrophil numbers, and can be effectively measured in lung 

lavage samples through commercially available assays and analysis of total and differential 

cell counts. Lung lavage samples can also be utilized to evaluate increases in total protein 

content, thereby illustrating, with some limitations, increases in pulmonary permeability, 

another characterizing aspect of lung injury [188]. 

Lastly, a good animal model of ALI should provide histological evidence of lung injury, 

since histological analyses can give both qualitative and quantitative information on the 
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extent and uniformity of the injury, cellularity, sites of edema accumulation, and gross 

structural abnormalities [188].  

In conclusion, it should be noted that most animal models of ALI present at least a few of 

the hallmarks described above. While a description of all the models available for the study 

of this disease goes beyond the scope of this chapter, the main characteristics of the lung 

injury models relevant to this thesis are described in the following paragraphs. 

1.9.2. Hydrochloric acid-induced lung injury 

Gastric acid aspiration refers to the unintentional inhalation of the gastric content, and is 

one of the direct pulmonary insults predisposing the lung to ALI (Fig. 1.1). It accounts for 

about 30% of all the deaths due to anesthesia, and can also occur in subjects experiencing 

drug overdose or seizures [194]. Even though gastric aspiration exposes the lung to both 

particulate matter and acidic juices from the stomach, this injury has been widely modelled 

through the intra-tracheal instillation of hydrochloric acid (HCl) solutions with low pH [58, 

195, 196].  

Animal models of acid-induced ALI are characterized by acute pulmonary changes, 

detectable as early as four hours post HCl instillation (chapters 2 and 3) [58]. Lung injury 

results from the chemical burn of the pulmonary parenchyma, subsequently leading to 

elevated lavage concentrations of inflammatory cytokines and chemokines involved in 

neutrophils recruitment. Acid-induced ALI, in fact, appears to be neutrophil dependent, as 

demonstrated by marked pulmonary infiltrates and, conversely, by the development of 

milder injury when neutrophils accumulation in the lung is inhibited or decreased [67, 197, 

198]. While it is not entirely clear how acid injury activates the immune system, some 

recent study suggests that the Toll-like receptor 4 (TLR4) pathway may be involved [199]. 

Being a direct lung insult, the alveolar epithelium is especially affected, with loss of 

epithelial cells, alterations of the alveolo-capillary barrier and consequent surfactant 

impairment [187]. Additional signs of physiological dysfunction, such as increased peak 

pressure and decreased compliance, have also been observed in this model of ALI [58, 

196]. 

 



35 

 

1.9.3. Lipopolysaccharide-induced lung injury 

Bacterial pneumonia is one of the most common causes of ALI [2]. This injury has been 

extensively reproduced in experimental models through the intra-nasal or intra-tracheal 

administration of bacteria or lipopolysaccharide (LPS), an immunogenic molecule found 

in the outer membrane of Gram negative bacteria. While administration of live bacteria 

constitutes a valid alternative in modeling pneumonia, LPS has the advantage of being easy 

to prepare and administer, and ensures a good degree of reproducibility [187]. 

LPS instilled intra-tracheally directly affects both the alveolar macrophages and epithelium 

by binding to its receptor, TLR4, on these cells and activating intracellular pathways 

leading to synthesis and release of multiple cytokines and chemokines [200]. LPS-induced 

lung injury then develops presenting most of the hallmarks of ALI described above, as 

highlighted by the analyses of pulmonary permeability and inflammation, physiological 

dysfunction and histological damage described throughout chapters 3 and 4 of this thesis. 

For such reasons, LPS-induced ALI is a very useful and informative model in the study of 

this disorder. 

1.9.4. Ventilation associated lung injury and ex vivo ventilation 

As previously mentioned, mechanical ventilation is the main supportive treatment in ALI 

necessary to improve oxygenation, and a crucial component of ALI pathophysiology as a 

potential secondary insult. Experimentally, the role of MV in ALI has been investigated in 

isolation, overstretching the lung by applying high tidal volume MV to healthy lungs. This 

injury model is referred to as ventilator-induced lung injury (VILI) and allows the study of 

specific alterations in pulmonary function, inflammation and cell signaling resulting from 

excessive mechanical stretch and strain implemented on otherwise normal lungs [201, 

202].  

While VILI is an experimental tool of great analytical value, in a clinical setting ventilation 

is utilized to support lung function, which is already impaired due to a pre-existing injury. 

The study of ventilation in clinically relevant, in vivo or ex vivo models is therefore 

performed by implementing MV on lungs that have been pre-exposed to a clinically 

significant insult, such as aspiration or pneumonia. Such models of ventilation-associated 
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lung injury (VALI) directly examine the role of MV as a secondary insult in propagating 

lung injury and in contributing to the development of systemic inflammation and associated 

distal organ failure [14, 52, 58]. Overall, models of VILI and VALI have been essential in 

demonstrating that MV can lead to damage via over-distention and repeated 

opening/closing of alveolar units, and have convincingly pointed out that the extent of the 

injury is proportional to the degree of mechanical stress applied to the lung.  

The mechanisms through which ventilation can cause and exacerbate injury are barotrauma 

(gross lung injury due to excessive airway pressure), volutrauma (excessive volume 

applied to the lungs) and, particularly relevant for this thesis, biotrauma [55, 203]. The 

concept of biotrauma refers to the release of biologically active mediators from lungs 

exposed to injurious modalities of MV, mediators that can potentially translocate into the 

circulation and damage distal organs [56]. Evidence for the biotrauma hypothesis stems 

from a vast body of in vitro, in vivo and ex vivo research. Numerous studies have in fact 

shown release of inflammatory molecules and changes in gene expression in alveolar 

epithelial cells and macrophages exposed to cycles of mechanical stretch [56, 204, 205]. 

These in vitro findings have been mirrored by in vivo experimental observations, in which 

high pressure or high volume ventilation caused elevated pulmonary and systemic levels 

of cytokines and chemokines, often in combination with changes in peripheral organs [14, 

58, 79]. Notably, Imai and colleagues have demonstrated that, in a model of acid-induced 

ALI followed by injurious MV, lung derived mediators in the systemic circulation led to 

increased apoptosis in the kidneys and small intestine of the experimental animals, thereby 

strongly supporting the biotrauma concept [61].  

A particularly useful tool to study biotrauma and the effects of MV on the lung in isolation 

is a system for ex vivo ventilation, namely the isolated and perfused mouse lung (IPML) 

set up [59]. The IPML set up allows for ex vivo MV of mouse lungs and simultaneous re-

circulation of a cell free solution through the pulmonary blood vessels. One of the main 

advantages of this system resides in the possibility to collect and analyze inflammatory 

mediators specifically released from the lung into the circulation throughout MV [59, 86]. 

Importantly, the IPML system allows the monitoring of potential changes in the levels of 
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these circulating, lung-derived mediators resulting from lung specific treatments, as 

illustrated in chapter 2 of this thesis. 

1.9.4.1. Measurements of lung mechanics in small rodents 

An undoubtable advantage associated with the use of MV in small rodents is the possibility 

to evaluate lung mechanics. Measurement of physiological parameters in spontaneously 

breathing animals is, in fact, quite difficult and usually not very precise [206]. For example, 

whole-body plethysmography can be used in unrestrained, conscious animals; this 

technique, however, provides only general information about the pattern of ventilation, and 

it can generate errors and artifacts. On the other hand, MV is a more invasive procedure, 

requiring restrain, surgery and anesthesia management for in vivo models, but providing 

the valuable advantage of reliable, reproducible, and accurate measurements [207]. While 

in vivo MV was not utilized in this thesis work, models of ex vivo ventilation and ex vivo 

measurements of lung function were applied to terminally sacrificed mice [59, 208, 209]. 

These strategies allowed the monitoring of peak inspiratory pressure changes throughout 

MV (chapter 2) and the specific assessment of several parameters, such as: compliance, 

resistance, and elastance for the whole respiratory system; quasi-static compliance and 

elastance; central airway resistance (RN); tissue resistance or tissue damping (G); and tissue 

elastance (H) (chapter 4); thereby providing complete and novel information on 

physiological dysfunction in our models of ALI.  

1.10. Summary and overall objective 

The lung is the organ responsible for gas exchange, a vital function that is severely impaired 

during acute lung injury. This life threatening condition can be initiated by multiple and 

diverse insults to the lung, resulting in profound alterations of the alveolar 

microenvironment. Among such alterations, the impairment of the surfactant system and 

the development of an extensive pulmonary inflammatory response are key events in the 

progression of the disease. Despite extensive research, the highly complex 

pathophysiology of ALI has hindered the development of an effective therapeutic treatment 

capable of reducing the high mortality associated with this disorder. Further investigation 
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is, therefore, necessary to improve applicable interventions and identify key mediators of 

lung injury that could serve as potential therapeutic targets.  

The overarching hypothesis of this thesis work is that interventions targeting the 

inflammatory response associated with ALI can improve outcomes. The overall objective 

is then to expand our understanding of the ALI pathophysiology, in order to better interfere 

with disease progression and provide potential future alternatives in the treatment of ALI.  
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2.1. Introduction  

Pulmonary surfactant is a mixture of phospholipids, surfactant-associated proteins and 

neutral lipids which has an important role in the lung in both host defence mechanisms 

such as modulating pulmonary inflammation and in stabilizing the alveoli by reducing 

surface tension [1, 2]. Both biophysical and immuno-modulatory properties of 

endogenous surfactant are essential for normal lung function. Importantly, both properties 

are severely impaired during the course of acute lung injury (ALI) [3, 4]. 

ALI is a life threatening condition characterized by bilateral pulmonary infiltrates on 

chest radiograph, alveolar edema and hypoxemia [5]. Mortality is approximately 30-40%, 

with the main cause of death resulting from multiple organ failure (MOF) rather than 

respiratory failure. The former is thought to develop in large part due to the release of 

inflammatory mediators from the lung into the circulation thereby contributing to 

excessive systemic inflammation. This, in turn, causes MOF and death [6-8]. 

The main supportive therapy required to maintain adequate oxygenation for patients with 

ALI is mechanical ventilation (MV). Unfortunately, this intervention is also an important 

component of the complex pathophysiology of ALI, since it can increase pulmonary 

inflammation and contribute to the development of the associated systemic inflammation 

leading to MOF [9-13]. A pharmacological therapy capable of mitigating the specific 

inflammatory effects of MV thereby reducing the contribution of the lung to the systemic 

inflammation is needed. Based on the known properties of surfactant within the lung, the 

current study investigated on such potential therapy namely exogenous surfactant 

administration.  

Exogenous surfactant has been investigated as a possible therapy for ALI in many 

experimental and clinical studies [14-17]. Traditionally surfactant treatment has been 

administered to improve the biophysical function of this material within the lung. 

Although extensive research has shown improvements in physiological and biophysical 

outcomes following surfactant treatment, there was no effect on mortality [18]. 

Contrasting this extensively investigated approach, only a limited number of studies have 

evaluated surfactant with the aim to down-regulate the systemic inflammation associated 
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with ALI and MV. Previous studies in our laboratory demonstrated that elevated 

endogenous surfactant pool sizes prior to MV attenuated the development of pulmonary 

and systemic inflammation in animal models where injurious MV was applied to normal 

lungs [19] or conventional ventilation was applied to lungs with a pre-existing injury 

(lipopolysaccharide-induced ALI) [20]. Whether exogenous surfactant can mirror these 

observations obtained with elevated endogenous surfactant is not known. It was therefore 

hypothesized that administration of exogenous surfactant prior to MV would reduce the 

systemic inflammation associated with lung injury. 

To test this hypothesis, two separate mouse models were utilized: i) a model of 

mechanical ventilation in animals with otherwise normal lungs and ii) a model of acid-

induced lung injury followed by MV. For both experiments, exogenous surfactant was 

administered prior to MV, and the ventilation was performed ex vivo using an isolated 

and perfused mouse lung (IPML) setup. The inflammatory mediators released by the 

lungs into the circulation were collected (via left ventricle) in perfusate and re-circulated 

(via pulmonary artery) throughout MV. This ex vivo circulatory system in the IPML setup 

allowed us to isolate the contribution of mechanically ventilated lungs to the systemic 

system, with perfusate representing a surrogate of systemic inflammation.  
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2.2. Materials and methods 

2.2.1. Experimental design and ethics statement 

A total of 36 male 129X1/SVJ mice (Jackson Laboratories, Bar Harbor, Me., USA) were 

utilized for two separate animal experiments. All procedures were approved by the 

Animal Use Subcommittee at the University of Western Ontario (Permit Number: 2010-

272) and, whenever necessary, adequate anesthetic regimen was used to minimize 

suffering. For both experiments, mice were allowed to acclimatize for a minimum period 

of 72 hours in an animal facility, during which time they were allowed free access to 

water and standard chow.  

In order to test our hypothesis of an anti-inflammatory role of surfactant toward the 

effects of MV, administration of exogenous surfactant was performed in two separate 

models of lung injury: experiment 1 involved the use of MV only and experiment 2 

involved the use of intra-tracheal (i.t.) instillation of hydrochloric acid (HCl) followed by 

conventional MV.  

In experiment 1, mice were anaesthetized and subsequently randomized to either 

exogenous surfactant administration or no treatment. After the completion of the i.t. 

surfactant instillation, mice were connected to the IPML setup and exposed immediately 

following re-perfusion to MV with a tidal volume (Vt) of 20ml/kg, a positive end 

expiratory pressure (PEEP) of 3 cmH2O, and a respiratory rate (RR) of 30 breaths/min. 

This resulted in the randomization of a total of 12 mice to one of the two experimental 

conditions: i) No Treatment group or ii) bLES group. 

In experiment 2, a total of 24 male 129X1/SVJ mice were anaesthetized and then 

randomized to receive an intra-tracheal instillation of HCl or air. Four hours after the 

development of acid-induced lung injury, mice were randomized to receive an intra-

tracheal exogenous surfactant administration (or no treatment) before ex vivo, in situ MV. 

The IPML setup was used to ventilate these animals with the following ventilation 

parameters: Vt=5ml/kg, PEEP=3 cmH2O, RR=60 breaths/min. This resulted in the 

following experimental conditions: i) air + no treatment; ii) air + bLES; iii) acid + no 

treatment; iv) acid + bLES.   
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2.2.2. Intra-tracheal hydrochloric acid instillation 

Mice were randomized to receive either an intra-tracheal (i.t.) administration of HCl or 

air as a control, as previously described [9]. Briefly, mice were anesthetised with an intra-

peritoneal injection of ketamine (130 mg/kg; Sandoz, Quebec, Que., Canada) and 

xylazine (6 mg/kg; Bayer, Toronto, Ont., Canada). Once the proper depth of anesthesia 

was reached, mice were positioned dorsally on a vertical stand and their trachea was 

intubated with a 20-gauge catheter coupled with a fiber-optic stylet (BioLite intubation 

system for small rodents, BioTex, Inc., Houston, Tex., USA). Animals randomized to the 

acid instillation group were given 50 µl of 0.05 Ν HCl in a drop-wise fashion through the 

endotracheal tube. Animals randomized to the control group were intubated as described 

and allowed to breathe spontaneously through the tube. The total procedure took 

approximately 5 minutes. Mice were then extubated, positioned on a horizontal inclined 

stand and administered sub-cutaneous injections of buprenorphine (0.05-0.1 mg/kg) and 

1ml of sterile normal saline. Subsequently, mice were returned to the cage and allowed to 

recover for 4 hours with free access to water and food. Mice were carefully monitored 

during the 4 hours recovery period. 

2.2.3. Intra-tracheal surfactant instillation 

Mice were anesthetised with an intra-peritoneal (i.p.) injection of ketamine (130 mg/kg) 

and xylazine (6 mg/kg). Animals were then positioned dorsally on a vertical rodent stand 

and the trachea was intubated trans-orally with a 20-gauge catheter coupled with a fiber-

optic stylet (BioLite intubation system for small rodents, BioTex, Inc., Houston, Tex., 

USA). Mice randomized to the surfactant administration group were given 50 mg/kg 

bLES (BLES Biochemicals, London, Ont., Canada) in a drop wise fashion through the 

endotracheal tube. This natural, bovine lipid extracted surfactant is composed of 

approximately 97% phospholipids, 3% neutral lipids, and about 1% by weight proteins 

[21]. After the surfactant was spontaneously inhaled by the animals, mice were 

extubated, positioned on a horizontal inclined stand. To allow for peripheral surfactant 

distribution, based on preliminary experiments, mice were allowed to spontaneously 

breathe for 12-15 minutes before MV. Animals randomized to the no treatment group 

were intubated as described and allowed to breathe spontaneously.  
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2.2.4. Isolated and Perfused Mouse Lung setup  

Mice were ventilated for a total of 2 hours using the IPML setup. Following exogenous 

surfactant administration (or no treatment), the anesthetised mice were sacrificed with an 

additional i.p. injection of ketamine (200 mg/kg) and xylazine (10 mg/kg). A 

tracheostomy tube was then inserted and secured in the trachea, and the animals were 

subsequently connected to the IPML apparatus as described by Von Bethmann et al. [22]. 

Briefly, the heart and lungs were surgically exposed and the lungs were ventilated with a 

volume cycled, positive pressure ventilator (Flexivent, Scireq, Montreal, Que., Canada) 

with different ventilation strategies as described in detail under the experimental design 

section. Perfusate (RPMI lacking phenol red + 2% w/v low endotoxin grade Bovine 

Serum Albumin; Sigma, St. Louis, Mo., USA) was circulated into the pulmonary 

vasculature through a catheter inserted in the pulmonary artery and collected by a second 

catheter in the left ventricle. Once the lungs were cleared of all the blood, perfusate was 

delivered in a re-circulating fashion (rate 1ml/min) during the 2 hours of MV. One 

milliliter of perfusate was collected at baseline (time 0, immediately after vascular 

clearing and before perfusate re-circulation) and every 30 minutes of MV thereafter. 

Samples were frozen and stored at -80ºC for subsequent measurement of inflammatory 

mediators. Physiological parameters such as peak inspiratory pressure (PIP) and 

perfusion pressure were monitored throughout ventilation utilizing Chart v.4.12 software 

(AD Instruments, Castle Hill, Australia). 

2.2.5. Surfactant and total lung lavage protein measurements 

Immediately after MV using the IPML setup, lungs were lavaged with 3 x 1ml aliquots of 

0.9% NaCl solution with each aliquot instilled and withdrawn 3 times. The total lavage 

volume was recorded and average recoveries of lavage fluid were 2.7 mL and 2.8 mL for 

experiment 1 and experiment 2, respectively. Total lavage was then immediately 

centrifuged at 380 g for 10 min. at 4ºC to remove the cellular component, and the 

collected supernatant was termed total surfactant (TS). A 1 ml aliquot of TS was stored at 

-80ºC for cytokine and protein analysis. In order to separate the small aggregate sub-

fraction (SA) from the large aggregate (LA) sub-fraction, 1 ml of TS was centrifuged at 

40,000 g for 15 min at 4ºC. The LA pellet was then re-suspended in 0.3 ml of 0.9% NaCl, 
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while the supernatant represented the SA fraction. The leftover volume of TS was used 

for analysis of total surfactant pool size. TS, LA and SA were frozen and stored at -80ºC. 

Measurement of the phospholipid content in TS, LA and SA was performed by 

phosphorous assay on chloroform-methanol extracted samples, as previously described 

[23, 24]. Total protein content in lavage was assessed using a Micro BCA protein assay 

kit (Pierce, Rockford, Ill., USA) according to manufacturer’s instructions.  

2.2.6. Biophysical functional analysis of surfactant  

LA sub-fractions from animals within each experimental group were pooled together for 

functional analysis. An aliquot from each pooled sample was utilized to measure the total 

phospholipid content by phosphorous assay, while the remaining pooled LA was 

centrifuged at 40,000g for 15 min at 4ºC. The supernatant was then discarded and the 

purified LA pellet re-suspended in a buffer solution (1.5 mM CaCl2, 5 mM TRIS) to a 

final phospholipid concentration of 5 mg/ml. The surface activity of the LA samples was 

assessed using a computer-controlled captive bubble surfactometer (CBS, 3 runs for each 

pooled sample) as previously described [25, 26].  

2.2.7. Measurement of inflammatory mediators 

Interleukin-6 (IL-6) levels were measured in aliquots of lung lavage and in perfusate 

aliquots obtained at different time points using an enzyme-linked immunosorbent assay 

(ELISA) kit following manufacturer’s instructions (BD Biosciences, San Diego, CA., 

USA). A broader array of inflammatory mediators was measured in perfusate samples 

collected at the end of MV using a Milliplex Map mouse cytokine/chemokine panel 

(MPXMCYTO-70K-12; Millipore Corporation, Billerica, MA, USA) for the following 

12 analytes: eotaxin, granulocyte colony-stimulating factor (G-CSF), granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-6, IL-13, interferon-γ-

induced protein 10 (IP-10), keratinocyte chemoattractant (KC), lipopolysaccharide-

induced CXC chemochine (LIX), monocyte chemotactic protein-1 (MCP-1), macrophage 

inflammatory protein 2 (MIP-2) and tumor necrosis factor-alpha (TNF-α). Samples were 

analyzed utilizing the Luminex® xMAP® detection system on the Luminex100 (Linco 

Research, St. Charles, Mo., USA) according to the manufacturer’s instructions. Perfusate 
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samples collected at the end of MV in experiment 2 were further analyzed for eicosanoids 

levels (8-isoprostane, prostaglandin E2, leukotriene B4, thromboxane B2) using 

colorimetric competitive enzyme immunoassay (EIA) kits (Cayman Chemical Company, 

Ann Arbor, MI, USA) according to manufacturer’s instructions.  

2.2.8. Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM). Statistical analyses 

were performed using the GraphPad Prism statistical software (GraphPad Software, Inc., 

La Jolla, CA., USA). Data were analysed with a t-test or one way ANOVA with a 

Tukey’s post hoc test when appropriate (experiment 1). For experiment 2, a two-way 

ANOVA (variables: presence of primary insult and treatment effects) followed by a one-

way ANOVA with a Tukey’s post hoc test was used to analyse the data. A repeated 

measures two-way ANOVA was performed when appropriate with a Bonferroni post hoc 

test. P < 0.05 was considered statistically significant. 
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2.3. Results 

2.3.1. Experiment  1. 

In experiment 1 the effects of exogenous surfactant administration on lung and systemic 

inflammation during MV of otherwise normal lungs were determined. Peak inspiratory 

pressure (PIP) was recorded throughout MV. PIP ranged between 20.62±1.6 cmH2O and 

22.6±2.7 cmH2O for the No Treatment group (time 0 and time 120min, respectively) and 

varied between 22.6±2.7 cmH2O and 26.3±2.7 cmH2O for the bLES group (time 0 and 

time 120min, respectively). Exogenous surfactant administration did not reduce PIP 

values in the surfactant treated group compared to No Treatment. Perfusion pressure was 

also monitored throughout MV and maintained between 4 and 6 mmHg for both groups 

(Fig. 2.1). 

 

 

Figure 2.1 Experiment 1. Perfusion pressure measured throughout MV. Values are 

expressed as mean ± SEM; n=6 per group. 
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Lavage Analysis  

Results reflecting local inflammation, as assessed by pulmonary permeability changes 

and inflammatory markers are shown in Table 2.1. The total protein content and IL-6 

levels in lung lavage collected at the end of MV were not affected by surfactant 

treatment, with no statistically significant differences noted in these values between bLES 

treated and non-treated groups. Recoveries of lung lavage fluid were not statistically 

significant between groups (data not shown). 

 

 
Mechanical Ventilation 

 No treatment bLES 

Total lavage protein 

(mg/kg body weight) 
13.4 ± 1.2 34.6 ± 18.9 

Lavage IL-6 (pg/mL) 136.8 ± 31.4 474.1 ± 233.8 

Table 2.1 Experiment 1. Total protein levels and IL-6 concentrations in lung lavage at 

the end of MV. Values are expressed as mean ± SEM; n=6 per group. 

 

Surfactant pool sizes of TS, LA and SA sub-fractions isolated from lung lavage for the 

two groups are shown in Figure 2.2A. As expected, TS pools were significantly higher in 

the bLES treated group compared to No Treatment mice. Similarly to TS values, LA and 

SA pools were significantly higher in the bLES group compared to the No Treatment 

group (Fig. 2.2A). The functional activity of the LA samples measured during four 

different dynamic compression-expansion cycles is shown in Figure 2.2B for each 

experimental group. No significant differences in surface tension were found between 

bLES treated and No Treatment mice for any of the cycles. Within each group, the 

minimum achievable surface tension was significantly higher during cycle 10 compared 

with cycles 1 and 2 (Fig. 2.2B). 
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Figure 2.2 Experiment 1. Surfactant recovery in lung lavage and surface activity of LA. 

A: surfactant pool size of TS, LA and SA sub-fractions measured by phosphorous assay. 

Data are expressed as amount of phospholipids/kg body weight. Within each sub-

fraction, *p<0.05 vs the No Treatment condition. B: minimum surface tension of pooled 

LA samples during different dynamic compression-expansion cycles. #p<0.05 versus 

cycle 1 and 2 within each experimental conditions. Values are expressed as mean ± 

SEM.; n=6 per group. 

 

Perfusate Analysis  

The concentration of IL-6 was measured in perfusate samples in order to assess the 

effects of exogenous surfactant on the development of systemic inflammation (Figure 

2.3). IL-6 levels were not detectable within the first 30 minutes of MV (time 0 and 30 

min; data not shown). A gradual increase in perfusate IL-6 was measured at 60 and 90 

minutes in both groups; however, there was no statistically significant difference in this 

cytokine level between bLES treated and No Treatment mice at any time point 

throughout MV.  
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Figure 2.3 Experiment 1. IL-6 levels measured in lung perfusate at 60, 90 and 120 min. 

Values are expressed as mean ± SEM.; n=6 per group.  

 

 

Perfusate concentrations of 11 cytokines/chemokines measured at the end of MV by 

multiplex assay are shown in Table 2.2. Perfusate IL-13 levels were not detectable (data 

not shown). There was no statistically significant effect of exogenous surfactant 

administration on cytokines/chemokines concentrations in perfusate, with no differences 

between No treatment and bLES groups. 
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 Mechanical Ventilation 

Mediator (pg/ml) No treatment bLES 

Eotaxin 42.8±3.6 42.7±6.5 

G-CSF 9.5±2.0 11.7±2.8 

GM-CSF 1.6±1.6 5.1±2.4 

IL-6 520.6±117.2 463.0±75.2 

IL-1 β 0.8±0.4 0.6±0.3 

KC 868.6±254.3 853.8±222.6 

LIX 71.3±14.8 66.1±11.4 

MCP-1 12.2±2.7 7.5±1.8 

MIP-2 753.9±193.8 658.5±167.8 

TNF-α 23.4±7.8 17.4±7.0 

IP-10 39.9±5.4 37.8±6.2 

Table 2.2 Experiment 1. Cytokine and chemokine analysis in lung perfusate at the end of 

MV. Data are expressed as mean ± SEM; n=6 per group. 

G-CSF=granulocyte colony-stimulating factor, GM-CSF= granulocyte-macrophage CSF, 

IL-6=interleukin-6, IP-10=interferon-γ-induced protein 10, KC=keratinocyte 

chemoattractant, LIX=lipopolysaccharide-induced CXC chemokine, MCP-1=monocyte 

chemotactic protein-1, MIP-2=macrophage inflammatory protein 2 and TNF-α=tumor 

necrosis factor-alpha. 

 

2.3.2. Experiment  2. 

In experiment 2, the effect of exogenous surfactant on systemic inflammation during MV 

was assessed in the presence of a pre-existing acid-induced lung injury/inflammation. 

Physiological parameters such as peak inspiratory pressure and perfusion pressure were 

monitored throughout ventilation as in experiment 1, and PIP values are shown in Figure 

2.4. Although all experimental groups were exposed to the same ventilation strategy, the 

peak inspiratory pressure was significantly higher in Acid injured mice compared to the 
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respective Air groups (Acid No Treatment vs Air No Treatment; Acid bLES vs Air 

bLES). Exogenous surfactant administration led to a significant increase in PIP values 

during the first hour of MV (10 to 75 min) in the Air bLES group compared to Air No 

Treatment group and, importantly, did not reduce PIP values in the Acid bLES group 

compared to Acid No Treatment group at any time point. Perfusion pressure was 

monitored during MV and maintained between 5 and 7 mmHg for all groups (Fig. 2.5). 

 

 

 

Figure 2.4 Experiment 2. Peak Inspiratory Pressure (PIP) was measured over the course 

of MV. Values are expressed as mean ± SEM. +p<0.05 versus Air No Treatment at the 

specific time point indicated, *p<0.05 versus the respective Air control at each time 

point; n=6 per group. 
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Figure 2.5 Experiment 2. Perfusion pressure measured throughout MV. Values are 

expressed as mean ± SEM; n=6 per group. 

 

Lavage Analysis  

Lung permeability, as reflected by total protein content in lung lavage (Table 2.3), was 

significantly higher in the acid injured animals versus the air control groups, whether they 

were given surfactant or not (Acid No Treatment vs Air No Treatment; Acid bLES vs Air 

bLES). No significant difference was noted between Air bLES versus Air No Treatment 

and Acid bLES versus Acid No Treatment. Similar results were observed for IL-6 

concentration in lung lavage (Table 2.3). Acid–instilled animals showed greater IL-6 

levels in lavage compared to the respective air-instilled controls. Exogenous surfactant 

did not affect lavage IL-6 levels in both air groups (Air bLES vs Air No Treatment); 

however, there was a significantly higher cytokine concentration in the lavage of Acid 

bLES mice compared to the Acid No Treatment group. Recoveries of lung lavage fluid 

were not statistically significant between groups (data not shown). 
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 Air Acid 

 
No 

treatment 
bLES 

No 

treatment 
bLES 

Total lavage protein 

(mg/kg body weight) 
46.3 ± 8.1 32.8 ± 5.6 215.4 ± 21.1* 

194.3 ± 

26.9* 

Lavage IL-6 

(pg/mL) 
237.8 ± 72.9 

635.1 ± 

120.2 

5034.9 ± 

653.4* 

6775.5 ± 

1476.1*,# 

Table 2.3 Experiment 2. Total protein levels and IL-6 concentrations were measured in 

lung lavage at the end of MV. Data are expressed as mean ± SEM; n=6 per group. 

*p<0.05 versus the respective Air control, #p<0.05 versus Acid no Treatment.  

 

Surfactant sub-fractions and the surface activity of isolated LA are shown in Figures 2.6A 

and B respectively. Acid instillation did not change TS, LA and SA pool sizes compared 

to their respective Air control groups (Fig. 2.6A). This was similar for both not treated 

and surfactant treated groups. As expected and observed in experiment 1, total surfactant 

and LA values were significantly higher in surfactant treated groups than non-surfactant 

treated controls (Air bLES vs Air No Treatment; Acid bLES vs Acid No Treatment). 

There was no difference in SA values among the various experimental groups.  

There were no statistically significant differences noted between any of the experimental 

groups in the biophysical activity of the LA samples (Fig. 2.6B). Within some of the 

groups, however, significant differences in surface tension were measured between the 

different dynamic cycles. In particular, surface tension was significantly higher during 

compression-expansion of cycles 5 and 10 when compared to cycle 1 within the acid 

instilled groups (in both Acid No Treatment and Acid bLES). LA from the Air No 

Treatment and Air bLES groups maintained low surface tension values throughout the 10 

dynamic compression-expansion cycles.  
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Figure 2.6 Experiment 2. Surfactant recovery in lung lavage and surface activity of 

crude LA. A: surfactant pool size of TS, LA and SA sub-fractions measured by 

phosphorous assay. Data are expressed as amount of phospholipids/kg body weight. 

Within each sub-fraction,*p<0.05 versus the respective No Treatment condition. B: 

surface tension of pooled LA samples during different dynamic compression-expansion 

cycles. §p<0.05 versus cycle 1 within each experimental condition. Values are expressed 

as mean ± SEM; n=6 per group. 

 

Perfusate Analysis  

To test the hypothesis of a role for exogenous surfactant in down-modulating systemic 

inflammation in ALI, sequential lung perfusate samples, as a surrogate for systemic 

inflammation, were analyzed for IL-6 concentrations. As shown in Figure 2.7, there were 

significantly higher levels of IL-6 in the perfusate of acid-instilled mice compared to the 

respective air-instilled controls at every time point (0, 30, 60, 90, 120 min; Acid No 

Treatment vs Air No Treatment; Acid bLES vs Air bLES). Perfusate IL-6 levels were not 

significantly affected by exogenous surfactant administration, with no differences 

between Air bLES and Air No Treatment and no change between Acid bLES and Acid 

No treatment.  
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Figure 2.7 Experiment 2. IL-6 levels measured in lung perfusate at 0, 30, 60, 90, 120 

min. Data are expressed as mean ± SEM. *p<0.05 versus respective Air control at each 

time point; n=6 per group. 

 

Lung perfusate samples collected at 120 min were further analyzed for a wider array of 

cytokines/chemokines. Among the 12 mediators measured (Table 2.4), IL-13 levels were 

not detectable (data not shown), while there were significantly greater levels of eotaxin, 

IL-6, KC, MIP-2 in acid-instilled animals compared to the respective air instilled control.  

Overall, exogenous surfactant administration did not affect eotaxin, GM-CSF, IL-6, IL-

1β, KC, TNF-α and IP-10 levels, with no statistical difference between the bLES and No 

Treatment group in both Air and Acid instilled mice.  

A statistically significant increase of MIP-2 levels in the perfusate of Acid bLES mice 

was determined compared to Acid No Treatment, as well as significantly higher perfusate 

levels of G-CSF, LIX and MCP-1 in acid injured mice treated with surfactant compared 

to the Air bLES.  
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 Air Acid 

Mediator 

(pg/ml) 

No 

treatment 
bLES No treatment bLES 

Eotaxin 17.4±1.3 25.7±0.9 135.2±13.6* 142.8±15.9* 

G-CSF 45.9±10.5 59.4±3.4 890.8±75.8 1270.3±187.8* 

GM-CSF 0 0 13.4±2.8 16.3±2.2 

IL-6 567.7±62.7 1119.0±99.1 8303.2±323.6* 10720.1±764.2* 

IL-1 β 1.0±0.40 0.2±0.1 0.3±0.1 3.2±0.6 

KC 579.2±65.8 907.0±75.4 3617.2±174.3* 6212.7±504.8* 

LIX 113.7±11.1 98.3±13.0 284.6±17.9 447.4±31.9* 

MCP-1 12.9±1.8 30.9±4.9 337.4±26.2 558.0±71.5* 

MIP-2 584.4±68.2 725.7±41.9 1840.2±76.7* 3113.4±204.8*,# 

TNF-α 63.4±11.6 72.2±7.0 119.7±3.1 143.3±8.1 

IP-10 32.9±3.6 40.8±1.7 391.3±80.8 283.3±27.7 

Table 2.4 Experiment 2. Cytokine and chemokine measured in lung perfusate at the end 

of MV. Data are expressed as mean ± SEM; n=6 per group. *p<0.05 versus respective 

Air control, #p<0.05 versus Acid No Treatment.   

G-CSF=granulocyte colony-stimulating factor, GM-CSF= granulocyte-macrophage CSF, 

IL-6=interleukin-6, IP-10=interferon-γ-induced protein 10, KC=keratinocyte 

chemoattractant, LIX=lipopolysaccharide-induced CXC chemokine, MCP-1=monocyte 

chemotactic protein-1, MIP-2=macrophage inflammatory protein 2 and TNF-α=tumor 

necrosis factor-alpha. 
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Finally, in order to further characterize the effect of exogenous surfactant administration 

on lung-derived mediators in perfusate, eicosanoids levels were also measured at the 120 

min. time point (Table 2.5). Although increased levels of thromboxane B2 and 

prostaglandin E2 were recorded in the perfusate of acid-instilled animals compared to 

their respective Air controls, these changes did not reach statistical significance. 

Perfusate concentrations of 8-isoprostane were significantly higher in the acid injured 

groups compared to air controls. Surfactant treatment did not affect thromboxane B2 and 

8-isoprostane concentrations. Prostaglandin E2 levels were significantly elevated only in 

the perfusate of Acid bLES mice compared to Air bLES controls. Leukotriene B4 levels 

were increased in the perfusate of Acid bLES mice but this difference failed to be 

statistically significant. 

 

 Air Acid 

Mediator (pg/ml) 
No 

treatment 
bLES 

No 

treatment 
bLES 

Prostaglandin E2 14.3±2.0 26.8±3.9 147.4±40.3 221.7±89.2* 

Leukotriene B4 14.4±5.2 10.6±5.3 13.1±7.3 41.9±12.3 

Thromboxane B2 52.7±10.1 67.8±12.9 109.9±24.8 134.9±43.6 

8-Isoprostane 11.3±1.6 19.7±3.0 47.2±8.1* 70.4±12.5* 

Table 2.5 Experiment 2. Concentrations of prostaglandin E2, leukotriene B4, 

thromboxane B2 and 8-isoprostane measured in lung perfusate samples collected at the 

end of MV. Data are expressed as mean ± SEM; n=6 per group. *p<0.05 versus the 

respective Air control. 
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2.4. Discussion  

The overall objective of this study was to evaluate the anti-inflammatory effects of 

exogenous surfactant when administered prior to mechanical ventilation, either in the 

absence (experiment 1) or in the presence (experiment 2) of an initiating pulmonary 

insult. For both lung injury models, the IPML setup was utilized to specifically evaluate 

the contribution of ventilation to the development of systemic inflammation. MV of 

normal lungs resulted in the release of IL-6 (locally) into the airspace and several 

mediators (systemically) in the perfusate. Surfactant administration, however, was not 

effective in reducing the systemic inflammation associated with MV. Conventional 

ventilation of HCl instilled mice led to higher levels of both IL-6 and total protein in 

lavage, and significantly higher levels of pro-inflammatory mediators in perfusate 

without any beneficial effect of bLES instillation. Notably, significantly higher lavage 

IL-6 and perfusate MIP-2 concentrations were observed in acid-injured mice receiving 

bLES, compared to Acid-No Treatment controls. Based on these results, it was concluded 

that administration of exogenous surfactant prior to MV does not reduce the systemic 

inflammation associated with lung injury in these models.  

An important feature of the current study was to examine the effects of surfactant therapy 

in two different models. Analysis of the data showed important differences between the 

models, such as the degree of lung edema. Mechanical stretch of uninjured lungs did not 

affect lung permeability, whereas acid injured mice had increased total lavage proteins 

after two hours of MV. Another aspect that distinguishes the two models is represented 

by different levels of pulmonary and perfusate inflammation, which becomes particularly 

evident when comparing cytokine levels measured in the perfusate of the MV only, No 

Treatment group to the cytokine levels of the Acid No Treatment group. For example, 

MV of normal lungs caused a moderate increase in circulating Eotaxin, IL-6, KC and 

MIP-2, while acid instilled animals subjected to conventional MV had perfusate 

concentrations of these mediators that were at least two times greater. Given the greater 

inflammation characterizing the acid-injury model and the important role of lipid 

mediators in the development and progression of lung injury [27-32], eicosanoids levels 

were analyzed only on samples from experiment 2. Unambiguous conclusions about the 
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effects of exogenous surfactant on systemic inflammation were therefore inferred from 

two experimental models with very different characteristics. This allowed us to rule out 

possible causes for the lack of efficacy of our treatment (such as presence/lack of pre-

existing injury, specific effects of ventilation), and strengthened the understanding of the 

biological response. 

Exogenous surfactant administration has been extensively investigated as a potential 

adjunctive therapy in acute lung injury [33-36]. The traditional approach with surfactant 

treatment has been to evaluate its efficacy in terms of physiological and biophysical 

improvements. Many experimental studies have in fact demonstrated that exogenous 

surfactant instilled after the onset of ventilation improved oxygenation, lung volume and 

compliance; moreover, it improved the surface tension reducing properties of the 

surfactant recovered from lung lavage subsequent to administration [15, 37, 38]. 

Nevertheless, despite this encouraging experimental evidence, clinical trials showed no 

improvement in mortality in surfactant treated patients even in the presence of an initial 

improvement in oxygenation [16, 18]. It is possible that surfactant treatment in the 

previous studies was administered too late into ALI development; therefore earlier 

surfactant administration prior to or at the onset of MV could be more effective at 

mitigating disease progression. Since mortality can be improved by ameliorating 

ventilation – induced systemic inflammation [39], it was our interest to investigate 

whether exogenous surfactant could mitigate the effects of MV thereby down-modulating 

inflammation. 

To our knowledge, the effect of surfactant on ventilation-induced release of inflammatory 

mediators in perfusate of an IPML model has been specifically addressed in two previous 

studies. Stamme and colleagues [40] showed elevated TNFα and IL-6 concentrations in 

the perfusate of surfactant treated animals compared to controls, in their mouse model of 

high pressure ventilation. In contrast, our group has shown a reduced level of 

inflammatory cytokines in perfusate due to elevated endogenous surfactant in an LPS 

model of injury [20]. Together with the current study in which surfactant did not impact 

inflammation in two models of injury, these data illustrate the complexity of surfactant 

treatment in which specific details of the experimental model may impact outcome. 
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Furthermore, such details are obviously important to understand in the context of a 

potential clinical utilization of surfactant treatment to down-regulate systemic 

inflammation as well as to understand the mechanisms by which surfactant may affect 

inflammation. 

Despite the lack of effect of surfactant treatment in our study, we speculate that 

mitigation of MV induced inflammation is still the best approach for an early 

intervention. Our data support earlier studies which showed that cytokines can be 

detected in perfusate rapidly after the onset of ventilation [22, 41]. This loss of alveolar 

and systemic cytokine compartmentalization can lead to peripheral organ dysfunction, a 

condition of difficult clinical management. Therefore, targeting the lung with anti-

inflammatory agents prior to MV may be a successful treatment option leading to 

improved outcomes. In this respect, surfactant could be utilized as a carrier for delivering 

lung specific anti-inflammatory agents prior to MV in future studies. 

Along with the strengths of the present study, some limitations need to be addressed. Due 

to the lack of blood perfusion in the IPML setup, the lungs were not exposed during ex 

vivo MV to circulating soluble factors and immune cells which could have affected the 

progression of the injury. Moreover, ex vivo ventilation of perfused lungs did not favor 

the use of severe lung injury models, due to potential technical failure of the preparation. 

Consequently, the injury from ventilation was mild to moderate, thereby explaining the 

lack of change in surface tension or surfactant pool sizes. It is believed, however, that 

these limitations of the IPML setup were counter balanced by the advantage of 

specifically isolating lung-derived mediators released into the circulation, without the 

confounding contribution of systemic factors to the development of inflammation. Intra-

tracheal instillation was also used for administering surfactant, ensuring the presence of 

large amounts of active material in the airspace before ventilation, as shown by higher 

levels of TS and LA in the lung lavage of treated animals. It should be acknowledged, 

however, that some inadequate distribution of surfactant might have occurred following 

instillation. Obstruction of smaller airways, with consequent heterogeneous lung inflation 

and regional over-distension might have been responsible for the increase in PIP 

(experiment 2, Air treated groups), and for the non-significant trend towards higher 
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lavage IL-6 levels in the surfactant treated groups. Nevertheless, the instilled surfactant 

retained excellent biophysical properties as shown by the very low minimum surface 

tension achieved during dynamic compression-expansion of the crude LA. Overall, we 

believe that instillation did not account for the lack of efficacy of our treatment.  

In conclusion, this study expands the knowledge about exogenous surfactant treatment. It 

specifically focuses on the anti-inflammatory effects of a lung targeted therapy 

administered prior to MV on the development of systemic inflammation using two 

different mouse models. Although our data suggest a lack of efficacy for exogenous 

surfactant in down-modulating inflammation, future studies might focus on surfactant as 

a carrier for anti-inflammatory drugs or antibiotics in order to better interfere with ALI 

progression. 
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CHAPTER 3:  

Lack of matrix metalloproteinase-3 in mouse models of lung injury 

ameliorates the pulmonary inflammatory response in female but not in 

male mice. 
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3.1. Introduction  

Acute lung injury (ALI) is a pulmonary inflammatory disorder with a mortality of 

approximately 40% [1, 2]. Clinically, ALI is defined by the presence of bilateral infiltrates 

on chest radiograph, alveolar edema in the absence of cardiac failure, and hypoxemia [3, 

4]. Despite a relatively simplistic clinical definition, ALI pathophysiology is complex, with 

a variable disease progression, and many different insults, such as bacterial pneumonia or 

gastric acid aspiration, capable of initiating lung injury [5, 6]. Within this complex disease 

process, pulmonary inflammation represents a key aspect of ALI pathophysiology that is 

common to all patients regardless of the initiating insult [7, 8], and which is strongly related 

to outcomes of ALI [9]. Numerous experimental studies have shown that strategies capable 

of modulating the lung inflammatory response greatly affect disease progression to 

systemic inflammation and consequent multi-organ failure, the main cause of death in ALI 

[10–15].  

Clinical evidence for the importance of lung inflammation in ALI stems from clinical trials 

over the past decade, which consistently demonstrated that lower indices of lung 

inflammatory mediators were associated with diminished systemic inflammation, and 

subsequent lower mortality [16, 17]. In these trials, the decrease in pulmonary 

inflammation resulted from the use of non-injurious strategies of mechanical ventilation, 

the main supportive therapy in ALI [16, 17]. Since then, however, no other lung-targeted 

pharmacological or anti-inflammatory treatment has been identified that is capable of 

reducing mortality [18, 19], thereby stressing the importance of further research into key 

modulators of pulmonary inflammation in ALI. 

One potential key mediator of pulmonary inflammation is matrix metalloproteinase-3 

(MMP-3), a protease expressed in the lung by alveolar macrophages (AM), alveolar 

epithelial cells, and fibroblasts [20–22]. MMP-3 is a member of the matrix 

metalloproteinases (MMPs) family, which consists of over 20 extracellular, zinc-

dependent proteolytic enzymes involved in several physiological processes such as matrix 

turnover, tissue repair, and inflammation [23–25]. Interestingly, metalloproteinase activity 

and expression levels are often elevated in injured tissues and in inflammatory conditions 

such as asthma, sepsis, and ALI [26–30]. Specifically, recent clinical studies have 
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confirmed elevated MMPs levels in lavage samples from patients with ALI; importantly, 

detectable lavage levels of a specific member of this family, namely MMP-3, were 

associated with severity of ALI, distal organ failure, and mortality [27, 31]. In addition to 

this clinical evidence, two experimental studies suggest a potential role for MMP-3 in ALI 

[32, 33]. These studies showed that, compared to wild type animals, mice lacking Mmp3 

expression had lower neutrophils and total protein accumulation within the lung following 

intra-tracheal instillation of the chemokine MIP-2 and in a model of immunoglobulin G 

immune-complex-induced lung injury [32, 33]. Although supportive of a role for MMP-3 

in ALI, these studies have utilized neutrophil-dependent models of ALI that lack clinical 

relevance, since they do not resemble any of the most common initiating insults in the 

pathogenesis of this disorder. It is, therefore, necessary to investigate the role of MMP-3 

in clinically relevant models of ALI, with a specific focus on pulmonary inflammation, as 

it appears to be a key driving factor in disease progression. 

It was hypothesized that MMP-3 is a key mediator in the pathogenesis of ALI by affecting 

pulmonary inflammation. To test this hypothesis, male and female wild type mice 

(Mmp3+/+) and mice lacking Mmp3 expression (Mmp3-/-) were exposed to two clinically 

relevant models of lung injury: i) a model of lipopolysaccharide-induced lung injury, 

resembling bacterial pneumonia, and ii) a model of acid-induced ALI, which mirrors lung 

injury due to gastric acid aspiration. Each model reproduces major pathophysiological 

events in ALI, such as the intra-pulmonary accumulation of proteinaceous edema fluid, the 

increased pulmonary release of cytokines and chemokines by resident alveolar 

macrophages and lung epithelial cells, and the recruitment of inflammatory neutrophils to 

the injured lung [5]. 

Interestingly, initial analyses showed a more prominent role of MMP-3 in female mice; 

therefore, data from female mice and from male mice have been analyzed separately, as 

distinct data sets. A sex-dependent role of MMP-3 in lung inflammation was observed in 

both ALI models, which led to initial in vitro investigations into mechanisms and 

inflammatory cell population (AM) potentially contributing to these findings. Experiments 

were performed using bone marrow-derived macrophages (BMDMs) as a surrogate for 

AM. Questions on possible inherent differences in the inflammatory response of 
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male/female Mmp3+/+ and Mmp3-/- BMDMs, and on the potential effect of 17β-estradiol 

(E2), were preliminarily addressed in this work. 

 

 

3.2. Methods 

3.2.1. Animal procedures and experimental design 

Mice lacking the expression of Mmp3 (Mmp3-/-) were originally generated as described by 

Mudgett JS et al. [34].; breeding pairs of Mmp3-/- mice were kindly provided by Dr. G.P. 

Downey (National Jewish Hospital, Denver, Colorado) to initiate and re-derive a pathogen 

free colony of Mmp3+/+ and Mmp3-/- mice. All the animals were group housed in a research 

animal facility, exposed daily to a 12 hours light/dark cycle and allowed unrestricted access 

to standard chow food and water. 

A total of 109 female and male Mmp3+/+ and Mmp3-/- mice were utilized for three separate 

experiments – a model of lipopolysaccharide-induced lung injury (experiment 1), a model 

of acid-induced lung injury (experiment 2), and BMDMs isolation (experiment 3) – and all 

animal procedures were approved by the Animal Use Subcommittee at Western University 

(protocol number: 2010-272). 

3.2.2. Experiment 1: Lipopolysaccharide induced lung injury 

A total of 47 Mmp3+/+ and Mmp3-/-, female and male mice (13.9 ± 0.4 weeks old; average 

± sem) were randomized to receive an intra-tracheal (i.t.) instillation of lipopolysaccharide 

(LPS from E.Coli, 0111:B4, 20 µg/mouse; Sigma, St. Louis, Mo., USA) or saline (0.15M 

NaCl solution) as a control for this model. Considering that the data were analyzed by sex, 

for both female and male mice the following 4 experimental groups were obtained: i) 

Mmp3+/+ Saline, ii) Mmp3+/+ LPS, iii) Mmp3-/- Saline, iv) Mmp3-/- LPS. 

Mice were anesthetized with an intraperitoneal injection of ketamine (100 mg/kg; Sandoz, 

Quebec, Que., Canada) and medetomidine (1 mg/kg; Orion Corporation, Espoo, Finland). 

Once adequate sedation was achieved, mice were placed dorsally on a vertical, slightly 
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inclined stand, and the oral cavity was opened to visualize the vocal cords. Subsequently, 

a 20-gauge catheter combined with a fiber-optic stylet (BioLite intubation system for small 

rodents, BioTex, Inc., Houston, Tex., USA) was inserted through the vocal cords into the 

trachea. Mice randomized to the LPS group received 40 µL of a 0.5 mg/mL LPS solution 

in sterile saline (0.15M NaCl), instilled drop-wise through the endotracheal tube. Mice 

randomized to the Saline group were intubated and received 40 µL of a sterile 0.15M NaCl 

solution. The whole procedure required approximately 15 minutes. Mice were then 

extubated, injected subcutaneously with 0.5 mL sterile saline and immediately returned to 

their cage. Preliminary studies performed during development of the model determined 

that mice did not require any analgesia following instillation. Within 30 minutes from the 

injection of the anesthetic mix, mice received an intra-peritoneal injection of atipamezole 

(1 mg/kg; Zoetis, Florham Park, NJ, USA), the reversal agent for medetomidine. Mice were 

left to recover for a total of 18 hours with free access to water and food. At the end of the 

18 hours, mice were sacrificed with an intraperitoneal injection of sodium pentobarbital 

(110 mg/kg; Lundbeck, Valby, Denmark) followed by exsanguination, and processed for 

various analyses as described in sections 3.2.4 to 3.2.7. 

3.2.3. Experiment 2: Acid-induced lung injury  

A total of 44 Mmp3+/+ and Mmp3-/-, female and male mice (12.7 ± 0.5 weeks old) were 

randomized to receive an intra-tracheal instillation of hydrochloric acid (HCl) or air as a 

control. Similar to Experiment 1, the data from each sex were analyzed as different data 

sets. For both female and male mice, the following 4 experimental groups were analyzed: 

i) Mmp3+/+ Air, ii) Mmp3+/+ Acid, iii) Mmp3-/- Air, iv) Mmp3-/- Acid. 

An intraperitoneal injection of ketamine (100 mg/kg; Sandoz, Quebec, Que., Canada) and 

xylazine (5 mg/kg; Bayer, Toronto, Ont., Canada) was given to anesthetize mice and 

subsequently proceed with the endotracheal intubation as described above (under 

‘lipopolysaccharide-induced lung injury’). Mice randomized to acid instillation received 

50 µL of 0.05N HCl, instilled intra-tracheally in a drop-wise fashion. Mice randomized to 

the air group were intubated as described and allowed to spontaneously breathe through 

the tube. Overall, the procedure lasted about 15 minutes. Mice were then extubated, put on 

an inclined stand and injected subcutaneously with buprenorphine (0.05-0.1 mg/kg 
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Animalgesic Labs Inc., Millersville, MD, USA) and 0.3 mL sterile saline. Mice were then 

returned to their cage and 30 minutes after the injection of anesthetic, they were injected 

intra-peritoneally with atipamezole (1 mg/kg), reversal agent for xylazine. 

Mice were allowed to recover for 4 hours, with free access to food and water, and sacrificed 

at the end of the recovery period with an intraperitoneal injection of a ketamine (200 

mg/kg)-xylazine (10 mg/kg) solution followed by exsanguination. 

3.2.4. Lung lavage isolation and total protein analysis 

At the end of their respective recovery periods (18 hours for LPS-induced lung injury, 4 

hours for acid-induced lung injury), mice were given a euthanizing dose of anesthetic as 

previously described, and placed in a supine position. When deep anesthesia was attained, 

the abdominal content and thorax were exposed through an abdominal midline incision, 

and exsanguination was performed through excision of the inferior vena cava. A 

tracheostomy tube was subsequently inserted and secured in the trachea, the diaphragm cut 

and the chest wall opened via a midline incision to expose the lungs. Lungs were then 

lavaged with 3 × 1 mL aliquots of saline, and each aliquot was instilled and withdrawn 3 

times. The total volume of lavage fluid collected from each mouse was recorded. Lung 

lavage was immediately centrifuged at 380 g for 10 minutes at 4˚C to isolate the cell pellet; 

the supernatant was collected and 4 × 0.25 mL aliquots were frozen at -80˚C for analyses 

of inflammatory mediators.  

Measurements of total protein content in lavage were also performed on this supernatant 

using a Micro BCA protein assay kit (Pierce, Rockford, Ill., USA), as per manufacturer’s 

instructions. 

3.2.5. Lavage cell analysis 

Following centrifugation of lavage samples, the cellular component was isolated and 

resuspended in Plasmalyte (300 to 500 µL depending on cell density). An aliquot of cell 

suspension was mixed with an equal volume of trypan blue to assess viability through 

trypan blue exclusion, and subsequently utilized to determine total cell counts with a 

hemocytometer and light microscopy. Aliquots of the resuspended cell pellet were also 
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spun down on cytospin slides at 1000 rpm for 6 minutes at room temperature, stained with 

Hemacolor® stain (Harleco, EMD Chemicals Inc., Gibbstown, NJ, USA) and utilized to 

perform differential cell counts under light microscopy. Specifically, 5 fields were counted 

and averaged for each slide, and the relative percentage of each inflammatory cell type was 

calculated. The absolute number of neutrophils in lavage was then obtained by multiplying 

percentages by the total cell number previously determined. 

3.2.6. Measurements of MMP-3 and inflammatory mediators in lung lavage 

Total MMP-3 levels were measured in lavage aliquots from experiment 1 and 2, using a 

commercially available enzyme-linked immune-sorbent assay (ELISA) according to 

manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA). 

Lavage interleukin-6 (IL-6) levels were also assessed through the use of a mouse IL-6 

ELISA (BD Biosciences, San Diego, Ca., USA) according to manufacturer’s instructions. 

An array of inflammatory cytokines and chemokines was measured in lung lavage samples 

from both injury models. For both experiment 1 and 2, mouse Milliplex multi-analyte 

panels (Map) (MCYTOMAG-70K, Millipore Corporation, Billerica, MA, USA) were 

utilized to measure lavage levels of the following cytokine/chemokine: granulocyte colony 

stimulating factor (G-CSF), interleukin 10 (IL-10), keratinocyte chemoattractant (KC), 

monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), 

and tumor necrosis factor alpha (TNF-α). Samples analysis was performed on the 

Luminex® xMAP® detection system on the Luminex100 (Linco Research, St. Charles, Mo., 

USA), as per manufacturer’s protocol. 

3.2.7. Experiment 3: Isolation of Mmp3+/+ and Mmp3-/- bone marrow-derived 

macrophages 

Bone marrow-derived macrophages (BMDMs) were isolated from the femurs and tibias of 

mice as previously described [35]. Briefly, a total of 18 Mmp3+/+ and Mmp3-/- mice (19.9 

± 1.7 weeks old) were sacrificed with an intraperitoneal injection of sodium pentobarbital 

(110 mg/kg) and exsanguinated. The femur and tibia of both hind legs were isolated, the 

soft tissue was removed, and the ends of each bone were cut off before placing each pair 
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of long bones in a 0.65 mL Eppendorf tube with a punctured bottom. Each one of these 

tubes was then placed into a 1.5 mL Eppendorf, thereby  allowing for the collection of the 

bone marrow cell pellet upon centrifugation of the bones at 2000 g for 1 minute at 4˚C. 

After lysis of red blood cells and subsequent wash with cold, sterile 1x PBS, bone marrow 

samples from each mouse were pulled together and centrifuged at 400 g, for 10 minutes, 

4˚C, and the resulting cell pellet was then resuspended in macrophage differentiation media 

(Mac media: RPMI 1640, 10% fetal bovine serum, 2 mM glutamine, 50 units/mL 

penicillin, 50 µg/mL streptomycin, and 30% L-cell supernatant as a source of monocyte-

colony stimulating factor). Bone marrow-derived cells were seeded and cultured in a 100 

mm Petri dish at 37˚C with 5% CO2 for 24 hours; at the end of this time, the non-adherent 

and loosely adherent cells were transferred to a 150 mm tissue culture dish with fresh Mac 

media, and cultured as previously described. Following a 7 days culture period, cells were 

fully differentiated into BMDMs and ready for experimental use. 

All reagents used for the culture of bone marrow derived macrophages were provided by 

Gibco® (Life Technologies, Grand Island, NY, USA), unless otherwise specified. L-cell 

supernatant was a generous gift of Dr. Gill (Western University, London ON, Canada). 

3.2.8. In vitro stimulation of Mmp3+/+ and Mmp3-/- bone marrow-derived 

macrophages 

The effects of LPS or a combination of LPS and estrogen were assessed in vitro on BMDMs 

isolated as described above. Fully differentiated BMDMs from male and female Mmp3+/+ 

and Mmp3-/- mice were harvested and 2×105 cells per well were seeded in a 24 well plate. 

The following day, macrophage differentiation media was substituted with stimulation 

media (RPMI 1640, 10% fetal bovine serum, 2 mM glutamine, 50 units/mL penicillin, 50 

µg/mL streptomycin) and BMDMs were exposed to one of the following conditions: i) 

control – media only, ii) 0.1µg/mL LPS (E.Coli, 0111:B4, Sigma, St. Louis, Mo., USA), 

iii) 1µg/mL LPS, iv) 10µg/mL LPS. BMDMs were stimulated at 37˚C, 5% CO2 for 18 

hours. At the end of the stimulation period, individual cell supernatants were collected, 

spun at 380 g for 10 minutes at 4˚C and frozen at -80 ˚C for subsequent analysis of IL-6 

levels. BMDMs from the stimulated 24 well plate were lysed on ice in lysis buffer (0.5% 

Sodium dodecyl sulfate, 50 mM Tris pH 7.5, 1 mM EDTA) with protease inhibitor 
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(cOmplete, Mini, EDTA-free, Roche Diagnostic GmbH, Mannheim, Germany) for 

measurements of total protein content (Micro BCA protein assay kit, Pierce, Rockford, Ill., 

USA). IL-6 levels of each individual cell supernatant were then normalized by the 

corresponding total protein content, to account for differences in total cell numbers 

between wells. A total of three independent experiments were performed. 

In a second set of experiments, differentiated BMDMs from female Mmp3+/+ and Mmp3-/- 

mice were harvested and 2×105 cells per well were seeded in a 24 well plate to be 

stimulated in the presence of 17-β estradiol (E2, Sigma, St. Louis, Mo., USA). On the next 

day, stimulation media was utilized to expose BMDMs to one of the following conditions: 

i) control media (with vehicle), ii) 0.1nM E2, iii) 1nM E2, iv) 10nM E2, v) 1µg/mL LPS, 

vi) 0.1nM E2 + 1µg/mL LPS, vii) 1nM E2 + 1µg/mL LPS, and viii) 10nM E2 + 1µg/mL 

LPS. Following 18 hours, cell supernatants were collected for IL-6 analysis and total 

protein content was assessed on cell lysates, as previously described. A total of three 

independent experiments were performed. 

3.2.9. Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM). GraphPad Prism 

statistical software (La Jolla, CA, USA) was utilized to perform statistical analyses. Data 

were analyzed using a two-way ANOVA (variables: genotype and treatment) followed by 

a one-way ANOVA with a Tukey’s post-hoc test. When appropriate, an unpaired two tailed 

Student’s t-test was utilized for analysis. P<0.05 was considered statistically significant.  
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3.3. Results  

3.3.1. Experiment 1: Lipopolysaccharide-induced lung injury 

Lavage MMP-3 

The role of MMP-3 in ALI was first assessed utilizing an 18-hour model of LPS-induced 

lung injury, in which Mmp3+/+ and Mmp3-/- mice of both sexes received an intra-tracheal 

administration of LPS or saline as a control.  

Total MMP-3 was measured in lavage samples from Mmp3+/+ mice. The results in figure 

3.1A show significantly higher lavage MMP-3 concentrations in LPS-injured mice 

compared to Saline controls. Given the use of both female and male mice for this study, 

the data was subsequently analyzed by sex. Notably, female Mmp3+/+ mice showed 

significantly elevated total MMP-3 following LPS injury compared to Saline (Fig. 3.1B); 

however MMP-3 concentrations in male, LPS-instilled Mmp3+/+ mice were not 

significantly higher than the respective Saline control (Fig. 3.1C). In light of this difference 

in results from female and male mice, the remaining of the experimental data was analyzed 

separately by sex. 
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Figure 3.1 Experiment 1: MMP-3 levels measured in lung lavage samples from Mmp3+/+ 

mice, 18 hours after intra-tracheal saline or LPS instillation. A: Lavage MMP-3 levels 

assessed in all Mmp3+/+ mice, n=11-12 per group; B: in female Mmp3+/+ mice, n=5-6 per 

group; C: in male Mmp3+/+ mice, n=6 per group. Data are expressed as mean ± SEM; 

*p<0.05 vs Saline control. 
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Lavage protein 

The average lavage volume recovered from all animals was 2.9 ± 0.02 mL, with no 

significant differences among groups (data not shown). Total protein content in lavage is 

shown in Table 3.1. No differences due to genotype were observed for Saline-instilled mice 

of both sexes. Overall, no significant differences were observed in total lavage protein of 

LPS-instilled Mmp3+/+ and Mmp3-/- mice compared to their respective Saline controls. 

Similar results were observed in both sexes, although female LPS-injured Mmp3+/+ mice 

appeared to have higher lavage protein than Saline control, but this difference did not reach 

significance. The genotype had no significant effect on this outcome following LPS 

instillation. 

  

 

Table 3.1 Experiment 1: Total protein content assessed in lavage from Mmp3+/+ and 

Mmp3-/- mice of either sex at the end of the 18 hours recovery period. Data are expressed 

as mean ± SEM; n=5-6 per group. 

 

Lavage inflammatory cells 

Pulmonary inflammation associated with this model of ALI was first investigated through 

the analysis of the lung lavage cellular infiltrate. Results in figure 3.2A and B showed no 

differences at baseline (Saline instillation) due to genotype in female mice. A higher but 

not significantly different total cell number was found in female, LPS-injured Mmp3+/+ and 

Mmp3-/- mice compared to the respective Saline controls, with no effect of the genotype 
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(Fig. 3.2A). Similarly, determination of total PMN cells in lavage showed a non-significant 

trend toward higher neutrophils in female Mmp3+/+ and Mmp3-/- mice exposed to LPS, 

with no differences due to genotype (Fig. 3.2B).  

In male mice, no differences due to genotype were found in the total number of cells (Fig. 

3.2C) and of PMN (Fig. 3.2D) in the lavage of Saline-instilled controls. The increase in 

lavage cell number was statistically significant in male Mmp3+/+ and Mmp3-/- mice exposed 

to LPS-induced lung injury compared to controls, with no effect of the genotype (Fig. 

3.2C). Male mice of both genotypes had also significantly higher lavage numbers of 

neutrophils following LPS-induced lung injury compared to Saline controls, with no effect 

stemming from lack of Mmp3 expression (Fig. 3.2D). 
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Figure 3.2 Experiment 1: Total (A, C) and differential (B, D) cell counts performed in 

lavage samples 18 hours post Saline or LPS intra-tracheal instillation. Total lavage cell 

numbers were determined in Mmp3+/+ and Mmp3-/- female (A) and male (C) mice. 

Following differential cell counts performed on cytospin slides, the total number of PMN 

neutrophils in lavage was obtained for female (B) and male (D) mice of both genotypes. 

Data are expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Saline control within the 

genotype. 
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Lavage inflammatory mediators 

To further characterize the role of MMP-3 in the pulmonary inflammatory response 

associated with ALI, the concentration of several cytokines and chemokines was measured 

in lung lavage. Data from Mmp3+/+ and Mmp3-/- female mice are shown in figure 3.3A to 

F, while results for male mice are shown in figure 3.4A to F. Overall, lavage concentrations 

of cytokines and chemokines did not differ between genotypes of Saline-instilled mice 

from both sexes (Figures 3.3 & 3.4). 

In female mice, LPS instillation led to significantly higher lavage concentrations of MIP-

2 in Mmp3+/+ mice compared to Saline controls. Significantly elevated lavage 

concentrations of IL-6, G-CSF, KC, MCP-1, and TNF-α were found in female, LPS-

instilled Mmp3+/+ and Mmp3-/- mice compared to the respective Saline controls (Fig. 3.3A-

F). Significantly lower lavage concentrations of IL-6, G-CSF, MIP-2, TNF-α, were 

observed in female, LPS-injured Mmp3-/- mice compared to the LPS-instilled Mmp3+/+ 

group, while differences in these experimental groups did not reach significance for the 

KC concentration (Fig. 3.3A-F). No differences were found for IL-10 (data not shown).  

The same array of inflammatory mediators was measured in the lavage of male mice and 

showed that LPS-induced injury caused significant increases in IL-6, G-CSF, KC, MIP-2, 

and TNF-α in Mmp3+/+ and Mmp3-/- mice compared to Saline mice, with no effect of the 

genotype (Fig. 3.4A-F) . No differences were detected in the lavage concentrations of 

MCP-1 (Fig. 3.4D) and IL-10 (data not shown). 
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Figure 3.3 Experiment 1: Cytokine and chemokine levels measured in lung lavage from 

Mmp3+/+ and Mmp3-/- female mice (A-F), 18 hours after LPS or saline instillation. Data 

are expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Saline control within the 

genotype; #p<0.05 vs Mmp3+/+ LPS group.  

IL-6= interleukin-6, G-CSF= granulocyte colony stimulating factor, KC= keratinocyte 

chemoattractant, MCP-1= monocyte chemotactic protein-1, MIP-2= macrophage 

inflammatory protein 2, and TNF-α= tumor necrosis factor alpha. 
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Figure 3.4 Experiment 1: Cytokine and chemokine levels measured in lung lavage from 

Mmp3+/+ and Mmp3-/- male mice (A-F), 18 hours after LPS or saline instillation. Data are 

expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Saline control within the genotype; 

#p<0.05 vs Mmp3+/+ LPS group.  

IL-6= interleukin-6, G-CSF= granulocyte colony stimulating factor, KC= keratinocyte 

chemoattractant, MCP-1= monocyte chemotactic protein-1, MIP-2= macrophage 

inflammatory protein 2, and TNF-α= tumor necrosis factor alpha. 
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3.3.2. Experiment 2: Acid-induced lung injury 

Lavage MMP-3 

The role of MMP-3 in ALI was also investigated in a model of acid-induced lung injury, 

in which female and male Mmp3+/+ and Mmp3-/- mice were exposed to an intra-tracheal 

instillation of HCl or Air, and sacrificed after a period of 4 hours. Similar to Experiment 1, 

the data have been separated by sex. 

Analysis of total lavage MMP-3 levels (Fig. 3.5) showed that acid injury led to significantly 

higher MMP-3 levels in the lavage of female and male Mmp3+/+ mice (Fig. 3.5A, B), 

compared to the respective Air controls. 

 

Figure 3.5 Experiment 2: MMP-3 levels measured in lavage samples from female (A) and 

male (B) Mmp3+/+ mice, 4 hours after intra-tracheal instillation of HCl or Air as a control. 

Data are expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Air control. 

 

Lavage protein 

The average lavage recovery volume from all animals was 2.9 ± 0.01 mL, with a significant 

difference only observed in male acid-instilled Mmp3-/- mice compared to Mmp3-/- Air 

control (2.99 ± 0.55 mL versus 2.81 ± 0.03 mL, respectively). Total protein content was 

measured in the lavage of female and male, Mmp3+/+ and Mmp3-/- mice (Table 3.2). When 

comparing Air-instilled mice within each sex, no differences in total protein content were 
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observed due to genotype. Overall, total protein content was significantly higher in mice 

exposed to acid-induced ALI compared to Air controls. These results were observed in 

both female and male mice, with no effect of the Mmp3 genotype (Table 3.2). 

 

 

Table 3.2 Experiment 2: Total protein content measured in lavage samples from female 

and male mice of both genotypes. Data are expressed as mean ± SEM; n=5-6 per group. 

*p<0.05 vs Air control within the genotype. 

 

Lavage inflammatory cells 

The total number of neutrophils in the lavage of Air-instilled mice did not differ between 

genotypes in both female (Fig. 3.6A) and male mice (Fig. 3.6B). The results in figure 3.6A 

showed a significantly higher number of neutrophils in female, acid-injured Mmp3+/+ mice 

compared to Air control. Nonetheless, the increase in lavage neutrophil numbers in female, 

acid-injured Mmp3-/- mice was not significant compared to the respective Air mice. Lower 

neutrophil abundance was observed in the lavage of female, acid-injured Mmp3-/- mice 

compared to Mmp3+/+ counterpart (Fig. 3.6A); however this difference did not reach 

significance.   

In male mice the increases in lavage neutrophils following acid injury were not statistically 

significant, and no effect stemmed from the difference in genotype (Fig. 3.6B). 
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Figure 3.6 Experiment 2: Total number of PMN neutrophils in lavage samples from 

female (A) and male (B) mice of both genotypes, 4 hours post air or acid instillation. Data 

are expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Air control. 
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Lavage inflammatory mediators 

Lavage concentrations of inflammatory mediators from Air-instilled mice of either sex did 

not show any difference due to genotype (Figures 3.7 & 3.8).  

In female mice (Fig. 3.7A-F), acid instillation led to significant increases in lavage IL-6, 

G-CSF, KC, MCP-1, MIP-2, and TNF-α in Mmp3+/+ mice compared to Mmp3+/+ Air mice; 

however in acid-injured Mmp3-/- mice such increases only reached significance for MIP-2 

and TNF-α (Fig 3.7A-F) compared to Air controls. Although non-significant, female acid-

injured Mmp3-/- mice appeared to have lower lavage concentrations of IL-6, G-CSF, KC, 

MCP-1, and had significantly lower concentrations of MIP-2 and TNF-α compred to acid-

instilled Mmp3+/+ mice (Fig 3.7A-F). IL-10 levels were increased following acid injury, 

with no effect of the genotype (data not shown). 

Analysis of the same inflammatory mediators in the lavage of male mice showed 

significantly higher concentrations of IL-6, MCP-1, and TNF-α in acid-instilled Mmp3+/+ 

mice compared to Air controls (Fig 3.8A-F). Significant increases in IL-6, MCP-1, G-CSF, 

KC, and MIP-2 were also observed in acid-injured Mmp3-/- mice compared to Air-instilled 

controls (Fig 3.8A-F). No differences were observed due to the Mmp3 genotype in male 

mice (Fig 3.8A-F) following acid injury; moreover, no effect of the genotype was noticed 

in IL-10 lavage levels (data not shown). 
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Figure 3.7 Experiment 2: Cytokine and chemokine levels in lavage samples from Mmp3+/+ 

and Mmp3-/- female mice (A-F), 4 hours following acid injury or air instillation. Data are 

expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Air control within the genotype; 

#p<0.05 vs Mmp3+/+ Acid group.  

IL-6= interleukin-6, G-CSF= granulocyte colony stimulating factor, KC= keratinocyte 

chemoattractant, MCP-1= monocyte chemotactic protein-1, MIP-2= macrophage 

inflammatory protein 2, and TNF-α= tumor necrosis factor alpha. 
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Figure 3.8 Experiment 2: Cytokine and chemokine levels in lavage samples from Mmp3+/+ 

and Mmp3-/- male mice (A-F), 4 hours following acid injury or air instillation. Data are 

expressed as mean ± SEM; n=5-6 per group. *p<0.05 vs Air control within the genotype; 

#p<0.05 vs Mmp3+/+ Acid group.  

IL-6= interleukin-6, G-CSF= granulocyte colony stimulating factor, KC= keratinocyte 

chemoattractant, MCP-1= monocyte chemotactic protein-1, MIP-2= macrophage 

inflammatory protein 2, and TNF-α= tumor necrosis factor alpha. 
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3.3.3. Experiment 3: In vitro stimulation of Mmp3+/+ and Mmp3-/- bone 

marrow-derived macrophages 

In order to investigate the observed MMP-3-related sex differences in pulmonary 

inflammation, inflammatory cells such as bone marrow-derived macrophages were isolated 

from female and male Mmp3+/+ and Mmp3-/- mice. Stimulation of these BMDMs with 

media only as a control or increasing doses of LPS (0.1µg/mL, 1µg/mL, 10µg/mL) led to 

step-wise increases in IL-6 in cell culture supernatant, with no significant differences 

related to the sex of the mice from which the cells were derived, or Mmp3 genotype (Fig. 

3.9A). 

A potential role of 17β-estradiol (E2) in the MMP-3 related differences in inflammatory 

response was addressed in BMDMs from female Mmp3+/+ and Mmp3-/- mice. The results 

in figure 3.8B showed that stimulation of BMDMs with 1µg/mL LPS caused increased 

release of IL-6 in cell culture supernatant, with no additional effect stemming from E2 co-

stimulation, and no differences associated with lack of Mmp3 expression (Fig. 3.9B).  
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Figure 3.9 Experiment 3: Stimulation of BMDMs isolated from Mmp3+/+ and Mmp3-/- 

mice. (A) BMDMs from female and male mice of both genotypes were stimulated with 

different doses of LPS (E. Coli 0111:B4) for 18 hours. IL-6 measurements in cell culture 

supernatant were normalized by values for female Mmp3+/+ BMDMs at 0.1µg/mL LPS. 

(B) BMDMs from female Mmp3+/+ and Mmp3-/- mice were stimulated for 18 hours with 

1µg/mL LPS alone, or LPS and three different doses of E2. IL-6 values in cell culture 

supernatant were normalized by values from female Mmp3+/+ BMDMs at 1µg/mL LPS. In 

both experiments, release of IL-6 in the control conditions was minimal and therefore not 

visible on the graphs. Data are expressed as mean ± SEM and representative of three 

experiments performed on three independent cell isolations. 
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3.4. Discussion  

The overall objective of this study was to investigate the role of MMP-3 in the 

inflammatory response associated with ALI. To this end, models of LPS- (experiment 1) 

and acid-induced lung injury (experiment 2) were utilized in mice lacking the expression 

of Mmp3, and in wild type controls. Consistent with previous experimental and clinical 

observations of increased MMPs expression during injury and inflammation [23, 24, 36], 

total MMP-3 levels were found elevated in the lavage of Mmp3+/+ mice following LPS or 

acid injury. In our models, lack of Mmp3 expression did not alter baseline responses in any 

of the measured outcomes. Following injury, lack of Mmp3 expression did not affect total 

protein in lavage and did not significantly alter the recruitment of neutrophils to the injured 

lung. Importantly, however, the release of cytokines and chemokines in response to the 

different injuries appeared to be consistently mitigated by the genetic ablation of Mmp3 in 

female mice, while male LPS- and acid-injured Mmp3-/- mice showed concentrations of 

pulmonary inflammatory mediators comparable to male injured Mmp3+/+ mice. Based on 

these data, it is concluded that MMP-3 plays a role in the pathogenesis of ALI by affecting 

pulmonary inflammation in a sex-dependent fashion. 

The role of MMP-3 in lung injury has been previously investigated in neutrophils-

dependent models of ALI, in which mice lacking Mmp3 expression demonstrated lower 

neutrophils infiltration and lower intra-pulmonary accumulation of proteinaceous edema 

in response to injury [32, 33]. Our data did not fully replicate those findings, due in part to 

differences in the nature of the injuries and their development, as well as potential technical 

limitations related to the retrieval of activated inflammatory cells and the sensitivity of the 

cell counting technique. In contrast to those previous studies, our experiments utilized 

mouse models that resembled two of the most common causes of lung injury in the patient 

population [5, 37]. Furthermore, in light of the association between lung cytokines/ 

chemokines and mortality in ALI [9, 38], the present research extended the previous 

observations on inflammation by analyzing the concentrations of several pulmonary 

inflammatory mediators. Overall, this study has investigated outcomes that are relevant in 

the pathogenesis of ALI, such as the development of pulmonary inflammation, and has 

explored sex differences in the response to lung insults. The current work, therefore, 
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provides an overall stronger clinical correlate about the role of MMP-3 in ALI than 

previously assessed.  

An unanticipated but interesting outcome of the current study were the MMP-3 related sex 

differences in the inflammatory response. Of interest, the sex of the mice previously 

utilized to investigate MMP-3 in ALI was not clearly reported in those studies [32, 33]. In 

a general sense, therefore, our findings underscore the upcoming policy changes announced 

by the National Institue of Health, which  recommend the inclusion of both sexes in 

experimental studies [39]. Such changes have been prompted by the observation that the 

almost exclusive use of male mice in research may have led to an under-estimation of sex-

driven differences in pathophysiology, and may have negatively impacted the translation 

of experimental findings into clinical practice [39]. Recent studies however started to 

demonstrate marked sex differences in the inflammatory response, with females mounting 

a better and more pronounced immune response to viral and bacterial infections, and being 

substantially more inclined to develop autoimmune disorders than males [40, 41]. In terms 

of pulmonary pathophysiology, sex differences have been observed in patients affected by 

cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Specifically, 

prepubertal female patients with CF have a higher mortality rate than peers of the opposite 

sex; females also exhibit higher prevalence and risk of hospitalization due to COPD than 

males [42, 43]. In patients with ALI, sex differences in mortality have not been observed 

[2]; however, a clinical study by Heffernan et al. indicated that, following traumatic injury, 

female patients are more likely to develop ALI [44].  

The underlying pathology leading to sex differences in the inflammatry responses in 

general may encompass gonadal hormones, sex chromosomes, and anatomical differences 

[45]. In the context of the current study, our in vivo models of ALI demonstrated that a lack 

of Mmp3 dampened the concentrations of lavage inflammatory mediators only in female 

mice, with no effect in males. These differences could be related to possible inflammatory 

dissimilarities inherent to the response of male/female Mmp3+/+ and Mmp3-/- mice, 

however there is also evidence of a potential relationship between sex hormones, 

specifically 17β-estradiol, and MMP-3. Different studies have in fact shown that exposure 

to E2 leads to up-regulation of Mmp3 expression by primary human osteoblasts, rat uterine 
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stromal cells, and human synovial fibroblasts [46–48]. These observations prompted our 

preliminary in vitro investigation into the sex-differences in the MMP-3-related 

inflammatory response, as shown in experiment 3. Based on the evidence of Mmp3 

expression in AM [20], and the role of AM in the progression and resolution of lung injury 

[49, 50], two experiments were performed on isolated BMDM to evaluate: i) inherent 

differences in the macrophage-driven inflammatory response of male/female Mmp3+/+ and 

Mmp3-/- mice; and ii) the possibility of an hormonal influence on the MMP-3 related sex 

differences. The data suggested that, with respect to IL-6 secretion, there were no inherent 

sex-related differences between female and male derived BMDM in response to LPS and/ 

or 17β-estradiol. 

Although those preliminary results suggest that BMDMs do not demonstrate sex 

differences, these experiments have some limitations and further research is required to 

elucidate the specific mechanisms by which the MMP-3-related sex-differences occur. For 

example, even though BMDMs provide a convenient, readily available and widely 

accepted in vitro model for alveolar macrophages [51, 52], some evidence suggests that 

AM may have properties and patterns of gene expression divergent from the ones 

characterizing BMDMs [53]. There is, of course, also the possibility that such MMP-3 

related sex differences do not involve the AM, but rather other cell populations within the 

lung (i.e. alveolar type II cells, fibroblasts) or more complex, systemic interactions. Future 

studies may address this aspect through broader in vitro analyses. Additionally, 

ovariectomized Mmp3+/+ and Mmp3-/- mice would be a useful model to determine whether 

estrogen- and, more generally speaking, sex hormones- have a role in MMP-3 related 

differences in the inflammatory response. 

As mentioned, the use of two different models of ALI is a strength of the study and an 

important aspect in the analysis of MMP-3 role. The rationale for such experimental 

approach resides, firstly, in the complex pathophysiology of ALI, which is associated with 

multiple and different initiating insults [5, 54]. Secondly, various models of ALI could help 

understand whether the role of MMP-3 differs depending on the lung insult. There is indeed 

some evidence that other MMPs, such as MMP-8 and -9, may have roles in ALI that vary 

depending on the nature of the initiating insult. For example, studies on Mmp9 knock-out 
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mice have shown that MMP-9 plays a pathogenic role during immunoglobulin G immune-

complex-induced lung injury [32], but appears to be protective from the development of 

ventilation-induced lung injury (VILI). Mice lacking Mmp9 expression were in fact more 

susceptible to the effects of injurious mechanical ventilation than wild type controls, 

presenting significant impairment in lung function and greater tissue damage [55]. 

Similarly, studies on MMP-8 have demonstrated that this protease has a protective role in 

models of LPS- and hyperoxia-induced lung injury while, on the other hand, it appears to 

favor the development of VILI [56, 57]. Overall, what emerges is the possibility that the 

role of matrix metalloproteinases in the pathogenesis of ALI may be dependent on the 

aetiology of lung injury. This evidence, combined with the multiplicity of causes leading 

to lung injury, undercores the necessity to perform ALI research through different injury 

models.  

In this regard, our ALI models are characterized at different time points (18 hours in 

experiment 1, 4 hours in experiment 2), and by different initiating insults with dissimilar 

features. Intra-tracheal instillation of LPS (experiment 1) has been described to cause the 

activation of specific intra-cellular inflammatory pathways, with patchy areas of 

neutrophils infiltration and limited epithelial damage [58], as demonstrated by the mild 

changes in lung permeability in LPS-injured mice observed in experiment 1 (table 3.1). 

Conversely, intra-tracheal instillation of HCl (experiment 2) resembles more of a chemical 

burn, and the subsequent lung injury was associated with damage of the alveolar 

epithelium, neutrophil infiltration, and extensive pulmonary edema as reflected by the 

significant changes in total protein content shown in table 3.2. In light of such differences, 

it is noteworthy that the involvement of MMP-3 in pulmonary inflammation in female mice 

was observed consistently in both models, thereby strengthening our conclusions. 

This important observation of reduced lavage cytokine and chemokine concentrations 

following lung injury in female Mmp3-/- mice has potential clinical relevance. The 

possibility of targeting MMP-3 to lower pulmonary levels of inflammation could improve 

outcomes of ALI. Within the pathophysiology of this disorder, the development of an 

overwhelming inflammatory response is indeed predictive of poor outcome [38, 59]. 

Experimental and clinical studies have shown that lung-derived inflammatory mediators 



121 

 

de-compartmentalized into the systemic circulation can affect the function of peripheral 

organs, with progression to multi organ failure and, eventually, death [10, 13, 60]. In this 

sense, a therapeutic approach capable of modulating the inflammation associated with lung 

injury would be an ideal treatment, and our study is a first step to assess whether MMP-3 

could be such key target. 

Aside from the aforementioned strengths, our study also has some weaknesses. For 

example, there may be intrinsic limitations related to the use of a mouse model that lacks 

Mmp3 expression as a result of gene disruption. Nonetheless, Mmp3-/- mice are fertile and 

viable, show no phenotypical alteration and appear to have normal lung function when 

unchallenged (chapter 4 and [20]), thereby representing a useful and valid tool for the study 

of MMP-3 in ALI.  

Additionally, the present study did not explore the potential mechanisms responsible for 

the decreased inflammation in female Mmp3-/- mice with ALI. It has been described that 

MMP-3 plays a role in inflammation through direct cleavage of specific inflammatory 

mediators, resulting in activation, potentiation of their activity, or inactivation of such 

molecules, and also through the generation of chemotactic gradients for neutrophils and 

macrophages [23]. Our data leave open the possibility that the effect of MMP-3 on ALI-

associated inflammation may result from direct or indirect proteolytic activity on a variety 

of inflammatory substrates. Importantly, however, new and non-enzymatic roles are 

emerging for MMP-3 in several disease processes [61, 62], thereby outlining a possibly 

more complex scenario than traditionally anticipated. More mechanistic insight about the 

role of MMP-3 in ALI could be gained in the future through the development of a 

catalytically inactive Mmp3 knock-in mouse or, when available, the administration of a 

highly selective MMP-3 inhibitor in models of lung injury. 

In conclusion, this study expanded the knowledge of ALI pathophysiology, addressing the 

role of MMP-3 in the context of two, clinically relevant models of lung injury. Our findings 

demonstrated a sex-dependent role for MMP-3 in the overwhelming lung inflammatory 

response associated with ALI, and highlighted the need for a better understanding of the 

disease processes in the search for future therapeutic approaches.  
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CHAPTER 4:  

Analysis of surfactant and lung mechanics in a mouse model of lung 

injury lacking matrix metalloproteinase-3 expression. 
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4.1. Introduction  

Acute lung injury (ALI) is a life threatening disorder initiated by a variety of insults to the 

lung, among which bacterial pneumonia is one of the most common [1]. No effective 

pharmacological therapy is currently available for the treatment of patients with ALI, and 

mortality is still extremely high at approximately 40% [2, 3]. The clinical criteria of ALI 

include an acute onset (within days) of respiratory failure due to pulmonary edema with no 

evidence of left ventricular failure, and hypoxemia, the latter of which is defined by the 

ratio of partial pressure of arterial oxygen over the fraction of inspired oxygen (PaO2 / FIO2) 

being lower than 300 mmHg [4].  

In order to develop novel therapies for ALI, better insight into the various complex 

pathophysiological alterations is required. One of the biggest challenges in this regard is 

the poor understanding of the relationship between the primary physiological alterations 

related to lung mechanics and oxygenation, as determined clinically as part of the definition 

of ALI, and the underlying inflammatory processes that appear to influence the mortality 

associated with the disease [1, 5–7]. The objective of this study was to utilize an 

experimental model, namely the Mmp3 deficient mouse, in which altered inflammatory 

processes in response to lung injury have been demonstrated [8, 9], and study the potential 

changes in lung mechanics and its associated changes to pulmonary surfactant in this 

setting.  

MMP-3 belongs to a family of zinc-dependent proteases that have important roles in innate 

immunity and inflammation [10, 11]. In the previous chapter, the role of this protease in 

lung injury was investigated in mice lacking Mmp3 expression (Mmp3-/-) and in wild type 

controls (Mmp3+/+) exposed to two different models of ALI (chapter 3, page 92). The 

results from both injury models highlighted a role for MMP-3 in the pathogenesis of this 

disorder. Specifically, the data showed a sex-dependent effect of MMP-3 on the pulmonary 

inflammatory response, with female Mmp3-/- mice having lower lavage concentrations of 

cytokines and chemokines following injury than female Mmp3+/+ controls  in both models 

of ALI.  
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Although these data constitute an important step towards a better understanding of the 

inflammatory response occurring in ALI, the role of MMP-3 in other aspects of the 

complex pathophysiology of ALI, such as lung mechanics, still needs to be investigated. It 

is clear that the hypoxemia defining ALI stems from many physiological and biochemical 

processes occurring within the lung, including decreased lung distensibility and increased 

work of breathing, which together with pulmonary edema, result in poor oxygenation [12]. 

The underlying mechanisms responsible for the alterations in the mechanical properties of 

the lung reside, to some extent, in the dysfunction of lung surfactant, an important 

substance that prevents alveolar collapse at the end of expiration [1, 13].  

Lung surfactant is essential to facilitate the work of breathing [13]. Surfactant is a lipid-

protein mixture secreted into the alveolar space, where it exists in two distinct structural 

forms: the functionally active large aggregates, and the inactive small aggregates, the latter 

existing as vesicular structures within the airspace [14]. Adsorbing at the air-liquid 

interface, the surfactant film reduces surface tension, thereby ensuring stability of the 

alveoli at low lung volumes and maintaining lung compliance [13]. The relationship 

between inactivation of lung surfactant and physiological alterations of lung function in 

ALI has been demonstrated in many different animal models of lung injury [12, 15–17]. In 

conjunction with in vitro analyses of surfactant samples isolated from injured lungs, these 

studies also have shown that the impairment in the surface tension reducing properties of 

the large aggregates, and the increased proportion of small aggregates relative to LA as 

injury progresses are associated with lower compliance and oxygenation [12, 15–17]. The 

mechanisms responsible for these surfactant alterations are several, and include functional 

inactivation by extravasated plasma proteins such as albumin and fibrinogen, and 

degradation and inactivation of surfactant components by proteases secreted by bacteria or 

inflammatory cells [18–20].  

Based on this information, it was hypothesized that MMP-3 contributes to alterations to 

lung mechanics and surfactant function during ALI. This hypothesis was tested by 

exposing Mmp3+/+ and Mmp3-/- mice of both sexes to an 18-hour model of 

lipopolysaccharide (LPS)-induced lung injury, followed by histological assessment of lung 

injury, measurement of pulmonary mechanics, and in vitro analyses of lung surfactant. 
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4.2. Methods  

4.2.1. Animal procedures and experimental design 

Mice lacking the expression of Mmp3 (Mmp3-/-) were originally generated as previously 

described by Mudgett JS et al [21]. Two breeding pairs were kindly donated to our 

laboratory by Dr. G.P. Downey (National Jewish Hospital, Denver, Colorado), and utilized 

to obtain a pathogen-free colony via back-crossing with Mmp3 wild type mice (Mmp3+/+) 

on a C57BL/6 background. All mice were housed in an animal research facility, with ad 

libitum access to food and water and daily exposed to a 12 hours light/dark cycle. All 

procedures were reviewed and approved by the Animal Use Subcommittee at Western 

University (protocol #: 2010-272). 

A total of 39 Mmp3+/+ and Mmp3-/- mice (17.9 ± 0.4 weeks old) of both sexes were exposed 

to an 18-hour model of LPS-induced lung injury previously described (chapter 3) and 

utilized for the analyses of lung mechanics and histology. Surfactant analyses were 

performed on samples isolated from a cohort of mice (14.5 ± 0.4 weeks old) utilized in 

chapter 3 (details in section 3.2) and exposed to the same injury model.  

4.2.2. Lipopolysaccharide-induced lung injury 

Female and male Mmp3+/+ and Mmp3-/- mice were randomized to receive an intratracheal 

(i.t.) instillation of LPS (from E.Coli, 0111:B4, 20 µg/mouse; Sigma, St. Louis, Mo., USA), 

or saline (0.15M NaCl solution) as a control. Based on the evidence from our previous 

study (chapter 3), data from female and male mice were analyzed separately leading, for 

each sex, to the following experimental groups: i) Mmp3+/+ Saline, ii) Mmp3+/+ LPS, iii) 

Mmp3-/- Saline, iv) Mmp3-/- LPS.  

For a more detailed description of the instillation and other experimental procedures related 

to this model, please refer to chapter 3, section 3.2, page 95.  

4.2.3. Analysis of lung mechanics 

Eighteen hours after LPS instillation, mice received an intraperitoneal injection of sodium 

pentobarbital (110 mg/kg; Lundbeck, Valby, Denmark) with a euthanasing dose. When the 
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appropriate depth of anesthesia was reached, mice were placed in a supine position, and 

the lower abdomen was exposed through a small midline incision. The inferior vena cava 

was identified, and 50 µL of heparin (Sandoz, Boucherville, QC, Canada) were injected 

intravenously over a 1 minute-period, followed by mice exsanguination. A tracheostomy 

was subsequently performed, and an endotracheal tube was secured in the trachea. Mice 

were then returned to a prone position, and connected to a FlexiVent rodent ventilator 

(Scireq, Montreal, Quebec, Canada) for ex vivo measurements of lung function, via 

Flexiware software controlled maneuvers. Immediately after connecting the endotracheal 

tube to the FlexiVent ventilator, mice were exposed to 2 minutes of ex vivo mechanical 

ventilation (Vt = 10 mL/kg, RR =150 breaths/min, PEEP = 0 cmH2O), before being 

exposed to 4 different maneuvers. These software-controlled procedures were performed 

with 10 seconds intervals of ex vivo ventilation. In order to standardize volume history, the 

first maneuver performed was a deep inflation of the lungs from PEEP value to a maximal 

pressure of 30 cmH2O. This maneuver, representing the total lung capacity (TLC), also 

allowed for the determination of the inspiratory capacity (IC). A single frequency (150 bpm 

or 2.5Hz) forced oscillation technique (FOT) was subsequently performed, in which a 

sinusoidal waveform was over imposed on the mouse lungs. The signal output of this 

analysis can be implemented onto a single compartment model using linear regression, 

leading to determination of compliance (Crs), elastance (Ers), and resistance (Rrs) of the 

whole respiratory system. The third maneuver consisted of the application of a broad-band 

FOT (over a range of mutually prime frequencies); the resulting input impedance of the 

respiratory system was fit onto the constant phase model to determine values of airway 

resistance (RN), tissue damping (G), and tissue elastance (H). Lastly, software-controlled 

pressure-volume (PV) curves were performed via step-wise increases in pressure, in order 

to calculate quasi-static lung compliance (Cst) and elastance (Est). An overview of 

maneuvers and outcomes of interest in this study is provided in Table 4.1. Once all 

measurements had been performed, ex vivo ventilation was delivered for an additional 10 

seconds, before disconnecting the endotracheal tube from the ventilator and proceeding 

with lung isolation for histological analysis. 
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Table 4.1: Summary of the maneuvers and outcomes of respiratory mechanics relevant in 

this thesis work. TLC, total lung capacity; FOT, forced oscillation technique; PV curve, 

pressure-volume curve. 

4.2.4. Histology  

Following measurements of lung mechanics, the lungs and heart were isolated en block. 

Briefly, the diaphragm was cut and a midline incision was performed to open the rib cage 

and expose the lungs. Lungs, heart, and trachea with the previously placed endotracheal 

tube intact were carefully removed, connected to a manometer and air inflated to a pressure 

of 15 cmH2O. A tight knot was then performed to occlude the trachea, the endotracheal 

tube removed, and the isolated heart-lungs block immersed in a fixative solution of 4% 

paraformaldehyde for at least 24 hours. Fixed lungs were rinsed twice, for 20 minutes and 

under gentle rocking, with phosphate buffered saline, before being placed in increasingly 

higher concentrations of ethanol (v/v %; 30% then 50% ethanol for 20 minutes each, at 

room temperature with gentle rocking), and kept in 70% ethanol at 4˚C until further 

processing, kindly performed by Dr. Chris Howlett (Dept. of Pathology and Laboratory 

Medicine, Western University, Canada). Once wax embedded, lungs were sectioned into 

slices and stained with hematoxylin and eosin (H&E) stain. The development of lung injury 



136 

 

was subsequently assessed through analysis and scoring of the lung tissue slides by a 

pathologist blinded to the experimental conditions.  

The scoring system applied to the histological sections for the semi-quantitative assessment 

of lung injury is shown in Table 4.2, while figure 4.1 (A-D) provides representative 

pictures, from lung sections used in this experiment, exemplifying the degree of lung injury 

for each point of the scoring system. The lowest score assigned was 0, representing a 

normal histological section with no significant inflammatory or structural alterations (Fig. 

4.1A), proceeding up to 3, which was assigned to lung sections with substantial neutrophil 

infiltrate and structural damage (Fig. 4.1D). 
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Table 4.2: Scoring system utilized for the assessment of lung injury on H&E stained lung 

sections. 

 

Figure 4.1: Representative images of the histology score utilized for the analyses of lung 

sections isolated from female and male Mmp3+/+ and Mmp3-/- mice, 18 hours post intra-

tracheal instillation of LPS or saline. (A) Score 0, (B) score 1, (C) score 2, (D) score 3. 

Slides stained with hematoxylin and eosin; magnification, 40x. Scale bar = 100µm shown 

in the bottom right corner of panel D. 
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4.2.5. Lung lavage isolation and surfactant analysis 

Lung lavage samples were isolated from the cohort of mice described in chapter 3. 

Experimental details about lung lavage isolation are provided in chapter 3, section 3.2.4, 

page 97. Following centrifugation of whole lung lavage at 380 g at 4˚C for 10 min., the 

supernatant was collected and termed total surfactant (TS). Part of TS was aliquoted and 

utilized for the measurements of inflammatory mediators and protein content described in 

chapter 3; 1 mL of TS was centrifuged at 40,000 g at 4˚C for 15 min. to separate the heavier 

large aggregate (LA) sub-fraction (pellet) from the small aggregate (SA) sub-fraction 

(supernatant). The LA pellet was resuspended in 0.3 mL of 0.9% NaCl. The remaining 

volume of TS was utilized for analysis of total surfactant pool sizes. TS, LA, and SA were 

stored frozen at -80˚C until further analysis. The phospholipid content of TS, LA, and SA 

was determined via phosphorous assay on the lipid component extracted by the Bligh and 

Dyer method, as previously described [22, 23], and corrected by body weight. The percent 

LA indicates the percent proportion of LA over the sum of LA and SA. 

4.2.6. Biophysical analysis of surfactant activity 

Individual crude LA samples were centrifuged at 21,000 g at 4˚C for 15 minutes, and the 

resulting pellets were resuspended in a buffer solution (2.5 mM HEPES, 1.5 mM CaCl2, 

pH 7.2) to a final phospholipid concentration of 1 mg/mL. For each of these LA samples, 

9 to 10 µL were utilized for the analysis of their surface tension reducing properties through 

a computer controlled constrained sessile drop surfactometer, as previously described [24]. 

This system is composed of a light source (Advanced Illuminator CS410, Rochester, VT, 

USA) and a microscope connected to a camera (1.3 Megapixel CMOS monochrome 

camera), all directed at a pedestal on which LA samples are deposited, thereby forming a 

drop. The pedestal, which has the top and lateral sides arranged in an approximately 60˚ 

angle, has a sharp edge that prevents the drop from spilling over. It is also provided with a 

central hole, which is connected to a motor-driven syringe controlled by a computer 

software and utilized for the cyclic compression and expansion of the surfactant drop. 

Twenty-five to thirty cycles were performed per minute, at 37˚C, for each LA sample. All 

processes of image recording and image analysis were automated. Images were recorded 

at 10 frames per second throughout the duration of the thirty cycles. All images were 
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sequentially analyzed via the axisymmetric drop shape analysis, providing values of 

surface tension and surface area for each picture during the complete dynamic cycles. 

Values of minimum surface tension at cycles 1-10, 15, 20, and 25 were subsequently 

analyzed. The percent surface area compression necessary to reach minimum surface 

tension at cycle 10 was also measured for each drop. 

4.2.7. Statistical analysis 

All data are expressed as mean ± standard error of the mean (SEM). The GraphPad 

statistical software (La Jolla, CA, USA) was used to perform statistical analyses. A two-

way ANOVA (variables: genotype and treatment) was utilized to analyze the data, 

followed by a one-way ANOVA with a Tukey’s post-hoc test. P<0.05 was considered 

statistically significant.  
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4.3. Results  

Lung histology 

Representative pictures of lung histology with a summary of the histological score are 

shown in Figure 4.2 for female mice, and Figure 4.3 for male mice. Overall, no differences 

were found in the lung histology of Saline-instilled female (Fig. 4.2A, C, E) or male mice 

(Fig. 4.3A, C, E), indicating that the genotype itself had no effect on the histological 

indications of lung injury. 

Based on the scoring system outlined in table 4.2, the analysis of lung histological sections 

from female Mmp3+/+ and Mmp3-/- mice showed a significantly higher histology score in 

LPS-instilled mice compared to their respective Saline controls (Fig. 4.2E), with increased 

cellularity and parenchymal damage following LPS injury (Fig. 4.2B, D) than after saline 

instillation (Fig. 4.2A, C). No effect of the genotype was observed (Fig. 4.2 A-E).  

In male mice, the increases in the histology score of LPS-injured mice reached significance 

only in the Mmp3-/- group compared to Saline controls (Fig. 4.3E). The extent of lung 

injury in LPS-instilled male Mmp3+/+ and Mmp3-/- mice was mild to moderate, with 

peribronchial infiltrates, thickening of the septa and/or patchy areas of more pronounced 

inflammation following injury (Fig. 4.3B, D) compared to saline instillation (Fig. 4.3 A, 

C). No effect of the genotype was observed (Fig. 4.3E). 
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Figure 4.2: Hematoxylin-eosin stained pictures representative of lung sections from 

female Mmp3+/+ (A, B) and Mmp3-/- (C, D) mice, 18 hours after saline (A, C) or LPS (B, 

D) instillation. Magnification, 100x. (E) Quantitative histological assessment of lung 

injury. Analyses were performed on lung sections from female Mmp3+/+ and Mmp3-/- mice, 

according to the scoring system described above. Data are expressed as mean ± SEM; n=4-

6 per group; *p<0.05 vs Saline control. Scale bar = 100µm shown in the bottom right corner 

of panel D. 
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Figure 4.3: Representative hematoxylin-eosin stained pictures of lung sections from male 

Mmp3+/+ (A, B) and Mmp3-/- (C, D) mice, 18 hours after saline (A, C) or LPS (B, D) 

instillation. Magnification, 100x. (E) Quantitative histological assessment of lung injury. 

Analyses were performed on lung sections from male Mmp3+/+ and Mmp3-/- mice, 

according to the scoring system described above. Data are expressed as mean ± SEM; n=4-

5 per group; *p<0.05 vs Saline control. Scale bar = 100µm shown in the bottom right corner 

of panel D. 
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Lung mechanics 

Results from the assessment of respiratory mechanics in female Mmp3+/+ and Mmp3-/- mice 

are shown in figure 4.4A-I. No differences due to genotype were observed in Saline 

controls, for any of the outcomes. LPS-instilled mice showed a reduction in inspiratory 

capacity (IC; Fig. 4.4G) that reached statistical significance only in the LPS-injured  

Mmp3-/- group, compared to the Saline controls. Analysis of dynamic compliance (Crs), 

dynamic elastance (Ers), and dynamic resistance (Rrs) for the whole respiratory system 

demonstrated alterations of these parameters only in   Mmp3-/- mice following LPS injury. 

Specifically, Crs was significantly reduced, while Ers and Rrs were significantly increased 

in female LPS-injured Mmp3-/- mice compared to Saline (Fig. 4.4A, B, C respectively).  

LPS-induced lung injury also led to a significant reduction in quasi-static compliance (Cst; 

Fig. 4.4D) and a significant increase in quasi-static elastance (Est; Fig. 4.4E) in female 

Mmp3+/+ and Mmp3-/- mice, compared to Saline-instilled controls. Lastly, no changes were 

observed overall for measurements of central airway resistance (RN; Fig. 4.4F), while LPS 

instillation led to significantly higher tissue resistance (tissue damping, G; Fig 4.4H) and 

elastance (H; Fig. 4.4I) only in female Mmp3-/- mice compared to Saline controls. No 

statistical differences due to genotype were observed in LPS-instilled female mice, for any 

of the measurements performed (Fig. 4.4A-I). 
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Figure 4.4: Analysis of respiratory mechanics in female Mmp3+/+ and Mmp3-/- mice, at 18 

hours post LPS or saline instillation. (A) Lung compliance (Crs), (B) elastance (Ers), and 

(C) resistance (Rrs) of the whole respiratory system were obtained through a single 

frequency forced oscillation technique (FOT). (D) Quasi-static compliance (Cst) and (E) 

elastance (Est) resulted from P-V curves performed via step-wise increases in pressure. 

Broadband FOT was utilized to obtain values of (F) central airway resistance (RN), (H) 

tissue damping (G), and (I) tissue elastance (H). (G) IC, inspiratory capacity. Data are 

expressed as mean ± SEM; n=4-6 per group; *p<0.05 vs Saline control. 
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Respiratory mechanics were also analyzed in male Mmp3+/+ and Mmp3-/- mice (Fig. 4.5A-

I). No differences were present due to genotype between Saline controls. Following LPS 

instillation, no significant changes were observed in inspiratory capacity (Fig. 4.5G), 

dynamic compliance, elastance, and resistance of the respiratory system (Fig. 4.5A, B, and 

C respectively) compared to Saline-instilled mice in both genotypes. A decrease in quasi-

static compliance and an increase in quasi-static elastance was observed in male, LPS-

instilled Mmp3+/+ and Mmp3-/- mice compared to Saline controls (Fig. 4.5D, E); however, 

these differences did not reach statistical significance. Additionally, measurements of 

airway resistance (Fig. 4.5F), tissue damping indicative of tissue resistance (Fig. 4.5H), 

and tissue elastance (Fig. 4.5I) did not show any significant change due to LPS injury. 

Lastly, no effect of the genotype was observed for any of the performed measurements in 

male, LPS-injured mice (Fig. 4.5A-I). 
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Figure 4.5: Analysis of respiratory mechanics in male Mmp3+/+ and Mmp3-/- mice, at 18 

hours post LPS or saline instillation. (A) Lung compliance (Crs), (B) elastance (Ers), and 

(C) resistance (Rrs) of the whole respiratory system were obtained through a single 

frequency forced oscillation technique (FOT). (D) Quasi-static compliance (Cst) and (E) 

elastance (Est) resulted from P-V curves performed via step-wise increases in pressure. 

Broadband FOT was utilized to obtain values of (F) central airway resistance (RN), (H) 

tissue damping (G), and (I) tissue elastance (H). (G) IC, inspiratory capacity. Data are 

expressed as mean ± SEM; n=4-6 per group; *p<0.05 vs Saline control. 

 

 



147 

 

Surfactant analysis and biophysical activity 

The analysis of surfactant sub-fractions is shown in figure 4.6A-D for both sexes. Overall, 

there were no differences in surfactant pool sizes between Saline instilled mice as a result 

of the different genotype. This was observed in both female (Fig. 4.6A, B) and male mice 

(Fig. 4.6C, D). 

In female mice, no differences were found in TS and SA pool sizes following LPS injury, 

or as a result of lacking Mmp3 expression (Fig. 4.6A). The amount of LA (Fig. 4.6A) and 

the percent LA (Fig. 4.6B) were significantly higher in female, LPS-injured Mmp3+/+ mice 

compared to Saline control, while no increases in the LA sub-fraction (Fig. 4.6A) and 

percent LA (Fig. 4.6B) were found in female, Mmp3-/- mice exposed to LPS injury. 

Furthermore, female LPS-instilled Mmp3-/- mice had significantly lower LA amounts than 

LPS-injured Mmp3+/+ mice (Fig. 4.6A). 

In male mice, no significant differences were observed in the amounts of TS, LA, or SA 

between LPS-injured and Saline-instilled mice; moreover, there was no effect of the 

genotype on male surfactant pool sizes (Fig. 4.6C). In line with these observations, there 

were no significant changes in the percent LA retrieved following LPS injury or in mice 

lacking Mmp3 (Fig. 4.6D). 
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Figure 4.6: Surfactant pool sizes (A, C) and percent large aggregates (B, D) measured in 

female (A, B) and male (C, D) Mmp3+/+ and Mmp3-/- mice, 18 hours after LPS or saline 

instillation. (A, C) Total surfactant (TS), large aggregate (LA), and small aggregate (SA) 

sub-fractions were measured in isolated lung lavage samples. The data represent the 

amount of phospholipids normalized by body weight. Within each sub-fraction, *p<0.05 

vs Saline control of the same genotype; #p<0.05 vs Mmp3+/+ LPS. (B, D) The data 

represent the proportion of LA over the sum of LA and SA. *p<0.05 vs Saline control of 

the same genotype. Data are expressed as mean ± SEM; n=5-6 in each group. 
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The biophysical activity of LA samples was evaluated using a constrained sessile drop 

surfactometer. The minimum surface tension achieved by LA samples during repeated 

cycles of compression-expansion is shown in Table 4.3. Minimum surface tension of LA 

samples from Saline instilled mice did not differ between genotypes in both female and 

male mice. 

No differences were found in the surface activity of LA samples from female, LPS-injured 

mice compared to Saline controls at cycles 1, 5, and 10 of dynamic compression-expansion 

(Table 4.3). Furthermore, no effect of the genotype on LA biophysical activity was 

observed for any of the cycles (Table 4.3). 

LA samples from male, LPS-injured mice also reached values of minimum surface tension 

that were not significantly different from Saline-instilled controls (Table 4.3); moreover, 

lack of Mmp3 expression did not affect the surface activity of LA in male mice at cycles 

1, 5, and 10 (Table 4.3). 

The surface tension reducing properties of LA samples were further assessed through 

measurements of the percent area compression necessary to achieve minimum surface 

tension at a given cycle of compression-expansion (cycle 10). The data in Table 4.4 show 

no significant differences in percent area compression at baseline between Saline-instilled 

mice, and in LPS-instilled mice of either sex compared to the respective Saline-instilled 

controls. Additionally, no effect of the genotype was observed in LPS-instilled female or 

male mice (Table 4.4). 
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Table 4.3: Surface activity of LA samples at cycle #1, #5, and #10 of dynamic 

compression-expansion cycles, performed via a constrained sessile drop surfactometer. 

Data are expressed as mean ± SEM; n=5-6 in each group. 

 

 

Table 4.4: Percent area compression at cycle #10 of dynamic compression-expansion, 

needed to achieve minimum surface tension. Measurements performed via a constrained 

sessile drop surfactometer. Data are expressed as mean ± SEM; n=5-6 in each group. 
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4.4. Discussion  

The objective of the present study was to investigate whether MMP-3, previously shown 

to modulate the pulmonary inflammatory response in models of lung injury (Chapter 3), 

could affect the changes in histology, respiratory mechanics, and surfactant function 

associated with ALI. Analysis of lung histological sections from female and male Mmp3+/+ 

and Mmp3-/- mice demonstrated alterations in the alveolar architecture and increased 

neutrophil infiltration in response to LPS instillation, which was consistent with previous 

observations of this injury model. Notably, lungs from female mice exposed to LPS were 

less compliant and had greater elastic recoil compared to Saline controls, while such 

changes in respiratory mechanics were less prominent and not statistically significant in 

male mice given LPS versus control. Lastly, isolated surfactant samples retained good 

biophysical properties across all experimental groups. No effect of Mmp3 ablation was 

observed for the majority of the measured outcomes following LPS instillation, with the 

exception of LA pool size in female, LPS-injured mice. Furthermore, no differences due 

to genotype were observed at baseline between Saline-instilled mice in both sexes. Based 

on these data, and on the observations from our previous study (chapter 3), it was concluded 

that although MMP-3 impacts inflammation in LPS-induced injury in female mice, this 

protease does not impact pulmonary mechanics and surfactant function associated with 

lung injury.  

The contribution of MMP-3 to lung injury has been previously demonstrated in models of 

ALI initiated by intra-tracheal instillation of immunoglobulin G, or instillation of the 

chemokine MIP-2 [8, 9]. In those models, lack of Mmp3 mitigated the development of 

injury mainly through reduced recruitment of inflammatory neutrophils to the lung [8, 9]. 

In our previous study (chapter 3), lack of Mmp3, while not affecting lavage neutrophil 

numbers, led to decreased inflammatory mediators in the lavage of female mice exposed 

to LPS-induced ALI. This same injury model has been utilized in the current work to 

investigate the interplay between pulmonary inflammation, surfactant, and lung mechanics 

in order to gain a better understanding of ALI pathophysiology. In ALI, this relationship 

appears to be very complex with various experimental evidence supporting an important 

role for surfactant in modulating pulmonary inflammation, but with other evidence 
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supporting a marked effect of inflammation on surfactant composition and function and, 

consequently, lung mechanics. Furthermore, in some other studies, inflammation and 

surfactant alterations appear to occur independently.   

For example, modalities of mechanical ventilation (MV), the main supportive therapy in 

ALI, that are considered to be injurious for the lung can lead to surfactant impairment and 

decreased compliance, and have been associated with increased pulmonary inflammation 

[12, 25, 26]. Interestingly, maintaining an active surfactant system in this scenario has been 

shown to reduce pulmonary inflammation [27]. Lung surfactant, comprised of 

phospholipids and surfactant associated proteins (surfactant proteins A-D), also has 

important immuno-modulatory properties within the alveolar space [13, 28]. Specifically, 

surfactant protein C (SP-C) has been recently shown to have an anti-inflammatory role in 

a model of chronic LPS exposure, as mice lacking SP-C expression had more intense lung 

inflammation compared to wild type [29]. Additionally, numerous evidence support the 

role of SP-A and SP-D in host defense and inflammation. SP-A has been shown to 

modulate levels of inflammatory mediators such as TNF-α and, interestingly, mice lacking 

the expression of SP-A have higher lavage concentrations of IL-6 and TNF-α following 

lung injury [28, 30]. Thus, there is strong evidence supporting the concept that pulmonary 

surfactant can impact inflammatory responses. 

Conversely, and more relevant to the current study, inflammatory mediators released in the 

alveolar space during ALI can affect lung surfactant metabolism, and inhibit the expression 

of surfactant proteins such as SP-A and SP-B with potential consequences on surfactant 

biophysical function [31–33]. Moreover, proteases from inflammatory cells or bacteria 

present within the alveolar space have been shown to degrade surfactant associated 

proteins, thereby altering aggregate conversion and increasing surfactant minimum surface 

tension values [19, 20, 34]. Whether any of the four surfactant associated proteins could be 

a potential substrate for MMP-3 is currently not known. In our experiment, the lower 

concentration of inflammatory mediators released in the alveolar space of female Mmp3-/- 

mice after LPS injury (Chapter 3) did not appear to have a major impact on surfactant 

function and lung mechanics when compared to Mmp3+/+ mice. These data, in part, 

reproduced the findings by Nakamura et al. which demonstrated that mice lacking the 
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expression of Il6, a major cytokine and marker of ALI, had changes in surfactant and lung 

function following lung injury that were not different from the ones affecting injured, wild 

type animals [35]. Yamashita et al. also showed that, in mice with aberrant inflammatory 

processes due to absence of Apolipoprotein E, the elevated lavage concentrations of IL-6, 

KC, MCP-1, and TNF-α after lung injury did not correlate with physiological outcomes 

measured in the study [36]. Indeed, surfactant pool sizes, percent LA, oxygenation, and 

lung distensibility were not different from the ones measured in control injured mice, which 

experienced only minor inflammatory changes [36]. Together, these data underscore the 

complex nature of the relationship between inflammation and surfactant. It is likely that 

the specific cause of lung inflammation, the different cell types involved, as well as the 

nature and concentrations of the inflammatory mediators have all an impact on these 

processes; future studies are required to clarify these aspects. 

Although no major effect of genotype was observed in the present study, the biochemical 

and functional changes to lung surfactant in this model are of general interest to our 

understanding of ALI. In our analysis of surfactant pool sizes, a significant increase in the 

active LA sub-fraction and percent LA was observed in female, LPS-instilled Mmp3+/+ 

compared to Mmp3+/+ Saline control, while female LPS-instilled Mmp3-/- mice maintained 

LA pool sizes comparable to Mmp3-/- Saline control. Similar observations were reported 

by Nakamura et al. and Malloy et al. in spontaneously breathing animals exposed to a cecal 

ligation and perforation model of sepsis-induced ALI [16, 26, 37, 38]. In these studies, no 

differences were found in LA pool sizes between control and septic animals; moreover, as 

reported by Malloy and colleagues, the percent LA relative to TS was significantly 

increased in spontaneously breathing septic mice compared to uninjured controls [16]. 

Interestingly, the application of mechanical ventilation to septic lungs led to alterations in 

surfactant aggregates more reflective of the surfactant alterations observed in ALI patients 

all of whom are, in fact, mechanically ventilated [16, 39]. Such changes in aggregates 

consist in a relative decrease in LA and increase in SA. This has been shown to result from 

the increased conversion of LA into SA during lung injury, process that is influenced by 

changes in tidal volumes and consequent changes in the alveolar surface area [40]. In other 

words, the larger tidal volumes delivered with mechanical ventilation, compared to 

spontaneous breathing, cause larger surface area changes and greater LA to SA conversion, 
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leading to decreased percent LA. Even though tidal volumes were not measured in the 

current work, it could be speculated that the tidal volume in female mice was reduced 

following LPS injury, thereby preserving LA pool sizes.  

Importantly, preservation of the LA pool sizes may have partially overcome inhibition of 

surfactant by leaked serum proteins, or released proteases. In this sense, our biophysical 

surfactant analyses demonstrated that LA samples from mice of both sexes and genotypes 

retained good surface tension reducing properties, even following LPS injury. These 

findings seemingly conflict with the notion that decreased compliance in ALI results from 

impaired surfactant function; however, regional variability in LPS-induced lung injury 

should also be taken into consideration when interpreting these data. As surfactant is 

routinely isolated through lavage of the whole lung, impaired material originating from the 

more injured areas may ultimately combine with surfactant from functional, non-injured 

alveoli. It becomes more difficult, therefore, to detect surfactant impairments, when 

present, under all the aforementioned circumstances. 

Despite such limitations, the biophysical analysis of surfactant constitutes an innovative 

aspect of this study. This is indeed the first time that the surface activity of surfactant 

samples from Mmp3-/- mice has been analyzed, both at baseline (Saline group) and post-

lung injury (LPS group). Moreover, accurate and sensitive determination of surface tension 

was obtained through the use of a constrained sessile drop surfactometer, a new technology 

that also provides rigorous control of experimental settings such as temperature and 

humidity of the chamber where the sessile drop is contained [24, 41]. Most importantly, 

the constrained sessile drop surfactometer requires the use of small sample volumes, 

thereby overcoming the necessity of sample-pooling that is typical of traditional systems 

of surfactant analysis (see chapter 2, captive bubble surfactometer) and allowing 

measurements of surface tension in individual mouse LA samples. 

In addition to analyzing surfactant, one of the goals of this study was to expand the 

knowledge of the respiratory mechanics in Mmp3-/- mice, both at baseline and following 

lung injury. Previous measurements of lung compliance were performed in Mmp3-/- mice 

following bleomycin-induced fibrosis [42]. That study showed greater compliance in 

bleomycin-instilled Mmp3-/- mice compared to Mmp3+/+ controls, and highlighted a role 
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for MMP-3 in the development of lung fibrosis following acute inflammation [42]. Aside 

from this particular study, the information related to the changes in respiratory mechanics 

associated with lung injury in Mmp3-/- mice is very limited. Our investigation addressed 

this knowledge gap through the use of the FlexiVent mechanical ventilator, a system that 

provides reliable and reproducible measurements of lung mechanics, task that is otherwise 

difficult to accurately perform in spontaneously breathing mice [43, 44]. In general, it was 

observed that lack of Mmp3 did not affect respiratory mechanics at baseline or following 

injury in both sexes. Measurements of quasi-static compliance and quasi-static elastance 

in our study illustrated changes in female, LPS instilled mice that were consistent with 

mechanical alterations typical of ALI. Additionally, a significant decrease in dynamic 

compliance (Crs), and significant increases in elastance and resistance of the whole 

respiratory system (Ers, Rrs) were only observed in female, LPS injured Mmp3-/- mice 

compared to Saline Mmp3-/- controls, but not within the Mmp3+/+ groups. These 

mechanical changes were possibly related to modifications in the lung parenchyma, as 

suggested by the increases in tissue resistance (G) and tissue elastance (H), which are 

representative of the dissipative and elastic properties of the lung tissue, but no significant 

changes in the resistance of the central airways (RN). It could be speculated that such 

changes observed in female, LPS injured Mmp3-/- mice compared to Saline Mmp3-/- 

controls stemmed from a slower repair process in the Mmp3-/- mice. It has been previously 

shown that early contraction of dermal wounds occurred more slowly in vivo in Mmp3-/- 

mice compared to Mmp3+/+ mice, and that Mmp3-/- lung fibroblasts demonstrated impaired 

contraction in vitro [45, 46]. Nevertheless, Mmp3-/- mice exposed to bleomycin injury were 

protected from developing pulmonary fibrosis, suggesting that the overall repair process is 

ultimately functional in these mice [42].  

Lastly, while LPS-induced lung injury appeared to elicit significant responses in female 

mice for most of the measured outcomes, instillation of LPS in male mice did not always 

yield significant changes compared to their respective Saline controls, as particularly 

evident in the analyses of respiratory mechanics and surfactant pool sizes. These findings 

are consistent with observations noted in chapter 3, in which the inflammatory response of 

male mice exposed to the same 18 hour model of LPS-induced lung injury appeared to be 

of lower magnitude than the one elicited in Mmp3+/+  female mice. A formal statistical 



156 

 

comparison between male and female mice, however, has not been performed in either 

studies, and further investigations are required to appropriately address the issue of sex 

differences in the response to injury. 

In conclusion, this study investigated the interplay between pulmonary inflammation, lung 

mechanics and surfactant function in a mouse model of ALI, specifically expanding our 

knowledge of the role of MMP-3 in the modulation of physiological outcomes of ALI. The 

results from the current study suggest that MMP-3 did not appear to participate in such 

modulation, and that the decrease in lavage inflammatory mediators (i.e. IL-6, G-CSF, 

MIP-2, and TNF-α) previously observed in female Mmp3-/- mice with lung injury (Chapter 

3) did not correlate with superior lung mechanics and surfactant function following LPS-

induced ALI. The specific interplay between alveolar cytokines and chemokines, lung 

surfactant and pulmonary function requires further investigation. Given the correlation 

between soluble inflammatory mediators and outcomes of ALI, a better understanding of 

these relationships could ultimately result in more effective treatments and an improved 

mortality. 
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CHAPTER 5:  

General discussion and future directions 
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5.1. Summary and discussion of major findings 

The overall objective of this work was to advance the knowledge of ALI, a pulmonary 

inflammatory disorder associated with a complex pathophysiology and lacking any 

effective pharmacological therapy [1, 2]. One of the major challenges facing the 

development of treatments for this disease is to effectively compromise between supporting 

the impaired lung function through mechanical ventilation (MV) on one hand, and limiting 

the propagation of lung inflammation, which is necessary to improve outcomes of ALI, on 

the other hand [3–5].  

In an attempt to pursue our objective and alter ALI progression, attention was placed on 

two key elements of ALI pathophysiology that are common to all ALI patients: the effects 

of MV on the injured lung, and the development of a pulmonary inflammatory response 

following a lung insult. In order to perform our investigations, we utilized clinically 

relevant models of ALI (chapters 2, 3, and 4) resembling gastric acid aspiration and 

bacterial infection, two of the most common causes of direct lung injury [6]. Ex vivo MV 

was also utilized for part of our research, as ventilation can worsen lung injury and 

contribute to the severity of pulmonary and systemic inflammation which, in turn, is highly 

correlated with mortality in ALI [4, 7].  

In chapter 2, exogenous surfactant administration was investigated as a lung-targeted 

therapy potentially mitigating the pro-inflammatory effects of MV. The results from this 

chapter convincingly demonstrated that, even though exogenous surfactant was safe and 

overall well-tolerated, it was not effective in down-modulating the inflammatory response 

associated with ventilation in our models of ALI.  

These observations have led us to some important considerations. Firstly, the inability of 

exogenous surfactant to reduce lung and systemic inflammation in ALI may offer insight 

into the results of clinical trials in which surfactant treatment failed to improve mortality 

[8]. In light of the association between inflammation and mortality in ALI, however, it 

appeared necessary to broaden our research interest to identify other molecules, such as 

matrix metalloproteinase-3 (MMP-3), involved in inflammatory processes that could be 

targeted to limit the overwhelming inflammation in ALI. Secondly, while the results from 
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chapter 2 were consistent with previous experimental studies on exogenous surfactant [9, 

10], they conflicted with evidence suggesting that elevated endogenous surfactant has the 

potential to dampen the inflammation associated with different models of lung injury, while 

also preserving compliance and oxygenation [11, 12]. Therefore, there appeared to be 

complex inter-connections between pulmonary inflammation, lung surfactant, and 

respiratory mechanics, which we believed required further elucidation.  

As mentioned, the role MMP-3 was investigated in the context of LPS-induced and acid-

induced ALI (chapter 3) on the basis of a well described role for this protease in 

inflammation and repair [13]. Our findings confirmed a role for MMP-3 in the pulmonary 

inflammatory response associated with ALI, but also pointed out unanticipated sex 

differences in such response. Specifically, lack of Mmp3 expression reduced the 

concentrations of alveolar cytokines and chemokines following lung injury only in female 

mice, but not in males. Importantly, results from chapter 4 suggested that the mitigation 

of the inflammatory process observed in female, Mmp3-/- mice did not seem to correlate 

with improvements in physiological parameters related to respiratory mechanics and lung 

surfactant. The alteration observed in surfactant and lung mechanics were consistent with 

models of LPS-induced ALI, with no differences between genotypes. 

Based on the knowledge acquired from these series of studies, the purpose of this final 

chapter is to discuss observations not addressed in the previous chapters, and to briefly 

provide an overview of potential future directions that could complement and expand the 

findings of this thesis work.  

5.2. Future directions 

5.2.1. Exogenous surfactant as a vehicle for anti-inflammatory molecules 

The lack of efficacy of exogenous surfactant administration in our models of lung injury, 

and indeed in clinical trials of patients with ALI, has been disappointing. Nevertheless, 

these findings do not preclude the potential usefulness of this therapy in the treatment of 

lung injury. Exogenous surfactant can improve compliance and gas exchange, and these 

features are quite important within the pathogenesis of a disorder associated with 
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endogenous surfactant impairment such as ALI. As noted above, however, down-

regulation of the overwhelming inflammatory response is also required for optimal therapy. 

In this regard, combination therapy of surfactant with anti-inflammatory agents may be a 

novel therapeutic approach for ALI. In this approach, the ability of surfactant preparations 

to reach the more distal regions of the lung and spread across the alveolar surface will 

enhance the delivery of anti-inflammatory molecules to the distal areas of the injured lung 

[14].  

In the context of ALI, an anti-inflammatory molecule that could be utilized to improve the 

immuno-modulatory properties of exogenous surfactant is SP-A. This collectin has 

important functions in innate immunity and inflammation, and mice lacking SP-A 

expression experience higher lung concentrations of inflammatory mediators in models of 

lung injury [15, 16]. Importantly, SP-A is not present in exogenous surfactant preparations 

due to the purification process. The lack of SP-A in the exogenous surfactant utilized in 

our experiments may account, at least in part, for the absence of beneficial effects from 

surfactant treatment on inflammation observed in chapter 2. Future studies could therefore 

evaluate the efficacy of an exogenous surfactant preparation supplemented with SP-A in 

clinically relevant models of LPS-induced ALI or acid injury. Interestingly, both the 

oxidative stress, generated during acid injury, and LPS can activate TLR-4, a cell surface 

receptor expressed by alveolar macrophages and epithelial cells and involved in the 

production of pro-inflammatory cytokines [17, 18]. This is important, since SP-A has been 

shown to interact with TLR-4 preventing binding of smooth LPS, and it can also modulate 

TLR-4 expression and cellular localization [17, 19]. Supplementing exogenous surfactant 

with SP-A, therefore, could provide superior immuno-modulation associated with lower 

pulmonary and systemic inflammation, and consequently improved outcomes of ALI. It 

should be noted, however, that obtaining sufficient amounts of SP-A for clinical usage may 

be problematic as animal sources may lead to immunological issues, and synthesis of 

human SP-A, which is a complex glycosylated octadecamer, is currently not feasible. 

Despite the above limitations, it would be of interest to complement our findings from the 

study in chapter 2 by testing the effects of an exogenous surfactant-SP-A preparation on 

the inflammatory response subsequent to acid injury and MV. Considering that a recent 
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study suggested a role for SP-A in limiting the translocation of inflammatory mediators 

from the lung to the circulation [20], the isolated and perfused mouse lung set up would be 

ideal to deliver ex vivo MV. This system, in fact, allows for the collection and measurement 

of the lung-derived mediators released in the circulation throughout MV, alongside the 

monitoring of respiratory mechanics and lung inflammation. 

Whereas SP-A is an endogenous anti-inflammatory component of surfactant, it is also 

possible to supplement exogenous surfactant with other drugs to allow for optimal delivery. 

An important aspect of these approaches is to establish that the drug does not interfere with 

the function of surfactant and, vice versa, that the surfactant does not alter the properties 

of the anti-inflammatory drug. An example of this approach is currently being investigated 

in our laboratory as a potential therapy for the treatment of Pseudomonas Aeruginosa lung 

infection. In these studies, an exogenous surfactant is fortified with a small anti-microbial, 

anti-inflammatory peptide, capable of directly killing bacteria without causing antibiotic 

resistance [21]. Preliminary experiments appear promising, showing maintenance of 

surfactant and antimicrobial properties, safety and tolerability of this “fortified” surfactant, 

and excellent efficacy in the clearance of bacterial infection (B. Banaschewski, personal 

communication).  

Although a specific MMP-3 inhibitor has not yet been reported, a similar approach could 

be used if such compound became available. In this scenario exogenous surfactant could 

be used to deliver an MMP-3 inhibitor specifically to the injured lung, assuming that the 

surfactant-inhibitor preparation maintains both surfactant properties and pharmacological 

inhibition. Such an approach would overcome inherent limitations stemming from the use 

of a knock out mouse model. Importantly, this would allow us to study the effect of MMP-

3 inhibition on lung inflammation after the development of lung injury, thereby resembling 

a more clinically relevant scenario. 

5.2.2. Sex differences and the inflammatory response 

One of the most interesting observations stemming from this thesis work was related to the 

sex-differences observed in our models of ALI (chapters 3 & 4). Aside from the MMP-3 

related differences already discussed in chapter 3, a general examination of our data led to 
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the observation of different inflammatory responses to lung injury in wild type female 

compared to wild type male mice. As the a priori experimental questions in those studies 

were related to MMP-3, the female-male differences were not analyzed statistically; 

nonetheless, our results would suggested the presence of sexual dimorphism in the response 

to lung injury, which could be interesting to investigate in future studies. 

Male-female differences in immunity and inflammation have been described in several 

clinical and experimental studies. These investigations have demonstrated that, following 

infections, female mice have higher lung concentrations of inflammatory mediators, and 

mount a more robust innate and humoral responses than males [22–24]. This greater 

responsiveness in female subjects may favor a faster and more effective clearance of the 

invading pathogens than occurs in males, providing lower frequency of disease. With 

respect to pulmonary involvement, some studies have in fact shown greater susceptibility 

and incidence of respiratory infections [25], and greater risk of post trauma pneumonia in 

male patients compared to female patients [26, 27]. Interestingly, the risk of death among 

patients with post-injury pneumonia was greater in women than men [27]. Similar findings 

have also been described by Sakr and colleagues, who reported that female gender was an 

independent risk factor associated with death among patients with severe sepsis [28]. This 

clinical evidence suggests that the heightened immune response in females can be a 

‘double-edge sword’, as it can potentially exacerbate injury and lead to poorer outcomes. 

As pneumonia and sepsis are two of the most common causes of ALI, there is a good 

rationale for more experimental investigations aimed at exploring sex differences in ALI. 

Some indications in this regard can be found in our studies, in which a seemingly more 

robust pulmonary release of cytokines and chemokines such as IL-6, G-CSF, and TNF-α 

was observed in wild type females compared to males after LPS-induced lung injury, and 

was even more pronounced in mice exposed to acid instillation. To draw definitive 

conclusions and complement the observations of this thesis, the rigorous exploration of 

male-female differences in inflammation during ALI should be the objective of future 

studies. The first step would consist in exposing female and male mice to either LPS- or 

acid-induced ALI, and then analyzing outcomes of lung injury similar to the ones described 

throughout this thesis. Multiple cytokines and chemokines would be assayed in lavage 
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samples to evaluate sex differences in inflammation; moreover, time-course analyses could 

shed light onto possible variability in lung injury development. If the presence of sexual 

dimorphism in the inflammatory response to lung injury is confirmed, it would then be 

important to understand the underlying biological and physiological mechanisms, which 

could be related to the activities of steroid hormones [22]. To this end, outcomes of lung 

injury and inflammation would be measured in both sham and gonadectomized mice 

exposed to LPS and acid instillation. Subsequently, differences in the inflammatory 

response could be investigated following hormonal replacement. Altogether, these 

approaches would be helpful for unravelling the potential interactions between gonadal 

hormones and inflammatory processes in the pathogenesis of ALI. If such interactions truly 

occur, it will then be necessary to consider sex and gender as important variables within 

the treatment of this disease. 

5.2.3. MMP-3 and Surfactant  

While the above proposed studies would primarily focus on the effects of surfactant therapy 

or sex differences on the inflammatory response, the possibility that mediators of 

inflammation involved in ALI may affect surfactant (and therefore, lung function) should 

also be considered. This issue of the complex and elusive relationship between the different 

components – inflammation, surfactant, and lung mechanics – participating in the 

pathogenesis of ALI has been addressed in the context of the altered inflammatory response 

to injury in Mmp3-/- mice (chapter 4). One aspect, however, that has not been investigate 

yet is the specific interaction of the protease MMP-3 with surfactant proteins, such as       

SP-A. As mentioned, this collectin has an important role in innate host defense; however 

SP-A also contributes to the biophysical properties of surfactant, by reducing surfactant 

inhibition stemming from plasma protein or oxidative alterations [29, 30]. In this sense, 

alterations and/ or degradation of SP-A may not only affect the host defense properties, but 

can also lead to poorer biophysical function of surfactant, as shown by Malloy et al. in 

relation to the effects of P. Aeruginosa protease IV on SP-A [31].  

These interesting observations prompted preliminary in vitro experiments in our lab, 

performed through incubation of human SP-A with recombinant human MMP-3. Our 

preliminary results suggest that this protease can degrade free SP-A, but cannot cleave    
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SP-A when bound to surfactant lipids (data not shown). These initial findings are 

intriguing, and it would be interesting to validate them further through a series of in vitro 

experiments assessing, for example, the time course and dose response of SP-A 

degradation by MMP-3. Moreover, to answer the question of in vivo relevance of such 

potential interaction, lavage samples from Mmp3+/+ and Mmp3-/- mice exposed to lung 

injury could be analyzed to assess the state of SP-A degradation after injury-driven 

increases in lavage MMP-3, and the effect on overall surfactant function. Given the 

important roles of MMP-3 and SP-A in the modulation of the inflammatory response in 

ALI, and the biophysical alterations stemming from SP-A degradation, a more in-depth 

knowledge of such interplay could be beneficial to a better treatment of this disorder.  

5.3. Concluding remarks 

The Acute Lung Injury/ Acute Respiratory Distress Syndrome is a life- threatening 

condition with a mortality of 40%, high morbidity, and an incidence around 60-80 new 

cases for 100,000 persons every year. Despite many decades of intensive research, the main 

treatment in ALI is only supportive and involved in the disease pathogenesis.  

The findings presented in this thesis have contributed to the knowledge of ALI 

pathophysiology by: i) evaluating potential treatments in relation to outcomes of ALI 

clinically related to mortality; ii) identifying a potential target (MMP-3) in the regulation 

of the lung inflammatory response; iii) outlining possible sex-differences in the response 

to lung injury. Overall, these findings underscored the challenges faced in the identification 

of suitable targets and therapies for the treatment of this disorder. Such challenges result in 

part from the very complex and mutual influences between inflammation, lung surfactant, 

and overall lung function within the pathophysiology of ALI. Further experimental and 

clinical efforts, therefore, need to be channeled into ALI/ ARDS research to provide more 

effective treatment of this disorder and decrease mortality. 
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