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Abstract 

We used a psychophysical approach to investigate how alcohol affected visual sensitivity 

to perceive different classes of motion. Visual sensitivities were measured in both a non-

alcohol and an alcohol condition for three classes of motion: Minimum Motion, Simple 

Motion, and Complex Motion. Perceptual thresholds, taken as the degree of motion at 

which an observer responded correctly with an accuracy of 75%, or Weber fractions were 

compared between the non-alcohol and the alcohol conditions. For Simple and Complex 

motion, similar comparisons were made as a function of speed (e.g., 2°s-1, 6°s-1, and 12°s-

1). Perceptual thresholds were significantly greater in the alcohol condition for the 

Minimum Motion, and were significantly greater in the alcohol condition for Complex 

Motion at the fast speed only. We concluded that deficits in motion perception were more 

from interruptions in cognitive elements brought about by the nature of the visual task, 

rather than impairments in sensory processing.  

Keywords 

alcohol, motion, vision perception, random-dot-kinematogram, visual psychophysics, 

motion processing 
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Chapter 1  

1 Introduction 

1.1 Alcohol, Vision, and Motion 

Ethyl alcohol, a psychoactive substance widely consumed for its well-known 

cognitive and social effects, exhibits biphasic dose-dependent influences on the central 

nervous system (CNS). At the neurochemical level, it interacts primarily with the 

GABAA receptor-complex, NMDA-glutamate receptors, 5-HT3-serotonin receptors, as 

well as with serotonergic and dopaminergic transmission (see Eckardt et al., 1998, for 

review). As a result, lower Blood Alcohol Concentration (BAC) levels during early 

stages of intoxication produce a temporary excitation of CNS activity; however, 

progressive consumption of alcohol and progressive absorption into the blood stream, and 

subsequently higher BAC levels, lead to a generalized suppression of CNS and cortical 

activity (Lewis et al., 1970; Berry & Pentreath, 1980; Levin et al., 1998; Calhoun et al., 

2004; Khan & Timney, 2007; Chen et al., 2010; Esposito et al., 2010). The altered 

experiences that follow alcohol consumption are products of atypical neural activity in 

sensory and cognitive systems caused by these neurochemical influences. Unfortunately 

we know relatively little about how these known neurophysiological influences of 

alcohol manifest in sensation and perception compared to physiology and behaviour. 

Vision, a primary sensory modality, evolved to assist animals with acting and 

responding in the physical world (Milner & Goodale, 2006). It accomplishes this in part 

by providing an internal pictorial representation of the physical world. Select perceptual 

abilities of vision have been shown to be modestly impaired by alcohol consumption 
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(Hill & Toffolon, 1990; Watten & Lie, 1996; Pearson & Timney, 1998; Wegner & Fahle, 

1999; Pearson & Timney, 1999a; Pearson & Timney, 1999b; Fernando et al., 2010; 

Weschke & Niedeggen, 2012) despite common reports of large deficits in vision 

perception while inebriated. To date, the majority of this research has focused on low-

level visual processing using mostly static visual stimuli.  

Daily activities like walking and driving, however, depend largely on high-level 

visual-motion and visuo-motor processing of dynamic visual stimuli. Destructive alcohol-

related outcomes such as fatal impaired driving accidents, which occur more frequently 

under moderate-high BACs (Perreault, 2013), may partly result from disrupted high-level 

visual processing in visual motion perception, specifically. The lack of research 

examining the effects of alcohol on high-level visual processing warrants further 

investigation. Therefore, we assessed how alcohol influenced the perception of visual 

stimuli that involved high-level visual processing, in this case motion.  

1.2 Perceiving Motion 

Motion, a feature of objects in the physical world, involves continuous or 

discontinuous change(s) in position over a period of time in a given direction. For 

example, an individual perceives continuous motion when observing a passing motor-

vehicle and discontinuous motion when observing a person dance at a nightclub when a 

stroboscope activates. Changes in position over time (i.e., speed), and direction are 

fundamental physical properties of motion. The retina captures these spatiotemporal 

changes and transmits the information to the distinct areas of the cortex via various 

interconnected sub-cortical and cortical structures (Yukie & Iwai, 1981; Livingstone & 
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Hubel, 1988). The conscious perception of motion results from (a) the activation of 

motion sensitive neurons in the occipital cortex that recognize these spatiotemporal 

changes, and (b) their rate of activation. Excitatory and inhibitory transmission between 

inter-connected motion-sensitive neurons mediates this physiological ensemble of 

activation. This activity allows an individual to both detect and discriminate visual 

motion stimuli. 

Motion sensitive neurons that vary in sensitivity and selectivity to the motion 

properties of a stimulus have been identified in distinct striate and extrastriate regions 

along the dorsal visual pathway in primates (Hubel & Wiesel, 1968; Wurtz, 1969; 

Dubner & Zeki, 1971; Zeki, 1974; Van Essen et al., 1981; Ungerleider & Mishkin, 1982; 

Van Essen & Maunsell, 1983; Maunsell & Van Essen, 1983a; Maunsell & Van Essen, 

1983b; Albright, 1984; Ungerleider & Desimone, 1986; Desimone & Ungerleider, 1986; 

Tanaka et al., 1986; Tanaka & Saito, 1989; Celebrini & Newsome, 1994). Hubel and 

Wiesel (1968) first discovered complex-type neurons that showed activation to the 

movement of a visual stimulus in a particular direction in the striate cortex of primates. 

Some classes of these motion sensitive striate neurons responded equally to diametric 

opposite directions while others responded optimally to a preferred direction (Dow, 

1974). These motion sensitive striate neurons also demonstrated a sensitivity to slow and 

fast stimulus speeds (Wurtz, 1969; Schiller et al., 1976).   

Motion sensitive striate neurons were found to generally possess a greater 

preference for a stimulus’ size, shape, position, contrast or orientation than direction or 

speed of motion (Wurtz, 1969; Dubner & Zeki, 1971; Albright, 1984; Albright et al., 

1984). Such a preference for stimulus form properties over stimulus motion properties 
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suggested that striate cortex only partially contributed to the processing required to 

perceive motion. Moreover, disruptions to striate cortex processing from lesions and 

Transcranial Magnetic Stimulation (TMS) have been shown to only minimally increase 

psychophysical thresholds to visual displays of wide-field dot patterns (Rodman et al., 

1989; Beckers & Zeki, 1995), supporting the idea that striate cortex only partially 

processes visual information for the perception of motion. 

Findings of central visual field information being represented in the Superior 

Temporal Sulcus (STS), presumed to be from direct neural projections from striate cortex 

(Zeki, 1969; Zeki, 1971), motivated investigators to examine the response-properties of 

neurons in these extrastriate areas to visual motion stimuli. Recording from a number of 

single-cells within the STS, Dubner and Zeki (1971) found two general characteristics of 

motion sensitive neurons. The most predominant type of motion sensitive neurons 

responded best to a particular direction of stimulus movement despite changes in stimulus 

size, shape, or contrast. These cells responded optimally to preferred stimulus speeds of 

1°s-1 - 5°s-1. A more rare type of cell with larger receptive fields responded to motion for 

all directions of a stimulus’ movement. Optimal responses for these rarer neurons were 

found for extremely fast stimulus speeds of 100°s-1 - 200°s-1.  

By recording from single neurons in the STS, Zeki (1974) later identified a 

subdivision of  Dubner and Zeki’s (1971) directionally sensitive cells wherein some cells 

responded to a preferred direction regardless of stimulus form properties while others 

responded only to the preferred direction for specific form properties. His recordings, 

however, determined most STS neurons responded preferentially to stimulus speeds that 

ranged between 5°s-1 to 50°s-1. The specialized response-properties of these neurons for 
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properties of motion suggested that this extrastriate region was crucially important for 

perceiving motion. 

This notion was later confirmed when lesions to extrastriate visual areas along the 

dorsal visual pathway (Ungerleider & Mishkin, 1982) within the posterior bank of the 

STS were found to severely impair perceptions of motion but not perceptions of objects, 

shapes, contrast, or orientations in both monkeys and humans (Zhil et al., 1983; 

Newsome & Pare, 1988; Plant et al., 1993). Van Essen et al., (1981) identified two 

distinct areas along the posterior bank of the STS whose clusters of neurons demonstrated 

similar response-properties that had been found previously (Dubner & Zeki, 1971; Zeki, 

1974) for stimulus movement and stimulus form. They also found that the differences in 

response-properties they had observed in neurons of the Middle Temporal (MT) area 

resembled the two subtypes of directionally sensitive neurons previously identified by 

Zeki, one sensitive to stimulus form and the other insensitive to stimulus form.  

Of these motion sensitive MT neurons that possessed a directional preference, 

optimal responses for preferred stimulus speeds were found between 2°s-1 to 256°s-1 

where the highest concentrations of neurons exhibited a speed preference around 32°s-1 

(Maunsell & Van Essen, 1983a). Unlike in striate neurons, the majority of neurons in 

area MT demonstrated a greater preferential response for direction and speed of motion 

than for stimulus form properties (Wurtz, 1969; Maunsell & Van Essen, 1983a; Albright, 

1984; Albright et al., 1984). 

Albright’s (1984)  single-cell recordings of neurons specifically within area MT 

to various stimulus directions and orientations identified a further subdivision within the 

subtype of MT neurons that showed direction- and form-sensitivity (Zeki, 1974). Some 
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direction-form-sensitive MT neurons, classified as Type I neurons, responded optimally 

to a preferred direction of movement when the long-axis of a rectangular light stimulus 

was oriented perpendicular to the preferred direction of motion. In contrast, Type II 

neurons responded optimally to a preferred direction of motion when the long-axis of a 

rectangular light stimulus was oriented parallel to the preferred direction of motion. A 

group of MT neurons, believed to resemble Type II neurons, were later found to respond 

to whole patterns of motion despite the local component-movement(s) of the contour(s) 

within a stimulus pattern (Movshon et al., 1985; Rodman & Albright, 1989). The activity 

of these whole-pattern motion sensitive neurons found largely in area MT was presumed 

to depend on the convergence from other component motion sensitive MT neurons and 

striate neurons that possessed a similar sensitivity to the component motion properties 

(i.e., contours) within a moving stimulus pattern (Movshon et al., 1985; Stoner & 

Albright, 1992a).  

Although substantially smaller than striate cortex, area of MT exhibited 

retintopic-organization like that in striate cortex (Hubel & Wiesel, 1968; Gattass & 

Gross, 1981), the processing of motion in area MT has been considered to involve greater 

degrees of processing than of that in striate cortex as MT neurons integrated substantially 

larger amounts of visual information across their substantially larger receptive fields 

(Zeki, 1974; Van Essen et al., 1981; Gattass & Gross, 1981). This MT processing has 

been shown to be directly related to vision-based perceptions of motion patterns and 

vision-based responses to perceived motion patterns (Newsome & Pare, 1988; Newsome 

et al., 1989; Salzman et al., 1990; Salzman et al., 1992; Britten et al., 1992a) 
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However, another distinct region medial to area MT within the STS appeared 

especially important for processing and perceiving motion, particularly large complex 

patterns of motion (Van Essen et al., 1981; Maunsell & Van Essen, 1983b; Tanaka et al., 

1986; Celebrini & Newsome, 1994; Morrone et al., 2000). This visual region, named the 

Medial Superior Temporal (MST) area (Maunsell & Van Essen, 1983b), has been shown 

to receive direct reciprocal connections with area MT but not with striate cortex while 

area MT has been shown to receive direct reciprocal connections with both area MST and 

striate cortex (Maunsell & Van Essen, 1983b; Ungerleider & Desimone, 1986; Desimone 

& Ungerleider, 1986).  

To distinguish the differences in motion processing that occur in area MT and 

area MST, Tanaka et al. (1986) compared the responses of single-cell recordings from 

directionally sensitive neurons in area MT and area MST to either a single moving bar or 

a wide-field of moving dots. Where the majority of MT neurons responded to both 

stimuli moving in their preferred direction, select groups of MST neurons responded 

optimally to: the bar moving in a preferred direction only; the wide-field of dots moving 

in a preferred direction only; or both the bar and the wide-field of dots as long as they 

moved in their preferred direction. These subdivisions in response-properties of MST 

neurons to specific motion stimuli demonstrated a more specialized processing of motion 

relative to area MT.  

Tanaka and Saito (1989) later found that the MST neurons sensitive to wide-fields 

of motion patterns appeared to generalize the local movements within a stimulus pattern 

into a common global motion signal. For example, they identified three subgroupings of 

MST neurons sensitive to specific forms of wide-field motion patterns. One group 
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responded particularly to wide-fields of dots that translated in a unidirectional 

frontoparallel pattern where the other groups responded to either a wide-field of dots that 

translated in a radial pattern or a wide-field of dots that translated in a 

contracting/expanding pattern. Further, their recordings from these MST neurons 

responded optimally to a broader range of preferred speeds than that seen in MT neurons 

(Maunsell & Van Essen, 1983a; Tanaka & Saito, 1989).  

Although the retinotopic organization evident in area MT had not been found in 

area MST, the neurons in area MST possessed substantially larger receptive fields that 

were found to integrate motion information from MT over respectively larger portions of 

the visual field (Gattass & Gross, 1981; Tanaka et al., 1986; Ungerleider & Desimone, 

1986). The activation of some of these wide-field MST neurons to a wide-field pattern of 

moving dots has also been positively correlated with psychophysical thresholds for 

perceiving particular wide-field patterns of moving dots, suggesting that the motion 

processing in area MST, like in area MT, is directly linked to the perception of moving 

stimuli (Celebrini & Newsome, 1994).  

Another distinct motion-sensitive extrastriate visual area, V3 in primates and V3A 

in humans (Van Essen & Zeki, 1978; Tootell et al., 1997), has been shown to receive 

representations of the peripheral visual field directly from V1 and V2 while indirectly 

interacting with MT and MST via the parieto-occipital area (PO) (Ungerleider & 

Desimone, 1986; Colby et al., 1988). The specialized nature of this visual area has yet to 

be fully understood but its affinity for motion signals, particularly speed, in both primates 

and humans suggests a higher-level supporting but non-essential role in motion 
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processing (Felleman & Van Essen, 1987; Gaska et al., 1988; Galletti et al., 1990; 

McKeefry et al., 2008).  

Although many of these findings have been derived from physiological studies 

based on primate models of the visual system, anatomical and neuroimaging evidence 

exists to suggest that the human visual system not only contains these motion sensitive 

visual areas but that they are functional homologues of the primate visual system (Zeki et 

al., 1991; Tootell & Taylor, 1995; Tootell et al., 1995; Heeger et al., 1999; Dukelow et 

al., 2001; Huk et al., 2002). The medial temporal/medial superior temporal (MT/MST) 

area for primates (Zeki, 1974; Van Essen et al., 1981; Maunsell & Van Essen, 1983a; 

Desimone & Ungerleider, 1986), and the functionally homologous MT+ Complex (MT+) 

for humans (Zeki et al., 1991; Watson et al., 1993; Zeki, 1993; Tootell et al., 1995; 

Tootell & Taylor, 1995; Dukelow et al., 2001; Huk et al., 2002) have become known as 

the central processing units involved in visually perceiving motion (Albright, 1993). The 

activity in both of these functionally specialized visual areas (Zeki et al., 1991) has not 

only been shown to be critically involved in motion perception (Newsome et al., 1989; 

Salzman et al., 1990; Britten et al., 1992a) but has also been directly linked to vision-

based actions in response to perceived motion (Salzman et al., 1992; Britten & van 

Wezel, 1998). These neurophysiological findings have helped to develop processing 

models for perceiving motion that serve as a framework for investigating the effects of 

alcohol on motion perception. 
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1.3 Classes of Motion Perception 

Studies investigating motion perception and motion processing have presented 

motion stimuli in a variety of forms. These motion stimuli have included: a single spot of 

light or a single oriented bar translating in a unidirectional frontoparallel fashion (Hubel 

& Wiesel, 1968; Zeki, 1974; Tanaka et al., 1986; Desimone & Ungerleider, 1986); wide-

field patterns of dots translating in a unidirectional frontoparallel, radial, or a 

contraction/expansion fashion (Tanaka & Saito, 1989; Snowden et al., 1991; Morrone et 

al., 2000; Huk et al., 2002; Schlack et al., 2007; Fernando et al., 2010), and wide-field 

patterns of stroboscopic dots  moving coherently in a unidirectional fashion along a 

frontoparallel plane (Morgan & Ward, 1980; Newsome & Pare, 1988; Newsome et al., 

1989; Britten et al., 1992a; Braddick et al., 2001; Weschke & Niedeggen, 2012). The 

processing involved in the perception of these motion forms has been shown to depend 

primarily on: (a) the area of the retina stimulated by motion in a visual display, and (b) 

the degree of motion complexity in the visual display (Desimone & Ungerleider, 1986; 

Ungerleider & Desimone, 1986; Tanaka & Saito, 1989; Morrone et al., 2000). Thus, there 

are different classes of motion perception that differ in their processing load.  

The psychophysical approach to studying motion perception focuses on 

examining the nature of the visual system’s sensitivity to motion stimuli; specifically, 

determining how visual sensitivity for perceiving motion changes for varying physical 

properties of motion (e.g., speed). In other words, it attempts to relate different forms of 

visual motion stimuli and their physical properties with people’s ability to consciously 

sense and perceive them.  
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These psychophysical relationships are expressed as perceptual thresholds, the 

magnitude of a motion property that is critical for its perception. Perceptual thresholds 

are established through motion detection and motion discrimination paradigms. Motion 

detection paradigms involve measuring motion detection thresholds, the smallest 

magnitude of a physical property of motion (e.g., speed) in a visual stimulus that is 

required for a person to consciously recognize its presence. Motion discrimination 

paradigms involve measuring motion difference thresholds, the smallest change in 

magnitude of a physical property of motion between two visual stimuli that is required 

for a person to consciously recognize the change. These thresholds serve to explain the 

perceptual relationship.  

In many cases perceptual thresholds are evaluated as a function of some motion 

property (i.e., speed) to help further explain the perceptual relationship. It is well 

established that difference thresholds will vary as a function of the magnitude of this 

motion property (Weber, 1834; Fechner, 1860; Hecht, 1924; Engen, 1972; Gescheider, 

1976), but according to Weber’s Law the difference threshold is normally a constant 

fraction of the magnitude of the motion property. Therefore, in order to compare the 

results for varying magnitudes of a motion property, data are normalized by calculating 

the Weber fractions.  

 Minimum motion, simple motion, and complex motion are three different classes 

of motion that have been commonly studied in visual psychophysics research (Aubert, 

1886; Morgan & Ward, 1980; Newsome & Pare, 1988; Newsome et al., 1989; 

Watamaniuk & Heinen, 2003; Snowden & Kavanagh, 2006; Schlack et al., 2008). 

Perceptual thresholds for minimum motion are determined from motion detection 
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paradigms that measure the slowest speed of motion in a visual stimulus required to 

consciously recognize the stimulus’ movement (Aubert, 1886; Snowden & Kavanagh, 

2006). Perceptual thresholds for simple motion can be determined by detection and/or 

discrimination paradigms. Where simple motion detection paradigms measure the 

smallest magnitude of a property of simple motion (e.g., speed/acceleration) in a visual 

stimulus that is required to recognize its presence, simple motion discrimination 

experiments measure the smallest change in a property of simple motion between two 

visual stimuli that is required to consciously recognize the change (Watamaniuk & 

Heinen, 2003; Schlack et al., 2008). Perceptual thresholds for complex motion are also 

determined by detection and or discrimination paradigms. They measure the smallest 

magnitude of a complex motion property (e.g., coherence) or the smallest difference in 

the magnitude of a complex motion property that is required for its perception (Morgan & 

Ward, 1980; Newsome & Pare, 1988; Newsome et al., 1989; Britten et al., 1992a; 

Weschke & Niedeggen, 2012). 

1.4 The Current Study 

Alcohol-related impairments are evident in low-level visual sensory processes 

related to contrast sensitivity (Nicholson et al., 1995; Pearson & Timney, 1998; Pearson 

& Timney, 1999b; Weschke & Niedeggen, 2012). Some of these alcohol-induced sensory 

impairments have been specifically associated with deficits in neural inhibitory 

mechanisms and temporal processing that are also involved in motion processing 

(Adelson & Bergen, 1985; van Santen & Sperling, 1985; Khan & Timney, 2007; 

Johnston & Timney, 2008; Johnston & Timney, 2013). It is possible that these modest 
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impairments become exacerbated in the higher-level visual processes that impose greater 

processing loads when perceiving motion. 

To explore the effects of alcohol on vision perception in high-level visual 

processing, the current study conducted four separate psychophysical experiments that 

examined whether a moderate-high intoxication level affected different classes of motion 

perception. Two-interval alternative forced choice (2IFC) visual tasks under a method of 

constant stimuli were used to measure perceptual ability in a non-alcohol and an alcohol 

condition for: (I) minimum motion; (II) simple motion as speed; (III) simple motion as 

acceleration; and (IV) complex motion. A motion detection experiment was used to 

measure perception of minimum motion, simple motion as speed, and complex motion, 

whereas a motion discrimination paradigm was used to measure perception of simple 

motion as acceleration. Observers’ sensitivities to perceive these different classes of 

motion were compared between the non-alcohol and alcohol condition. 

To explore these perceptual relationships in more depth, the current study 

examined the effects of alcohol on simple motion perception, and complex motion 

perception as a function of speed. Past research has found that alcohol mildly impaired a 

generic measure of perceptual ability for simple motion discrimination represented as 

speed for slow standard speeds but not fast standard speeds (Fernando et al., 2010). 

Moreover, no such distinction for speed has yet been made for complex motion 

perception As an extension of Fernando et al., (2010) we investigated whether alcohol 

affected Weber fractions as a function of speed in simple motion discrimination.  
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Chapter 2  

2 General Methods 

2.1 Methods 

Materials 

A letter of information (see Appendix A) outlined the purpose and details of the 

study. This letter informed participants that they may or may not receive alcohol in any of 

the testing sessions. It also provided an opportunity for participants to withdraw from the 

study without revealing any confidential information about themselves. An informed 

consent form (see Appendix B) followed the letter of information to acknowledge that 

participants understood the study’s procedures and inclusion/exclusion criteria. 

The Alcohol Use and Frequency Questionnaire (AUFQ; see Appendix C), a 

modified version of the National University Student Health Behaviour Survey (Addiction 

Research Foundation Division, 1998), assessed  participants’ demographic information 

and drinking patterns. A ‘Moderate Drinker’ was defined as an individual who self-

reported to consume 17.5 standard drinks or less per week (Johnson et al., 1977; US 

Department of Health and Human Services & US Department of Agriculture, 1995; 

Eckardt et al., 1998).  

Visual displays. A Cambridge Research Systems VSG2/5 graphics card 

generated visual motion displays onto a 120Hz 21” Sony Trinitron GDM-F520 CRT 

monitor. Based on a viewing distance of 140cm, the motion stimuli in all experiments 

consisted of white dots subtending 0.1° x 0.1° at a luminance of 100cdm-2 that were 

moving according to their respective form of motion on a dark background of 0cdm-2. 
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Participants 

Thirteen healthy young adults, including the experimenter, with normal or 

corrected to normal vision completed all four experiments tasks in both the non-alcohol 

and alcohol condition. Of 7 females and 6 males, ages ranged from 20 to 31 years (M = 

24.92, SD = 3.57). Only participants who scored as being a ‘Moderate Drinker’ on the 

AUFQ, and who satisfied the legal drinking age requirement in Ontario received 

invitations to proceed with the study. 

Individuals were recruited through direct solicitation through acquaintances of the 

experimenter. Out of the 16 individuals asked to participate, three people withdrew from 

the study. Individually, participants reported to a designated room for testing at a secured 

university testing facility. They were provided $20 in compensation for each testing 

session attended, for up to four sessions that lasted 3-5 hours per session. Testing 

typically required four sessions scheduled on different days, two sessions to complete the 

visual tasks in the sober condition and two sessions to the complete the visual tasks for 

the alcohol condition. Participants performed the visual tasks for two different forms of 

motion in each testing session. For each additional testing session attended after the 

fourth session, $10 was provided as compensation. If needed, pre-paid taxi services 

transported participants from the testing facility to their home after completing the 

session and after the participant reached a Breathalyzed Alcohol Concentration (BrAC) 

of 0.03 or less while showing no obvious signs of impairment.  
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2.2 Beverage Administration 

Each participant was asked to consume a light, low-fat meal approximately 2 

hours before arriving at the testing facility on testing days to avoid any adverse effects 

from consuming alcohol on an empty stomach. A Computerized Blood Alcohol 

Calculator (Kapur, 1989) determined the theoretical number of alcoholic beverages (45ml 

of liquor per beverage), mixed at a 1:4 vodka to citrus-juice ratio, to be initially 

consumed to raise the participant’s BAC to .08%. In the non-alcohol conditions the 

participant imbibed the same volume of liquid, mixed at a 1:4 water to citrus-juice ratio, 

and followed the same protocols as in the alcohol condition. The beverage cups were 

always rimmed with alcohol to help mask which sessions contained alcohol. The 

experimenter prepared all of the beverages in a separate room that could not be seen by 

the participant. Note that the study was not concerned with the effects of a belief of being 

intoxicated on visual perception, and participants were informed of the possibility of 

consuming alcohol in any of the testing sessions. Thus, the non-alcohol condition was not 

regarded as a placebo condition. 

Every participant received an initial 30 minute consumption period to drink the 

beverages. To monitor intoxication levels throughout the session, the experimenter 

recorded BrAC, used to infer a participant's BAC, every 10 minutes with a Draeger Inc. 

Alcotest 6510 breathalyzer device. These recordings began 20 minutes after the 

consumption period ended to allow for the alcohol to permeate into the bloodstream and 

for the alcohol residue to clear from the mouth. In the alcohol condition, a participant 

began the visual tasks when their recorded BrAC measures reached a minimum of 0.06%. 

Participants’ average maximum BrAC levels for each experiment are shown in Table 1. 
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Table 1. Average Maximum Breathalyzed Alcohol Concentrations (%) 

Experiment 
  

n 
 

Mean (SD) 

 
1 

  
13 

 
0.0893 (0.010) 

 
2 

  
13 

 
0.0863 (0.008) 

 
3 

  
13 

 
0.0848 (0.007) 

 
4 
 

  
13 

 
0.0856 (0.008) 

 
An additional alcoholic beverage was administered to the participant if they failed 

to reach a BrAC of 0.06% at the end of the 20 minute absorption period. This cycle 

ensued until the participant reached the appropriate intoxication levels. In the non-alcohol 

conditions, a participant began the visual tasks immediately after the initial 20 minute 

absorption period. Experimental testing was halted if a participant's BrAC dropped below 

.06% before completing all visual tasks. The experimenter scheduled an additional testing 

session on a later date for the participant to complete any unfinished visual tasks.  

2.3 Procedure 

At the beginning of the first testing session, each participant read the letter of 

information before providing written informed consent. While he or she completed the 

AUFQ, the experimenter verified the date of birth on a government-issued piece of 

identification to ensure the participant was at least 19 years of age. If they qualified as 

moderate drinkers they proceeded with the study, otherwise they were excused from the 

study, and compensated for a full testing session. Seated with their head rested in a chin 
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holster, the participant first received training and practice in each testing session on the 

visual tasks being performed that day. 

In a dark room, the visual motion displays were presented in a series of 2IFC 

trials. A single 2IFC trial comprised of a pair of visual displays that contained either a 

standard motion stimulus or a comparison motion stimulus. In sequence, both stimulus 

displays appeared for 750ms with an inter-stimulus interval of 500ms. The standard 

stimulus always presented the same magnitude of a motion parameter whereas the 

magnitude of that motion parameter in the comparison stimulus varied from trial to trial. 

The motion parameter was different for each experiment. The tasks in every trial required 

participants to identify which display of the pair contained the comparison stimulus using 

a button box attached to the computer. Participants indicated whether the motion form 

being tested had been perceived in the first display by depressing the ‘left-button’ on the 

response box, or in the subsequent display by depressing the ‘right-button’ on the button 

box. Separated by inter-trial intervals of 500ms, trials were repeated multiple times with 

the presentation order of the standard stimulus and the comparison stimulus randomized 

in every trial. A series of repeated trials constituted an experimental run. The computer 

recorded the overall proportion for correctly identifying the comparison stimulus in the 

experimental runs for each participant.  

The experiments were all conducted using a method of constant stimuli. The 

method of constant stimuli involved the presentation of 7 to 9 different comparison 

stimuli whose motion parameter magnitude varied in equal increments. The ranges of 

magnitudes for the different motion stimuli parameters in the comparison stimuli were 

selected such that performance for the lowest magnitude was close to chance levels, and 
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the highest magnitude could almost always be identified. In an experimental run each 

comparison stimulus was presented 10 times in random order. Participants completed at 

least four experimental runs per condition in each experiment. 

Upon completion of the visual tasks and/or upon reaching a BrAC of 0.06% or 

less, participants were compensated for their time, and escorted to a waiting room where 

they remained under the supervision of the researcher until their BrAC reach 0.03% or 

lower and showed no obvious signs of impairment. Both the participant and experimenter 

signed a sobriety sign-off form (see Appendix D) to acknowledge that the participant 

reached an appropriate state to be discharged from the testing facility. A pre-paid taxi 

service then transported the participant from the testing facility to their place of 

residence. The experimenter provided a Debriefing Form (see Appendix E) and an 

opportunity to ask any questions about the study at the end of the final testing session.  
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Chapter 3  

3 Minimum Motion Perception 

3.1 Motion Detection 

   The first experiment measured sober and intoxicated observers’ sensitivity to 

detect motion with minimum motion detection thresholds, the slowest speed required to 

recognize the presence of motion in the stimulus. These detection thresholds were then 

compared between the non-alcohol and alcohol condition.  

Procedure 

As described in the general methods procedure, minimum motion detection 

thresholds were obtained using 2IFC tasks with a method of constant stimuli.The 

standard stimulus was a single stationary dot centered on the screen within a 10° x 10° 

aperture for the duration of the presentation time. The comparison stimuli, however, 

presented a single dot centered on the screen that translated horizontally at one of eight 

speeds in the frontoparallel plane. The speeds presented  by the different comparison 

stimuli within a single experimental run varied from 0.01°s-1 to 0.08°s-1, in equal 

increments of 0.01°s-1 (see Figure 1).  The dot’s horizontal direction of movement 

diametrically alternated on each successive trial. Each observer completed four 

experimental runs in the non-alcohol and alcohol condition. The task required observers 

to identify the comparison stimulus that contained a moving dot. 

3.2 Results 

For each participant, the total number of correct comparison stimulus 

identifications from all experimental runs were recorded and divided by the total number 
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of repetitions for each of the different comparison stimulus speeds. These proportions of 

correct responses were plotted against their respective comparison stimulus speed (see 

Figure 1). 
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Figure 1. Sample data from a single observer in the non-alcohol condition (left) and 

the alcohol condition (right). The data were fitted by a Weibull function shown as a 

dashed line. The total proportions of correct responses, averaged across all runs, are 

plotted as a function of comparison stimulus speed. 

A maximum-likelihood estimation fitted a Weibull psychometric function to the 

distribution of observations along the varying comparison stimulus speeds (Wichmann & 

Hill, 2001). For each participant, a minimum motion detection threshold was computed 

from the fitted psychometric at the speed at which an observer could correctly identify 

the presence of motion 75% of the time. In accordance with Wichmann and Hill, a 

bootstrap method (n = 10000) based on the deviance statistic (D) verified a significant 

goodness-of-fit for every fitted psychometric functions (p > 0.05). The minimum motion 

detection thresholds from all participants were averaged across subjects for the non-

alcohol condition and the alcohol condition. 
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A two-sample dependent measures t-test determined whether the minimum 

motion detection thresholds in the non-alcohol condition (M = 0.056, SD = 0.022) 

differed significantly from the minimum detection thresholds in the alcohol condition (M 

= 0.043, SD = 0.016). As seen in Figure 2, the minimum motion detection thresholds in 

the alcohol condition were found to be significantly greater than those in the non-alcohol 

condition, t(12) = 5.05, p < 0.001, r2 = 0.68. Thus, intoxicated individuals required the 

visual stimulus to be moving at a faster speed in order to detect the stimulus’s motion 

compared to sober individuals.  
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Figure 2. Mean minimum motion detection thresholds in the non-alcohol and 

alcohol condition. Error bars represent 1 SEM. 

3.3 Discussion 

This experiment examined whether a moderate-high intoxication level affected 

minimum motion detection thresholds. Our results indicated that minimum motion 

detection thresholds increased following moderate-high doses of alcohol compared to 
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sober observers. In other words, intoxicated observers were less sensitive in detecting the 

movement of a stimulus than sober observers. Past research found these minimum motion 

detection thresholds to measure 0.16 °s-1 in sober observers (Aubert, 1886). More recent 

investigations using more sophisticated technology to generate visual motion stimuli have 

found motion detection thresholds of moving gratings to occur below 0.1°s-1 in healthy 

young observers (Snowden & Kavanagh, 2006). They found that these thresholds tended 

to persist for spatial frequencies between 0-5 cycles per degree of visual angle. Our 

minimum motion detection thresholds were found to be even lower than those of 

Snowden and Kavanagh in both the sober and intoxicated observers. This difference 

could have been an artifact of the different types of visual stimuli used. It is possible that 

the visual system is generally more sensitive to dot stimuli than to gratings as dots are 

visual stimuli that are more naturally represented in the environment than arbitrary 

gratings. As such, observers may be more sensitive to moving dots than to moving 

gratings because they likely interact with dot-like stimuli more than grating-like stimuli 

throughout their daily events.  

It is possible that alcohol in moderate-high doses suppressed the sensory 

processing for detecting the slightest degree of motion in a seemingly stationary stimulus. 

Leibowitz et al. (1972) examined motion detection in the central and peripheral field of 

vision for various viewing conditions using a single-line motion stimulus. They found 

that an observer’s sensitivity to detect the stimulus’ motion decreased when the stimulus 

form features, including its edges, were blurred. Moreover, Pearson and Timney (1998) 

investigated the effects of alcohol on spatial and temporal contrast sensitivity. They 

found that alcohol impaired sensitivity to high spatial and high temporal frequencies 
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when perceiving contrast gratings. The experience of a loss in contrast sensitivity at high 

spatial frequencies can be described as a defocusing or blurring of fine visual details. An 

alcohol-induced impairment in contrast sensitivity at high spatial frequencies could have 

led to a blurring of the edges in the motion stimulus in our experiment. Such a blurring of 

the stimulus’ edges could have in turn caused observer’s to misperceive motion, causing 

a greater number of incorrect responses that would have ultimately increased detection 

thresholds in the alcohol condition. In this case, we would see an augmentation of 

alcohol’s influences on low-level sensory processes in higher-level visual processing. 

Alcohol has also been shown to impair temporal processing and lateral inhibition 

in vision, important functions for perceiving motion (Khan & Timney, 2007; Johnston & 

Timney, 2008; Johnston & Timney, 2013). For example, Khan and Timney used the 

Poffenberger paradigm, the flash-lag effect, and backwards masking to measure temporal 

processing in a sober condition and in a moderate intoxication condition. They found that 

all three indices of temporal processing became impaired at moderate intoxication levels. 

Some impairments in temporal processing have been selectively demonstrated in the 

temporal processing of cone photo-receptors in the central visual field (Pearson & 

Timney, 1999a), the location where the visual stimulus in our experiment had been 

presented. Thus, it is possible that alcohol’s influences on these sensory mechanisms may 

have also resonated in this high-level visual function. 

On the other hand, alcohol may have influenced cognitive components that led to 

the differences in minimum motion detection between sober and intoxicated individuals. 

Although the visual task in this experiment was fairly simple, the motion presented in the 

comparison stimulus was extremely subtle. In many cases observers reported hysteresis 
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in the standard stimulus. In order to distinguish the moving dot in the comparison 

stimulus from the stationary dot or from the the apparent hysteresis in the standard 

stimulus, an observer had to consciously evaluate both stimuli before reaching a 

perceptual decision. This evaluation introduces cognitive elements such as attention and 

memory into the perceptual process. Although, alcohol has not been found to influence 

visual attention at low doses (MacArthur & Sekuler, 1982), it has been found to impair 

attentional capacity and visual short-term memory in moderate-high doses (Wegner & 

Fahle, 1999; Wester et al., 2010). It is possible that disruptions in these cognitive 

elements may have led to a greater degree of second guessing and, consequently, to a 

greater number incorrect responses that would have inflated detection thresholds rather 

than impairments in sensory processing. 

Given the pervasion of cognitive elements in the visual task here, we interpreted 

these results in favor of non-sensory factors mostly contributing to the found perceptual 

deficit in motion detection. One avenue for future research would be to test which aspect 

of perception for detecting motion was specifically affected by alcohol. By comparing the 

results from two different analytical techniques performed on the same set of perceptual 

observations, Ferreira and Timney (2004) demonstrate one possible approach. Using 

signal detection theory and ideal observer analysis, they obtained estimates of d’ and of 

perceptual thresholds for contrast sensitivity. Although they found that alcohol impaired 

contrast thresholds, d’ remained relatively unchanged. Because signal detection theory 

considers perception to involve a combination of top-down processes as well as bottom-

up processes, its methodology accounts for cognitive elements in perception. When 

cognitive influences were taken into consideration, the effects of alcohol that were 
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evident from an ideal observer analysis seemed to disappear. This suggested that the 

deficits in contrast sensitivity results, at least in part, from non-sensory factors. Future 

research may consider such an approach to further examine whether alcohol interrupted 

sensory factors or non-sensory factors in motion detection.  
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Chapter 4  

4 Simple Motion Perception 

Simple motion can be expressed in a visual stimulus as a constant or a changing 

rate of continuous motion (i.e., constant speed, or acceleration). These two different 

motion properties have been found to be processed similarly by the visual system 

(Lisberger & Movshon, 1999; Price et al., 2005; Schlack et al., 2007; Schlack et al., 

2008). The perception of acceleration, however, is believed to be indirect and processed 

via similar visual mechanisms responsible for processing the direct perception of speed 

(Gottsdanker et al., 1961; Price et al., 2005; Schlack et al., 2007; Schlack et al., 2008). It 

has been found to involve a multi-stage process involving an integration of initial speed 

and final speed over some period of time (Gottsdanker et al., 1961; Snowden & Braddick, 

1991; Werkhoven et al., 1992). Its speed-dependent processing makes it a similar yet 

distinct representation of simple moti on. Therefore, we divided this chapter into two 

experiments to determine whether alcohol affected simple motion perception as a 

function of speed for two distinct simple motion properties, speed and acceleration.  

4.1 Speed Discrimination 

Using speed as the simple motion property, our second experiment measured 

observers’ sensitivity to changes in speed from a speed discrimination tasks in a non-

alcohol and an alcohol condition at three standard speeds. Weber fractions as a function 

of speed were computed and compared between the non-alcohol and alcohol conditions. 

Procedure 

As described in the general methods procedure, speed discrimination thresholds 
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were obtained using 2IFC tasks with a method of constant stimuli. The standard 

stimulus in our speed discrimination task contained 100 dots that were randomly 

generated within a 10° x 10° aperture. These dots translated horizontally in the 

frontoparallel plane at a slow (2°s-1), a medium (6°s-1) or a fast (12°s-1) standard speed. 

The comparison stimulus contained a similar array of randomly generated dots; however, 

its dots translated horizontally in the frontoparallel plane at one of seven different speeds 

that varied from 101% to 122% of the speed presented in the paired standard stimulus. 

This range of comparison stimulus speeds varied in increments of 2%. To maintain a 

consistent motion signal throughout all of the stimulus presentations, the dots wrapped 

around the aperture during the presentations and they randomly regenerated at the 

aperture’s beginning to continue the same pattern of motion (Williams & Sekuler, 1984). 

To prevent visual adaptation to the moving dots the direction of horizontal motion 

alternated in opposite directions on subsequent trials. The experimental runs were 

blocked in terms of slow, medium, and fast speed whereas observers completed four 

experimental runs for each speed in the non-alcohol and alcohol condition. The task 

required an observer to identify the stimulus that moved at a faster speed. 

4.1.1 Results 

As in the first experiment, the percentage of correct responses was calculated for 

each comparison speed and a Weibull psychometric function was fitted to the distribution 

of data for every participant in the non-alcohol and alcohol condition at each standard 

speed. We computed the speed at which an observer could correctly identify a change in 

speed between the standard stimulus and comparison stimulus 75% of the time from the 
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psychometric function. To obtain a difference threshold, the speed of the respective 

standard stimulus was subtracted from the speed that was computed from the fitted 

psychometric function. It is known that speed difference thresholds vary with standard 

speed so to normalize the data we computed Weber fractions as a function of speed. 

Weber fractions were determined by dividing each difference threshold by the standard 

speed from which it was obtained. A Weber fraction was computed for every participant 

in the non-alcohol and alcohol condition at each of the different standard speeds. These 

fractions were then averaged across participants in the non-alcohol and alcohol 

conditions for each standard speed of motion (see Figure 3).   

A 2 x 3 repeated-measures ANOVA tested whether the Weber fractions in the 

non-alcohol condition differed from the Weber fractions in the alcohol condition at any 

of the different standard speeds. The analysis indicated that no significant differences 

existed between the non-alcohol and alcohol conditions for any of the standard speeds. 

Thus, an intoxicated observer’s ability to discriminate simple motion represented in speed 

was no different than that of a sober observer regardless of the speed of motion.  

4.1.2 Discussion 

The second experiment examined whether alcohol affected speed discrimination 

as a function of speed. In the sober condition, the Weber fractions from speed 

discrimination experiments tended decrease as speed increased, suggesting that an 

observer’s ability to discriminate rate of motion increased as the standard speed of 

motion increased. In other words, people can distinguish a difference in the relative speed 

between two moving objects more easily when the objects are moving at faster speeds. 
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Figure 3. Mean Weber fractions for speed discrimination in the non-alcohol and 

alcohol conditions. Error bars represent 1 SEM.  

These findings are consistent with previous research examining the perceptual 

ability to discriminate speed in sober observers (Orban et al., 1984; De Bruyn & Orban, 

1988; Snowden & Kavanagh, 2006). Using a similar speed discrimination experiment, 

Orban et al. found Weber fractions to decrease as the standard speed of motion increased 

between a range of 1°s-1 to 32°s-1. De Bruyn and Orban also found that Weber fractions 

decreased as standard speed of motion increased between standard speeds of 1°s-1 to 64°s-

1. More recently, Snowden and Kavanagh found Weber fraction for speed discrimination 

to decrease as standard speed increased from 0.1°s-1 to 8°-1. Thus, it appears that 

sensitivity to changes in relative speed increases for a wide range of standard stimulus 

speeds. 

The Weber fractions in the alcohol condition were found to be virtually identical 

to those in the non-alcohol condition at all standard speeds. In other words, intoxicated 

observers were just as sensitive to differences in relative speed between two moving 
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stimuli as sober observers. Their capability to detect the difference in speed between two 

moving stimuli equally improved for faster moving stimuli. These findings are similar to 

other studies that examined the effects of alcohol on speed perception. Kearney and 

Guppy (1988) found that alcohol intoxication at high BAC levels did not influence an 

observer’s ability to estimate speed in a driving simulation. Thus, alcohol did not appear 

to interfere with the sensory processing involved in speed discrimination. The multiple 

input pathways from the retina that reach the primary motion processing areas, and the 

large number of reciprocal connections found between the primary motion processing 

areas (Maunsell & Van Essen, 1983b; Ungerleider & Desimone, 1986; Rodman et al., 

1989; Rodman et al., 1990) may buffer against any alcohol-induced attenuation of motion 

signals being transmitted through the visual system.  

Contrary to our results, some past research found that alcohol impaired visual 

speed discrimination in a similar task. Fernando et al. (2010) found that measures of an 

observer’s perceptual ability to identify a faster moving visual stimulus from a pair of 

moving stimuli was impaired for fast (12°s-1) speeds of motion. The reason for this 

discrepancy in results is not entirely clear. It is possible that these differences resulted 

from subtle differences in the methodology and analyses employed. Our analyses 

computed discrimination thresholds from a fitted Weibull psychometric function to 

compare Weber fractions as a function of speed rather than comparing the slopes from a 

linear regression on observer performance. These different analytical approaches could 

produce rather different estimations of perceptual ability depending on the distribution of 

an observer’s performance over the different comparison stimulus values, especially if 

the range of comparison stimulus values is overly large or skewed. In any case, the 
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impairments found by Fernando et al. were modest at fast speeds of motion. Our findings 

and those of Fernando et al. taken together suggest that alcohol had little, if any, 

influence on the high-level visual processing involved in speed discrimination.  

It is possible that the high-level visual processes involved in speed discrimination 

are capable of mitigating alcohol’s influences on underlying visual processing 

mechanisms. For example, Gegenfurtner et al., (2003) found the speed of smooth pursuit 

eye movements to be highly correlated with the perceptual judgments for discriminating 

speed, suggesting the process for perceiving speed differences largely involves smooth 

pursuit eye movements. Further, Harrmeier and Thier (2006) found pursuit eye 

movements to facilitate the perception of speed differences. Alcohol has been shown to 

impair several facets of eye movements in response to visual motion stimuli (Collins et 

al., 1971; Stapleton et al., 1986). Although smooth pursuit eye movements are seemingly 

necessary for perceiving speed differences, our results indicate that alcohol does not alter 

the smooth pursuit mechanisms pertinent for evaluating the differences in perceived 

speed or it does not affect the information extracted from smooth pursuit eye movements 

when discriminating speed of motion.  

4.2 Acceleration Detection 

Our third experiment measured observers’ sensitivity to changing rates of speed 

with acceleration detection thresholds in a non-alcohol and an alcohol condition at a 

slow, a medium, and a fast standard speed. Weber fractions were compared between the 

alcohol and non-alcohol conditions for the varying levels of standard speed. 
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Procedure 

As described in the general methods procedure, an observer’s ability to perceive 

acceleration was obtained using 2IFC tasks with a method of constant stimuli. The 

standard stimulus in our acceleration detection task contained 100 dots randomly 

generated within a 10° x 10° aperture that translated horizontally in the frontoparallel 

plane at a slow (2°s-1), medium (6°s-1) or fast (12°s-1) standard stimulus speed. The 

comparison stimulus contained a similar array of randomly generated dots; however, its 

dots translated horizontally in the frontoparallel plane given one of eight different 

acceleration rates whose starting speed matched that of the speed in the paired standard 

stimulus.  

The range of acceleration rates presented in the comparison stimuli differed for 

each of the different standard stimulus speeds. These ranges of acceleration rates all 

began at 0.1°s-2 and increased in equal increments of 0.2°s-2, 0.4°s-2, or 0.9°/s-2 for the 

slow, medium, and fast standard speeds, respectively. The dots wrapped around the 

aperture in the visual displays as in the speed discrimination task to ensure a continuous 

motion signal throughout the stimulus presentations. Experimental runs were blocked in 

terms of standard stimulus speed and observers completed four experimental runs for 

each speed in both the non-alcohol and alcohol conditions. As in the speed discrimination 

tasks, the direction of horizontal motion alternated on subsequent trials to avoid motion 

adaptation. This visual task required an observer to identify the stimulus containing the 

accelerating dots. 
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4.2.1 Results 

As in the first two experiments, a Weibull psychometric function was fitted to the 

participants’ performance distributions along the varying comparison stimulus values in 

the non-alcohol and alcohol condition for each standard speed. As in speed 

discrimination, it is known that acceleration detection thresholds vary with standard 

speed so similarly we normalized the data for the different speeds using Weber fractions. 

However, it is not possible to calculate a Weber fraction for acceleration rates because 

the standard stimulus had zero acceleration. Instead, we converted the acceleration rates 

in the comparison stimuli into an estimate of final speed by calculating the speed of the 

comparison stimulus’ dots at the end of the presentation. This is a simple linear 

transformation that does not affect the distribution of the observed performance data 

along the varying comparison stimulus values, and it is also consistent with other findings 

that suggest acceleration is detected indirectly by comparing the initial and final speeds 

of a moving stimulus (Gottsdanker et al., 1961; Snowden & Braddick, 1991; Schlack et 

al., 2008). The final speed of a comparison stimulus was computed by adding the 

standard stimulus’ speed to the product of the comparison stimulus’ acceleration and 

presentation time. After this transformation, the psychometric function was fitted to an 

observer’s performance data based on the final speeds of the varying comparison 

stimulus values rather than acceleration rates.   

We computed the speed at which an observer could correctly identify the 

accelerating stimulus 75% of the time from the psychometric function. To obtain a 

difference threshold, the speed of the respective standard stimulus was subtracted from 

the speed that was computed from the fitted psychometric function. Weber fractions were 
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determined by dividing a difference threshold by the standard speed. These Weber 

fractions were averaged across participants for the non-alcohol and alcohol conditions at 

each standard speed (see Figure 4) and were compared. 

A 2 x 3 repeated-measures ANOVA tested whether the Weber fractions in the 

non-alcohol condition differed from the Weber fractions in the alcohol condition for the 

varying standard speeds. The analysis indicated that no significant differences existed for 

any level of standard speed. Thus, an observer’s ability to detect acceleration was not 

affected by alcohol at any level of the standard speed of motion. 
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Figure 4. Mean Weber fractions for acceleration detection in the non-alcohol and 

the alcohol condition. Error bars represent 1 SEM. 

4.2.2 Discussion 

In this experiment, we determined whether alcohol affected acceleration detection 

at several different standard speeds. As we found from the Weber fractions for speed 

discrimination in sober observers, the Weber fractions for acceleration detection tended 
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to decrease as the standard speed increased. In other words, acceleration becomes easier 

to perceive for a sober observer when objects are moving at faster relative speeds.   

The Weber fractions for acceleration detection in sober participants were found to 

be much larger than what we found in speed discrimination, suggesting sensitivity to 

acceleration is much lower than sensitivity to speed. This finding has been well supported 

by previous studies on speed and acceleration perception (Gottsdanker, 1956; 

Gottsdanker et al., 1961; Snowden & Braddick, 1991; Werkhoven et al., 1992). A lesser 

sensitivity to detect acceleration compared to speed has been said to partially result from 

acceleration processing being dependent on speed processing and its underlying 

mechanisms (Gottsdanker et al., 1961; Werkhoven et al., 1992; Lisberger & Movshon, 

1999; Watamaniuk & Heinen, 2003; Schlack et al., 2008).  

In the alcohol condition, Weber fractions, like in speed discrimination, were 

nearly identical to those obtained in sober observers. An intoxicated observer could 

identify changes in rate of motion just as accurately as a sober observer. As such, the 

increase in sensitivity to detect acceleration for faster moving objects seen in sober 

observers was also evident in intoxicated observers. Thus, it does not appear that alcohol 

influences the sensory processing involved in acceleration detection. 

We know speed is directly perceived by many speed-tuned neurons in the motion 

processing areas of the brain (Dubner & Zeki, 1971; Zeki, 1974; Maunsell & Van Essen, 

1983a; Liu & Newsome, 2005; Schlack et al., 2007). Although no motion sensitive 

neurons have been found to date that show direct tuning for acceleration rates 

specifically, patterns of activity in area MT have been associated with acceleration 

perception (Lisberger & Movshon, 1999; Price et al., 2005; Schlack et al., 2007). 
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Acceleration has, thus, been generally considered an indirect form of perception that 

depends on mechanisms for visual processing of speed (Watamaniuk & Heinen, 2003; 

Schlack et al., 2008).  

For example, Lisber and Movshon (1999) proposed that patterns of MT neuron 

activation were responsible for  perceptions of accelerating stimuli as opposed to a 

relatively small number of MT neurons for constant speed of motion (Newsome et al., 

1989). It was later demonstrated that observations of accelerating stimuli led to an 

adaptation of preferred speeds and speed-tuning curves in motion sensitive MT neurons 

(Krekelberg et al., 2006; Schlack et al., 2007). Specifically, they found that individual 

responses of MT neurons were attenuated and that their tuning-curves narrowed 

following observations of constant speed. Schlack et al. (2007) determined that these 

changes in response properties can explain changes in perceived speed (i.e., acceleration). 

Schlack et al. (2008) later combined physiological evidence from macaque MT with 

findings from human observers to show that their interpretation of these changes in 

response-properties generalized to the human perception. The lack of an effect from 

alcohol on acceleration detection suggests that it bears no influence on the motion 

processing mechanisms involved in generating the differences in speed-tuning and 

responding of MT neurons required to perceived and detect acceleration. 

This lack of an effect from alcohol on acceleration detection is not overly 

surprising. We found that alcohol exhibited no influence on speed discrimination, 

suggesting that the integrity of the underlying processing for discriminating speed 

remained fairly intact. And as we have previously mentioned, the ability to detect 

acceleration has been shown to depend on the visual processing involved in speed 
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discrimination. By extension, alcohol should similarly exhibit little, if any, influence on 

the processing for acceleration detection. It does not seem that acceleration detection 

involves a visual processing mechanism that is both selectively affected by alcohol and 

not involved in speed discrimination. 
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Chapter 5  

5 Complex Motion Perception 

5.1 Coherence Detection 

Our fourth experiment examined whether alcohol affected observers’ sensitivity 

to detect complex motion as a function of stimulus speed. Complex motion can be 

represented in a variety of forms. Some of these forms have included translational, radial, 

or expanding/contracting representations of optic flow or motion coherence. We chose 

discontinuous motion coherence to represent complex motion in this experiment. Here 

the motion path of any individual dot could not be tracked across the visual field  

(Williams & Sekuler, 1984; Britten et al., 1992a). An observer viewing motion coherence 

would perceive a global pattern of unidirectional motion that seemed to emerge within 

stochastic visual noise. Coherence detection thresholds were measured in a non-alcohol 

and an alcohol condition for slow, medium, and fast standard speeds. These thresholds 

were then compared to examine possible differences in sensitivity between intoxicated 

and sober observers. 

Procedure 

Coherence detection thresholds were measured using 2IFC tasks and a method of 

constant stimuli, as described in the general methods procedure. Random-Dot-

Kinematograms (RDK) were used to generate the coherent motion stimuli, as had been 

done in previous examinations of complex motion processing (Morgan & Ward, 1980; 

Newsome & Pare, 1988; Britten et al., 1992a). The standard stimulus in our coherence 

detection task was a RDK containing a set of 100 dots with a limited lifetime that 



40 

 

 

 

stroboscopically translated in random directions within an aperture of 6° in radius. For 

example, the dots would randomly appear for the duration of the first frame (8.3ms) in 

the visual presentation and then reappear for a single frame after a 25ms delay-interval. 

The dot’s position following the 25ms delay-interval would be displaced according the 

standard speed in a random direction. After this single ‘jump’ cycle, each dot would be 

randomly repositioned within the aperture and complete another ‘jump’ cycle. This 

ensued for the duration of the presentation. The lifetime of each dot lasted a single frame. 

This standard stimulus appeared as a pattern of random stroboscopic noise with no 

presence of a coherent global motion pattern.  

The comparison stimulus comprised of a RDK that contained 100 dots that were 

presented in the same stroboscopic fashion as in the standard stimulus. The direction of 

displacement for one set of these dots was randomized as in the standard stimulus. The 

direction of displacement for the remaining proportion of dots was fixed in the horizontal 

rightward direction. This comparison stimulus appeared as a pattern of stroboscopic 

visual noise with a presence of coherent horizontal global motion embedded within the 

noise. The presence of coherent global motion in the comparison stimulus was indirectly 

generated by the dots that ‘jumped’ coherently in the same horizontal direction. The 

salience of this presence of global motion could be varied by adjusting the proportion of 

dots that moved coherently in the horizontal direction; the greater the proportion of 

coherently moving dots the more salient the appearance of global motion in the display.  

Within an experimental run, our coherence detection task presented seven 

different comparison stimuli that varied in the proportion of dots that moved coherently 

in the horizontal rightward direction. In equal increments of 9%, the proportions of 
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coherent dots in the comparison stimuli ranged from 8% to 62%. The experimental runs 

were blocked in terms of a slow (2°s-1), a medium (6°s-1), and a fast (12°s-1) standard 

speed. The task required observers to identify the stimulus with the dots that appeared to 

move horizontally in the rightward direction. 

5.2 Results 

As in the first three experiments, a Weibull psychometric function was fitted to 

the distribution of the proportions of correct responses along the varying degrees of 

coherence for each participant in the non-alcohol and alcohol condition for each standard 

speed. Participants’ coherence detection thresholds, the proportion of coherently moving 

dots that corresponds to the point at which an observer could identify the presence of 

global motion 75% of the time, were computed from the psychometric functions in all 

conditions. These coherence detection thresholds were averaged across participants for 

the non-alcohol and alcohol conditions at each standard speed, and were compared (see 

Figure 5). 

We first performed Mauchly’s test of sphericity to test for a homogeneity of 

variance in the differences between the intoxication and speed conditions. Mauchly’s test 

of sphericity was not significant, χ2(2) = 4.07, p = 0.13, indicating that the data did not 

violate the assumption of sphericity. A 2 x 3 repeated measures ANOVA then determined 

whether coherence detection thresholds differed between the non-alcohol and alcohol 

conditions across the varying standard speeds. Our analysis found that coherence 

detection thresholds significantly differed between the non-alcohol and alcohol condition 

across the varying levels of standard speed, F(2, 24) = 4.46, p = 0.02, η2 = 0.27. Thus, an 



42 

 

 

 

interaction existed with respect to one’s sensitivity to detect coherent motion at different 

speeds. 
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Figure 5. Mean coherence detection thresholds in the non-alcohol and alcohol 

condition. Error bars represent 1 SEM. 

A series of planned comparisons tested for differences between the coherence 

detection thresholds in the non-alcohol and alcohol conditions for alike standard speeds. 

A dependent samples t-test indicated that coherence detection thresholds in the alcohol 

condition (M = 37.08, SD = 8.67) were significantly greater than the coherence detection 

thresholds in the non-alcohol condition (M = 29.47, SD = 6.10) for the fastest standard 

speed only, t(12) = 3.13, p = 0.005, r2 = 0.43. Intoxicated observers could not detect 

coherent motion as well as sober observers. Thus, alcohol did not exert any influence on 

ability to detect coherent motion until the standard speed of motion reached relatively 

fasts levels. 
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5.3 Discussion 

Discontinuous coherence detection has been commonly used to study high-level 

visual processing (Morgan & Ward, 1980; Newsome & Pare, 1988; Britten et al., 1992a; 

Burr et al., 1998; Santoro & Burr, 1999; Braddick et al., 2001; Burr & Thompson, 2011). 

Our last experiment examined whether sensitivity to coherent motion changed following 

alcohol consumption for varying standard speeds. We found that alcohol impaired 

coherence detection thresholds for fast speeds only. In both intoxication conditions, 

coherence thresholds tended to remain fairly low at slower standard speeds, but increased 

markedly when the standard speed increased to 12°s-1. In other words, sober and 

intoxicated observers could equally recognize differences in coherent motion until the 

speed of motion increased to a level where both groups of observers could no longer 

perceive the differences as proficiently. However, the observed decrement in sensitivity 

to differences in coherent motion at fast speeds was much greater for intoxicated 

observers. This suggests that alcohol exacerbates a general loss in the sensitivity to 

perceive coherent motion as relative speed increases. 

Our findings from the performance of sober observers have been fairly consistent 

with past research investigating the sensory parameters to perceive coherent motion as a 

function of speed (Hiris & Blake, 1995; Snowden & Kavanagh, 2006). Using similar 

RDK displays for presenting coherent motion as in our experiment, Snowden and 

Kavanagh examined how motion coherence thresholds changed as a function of speed in 

young and older adults. They found that young healthy observers could detect motion 

coherence fairly consistently at slower speeds but that their ability began to degrade as 

relative speed increased. The difference in their mean coherence thresholds between 2°s-1 
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and 4°s-1 of 7% was nearly the same as the difference in the mean coherence thresholds 

that we found between 2°s-1 and 6°s-1, suggesting that Snowden and Kanavagh’s young 

healthy observers could perceive differences in coherence as consistently as our sober 

observers for slower speeds, and similarly appeared to become less sensitive to the 

differences in coherence as relative speed increased.  

With respect to alcohol, our findings were also consistent with those from a study 

similarly investigating the effects of alcohol on coherent motion detection. Weschke and 

Niedeggen (2012) measured coherence detection thresholds using similar RDK stimuli as 

in our experiment. The coherence detection task in their experiment, however, 

simultaneously presented both the standard stimulus and the comparison stimulus side-

by-side for each trial. They reported no differences in the coherence threshold between 

sober observers and moderately intoxicated observers. Although their experiment only 

compared coherence detection thresholds for a single displacement rate, 0.03°/10ms (i.e., 

3°s-1), this rate of motion was within the range of speeds examined in our study. Thus, we 

can be confident that alcohol has no distinguishable effect on an observer’s sensitivity to 

coherent motion at slower speeds. 

Psychophysical, physiological, and neuroimaging evidence has suggested that  

stroboscopic coherent motion perception results from a multi-stage processing of visual 

motion information (Ullman, 1979; Braddick, 1980; Williams & Sekuler, 1984; van den 

Berg & van de Grind, 1991; Stoner & Albright, 1992b; Qian & Andersen, 1994; Qian et 

al., 1994; Morrone et al., 1995; Burr & Santoro, 2001; Braddick et al., 2001; Suchow & 

Alvarez, 2011; Burr & Thompson, 2011). This multi-stage process involves the 

integration of many discontinuous local motion signals into a global motion signal that 
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produces the percept of coherent global motion. Whereas local motion signals are 

generated by the movements of the individual dots in a RDK, the global motion signal is 

generated from a correlational type of analysis that integrates all of the coherent local 

motion inputs (Lappin & Bell, 1976; van den Berg & van de Grind, 1991). Specific types 

of neurons in striate cortex and area MT have been associated with the processing that 

recognizes these local movements (i.e., local-motion detectors). Other types of neurons in 

area MT and area MST, commonly referred to as global-motion detectors or pattern-

motion detectors, have been linked with the processing that achieves the global motion 

percept (Adelson & Bergen, 1985; Stoner & Albright, 1992b; Braddick et al., 2001). Our 

findings indicate that alcohol only interferes with this multi-stage processing when 

motion exceeds some critical speed. It is possible that alcohol selectively affects the 

different stages of coherent motion processing for different speeds.  

Snowden (1990) first proposed the possible existence of two independent speed-

tuned global-motion processors; one tuned to integrate local motion signals at slow 

speeds, and another tuned to integrate local motion signals at fast speeds. Edwards et al. 

(1998) have since supported such a notion. Through a series of motion coherence 

experiments, they measured coherence detection thresholds using a motion coherence 

detection task similar to our experiment. By introducing additional non-coherent noise 

dots that moved at a different speed than the standard into the RDKs, they were able to 

examine how coherent motion thresholds changed when non-coherent noise dots moving 

at relatively different speeds interfered with the extraction of global motion.  

For slow standard speeds, Edwards et al. (1998) found that non-coherent noise 

dots only interfered with coherent motion detection when the speed of the non-coherent 
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noise dots were relatively close to the standard speed. For fast standard speeds, they 

found that the non-coherent dots interfered with coherent motion detection regardless of 

their speed. However, the interference was much more pronounced when their speeds 

were closer to the standard speed. The decrement in coherent motion detection thresholds 

had been said to occur because the non-coherent noise dots moving at speeds similar to 

the standard were drawing from the processing capacity of a similar processing system. 

The lack of a decrement in coherence detection thresholds when non-coherent noise dots 

moved at rather different speeds resulted from the non-coherent noise dots drawing from 

a separate processing system with a separate processing capacity. These results were 

taken as evidence of independent speed-tuned global-motion extraction processors. With 

respect to our findings, alcohol may selectively impair the global-motion extraction for 

higher speeds by reducing the limitations of spatiotemporal integration in the system. 

   Alternatively, alcohol may be affecting cognitive factors that contribute to 

perceiving motion coherence. The ability to perceive motion coherence and, 

subsequently, the ability to perceive changes in motion coherence have been shown to 

largely depend on attentional control (Burr et al., 2009). In a series of experiments Burr et 

al. presented eight separate patches of RDKs on a computer screen. In one experiment, 

some of the RDK patches contained coherent motion while the others contained non-

coherent motion in randomized directions. Another experiment presented these RDK 

patches within a larger aperture that was filled with non-coherent motion in randomized 

directions. The direction of motion in the coherent patch(es) randomly alternated in the 

leftward or rightward direction on different trials. In both of these experiments, observers 

attempted to identify the direction of the coherent motion generated by the RDK 
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patch(es) in a cued condition and a non-cued condition. The cued condition prompted an 

observer to attend to the region(s) of the aperture that were to contain the patch(es) with 

the coherent motion. In the non-cued condition, observers attempted to identify the 

direction of coherent motion within patch(es) without any prompts. They found that 

sensitivity to coherent motion increased in all of the cued conditions. Because the cues 

directed attention to the appropriate regions on the screen that would contain coherent 

motion, they interpreted these results as coherent motion perception being largely 

mediated by attention. 

 We have previously mentioned that alcohol has been shown to impair attentional 

capacity in moderate-high doses (Wester et al., 2010). In Wester et al., participants 

performed a single- or a divided-attention task while in a driving simulation. They 

completed both of these tasks in a sober and in an intoxicated condition. Shifts in event-

related potentials (ERPs) were recorded and interpreted as shifts in attention. Their 

results found that participants exhibited slower ERP-shifts when intoxicated for both the 

single- and divided-attention tasks; however, the deficits were more pronounced in the 

divided-attention task. The alcohol-induced delays in ERP-shifts indicated that 

participants could not allocate their attention as effectively as sober participants. The 

alcohol-induced deficits that we found in coherent motion detection for fast speeds may 

have resulted from such attentional impairments. Alcohol-induced reductions in 

attentional capacity may interfere with one’s ability to control attention, leading to higher 

detection thresholds. Perhaps, the fast global-motion system relies more on attentional 

capacity than the slow global-motion processing system to perceive coherent motion.  
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 As mentioned, discontinuous coherent motion is just one form of complex 

motion. Radial motion, expanding/contracting motion, and even illusory motion are other 

distinct forms of complex motion. It would be of interest to determine whether alcohol 

similarly demonstrated selective impairments in one’s sensitivity to perceive these other 

forms of complex motion at fast speeds only. 
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Chapter 6  

6 General Discussion 

Alcohol consumption in Canada has continued to rise (Statistics Canada, 2014) 

over the past 10 years. We know much about how alcohol affects physiology and 

behavior. We know far less, however, about how it affects our sensitivity to perceive 

physical stimuli in the external world. I conducted a series of experiments to study the 

perceptual effects of alcohol on the visual system. Specifically, I focused on how one’s 

sensitivity to perceive visual motion stimuli changed following alcohol consumption. 

Motion is a multidimensional visual stimulus that can occur in a variety of forms. 

The perception of these different forms draws upon specialized high-level visual 

processing. I compared sober and intoxicated observers’ visual sensitivity to several 

classes of motion. These included:  minimum motion, simple motion, and complex 

motion. First, it was found that alcohol impaired the measures of sensitivity for detecting 

minimum motion; however, these differences may be attributed largely to alcohol’s 

interference with top-down cognitive factors involved in detecting minimum motion 

rather than bottom-up sensory factors. Second, sensitivity to discriminate and detect 

different forms of simple motion (e.g., speed/acceleration), was not altered by alcohol 

intoxication. The primary motion processing areas appeared to be capable of 

compensating for alcohol’s generalized suppression of neural activity to allow the 

accurate perception of speed and acceleration. Finally, alcohol was found to impair 

sensitivity for coherent motion detection for fast speeds only. These increased thresholds 

could have resulted from a loss in sensitivity from a selective influence of alcohol on a 



50 

 

 

 

speed-tuned global-motion extraction system for fast motion, and/or a loss in attentional 

control from a reduction in attentional capacity. It would be of interest to see whether 

alcohol influences the perception of other forms of complex motion as a function of 

speed, such as radial motion or expansion/contraction motion. 

Comparing the results from all experiments, it appears that alcohol does not alter 

the visual perception of all kinds of motion stimuli. The effects observed in our 

experiments seemed to result from the nature of the tasks’ difficulty. In order to make 

accurate judgments of the visual stimuli, the minimum motion detection task and the 

complex motion detection task required observers to make a conscious decision about the 

visual stimuli when completing the tasks. On the other hand, the simple motion detection 

tasks could be accurately performed from rather simple judgments of the stimuli. Thus, it 

was concluded that the observed deficits in perceptual thresholds were not from alcohol-

induced impairments in sensory processing but more from an interruption in the cognitive 

elements that were required to complete the minimum motion detection and complex 

motion detection tasks.    

To perceive continuous or discontinuous forms of motion the visual system must 

resolve at least one of two issues in motion processing, the aperture problem (Marr & 

Ullman, 1981) and the correspondence problem (Julesz, 1971; Ullman, 1979). When 

perceiving continuous motion forms, an issue arises with evaluating the direction of a 

stimulus when the stimulus’ size exceeds the size of a motion-sensitive neuron’s 

receptive field, the aperture problem. In such instances, motion processes must determine 

the direction of motion without cues from a stimulus’ form features such as its edges. 

When perceiving discontinuous forms of motion, the problem arises when a spatial gap 
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exists between stimulus’ initial position and its subsequently displaced position, the 

correspondence problem. Here motion processes must correlate each dot’s initial position 

with its displaced position. The complications in this issue become rather apparent when 

observing multiple dots moving in this discontinuous form, as in the RDKs of coherent 

motion in the current study.  

Several lines of evidence exist to indicate that the aperture problem and the 

correspondence problem are resolved in the primary motion processing areas (Britten et 

al., 1992b; Celebrini & Newsome, 1994; Pack & Born, 2001). Perceptual sensitivity to 

minimum motion detection and simple motion detection relies on an effective resolution 

of the aperture problem whereas sensitivity to coherent motion detection relies on an 

effective resolution of the correspondence problem. Our results suggest that alcohol for 

the most part does not impede the motion processing system’s ability to resolve either of 

these issues locally or globally. 

The select and modest influences of alcohol on vision perception that have been 

observed for low-level visual processes did not appear to become exacerbated in the 

high-level visual processing required to perceive different forms of motion. As in low-

level visual sensory processing, the effects of alcohol on the high-level visual processing 

in motion perception were found to be selective and mild. These results are consistent 

with the findings that alcohol only has relatively small effects on basic visual processes. 

Given the widely acknowledged impairments in visual perception following the 

consumption of moderate-high doses of alcohol, further investigation is warranted. In 

light of our findings, a number of alternative possibilities may help to explain such 

reports of impaired vision.  
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First, an exacerbation of the mild effects of alcohol in vision perception may not 

become apparent until even higher-levels of visual processing that occur further along the 

dorsal visual pathway become engaged. Processing that occurs further along the dorsal 

visual pathway, beyond MST, begins to integrate information across multiple sensory 

systems, particularly visuomotor processing (Milner & Goodale, 2006). This higher-

ordered multisensory processing requires an even greater reliance on top-down cognitive 

elements for perception than does motion perception. Thus, we may find that alcohol 

imposes much of its influence on perception in such higher-ordered multisensory 

processing. 

Alternatively, the reported deficits in vision perception following moderate-high 

doses of alcohol may results from a selective impairment in the processing of one visual 

pathway over another. It is well known that the visual system is divided into two distinct 

functional pathways, one that extends ventrally from the striate cortex and another that 

extends dorsally from the striate cortex (Ungerleider & Mishkin, 1982; Milner & 

Goodale, 2006). Originally proposed as the ‘what’ pathway (i.e., the ventral stream) and 

the ‘where’ pathway (i.e., the dorsal stream), these two streams have become known as 

the ‘what’ and ‘how’ pathways, respectively. The ‘how’ visual pathway largely processes 

visual information for motion and visuomotor perception whereas the ‘what’ pathway 

processes visual information for form perception. Alcohol may have different effects on 

vision perception that occurs in the ‘how’ pathway versus the ‘what’ pathway.  

We have previously mentioned that the primary motion processing areas 

responsible for motion perception are located within the dorsal visual pathway. So far, 

alcohol has yet to been shown to substantially disrupt perception that results from 
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processing in the ‘how’ dorsal stream. However, Goodale (2011) discusses a number of 

experiments that would allow for a future studies to determine whether alcohol 

differentially affects the perception that results from the processing in the different 

pathways. For example, the Ebbinghaus size-contrast illusion (Haffenden & Goodale, 

1998), the rod and frame illusion (Dyde & Milner, 2002), and the horizontal-vertical 

illusion (Servos et al., 2000) have been used as a means of differentially engaging the 

different pathways. These illusions offer models for examining possible differential 

effects of alcohol on the perceptions that result from the processing in the different visual 

pathways. Such future investigations could perhaps help to explain the selective nature of 

alcohol’s influences on vision perception. 
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Appendices 

Appendix A: Letter of Information 

 

 

 
Effects of Alcohol on Human Motion Perception 

Letter of Information  

Research Investigators: 

Steven Matson   Department of Psychology, UWO  
 
Dr. Brian Timney  Department of Psychology, UWO 
 
 

I. Invitation to Participate 
You are invited to participate in a study conducting a series of experiments on the 

way in which raised Blood Alcohol Concentration (BAC) can influence performance on a 
variety of visual tasks.  Although there is a great deal known about the physiological 
effects of alcohol and the way it affects motor and cognitive skills, there is much less 
information about how it affects the more basic aspects of sensory function, including 
visual sensitivity. 

 

II. Purpose of Letter  
If you qualify and are willing to participate in this study we will ask you to 

consume beverages containing a quantity of alcohol sufficient to raise your BAC to 
approximately 80 mg/ 100 ml, the former maximum legal driving limit in Ontario.  You 
will then be asked to detect and respond to visual patterns presented on a computer 
screen.  At the end of each testing session you will be asked to take breathalyzer tests 
until you are no longer considered alcohol impaired.  The breathalyzer test will require 
you to continually blow into a plastic tube for a short period of time.   
 

III. Possible Risks and Harm 
The beverages may cause intoxication, drunkenness, dizziness, stomach upset, 

tiredness and/or headaches.  You may also experience physical and/or mental 
impairments for up to 4 to 5 hours after you have consumed the alcohol beverages.  In 
order to protect you, a trained professional will be in attendance at all times and you will 
not be allowed to leave the study site until you have a breathalyzer reading of less than 30 
mg/100 ml AND show no obvious signs of  impairment.  The attendant, experienced in 
the objective assessment of impairment states, will be required to document that you are 
not impaired before you will be permitted to depart from the study area.  If necessary, 
you will be physically restrained to prevent your leaving prior to meeting the above 
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conditions.  IT IS STRONGLY RECOMMENDED THAT YOU NOT DRIVE A 
VEHICLE OR OPERATE HEAVY OR DANGEROUS MACHINERY FOR A PERIOD 
OF 12 HOURS AFTER YOU HAVE BEEN RELEASED FROM THE STUDY SITE.  
At the end of the study you will be provided with taxi fare for  transportation home, if 
necessary.  

IV. Exclusion Criteria 
Please Read the Following Statements: 

 

1. I often have difficulty controlling the amount I drink at one time. 
 

2. I have received medical treatment for alcohol related problems. 
 

3. There is a history of alcoholism within my family. 
 

4. I suffer from diabetes. 
 

5. I have not been in good health for the past several months. 
 

6. I am pregnant, or there is a possibility that I might be pregnant. 
 

7. I am currently consuming prescription or other medications. 
 
If you feel that any of these statements could apply to you or if you do not wish to 
consume alcohol in a laboratory setting you should refuse to participate in this study at 
this point in time. 
 

V. Purpose & Procedure 
The purpose of this experiment is to explore the effects of increased blood alcohol level 
on a person’s visual sensitivity.  If you agree to participate you will be asked to attend 
four testing sessions.  The study involves the following: 

1. Before the first session we will ask you to fill out a short questionnaire about your 
alcohol drinking habits in order to determine if you are eligible to participate.  
This should take five to ten minutes to complete.  At this time, arrangements for 
your transportation home on the day of testing will be made.  We would like to 
test individuals who are in good health, who consider themselves to be “moderate 
drinkers”, have no history of alcohol abuse, and have no condition that may be 
adversely affected by alcohol. 
 

2. The testing sessions will be identical except that in half of the sessions the 
beverages you will be asked to consume before taking the tests will contain a 
quantity of alcohol.  The amount of alcohol will be sufficient to raise your BAC to 
approximately 80 mg/100 ml (the former maximum legal driving limit).  This 
volume will be calculated on the basis of your age, gender, height and weight.  
We will measure your Breathalyzed Alcohol Concentration (BrAC) several times 
throughout the course of the experiment using a standard breathalyzer device to 



75 

 

 

 

infer your BAC.  You should refrain from consuming alcohol in the 12-hour 
period prior to attending a testing session, and should consume a low-fat meal two 
hours before the session.   If you feel sick or excessively drunk in one session you 
will not be permitted to participate in any remaining sessions involving the 
consumption of alcohol.  The Student Emergency Response Team (SERT) will be 
contacted in the event that a participant becomes unwell during the sessions. 

 
3. We will be measuring your ability to detect visual patterns.  Each session will be 

run under computer control and should take about 2-3 hours to complete. 
 

4. After you have completed all of the testing we will ask you to remain in the 
laboratory under the supervision of the experimenter until your BrAC has fallen 
below 30 mg/100 ml.  This may take approximately two hours.  You will be 
provided with compensation for transportation  to and/or from the testing facility, 
if necessary. 
 

5. At the end of the experiment you will receive a written feedback sheet, and have a 
chance to ask questions. 

 
6. All the information collected in this experiment will be kept confidential and will 

be identified by assigning participants a coded ID. Personal identifiers of 
participants will NEVER be held with the corresponding data at any point.  If the 
results of this study are published, your name will not be used and information 
disclosing your identity will not be released or published without your specific 
consent. 

 
7. You will be provided with a copy of this letter once it has been signed. 
 Participation in this study is voluntary and you may refuse to participate, 

refuse to answer any questions or withdraw from the study at any time with 

no effect on your employment status, academic status, or personal status.  

However, if you have consumed any of the alcohol YOU WILL NOT BE 

ALLOWED TO LEAVE THE STUDY SITE UNTIL YOU HAVE A 

BREATHALYZER READING OF LESS THAN 30 MG/100 ML AND 

SHOW NO OBVIOUS SIGNS OF IMPAIRMENT.  IF NECESSARY, YOU 

WILL BE PHYSICALLY RESTRAINED TO PREVENT YOU FROM 

LEAVING PRIOR TO MEETING THE ABOVE CONDITIONS.  IN THE 

EVENT YOU BECOME PHYSICALLY OR VERBALLY ABUSIVE, 

CAMPUS POLICE OR THE LONDON POLICE MAY BE CALLED TO 

INTERVENE. 

 
VI. Conditions of Participation 
To participate in this study you must acknowledge and agree to the following conditions: 

• YOU MAY NOT LEAVE THE TEST FACILITY UNTIL YOU HAVE A 
BREATHALYZER READING OF LESS THAN 30MG/100ML AND SHOW 
NO OBVIOUS SIGNS OF IMPAIRMENT. 
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• YOU COULD BE PHYSICALLY RESTRAINED TO PREVENT YOUR 
LEAVING PRIOR TO MEETING THE ABOVE CONDITIONS. 

 

• YOU WILL NOT WITHDRAW YOUR CONSENT TO THE STUDY 
CONDITIONS FOR A PERIOD OF AT LEAST 24 HOURS AFTER 
STARTING THE STUDY PROCEDURES (IE. CONSUME ALCOHOL). 

 

• YOUR ATTENDANCE ON CAMPUS FOR THE PURPOSE OF 
PARTICIPATING IN THIS STUDY IS CONDITIONAL UPON YOU 
AGREEING TO ALL THE CONDITIONS EXPLAINED IN THIS LETTER 
AND IF YOU IGNORE THESE CONDITIONS YOU WOULD BE 
CONSIDERED A TRESPASSER AND CAMPUS POLICE AND/OR LONDON 
POLICE MAY BE CALLED TO INTERVENE. 
 

• YOU ARE UNDER NO IMPAIRMENT IN MAKING THESE 
ACKNOWLEDGEMENTS. 

 

VII. Compensation 
For your participation in this study you will be compensated $20.00 for each 

completed testing session. If you do not complete the entire study you will be able to 
keep the compensation that you received from previous sessions. You will also be 
provided with taxi fare for transportation to and/or from the testing facility for each 
session, if necessary. 

  

 VIII. Contacts for Further Information 
Additional information regarding these studies may be obtained from the 

experimenters, Steven Matson or Dr. Brian Timney.  
 
If you have any questions about the conduct of this study or your rights as a research 
subject you may contact the Office of Research Ethics, The University of Western 
Ontario. 
 
 
 
 
 
 
 

Western University • Department of Psychology 
Faculty of Social Science, Social Science Centre  

Version Date: 10/08/2013 

 
Participant Initials: _____                    
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Appendix B: Informed Consent Form 

 
 
 
 
 
 

Effects of Alcohol on Human Motion Perception 
Informed Consent Form/Declaration 

 
 

Research Investigators: 

Steven Matson   Department of Psychology, UWO   
 
Dr. Brian Timney  Department of Psychology, UWO 
 
 
 

I have read the letter of information and have had the nature of the study explained to me.  
I meet all inclusion and exclusion criteria. I acknowledge and agree to adhere to the 
Conditions of Participation outlined in the letter of information (see Section VI.)  All my 
questions have been answered to my satisfaction.  I agree to participate and am under no 
impairment in making this informed consent. 

 
 
 

 

_____________________________                 _____________________________ 
Signature of Research Participant                      Print Name 
 

_____________ 
Date 
 
 
 

_____________________________                   _____________________________ 
Signature of Person Obtaining Consent                Print Name 
 

_____________ 
Date 
 
 
 
 
 

Western University • Department of Psychology 
Faculty of Social Science, Social Science Centre  

Version Date: 10/08/2013  
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Appendix C: Alcohol Use and Frequency Questionnaire w/ Scoring Key 

Alcohol Use and Frequency Questionnaire 

ID: _____________   

Normal or Corrected to Normal Vision (circle one):  YES     NO 

Year of Birth: ______   Height: _________  Weight: _________  

 This questionnaire asks questions about your alcohol use patterns.  All information given 

on this questionnaire will be kept in confidence.  Results will not be released in any manner in 

which you, or any other individual, can be identified.  Please read each question carefully and 

indicate your answer below each question. 

1.  First, we would like to ask you about drinking beer.  How often, on average, do you 

usually have a beer?  Please circle the appropriate number. 

1. never 
2. every day 
3. at least once a week, but not every day 
4. at least once a month, but less than once a week 
5. more than once a year, but less than once a month 
6. once a year 

1b.  When you drink beer, how many 12 oz. beers (or equivalent), on average do you 

usually drink? 

 I usually drink ______ beers. 

2.  How often do you usually drink wine? 

1. never 
2. every day 
3. at least once a week, but not every day 
4. at least once a month, but less than once a week 
5. more than once a year, but less than once a month 
6. once a year 

 

 



79 

 

 

 

2b.  When you drink wine, how many 5 oz. glasses (or equivalent), on average do 

you drink? 

 I usually drink ______ glasses of wine 

3.  How often do you usually drink spirits (whiskey, gin, vodka, mixed drinks, etc)? 

1.  never 
2. every day 
3. at least once a week, but not every day 
4. at least once a month, but less than once a week 
5. more than once a year, but less than once a month 
6. once a year 

3b.  When you drink spirits, how many 1 ½ oz. shots (or equivalent), on average do 

you drink? 

 I usually drink ______ 1 ½ oz shots of liquor. 

4.  In the last twelve months how often, on average, did you drink alcoholic beverages? 

1. every day 
2. 4-6 times a week 
3. 2-3 times a week 
4. once a week 
5. 1-3 times a month 
6. less than once a month 
7. never 

5.  On the days when you drank, how many drinks did you usually have? 

  _________ number of drinks 

6.  During the last 12 months, did you ever have 5 or more drinks of any kind of alcoholic 

beverage in a single day, that is, any combination of bottles of beer, glasses of wine, or 

drinks containing liquor of any kind? 

1. yes 
2. no 

7.  During the past week, not counting today, did you have any alcoholic drinks? 

1. yes 
2. no 
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8.  If your answer to the above question was yes, please estimate the number and type of 

alcohol drinks that you had for each of the days during the past week.  Do not count today. 

                          Amount and Type of Beverage 

 

Day 

 

# of bottles of beer 

 

# of 1 ½ oz. shots of 

spirits or mixed drinks 

 

# of 5 oz. glasses of 

table wine 

Sun    

Mon    

Tues    

Wed    

Thu    

Fri    

Sat    

 

* These questions are taken from the “University Student Lifestyle Survey” created by The 

Addiction Research Foundation, 1992. 
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Alcohol Use and Frequency Questionnaire Scoring Key 

Each participant’s response to Item 4, the average of the selected numerical range, was 
multiplied by the numerical response to Item 5. A participant was discharged from the 
study if the product value of their responses to Item 4 and Item 5 was greater than 17.5.   
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Appendix D: Sobriety Sign-off Sheet 

 

Effect of Alcohol on Human Motion Perception 

Sobriety Sign-off Sheet 

I   ______________________, hereby certify that experimental participant  

________________________ obtained a BrAC reading of less than 30 mg/100 ml AND 

demonstrated no obvious signs of impairment prior to their release from the laboratory. 

_________________________                                   ______________________                           

Signature of Experimenter     Print Name 

_________________ 

Date 

I hereby acknowledge that I have obtained a BrAC reading of less than 30 mg/100 ml 

AND showed no obvious signs of impairment prior to being released from the laboratory. 

I am under no impairment in making this statement. 

 

_____________________________                                    _________________________ 

Signature of Research Participant    Print Name 

 

____________________ 

Date                                                                         

 
  



 

 

Effects of Alcohol on Human Motion Perception

Research Investigators:

Steven Matson   
 
Dr. Brian Timney  
 
 

The purpose of the current study is to determine how alcohol affects the neural 
mechanisms involved in the ability to perceive various types of motion.  In this study, 
you were asked to detect minimum motion, acceleration, and coherence at various 
starting velocities by indicating which of two presentations contained the specific motion 
type in simple visual detection
with alcohol and one with no alcohol.  

The effects of alcohol on visual performance 
past, but it has been shown that alcohol can have a large effect on vision, causing reliable 
deficits in visual processing (Pearson & Timney, 1998).  Previous research has 
demonstrated that alcohol in low doses significan
perception of visual movement (MacArthur & Sekuler, 1982).  Research has also 
demonstrated that impairment by alcohol
moving tasks compared to static, stationary tasks (Andre et
accidents (road and water) are a result of alcohol consumption, but we do not have a full 
understanding of all the ways in which alcohol
perception of the array of motion that is involved in visu
driving.   

Given this information, we predict that alcohol will reduce the ability to 
accurately detect motion that requires neural inhibitory mechanisms, such as suppression.  
We also predict that alcohol will show significantl
of global and complex forms of motion (e.g. coherent motion) than in simple forms of 
motion (e.g. minimum motion) because of a larger recruitment of neural
mechanisms involved in the processing of global a

Due to the high number of driving accidents and deaths caused by alcohol 
consumption, a detailed knowledge of how alcohol affects motion perception is crucial.  
The current study attempts to further this knowledge by describin

 

Appendix E: Debriefing Form 

 

 

Effects of Alcohol on Human Motion Perception
Debriefing Form 

 

Research Investigators: 

 Department of Psychology, UWO  

 Department of Psychology, UWO 

The purpose of the current study is to determine how alcohol affects the neural 
mechanisms involved in the ability to perceive various types of motion.  In this study, 
you were asked to detect minimum motion, acceleration, and coherence at various 

velocities by indicating which of two presentations contained the specific motion 
detection tasks.  Performance was measured in two conditions, one 

with alcohol and one with no alcohol.   
The effects of alcohol on visual performance have produced mixed results in the 

past, but it has been shown that alcohol can have a large effect on vision, causing reliable 
deficits in visual processing (Pearson & Timney, 1998).  Previous research has 
demonstrated that alcohol in low doses significantly lengthens reaction time to the 
perception of visual movement (MacArthur & Sekuler, 1982).  Research has also 
demonstrated that impairment by alcohol-induced consumption is greater for dynamic, 
moving tasks compared to static, stationary tasks (Andre et al., 1994). Many vehicle 
accidents (road and water) are a result of alcohol consumption, but we do not have a full 
understanding of all the ways in which alcohol-induced impairments can affect the 
perception of the array of motion that is involved in visual-motor activities such as 

Given this information, we predict that alcohol will reduce the ability to 
accurately detect motion that requires neural inhibitory mechanisms, such as suppression.  
We also predict that alcohol will show significantly greater impairments in the perception 
of global and complex forms of motion (e.g. coherent motion) than in simple forms of 
motion (e.g. minimum motion) because of a larger recruitment of neural-
mechanisms involved in the processing of global and complex forms of motion.  

Due to the high number of driving accidents and deaths caused by alcohol 
consumption, a detailed knowledge of how alcohol affects motion perception is crucial.  
The current study attempts to further this knowledge by describing the effects of alcohol 
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Effects of Alcohol on Human Motion Perception 

 

The purpose of the current study is to determine how alcohol affects the neural 
mechanisms involved in the ability to perceive various types of motion.  In this study, 
you were asked to detect minimum motion, acceleration, and coherence at various 

velocities by indicating which of two presentations contained the specific motion 
tasks.  Performance was measured in two conditions, one 
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on the perception of the different forms of motion, and by providing a comprehensive 
understanding how alcohol affects perception across various motion types of differing 
processing complexities.   

 
Thank you for your time as your responses and participation are much 

appreciated.  Without your involvement, it would not be possible to conduct this research.  
All the information collected in this experiment will be kept private and confidential, and 
will be identified by coded participant IDs only.   
 

If you have any further questions regarding this study, please contact Steven 
Matson, or Dr. Brian Timney. 
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