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Abstract 

The concept of believable agent has a long history in Artificial Intelligence. It has 

applicability in multiple fields, particularly video games. Video games have shown 

tremendous technological advancement in several areas such as graphics and music; 

however, techniques used to simulate dialogue are still quite outdated. In this thesis, a 

method is proposed to allow a human player to interact with non-player characters using 

natural-language input. By using various techniques of modern Artificial Intelligence such as 

information retrieval and sentiment analysis, non-player characters have the capability of 

engaging in dynamic dialogue: they can answer questions, ask questions, remember events, 

and more. This conversation system is highly customizable, so the types of responses that 

non-player characters give can be modified to fit within a game’s storyline. Although the 

system only currently allows for simple dialogue, it illustrates the potential for a more robust 

way to simulate believable agents in video games.  
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Chapter 1  

1 Introduction 

Video games are a popular form of entertainment and a multi-billion dollar industry [1]. 

In particular, role-playing video games (RPGs) have quite a large fan following [2]. This 

specific genre allows the player to assume the role of an adventurer with the purpose of 

progressing through a storyline. What separates this genre from others is that the player 

must usually navigate through a large game world and interact with non-player characters 

(NPCs) along the way [3]. 

Currently, role-playing video games excel at creating a convincing game world in 

multiple ways. Firstly, advances in hardware have allowed for high quality graphics and 

realistic physics. Secondly, the storylines are often quite immersive. Finally, the use of 

sound effects and music helps set the mood at any given point in time. Where these 

games still fail, however, is in creating believable artificial intelligence [4]. Specifically, 

the non-player characters do not seem like autonomous beings when the player must 

engage in dialogue with them. Instead, it is obvious that they are entirely scripted. Given 

that these non-player characters can be an integral part of the game’s immersive 

experience, there is a need to make them act more realistically [5]. 

1.1 Artificial Intelligence in Games 

The purpose of artificial intelligence (AI) is to make the computer perform the same 

thinking tasks as a human or an animal [6]. Some examples of such tasks would be the 

ability to make decisions and engage in realistic dialogue. Because of the complexity of 

human thought, creating a robust artificial-intelligence system is a difficult problem. It 

has been a growing field of study for several decades, but more research is still needed to 

reach the desired level of sophistication.  

In the context of video games, the goal of artificial intelligence (just like the other 

elements of the game) is to entertain the player. The object is to create an immersive 

game world that causes the player to suspend disbelief for a period of time. In order for 
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video-game AI to accomplish this goal, non-player characters must have the illusion of 

being intelligent [7]. That is, they must be believable agents. Depending on the purpose 

of the NPC, different techniques are often needed to achieve this notion of appearing 

intelligent.  

1.1.1 Movement 

One way that NPCs can seem intelligent is by making sensible movements. For example, 

if a character without a ranged weapon needs to attack the player, it should first move to 

be within melee range of the player. Otherwise, it would end up hitting the air. Another 

example of movement would be navigating around obstacles to reach the desired 

destination, such as the location of an alarm if the player is caught trespassing. 

1.1.2 Decision Making 

Another way that NPCs can appear intelligent is to make decisions regarding what to do 

next. An NPC can potentially have several different behaviours to choose from, such as 

attacking the player, hiding behind cover, standing still, eating, etc. Consequently, 

appropriate decisions need to be made at different points in the game as to what the next 

course of action should be.  

1.1.3 Strategy 

The third way NPCs can display intelligence is through the use of strategy. While 

movement and decision-making concerns one NPC, strategy governs the overall 

behaviour of all the NPCs. An example of strategy would be for the NPCs to surround the 

player before attacking, thus ensuring that escape is difficult [6]. 

1.1.4 Dialogue 

The fourth and potentially most difficult way for NPCs to show intelligence would be to 

engage in a dialogue with the player. As will be discussed further in Chapter 2, dialogue 

in the vast majority of games is scripted. The consequence of this is that either NPCs will 

repeat themselves unnecessarily or they will ignore the player entirely. Once they run out 

of new things to say, they will no longer seem like autonomous beings. 
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Given that the expectation of an NPC is to act like a human in a convincing manner, then 

ideally, an NPC should be able to pass the Turing Test. It can pass the Turing Test “if a 

human interrogator, after posing some written questions, cannot tell whether the written 

responses come from a person or from a computer”. To be able to accomplish such a feat, 

the computer needs the following: 

 natural language processing (to understand what the human said) 

 knowledge representation (to store its knowledge) 

 automated reasoning (to use information to answer questions as well as derive 

new information) 

 machine learning (to find patterns in order to adapt to new situations) [8].  

1.2 Research Questions 

This thesis will explore the following research questions: 

 Is it possible to integrate current AI research results in a real-time conversation 

system? 

 Is it possible to create a general-purpose conversation system that could be used 

in several different video games? 

 To what extent does such a system function and perform? 

1.3 Motivation for Research 

As mentioned in Section 1.1, having an NPC be able to engage in realistic dialogue with 

a human player would add to the impression of it being an intelligent agent. Currently, 

NPC responses are entirely scripted in a large number of games, which breaks the illusion 

of autonomy. If there could be a way to allow the human player to interact with NPCs in 

a similar manner as how they interact with other human beings, then the NPCs would be 

highly credible as believable agents. Some common ways that humans interact with each 

other are face-to-face, on the telephone, and via instant messaging. Therefore, it is 

sensible to try to simulate similar forms of interaction between a human and an NPC. 
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Given the desire to allow the human player to interact with NPCs in a freeform way (as 

opposed to them always being required to select possible utterances from a menu like in 

current video games), the use of natural language processing and information extraction 

will be required. It should be stated, however, that the purpose of this thesis is not to 

invent new techniques in either field. There is already research being done on how to 

solve various tasks such as part-of-speech tagging and sentiment analysis. Instead, this 

thesis assumes these modules as given (and also makes the assumption that they work 

perfectly even though they do not necessarily) and develops a framework for natural 

game dialogue by integrating these elements into believable agents. 

Tremendous research has already been done in Artificial Intelligence, yet video games 

continue to use outdated techniques for NPCs to interact with human players [9]. There 

are a few reasons why game designers are hesitant to improve dialogue AI. Firstly, it is a 

difficult research problem, and they would rather not have to solve it themselves. Instead, 

they would prefer for such a system to be readily available rather than create it in-house. 

Secondly, they are not confident that the current techniques are sophisticated enough to 

simulate realistic conversations, so they prefer to approximate dialogue with scripted 

techniques. Finally, they are not convinced that such high-level AI is actually necessary 

because they believe that video games are entertaining enough with their current AI [3].  

If a system could be developed that could make NPCs act like human beings in a credible 

way, then it would add a new dynamic to video games. As mentioned previously, the 

purpose of video games is to entertain. Having this new element of gameplay would add 

to the entertainment value of those games where interacting with NPCs is necessary to 

progress through the storyline. Since the NPCs would act reasonably autonomously, the 

game world would be more immersive as a consequence, and the suspension of disbelief 

would not be broken as easily. 

1.4 Proposed Method 

The purpose of this thesis is to create an innovative new dialogue engine for games, 

leveraging existing results of research in computational linguistics, as well as to illustrate 

the potential level of sophistication that could be offered. The aim is for game developers 
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eventually to have an easy-to-use, plug-and-play system that could either be used as is or 

could be customized by them as desired. Such a system would allow them to enrich the 

game experience without requiring too much effort on their part. 

The player should be able to interact with an NPC by inputting either questions or 

statements via a keyboard. The NPC would then parse the query and provide an 

appropriate response based on the nature of the input.  

1.4.1 Types of Input 

The NPC should be able to recognize the following types of input: 

 Questions 

o “W6” questions (i.e. “Who”, “What”, “Where”, “Why”, “When”, and 

“How” questions) 

o Yes/No questions 

 Assertions (i.e. the human player giving seemingly factual information to the 

NPC) 

 Compliments/Insults directed at the NPC 

While this list is certainly not exhaustive, it offers a good foundation from which to build 

a framework because these are standard speech acts [10]. However, a framework should 

still be flexible enough to expand this list in the future if required.  

1.4.2 Expected Types of Responses 

In the event that the human player asks one of the W6 questions, then the NPC should 

reply with either a phrase or sentence that answers the question in its entirety. If the 

human player asked a Yes/No question, then the NPC should reply with either “Yes” or 

“No”. In the case of a “No” answer, it might also be helpful for the NPC to add some 

extra information to clarify why the answer is “No”. If the player has made an 

informative statement, then the NPC should acknowledge that something was said and 
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store the information in its knowledge base. If the player has made either a compliment or 

insult towards the NPC, then a response that illustrates that the NPC recognized the 

statement as a compliment/insult should be made (e.g. “Thank you” for a compliment or 

“That wasn’t very nice” for an insult). 

1.4.3 End of Conversation 

A dialogue should continue until the player has given an indication that s/he wishes for 

the conversation to end (e.g. by saying “Goodbye.”).  

1.5 Structure of Thesis 

This first chapter discussed some of the ways in which non-player characters can appear 

intelligent. It also mentioned why they may cease to appear autonomous when engaging 

in dialogue with the player, as well as giving an outline to a proposed solution to this 

problem. Chapter 2 highlights the state-of-the-art techniques currently used in games to 

simulate dialogue. Chapter 3 discusses some of the state-of-the-art techniques in 

Artificial Intelligence. Chapter 4 proposes a model for conversation. Chapter 5 presents 

an architecture for the model proposed in Chapter 4. Chapter 6 discusses an 

implementation of the framework presented in Chapter 5. Chapter 7 mentions the 

methods used to test the implementation discussed in Chapter 6 and also highlights the 

results of the testing. Chapter 8 presents a conclusion and discusses future work.  
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Chapter 2  

2 State of the Art in Video Games 

As briefly mentioned in Chapter 1, most dialogues in current video games are simulated 

using scripted techniques. “Scripted”, in this sense, means that the response of an NPC 

was pre-written by a human author instead of being generated dynamically by the video 

game. Scripted techniques do not require a sophisticated knowledge of artificial 

intelligence to use them, making them easier to implement than more advanced AI 

techniques. However, the major downfall is that NPCs can cease to appear autonomous 

after a while due to the highly deterministic nature of their responses.  

The types of dialogue systems used in video games could be classified into three main 

types: cutscenes, branching dialogue trees, and simple natural language processing. Each 

of these types has advantages and disadvantages to their use, as will be explored in the 

next few sections. 

2.1 Cutscenes 

The easiest way to simulate dialogue is to give the human player no choice (or virtually 

no choice) in what can be said to an NPC. Video games of this type use cutscenes, which 

are scripted sequences that occur at different stages of the game. The sole purpose of 

cutscenes is to advance the narrative of the video game. Due to the nature of cutscenes, 

they are “passive and non-interactive, as opposed to the interactive nature of gameplay” 

[11]. Cutscenes do not require any Artificial Intelligence to generate the dialogue because 

the script was written out entirely beforehand by a human author. Consequently, 

cutscenes are akin to movie clips being inserted in the video game. Two popular video 

games notable for their use of cutscenes are Halo and Call of Duty. 

Cutscenes are regularly used in several AAA game titles, but their use is considered 

controversial, and many gamers and even some game developers oppose them. Chet 

Faliszek, a Valve employee who worked as a writer for Half-Life and Portal, believes 

that gamers do not have the patience to sit through cutscenes. Thomas Grip, the lead 

programmer for the popular horror game Amnesia: The Dark Descent, believes that 
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“There is a big difference in our relationship to a protagonist when you are a passive 

observer compared to playing as that character” [12]. Thus, the inclusion of cutscenes in 

games is becoming increasingly undesirable. 

2.1.1 Classifications 

Cutscenes can be organized into three main classifications: live action, pre-rendered, and 

in-game cinematics. The following subsections will explain these three types in more 

detail. 

2.1.1.1 Live Action 

Live action cutscenes are similar to films because, like films, they are prerecorded and 

feature human actors. Due to this similarity, they would often be created by third-party 

production companies since they required the same resources needed to make a motion 

picture. Occasionally, they would even feature Hollywood actors. Consequently, they are 

rather expensive to make.  

Live action cutscenes were quite popular in the early 1990s. Some notable titles that used 

them were Wing Commander III: Heart of the Tiger, Command and Conquer, and The 

Horde. However, they are rarely used today because most modern-day game developers 

consider them too costly to produce. 

2.1.1.2 Pre-Rendered 

Pre-rendered cutscenes are created using higher-quality versions of character models and 

environments than what is seen during gameplay. They are able to feature superior 

graphics due to the fact that they do not need to be rendered in real time. Instead, as the 

name implies, they are rendered in advance.  

2.1.1.3 In-Game Cinematics 

In-game cinematics use the same character and environment assets as what is seen during 

gameplay. What distinguishes them visually from actual gameplay is the use of a 

cinematic camera. Thus, the visual style of the cutscene will still resemble a film, but it is 

actually being rendered in real time [13].  
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2.1.1.3.1 Quick Time Events 

Often, like with the other types of cutscenes, the player must passively watch the story 

unfold. However, a recent trend has been the use of quick time events. Quick time events 

(QTE) are essentially in-game cinematics that allow for some player interaction. Prompts 

appear at scripted intervals indicating that the player should press a button within a short 

period of time. If the player succeeds, then the cutscene continues; otherwise, the player 

may be forced to repeat that segment again. Their purpose is to keep the player actively 

engaged, but players can find them distracting and restrictive [14].  

2.1.2 Advantages 

The use of cutscenes has the following major advantages: 

 They are easy to implement. 

o Since cutscenes are entirely scripted and require little to no player 

interaction in a dialogue, they do not require knowledge of Artificial 

Intelligence to create. 

 Total control over what an NPC will say. 

o Due to the linear nature of cutscenes, there is virtually no risk of an NPC 

saying something nonsensical or inappropriate. 

2.1.3 Disadvantages 

The use of cutscenes has the following major disadvantages: 

 NPCs are not autonomous  

o Since NPCs are not autonomous, the player may find it difficult to believe 

they have emotions, yet “the emotional dimensions of NPCs is usually 

seen as key to preserve the immersive quality of a virtual world” [15].  

 Players are becoming disinterested in them  
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o Players are less likely to sit through cutscenes because they would prefer 

to be actively playing instead of passively watching [12]. Although quick 

time events attempted to remedy the issue of being passive observers, their 

use is not popular [14]. 

2.2 Branching Dialogue Trees 

Dialogue trees are a common technique to simulate dialogue in video games. They allow 

the player to choose from a menu of options of what to say to an NPC. In some games, 

certain branches of the tree will be inaccessible unless a particular event in the game has 

occurred or if the NPC perceives the player in a certain way. For example, the player may 

be unable to ask an evil NPC to join him or her if the NPC’s perception of the player is 

that s/he is good. Despite the name, dialogue trees are not necessarily tree structures. 

Instead, they are often graphs that can have cycles. Two notable game series that use 

dialogue trees are The Elder Scrolls and Fallout. 

Figure 2.1 illustrates a simple example of a dialogue tree. Observe that two arcs can lead 

to the same node. Furthermore, note that one node’s sibling can also be its successor. 

 

Figure 2.1 An example of a dialogue tree [16]. 
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2.2.1 Advantages 

The use of branching dialogue trees has the following major advantages:  

 The author controls what the player is allowed to say 

o Since the player is forced to choose from a menu of possible utterances, 

there is no risk of the player saying something that the NPC is unable to 

respond to. 

 Player has choice 

o Unlike in cutscenes where the player either passively watches or at most 

presses a button when prompted to do so, the player is actively able to 

choose what to say to an NPC. The choice of utterance has an obvious 

effect on the type of response the NPC will give. 

2.2.2 Disadvantages 

The use of branching dialogue trees has the following major disadvantages: 

 Labour-intensive to write 

o The author needs to anticipate different utterances the player may want to 

say to an NPC at any given time in the dialogue. Since a dialogue tree 

grows exponentially, and since the player would likely need to interact 

with several NPCs in the game, the amount of writing an author would 

need to do is tremendous. 

 Consistency can be difficult to maintain 

o If the author decides to edit a dialogue tree, then s/he needs to ensure that 

subtrees remain consistent with the edit. A small change early in the tree 

can cause a ripple effect that leads to numerous more changes being 

required later in the tree [17]. 
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 Dialogue will eventually be exhausted 

o After a while, the bottom of the dialogue tree will be reached. When this 

occurs, the NPC will either repeat itself or simply ignore the player. Both 

circumstances break the illusion of intelligence. 

2.3 Simple Natural Language Processing 

Simple natural language processing is a technique that only a few video games employ. 

Nevertheless, it is worth mentioning because it offers an interesting alternative to the 

status quo that gives players more control over their actions. Using this technique, the 

player can input something to say to the NPC, and then the NPC responds in an 

appropriate manner. Although keyboard input is most common, it is not always necessary 

to use it; games can also use speech-to-text technology to convert microphone input into 

text. Some notable games that use simple NLP are Façade, Bot Colony, Nintendogs, 

Photopia, and Galatea.  

2.3.1 Classifications 

Video games that use simple natural language processing can be organized into two main 

classifications: simple commands and simple dialogue. The following subsections will 

explain these two types in more detail. 

2.3.1.1 Simple Commands 

In some games, the player can only interact with NPCs via direct commands, rather than 

engage in dialogue. Only commands that the system recognizes will cause the NPC to 

perform the desired action. Unrecognized commands will yield either no response or a 

nonsensical one because all responses are scripted [18]. A classic example of this type of 

game is Nintendogs, where the player could give a command like “High five!” and the 

virtual dog would put its paw up in response. 

In other games, the player can indirectly converse with NPCs by inputting commands 

indicating the topic to discuss. Often, these types of games are text-based like Photopia 

and Galatea. As before, only recognized commands result in something useful 
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happening; otherwise, an error message will usually be displayed such as “I do not 

understand that sentence”. The following example from Galatea illustrates what may 

happen after the player inputs a recognized command: 

> Ask about spotlight                                                            

“So does that get in your eyes?” you ask, gesturing at the spotlight.                                                                       

“A bit.  It's also too hot.”  She shrugs.  “But what can you do.” 

2.3.1.2 Simple Dialogue 

Some games offer the player a more sophisticated way of interacting with NPCs than 

merely giving commands. Rather, these games allow the player to engage in simple 

dialogue. Two examples of this type of game are Façade, which lets the player input 

either single words or sentences via keyboard, and Bot Colony, which lets the player 

input well-formed English sentences via either keyboard or speech recognition. 

Façade is divided into various beats (or segments). For these different beats of the game, 

the author tried to anticipate what the player might want to say to an NPC. If the player 

inputs one of these predicted utterances, then the NPC follows the rule of how to act for 

that beat. If the player inputs something else, then the NPC acts in a way prescribed for 

the entire game. However, if no rule exists for how the NPC should respond, then the 

game moves on to the next beat and the NPC starts a new topic of conversation. It should 

be noted that the game is in real time, so a few seconds of silence is treated like player 

input [19]. 

Unlike Façade, Bot Colony uses automated dialogue. It is one of very few games that 

attempts such a feat. The player can ask questions, make assertions, and issue commands. 

Then the system tries to understand the meaning of what the player is saying with the 

intention of giving an appropriate response. Currently, the player can only interact with 

robot characters in such a manner because “a human character not understanding what he 

or she is told would immediately dispel the suspension of disbelief.” However, in order to 
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ensure that human characters could understand everything they are told, “the level of 

language understanding must be exceptionally high.” [20] 

2.3.2 Advantages 

The use of simple natural language processing has the following major advantages: 

 Player has total freedom in what to say 

o Since players can input a statement rather than choosing from a menu, 

they will be more immersed in the game compared to using a dialogue tree 

because “when a player is faced with obvious choice points consisting of a 

small number of choices (e.g., being given a menu of three different 

possible things to say), it detracts from the sense of agency” [19]. 

 NPCs can appear to be intelligent 

o Assuming that the NPC’s response to what the player wrote is appropriate, 

the NPC will seem credible as a believable agent because it is able to 

respond sensibly to unscripted input. 

 Game seems more realistic 

o Since these types of games often impose a time limit for the player’s 

response, they seem more lifelike due to the fact that the NPCs can notice 

unusual pauses in the dialogue and comment on them. 

2.3.3 Disadvantages 

The use of simple natural language processing has the following major disadvantages: 

 NPC responses are usually not automated 

o Most of the time, NPC responses are prewritten by a human author; it is 

very rare for them to be automated. Thus, lots of time and effort must go 
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into writing them because “the only way to increase interactivity is to 

author extraordinary amounts of content by brute force” [19]. 

 NPC may ignore what player says 

o If no rule exists on how to respond to the player’s input, an NPC will 

either ignore the player entirely or suddenly change the topic of 

conversation. Either scenario breaks the illusion that the NPC is intelligent 

because it becomes obvious that it does not know how to respond. 

2.4 Summary 

This chapter discussed the state-of-the-art techniques used to simulate dialogue in video 

games. The first technique is the use of cutscenes, which are scripted sequences that the 

player must often passively observe. Cutscenes are generally either live-action, pre-

rendered, or in-game cinematics. The second technique is the use of branching dialogue 

trees, which allow the player to choose from a menu of possible utterances. They tend to 

be “clumsy, difficult to write and unrealistic” but are considered to be “the best we’ve 

got” [21]. The third technique is the use of simple natural language processing, which 

consists of either simple commands or simple dialogue. These different techniques all 

have the risk that the player will eventually cease to view the NPCs as believable agents, 

which can break the immersion of the game. 
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Chapter 3  

3 State-of-the-Art in Artificial Intelligence 

As briefly mentioned in Chapter 1, the techniques for handling dialogue in video games 

are quite outdated. There has been a great deal of research done in Artificial Intelligence 

that could be used to make dialogue more dynamic, but for the various reasons discussed 

in Section 1.3, it is ignored. These advances in Artificial Intelligence are more 

sophisticated than the techniques mentioned in Chapter 2; thus, they do require more in-

depth knowledge to employ. Nevertheless, they are highly robust and can greatly aid in 

making dialogue more automated. Consequently, they can assist in making non-player 

characters seem more autonomous. This section will cover some of the core techniques in 

Artificial Intelligence that should be utilized in video games: Information Extraction, 

Sentiment Analysis, and Question Answering. 

3.1 Information Extraction 

The purpose of Information Extraction is to automatically extract structured information 

from unstructured sources. The advantage of having structured information is that players 

can make richer queries than simply searching for individual keywords [22]. Consider the 

following example sentence: “Paris is the stylish capital of France”. An information 

extraction system should recognize from this sentence that there is a relationship between 

Paris and France, namely that one is the capital of the other; thus, it may generate a 

relational tuple such as capital-of(Paris, France) [23]. 

Extracting information from noisy, unstructured sources is not trivial. This area has 

drawn lots of attention from researchers for over two decades. During this time, various 

techniques for information extraction have been developed. While original systems were 

rule-based, the use of statistical methods such as Hidden Markov Models, conditional 

models based on maximum entropy, and Conditional Random Fields has become more 

favourable [22]. 
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Information extraction can be divided into several subfields. This section will focus on 

the following three: Named Entity Recognition and Classification, Coreference 

Resolution, and Relationship Extraction. 

3.1.1 Named Entity Recognition and Classification 

Named Entity Recognition and Classification, often abbreviated as NERC, is a subfield 

of Information Extraction where a system automatically recognizes and classifies units of 

information such as the names of people, organizations, and locations, as well as numeric 

expressions about time, date, money, and percentages. Originally, Named Entity 

Recognition and Classification systems were entirely rule-based, meaning they used 

handwritten rules to identify named entities. However, most modern systems prefer to use 

machine learning techniques instead such as supervised, semi-supervised, and 

unsupervised learning.  

3.1.1.1 Supervised Learning 

Supervised learning is the most common technique for Named Entity Recognition and 

Classification systems. The way it works is that the system reads a corpus of text 

annotated by a human, memorizes a list of entities, and then creates a set of 

disambiguation rules using discriminative features. Several methods can be used to 

implement supervised machine learning such as Hidden Markov Models, decision trees, 

maximum entropy models, support vector machines, and Conditional Random Fields.  

3.1.1.2 Semi-Supervised Learning 

The use of semi-supervised (also known as “weakly supervised”) learning for Named 

Entity Recognition and Classification is rather recent. In semi-supervised learning, a 

technique called “bootstrapping” is used, which means that the system is provided only a 

small amount of labelled data and a fairly large amount of unlabelled data. The purpose 

of the small amount of labelled data is to allow the system to identify contextual clues 

common to all the examples. Afterwards, the system looks for similar contexts to try to 

find other named entities. By recursively applying this process, the system is able to find 

a large number of named entities appearing in a large number of contexts. 
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3.1.1.3 Unsupervised Learning 

Clustering is the most common unsupervised learning technique for Named Entity 

Recognition and Classification. Using this method, the system creates clusters of terms 

based on how similar their contexts are, and then tries to identify named entities from 

these clusters. In general, the use of lexical resources (e.g. WordNet), lexical patterns, 

and statistics computed on an unlabelled corpus are required for unsupervised learning to 

be able to discover named entities. 

3.1.1.4 Features for Machine Learning 

The choice of which machine learning technique to use is not the only important factor in 

creating a Named Entity Recognition and Classification system. Finding appropriate 

features is equally as important. Features are distinctive attributes or characteristics of a 

word. They are required for the system to be able to create classification rules. There are 

several kinds of features that can be used in a machine-learning system such as word-

level features (e.g., case, punctuation, morphology), list lookup features (e.g., list of 

entities), and document and corpus features (e.g., corpus frequency) [24]. 

3.1.1.5 Potential Use in Video Games 

The ability to recognize and classify named entities would likely be an integral part of an 

information extraction system present in a video game. In several games, especially role-

playing ones, important non-player characters and locations usually have unique names. 

It is quite likely that when players interact with an NPC, they might mention either 

another NPC or a location in the game world. Therefore, the system should recognize and 

correctly classify these named entities to ensure that the NPC can give an appropriate 

response to a player’s query.  

For example, consider the following two sentences: “Lily is a kind of flower,” and “Lily is 

my best friend”. In the first sentence, “Lily” refers to the plant, while in the second 

sentence, it refers to a person. Thus, the NPC’s response should match the meaning of 

“Lily” that the player was referring to. 
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3.1.2 Coreference Resolution 

A coreference occurs when different words or phrases refer to the same entity. The 

purpose of coreference resolution is to identify these portions of text so that the system 

knows the player is referring to the same object. A common example of coreference 

resolution would be anaphora resolution.  

Coreference resolution is important because the meaning of a sentence is difficult to 

determine if the system is not aware that the same entity is being referred to by different 

expressions. Consider the following sentence: “Joshua really likes cornflakes, but he gets 

them all over his face.” In this particular sentence, Joshua, he, and his all refer to the 

same object. Moreover, cornflakes and them also refer to the same object. Thus, the 

system needs to be able to recognize that the above sentence is equivalent to, “Joshua 

really likes cornflakes, but Joshua gets cornflakes all over Joshua’s face.”  

3.1.2.1 Difficulties 

Originally, attempts at coreference resolution used rule-based approaches. Recently, 

however, machine learning is the more standard. Nevertheless, machine learning is still 

not a perfect solution (or even close to perfect). As mentioned in the previous section on 

NERC, the choice of features is very important. Unfortunately, commonly used features 

such as the distance between coreferences, string matching, and linguistic form are 

inadequate to recognize many coreferential relationships. Instead, commonsense and 

encyclopedic knowledge are generally required to be able to accurately resolve 

coreferences. Unfortunately, it is not a trivial problem to provide the system with all the 

commonsense and encyclopedic knowledge that humans have. Determining how to use 

lexical and commonsense knowledge to improve coreference resolution on unrestricted 

text is still an active area of research. The following two examples illustrate why 

coreference resolution is such a difficult problem. 

3.1.2.1.1 Example 1 

Consider the following example: “A new report reveals more problems at the Internal 

Revenue Service. A broad review of the agency found it used improper tactics in 
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evaluating IRS employees at many IRS offices across the country.” The words in bold all 

refer to the same government agency, the Internal Revenue Service. Unless the system 

has a way to know that the IRS is a government agency, it could not be expected to 

recognize that the agency is a coreference.  

3.1.2.1.2 Example 2 

Consider another example: “Israel will ask the United States to delay a military strike 

against Iraq until the Jewish state is fully prepared for a possible Iraqi attack with non-

conventional weapons, the defense minister said in remarks published Friday.” In this 

sentence, the words in bold both refer to the state of Israel. As in the previous example, 

the system needs some way of knowing that Israel is Jewish state for it to correctly 

identify that a coreference is present [25]. 

3.1.2.2 Potential Use in Video Games 

When people write complex sentences, they will generally use coreferences to avoid 

repeating themselves unnecessarily. They use pronouns, synonyms, hyponyms, 

hypernyms, and other expression types to convey their ideas. Consequently, rather than 

limiting players by requiring the use of only one identifier per entity, they should have 

the freedom to input more natural-sounding sentences. Thus, coreference resolution 

would be beneficial in video games because players would still be able to write in a way 

that they are accustomed to, and the system could better understand the meaning they are 

trying to convey. Thus, although coreference resolution technology is still imperfect, its 

use could still allow for a more immersive gameplay experience.  

3.1.3 Relationship Extraction 

Often, different entities will be related to each other in some way. The purpose of 

relationship extraction is to extract these semantic relations among entities. A relation can 

be defined as a tuple such that the entities within a text have a predefined relationship. 

Relationship extraction systems usually focus on seeking out binary relations. For 

example, in the sentence, “CMU is located in Pittsburgh,” the system might generate the 

tuple located-in(CMU, Pittsburgh), and in the sentence, “Manuel Blum is the father of 
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Avrim Blum,” the system might generate the tuple father-of(Manuel Blum, Avrim Blum). 

Relations do not have to be binary however; they can be a higher order as well. Consider 

the following example: “At codons 12, the occurrence of point mutations from G to T 

were observed”. This example has a quaternary relation and can be represented as the 

tuple point-mutation(codon, 12, G, T). Like other areas of information extraction, the 

technique of choice for relationship extraction is machine learning, particularly 

supervised and semi-supervised learning. 

3.1.3.1 Supervised Learning 

Supervised learning is a common technique for relationship extraction. All that is 

required is to provide enough labelled examples of entities that are related and that are 

not related. Given a sentence S, define T(S) as the features extracted from S, and ei and ej 

as entities present in S. A mapping function fR can be defined as follows: 

𝑓𝑅(𝑇(𝑆), 𝑒𝑖, 𝑒𝑗) = {
+1
−1

    

This mapping function can be used to generate a labelled set of training data that can be 

used to train a classifier like Neural Nets or Support Vector Machines. If enough training 

data and appropriate features are provided then a classifier could potentially perform 

quite well. 

In practice, supervised learning has some drawbacks. Firstly, it is difficult for the 

classifier to find new entity-relation types not included in the training data, so the data 

must have examples of all the entity-relation types that the classifier is expected to find. 

Secondly, it is not trivial to extend a classifier to higher-order relations, so a classifier for 

binary relations will have a difficult time finding non-binary relations. Thirdly, it is 

computationally expensive to work with large input, so it does not scale well as input 

sizes increase. Finally, input data needs to be preprocessed (e.g. form a parse tree), but 

preprocessing can already be quite error-prone, so errors may propagate.  

If 𝑒𝑖 and 𝑒𝑗 are related according to relation 𝑅 

 

Otherwise 
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3.1.3.2 Semi-Supervised Learning 

The other common machine-learning method for relationship extraction is semi-

supervised learning. As mentioned before, semi-supervised learning takes advantage of a 

technique called “bootstrapping”. The major advantage semi-supervised learning has over 

supervised learning is that there is generally an abundance of unlabelled data available, 

but only a limited amount of labelled data. The reason for the low amount of labelled data 

is because it is expensive to create in large amounts. 

Although semi-supervised learning has some advantages over supervised learning, it still 

has a significant disadvantage: it is difficult to use. Algorithms like Snowball, KnowItAll, 

and TextRunner require a large number of input parameters, but they do not explicitly 

specify how to select optimal parameters. Therefore, it can be quite difficult to tune the 

parameters to get optimal results. On the other hand, an algorithm like Dual Iterative 

Pattern Relation Expansion relies on hard pattern matching; consequently, it considers 

two patterns to be different even if they only differ by punctuation. Thus, more research 

is necessary to ensure that semi-supervised learning for relationship extraction is easier to 

use and more powerful [26]. 

3.1.3.3 Potential Use in Video Games 

Relationship extraction is still far from perfect in unrestricted domains. However, it 

should be possible to use within a restricted domain like a video game. Since video 

games have a narrow scope, some of the downfalls of supervised learning that were 

previously mentioned should not cause too many issues. In a standard video game, there 

would likely only be a limited number of entity relationship types (e.g., father, friend, 

hairdresser, etc.); consequently, it would not be difficult to make exhaustive training data 

that includes examples of all the relationship types. Furthermore, a player is likely only 

going to input a few sentences at a time, so large input sizes are unlikely to occur during 

actual gameplay. Therefore, using supervised learning for relationship extraction may be 

practical in a game. 

The ability to correctly extract relations would allow players to query the system about 

relationships in the game world (e.g., “Who is Steven’s father?”), as well as give the 
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system information about relationships between entities (e.g., “Henry is the King of 

England.”). As a result, the incorporation of relationship extraction would permit more 

complex dialogue between players and non-player characters. 

3.2 Sentiment Analysis 

Sentiment analysis is defined as “the computational study of people’s opinions, 

appraisals, attitudes, and emotions toward entities, individuals, issues, events, topics and 

their attributes”. It is also commonly known as opinion mining.  

Let ei represent an entity’s name, aij represent an aspect of the entity ei, ooijkl represent the 

orientation of the opinion about the aspect aij (the orientation can be positive, negative or 

neutral, and it may have different intensity levels), hk represent the person who holds the 

opinion, and tl represent the time when the person hk expressed the opinion. An opinion 

can then be expressed by the following quintuple (ei, aij, ooijkl, hk, tl). The term GENERAL 

is used as the aspect in the special case where the opinion is about the entire entity rather 

than a specific part.  

Consider the following example sentence written by a player named bigXyz on 

November 4, 2010: “The voice of my Moto phone was unclear, but the camera was 

good.” A sentiment analysis system should recognize that bigXyz dislikes the voice 

quality on the Motorola but likes the camera. Thus, it would convert the sentence into the 

following two tuples: (Motorola, voice_quality, negative, bigXyz, Nov-4-2010) and 

(Motorola, camera, positive, bigXyz, Nov-4-2010). The benefit of using this particular 

definition of “opinion” is that it facilitates converting unstructured text into structured 

data [27]. 

3.2.1 Potential Use in Video Games 

When players interact with NPCs, they may potentially mention their opinion on some 

aspect of the game. For example, they might write something like, “I do not like my 

sword. It is not sharp enough.” With sentiment analysis, the system could recognize that 

the player has a negative sentiment towards the sword’s sharpness. In response, it could 

perhaps recommend either a place to get it sharpened or a shop to purchase a new sword. 
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Furthermore, players may be either friendly or hostile towards an NPC. Sentiment 

analysis would allow the system to recognize the player’s positive or negative sentiment 

about the NPC and have it respond in a sensible manner. For example, if a player insults 

the NPC, then the NPC could respond aggressively, while if the player compliments it, it 

could respond kindly. By adjusting the NPC’s reaction based on how the player is 

perceived to be feeling, the dialogue will seem more natural and the NPC will seem more 

autonomous. 

3.3 Question Answering 

A question-answering system is a type of information-retrieval system that answers a 

natural-language query. Its purpose is to give concise answers to players’ questions. 

Question-answering systems have recently become quite advanced, and research in this 

area is constantly growing. In recent years, there has been increased interest in 

researching interactive question-answering systems, which allow players to ask follow-up 

and clarification questions. This ability is useful because question-answering systems are 

only rarely used for just one question. Instead, they tend to be used for several questions 

related to a similar topic of interest (e.g. William Shakespeare). As a result, players 

should be able to ask related questions in a manner that is natural for them, rather than 

being forced to word queries in a contextually-independent way. Nonetheless, giving 

players this sort of flexibility is a non-trivial task and can prove to be difficult.  

3.3.1 Difficulties 

Two common issues that arise in interactive question-answering systems are ellipsis and 

anaphoric references. These problems and their potential solutions are explored further in 

the following subsections. 

3.3.1.1 Ellipsis 

Ellipsis occurs when part of a sentence is omitted in such a way that there is no verb 

phrase. They are generally used for follow-up questions. For example, the player may ask 

the system the following question, “When was Shakespeare born?” Afterwards, the 

player may ask, “Where?” The system must recognize that the player is actually asking, 
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“Where was Shakespeare born?” because the latter part of the sentence is implied. To 

determine the implicit verb phrase, it can use previous questions that were asked to fill in 

the missing words.   

3.3.1.2 Anaphora 

An anaphora is a linguistic form whose meaning depends on the context being known. 

Usually, anaphora present themselves as third-person pronouns. For example, the player 

may ask, “Whom did he marry?” Without context, it is impossible to determine who “he” 

refers to, and thus, it is impossible to answer the query. To resolve anaphoric references, 

the system can replace them with entities mentioned in previous questions [28]. 

Continuing with the example from Section 3.3.1.1, the system should replace “he” with 

“Shakespeare”. 

3.3.2 Potential Use in Video Games 

Due to its ability to answer a natural-language query, a question-answering system would 

be beneficial in games where players need to ask questions to NPCs in order to proceed. 

In most modern role-playing games, players must choose a question from a dialogue tree. 

As mentioned earlier, the drawbacks of dialogue trees are that NPCs will run out of new 

things to say and that the author cannot anticipate every question the player may want to 

ask. A question-answering system would allow players to ask questions to an NPC as 

though they were conversing with a human. 

3.4 Summary 

This chapter discussed some state-of-the-art techniques in Artificial Intelligence that 

could be used to improve dialogue in video games. The first technique is information 

extraction, which automatically extracts structured information from unstructured 

sources. It would allow a system to better understand what a player is trying to say. Three 

areas of information extraction that would be highly relevant in the context of a video 

game are named entity recognition and classification (NERC), coreference resolution, 

and relationship extraction. The second technique is sentiment analysis, which extracts 

people’s opinions about various entities. It would allow a system to formulate responses 
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that are relevant to how a player feels about something in the game. The last technique 

mentioned is question answering, which retrieves information based on a natural-

language query. It would allow the system to answer questions the player may have about 

various aspects of the game. Combined with information extraction and sentiment 

analysis, question answering could potentially offer very sophisticated replies. While 

none of these techniques have been perfected yet, their implementation in a dialogue 

engine could greatly add to the believability of an NPC compared to traditional methods. 
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Chapter 4  

4 Conversation Model 

This chapter proposes a high-level model for conversation that will serve as the basis for 

the rest of this thesis. The goal of this model is to make NPCs appear as human as 

possible in order to cause the player to suspend disbelief. Although actual conversations 

between humans can vary significantly due to individual as well as social factors, this 

model attempts to dissect features that are common in many kinds of social situations. 

Furthermore, this model assumes that the player and the NPC are not close 

acquaintances.  

Since there is no agreed upon model of conversation in the literature, this thesis offers 

one that could be used as the foundation for a framework. It is highly likely that not all 

conversations could fit this model; however, although it may be possible that a better 

model exists that could better simulate a wider range of conversations, this model was 

created because it is complex enough to allow for a variety of different conversations 

while simple enough that it could be implemented on a computer. The conversation 

architecture discussed in Chapter 5 requires that this particular model be used, but it 

could be modified to accommodate other models later on without great difficulty.  

 

Opening Greeting 

Small Talk 

Core 

Closing Salutation 
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Figure 4.1 High-Level Model of Conversation 

 

Figure 4.1 illustrates a high-level version of this conversation model. Here, a 

conversation begins with an opening greeting. Afterwards, the participants engage in 

small talk, which is meaningless chatter about neutral subjects. Once a certain level of 

comfort is reached, they progress to discuss more substantial topics. Finally, once the 

conversation is finished, they conclude with a closing salutation. Although not explicitly 

shown, this model uses the notion of turn-taking: the NPC and the player take turns 

during the conversation, so it is not possible for one to interrupt the other (i.e. the player 

inputs a complete thought, and then the NPC outputs a complete thought).  

The purpose of Figure 4.1 is to provide a general overview of the stages in a conversation 

without focusing too much on the details. In particular, “Core” is essentially a shorthand 

that means any part of the conversation that is not a greeting or small talk, and this 

diagram treats it like a black box. The following sections will elaborate on each of these 

stages further. 

4.1 Opening Greeting 

Greetings are a frequent component of social interaction. Their appropriate use is vital to 

establish and maintain interpersonal relationships between people. Under Austin’s 

Speech Act Theory, greetings are considered to be expressive illocutionary acts, meaning 

that they are not supposed to be taken literally. For example, when people say, “Good 

morning,” it does not necessarily mean that they actually care if someone’s morning goes 

well. Instead, these types of expressions are meant to show politeness [29]. 

While a large number of potential greetings exist, not all are appropriate in every 

situation. In deciding which greeting to use, one must consider the following factors: 

 Social distance between speaker and listener 

 Relative power of the listener over the speaker 

 The absolute ranking of the imposition for that particular culture. 
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There are other factors that can affect the choice of greeting as well, such as emotional 

state or the personality of the individual. However, these factors are beyond the scope of 

this thesis and are left to future work. 

4.1.1 Social Distance 

Social distance is a symmetrical relationship. Assuming all else equal, the level of 

formality chosen by the speaker and the listener should be somewhat similar. Figure 4.2 

illustrates an example of a social exchange between two close friends, while Figure 4.3 

shows an interaction between two acquaintances in a formal setting. Notice how the level 

of formality is much higher in Figure 4.3 compared to Figure 4.2. 

 

Figure 4.2 Example of exchange where participants have short social distance. 

 

Figure 4.3 Example of exchange where participants have long social distance. 

4.1.2 Relative Power 

The relative power of the listener over the speaker is an asymmetrical relationship. 

Consequently, the participant with higher power can afford to be less formal than the 

participant with lower power. Figure 4.4 is an example of an exchange between a student 

and her teacher. In this example, the student is being formal by addressing her teacher by 

her title and last name, while the teacher is being less formal by addressing her student by 

only her first name. 

 

Figure 4.4 Example of exchange where one participant has power over the other. 

Friend 1: Hey there, Jim. 

Friend 2: Howdy, Bill. Good to see you again, buddy. 

Acquaintance 1: Good evening, Mrs. Smith. 

Acquaintance 2: Good evening, Mr. Jones. 

Student: Good morning, Mrs. White. 

Teacher: Good morning, Susie. 
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4.1.3 Absolute Ranking of Imposition 

Certain greetings can be considered highly imposing. As the imposition increases, the 

level of required politeness increases as well. A greeting is deemed to be imposing if it 

demands something of the listener that may interfere with his or her wants, self-

determination, or approval (e.g., asking for goods, services, or time) [29, 30]. Figure 4.5 

illustrates an example of a panhandler asking for money, Figure 4.6 shows an elderly 

person asking for help to carry groceries upstairs, and Figure 4.7 demonstrates a 

volunteer asking someone to hear about a fundraiser. These requests are highly imposing, 

particularly since they are all demanding something from a stranger. Thus, they 

counteract the imposition by acting politely. 

 

Figure 4.5 Example of person asking for money. 

 

Figure 4.6 Example of person asking for assistance. 

 

Figure 4.7 Example of person asking for someone's time. 

4.1.4 Justification for Inclusion in Video Games 

Different NPCs can have different social characteristics. These characteristics should 

influence how they behave. For example, some NPCs may portray close friends of the 

player, while others will initially be strangers. Furthermore, some NPCs may portray 

aristocrats, while others may portray paupers. Finally, some NPCs may have 

requests/demands for the player, while others do not.  

Panhandler: Excuse me, ma’am, can you spare some 

change? 

Elderly Person: Excuse me, could you please help me 

carry these upstairs? 

Volunteer: Hello. Could you please spare a few minutes to 

hear about our fundraiser? 
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Given that NPCs are portraying people, their choice of greeting needs to be appropriate 

for what a human would say in the same situation. As mentioned before, greetings are 

important for establishing and maintaining interpersonal relationships. Since the goal is 

for an NPC to act like a human, it needs to follow social conventions for conversation. 

Otherwise, it will cease to be a believable agent. 

4.2 Small Talk 

When people have never met or do not know each other well, they will generally engage 

in light conversation about neutral topics. This light conversation is what is known as 

small talk. The main purpose of small talk is to establish rapport and trust, which in turn 

reduces social distance. It provides participants the opportunity to set up an interactional 

style, as well as establish their reputations. Often, they will chat about topics like the 

weather, their physical environment, personal experiences, and preferences [31]. Figure 

4.8 illustrates an example of small talk between two individuals who have never met. 

Initially, they discuss the weather, but then they proceed to talk about barbeques once 

they have established some rapport. 

 

Figure 4.8 Example of small talk 

In social interactions, there is the notion of face. Speakers wish to maintain positive face 

by getting the approval of their listeners, and they wish to maintain negative face by 

being unhindered in their autonomy [30]. According to Bickmore and Cassell, small talk 

mitigates any threat to face in two ways: 

1. It provides an interactional style where it is easy to continue a conversation and 

establish comradery, which maintains positive face 

Person 1: Nice weather we’re having. 

Person 2: Yes, it’s been gorgeous out lately. I heard there’s 

supposed to be a storm coming soon though. 

Person 1: Oh, really? I’ll have to put my patio furniture away 

then. We just had our first barbeque of the season last night. 

Person 2: Oh, that sounds fun! My family loves barbeques. We 

had them all the time last summer. 
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2. It establishes that other conversation participants are non-hostile, which maintains 

negative face. 

4.2.1 Justification for Inclusion in Video Games 

There have already been documented cases of players establishing on-going relationships 

with chat-bots that were able to engage in small talk. Even when players were made 

aware that the systems could not actually understand what they were typing, they still 

maintained these relationships. It appears that small talk has a profound ability to alter 

players’ perceptions of conversational agents, which permits them to suspend disbelief 

[31]. 

When a player interacts with various NPCs for the first time, they will be unfamiliar with 

each other, unless the storyline has explicitly established that an NPC has known the 

player since before the game actually started. Since strangers rarely have profound 

conversations due to lack of rapport, it would be bizarre if all NPCs acted comfortably 

enough around the player to discuss highly personal or controversial issues. Thus, it is 

sensible to include the ability to engage in small talk so that the player and NPC can gain 

familiarity and build trust. 

4.3 Core 

The core of the conversation could be considered as the most important part. At this 

point, social formalities have already occurred, so the player and NPC can discuss more 

significant issues. The specifics of what they can converse about is very much game-

dependent, but it could include the player seeking information about something in the 

game world, the NPC introducing a quest, or even the NPC mentioning something that 

may prove useful later on at another stage of the game. Once again, there is no standard, 

agreed-upon model for conversation, so this thesis chose to include certain features that 

would be important to a number of games and scenarios. While not all possible situations 

that could occur during the core are necessarily covered here, this section covers many 

situations that are likely to occur and could be implemented. However, other features 

could be added later on to cover other possible situations. The following sections will 

explore this stage in more detail. 
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4.3.1 Player Asks Questions 

A likely reason that the player would wish to speak with an NPC is to ask it for 

information. This information may assist with completing a specific quest (e.g., where to 

find the key to a castle), or it may be more general information that will be useful for the 

entire game (e.g., how to restore health). There are different kinds of questions the player 

may ask, so the NPC’s answer must make sense to maintain the illusion of intelligence. 

The answers do not, however, always need to be correct. In fact, it could be interesting if 

different NPCs offered different answers to the same question, which is a phenomenon 

that can occur in real life. Furthermore, the NPC is allowed to admit to not knowing the 

answer, which can also occur in real life. 

4.3.1.1 “W6” Questions  

In English, there are question types that begin with the words who, what, where, when, 

why, and how. It is important that when an NPC retrieves information, it answers the 

correct question. Figure 4.9 is an example of an NPC giving an appropriate response to a 

player’s question. The player wishes to know when someone named Jane will come 

home, and the NPC answers that she will be home at 9:00 PM. It could very well be true 

that Jane will be home at 9:00 PM, or it could be incorrect; nevertheless, it is irrelevant 

because the answer makes sense and is believable. On the other hand, Figure 4.10 is an 

example of an NPC giving a potentially inappropriate response to a player’s question. 

Once again, the player wishes to know when Jane will be home. However, the NPC’s 

response does not directly answer the question. Rather, it answers the question of where 

Jane is located. Unless the fact that Jane is currently located at Billy’s house has some 

hidden meaning (e.g., she will be home quite late because she is with him, but it is not 

clear when), the response is nonsensical. This particular example highlights the problem 

of semantics versus pragmatics, so it would be up to a human author to determine 

whether the answer, “Jane is at Billy’s house,” is appropriate in this context or not. 

 

Figure 4.9 Example of NPC Giving a Sensible Answer to Player Query 

Player: When is Jane coming home? 

NPC: Jane will be home at 9:00 PM. 
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Figure 4.10 Example of NPC Giving a Nonsensical Answer to Player Query 

4.3.1.2 Yes/No Questions 

Yes/no questions are another question type that the player may ask. These often begin 

with conjugated forms of “to be” or “to do”. While not strictly necessary for the NPC to 

answer a question with the words “Yes” or “No”, often people do include one of these 

words in their answer. Figure 4.11 illustrates an NPC answering a yes/no question with a 

descriptive answer. Although it does provide the information the player was likely 

seeking (i.e. when Jane will actually come home), it comes across as somewhat artificial 

because it does not acknowledge that the player was incorrect. Figure 4.12 illustrates an 

NPC replying with only “No”. It answers the question correctly, but it also raises the 

question, “When is Jane coming home?” Figure 4.13 illustrates a hybrid of Figure 4.11 

and 4.12. Here, the NPC acknowledges that the player was incorrect and also provides 

clarification as to why. Consequently, the answer is both natural-sounding and complete. 

 

Figure 4.11 Example of NPC answering a Yes/No Question with a Descriptive 

Sentence 

 

Figure 4.12 Example of NPC answering a Yes/No Question with "No" 

 

Figure 4.13 Example of NPC answering a Yes/No Question with "No" and a 

clarification 

Player: When is Jane coming home? 

NPC: Jane is at Billy’s house. 

Player: Is Jane coming home at 5:00 PM? 

NPC: Jane is coming home at 9:00 PM. 

Player: Is Jane coming home at 5:00 PM? 

NPC: No. 

Player: Is Jane coming home at 5:00 PM? 

NPC: No, Jane is coming home at 9:00 PM. 
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4.3.1.2.1 “Did You Know…” / “Did You Hear…” Questions 

Occasionally, the player may try testing an NPC by asking if it knows or has heard 

something. Although worded as a question, the player is essentially making an assertion, 

which is a different kind of speech act. This question is still a yes/no type, but the NPC 

should clarify what it means if it says “No”. Figure 4.14 illustrates an example of an NPC 

replying “No” to the player’s question. The reply is ambiguous because it could mean, 

“No, I was not aware of that,” or “No, that statement is false.” Figures 4.15 and 4.16 are 

examples of unambiguous replies that the NPC could offer. 

 

Figure 4.14 Example of NPC replying with just "No" to a "Did You Know..." 

Question 

 

Figure 4.15  Example of NPC replying that it did not know an asserted fact 

 

Figure 4.16 Example of NPC disagreeing with an asserted fact 

4.3.2 NPC Initiates Topics 

To make the NPC appear more autonomous, as well as add an interesting dynamic to the 

dialogue, the system should not rely solely on the player to initiate topics of discussion. 

Instead, it should also bring up topics at various points to carry on the conversation. The 

following two sections propose ways it could achieve this task. 

Player: Did you know that Jane coming home at 5:00 PM? 

NPC: No. 

Player: Did you know that Jane coming home at 5:00 PM? 

NPC: No, I didn’t know that. 

Player: Did you know that Jane coming home at 5:00 PM? 

NPC: That’s not true. Jane is coming home at 9:00 PM. 
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4.3.2.1 NPC Asks the Player Questions 

Either to demonstrate curiosity or to further the plot, having the NPC be able to ask the 

player questions can make it seem more genuine. The types of questions it should ask 

depend heavily on factors such as the game’s storyline and the NPC’s personality, so it is 

difficult to suggest particular questions that all NPCs should ask. Nevertheless, it is 

important that no matter what it asks, it should remember the player’s answers in case it 

needs to discuss them later on. Figure 4.17 is a simple example illustrating how the 

player may test the NPC to see if it remembers an earlier part of their dialogue. 

 

Figure 4.17 An example of an NPC remembering a player's response 

Having the NPC ask questions is also a natural way to introduce quests if there are any. 

For example, the NPC could say something like, “I have something that needs to be done, 

but I can’t do it on my own. Will you help me?” While the model of the core does not 

explicitly have rules on what to do if the player were to answer “Yes,” an implementation 

of the model could check that the player gave a positive response and then implicitly 

query the system with a question such as, “What do you need help with?” By 

automatically using a question such as this one as the player’s input, the system would be 

able to find a fact in the knowledge base similar to this one, “I need help finding three 

rare rubies. Please bring them back to me.” 

4.3.2.2 NPC Recalls Episodic Memories 

There are two types of memories that people can have: semantic (i.e., factual) and 

episodic. Episodic memory “pertains to knowledge of one’s experienced life events and 

is used for the formation of autobiographical memories” [32]. So far, this chapter has 

NPC: Halt. Why are you here? 

Player: I wish to see the King. 

NPC: Very well. 

… 

Player: Do you know why I’m here? 

NPC: You wish to see the King. 
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focused mainly on the importance of NPCs recalling facts. This section will serve as a 

complement and highlight the usefulness of recalling events.  

Since NPCs are portraying people, they should be able to discuss their life stories. This 

kind of conversational storytelling is “often used to relate interesting events or humor and 

thus contribute to the rapport-building function”. Ideally, the NPC should be recalling 

events related to the overall dialogue. However, even if they happen to be unrelated, the 

player may be able to permit them if they are entertaining or informative enough [31]. 

Thus, their inclusion can aid in making the NPC seem more believable while also 

strengthening its relationship with the player. Figure 4.18 shows how an NPC might 

mention an episodic memory during a conversation. 

 

Figure 4.18 Example of NPC recalling episodic memory 

4.3.3 Player Makes Statements 

The player might make statements at certain points in the conversation with the purpose 

of either changing the topic, volunteering information, or giving an opinion. Statements 

can be either objective or subjective, and these different types should be treated in 

different ways. 

4.3.3.1 Objective 

Objective statements are supposedly factual, so the NPC should treat them as the player 

volunteering information. Consequently, it should remember what the player said for 

future reference. It may be that the player provided incorrect information, whether 

deliberately or accidentally, so if the NPC is able to identify the contradiction, it should 

mention it unless there is a game-related reason why it would keep its knowledge a 

Player: Do you know where I could go fishing? 

NPC: A good fishing spot is at Lake Orin. I remember when 

I used to take my son out fishing. It feels like just yesterday. 

Player: Does your son still like fishing? 

NPC: No. My son hates fishing now. He would rather drink 

mead all day. 
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secret. Objective statements should be treated in a similar way to the “Did you know…” 

questions mentioned in Section 4.3.1.2.1. 

4.3.3.2 Subjective 

Subjective statements are the player’s opinions on different issues. These opinions may 

be either positive or negative. The NPC should be able to recognize if the player is 

complimenting or insulting it and respond appropriately, as illustrated in Figures 4.19 and 

4.20. If the player is giving an opinion about something else, then the NPC should 

mention its own opinion on the subject if it has one (and if there is no reason not to), as 

can be seen in Figures 4.21 and 4.22. 

 

Figure 4.19 Example of NPC responding to an insult 

 

Figure 4.20 Example of NPC responding to a compliment 

 

Figure 4.21 Example of NPC agreeing with the player's sentiment 

 

Figure 4.22 Example of NPC disagreeing with the player's sentiment 

Player: You’re ugly. 

NPC: How rude! 

 

Player: You’re really smart! 

NPC: Why, how kind of you to say that. Thank you! 

 

Player: I love chicken pot pie. 

NPC: I love it too. It’s delicious. 

 

Player: The Count is cruel. 

NPC: I disagree. He is a kind man. 
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4.4 Closing Salutation 

The closing salutation occurs at the conclusion of a conversation. It follows the same 

rules as the opening greeting, so it is important that the level of politeness matches and 

that the greeting makes sense for the situation. For example, an NPC should not say, 

“Goodnight,” during the day. 

4.5 Summary 

This chapter introduced the conversation model that serves as the basis for the rest of this 

thesis. In this model, a conversation is divided into four main stages: opening greeting, 

small talk, core, and closing salutation. Greetings are a social formality, and different 

levels of politeness are required depending on the situation. Small talk is light 

conversation whose purpose is to allow speakers to build rapport and trust. The core of 

the conversation represents the most important part of it. It is in the core that the player 

and NPC can ask each other meaningful questions, share information and opinions, and 

recall events. The closing salutation ends the conversation and must follow the same rules 

as the opening greeting. By having a realistic conversation model, an NPC can seem 

more believable and autonomous. 
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Chapter 5  

5 Conversation Architecture 

This chapter proposes an object-oriented architecture for the conversation model from 

Chapter 4. It is object-oriented in the sense that it is modular, extensible, and designed in 

such a way that the modules could be instantiated in an object-oriented programming 

language. This architecture is designed with ease-of-use in mind, so it is very “plug-and-

play”. Most of the work required in using it is simply to create an initial knowledge base 

of facts and some episodic memories for the NPCs. The rest is handled in the background 

by the conversation module. 

5.1 Conversation Handler 

The only module in the conversation architecture that the video game communicates with 

directly is the conversation handler.  The conversation handler is a black box responsible 

for overseeing the entire conversation. Its purpose is to ensure seamless switching 

between the various stages of conversation mentioned in Chapter 4: opening greeting, 

small talk, core, and closing salutation.  

    

 

CONVERSATION HANDLER 

 

GAME 

NPC’s Social Qualities 

NPC’s Knowledge 

User Input Knowledge Base Greeting Handler 

QA System Sentiment Analyzer 

Topic Handler Episodic Memory 

NPC Reply 

Figure 5.1 The Conversation Handler 
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Figure 5.1 illustrates how the conversation handler works. Here, it is depicted as separate 

from the game to highlight the fact that it could be used in a variety of different games. It 

accepts player input, information about the NPC’s knowledge (e.g., factual and episodic 

memories), and information about the NPC’s social qualities (e.g., its relative power over 

the player) from the game. Then, this information gets delegated to the following 

modules in order to generate an NPC response: knowledge base, greeting handler, 

question-answering system, sentiment analyzer, topic handler, and episodic memory 

module. Afterwards, the conversation handler outputs the NPC’s reply back to the game. 

The details concerning how it accomplishes this task are hidden from the rest of the 

game.  

In the event that a game wants to trigger a conversation without requiring the player to 

initiate contact, it could easily send a greeting to the NPC on the player’s behalf without 

the player’s knowledge. Then it would appear as though the NPC is initiating contact. In 

this particular case, the game would be responsible for ensuring that the NPC is 

approaching the player at an appropriate time so as not to create a strange opening.  

It is important to note that the knowledge base and the episodic memory module 

illustrated within the conversation handler are derived from the NPC’s knowledge that is 

provided by the game. The knowledge base stores the NPC’s knowledge about facts 

while the episodic memory module stores the NPC’s knowledge about events. 

5.2 Knowledge Base 

The knowledge base is responsible for storing the knowledge an NPC has about its world. 

These facts could be permanent (e.g., “Ottawa is the capital of Canada”) or temporary 

(e.g., “It is raining”). The knowledge base is dynamic, so as the game progresses, the 

NPC is able to learn new facts. These new facts can be provided directly by the game or 

by the player.  

5.3 Greeting Handler 

The greeting handler is responsible for selecting the appropriate opening greeting/closing 

salutation for various situations. As mentioned in Chapter 4, there are three main factors 
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to consider when choosing a greeting: social distance, relative power of the listener, and 

the absolute ranking of the imposition. The greeting handler must calculate the required 

level of politeness based on these factors and then select the greeting that most closely 

matches the necessary politeness level. The greeting handler must also ensure that the 

greeting makes sense for the situation. For example, “Good morning” should not be 

selected if it is the evening. 

5.4 Question Answering System 

The question answering system (QA system) is responsible for answering player queries. 

Its goal is to offer responses in the same way a human would. Thus its replies must be as 

natural-sounding as possible. The question answering system can be divided into two 

main parts: a question parser and an information retrieval system. These parts can be 

further divided into more sub-modules, as seen in Figure 5.2. Sections 5.4.1 and 5.4.2 

elaborate on these components further. 

  

 

 

Question Answering System 

Question Parser Information Retrieval System 

Ellipsis 

Resolution 

Coreference 

Resolution 

NERC Logic 

Handler 

Ontology Relationship 

Extraction 

Figure 5.2 Question Answering System represented as a tree 
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5.4.1 Question Parser 

The question parser is responsible for determining both what the player is asking and 

what sort of reply is expected. In Chapter 4, two main types of questions were discussed: 

“W6” questions and yes/no questions, so the system must classify which of these types 

the player is asking. Also as previously mentioned, the answer to a “W6” question must 

make sense for the type of question asked, so it is important to be able to determine the 

appropriate type of reply.  

Sometimes, what the player is asking or what the appropriate reply should be is not 

immediately obvious. In these situations, extra processing is required to determine what 

the player’s query was and how best to answer it. The following sections describe sub-

modules the question parser will need for these special scenarios.  

5.4.1.1 Ellipsis Resolution 

As mentioned in Chapter 3, ellipsis occurs when the player inputs a sentence lacking a 

verb phrase (there are other forms of ellipsis, but for the purpose of this thesis, this 

definition is the one that will be used). Usually, this type of input will occur as a follow-

up question. Thus to resolve ellipsis, the system needs to examine previous questions the 

player asked to fill in the missing verb phrase. In order to do this, the system must 

construct a parse tree of the previous questions to isolate their verb phrases. 

5.4.1.2 Coreference Resolution 

To avoid repetition, the player may input questions that include coreferences such as 

anaphora. Thus the question parser requires a sub-module capable of resolving these 

coreferences. Like with ellipsis resolution, it may be necessary to examine previous 

questions if the context is not obvious from the most recent input alone. 

5.4.1.3 Named Entity Recognition and Classification 

Since anaphora is often captured by the use of personal pronouns, named entity 

recognition is required in conjunction with coreference resolution to resolve instances of 
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words like “he” and “she”. Furthermore, NERC may also be needed to determine the 

appropriate answer to certain types of “Who” and “Where” questions. 

5.4.2 Information Retrieval 

The information retrieval module is responsible for finding the answer to the player’s 

query from a knowledge base of facts. It needs to search through the knowledge base and 

assign non-negative weights to the different facts for how relevant they are to the actual 

query. Only those facts whose weights are higher than a certain threshold (the threshold 

can be selected via experimentation) are considered to be potential answers to the query. 

The weighting that a fact receives depends heavily on the rarity of its words (other factors 

can also affect the weight, such as the order of the words). For example, common words 

like “as” or “the” would not add a lot of weight to a fact because they are used quite often 

in English sentences. Thus, they would not greatly influence whether or not a fact is 

chosen. However, nouns or verbs that were also present in the original query may cause a 

fact to be given more weight because only a few facts are likely to contain them.  

5.4.2.1 Logic Handler 

Not all facts are necessarily stated explicitly in the knowledge base. Instead, some facts 

may need to be derived. Thus, a logic module is required. For example, if the knowledge 

base stores as a fact, “Tim is Jane’s father”, but the player queries, “Who is Tim’s 

daughter?”, the system may not be able to explicitly find the fact.  However, if the 

system also stores as a fact, “Jane is a female”, then it has all the information it needs to 

answer the player’s query. It just needs to logically conclude based on some rules that if 

Tim is Jane’s father and Jane is a female, then Jane is Tim’s daughter. 

5.4.2.1.1 Ontology 

As mentioned in the previous subsection, the information retrieval system should be able 

to logically conclude new facts based on facts it already knows. What was not mentioned 

was where the rules needed to make such new derivations come from. These rules can be 

extracted from an ontology. An ontology is “a description […] of the concepts and 

relationships that can exist for an agent or a community of agents” [33].  
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Figure 5.3 An example of how an ontology works 

Figure 5.3 illustrates the rules needed to conclude that Jane is Tim’s daughter. Because of 

Rule 1, the logic handler could deduce that Tim is Jane’s parent. Then, because of Rule 2, 

it could deduce that Jane must be Tim’s child. Finally, due to Rule 3, it could conclude 

that Jane is Tim’s daughter, which answers the player’s original query. 

5.4.2.1.2 Relationship Extraction 

Before the logic handler can use an ontology to explore relationships, however, it must 

first have a way of extracting the initial relationships directly from the facts in the 

knowledge base. The system cannot assume that the facts in the knowledge base are 

already in relational form because some facts may have been provided by the player 

during a conversation. Consequently, it is assumed that all facts are stored as natural-

language sentences. For example, for the fact, “Tim is Jane’s father”, the system needs to 

extract the binary relation father-of(Tim,Jane), as shown in Figure 5.4. For the fact, “Jane 

is a female”, it needs to extract the relation instance-of(Jane,female), as shown in Figure 

5.5. Once it is explicitly aware of these relations, then it can use the ontology to deduce 

that Jane is Tim’s daughter. 

 

Figure 5.4 First example of extracting a relationship from a fact. 

1. A father is a male and is a parent 

2. X is the parent of Y is equivalent to Y is the child of X 

3. A daughter is a female and is a child 

Tim is Jane’s father. father-of(Tim,Jane) 
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Figure 5.5 Second example of extracting a relationship from a fact. 

5.5 Sentiment Analyzer 

The sentiment analyzer is responsible for determining the player’s opinions about 

different entities. It must be able to give a score between -1 and +1 of how strong the 

sentiment is. It must also be able to identify the entity being discussed, as well as the 

specific aspect of the entity if one is mentioned. 

The purpose of having this ability is so the NPC can respond in a sensible manner. As 

mentioned in Chapter 4, if the player compliments the NPC, it should act in a friendly 

way. However, if the player insults the NPC, it should act in a more hostile way. 

Furthermore, if the player complains about an object, then the NPC should try to 

recommend solutions to remedy the problem. Finally, the NPC may also tell the player 

whether it agrees or disagrees with the opinion.  

5.6 Topic Handler 

The topic handler is responsible for determining what topic the NPC should discuss with 

the player. It can either be a continuation of the current topic, or the topic handler can 

propose a new topic. During the small talk stage, the topic handler must only select 

neutral subjects to help build rapport with the player. During the core stage, however, it is 

allowed to select other types of topics that may be more polarized (e.g., asking which side 

of an in-game war the player supports).  

New topics can be introduced either by having the NPC ask the player a question or 

remember an event. It is preferable to avoid introducing a new topic by simply reciting a 

fact from the knowledge base because the effect may be jarring and could ruin the flow of 

the conversation. Instead, stating facts is only appropriate when continuing a discussion 

about a particular topic or when answering a query.  

Jane is a female. instance-of(Jane,female) 
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5.7 Episodic Memory 

The episodic memory module is responsible for recalling episodic memories based on 

topics discussed during the conversation. Important keywords mentioned during the 

dialogue trigger the activation of certain memories. When the topic handler decides that 

the NPC should recall an event, the most recently activated memory is retrieved.  

As illustrated in Figure 5.6, an NPC’s episodic memories are stratified into three separate 

memory pools: immediate, short term, and long term. Activated memories are initially 

searched for in the immediate pool. If none can be found, then they are searched for in 

the short term pool. If no activated memories can be found in the short term pool either, 

then they are searched for in the long term pool. Once a memory is retrieved, it is moved 

from its current pool (i.e., short-term or long-term pool) to the immediate pool, where it 

can be easily accessed again later. 

Like with the knowledge base, episodic memories can be created ahead of time as well as 

added dynamically during gameplay. When a memory is created, it is assigned a weight 

to represent how important it is. This assignment can either be given manually or 

estimated automatically. If no memory pool is manually specified, then the memory is 

automatically placed into the immediate pool. 

Over time, memories either get deleted or moved to the next memory pool (i.e., memories 

in the immediate pool get moved to the short-term pool, and memories in the short-term 

pool get moved to the long-term pool), depending on how much weight they carry (if a 

memory has a low weight, it gets deleted). This deletion of memories is meant to 

simulate how people can forget mundane events after a while. Furthermore, memories in 

the long-term pool can be corrupted over time (although, these cannot be deleted). That 

is, certain keywords are swapped with other keywords that are ontologically related. 

Keywords, in this sense, are any words in the memory’s description that are important to 

its meaning (e.g., nouns or verbs). The purpose of the corruption is to simulate how 

people can remember events incorrectly after a long period of time [32]. 
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Figure 5.6 Structure of Episodic Memory Module [32] 

5.8 Summary 

This chapter discussed an object-oriented architecture for the conversation model from 

Chapter 4. The architecture described in this chapter is an innovative way of using 

current research in Artificial Intelligence in a novel application. It illustrates how to 

create a conversation system that could be used in multiple video games. The primary 

module is the conversation handler, which is the only module the video game interacts 

with. The conversation handler delegates certain tasks to other modules and ensures that 

the conversation flows smoothly through the four main stages. The knowledge base is 

responsible for storing facts the NPC knows about its world. It can be updated 

dynamically either by the game or the player. The greeting handler is responsible for 

choosing the appropriate greeting based on the sociological factors that affect politeness, 

as well as the current situation (e.g., time of day). The question answering system is 

responsible for answering player queries. It needs to parse the question, and then use 
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logic to find the answer from the knowledge base. The sentiment analyzer is responsible 

for determining the player’s opinions about entities so that the NPC can offer a sensible 

response. It gives a score between -1 and +1 and identifies the aspect of the entity that the 

opinion is about. The topic handler is responsible for determining the topic the NPC 

should bring up based on how the conversation is progressing. The NPC can either 

continue with the current topic, ask a question about a new topic, or remember an event. 

The episodic memory module is responsible for recalling memories about events to add a 

storytelling element to the conversation. The event themes it recalls are partially decided 

by the topic handler. These modules work together to ensure a seamless dialogue and to 

make the NPC appear more autonomous. 
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Chapter 6  

6 Implementation 

This chapter discusses an implementation for the framework presented in Chapter 5. The 

conversation system is written primarily in Java because it is a commonly used object-

oriented language in Artificial Intelligence research. However, some parts of the system 

were written in JavaScript to allow a human to easily edit certain portions of the program 

without needing to recompile the code, and some other parts were written in Python in 

order to use a third-party Python library for sentiment analysis. Although not every 

element from the framework in Figure 5.1 has been fully implemented, this system is still 

powerful enough that one could engage in a simple dialogue with an NPC. Furthermore, 

while the system was only designed to handle keyboard input, a video game could easily 

use a speech-to-text library to allow the player to speak to an NPC rather than type to it. 

Furthermore, the game could output an NPC’s reply as audio by using a speech 

synthesizer. 

6.1 Greeting 

The greeting handler is implemented primarily via two JavaScript files. The first file is 

responsible for opening greetings while the second one is responsible for closing 

salutations. The Java part of the program is responsible for deciding which of the two 

files to run and when to run them. In order to bridge the gap between the Java and 

JavaScript code (i.e. facilitate information passing between the two languages), the 

program uses the Mozilla Rhino JavaScript engine for Java. 

The reason why the greeting handler is implemented in JavaScript rather than Java is 

because it is designed to be easily editable by a human. Unlike Java which needs to be 

recompiled whenever changes to the code are made, JavaScript is a scripting language 

that is interpreted. Consequently, it is quite simple to modify the greeting handler to 

generate alternate greetings for a variety of situations. This feature is useful because 

greetings are strongly tied to certain social characteristics as discussed in Chapter 4, so it 

allows NPCs to act in a way that is canon with their game world. 



51 

 

The default implementation of the greeting handler creates a list of possible greetings 

depending on the situation. In this implementation, the situations considered are the 

player’s gender, the time of day, and the NPC’s social factors.  For example, “Good 

morning” would only be said if the time is between 5:00 AM and 12:00 PM. 

Furthermore, “Ahoy” would only be said if the required level of politeness was quite low. 

Part of the information that the greeting handler needs to decide what is appropriate and 

what is not comes from the Java part of the program. The conversation handler accepts as 

input a Java map containing some useful information about the world, the player, and the 

NPC’s social characteristics (e.g., “social distance”  “0.5”; “player’s gender”  

“female”). This map is passed to the greeting handler, so it can use facts such as the 

social distance between the NPC and the player, the relative power the player has over 

the NPC, the imposition of the NPC’s greeting, and the player’s gender when creating a 

list of acceptable greetings. The greeting that is returned is randomly selected from this 

final list.  

In order to calculate the required level of politeness, the greeting handler calculates the 

sum of the NPC’s social characteristics (i.e. social distance + relative power + 

imposition). If the sum is less than or equal to 1.0, a low politeness level is required. If 

the sum is greater than 1.0 but less than or equal to 2.0, a medium politeness level is 

required. If the sum is greater than 2.0, a high politeness level is required.  

6.2 Small Talk 

Like the greeting handler, the small talk portion of the program is implemented primarily 

in JavaScript. Due to the nature of small talk, it makes sense that this part should be 

designed to be easily editable by a human as well. In the current implementation, there is 

no topic handler that explicitly determines acceptable topics for small talk (more 

information is given in Section 6.4.8). Instead, the topics are hardcoded in the JavaScript 

file. 

In the default implementation, three topics are provided: how the player is feeling, the 

weather, and an arbitrary compliment on an aspect of the player’s appearance. For each 

of these topics, a few different sentences to express the same meaning are included to 
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avoid predictability. For example, when asking how the player is feeling, the NPC could 

ask any of the following: “How are you?”, “How are things?”, “How’s life?”, “How’s it 

going?” These topics were chosen because they are neutral and relatively common; 

however, there is no reason why this particular set must be used. In fact, with some 

knowledge of JavaScript programming, it is quite easy for a person to modify the small 

talk module to include other topics. Due to time constraints, social factors were not taken 

into consideration when choosing the wording for small talk. However, they could be 

readily included since the small talk module has access to the same Java map as the 

greeting handler. 

To avoid repetition, the small talk module keeps track of topics it has already discussed. 

Due to the fact that the scope of the JavaScript program ends once it returns control to the 

Java program, it stores covered topics in a Java list where it can access them when it is 

run again. Thus, the small talk module is guaranteed to return a new topic each time the 

player says something for the entire duration of the conversation. 

The small talk module has access to player responses, so it can give reasonable replies for 

certain situations. For example, if the NPC had asked, “How are you?”, and the player 

had responded, “Fine, thank you”, then the NPC may reply with, “That’s good to hear!” 

However, if the player had responded, “I’m not well”, then the NPC may reply with, “I’m 

sorry to hear that”. The choice of how the NPC should respond to various player input is 

rule-based. 

Once the small talk module has exhausted its topics, it returns a default message to the 

player indicating the need to switch to the core of the conversation. An example of such a 

message could be, “So is there anything that I can help you with? \t” Note that it also 

ends its message with the tab symbol, \t, to invisibly tell the conversation handler that it 

needs to switch the stage to the core.  

In the event that the player would like to bypass small talk altogether (e.g., the player just 

wants to get some information quickly), he or she can ask a question at any time. Once a 

question has been posed, the conversation handler switches to the core stage immediately, 

and the NPC will attempt to answer the query. 
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6.3 Core 

Due to the complexity of a conversation’s core, its implementation went through various 

stages to reach the state it is now. This section will discuss previous implementations as 

well as the current implementation, and it will highlight the significant changes that were 

made.  

6.3.1 Implementation 1 

The original implementation of the core revolved around using a MySQL database to 

store facts. Some examples of tables included the main NPC table, the NPC relationship 

table, and the NPC attribute table. Tables 6.1, 6.2, and 6.3 illustrate the structures of these 

three tables. For this particular implementation, only questions were acceptable input; 

statements were ignored. 

 

 

 

 

ID First Name Last Name Date of Birth Gender 

1 John Smith 1945-07-02 Male 

2 Katherine Smith 1987-09-05 Female 

Table 6.1 Example of main NPC table in MySQL database 

 

FirstName1 LastName1 RelationshipType FirstName2 LastName2 

John Smith Daughter Katherine Smith 

Katherine Smith Father John Smith 
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Table 6.2 Example of NPC relationship table in MySQL database 

 

FirstName LastName Attribute 

John Smith Handsome 

John Smith Intelligent 

Table 6.3 Example of NPC attribute table in MySQL database 

To find the answer to the player’s query, the English question had to be converted into 

SQL. To accomplish this task, regular expression matching was used. A text file 

contained a series of regular expressions followed by their SQL translations. Figure 6.1 is 

an example of an actual rule from this file. The line that begins with a hash symbol is a 

comment indicating the pattern being matched. The line with just a numeral represents 

the ranking of the rule relative to other rules (a higher number represents a higher rank). 

The third line is the actual regular expression to be matched, and the fourth line is the 

SQL code to replace it with. The RuleBank class read Rule objects from this text file and 

stored them for later use. 

Using the Stanford Core NLP library, player input was first converted into the following 

format: lemma/part of speech/named entity. Then the rules from the rule bank were used 

to see if the input matched any of the regular expressions. If it did, it was converted into 

an SQL query, and the result (if there was one) was returned. If it did not match, then a 

message was returned indicating that the NPC did not understand the question. 
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Figure 6.1 Example of regular expression rule to convert an English question to an 

SQL query 

6.3.1.1 Issues 

Using a database to answer questions proved to be quite difficult in practice. Often, SQL 

queries for seemingly simple English questions would become quite complex due to the 

need to join tables to find the answer. For example, the question, “Who is Katherine 

Smith’s father?” would be translated into the complicated SQL seen in Figure 6.1. 

Furthermore, these complicated queries occasionally caused some noticeable delay in 

retrieving the answer to a question. 

6.3.2 Implementation 2 

The second implementation of the core revolved around using a Prolog database to store 

facts. The Prolog database was structured similarly to the original MySQL database (see 

Figure 6.2), except that it also included rules to derive new facts (see Figure 6.3). Having 

inference rules allowed for a larger variety of possible queries without making them as 

complicated as in MySQL.  

 

Figure 6.2 Example of NPC table in Prolog database 

# who is <FIRST_NAME> <LAST_NAME>'s <RELATIONSHIP_TYPE>? 

14 

.*who/WP/O be/VB.?/O (.+)/NNP/PERSON (.+)/NNP/PERSON 's?/POS/O 

(.+)/NN/O.* 

SELECT npc.FirstName, npc.LastName FROM relationships INNER JOIN npc 

ON npc.FirstName=relationships.FirstName2 AND 

npc.LastName=relationships.LastName2 WHERE 

relationships.RelationshipType='$3' AND relationships.FirstName1='$1' 

AND relationships.LastName1='$2'; 

%%%%%%%%%%%%%%%%%%%%% NPC Table %%%%%%%%%%%%%%%%%%%%%%%% 

%   ID,  First Name, Last Name,  Gender,  DOB (YYYY,MM,DD) 

npc(npc1, 'Jim', 'Parsons', 'male', date(1960,02,08)). 

npc(npc2, 'Susan', 'Parsons', 'female', date(1985,10,26)). 

npc(npc3, 'Roy', 'Parsons', 'male', date(1987,05,16)). 

npc(npc4, 'June', 'Smith', 'female', date(1995,12,03)). 

npc(npc5, 'Angela', 'Smith', 'female', date(1990,07,13)). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Figure 6.3 Example of some inference rules for Prolog database 

Just like with the MySQL implementation, the Prolog implementation required English 

questions to be converted into queries. Once again, regular expression matching was used 

to accomplish this task. The text file containing the translation rules was structured 

almost identically as before, except instead of MySQL queries, it contained Prolog 

queries. Figure 6.4 shows an example of how the text file was restructured. Note that the 

Prolog query is much simpler than its MySQL counterpart. 

 

Figure 6.4 Example of regular expression rule to convert an English question to a 

Prolog query 

6.3.2.1 Issues 

While the Prolog implementation was certainly an improvement over the MySQL one, it 

still suffered many of the same major problems. Firstly, creating rules for translating 

English questions into Prolog queries was quite time-consuming since it had to be done 

manually. Secondly, it was very difficult to anticipate different types of questions that the 

player might ask. Finally, converting the result of a Prolog query into an English response 

was quite challenging. 

father(X,Y) :- parent(X,Y), male(X). 

mother(X,Y) :- parent(X,Y), female(X). 

brother(X,Y) :- sibling(X,Y), male(X). 

sister(X,Y) :- sibling(X,Y), female(X). 

uncle(X,Y) :- brother(X,W), parent(W,Y). 

aunt(X,Y) :- sister(X,W), parent(W,Y). 

# who is <FIRST_NAME> <LAST_NAME>'s? <RELATIONSHIP_TYPE>? 

14 

.*who/WP/O be/VB.?/O (.+)/NNP/PERSON (.+)/NNP/PERSON 's?/POS/O 

(.+)/NN/O.* 

npc(ID1,'$1','$2',_,_), $3(ID2,ID1), npc(ID2,FirstName,LastName,_,_). 
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6.3.3 Current Implementation 

The current implementation of the core revolves around using text files as the knowledge 

base. Each line of a text file contains a fact written as an English sentence. Furthermore, 

special meta-data is added to the end of a fact to indicate the types of questions it 

answers. Figure 6.5 is an example of such a knowledge base. 

 

Figure 6.5 Example of knowledge base stored in a text file 

To find facts based on player queries, the Apache Lucene library [34] is used. It has high-

quality search engine capabilities, making it a useful tool for information retrieval. Each 

fact from the knowledge base is added to Lucene as a document. Afterwards, the player’s 

question is used to query Lucene, where it then returns the highest-ranked document 

(fact) that best matches the query. To ensure it returns reasonable results, the 

conversation system requires that it must have a confidence level of at least 0.8 (as 

computed by Lucene using the default settings); otherwise, the NPC will indicate that it 

does not know the answer.  

This implementation works exceedingly better than the previous two because the player 

has more flexibility in how to word questions. While there are still instances where a 

question that should have an answer returns nothing, this event occurs much less 

frequently. Furthermore, it is now trivial for the player to give information to the NPC. 

Any time the player makes a statement, it gets stored in a special text file of player facts 

(if a player fact is the result of the player answering a question, then the original question 

is stored as meta-data; for other types of facts that the player volunteers, there is currently 

no way to add extra meta-data). Then, if the player queries the NPC on something he or 

she had previously said, the NPC can usually respond correctly.  

Jane is in Paris. <who> <where> 

Jane is Tim and Mary's daughter. <who> 

Tim and Mary are Jane's parents. <who> 

Tim is Jane's father. <who> 

Mary is Jane's mother. <who> 

Jane likes to eat apple pie. <who> <what> <does> 

Jane likes Billy. <who> <does> 

Billy is Jane's boyfriend. <who> 

Jane is Billy's girlfriend. <who> 
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6.3.3.1 NPC Asks Questions 

Because it is so simple to store information that the player gives the NPC, it makes sense 

to allow the NPC to ask the player questions. At this time, however, this feature is 

implemented in a rudimentary way due to the lack of a topic handler (see Section 6.4.8 

for more details), so the NPC currently retrieves a list of questions to ask the player from 

a text file. 

6.3.3.2 Sentiment Analysis 

To determine the player’s sentiment, the sentiment analysis tool from the TextBlob 

library [35] was used. Because it is a Python library, a custom Python file that calls this 

library is run as an external process. The console output of the Python file is treated as 

input to the Java program. The TextBlob library only has the capability to provide the 

overall sentiment of the input and a subjectivity score; it is unable to identify the entity 

that the sentiment is about (see Section 6.4.7 for more details). Consequently, its 

usefulness is limited. 

6.3.3.3 Episodic Memory 

To add a storytelling element to the conversation, the episodic memory module described 

in Kope, Rose, and Katchabaw [32] was used. This module allows for memories to be 

stratified in three different memory pools: immediate, short-term, and long-term. It also 

ages the memories and moves them to the next pool if their weight is high enough. 

Furthermore, it corrupts long-term memories after a while by swapping out keywords 

with other words that are categorically related. 

When the player provides input, each word is sent to the episodic memory system as a 

prompting keyword. If any memory becomes activated as a result of this prompting, then 

it gets returned. 

6.3.3.4 Issues 

The biggest issue with this implementation is that it cannot makes inferences. If a fact is 

not explicitly stated in the knowledge base, then the NPC cannot answer the player’s 
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question. With a logic handler, then this problem would be solved. However, due to time 

constraints, one was not implemented (see Section 6.4.6 for more details). 

It should also be noted that the system assumes there are no typos or mistakes in the 

player’s input. If typos are present, it will not be able to find the information that the 

player was looking for. Originally, a spellchecking library was used to assist in such a 

situation, but it would occasionally misclassify a correctly typed word as incorrect and 

then change it to something else. Consequently, it was removed from the conversation 

system. 

6.4 Unimplemented Features 

Due to constraints on time and other resources, not all the features mentioned in Chapter 

5 were included. This section discusses the features that were either omitted or only 

partially implemented. 

6.4.1 Ellipsis Resolution 

With more time, ellipsis resolution would have been implemented as follows: 

 Store the previous question that the player asked as well as its parse tree.  

 Use an NLP library to create a parse tree for the current query. If it is missing a 

verb phrase, then add the verb phrase of the most recent question. Store this 

modified question and its parse tree. 

 Run the modified query. 

6.4.2 Coreference Resolution 

Since coreference resolution is already a large area of research, an NLP library would 

have been used to perform this task. This feature was omitted because a library could not 

be found that could do it quickly enough for a video game. Stanford Core NLP [36] was 

initially used, but it proved quite slow. 
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6.4.3 Named Entity Recognition and Classification 

Like with coreference resolution, Stanford Core NLP was initially used, but it was too 

slow. A faster library that could run in real-time could not be found. 

6.4.4 Ontology 

Given enough time, an ontology would have been created using OWL [37], the Web 

Ontology Language. Specifically, a library like Apache Jena [38] would have been used 

to access the ontology since it has a built-in reasoner for OWL/lite, which can be used to 

make inferences about relations. 

6.4.5 Relationship Extraction 

Since relationship extraction is its own area of research, this project would have required 

the use of a freely available library rather than create a new implementation. However, it 

proved quite difficult to find such a library, so relationship extraction was omitted. 

Primarily, a library was needed that could find binary relations in sentences. 

6.4.6 Logic Handler 

Since the logic handler depends on using both an ontology and a relationship extraction 

tool, it was not implemented. Had these two necessary features been available, then it 

would have performed the following steps if an answer to the original query could not be 

found: 

 Use the relationship extraction tool to find relationships in the query. 

 Use the ontology to find equivalent relationships (e.g., “A is the child of B” is 

equivalent to “B is the parent of A”). Also use the ontology to find super-

classes/sub-classes (e.g., “A father is a parent”). 

 Search through the knowledge base for these equivalent relationships or super-

classes/sub-classes. If something is found, then it is likely the answer to the 

player’s question. If nothing is found, then the NPC probably does not know the 

answer. 
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6.4.7 Sentiment Analyzer 

The sentiment analyzer was only partially implemented due to the decision to use the 

TextBlob library [35]. TextBlob’s sentiment analysis tool can assign a score for how 

subjective a sentence is and for the sentence’s overall sentiment; however, it is unable to 

indicate the entity the sentiment is about. Thus, its utility is fairly limited. With more 

time, a better sentiment analysis tool would have been used instead. 

6.4.8 Topic Handler 

Had it been created, the topic handler would have read the following items from a JSON 

file and stored them in memory: general topics to discuss, different utterances within each 

topic (including potential replies to some player statements), how emotionally charged 

the topics are, and how important the topics are for the game’s storyline. Using this 

information, it would have been responsible for sending neutral topics to the small talk 

module. It would have also been responsible for deciding when to switch topics (e.g., if 

there are no more utterances to say for a topic, or if a particular topic is important for the 

plot of the game), and determining if the player has changed topics. The two main 

reasons why JSON was selected is because it can be edited by a human, and it is trivial to 

convert it to a Java object by using third-party Java libraries. 

6.5 Minecraft Implementation 

In order to test the conversation system, it was added as a mod to the popular game 

Minecraft [39]. The reason why Minecraft was chosen over other games is because it is 

written entirely in Java, making it quite easy to integrate the conversation system into it. 

Furthermore, this game already has a large modding community, so there is some 

documentation available to assist in the modding process. 
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Plate 6.1 Screenshot of conversation system added to Minecraft. © 2014 Mojang. 

Used with permission. 

In Minecraft, there are special NPCs called villagers which are human characters. In the 

original game, they are not much smarter than barn animals and have no conversation 

abilities. Consequently, they were the best characters to test the system on. When the 

human player walks up to a villager, the conversation mod allows him or her to open a 

chat window by pressing the C key on the keyboard. In this chat window, the player can 

type to the NPC and receive a response (see Plate 6.1). 

Minecraft uses an event-driven implementation. Thus, artificial intelligence modules are 

added to the villagers as a series of tasks (e.g., there is an AI module for swimming, 

trading with the player, going indoors, etc.). In order to incorporate the conversation 

system into Minecraft, a special AI module was created called EntityAIConversation. 

This module runs whenever the villager is watching the player at a close distance. While 

running, it checks another module called mod_Conversation to see if the player has 

submitted input to the NPC. If the answer is yes, it fetches the input and sends it to the 

conversation system. Then it sends the NPC’s output back to mod_Conversation, where 

the chat GUI is instructed to write the output to the screen. 
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6.6 Summary 

This chapter discussed a partial implementation for the framework mentioned in Chapter 

5. This implementation was written mainly in Java, with some parts written in JavaScript 

and Python. The greeting handler and small talk module were written in JavaScript to 

make them easy for a human to edit and customize them. The core was written primarily 

in Java and included the following features: the player can ask the NPC questions, the 

NPC can ask the player questions, the NPC can recall episodic memories, the player can 

give the NPC information via statements, and the overall sentiment of the player’s input 

can be recognized. The following features were omitted from this implementation due to 

time constraints: ellipsis resolution, coreference resolution, named-entity recognition and 

classification, an ontology, relationship extraction, the logic handler, and the topic 

handler. Sentiment analysis was only partially included due to TextBlob’s inability to 

identify the entity that the sentiment is about. In order to test the conversation system in 

an actual game, a Minecraft mod was created to allow the player to converse with villager 

NPCs. 
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Chapter 7  

7 Testing and Results 

This chapter discusses the methods that were used to test the performance of the 

conversation system described in Chapter 6. Although this system is only a partial 

implementation of the architecture described in Chapter 5, it is robust enough to engage 

in simple dialogue with an NPC. The testing methods examined how well individual 

modules perform on their own, how well the modules work together in the overall flow of 

the conversation, and the computational performance impact during actual gameplay in 

Minecraft. The following sections go into more detail about how each part is going to be 

tested. 

7.1 Greeting 

The conversation system should greet the player in an appropriate way. Appropriate, in 

this sense, means that the greeting matches the required level of politeness and makes 

sense for the situation. Sections 7.1.1 and 7.1.2 elaborate on how these two aspects of a 

greeting were tested. 

7.1.1 Required Politeness Level 

The conversation system should be able to greet the player with the desired level of 

politeness. For example, the NPC should not greet the player with, “Hey there” if the 

politeness level is supposed to be high. The social factors affecting politeness – social 

distance, relative power of listener over speaker, and imposition – are passed to the 

greeting handler via a Java map. The greeting handler calculates the required level of 

politeness from these factors and then selects appropriate greetings. The following sets of 

values were used to test if the politeness is what it should be: 

 Social Distance: 0.1; Relative Power: 0; Imposition: 0  Low politeness 

 Social Distance: 0.3; Relative Power: 0.6; Imposition: 0.2  Medium politeness 

 Social Distance: 0.9; Relative Power: 0.5; Imposition: 0.7  High politeness 
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In this implementation, there are three possible levels of politeness: low, medium, and 

high. Some examples of greetings with a low politeness level are, “Hey there” and 

“Ahoy”. Furthermore, some examples of greetings with a medium politeness level are, 

“Salutations” and “Hi”. Finally, some examples of greetings with a high politeness level 

are, “Hello”, “How do you do”, and “Greetings”. Sections 7.1.1.1, 7.1.1.2, and 7.1.1.3 

illustrate actual program output for a required politeness level of low, medium, and high 

respectively.  

7.1.1.1 Low Politeness 

 

Figure 7.1 Output 1 of NPC greeting player with low politeness 

 

Figure 7.2 Output 2 of NPC greeting player with low politeness 

7.1.1.2 Medium Politeness 

 

Figure 7.3 Output 1 of NPC greeting player with medium politeness 

 

Figure 7.4 Output 2 of NPC greeting player with medium politeness 

Player Input: Hello. 

NPC Response: Hey there. How are you? 

Player Input: Hello. 

NPC Response: Ahoy. How's life? 

Player Input: Hello. 

NPC Response: Salutations. How's life? 

Player Input: Hello. 

NPC Response: Hi. Did you get a haircut? 

Your hair looks really nice! 
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7.1.1.3 High Politeness 

 

Figure 7.5 Output 1 of NPC greeting player with high politeness 

 

Figure 7.6 Output 2 of NPC greeting player with high politeness 

 

Figure 7.7 Output 3 of NPC greeting player with high politeness 

Note that in Figure 7.7, the NPC makes a reference to there being a lot of rain. While this 

portion of the NPC’s utterance is small talk rather than a greeting, it is still worth 

mentioning that the NPC is making this statement because the small talk module was 

provided input indicating that it is raining. Had it received input indicating some other 

kind of weather, it would have never made this comment. 

7.1.2 Situational Factors 

The conversation system must consider the context when selecting a greeting. For 

example, it should not say, “Hello, sir,” if the player identifies as a female in the game. 

Moreover, it should not say, “Good morning,” if it supposed to be night time. Thus, to 

ensure the system is taking these situational factors into consideration, the following tests 

were performed: 

 Indicate to the system that the player is a male; then indicate the player is female 

 Adjust the in-game time 

Player Input: Hello. 

NPC Response: Hello. How are you? 

Player Input: Hello. 

NPC Response: How do you do. How's life? 

Player Input: Hello. 

NPC Response: Greetings. Can you believe 

all this rain? 
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Greetings that are situation-insensitive such as, “Hello” were ignored. Only greetings that 

assume a particular situation (whether the assumption is correct or not) were tested for 

appropriateness. 

In this implementation, only two situations were considered: gender and time of day. 

Section 7.1.2.1 illustrates output where the NPC had decided to include the player’s 

gender information in its greeting. It chose the correct gender based on information 

passed to the greeting handler. Section 7.1.2.2 shows output where the NPC had decided 

to select a greeting based on the time of day. It correctly chose the greeting based on the 

player’s computer clock. Figure 7.12 is special because it demonstrates the NPC choosing 

a greeting based on both politeness level and time of day. 

7.1.2.1 Gender 

 

Figure 7.8 Output of NPC greeting a female player 

 

Figure 7.9 Output of NPC greeting a male player 

7.1.2.2 Time of Day 

 

Figure 7.10 Output of NPC greeting player in the morning 

Player Input: Hello. 

NPC Response: How do you do, m'lady. I 

really like your shoes. 

Player Input: Hello. 

NPC Response: Greetings, gentle sir. How 

are things? 

Player Input: Hello. 

NPC Response: Good morning. That's a nice 

dagger you have there. 
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Figure 7.11 Output of NPC greeting player in the afternoon 

 

Figure 7.12 Output of NPC formally greeting player in the afternoon 

 

Figure 7.13 Output of NPC greeting player in the evening 

7.2 Small Talk 

Since the small talk stage of the conversation is when the player has the opportunity to 

build rapport with the NPC, it is important that the NPC appears as autonomous and 

believable as possible. In order to accomplish this goal, the NPC must avoid repeating 

itself and must give appropriate replies to the player. Sections 7.2.1 and 7.2.2 go into 

more detail about how the small talk module were tested. 

7.2.1 Avoid Repetition 

When engaging in small talk, the system should avoid repeating topics it has already 

discussed. For example, if the system had already asked how the player was, it should not 

ask again. Since the small talk module is executed each time the player provides input for 

the small talk stage of the conversation, it must store information about what topics it has 

mentioned outside of the JavaScript program. In this implementation, a Java list object 

stores previous topics and sends that information to the JavaScript program. Aside from 

the fact that the NPC would lose credibility as an intelligent agent if it repeats itself 

unnecessarily, if the small talk module is not aware of what topics it has already 

mentioned then it cannot know when to signal to the main Java program that it needs to 

Player Input: Hello. 

NPC Response: Good afternoon. I heard 

there's going to be a storm. 

Player Input: Hello. 

NPC Response: Good day. How are you? 

Player Input: Hello. 

NPC Response: Good evening. Did you get a 

haircut? Your hair looks really nice! 
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switch to the core stage. Thus, it is important that this feature works properly. To test that 

it is working as expected, the following steps were done: 

 Engage in small talk with the system 

 Make note if it repeats any topics 

 Continue conversing until it exhausts its topics and see if it switches to the core 

stage. 

Figure 7.14 illustrates actual output from this short interaction. The order of topics is 

randomly chosen, and within each topic, there are multiple ways of expressing the same 

meaning. Consequently, Figure 7.14 is an example of only one possible exchange that 

could have occurred. In this particular case, the order of topics was as follows: the 

weather, a compliment, and asking how the player is feeling. Once the small talk module 

recognized that it ran out of topics, it prompted the player to switch to the core stage. 

 

Figure 7.14 Output of NPC engaging in small talk with player 

7.2.2 Appropriate Replies to Player Responses 

The system must be able to respond appropriately to what the player says. In particular, it 

should be able to acknowledge when the player has said something in reply to an NPC’s 

question or statement. For example, if the system gives the player a compliment and the 

player says, “Thank you,” then the system should acknowledge the player by replying 

with, “You’re welcome.” The following types of interactions were observed and tested: 

NPC Response: Good day. I heard there's 

going to be a storm. 

Player Input: That's not good. I don't 

like storms. 

NPC Response: That's a nice dagger you 

have there. 

Player Input: Thank you. 

NPC Response: You're welcome! How are 

you? 

Player Input: I'm pretty good. 

NPC Response: I'm glad. So is there 

anything that I can help you with? 



70 

 

 If the system compliments the player, respond with 

o  A message of thanks (e.g., “Thanks”/“Thank you”) 

o A neutral message (e.g., “OK”) 

 If the system asks how the player is, respond with 

o Something indicating that the player is doing well (e.g., “I’m fine, thanks”) 

o Something indicating that the player is not doing well (e.g., “I’m not 

well”) 

o Something unrelated 

In Section 7.2.2.1, there are examples of actual output where the system detects whether 

or not the player thanked the NPC. In Section 7.2.2.2, there are examples of output where 

the NPC responds based on whether the player is doing well or not, or if the player chose 

to ignore the question. 

7.2.2.1 Compliment 

 

Figure 7.15 Output of NPC acknowledging thanks from the player 

 

Figure 7.16 Output of NPC moving forth with the dialogue when no thanks were 

given 

NPC Response: That's good. I really like 

your shoes. 

Player Input: Thanks so much. That's very 

kind of you to say. 

NPC Response: You're welcome! I heard 

there's going to be a storm. 

NPC Response: I'm glad. I really like 

your shoes. 

Player Input: OK. 

NPC Response: Can you believe all this 

rain? 
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7.2.2.2 Asking How the Player Is 

 

Figure 7.17 Output of NPC acknowledging that player is doing well 

 

Figure 7.18 Output of NPC acknowledging that player is not doing well 

 

Figure 7.19 Output of NPC moving forth with the conversation when the player 

gives no indication of wellbeing 

7.3 Core 

During the core of the conversation, the system must be able to accomplish several tasks 

to maintain the illusion of intelligence. These tasks include recognizing when the player 

asks a question or makes a statement, answering questions appropriately, understanding 

contractions, responding suitably to statements the player may make, asking the player 

questions, remembering the answer the player gave to a question, and recalling events 

related to the topic being discussed. The following sections elaborate on how each of 

these tasks were tested. 

NPC Response: Good afternoon. How's it 

going? 

Player Input: It's going wonderfully, 

thanks. 

NPC Response: That's good to hear! I 

heard there's going to be a storm. 

NPC Response: How's life? 

Player Input: Terrible, unfortunately. 

NPC Response: Oh no! Did you get a 

haircut? Your hair looks really nice! 

NPC Response: How do you do, gentle sir. 

How's it going? 

Player Input: I can see a tree. 

NPC Response: Did you get a haircut? Your 

hair looks really nice! 
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7.3.1 Recognize Question vs Statement 

The conversation system must be able to differentiate between the player asking a 

question and making a statement. It would be trivial to assume that if a sentence ends 

with a question mark then it is a question, and if it ends with a period then it is a 

statement. However, this assumption could potentially be wrong. For example, the player 

may accidentally omit punctuation, meaning the system could confuse the question, 

“Who are you,” for a statement. Thus, the system was tested using the following types of 

input to see how well it performs: 

 “W6” question ending in a question mark (e.g., “Who are you?”) 

 “W6” question ending in a period (e.g., “Who are you.”) 

 “W6” question not ending with any punctuation (e.g., “Who are you”) 

 Yes/No question ending in a question mark (e.g., “Is Jane in Paris?”) 

 Yes/No question ending in a period (e.g., “Is Jane in Paris.”) 

 Yes/No question not ending with any punctuation (e.g., “Is Jane in Paris”) 

 “Did you know…” style questions (e.g., “Did you know that Jane is in Paris?”) 

 Statement ending in a period (e.g., “Paris is in France.”) 

 Statement not ending with any punctuation (e.g., “Paris is in France”) 

 Statement converted into a question (e.g., “Paris is in France?”) 

 Imperative statements (i.e. commands) requesting information (e.g., “Tell me 

where Jane is.”) 

Figures 7.20 to 7.30 illustrate the different tests that were performed to see how well the 

system could detect questions vs statements. In all cases, the system performed quite 

well.  
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Figure 7.20 Recognizing a "W6" question ending in a question mark 

 

Figure 7.21 Recognizing a "W6" question ending in a period 

 

Figure 7.22 Recognizing a "W6" question ending with no punctuation 

 

Figure 7.23 Recognizing a Yes/No question ending in a question mark 

 

Figure 7.24 Recognizing a Yes/No question ending in a period 

 

Figure 7.25 Recognizing a Yes/No question ending with no punctuation 

 

Figure 7.26 Recognizing a "Did you know..." question 

Player Input: Who are you? 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. 

Player Input: Who are you. 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. 

Player Input: Who are you 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. 

Player Input: Is Jane in Paris? 

NPC Response: Yes. 

Player Input: Is Jane in Paris. 

NPC Response: Yes. 

Player Input: Is Jane in Paris 

NPC Response: Yes. 

Player Input: Did you know that Jane is 

in Paris? 

NPC Response: Yes, I did. 
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Figure 7.27 Recognizing a statement ending in a period 

 

Figure 7.28 Recognizing a statement ending with no punctuation 

 

Figure 7.29 Recognizing a statement converted into a question 

 

Figure 7.30 Recognizing an imperative statement requesting information 

7.3.2 Answer Questions Appropriately 

When the player asks the NPC a question, the answer should be appropriate for the type 

of question asked. For example, a question asking who someone is should not be 

answered with where that person is at the moment. To test how well the system gives 

appropriate answers, the following types of input were given: 

 “W6” questions 

 Yes/No questions 

 “Did you know…” type questions 

 Statements converted into questions 

 Imperative statements requesting information 

 

Player Input: Paris is in France. 

NPC Response: That's good to know. 

Player Input: Paris is in France 

NPC Response: That's good to know. 

Player Input: Paris is in France? 

NPC Response: Yes. 

Player Input: Tell me where Jane is. 

NPC Response: Jane is in Paris. 
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Figures 7.31 to 7.41 illustrate the results of these tests. Overall, the system performed 

remarkably well. The only noticeable issue is that the system responds by using full 

sentences quoted directly from the knowledge base. While this is generally suitable when 

being formal, it would sound somewhat unnatural when engaging in casual conversation. 

Ideally, it should be able to replace nouns with pronouns and only respond with the 

clause that contains the relevant answer (e.g. to answer the question in Figure 7.34, the 

NPC could have responded with, “Because I got a promotion.”). 

 

Figure 7.31 NPC answering a "Who" question 

 

Figure 7.32 NPC answering a "What" question 

 

Figure 7.33 NPC answering a "Where" question 

 

Figure 7.34 NPC answering a "Why" question 

 

Figure 7.35 NPC answering a "When" question 

Player Input: Who is Danielle Smith? 

NPC Response: Danielle Smith is the vice-

chancellor of the House. 

Player Input: What does Sam sell? 

NPC Response: Sam the blacksmith sells 

swords and other weapons in Cambridge. 

Player Input: Where is Danielle Smith? 

NPC Response: Danielle Smith is visiting 

her aunt in Essex County. 

Player Input: Why are you happy? 

NPC Response: I am happy because I got a 

promotion. 

Player Input: When will Jane be back? 

NPC Response: Jane will be back at 9:00 

PM. 
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Figure 7.36 NPC answering a "How" question 

 

Figure 7.37 NPC answering a Yes/No question where the answer is no 

 

Figure 7.38 NPC answering a Yes/No question where the answer is yes 

 

Figure 7.39 NPC answering a "Did you know..." question 

 

Figure 7.40 NPC answering a statement converted into a Yes/No question 

 

Figure 7.41 NPC answering an imperative statement requesting information 

Player Input: How do I find the pot of 

gold? 

NPC Response: To find the pot of gold, 

you need to look for the rainbow. 

Player Input: Is Jane not seeing Billy 

anymore? 

NPC Response: No. Jane is seeing Billy. 

Player Input: Is Jane seeing Billy? 

NPC Response: Yes. 

Player Input: Did you know that Jane 

isn't seeing Billy anymore? 

NPC Response: Actually, that's not true. 

Jane is seeing Billy. 

Player Input: Jane is in Paris? 

NPC Response: Yes. 

Player Input: Tell me what Jane likes to 

eat. 

NPC Response: Jane likes to eat apple 

pie. 
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7.3.3 Contractions 

The player may potentially decide to use contractions in either questions or statements. 

Since contractions are grammatically correct, the system should be able to handle them. 

Consequently, one would expect that two questions that differ only by their use of 

contractions would yield the same response from the NPC. Thus, the following types of 

input were used to test the system: 

 Question with no contractions (e.g., “Who are you?”) 

 Question with contractions (e.g., “Who’re you?”) 

Figures 7.42 to 7.45 show that the system is able to recognize what the contracted words 

mean and then respond with the expected answer. 

 

Figure 7.42 NPC answering a question without contractions. 

 

Figure 7.43 NPC answering the same question with contractions. 

 

Figure 7.44 NPC answering another question without contractions. 

 

Figure 7.45 NPC answering the other question with contractions. 

Player Input: Who are you? 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. 

Player Input: Who're you? 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. 

Player Input: Where is Jane? 

NPC Response: Jane is in Paris. 

Player Input: Where's Jane? 

NPC Response: Jane is in Paris. 
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7.3.4 Respond to Player Statements 

The system should be able to respond to different types of statements the player may 

make. In particular, the system should demonstrate that it can recognize the player’s 

sentiment based on how it replies. Consequently, it was tested under the following 

conditions: 

 Player makes a neutral statement (e.g., “I’m going to the movies.”) 

 Player makes a positive statement about something that is not the NPC (e.g., “I 

love rock music!”) 

 Player makes a positive statement about the NPC (e.g., “You’re really interesting 

to talk to.”) 

 Player makes a negative statement about something that is not the NPC (e.g., “I 

hate eating fish.”) 

 Player makes a negative statement about the NPC (e.g., “You’re stupid.”) 

In general, it can classify these types of statements correctly, as seen in Figures 7.46 to 

7.50. However, it will occasionally incorrectly interpret a statement as being a 

compliment/insult due to the presence of the words “you”, “you’re”, or “your”, as 

illustrated in Figures 7.51 and 7.52. With a more robust sentiment analysis tool capable 

of detecting the entity that the sentiment is about, this phenomenon would not occur. 

 

Figure 7.46 NPC responding to a neutral statement 

 

Figure 7.47 NPC responding to a positive statement 

Player Input: I'm going to the movies. 

NPC Response: That's good to know. 

Player Input: I love rock music! 

NPC Response: It seems to make you pretty 

happy! 
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Figure 7.48 NPC responding to a compliment 

 

Figure 7.49 NPC responding to a negative statement 

 

Figure 7.50 NPC responding to an insult 

 

Figure 7.51 NPC incorrectly interpreting a statement as an insult 

 

Figure 7.52 NPC incorrectly interpreting a statement as a compliment 

7.3.5 Ask Questions 

The system should have the capability of asking the player questions. However, it should 

not repeat a question it had previously asked in the conversation unless the player did not 

answer (see the next section for more details). Thus, to test that questions are not being 

repeated unnecessarily, a conversation with the system was carried on until all of the 

NPC’s questions have been answered. 

Player Input: You're really interesting 

to talk to! 

NPC Response: Thank you for the 

compliment! 

Player Input: I hate eating fish. 

NPC Response: You have such a low opinion 

about that. 

Player Input: You're stupid. 

NPC Response: Right back at you, jerk. 

Player Input: Your friend said that Mary 

is stupid. 

NPC Response: Right back at you, jerk. 

Player Input: You said that I am very 

pretty. 

NPC Response: Thank you for the 

compliment! 
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Figure 7.53 illustrates a conversation with the system to test whether it would repeat 

itself. Portions of the conversation where the system did not ask any questions were 

omitted. As demonstrated, the system asked each question only once. Although not 

explicitly shown here, it did not ask any more questions once it finished its list. 

 

Figure 7.53 NPC asking the player questions without repeating what it asks 

7.3.5.1 Repeat Question If Player Did Not Answer 

The system may ask the player a question, but instead of answering, the player may 

decide to ask about something else instead. Since the original question was not answered, 

the system should attempt to ask it again at a later point in the conversation. To test if this 

feature works properly, the following steps were performed: 

 When the system asks a question, respond with a different question 

 Continue conversing with the system for several minutes until it has exhausted 

other questions it was going to ask 

 See if the original question is asked again and then answer it 

 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. What kind of 

music do you like? 

Player Input: I like rock music. 

… 

NPC Response: Jane is in Paris. Do you 

have plans for the weekend? 

Player Input: I'm going to the movies. 

NPC Response: That's good to know. What's 

your favourite movie? 

Player Input: The Mummy. 

… 

NPC Response: Yes.  Do you like this 

city? 

Player Input: Yes. 

… 

NPC Response: That's good to know. What 

was the last book you read? 

Player Input: The Phantom of the Opera. 

… 
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Figure 7.54 illustrates a conversation where the player did not answer the first question. 

Instead, she asked a question of her own. Once the system asked its other questions, it 

asked the original question again. Once again, portions of the conversation where the 

system did not ask a question were removed. 

 

Figure 7.54 NPC repeating a question the player did not initially answer 

7.3.6 Remember Answer to Question 

The system should have the capability of storing answers that the player provides to the 

NPC’s questions. Furthermore, if the player queries the system about an answer, the 

system should be able to retrieve it. In order to test how well this works, the following 

steps were done: 

 When the NPC asks a question, answer it (e.g., “What’s your favourite movie?” 

 “Casablanca”) 

 Ask NPC about the question. (e.g., “What’s my favourite movie again?”) 

 See if NPC’s answer is correct 

NPC Response: Jane is in Paris. What kind 

of music do you like? 

Player Input: Where is Danielle? 

… 

NPC Response: I am Edmond Dantes. I am 

the Count of Monte Cristo. Do you have 

plans for the weekend? 

Player Input: Yes, I'm going to the 

movies. 

… 

NPC Response: Jane is seeing Billy. 

What's your favourite movie? 

Player Input: The Mummy. 

… 

NPC Response: I don't know. Do you like 

this city? 

Player Input: Yes. 

NPC Response: That's good to know. What 

was the last book you read? 

Player Input: The Phantom of the Opera. 

NPC Response: That's good to know. What 

kind of music do you like? 

Player Input: Rock music. 
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Figure 7.55 demonstrates how the system can store and retrieve player responses. 

 

Figure 7.55 NPC remembering the player's answer to a question 

7.3.7 Remember Events Related to Topic 

To add a storytelling element to the conversation, the NPC should be able to recall 

episodic memories. Moreover, these memories should be related to whatever is being 

discussed at the time. If no memory can be found that is related in some way to 

something previously mentioned, then the NPC should avoid mentioning a memory at all. 

In order to test this aspect of the system, the following steps were performed: 

 Ask questions or make statements related to some theme (e.g., movies) 

 When the NPC recalls an event, see how well it relates to what was being 

discussed 

Figure 7.56 illustrates the NPC answering the player’s question and then remembering an 

event related to movies. The sentence, “I went to the movies with my friends,” is not from 

the knowledge base. Instead, it is an episodic memory that the NPC was recalling.  

 

Figure 7.56 NPC remembering an event related to the theme of "movies" 

NPC Response: That's good to know. What 

kind of music do you like? 

Player Input: Rock music. 

NPC Response: That's good to know.  

Player Input: What kind of music do I 

like again? 

NPC Response: Rock music. 

Player Input: Are you coming to the 

movies? 

NPC Response: I don't know. I went to the 

movies with my friends. 
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7.4 End of Conversation 

The system should be able to recognize that the player wants to end the conversation 

without requiring the player to manually exit (e.g., by clicking the close button). Instead, 

it should be able to notice the use of end greetings and take that as a cue that the 

conversation is over. Furthermore, the system should respond with an end greeting, 

ensuring once again that the desired politeness level is used. In order to test if this works 

as it should, the following was done: 

 Use different values for the different social factors 

 Use words/sentences that contain end greetings 

 Observe if the NPC responds with an end greeting and uses the correct level of 

politeness 

Sections 7.4.1 and 7.4.2 demonstrate that the system is able to recognize several different 

cues that the conversation should end. In particular, it is even able to recognize more 

complex cues like those seen in Figures 7.58 and 7.62. 

7.4.1 Required Politeness Level 

For this implementation, “See you” and “So long” are considered to be informal, “Bye” is 

considered to be of medium formality, and “Goodbye” and “Farewell” are considered to 

be quite formal. Sections 7.4.1.1, 7.4.1.2, and 7.4.1.3 illustrate actual output when the 

required politeness is low, medium, and high respectively. 

7.4.1.1 Low Politeness 

 

Figure 7.57 NPC saying goodbye to the player with a low politeness level 

Player Input: See you later. 

NPC Response: See you. 
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Figure 7.58 NPC saying goodbye to the player with a low politeness level 

7.4.1.2 Medium Politeness 

 

Figure 7.59 NPC saying goodbye to the player with a medium politeness level 

7.4.1.3 High Politeness 

 

Figure 7.60 NPC saying goodbye to the player with a high politeness level 

 

Figure 7.61 NPC saying goodbye to the player with a high politeness level 

7.4.2 Situation 

Section 7.4.2.1 illustrates the NPC bidding farewell to the player by using an end greeting 

that can only be used at night. At any other time of the day, this particular greeting would 

never be chosen. 

7.4.2.1 Night-time  

 

Figure 7.62 NPC saying goodbye to the player in a situation-appropriate way 

Player Input: Anyways, I have to go. Bye 

now! 

NPC Response: So long. 

Player Input: Farewell. 

NPC Response: Bye. 

Player Input: Bye. 

NPC Response: Goodbye. 

Player Input: See you. 

NPC Response: Farewell. 

Player Input: It's late now. Goodnight. 

NPC Response: Goodnight. 
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7.5 Overall Conversation Flow 

Although the individual modules may work well on their own, it is equally as important 

that they work well together. The conversation should flow smoothly, so there should not 

be any choppiness when it is transitioning from one stage to another. In particular, the 

transition that has the greatest chance of seeming overly abrupt is from the small talk 

stage to the core stage. Section 7.5.1 discusses in more detail what should be done to 

avoid this sudden switch and how to test that it is working properly. 

7.5.1 Transition from Small Talk to Core 

The system must be able to transition smoothly from the small talk stage to the core; it 

should not be obvious to the player that these two stages are separate from each other. 

The following are two ways of accomplishing a seamless transition, and both were tested 

to ensure they work properly: 

 The player is not interested in finishing the small talk and asks the NPC a 

question immediately. In this case, the NPC should proceed to answer the player’s 

question instead of ignoring it. 

 The small talk module exhausts its topics, so it gracefully requests the player to 

assist in choosing a core topic (e.g., “So is there anything I can help you with?”) 

Section 7.5.1.1 demonstrates a conversation where the player opts to ask a question 

before the small talk naturally concludes. The system recognizes the player’s desire for 

an answer and switches to the core stage. Then, it answers the question and attempts to 

continue the conversation. When the player informs the NPC that she must leave, the 

conversation ends. 

Section 7.5.1.2, on the other hand, illustrates a conversation where the player does not 

interrupt the small talk. Here, the small talk continues until the system no longer has any 

topics remaining. In order to gracefully switch to the core stage, the system asks the 

player if it can help with anything. The dialogue continues for a few more exchanges 

before the player decides to end it. 
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Overall, both conversations worked well as a whole. However, one noticeable flaw was 

when the player asked, “Do you know where Jane is?” in Figure 7.64. While the system 

responded correctly that it did know, it also attempted to change the topic before 

answering the question. The first reason that this event occurred is because of the lack of 

a topic handler to signal when it is appropriate to change topics. The second reason is that 

the system classified the query as a yes/no question. While at first glance this 

classification would appear to be correct, the player’s query was implicitly a request for 

information; that is, it can be understood to mean, “Where is Jane?” Consequently, this 

example shows a limitation of the system due to it not being fully implemented. 

7.5.1.1 Player Interrupts Small Talk 

 

Figure 7.63 Conversation where player interrupts small talk to ask a question 

Player Input: Hello. 

NPC Response: Good afternoon. How's life? 

Player Input: Fine, thanks. 

NPC Response: I'm glad. That's a nice 

dagger you have there. 

Player Input: Anyways, where is Jane? 

NPC Response: Jane is in Paris. What kind 

of music do you like? 

Player Input: I actually have to go now. 

Bye. 

NPC Response: Bye. 
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7.5.1.2 Small Talk is Exhausted 

 

Figure 7.64 Conversation where small talk naturally ends and gracefully transitions 

to the core 

7.6 Accuracy 

Based on the above tests, the conversation system gave appropriate output approximately 

96% of the time. Given that the system has been iteratively improved until it gave 

reasonable results for all the test cases discussed, this result is not surprising. However, 

this result may potentially be overly optimistic due to having in-depth knowledge of how 

the system works while testing it. Consequently, player testing is still required to test the 

system in a more formal and rigorous fashion. Furthermore, only a limited amount of 

facts, topics, and episodic memories were used when testing, so it is unclear how the 

accuracy would be affected when using a larger amount. It is highly likely that as the 

number of facts, topics, and episodic memories increase, more robust NLP will be 

required to maintain this level of accuracy. 

Player Input: Hi. 

NPC Response: Hi. How's it going? 

Player Input: Pretty good. 

NPC Response: That's good to hear! Did 

you get a haircut? Your hair looks really 

nice! 

Player Input: Thank you. 

NPC Response: You're welcome! Can you 

believe all this rain? 

Player Input: It's been raining cats and 

dogs. 

NPC Response: So is there anything that I 

can help you with?   

Player Input: Do you know where Jane is? 

NPC Response: Yes.  What kind of music do 

you like? 

Player Input: Well, where is Jane? 

NPC Response: Jane is in Paris. Do you 

have plans for the weekend? 

Player Input: Why do you care? 

NPC Response: I care because I'm curious. 

Player Input: Why are you curious? 

NPC Response: I don't know why I am 

curious. I just am. 

Player Input: Oh, OK. Anyways, see you. 

NPC Response: Bye. 
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7.7 Performance in Minecraft 

Since the conversation system is designed to be used within a video game, it must not 

negatively affect performance too much. Otherwise, the game would become unplayable 

due to lag, which would take away from the immersive experience. Consequently, the 

system was tested within Minecraft to see how well it performs from a computational 

standpoint. The following aspects were examined: 

 Does the game crash due to lack of memory? 

 Is the computer running noticeably more slowly? 

 Is the game lagging? 

The system was tested on a laptop with specifications higher than the minimum required 

to run Minecraft. The laptop’s specifications are as follows: 

 Operating System: Windows 8.1 Pro, 64-bit 

 Processor: Intel Core i7-3537U with clock speed of 2.49 GHz 

 Memory: 6 GB (5.89 GB usable) 

 GPU: NVidia GeForce GT 740M 

In order to gauge how well the conversation system worked within Minecraft, the regular 

version and the modded version were played three times each. To ensure consistency 

between the two versions, the same seed was used to generate a level with a village 

nearby. The modded version of the game took several seconds longer to initially load 

compared to the regular version. There are various possible reasons why the initial 

loading time increased, such as having to process and attach episodic memories to each 

of the villagers, but these factors could be optimized in the future for better performance. 

During actual gameplay, however, the player character could walk around the village 

with a similar-looking frame rate in both versions of the game, so there was no noticeable 

lag when real-time performance mattered most.   

During an actual conversation with the system, some lag was noticed whenever the NPC 

attempted to recall an episodic memory. It is not clear why this occurred because neither 
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CPU usage nor memory usage appeared to change significantly. However, the rest of the 

conversation progressed at a reasonable speed. 

From a computational standpoint, the conversation mod did not appear to have a 

significant impact on resources because the computer could still run with no noticeable 

slowdown or visible change in frame rate. As can be seen in Table 7.1, on average, 

regular Minecraft used 33% of the CPU and 575 MB of memory. The modded version 

used only 7% more CPU and 25 MB more memory. This increase in CPU usage occurred 

mainly when the player was engaging in dialogue with the NPC; otherwise, it was fairly 

similar to the regular version’s CPU usage. Thus, the majority of the computational 

resources that were used are required for the Minecraft game itself to run and not for the 

conversation mod. Nevertheless, opportunities for optimizations of the implementation 

will be explored. 

 

 CPU Usage Memory Usage 

Regular Minecraft 33% 575 MB 

Modded Minecraft 40% 600 MB 

Table 7.1 Comparing the typical use of computational resources of regular 

Minecraft and the modded version 

7.8 Discussion of Testing Techniques 

Because the nature of this thesis’ research is still fairly new, there is no standard set of 

tests from the literature that could be used. Instead, the tests mentioned above were 

chosen because they test the required functionality of the conversation system. While all 

attempts were made to design a comprehensive set of tests, it is certainly possible that 

other tests could be required in the future. Since the English language allows for virtually 

an infinite number of possible utterances, it is nearly impossible to be exhaustive in 

testing. Thus, it is only ever possible to test a sample of possible utterances. Ideally, there 
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should be extensive player testing to determine how well the system performs in a real-

world setting; however, that is outside the scope of this thesis and is left for future work. 

7.9 Summary 

This chapter discussed the methods that were used to test the partial implementation of 

the conversation system mentioned in Chapter 6. Each component was initially tested 

separately. The greeting handler was tested for how well it chooses a greeting depending 

on the required politeness level and situational factors such as time of day or the player’s 

gender. The small talk handler was tested to ensure that it does not repeat topics and that 

it gives appropriate responses to player replies. The core was tested for how well it 

recognizes when the player asks a question or makes a statement, answers questions 

appropriately, understands contractions, responds suitably to statements the player may 

make, asks the player questions, remembers the answer the player gave to a question, and 

recalls events related to the topic being discussed. At the end of the conversation, the 

system was tested to see if it recognizes that the player would like to conclude the 

dialogue, and if it responds with an end greeting that uses the desired politeness level. 

Once each component of the system had been thoroughly tested, the overall flow of the 

conversation was scrutinized for any kind of sudden shifts. Finally, in order to test how 

well the system runs in an actual video game, its computational performance was 

examined within the context of Minecraft. 

Overall, the system performed as expected. It was accurate approximately 96% of the 

time. However, player testing is still required for more formal and rigorous testing. In 

terms of computational performance, the system had a small resource footprint compared 

to the original Minecraft game. 
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Chapter 8  

8 Discussion and Conclusion 

This chapter discusses the results shown in Chapter 7, as well as concluding the entire 

thesis. It also comments on features that could be added in the future to make the 

conversation system even more powerful. 

8.1 Discussion 

Chapter 7 demonstrated the results of testing the conversation system. Despite being a 

partial implementation, the system performed quite well at various tasks. The individual 

modules appeared to work well both on their own and together.  

The different modules were tested by seeing how well they performed during their 

particular stage of the conversation. During the greeting stage, the system was able to 

adjust its greeting based on the required level of politeness and situational factors such as 

time of day and gender. During the small talk stage, it was able to successfully engage in 

simple small talk. Although the small-talk module is limited due to the lack of a topic 

handler, it was able to avoid repeating itself and could acknowledge certain types of 

player responses such as thanks and indications of how the player is feeling. During the 

core stage, the system was able to perform numerous tasks reasonably well. It was able to 

differentiate between questions and statements, handle contractions, answer different 

kinds of questions, respond to the player’s sentiment, ask questions without repeating 

itself unnecessarily, and remember events. However, due to the lack of a full sentiment-

analysis tool, the system needed to guess when the player was complimenting or insulting 

it, which would yield false positives in certain circumstances. During the end greeting 

stage, the system could detect when the player wanted to end the conversation, and it 

would output an end greeting with the correct level of politeness. In general, the testing 

of the distinct stages of the conversation showed promising results. 

Overall, the system did a very good job at linking the different stages together in a 

seamless way. The transition between the small talk stage and the core stage was most at 

risk for seeming sudden, but in the end, it actually flowed quite well. There were points 
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during the core of the conversation, however, where the system would attempt to change 

topics too soon. This phenomenon could not be avoided in the present implementation 

because there is no topic handler to decide an appropriate time to change topics. Thus, it 

is currently random when the system will ask a question. Nevertheless, the conversation 

system still performed surprisingly well given its limitations and was able to engage in a 

simple dialogue with the player. 

In order to ensure that dialogues sound less artificial in the future, more computational 

linguistics will be required. However, as mentioned in Chapter 6, many necessary 

features were unimplemented because of the lack of libraries that could perform them in 

real-time. In a video game, it is of utmost importance that performance is in real-time; 

otherwise, it breaks the suspension of disbelief. Until either faster NLP algorithms are 

developed or computers become fast enough to run the current ones in real-time, it will 

be difficult to incorporate more NLP into the system without sacrificing speed. 

In terms of computational performance, the system runs fairly well and has a relatively 

low resource footprint. It successfully ran within Minecraft without causing any crashes 

or noticeable computer slowdown. The only time any lag was noticed was when the NPC 

tried to recall episodic memories, so that particular module will likely need to be better 

optimized for real-time performance. 

8.2 Contributions 

This thesis has made the following contributions: 

 It proposes a method of designing a conversation system for video games capable 

of more realistic, unscripted dialogue  

 It provides a proof-of-concept implementation demonstrating how such a system 

could work 

 It illustrates how to use current research results in Artificial Intelligence in a novel 

application 
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 It integrates this conversation system into a commercial video game (Minecraft) 

and conducts experiments to both test fitness to task and to demonstrate real-time 

performance 

8.3 Conclusion 

The current state-of-the-art techniques used to simulate dialogue in video games are quite 

outdated. After a while, non-player characters cease to appear autonomous, which can 

break the immersive experience. This thesis has demonstrated an approach to allow for 

dynamic dialogue that can still fit within a game’s world. By using modern techniques in 

Artificial Intelligence, a conversation system was developed that can allow a human 

player to interact with non-player characters using natural-language input. Although the 

current capabilities of the system are limited, they are enough to allow NPCs to engage in 

simple dialogue: NPCs are able to greet the player, engage in small talk, answer 

questions, ask questions, remember what the player said, and remember events related to 

the topic being discussed. Furthermore, the conversation system is a proof-of-concept for 

a more advanced way of interacting with NPCs. Instead of being forced to rely on 

scripted techniques, this thesis shows that it is possible for human players to converse 

with an NPC in a similar manner as they would with another human being. Consequently, 

NPCs are able to display greater autonomy and better maintain the illusion of 

intelligence. 

8.4 Future Work 

As mentioned in Chapter 6, the conversation system is only a partial implementation of 

the architecture described in Chapter 5. It currently lacks the following features: ellipsis 

resolution, coreference resolution, named-entity recognition and classification, an 

ontology, relationship extraction, full sentiment analysis, the logic handler, and the topic 

handler. As a consequence, it is highly limited in its capabilities and is especially poor at 

deducing facts and introducing topics at appropriate times. Most of these missing features 

were excluded from the current implementation due to a lack of time. As part of future 

work, these features should be added to make the conversation system more robust. 

Moreover, this thesis did not test for scalability; consequently, it is unclear how well it 
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would perform with a large amount of memories, a bigger knowledge base, or more 

NPCs. Likewise, it is unclear how well the system would perform once the missing 

features have been added. The conversation system should also be added to other games 

than just Minecraft to further test performance impact and ensure there is no lagging 

during gameplay. Furthermore, there should be player testing since the end goal is for 

actual players to be able to use the system to converse with NPCs. Finally, this thesis did 

not examine how individual factors such as personality can affect conversations. In its 

current form, the conversation system will attempt to truthfully answer any question the 

player may ask. However, it would be an interesting addition if the system could either 

refuse to answer or lie about an answer if it is in the NPC’s nature not to trust the human 

player. It would also be interesting for the wording of an NPC’s response to vary based 

on factors such as its current emotions (e.g., certain responses could be tagged with the 

emotion they convey and would only be uttered if the NPC was feeling that emotion), 

how it feels about the player, and its education level. One possible way to add a 

personality dynamic would be to use the approach discussed in Ochs, Sabouret, and 

Corruble [15]. 
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