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Abstract 

This doctoral study was aimed to produce bio-polyols from Kraft lignin (KL) and hydrolysis 

lignin (HL) via depolymerization and utilize the lignin-derived bio-polyols in the preparation 

of bio-based rigid polyurethane (BRPU) foams at high percentage of bio-contents (50-70 

wt.%). This study demonstrated that depolymerization is a practical and effective approach to 

unleash the potential of utilization of lignin, of complex structures and low 

reactivity/functionality, for bioproducts and biomaterials. 

Depolymerization of KL was realized in alkaline medium using water alone as a solvent or 

employing water-ethylene glycol (EG) mixture via a low pressure (<150 psig) proprietary 

process, both effective for producing low molecular weight depolymerized KL (DKL). The 

KL depolymerization process conditions were optimized. BRPU foams were prepared by 

incorporating DKL via two routes: (1) direct utilization of DKL by replacing 50 wt.% of 

sucrose polyol and PPG400 and, (2) oxypropylation of DKL to make a single polyol 

feedstock for the foam preparation.  

Similarly, HL was effectively depolymerized employing water alone or water-ethanol (50:50, 

v/v) mixture with or without catalysts, or employing EG as a solvent under acidic conditions 

via a low pressure (<150 psig) process. The obtained depolymerized HL (DHL) products 

were also used as bio-polyols for the preparation of BRPU foams via two routes: direct 

replacement or oxypropylation.  

The main academic contribution of this work is that this study has led to the development of 

a novel/proprietary process for efficient and cost effective depolymerization of KL and HL 

under low pressure (<150 psig), viable approaches to prepare BRPU foams containing 50-70 

wt.% of bio-contents. All BRPU foams exhibit good physical, mechanical and thermal 

properties for their potential application as an insulation material. The major industrial 

significance of this project is that it helps transform the largely available KL and HL 

resources into value-added bioproducts i.e., bio-polyols and BRPU foams. As a result, it will 

help reduce the dependency of RPU foams production on petroleum derived polyols, 

generate additional revenue streams to the associated industries (particularly, pulp/paper 

mills and cellulosic ethanol plants), and also improve their sustainability. 
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Chapter 1  

1 Introduction 

1.1 Background and motivation 

Bio-based fuels, chemicals and materials are gaining increasing attention due to the 

worldwide increased concerns over declining non-renewable fossil resources, climate 

changes, energy security and sustainability of economy (McGowan, 1991; Hall et al., 

1992). Agricultural and forestry residues, wastes and byproducts are of top most interest 

because of their low cost and abundant availability (Sricharoenchaikul, 2009). As the 

demand continues to grow, new and better methods must be developed to utilize 

bioresources for fuels, chemicals and materials. 

Lignocellulosic biomass represents a renewable and low-cost alternative source for the 

production of low sulfur/nitrogen containing fuels and chemicals (Connor & Piskorz, 

1994). Lignocellulosic biomass is composed of hemicellulose, cellulose, and lignin. 

Depending on the biomass species, lignin comprises around 15-30% of lignocellulosic 

biomass dry weight and has higher energy content of 9000-11000 Btu/lb compared to that 

of cellulose, which is estimated to be around 7300-7500 Btu/lb (Nimani, 2011; Effendi et 

al., 2008). Overcoming the recalcitrance of lignocellulosic biomass is a key step in the 

production of fuels and chemicals (Brodeur et al., 2011). Although much of the public 

attention has been paid towards the production of industrial bioproducts (bio-fuels, bio-

based chemicals and biomaterials) derived from biomass, still it has to go a long way to 

achieve economically viable production of these industrial bioproducts. The following 

criteria: availability, economics, public acceptability, environmental emissions, national 

security, technology and versatility, must be addressed in developing innovative 

technologies to replace petroleum-derived products with bioproducts. 

Lignin molecule is composed of 3D phenyl propanol units (monomers) (Tejado et al., 

2007), namely guaiacyl alcohol (G), syringyl alcohol (S), p-coumaryl alcohol (H) and is 

the most abundant and natural source of phenolic compounds (Amen-Chen et al., 2001). 

Kraft lignin (KL) is mainly generated as a byproduct of chemical pulping process in pulp 
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and paper industry at an estimated annual production rate of 50Mt (Lora & Glasser, 

2002). Being a by-product stream of Kraft pulping process, black liquor contains 

typically 30-34% of lignin on dry solid weight basis (Araújo, 2008). Currently majority 

of the lignin produced in pulp/paper mills is combusted for heat/power generation in 

recovery boilers. The large amount of lignin produced in the pulping process is 

problematic as almost 60-70% of North America’s pulp/papers mills have a bottleneck in 

their recovery boilers capacity, which limits their productivities. Thus a significant 

proportion of lignin can be removed to debottleneck the recovery boilers without 

effecting heat production of a mill (Pandey and Kim, 2008). Today, roughly only 1-2% of 

KL is isolated for other value-added applications such as for chemicals (Lora & Glasser, 

2002). Thus, there is a remarkable opportunity in isolating KL from black liquor 

specifically for the production of various value-added bio-chemicals and biomaterials. 

Hydrolysis lignin (HL) is another type of lignin left as a residue or by-product from 

enzymatic hydrolysis of lignocellulosic biomass in cellulosic ethanol plants after 

separating carbohydrates (cellulose and hemicelluloses) from the whole biomass (Yuan et 

al., 2012). In fact, these days the following have becoming the driving forces for the 

utilization of lignin for chemicals and materials: (1) ease of availability of lignin, a 

special case exists in 60-70% of North American Kraft mills which have an operation 

bottleneck in recovery boilers, (2) availability of sulfur free lignins (HL or organosolv 

lignin, OL), (3) the steadily increasing market demand for natural and sustainable 

products, and (4) the development of biorefinery technologies, etc. 

In the recent years, there is an intensive research carried out to seek for technical routes 

to valorization of KL for various high value bio-chemicals, biofuels and biomaterials 

(Cheng, 2011). Meanwhile, extensive research was also undertaken in the former Soviet 

Union to explore applications of HL for biomaterials, which was not very successful and 

majority of HL was still disposed because the required modifications were too expensive 

or materials synthesized from HL did not function well. A common challenge for 

utilization KL and HL for chemicals and materials is related to lignin’s lower reactivity 

and high steric hindrance effects, caused by its branched molecular structure. Such 

challenge limits direct use of lignin for the replacement of petroleum-based components 



3 

 

in materials, especially for HL lignin with more complex structure where lignin and 

cellulose are crosslinked with each other.  

1.2 Depolymerization of lignin 

Although with much lower reactivity, even crude lignin can be directly used for the 

synthesis of biomaterials such as bio-based phenol formaldehyde (PF) resins and bio-

based polyurethane (PU) foam as insulation materials, due to the presence of phenolic 

and hydroxyl groups (aliphatic and aromatic) in its structure as the reactive sites (Cheng, 

2011; Cateto et al., 2008). However, the percentage replacement for petroleum phenols or 

polyols by crude lignin is not normally more than 30 wt.% for the synthesis of bio-based 

PF or PU foam. Further increasing the replacement ratio, would lead to markedly 

deteriorated properties of the products. On the other hand in HL, lignin and cellulose are 

cross-linked and is unable to dissolve in any solvent therefore, it cannot be directly 

incorporated in the PF or PU foam’s structure. Because of lignin’s special phenyl 

propanol structure linked by the aryl-alkyl ether linkage, depolymerization of KL or HL 

into oligomers and aromatic chemicals would be a viable route for increasing their 

percentage replacement for petroleum-based feedstock in the preparation of bio-based PF 

adhesives, PU foams and other biomaterials such as bio-epoxy resins, etc. without 

sacrificing properties of the prepared biomaterials in comparison with the petroleum-

based products (Khitrin et al., 2012; Cheng, 2011). 

Various lignin depolymerization routes have been reported in literature, mainly classified 

into two major categories: biochemical processes and thermo-chemical processes. 

Biochemical processes are very slow and complex, requiring enzymes to breakdown 

lignocellulosic materials normally with an aim of producing ethanol and other chemicals 

via hydrolyzing cellulose into glucose (Pandey and Kim, 2011). Thermo-chemical 

processes for lignin depolymerization, mainly for the production of liquid bio-fuels, 

include direct liquefaction technologies such as pyrolysis and high pressure liquefaction 

processes as well as hydrolytic and oxidative/reductive de-polymerization of lignin 

(Pandey and Kim, 2011). The most important parameters for thermochemical processes 

are reaction temperature, pressure, time, type and composition of feedstock, and catalysts 

(Kücük and Demirbas, 1997). Pyrolysis of lignin usually operates at high temperatures 
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(400-800 oC), thus with high energy consumption but the oil yields from lignin are 

commonly only 20-40 wt.% (Pandey and Kim, 2011). 

The bio-oils/bio-crudes resulting from pyrolysis/high pressure liquefaction of 

lignocellulosic biomass are complex mixtures of oxygen containing compounds in the 

form of phenols and benzene derivatives, aliphatic and aromatic alcohols, esters and 

carboxylic acids and hydroxyketones, all contributing to high oxygen contents of oils 

(Appell et al., 1970; Minowa et al., 1998; Qu et al., 2003). These oxygenated 

hydrocarbons contain also an appreciable proportion of water both from the original 

moisture and as a reaction product (Bridgwater, 2003; Czernik and Bridgwater, 2004). 

Depending on the biomass origin and process conditions (temperature, residence time, 

heating rate and catalyst used) total contents of oxygen varies in bio-oils, like 35-50 wt.% 

for pyrolysis oil and 20-30 wt.% for bio-crudes from high pressure liquefaction process 

(Bridgwater, 1994; Furimsky, 2000; Xu and Etcheverry, 2008). There are some 

limitations associated with pyrolysis oils due to high oxygen content which results in 

high viscosity, low heating value, thermal and chemical instability, and corrosivity (due 

to the presence of organic acids), etc. (Bridgwater, 1996; Yaman, 2004). 

Depolymerization of lignin/lignocellulosic biomasses can produce multitude of products 

depending on the processing methods and conditions. It can be carried out via employing 

various solvents such as water, alcohols (Xu and Etcheverry, 2008), ethylene glycol 

(Miller et al., 1999) etc., catalysts (alkalis such as NaOH, KOH, K2CO3 etc.; acids like 

HCl, H2SO4, H3PO4 etc.; metals and non-metals, etc.), temperatures, pressures etc. From 

an economic perspective, use of lignin as a source of biophenols/polyols in chemicals 

market is promising. The de-polymerized lignin products are darker in color (almost 

black) and scarcely retain the molecular characteristics of native lignin, because of the 

structural modifications like condensation, dehydration, rearrangement and intra & 

intermolecular hydrogen bonding during the depolymerization process (Lundquist, 1976). 

Most of the depolymerization methods reported in literature are either high pressure or 

high temperatures, thus cost intensive. 
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1.3 Lignin derived polyols and polyurethane foams  

Polyol, a polyhydroxy compound, is an important building block of polyurethanes (PUs). 

PU is a polymeric material containing a huge amount of urethane group, which results 

from the addition polymerization reaction between -NCO group from polyisocyanate, and 

hydroxyl groups from polyols (i.e., polyether and polyesters). PU’s are versatile 

engineering materials which find a wide range of applications because their properties 

can be readily tailored by the type and composition of their components (Hakim et al., 

2011). PUs has found a wide range of applications such as insulation, construction, 

coatings agents, adhesives, sealants, elastomers, and resins, etc. Polyols are traditionally 

produced from petroleum where, polyether and polyester are two major types of polyols 

consumed in the global polyols market. In 1994, nearly 90% of 1.8 million metric tons of 

polyurethanes consumed in the United States were based on polyethers, 9% on polyesters 

and 1% on other specialty polyols (Tu, 2008). However, the production of polyols from 

petrochemicals is not only costly but has adverse effects on the environment. Research in 

recent years has focused on alternative, non-petroleum based polyols that are less costly, 

renewable and eco-friendly. 

Rigid polyurethane (RPU) foams have the lowest thermal conductivity among all foamed 

polymers used commercially (Kacperski and Spychaj, 1999). They have been widely 

utilized in the appliance and construction industry because of their excellent and unique 

combination of thermal insulation and mechanical properties. RPU foams constitute more 

than 50% of total polyurethane foam consumption in China and Mexico, which are 

important manufacturing sites for refrigerators and freezer. RPU foams are 

conventionally made with petroleum-based polyols. However, with the dwindling non-

renewable petroleum resources, extensive research has been concentrating on developing 

bio-based polyols (biopolyols) and PU products from renewable sources (Hu et al., 

2012).  

In this work, KL (isolated from black liquor) and HL (residue from enzymatic hydrolysis 

of wood) were employed for the preparation of bio-polyols after their de-polymerization 

and the lignin-derived bio-polyols were utilized for the preparation of bio-based rigid PU 

(BRPU) foams with acceptable physical, mechanical and thermal characteristics. Effects 
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of various operation parameters on hydrolytic de-polymerization of KL and their 

optimization were comprehensively studied. The depolymerized KL (DKL) obtained at 

optimized reaction conditions was employed as a bio-polyol for the preparation of BRPU 

foam replacing 50 wt.% of petroleum-based polyol and sucrose polyol. Hydrolytic de-

polymerization is a high pressure process therefore; a new low-pressure lignin de-

polymerization process was developed in this research for the depolymerization of KL 

employing a polyalcohol-water mixture (under low pressure ≤ 150 psig) under alkaline 

medium. The new low-pressure lignin de-polymerization process resulted in DKL 

products of a high yield and low molecular weight. The obtained DKL, although in solid 

form, can be transferred into liquid polyols via oxypropylation in a unique medium that 

consists of a mixture of glycerol, acetone and KOH. Using DKL as bio-polyols BRPU 

foams were realized up to 70 wt.% bio-contents. On the other hand, HL was also 

depolymerized/liquefied employing hot-compressed water-ethanol mixture as a solvent (a 

high-pressure process) in acidic and alkaline media. Similarly, low-pressure 

depolymerization of HL lignin was also performed in water-ethylene glycol (EG) under 

low pressure (<150 psig). The resulting depolymerized HL products (DHLs) were also 

incorporated in the preparation of BRPU foams by direct replacement for polypropylene 

glycol (PPG400) or sucrose polyols, or using oxypropylated DHL, first transferred to 

liquid polyols before being used, for the preparation of BRPU foams. Replacing 

petroleum-based polyols with bio-polyols derived from renewable resources would have 

a deep impact on the polyurethane industry. 

1.4 Research objectives  

Kraft lignin (KL) and hydrolysis lignin (HL) are the abundantly available residual 

streams from pulp and paper industry and cellulosic ethanol industry, respectively. The 

overall objective of this work is to depolymerize KL and HL into DKL and DHL 

products of a lower Mw and appropriate hydroxyl number, and utilize DKL or DHL as 

bio-polyols to substitute for up to 50-70 wt.% of petroleum-based polyols or sucrose 

polyols for the preparation of bio-based rigid PU (BRPU) foams, without compromising 

the foams properties (density, compression modulus, compression strengths, thermal 

conductivity). 
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Specific research objectives of this PhD project are to, 

(1) Depolymerize KL and HL for the production of depolymerized KL (DKL) and 

depolymerized HL (DHL) with the following characteristics: 

i. High yield (≥ 70 wt.%), 

ii. Low molecular weight (Mw ≈1000-2000 g/mole), 

iii. Moderately high hydroxyl number. 

(2) Oxypropylation of the obtained DKL and DHL, in solid form, using propylene oxide 

(PO) to produce liquid bio-polyols.  

(3) Prepare BRPU foams utilizing DKL or DHL as bio-polyols either via their direct 

incorporation to substitute for up to 50 wt.% of petroleum-based polyols or sucrose 

polyols or using their oxypropylated samples up to 70 wt.% bio-contents.  

Figure 1-1 and Figure 1-2 shows the proposed approaches in this thesis project for 

producing bio-polyols for BRPU foams from KL and HL, respectively. 
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Figure 1-1 Proposed approaches for producing bio-polyols from KL for BRPU foams 

 

 

Figure 1-2 Proposed approaches for producing bio-polyols from HL for BRPU foams 
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1.5 Thesis organization 

This PhD thesis is organized to consist of 12 chapters. Chapter 1 is a general introduction 

on the background, motivations and objectives. Chapter 2 is a comprehensive literature 

review on the state-of-the-art of the lignin depolymerization and preparation of 

polyols/polyurethane foams. 

Chapter 3-4 are two manuscripts based on the hydrolysis of Kraft lignin (KL) employing 

water alone as a solvent under alkaline conditions. In Chapter 3, the effects of process 

parameters were studied, while the process optimization was studied in Chapter 4.  

Chapter 5 is a comparative study for the preparation of bio-based rigid polyurethane 

(BRPU) foams employing depolymerized KL (DKL) obtained from Kraft lignin (KL) 

depolymerization at the optimized reaction conditions. Three BRPU foam preparation 

routes were investigated and compared, i.e., (1) directly replacing PPG400 polyols, (2) 

directly replacing sucrose polyols and, (3) producing a single polyol feedstock by 

oxypropylation of DKL. In comparison with reference RPU foams from pure PPG400 or 

sucrose polyol, the prepared BRPU foams were investigated for their physical, 

mechanical and thermal properties. 

Chapter 6 is a comparative study on HL depolymerization employing water and water-

ethanol mixture under catalytic (acidic and basic) and non-catalytic conditions.  

Chapter 7 explains the preparation of BRPU foams from the DHL prepared via HL 

depolymerization in water-ethanol mixture at the best operating conditions. The foams 

were prepared by directly replacing 50 wt.% of PPG400 or sucrose polyols, and the 

foams were characterized for various properties. Chapter 8 deals with the transformation 

of solid DHL to liquid polyols for BRPU foam preparation via oxypropylation using PO 

in a unique medium consists of acetone, glycerol and KOH. Chapter 9 describes a 

comprehensive study on low-pressure depolymerization of HL employing EG as a 

solvent to obtain the best operating conditions for HL depolymerization. The DHL 

obtained at the best operating conditions was oxypropylated and employed as single 

polyol feedstock for the preparation of BRPU foams with 50-70 wt.% bio-contents. The 
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prepared BRPU foams were analyzed in terms of their physical, mechanical and thermal 

properties and compared with reference foam.   

Chapter 10 presents a comprehensive study on low-pressure hydrolytic depolymerization 

of KL to obtain the best operating conditions, and utilizing the oxypropylated DKL to 

employ as a single polyol feedstock for the preparation of BRPU foams with 50-70 wt.% 

bio-contents. The prepared BRPU foams were analyzed in terms of their physical, 

mechanical and thermal properties and compared with reference foam.   

Chapter 11 summarizes the main conclusions, contributions and novelties for the entire 

research work. Chapter 12 proposes some future work for the commercialization of bio-

based rigid polyurethane foams. 
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Chapter 2  

2 Literature Review 

2.1 Lignin as a potential source of chemicals and 
materials 

Approximately 92% of organic chemical products are currently produced from fossil 

fuels (mainly petroleum oil and natural gas) (Bennett, 2012). For a hundred years or 

more, oil and natural gas have supplied fuel and other raw chemicals to support economic 

growth. The ever-increasing rates of petroleum usage and the consequent depletion of its 

reserves as well as the increased environmental concerns over the use of fossil fuels have 

intensified the needs for seeking alternative and sustainable resources for energy and 

chemicals production. In the last two decades, attention has focused towards creating 

biofuels (such as cellulosic ethanol – a second generation biofuels) from lignocellulosic 

residues. However more attention shall be placed on producing new value-added 

biochemicals and biomaterials through “biorefinery” approaches using non-food 

bioresources such as forestry/agricultural processing wastes such as sawdust, bark, 

forestry harvesting residues, byproducts (lignin) from pulp/paper mills and various crop 

residues (Deutschmann and Dekker, 2012; Sricharoenchaikul, 2009). 

In nature, lignin is the second most abundant natural polymers after cellulose. 

Agricultural residues are typically comprised of 10-20 wt.% lignin, 40 wt.% cellulose and 

rest being the hemicelluloses, while forestry biomass contains almost 20-35 wt.% lignin, 

30-40 wt.% cellulose and 20-30 wt.% hemicelluloses (S′anchez, 2009). Lignin presents a 

complex three dimensional structure that includes a variety of functional groups, namely 

hydroxyl, methoxyl, carbonyl and carboxyl moieties (Fang et al., 2008). Hydroxyl groups 

and the aromatic/phenolic rings are the most characteristic functions in the lignin, which 

determine its reactivity and constitute the reactive sites to be exploited in macromolecular 

chemistry (Cateto et al., 2009).  

Native lignin is a high molecular weight biopolymer composed of phenyl propanol units 

(Tejado et al., 2007), heterogeneous in nature and mainly composed of two types of 
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linkages: condensed linkages (e.g., 5-5 and β-1 linkages) and ether linkages (e.g., α-O-4 

and β-O-4) (Chakar and Ragauskas, 2004). The percentage of ether linkages in soft- and 

hardwood lignin are 56% and 72%, respectively (Pu et al., 2008). Aryl ether linkages can 

be more easily cleaved by lignin depolymerization/liquefaction processes, producing de-

polymerized lignin or phenolic bio-crude oils (Yuan et al., 2010) that are potential 

sources for the production of bio-fuels, bio-chemicals and biomaterials. 

 

 

 

Figure 2-1 Representative substructure of lignin, reprinted (adapted) with permission 

from (Forsythe et al., 2013). Copyright © (2013) Royal Society of Chemistry. 
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2.2 Lignin sources, types and extraction methods 

2.2.1 Sources of lignin 

The major industrial source of lignin (Kraft lignin and lignosulfonates) is the pulp and 

paper industry, and annually, more than 50 million metric tons of lignin is produced by 

this industry. However, utilization of lignin as a fuel is not economically rational due to 

its relatively low heating value, and the money equivalent of using lignin as a fuel is only 

0.18 US$/kg (Vishtal and Kraslawski, 2011; Lebo et al., 2001). Thus, lignin has 

traditionally been viewed as a waste material or used predominantly as a solid fuel for 

heat generation in the recovery boilers in pulp/paper mills (Stewart, 2008). In North 

America, Lignotech produces about 120,000 tonnes/yr of lignosulfonate by purchasing 

sulfite liquors from nearby mills. Worldwide, about 1.06 million tonnes of 

lignosulfonates are produced annually, again primarily from sulfite black liquor and  are 

used as dispersants for dyes, pesticides, cement, asphalt and a variety of other 

applications (Bozell et al., 2007). Crude lignin is also generated as a waste stream in the 

organosolv deligninfication process and the steam explosion process for cellulosic 

ethanol production. 

However, nowadays sulfate or Kraft pulping accounts for 80% of the world’s chemical 

pulp production and 50-55 million metric tons of lignin are produced annually in the form 

of black liquor; the liquid phase remaining after alkaline pulping has dissolved lignin 

(Borges da Silva, 2009). Black liquor is conventionally burned in recovery boilers to 

regenerate pulping chemicals and produce steam and electricity for mill operations. 

While most KL is thus not available for isolation, a special case exists in the 60-70% of 

North American Kraft mills that have production bottlenecks due to the thermal capacity 

of their recovery boilers. An interesting solution to this problem is to extract some of the 

lignin in black liquor by precipitation. In North America alone, the potential of 

precipitated lignin was estimated at 1.5 Mt/year (Schmidt and Laberge, 2008) and nearly 

1 million tons per year worldwide (Lora and Glasser, 2002). The removed lignin can be 

further utilized as a raw material for value-added bio-products which would diversify the 

mill’s economic base.  



18 

 

Because of lignin’s special phenyl propanol structure and aryl-alkyl ether bonding, lignin 

from Kraft pulping mills can be a good source of polyols. Polyols are the polymers have 

multiple hydroxyl groups in their structure and are one of the essential raw materials for 

polyurethane (PU) production (Demharter, 1998). Although due to much lower reactivity, 

even crude lignin can be directly incorporated into PU formulations due to the presence 

of aliphatic and aromatic hydroxyl groups in its structure as the reactive sites, replacing 

<30 wt.% of petroleum-based polyols (Cateto et al., 2008) or into phenol-fromaldehyde 

(PF) resins/adas at a phenol replacmenet ratio of <30-50 wt.% (Cheng et al., 2012). 

Polyols can be polyether or polyester polyols (Tu, 2008), with the most critical properties 

being equivalent weight and hydroxyl number/functionality. Petroleum derived polyols 

are typically used, but the rising petroleum prices and sustainability concerns have shifted 

attention towards bio-based polyols such as sucrose polyol and lignin-derived  bio-

polyols (Bueno-Ferrer et al., 2012; Borges da Silva et al., 2009). 

2.2.2 Types of lignin and their extraction methods 

Lignin from tress, plants, and agricultural crops with different chemical composition and 

properties can be obtained by using several extraction methods. Two types of lignin have 

been produced from lignocellulosic materials, sulfur-containing lignin and sulfur-free 

lignin, via commercial chemical pulping processes and cellulosic ethanol production 

processes. Commercial chemical pulping processes mainly produce sulfur-containing 

lignin such as lignosulfonates (LS) and Kraft lignin (KL).The sulfur-free lignin, including 

soda, organosolv, and steam-explosion, oxygen delignification and hydrolysis lignin are 

mainly from either the pulping processes or  cellulosic ethanol plants.  

2.2.2.1 Kraft lignin  

Almost 80% of chemical pulping lignin comes from the widely used Kraft process (EI 

Mansouri and Salvadó, 2006). Lignin can be extracted from the black liquor through acid 

precipitation approaches using H2SO4, CO2 or by some electrochemical methods. For 

example, the following experimental procedure for lignin extraction from black liquor 

was proposed by Olivares et al. (1988). The black liquor normally with pH>13 was first 

acidified using H2SO4 to pH 8-9.5 at temperature 75-85 oC and filtered while hot. The 
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filtrate was further acidified to pH~ 2.0, followed by final filtration, washing and drying 

to get highly pure lignin. This procedure is advantageous since it allows recycling of a 

solution rich in Na+ and SO4
-2 to the Kraft process. KL contains a small number of 

aliphatic thiol groups that give the isolated product a characteristic odor (Lora and 

Glasser, 2002). Ideally, an effective pretreatment method should have following 

characteristics: low energy demand, low operational/capital cost, high removal of 

hemicellulose and lignin, easy operation, producing no or very limited amounts of sugar 

and lignin degradation products, etc. (Galbe and Zacchi, 2007). The researchers at 

FPInnovations developed a proprietary process, LignoForce System™, aiming to address 

the problem related with lignin poor filterability reported by many researchers previously 

due to a high filtration resistance (Kouisni et al., 2012). In the LignoForce process, the 

black liquor (BL) is oxidized under controlled conditions before the acidification step of 

conventional lignin recovery processes. Based on the results reported, BL oxidation 

improves the filterability of the acid-precipitated lignin by providing suitable conditions 

with respect to pH (leads to a lower pH) and temperature (leads to a higher temperature) 

for lignin colloid agglomeration, leading to the formation of particles of a size and size 

distribution that are easy to filter and wash. Based on the results obtained in laboratory 

studies, a lignin demonstration plant was designed and built by FPInnovations at the 

Resolute – Thunder Bay mill for the production of 12.5 kg/h of high-quality lignin. 

The KL can also be sulphonated to introduce –SO3H group on the lignin unit, and in fact 

currently commercial KL is mainly sold in the sulphonated form or as lignin amines 

(Borges da Silva et al., 2009). Figure 2-2 illustrates the structural characteristic of Kraft 

pine lignin (Fig. 2-2a) and lignosulfonate lignin (Zakzeski et al., 2010) (Fig. 2-2b). 
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Figure 2-2 Structural characteristic of Kraft pine lignin (a) and lignosulfonate lignin (b), 
reprinted (adapted) with permission from (Zakzeski et al., 2010). Copyright © (2010) 

American Chemical Society.  

 

2.2.2.2 Hydrolysis lignin 

Hydrolysis lignin (HL) – a byproduct from pretreatment processes in cellulosic ethanol 

plants, is expected to produce in a large quantity if the many proposed projects for 

cellulosic sugar-based chemicals or ethanol are realized. FPInnovations researchers 

(Yuan et al., 2012) patented a biomass fractionation process for producing value-added 

products from a lignocellulosic biomass, such as wood-derived sugar and hydrolysis 

lignin. Lignocellulosic biomass from any type of plant biomass that is composed of 

cellulose, hemicellulose and lignin, typically in amounts of 30-55 wt.%, cellulose; 15-35 

wt.%, hemicellulose; and 5-31 wt.%, lignin, was used. The novel bio-conversion process 

used comprises of low- pressure mechanical refining to disintegrate biomass feedstock, 

hemicellulose extraction, enzymatic hydrolysis, sugar/lignin separation, and 

fermentation. After hemicellulose extraction and a subsequent hydrolysis, the remaining 

substrate (solid) residue contains a high percentage of lignin which was being recovered 

and further purified to produce high-quality lignin products. Compared to traditional 

Kraft lignin and steam-explosion lignin, the high-quality sulfur free lignin produced from 
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this invention has little degradation, resembles the native lignin. The obtained lignin was 

named as hydrolysis lignin (HL), composed mainly of lignin (56-57 wt.%), unreacted 

cellulose and mono & oligosaccharides. The chemical composition (d.a.f) of HL is given 

in Table 2-1. Compared to the traditional industrial lignins, HL is not extensively studied 

(Liitiä et al., 2014). The presence of high contents of residual carbohydrates cause 

problems in HL applications. A lot of chemical modifications of hydrolysis lignin have 

been attempted to improve HL’s reactivity and properties. These include amination, 

alkylation, carboxylation, halogenation, nitration, oxyalkylation, sulfonation, 

sulfomethylation, silylation, phosphorylation, polycomplexes, and metal complexing, etc. 

(Monica, 2005; Vishtal and Kraslawski, 2011; Rabinovich, 2010). Possible uses of HL 

after extensive modifications could range from soil additives to dispersants for 

environment protection, soil quality improvement, crop farming, live stock farming, 

leather processing, or recycling of valuable chemicals by waste water treatment, etc. 

Unfortunately, a majority of the hydrolysis lignin was simply disposed without use as 

either the required modifications were too expensive or the material did not function well 

enough, which are the same problems that today’s researchers are facing while looking 

for valorization of hydrolysis lignin (Monica, 2005).  

 

The Department of Energy, under the National Biomass Initiative, has funded research 

into processes for efficient production of sugars from biomass. Although there is not 

much on utilization of the hydrolysis lignin, NREL is working with collaborators trying 

to convert this lignin to gasoline additives though thermal treatments (Monica, 2005). 

The USDA also funds biorefinery research, but hydrolysis lignin is not in their current 

publications. Most published articles by far are from either former members of the Soviet 

Union or from Japan. The proposed uses for this material after chemical modifications 

typically involve agricultural products (Monica, 2005), sorbents (Keane and Ghoshal, 

2001), resins (Matsushita and Yasuda, 2003; Yasuda and Asano, 2000), and some limited 

dispersing applications (Monica, 2005). These factors, jointly with lack of efficient 

utilization of HL, give a strong need of further research in cost-effective valorization of 

HL, such as depolymerization of HL and utilization of depolymerized lignin products for 

the production of valuable biomaterials like bio-based PU foams. 
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Lignin can also be prepared from organosolv pretreatment following organic-solvent 

based procedures. The effects of pretreatment on lignocellulosic materials are shown in 

Figure 2-3 (Mosier et al., 2005). 

 

 

Figure 2-3 The effect of pretreatment on lignocellulosic materials, reprinted (adapted) 
with permission from (Mosier et al., 2005). Copyright © (2005) Elsevier.  

 

Table 2-1 Chemical composition of the hydrolysis lignin (HL) used (Yuan et al., 2012) 

Lignin a wt.% 56.7 

Carbonhydrates a wt.% 29.8 

Ash a wt.% 1.2 

Others, wt.% 12.3 

Carbon b, wt.% 62.8 

Hydrogen b, wt.% 6.1 

Nitrogen b, wt.% 4.0 

Others b, wt.% 28.3 
a On dry basis 
b On dry and ash free basis 
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2.2.3 Lignin applications in polymer and materials industries 

Kraft lignin (KL) comprises almost the whole market of commercially available lignin. 

Beside the traditional use as energy source and in leather tanning, lignin is now used for 

food stabilization (Boeriu et al., 2004), due to its antioxidant and antifungal, anti-

carcinogenic properties (Lu et al., 1998). Lignin was also employed for the production 

various other products (Gosselink et al., 2004), however, they were still expensive. 

Lignin itself is by-product from pulping or cellulosic ethanol processes therefore; it must 

be used in a way that can enhance the profits of these processes, and it is more promising 

for the applications where the brown/dark coloration it imparts does not affect the 

applications. The promoting factor for utilizing lignin as a raw material for polymeric 

synthesis can be summarized as follows (Cui et al., 2008): lignin is a (1) renewable and 

abundant raw material that constitutes about 15-30% of the wood and 12-20% of other 

annual plants; (2) material with intrinsic biodegradability which is expected to be 

transmitted to polymers where lignin is incorporated; (3) material with various reactive 

points that can be used in a wide range of chemical reactions; (4) byproduct of the pulp 

industry available in a large quantity. HL has only been utilized as a sorbent, resin and 

dispersant applications. The utilization of HL as polyols for the preparation of foams has 

not been reported in the literature. For applications of HL, it is also necessary to 

depolymerize HL cost effectively and efficiently to enhance lignin reactivity.  

 

2.3 Polyurethane (PU) and rigid PU foams 

Since the invention of polyurethanes by Professor Otto Bayer in 1937, the utilization of 

polyurethanes is ubiquitous. These polymers have found applications in a wide range of 

products, from thermal insulation to medical implants (Chian and Gan, 1998). 

Polyurethanes are block copolymers containing blocks of low molecular weight 

polyesters or polyethers covalently bonded by a urethane group (-NHCO-O-). PUs are 

synthesized by reacting three components comprised of polyisocyanate; polyhydroxyl 

containing polymer (i.e., polyester or polyether polyols); and a chain extender, which is 

usually a low molecular weight diols (e.g., 1, 4-butanediol) or diamines (e.g. 1,4-
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dibutylamine). Currently, there is a very wide range of polyisocyanates, polyols, and 

chain extenders commercially available and this has led to almost unlimited formulation 

possibilities for polyurethane materials. Because of the inherent versatility in 

polyurethane syntheses, the properties of this class of polymers can be easily engineered 

to suit various applications (Xu et al., 2014). PU has rapidly grown to be one of the most 

diverse and widely used plastics with a continuously increasing global market. 

Polyurethane has its own unique merits, such as low density, low thermal conductivity 

and moisture permeability, a high strength to weight ratio, and high dimensional stability 

(Lim et al., 2008). Foams represent one of the most important commercial products of 

PU. The PU foams are commonly classified as flexible, semi-rigid, or rigid foams, 

depending on their mechanical performances and core densities (Cinelli et al., 2013). 

2.3.1 Global market and typical properties of rigid PU foams 

Polyurethane rigid foams are widely used as insulation and structural materials for 

insulation, construction, transportation, and decoration etc. Those foams accounts for 

almost one-third of the polyurethane market. Out of annual 2.8 billion lbs of North 

American polyol market, approximately 1.3 billion lbs of polyols are used for the 

manufacturing of polyurethane rigid foams (Luo et al., 2000). Rigid PU foam is a highly 

cross-linked polymer with an essentially close cell structure and low thermal conductivity 

which have made rigid PU foam a dominant material on a global basis (Banik and Sain, 

2008). Recently, it has been reported that Polyurethanes (PU) markets in North America 

are projected to grow steadily through to the end of 2014 and into 2015. According to 

ICIS, in particular, rigid PU foam consumption is expected to increase in auto 

applications and construction. Table 2-2 summarizes some typical properties of 

commercial rigid PU foams (BASF, 2010; ENERLAB, 2012; INSTA-PANELS, 2012; 

BING, 2006). 

Table 2-2 Typical properties of commercial rigid PU foams (BASF, 2010; ENERLAB, 

2012; INSTA-PANELS, 2012; BING, 2006) 

Property (unit) Measured value 

Density (core) (kg/m3) 42.0 
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Density (apparent overall) (kg/m3) 40.0 

Young’s modulus (kPa) 124-152 

Compression strength @ 10% deformation (kPa) 200 

Thermal conductivity (W/mK) 0.0233 

Closed cell contents (%) >90 

Water absorption (% by volume) 0.20 

Dimensional stability at -20 oC (%) <1.0 

Dimensional stability at +70 oC (%) <2.0 

2.3.2 Preparation of rigid PU foams and its essential raw materials  

A typical rigid PU foam formulation includes an isocyanate, a polyol, a co-crosslinking 

agent, physical and/or chemical blowing agents, catalysts, and a surfactant, with each one 

having a specific role in the chemical reactions involved in the formation of rigid PU 

foam. The reactions involved in this process include urethane formation, crosslinking 

reactions, and foaming reactions if chemical blowing agent is used. The heat of reaction 

for PU formation is ~100-110 kJ/mole of urethane. The hydrogen next to nitrogen atom 

in the urethane group is capable of reacting with additional isocyanates to form an 

allophanate group as shown in Figure 2-4 (Tu, 2008). Further reactions of amine with 

additional isocyanate will generate distributed urea (Figure 2-4) and the approximate total 

heat released per mole of water is 196 kJ. The distributed urea can further react with 

additional isocyanate to form Biuret linkage as shown in Figure 2-4. 
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Figure 2-2 Main and side reactions in polyurethane production (Tu, 2008) 

The foaming can be done by one shot or two shot methods. In one shot method, all 

materials loaded into a mixing container and mixed homogeneously before they are 

poured into a mold. In the two shot method, in the first stage all other ingredients 

(polyols, blowing agents, catalysts etc.) were premixed and then isocyanate is added to 

the mixture at the second stage. The foaming can be carried out with a physical blowing 

agent, chemical blowing agent, or with a mixture of the two (Mondal and Khakhar, 

2004). In physical blowing, reactions between isocyanate and polyol produce 

polyurethane linkages with the emission of heat of reaction. Then, the blowing agent 

vaporizes and the gas trapped in the closed cells of the foam (Lim et al., 2008). Typically, 
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thermal conductivity of the blown gas is very low. This, with small closed cell structure 

gives extremely low thermal conductivity of the rigid PU foams. In chemical blowing, 

water (most widely used blowing agent) reacts with isocyanate to form unstable carbamic 

acid which immediately decomposes into an amine and CO2 (Kwon et al., 2007). The 

amount of water needed during the reaction should be accurately estimated otherwise, the 

use of excessive water can cause a negative pressure gradient due to the rapid diffusion of 

CO2 through the cell wall causing cell deformation (Kim et al., 2008). 

2.3.2.1 Isocyanate 

The most commonly used aromatic isocyanates in rigid PU foam formulations are TDI 

(toluene diisocyanate) and polymeric MDI (diphenylmethane diisocyanate), although 

later have gained increasing popularity in recent years. The average functionality of MDI 

is 2.7 (NCO contents ~31.2 %). 

2.3.2.2 Polyol 

The most important polyols used in rigid PU foam formulations are primary and 

secondary hydroxyl terminated polyether polyols followed by polyester polyols, normally 

of aromatic nature. This tendency results from the enormous variety of molecular 

structures regarding hydroxyl functionality and molecular weight of polyether polyols. 

More, recently, some aromatic polyester polyols have gained an increased attention from 

rigid PU foam producers, partly motivated by its low cost and also due to its aromatic 

nature which ensures more internal cohesion of materials (Li, 2012). The polyols used in 

rigid PU foam preparation have normally a high total hydroxyl number (amount of KOH 

in mg consumed for the neutralization of acid from 1 g of polyol) between 200-800 

mgKOH/g. Until now petroleum polyols have been employed for foams preparation 

however, due to high prices of petroleum products coupled with their depletion in 

resources there are more interests for the preparation of polyols from renewable and low 

cost materials (Mahmood et al., 2013). 
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2.3.2.3 Catalyst, blowing agent, surfactant and crosslinking agent 

PU polymerization reaction is catalyzed by tertiary amines, such as 

dimethylcyclohexylamine, and organometallic compounds, such as dibutyltin dilaurate or 

bismuth octanoate. Furthermore, specific catalysts can be chosen based on whether they 

favor urethane (gelation) reaction, such as 1,4-diazabicyclo[2.2.2]octane (also called 

DABCO or TEDA), or the urea (blowing) reaction, such as bis-(2-

dimethylaminoethyl)ether, or specifically drive the isocyanate trimerization reaction such 

as potassium octoate (Twitchett, 1965; Duggal et al., 2013).  

One of the most desirable attributes of PU is its ability to be turned into foams. Blowing 

agents such as water (chemical blowing agent) or n-pentane (physical blowing agent) can 

be formulated into the poly side or added as an auxiliary stream (Fleurent and Thijs, 

1995). In the preparation of PU foams blowing agents can be used alone or in 

combination depending on the final density of the foam desired. Since the polymerization 

reaction is exothermic, theses blowing agents vaporize to a gas during the reaction 

process, and thus they fill and expand the cellular polymer matrix, creating foam 

structure. 

Surfactants are used to modify the characteristics of the polymer matrix during the 

foaming process. They are used to emulsify the liquid components, regulate cell size, and 

stabilize the cell structure to prevent collapse and surface defects. Rigid foam surfactants 

are designed to produce very fine cells and very high closed cell contents. The most 

commonly used surfactants are silicon surfactants. Crosslinking agents are employed to 

enhance the crosslinking of the polymer for better dimensional stability for the foams. 

2.4 Lignin depolymerization via multiple routes 

Owing to lignin’s special phenyl propanol structure and aryl-alkyl ether bonding, lignin 

can be a good source of polyols for PU production (Demharter, 1998). Crude lignin can 

be directly incorporated into PU formulations due to the presence of aliphatic and 

aromatic hydroxyl groups in its structure as the reactive sites, replacing <30 wt.% of 

petroleum-based polyols (Cateto et al., 2008). However, crude lignin has a much lower 

reactivity not only because it has less reactive sites, but also because the reactive 
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positions of the macromolecules of lignin or its fragments have lesser accessibility due to 

the steric hindrance (Cheng et al., 2012). It is thus an effective way to improve lignin’s 

reactivity through depolymerization of lignin into oligomeric products of reduced 

molecular weights with higher functionality (Alma et al., 2001; Lee et al., 2000). Despite 

the anticipated improvements in engineered lignin structures and tailored pretreatment 

chemistries, some lignin fractions from biorefinery are not expected to be suitable for 

material applications but can still be valuable for conversion into fuels and chemicals. 

Lignin depolymerization is challenging given the broad distribution of bond strengths in 

the various C-O and C-C linkages in lignin and the tendency for low molecular weight 

intermediates to undergo recondensation/repolymerization, often to more recalcitrant 

species (Ragauskas et al., 2014). To date, multiple strategies have emerged for lignin 

depolymerization including thermochemical treatments, homogeneous and heterogeneous 

catalysis and biological depolymerization. 

Crude lignin is heterogeneous in nature and mainly composed of two types of linkages: 

condensed linkages (e.g., 5-5 and β-1 linkages) and ether linkages (e.g., α-O-4 and β-O-

4) (Chakar and Ragauskas, 2004). The percentage of ether linkages in soft- and hardwood 

lignin are 56% and 72%, respectively (Pu et al., 2008). Aryl ether linkages can be more 

easily cleaved by lignin depolymerization/liquefaction processes (Yuan et al., 2010).  The 

major objective of all the depolymerization strategies is to cleave the ether linkages in 

lignin structure (Zakzeski et al., 2010; Boerjan et al., 2003). To achieve this target 

chemically, various types of solvents, alone or in combination of co-solvents mixture, 

and catalysts have already been investigated. Chemical depolymerization of lignin can be 

divided into five categories by Wang et al. (2013) according to the different chemicals 

applied in the depolymerization process: (1) acid-catalyzed, (2) metallic catalyzed, (3) 

ionic liquids-assisted, and (4) sub- or supercritical fluids-assisted lignin 

depolymerization, (5) base-catalyzed lignin depolymerization. 

2.4.1 Lignin depolymerization with acid catalysis 

Lignin hydrolytic depolymerization under acidic conditions was carried out on hydrolysis 

lignin using 0.2 M hydrogen chloride (HCl) in dioxane-water (9:1), resulting in the 

formation of low molecular weight compounds (Lundquist, 1976; Matsushita and 
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Yasuda, 2005). Later degradation of Kraft lignin, dissolved in 50% (v/v) dioxane-water, 

by using hemin and hydrogen peroxide (H2O2) was investigated to produce phenolic 

compounds as a substitute for leather tanning (Suparno et al., 2005). Depolymerization of 

Indulin Kraft lignin was carried out using silica-alumina (Si/Al: 2) catalyst in water and 

1-butanol solution, which led to a yield of liquid products at 85-88 mol-C % (Yoshikawa 

et al., 2013). Matsushita and Yasuda (2005) carried out hydrolytic depolymerization of 

lignin using sulfuric acid (72%) at 60-80 oC for producing lignin sulfonate or sulfuric 

lignin, which can be further utilized for the synthesis of ion exchange resins. 

Although, lignin can be depolymerized to some extent via depolymerization in acidic 

media; its major drawback is the unavoidable repolymerization/condensation of 

intermediate products formed during the reaction (Yuan et al., 2010), proceeding mainly 

between phenol reactive sites and α-position of phenol propanol. This results in the 

increased molecular weight of the end products. Other problems encountered in 

hydrolytic depolymerization with H2SO4 catalyst are related to the difficulty in treating 

the waste sulfuric acid from the acid catalyzed reactions. As such, lignin 

depolymerization with metallic catalysts, alkaline catalysts, ionic liquids and organic 

solvents has gained more attentions, as described in details below. 

2.4.2 Lignin depolymerization with metallic catalysis 

Disruption of the complicated lignin polymer into smaller oligomers is an important step 

for lignin valorization for chemicals. Catalysts, in many cases, are required to assist 

selective bond cleavage, leading to high selectivity for a particular compound in the 

product stream. Various catalysts have been tested for different processes and substrates 

including both model compounds and lignin extracts. Zakzeski et al. (2010) and Pandey 

& Kim (2011) have published comprehensive literature reviews in this regard (Zakzeski 

et al., 2010; Pandey and Kim, 2011). Catalytic reductive depolymerization of lignin 

typically requires high pressure of hydrogen or a reducing agent such as formic acid. 

Metallic catalysts demonstrated effective to improve the selectivity towards the desired 

product. However, the major issue of using metallic catalysts was their fast deactivation 

which made their use expensive (Ye et al., 2012). 
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2.4.3 Ionic liquid assisted lignin depolymerization  

Ionic liquids are salts with melting points below an arbitrary set point of 373 K. They 

often have tunable physical properties based on the choice of cation and anion pairs, 

negligible vapor pressure, and good thermal stability (Zakzeski et al., 2010). Ionic liquids 

have proved to be appropriate solvents for the dissolution of biomass (Zakzeski et al., 

2010) and lignin (Kilpeläinen et al., 2007). However, the high cost of ionic liquids (Zhu, 

2008) and the difficulty in separation of them from depolymerized products made their 

use in lignin depolymerization very limited and less practical (Zakzeski et al., 2010). 

2.4.4 Sub- or supercritical fluid assisted lignin depolymerization 

Solvents in supercritical conditions behave differently from those in subcritical and 

ambient conditions and have many interesting properties. Various researchers have 

studied the conversion of biomass, lignin and lignin model compounds in supercritical 

water (Tc= 374.15 oC and Pc= 22.1 MPa) (Pandey and Kim, 2011). These studies have 

shown that hydrolysis in supercritical water is a probable pathway in lignin 

depolymerization. However, the yields of monomeric phenols were reported to be lower 

than expected, probably due to repolymerization of intermediates or monomers forming 

heavy products or char. It has been suggested by some researchers that the addition of 

phenol can prevent char formation, but phenol, primarily produced from petroleum 

derived benzene through the cumene process, is very costly (Xu et al., 2011), making the 

overall process very expensive. Sub- and supercritical organic solvents/fluids alone or in 

combinations with alkaline catalysts have been reported very efficient in the 

depolymerization of lignin (Yuan et al., 2010; Cheng et al., 2012). Similar to ionic 

liquids, sub- and supercritical organic solvents/fluids have been employed as they showed 

good solubility for lignin. However, these processes normally operate at high 

temperatures and pressures, so the overall cost of the depolymerization process is still 

high. 

2.4.5 Lignin depolymerization with base catalysis 

Catalysts used in lignin depolymerization should promote high conversion and suppress 

char formation and condensation, while keeping the reaction severity under a permissible 
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limit. Alkaline catalysts could reduce the formation of char/coke in lignin 

depolymerization (Nenkova et al., 2011). The depolymerization of Kraft and organosolv 

lignin using KOH in supercritical methanol/ethanol was studied in a rapidly heated batch 

microreactor, where a high lignin conversion was achieved with only 7% ether insoluble 

materials (char) remaining after treating organosolv lignin in KOH/ethanol at 290oC 

(Miller et al., 1999). Further studies with NaOH, CsOH, LiOH, Ca(OH)2 and Na2CO3 

indicated that strong bases gave superior conversion, and an excess base relative to lignin 

monomer was required for maximum conversion. Recently, Yuan et al. (2010) produced 

oligomers/polyols (Mw ≈1000 g/mol and Mn ≈450 g/mol) through hydrolytic degradation 

of Kraft lignin (Mw ≈60,000 g/mol and Mn ≈10,000 g/mol) using NaOH in a water-ethanol 

mixture and phenol as a capping agent (lignin to phenol ratio =1:1 (w/w)). Under optimal 

conditions (260 oC and 1 hr), char and gas production was negligible. Further studies by 

Yoshikawa et al. (2012) indicated that strong bases like KOH or NaOH resulted in 

superior conversion and effective reduction in char formation. Recently, Beauchet et al. 

(2012) carried out base-catalyzed de-polymerization of KL (10 wt.% concentration) in a 

continuous flow reactor over 270-315 oC and 130 bar for the production of a monomers-

rich fraction, small organic compounds and oligomers. 

 



33 

 

 

Figure 2-3 Hydrolytic depolymerization mechanism of alkaline lignin catalyzed by 

NaOH in water-ethanol medium with phenol capping agent, reprinted (adapted) with 

permission from (Yuan et al., 2010). Copyright © (2010) Elsevier. 

 

Hydrolytic depolymerization has gained much attention recently for the depolymerization 

of KL into low molecular weight products employing water alone as a solvent. Mahmood 

et al. (2013) successfully depolymerized KL (DKL) hydrolytically using water alone as a 

solvent under alkaline medium without employing any organic solvent/capping agent. 

The obtained depolymerized KL (DKL) (yield ~ 90%) was in solid or powdered form 

soluble in organic solvents and the DKLs have acceptable characteristics as bio-polyols 

for PU synthesis. Although there were no waste streams were generated during this 

depolymerization process, this process may be challenging for industrial applications due 

to the severity of the reaction conditions (250-300°C and 5-10 MPa pressures) and the 

required post-treatment steps. Therefore, further research is needed to explore cost 

effective process with lower operating temperature and pressure for lignin 

depolymerization.  
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2.4.6 Lignin depolymerization via oxidative route  

Oxidative processes for lignin depolymerization can be realized by catalytic side-chain 

oxidation and fragmentation reactions. Typically the targeted products from lignin 

oxidation, wherein the aromatic character is preserved, include aromatic acids and 

aldehydes with smaller market volumes (Ragauskas et al., 2014). However, oxidation can 

enable production of ring-opened organic acids that can be effectively separated for 

highly valuable products. Oxidative depolymerization of lignin usually employed noble 

metal as an appropriate catalyst and H2O2 as an environment friendly and low cost 

oxygen atom donor (Crestini et al., 2006), and after oxidation treatment of spruce lignin 

more soluble lignin fragments with a high degree of depolymerization were produced, 

indicated by lower contents of aliphatic and condensed -OH groups, and higher amounts 

of carboxylic acid moieties in the de-polymerized lignin products. Manganese peroxidase 

(MnP) is also a common catalyst for lignin oxidative depolymerization (Hofrichter, 

2002). According to Thring et al. (2000), solvolysis lignin could be converted to liquid 

products mainly consisting of aromatic hydrocarbons (mostly benzene, toluene and 

xylene with toluene dominating) over HZSM-5 catalyst under atmospheric pressure and 

500-650oC temperature (conditions similar to pyrolysis). Lately, some research interest 

was focused on selective lignin polymer oxidative depolymerization to obtain poly-

functional monomeric compounds (Crestini et al., 2006). 

2.4.7 Lignin depolymerization under low pressure 

Due to the complex methods, intense reaction conditions and high costs associated with 

the existing methods for the hydrolytic or reductive depolymerization of lignin as 

described previously, it is of great interest and significance to explore alternative routes 

with lower operating pressure and temperature. 

Cinelli et al. (2013) liquefied Indulin AT lignin in polyols (glycerol and PEG 400) in a 

glass flask under microwave treatment in oven at 180 oC for 3 min, to prepare feedstock 

for preparation of flexible PUs. However, the resulting sample was of very high viscosity 

and needs the addition of another solvent before further application. Hu et al. (2012) 

liquefied soybean straw (loading from 10%-25%) under atmospheric pressure employing 
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crude glycerol and concentrated sulfuric acid (0-5%) at 120-240 oC over 45-360 min, 

aiming to produce bio-polyols for polyurethane foams too. Hassan and Shukry (2008) 

conducted the liquefaction of bagasse and cotton stalks by using polyhydric alcohols 

(PEG400 and glycerine) in the presence of sulfuric acid as a catalyst and found that 

PEG400 alone was not suitable due to the large formation of solid residues, while 

replacing 10% PEG400 with glycerine helped to reduce yield of solid residue by 50%. 

Zheng et al. (2011) compared the conventional bath heating with microwave heating on 

the degree of wood liquefaction in polyhydric alcohols for polyols and PU foams 

preparation, and found that microwave heating was more advantageous in terms of 

product yields.  Interestingly, Jasiukaityte-Grojzdek et al. (2012) used milled-wood lignin 

as a model substrate for lignin liquefaction using either p-toluene sulfonic acid mono-

hydrate or sulfuric acid as the catalysts and studied the structural changes that lignin 

undergoes during the treatment by 1H NMR, FTIR, SEC and HPLC. 

Most of the depolymerization approaches under low pressure are using polyhydric 

alcohols for producing polyols for the preparation of PUs, where the polyhydric alcohols 

used were not recyclable. Recently, in the author’s group depolymerization of lignin (KL 

and HL) was successfully carried at low pressure (≤ 150 psig) with a high yield of ~90% 

and low molecular weight ~1000 g/mole, where the solvent used was recyclable. The 

obtained depolymerized lignin (DKL & DHL), although in solid form, has a suitable 

hydroxyl number, and can be used as polyols for preparation of rigid PU foams. 

2.4.8 The global trend of lignin application in PUs  

The interest for developing lignin-based bioproducts, including lignin-based polymers 

and materials, has been intensified in the past few years, owing to several major reasons, 

namely (1) the greater demand of green chemicals and products, (2) the availability of 

new lignin sources such as sulfur-free lignin such as hydrolysis lignin (HL), and (3) the 

growing interest in lignin valorization for pulp/paper mills which have a capacity 

bottleneck in recovery boilers (Borges da Silva et al., 2009). In this regard, exploring 

lignin as a raw material for polyurethane synthesis has received the most intensive and 

extensive interest for lignin valorization for some reasons, i.e., (1) the random non-

crystalline network structure of lignin contributes to better mechanical properties and 
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thermal stability for the lignin-based PU foams (Thring et al., 1997), (2) the natural 

properties of lignin contribute to an improvement of the moisture and flame resistance of 

PU foams (Glasser et al., 1991), and (3) its aliphatic and phenolic hydroxyl 

functionalities provide good reacting sites towards isocyanates (Thring et al., 1997). 

Various types of lignin-based polyurethane materials including elastomers and foams 

have been produced (Borges da Silva et al., 2009). The exhibited properties were 

comparable or in some cases even superior to those of the conventional polyurethanes 

(Li, 2012). 

2.4.9 Lignin application in the preparation of PUs 

Preparation of polyurethanes from lignin is not an easy task because of the complex 

structure of lignin. The utilization of lignin in polyurethane synthesis follows two global 

approaches (Borges da Silva et al., 2009): (1) direct utilization of lignin without any 

preliminary chemical modification, alone or in combination with other polyols, and (2) 

utilization after chemical modification, such as esterification and etherification reactions 

to make hydroxyl functions more readily available. Recently, Mahmood et al. (2013) 

demonstrated that hydrolytic depolymerization of Kraft lignin (KL) and hydrolysis lignin 

(HL) could be a viable route for the preparation of depolymerized products (DKL & 

DHL) with low molecular weights and acceptably high hydroxyl numbers, and these 

depolymerized products can be incorporated in the preparation of rigid PU foams at 

higher replacement ratios (≥50%) without much compromising the properties of the final 

foams. 

2.4.9.1 Direct incorporation of lignin in PU foam without 
modification 

Several works have been reported aiming to incorporate lignin directly in PU 

formulations, taking advantage of both aliphatic and aromatic –OH functionalities within 

lignin structure (Demharter, 1998). Among the selected studies it is worth mention the 

review of Belgacem and Gandini (2008) which highlights the work performed by several 

research groups on the utilization of non-modified lignin in PU formulations. 

Hatakeyama and Hatakeyama (2010) also reported the use of non-modified lignin in 
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combination with oligoether diols as the polyol component in PU foam formulations. Pan 

and Saddler (2013) replaced petroleum-based polyol (Voranol 270) with hardwood 

ethanol organosolv lignin (HEL) or hardwood Kraft lignin (HKL) from 25% to 70% 

(molar percentage) in preparing rigid polyurethane foam. The foams produced contained 

12-36% (w/w) HEL or 9-28% (w/w) HKL. They reported that the lignin was chemically 

crosslinked and the lignin-containing foams had comparable structure and strength up to 

25-30% (w/w) HEL or 19-23% (w/w) HKL addition. However, the densities of lignin-

based PU foams were normally higher than the commercial foams. However, with the 

increasing ratio of HKL in PU foam from 9% (w/w) to 19% (w/w) respectively, the 

density of pure polyurethane foam reduced from 116 kg/m3 for PU foam derived from 

pure Voranol 270 to 100 kg/m3 and 70 kg/m3 when increasing ratio of HKL in PU foams 

from 9%(w/w) to 19% (w/w), respectively. With further increasing the ratio of HKL in 

PU foam from 19% (w/w),  to 28% (w/w), the foam density increased from 70 to 85 

kg/m3 perhaps due to the non-uniform dispersion of HKL and granule formation in the 

foaming process (Pan and Saddler, 2013). There is a limitation regarding the percentage 

replacement of petroleum polyols by employing crude lignin. The major issue for 

incorporating crude lignin into the PU formulation is related to the low solubility of the 

lignin in polyol system for PU foams. Thus, direct replacement of petroleum-based 

polyols with crude lignin generally achieved PU foams at lower bio-replacement ratios. 

2.4.9.2 Modified lignin via oxypropylation and its incorporation in 
PU foam 

Incorporation of crude lignin in a powder form directly into PU foam to replace 

petroleum-based polyols limits the percentage replacement due to the high molecular 

weight, lower solubility in polyols and lower aliphatic hydroxyl numbers of the lignin.  

Compared with incorporation of lignin into PU materials directly to replace petroleum-

based polyols, utilization of lignin after chemical modification (esterification and 

etherification reactions) appeared to be more advantageous for a higher replacement ratio    

(Cateto et al., 2011). Among the various synthetic routes for the production of rigid 

polyurethane foams (RPU), oxypropylated lignin seems to be the most feasible one. 

Through oxypropylation, the aromatic hydroxyl groups, that is not very reactive towards 
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isocyanates as they are entrapped inside the molecule and difficult to access, are 

converted to aliphatic hydroxyl group and liberated from the steric and/or electronic 

constraints (Cateto et al., 2009). Meanwhile, the solid lignin becomes a liquid polyol, as a 

result of the introduction of multiple ether moieties. Nadji et al. (2005) carried out the 

oxypropylation of Kraft lignin (KL) and the resulting polyols were employed for the 

preparation of rigid PU foams. Although the KL/PO ratio was low varying from 10/90 to 

20/80, Cateto et al. (2009) synthesized polyether polyols, using four technical lignins 

(Alcell, Indulin AT, Curan 27-11P, and Sarkanda) via oxypropylation. Cateto et al. 

(2011) monitored the formation of lignin based polyurethanes, prepared from lignin 

derived polyether polyols via oxypropylation, by FTIR-ATR and the kinetics was 

analyzed according to a global second order model. Solid Kraft pine lignin could also be 

converted to a liquid polyol through oxypropylation, and the resulting polyol was 

characterized and a series of lignin-based PU was synthesized by replacing varying 

weight percentages of the amount of sucrose polyol and glycerol polyol (Li and 

Ragauskas, 2012). All foams had a low density of ~30 kg/m3. Interestingly, the optimal 

compressive property of rigid PU foams was obtained using lignin polyol without the 

addition of any other commercial polyols primarily attributed to the rigidity of lignin 

aromatic structure and the high functionality of lignin hydroxyl groups.  

2.4.10 Depolymerized lignin application for PU foam preparation 

2.4.10.1 Direct incorporation of depolymerized lignin in PU foams  

Extensive efforts have been made to explore high value applications of lignin, in 

particular in polymeric materials, in particular PU (Pan and Saddler, 2013). Preparation 

of low-cost polyols from abundant and renewable resources has long been an important 

subject in the PU industry. PU has rapidly grown to be one of the most widely used 

synthetic polymers with a continuously increasing global market. Rigid PU foam is a 

highly cross-linked polymer with closed-cell structure. KL was first incorporated into a 

polyether triol, forming a cross-linked network of PU (Yoshida et al., 1990). Hatakeyama 

et al. (2004) prepared rigid PU foam from Kraft lignin together with diethylene glycol 

(DEG), triethylene glycol (TEG) and polyethylene glycol (PEG) with molecular mass of 

200 (PEG200). Sulfur-free lignin from straw steam explosion was also investigated for 
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polyurethane preparation (Bonini et al., 2005). Cinelli et al. (2013) liquefied Indulin AT 

lignin with polyols (glycerol and PEG 400) in a glass flask under microwave treatment in 

oven at 180 oC for 3 min, and utilized the liquid product with in the preparation of 

flexible PUs. However, the liquid products obtained from liquefaction could not be used 

for the production of flexible PUs due to excessive viscosity and very high OH values. 

Therefore PPG and castor oil was further added to reduce viscosity and glass transition 

temperature of the final materials while increasing the flexibility. Thus, the lignin 

contents in the final PU foam product were very low. Hu et al. (2012) studied the 

feasibility of using crude glycerol to liquefy soybean straw for the production of bio-

polyols ad polyurethane foams. Biopolyols produced showed a hydroxyl number of 440-

540 mgKOH/g and the foams produced showed densities of 33-37 kg/m3 and 

compressive strength from 148-227 kPa. 

However, in spite of a lot of efforts for the incorporation of even depolymerized lignin 

with or without modification, the lignin contents are limited. Most of the research work 

presented in literature shows that the wt.% replacement of petroleum-based polyols with 

crude lignin in PU foams structure is not more than 30 wt.%. At the same time the 

molecular weight of lignin/depolymerized lignin is also an important factor responsible 

for deteriorated properties for the lignin-based PU foams. With the increase of 

replacement ratio glassy materials foam materials were resulted. To address this problem, 

the most viable route would be depolymerization of lignin prior to its application in the 

synthesis of PU foam. Depolymerization of lignin results in de-polymerized lignin (DL) 

products with lower molecular weights suitably high aliphatic and total hydroxy numbers, 

making them suitable for the preparation of PU foams at higher replacement ratios.    

The author’s group successfully depolymerized KL into low molecular weight products 

via direct hydrolysis using NaOH as a catalyst, without any organic solvent/capping 

agent (Mahmood et al., 2013). At the best operating conditions (250 oC, 1 h, and 

NaOH/KL ratio ≈0.28 (w/w) with 20 wt.% substrate concentration) yield of 

depolymerized KL (DKL) was ~92 wt.% with solid residues <0.5 wt.% (Mw ≈3310 

g/mole & aliphatic hydroxyl number ≈352 mgKOH/g). The molecular weight of DKL 

was slightly higher than the desirable molecular weight of polyols for the preparation of 
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rigid PU foams (Li and Ragauskas, 2012). Therefore, the author’s group carried out an 

optimization study subjected to several constraints: (1) yield of DKL ≥ 75 wt.%; (2) 

moderately high aliphatic-hydroxyl number (≥300 mgKOH/g) and; (3) lowest possible 

Mw. The optimized reaction conditions determined for the hydrolytic depolymerization 

are: 250 oC, 2 h, and NaOH/KL ratio ≈0.28 (w/w) with 10 wt.% substrate concentration, 

under which the KL depolymerization produced DKL at a yield of ~77 wt.%,  with Mw 

≈1700 g/mole and aliphatic-hydroxyl number ~365 mgKOH/g. The produced DKL was 

successfully utilized as bio-polyols replacing 50 wt.% of PPG400 and sucrose polyols for 

the preparation of rigid polyurethane foams. The bio-based foams prepared with DKL 

and sucrose polyols showed superior compression modulus (5152.0 kPa) and thermal 

conductivity (0.032 W/mK) than those with DKL and PPG400. Mahmood et al. (2013) 

also successfully depolymerized hydrolysis lignin (HL) in 50/50 (v/v) water-ethanol 

mixture under N2 atmosphere at 250 oC for 1 h, and the depolymerized HL (DHL) was 

also utilized as bio-polyols for the preparation of bio-based rigid PU (BRPU) foams, 

replacing at 30 wt.% and 50 wt.% of PPG400 and sucrose polyols. Again, BRPU 

prepared with DHL and sucrose polyols showed superior compression strengths at 10% 

(216±31 kPa) and lower thermal conductivities (0.036±0.001 W/mK) than those with 

DHL and PPG400. 

2.4.10.2 Modified depolymerized lignin via oxypropylation and its 
incorporation in PU foams 

Depolymerized lignins after removing solvents are still in powder form and there exist 

less accessible hydroxyl groups in the molecular structure. Thus, chemical modification 

such as oxypropylation with alkylene oxide was found to be beneficial as it could 

improve the accessibility of the hydroxyl groups and convert lignin from solid form into a 

liquid polyol with extended chain and exposed hydroxyl groups (Pan and Saddler, 2013). 

To the best of the author’s knowledge, no study has been reported on the utilization of 

depolymerized KL and HL for the preparation of BRPU foams with satisfactory physical, 

mechanical and thermal characteristics, replacing 50 wt.% or more petroleum-based 

polyol and sucrose polyol. In the author’s group, DKL obtained from the hydrolytic de-

polymerization of KL was used for the preparation of polyols via oxypropylation in a 
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unique medium consisting of propylene oxide (PO), glycerol+KOH (11 wt.% KOH) and 

acetone. The prepared polyols were employed as a single polyol in the preparation of 

BRPU with high bio-contents up to 70 wt.%. Similarly, oxypropylated DHL was also 

successfully incorporated in the BRPU foams at high percentage of bio-contents.  

2.5 Concluding Remarks 

Lignin, nature’s dominant aromatic polymer, is found in most terrestrial plants in the 

approximate range of 15-40 % dry weight and provides structural integrity. Kraft lignin 

(KL), sulfur containing lignin, is a major by-product of the pulp & paper industry, and 

hydrolysis lignin (HL), sulfur free lignin, is the solid residue left from the enzymatic 

hydrolysis of wood after the pretreatment processes in cellulosic ethanol plants. 

Currently, most of the lignin in pulp/paper mills is burned in recovery boilers to generate 

heat and electricity. Only 1% of the annually produced lignin is being commercialized 

mainly for lignin sulfonate. Although with much lower reactivity, crude lignin can be 

directly incorporated into PU formulations as a natural polyol to replace petroleum 

polyols due to the presence of aliphatic and aromatic hydroxyl groups in its structure. 

However, with crude lignin the replacement ratios are usually low in the range of ~20-30 

wt.%. Further increasing replacement ratios would result in fragile and low strength PU 

foams. Lignin depolymerization with selective bond cleavage is a promising approach for 

converting it into value-added precursors especially for its utilization in the preparation of 

rigid polyurethane (PU) foams. Depolymerization of these macromolecules can result in 

valuable products with improved functionality and reduced molecular weights, which in 

turn will increase the percentage replacement of bio-based polyols in the foam 

formulations. Depolymerization is realized by hydrolysis/reduction/oxidation employing 

solvents, catalysts, appropriate atmosphere (inert, reductive or oxidative) at elevated 

temperature and pressure.  

Over the past few decades, much research has been conducted to investigate the 

production of value added bioproducts from KL. Recently, HL also comes to the front 

due to its sulfur free nature and its abundant availability from cellulosic ethanol plants. 

Value-added utilization of lignin is critical for the accelerated development and 

deployment of the bio-refinery. The direct incorporation of KL in PU foams improves the 
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mechanical characteristics of rigid PU foams however; with increasing the percentage 

bio-replacement in the foam to above 30% would negatively affect the foam rigidity. 

Therefore, to improve the percentage of bio-replacement in PU foams depolymerization 

of lignin to produce de-polymerized lignin as bio-polyols with a lower Mw and better 

reactivity is a feasible way. Depolymerization of lignin not only reduces the molecular 

weights of the resulting products but also improves their functionalities, facilitating their 

utilization in PU foam preparation. Depolymerized products (DKL and DHL) were 

effectively utilized for the preparation of rigid bio-based PU foams without any 

modification achieving 50 wt.% replacements of PPG400 and sucrose polyols. The 

resulting foams showed good mechanical and thermal characteristics with improved 

physical and thermal stability compared with commercial RPU foams. Oxypropylation of 

depolymerized products could transfer solid DHL and DKL into liquid polyols via chain 

extension reactions, for their utilization as bio-polyols for the preparation of BRPU foams 

at high percentage of bio-contents i.e., up to 70 wt.%. The resulting foams showed high 

dimensional stability, good mechanical strengths and low density and thermal 

conductivities which makes them a suitable candidate as an insulation material. However, 

further research is needed to improve morphological characteristics of foams with 

increased bio-replacements and to scale up the processes for industrial production of 

lignin-derived polyols and rigid PU foams. 
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Chapter 3  

3 Production of polyols via direct hydrolysis of Kraft lignin: 
Effects of process parameters 

Abstract 

Kraft lignin (KL) was successfully depolymerized into polyols of moderately high 

hydroxyl number and yield with moderately low weight-average molecular weight (Mw) 

via direct hydrolysis using NaOH as a catalyst, without any organic solvent/capping 

agent. The effects of process parameters including reaction temperature, reaction time, 

NaOH/lignin ratio (w/w) and substrate concentration were investigated and the 

polyols/depolymerized lignins (DLs) obtained were characterized with GPC-UV, FTIR-

ATR, 1H-NMR, Elemental & TOC analyzer. The best operating conditions appeared to be 

at 250 oC, 1 h, and NaOH/lignin ratio ≈ 0.28 with 20 wt.% substrate concentration, 

leading to <0.5% solid residues and ~ 92% yield of DL (aliphatic-hydroxyl number ≈ 352 

mgKOH/mg and Mw ≈ 3310 g/mole), suitable for replacement of polyols in polyurethane 

foam synthesis. The overall % carbon recovery under the above best conditions was ~ 

90%. A higher temperature favored reduced Mw of the polyols while a longer reaction 

time promoted dehydration/condensation reactions. 

  

Keywords: Kraft lignin, hydrolysis, depolymerization, polyols, catalyst. 
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3.1 Introduction 

Due to increased concerns worldwide of declining low-cost petroleum reserves, energy 

security, climate change and sustainability, more attention has been focused towards the 

exploration of renewable resources such as agricultural and industrial wastes/by-products 

for fuels and chemicals (Sricharoenchaikul, 2009). Lignin (20-30 wt.% in wood) (Fang et 

al., 2008), a natural, aromatic three dimensional high molecular weight biopolymer 

composed of phenyl propanol units (Tejado et al., 2007), is a potential candidate for the 

production of fuels, chemicals and bio-based materials. All native lignins are 

heterogeneous in nature and mainly composed of two types of linkages: condensed 

linkages (e.g., 5-5 and β-1 linkages) and ether linkages (e.g., α-O-4 and β-O-4) (Chakar 

and Ragauskas, 2004). The percentage of ether linkages in soft- and hardwood lignins are 

56% and 72%, respectively (Pu, 2008). Aryl ether linkages can be more easily cleaved 

than the stable C-C linkages since the latter are stable and resistant to chemical 

depolymerization. 

 

The major source of lignin (Kraft lignin and lignosulfonates) is the pulp and paper 

industry. About one million tons/year of lignosulfonates, derived from sulfite pulping 

liquors, are used as dispersants for dyes, pesticides, cement, asphalt and a variety of other 

applications (Holladay et al., 2007). Nowadays Kraft pulping accounts for 80% of the 

world’s chemical pulp production and 50-55 million metric tons of lignin are produced 

annually in the form of black liquor; the liquid phase remaining after alkaline pulping has 

liberated the cellulose fibers (Borges da Silva et al., 2009). Black liquor is conventionally 

burned in recovery boilers to regenerate pulping chemicals and to produce steam and 

electricity for mill operations. While most Kraft lignin is thus not available for isolation, 

a special case exists in the 60-70% of North American Kraft mills that have production 

bottlenecks due to the thermal capacity of their recovery boilers. An interesting solution 

to this problem is to extract some of the lignin in black liquor by precipitation. In North 

America alone, the potential of precipitated lignin was estimated at 1.5 Mt/year. The 

removed lignin can be further utilized as a raw material for value-added bio-products 

which would diversify the mill’s economic base. 
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Because of lignin’s special phenyl propanol structure and aryl-alkyl ether bonding, lignin 

from Kraft pulping mills can be a good source of polyols. These polymers have multiple 

hydroxyl groups in their structure and are one of the essential raw materials for 

polyurethane (PU) production (Demharter, 1998). Although with much lower reactivity 

(Cheng et al., 2012), even crude lignin can be directly incorporated into PU formulations 

due to the presence of aliphatic and aromatic hydroxyl groups in its structure as the 

reactive sites (Cateto et al., 2008). Polyols can be polyether or polyester polyols (Tu, 

2008), with the most critical properties being equivalent weight and hydroxyl 

number/functionality. Petroleum derived polyols are typically used, but rising petroleum 

prices and sustainability concerns have focused attention towards bio-based polyols 

(Bueno-Ferrer et al., 2012) or ligno-polyols (Borges da Silva et al., 2009). 

 

Hydrolysis of lignin can produce a multitude of high value products via acid- or base-

catalyzed cleavage of ether bonds (Fang et al., 2008). Hydrolysis is a milder process than 

pyrolysis, but wide structural heterogeneity of the products remains a great challenge 

(Roberts et al., 2011; Xu et al., 2008). Lignin hydrolysis under acidic conditions has been 

extensively studied (Lundquist, 1976; Matsushita and Yasuda, 2005); its major drawback 

is the unavoidable repolymerization/condensation of intermediate products formed during 

the reaction (Yuan et al., 2010). Alkaline catalysis or organic solvents are preferable in 

this regard; however, organic solvents have the disadvantage of increased costs and 

process complexity arising from the need to recover spent solvent. Depolymerization of 

lignin in alkali also occurs through the rupture of ether bonds (Nenkova et al., 2011); 

however, the alkaline catalyst not only hinders coke/char formation but also increases the 

yield of depolymerized products. Miller et al., (1999) observed high conversions during 

Kraft lignin depolymerization using KOH in supercritical methanol or ethanol at 290 oC. 

Later, Yuan et al. (2010) produced oligomers/polyols (Mw ≈1000 g/mol and Mn ≈450 

g/mol) through hydrolytic degradation of alkaline lignin (Mw ≈60,000 g/mol and Mn 

≈10,000 g/mol) using NaOH in a water-ethanol mixture and phenol as a capping agent 

(lignin to phenol ratio =1:1 (w/w)). Under optimal conditions (260 oC and 1 hr), char and 

gas production was negligible. Further studies by Yoshikawa et al. (2012) indicated that 

strong bases like KOH or NaOH gave superior conversion and were effective in reducing 
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char formation. Recently, Beauchet et al. (2012) carried out base-catalyzed de-

polymerization of KL (10 wt.% concentration) in a continuous flow reactor over 270-315 
oC and 130 bar for the production of a monomers-rich fraction as well as fractions of gas, 

small organic compounds and oligomers. Monomers can be suitable precursors for the 

production of L-Chemicals, and oligomers for L-fuels. 

 

Nowadays, Kraft lignin has gained more attention as a potential non-food, biopolyols 

(Cateto et al., 2008). Proposed reactions include oxypropylation (Li and Ragauskas, 

2012), oxidation followed by membrane/ultra-filtration (Borges da Silva et al., 2009) and 

hydrolytic degradation using organic solvents and a petroleum derived capping agent 

(phenol) (Yuan et al., 2010). These approaches may be insufficiently “green” or 

economic due to the use of large amount of petroleum-derived products (phenols, 

polypropylene glycol, polyethylene glycol etc) or costly separation techniques. 

 

The major objective of this work is thus to produce polyols via direct hydrolysis of Kraft 

lignin (KL) of Mw ≈10,000 g/mol, in water. This process is expected to produce 

renewable polyols from Kraft lignin (or simply black liquor) with desirable 

characteristics for rigid polyurethane foam synthesis like low Mw, moderately high 

aliphatic hydroxyl number/functionality, and high yields. This work presents the 

preliminary results from a parametric study to determine the key process factors, while 

detailed process optimization will be reported in our future work. 

 

3.2 Materials and Methods 

3.2.1 Materials 

Kraft lignin (KL) used in this study was provided by FPInnovations, produced using the 

proprietary LignoForce process (Kouisni, 2012) in its pilot plant in Thunder Bay, Ontario 

and was completely soluble in aqueous alkali (pH >10). It is a yellow-brown powder with 

weak odor and specific gravity of 0.80. The relative weight-average molecular weight 

(Mw) of KL is ≈10,000 g/mol (PDI ≈2.0) based on GPC-UV analysis. The proximate and 

ultimate analysis of KL is given in Table 3-1. The dried sample contained 0.57 wt.% ash 
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and 5.2 wt.% sulfur (on dry ash free basis). The ash content of lignin was determined 

gravimetrically in a muffle furnace at 700 oC for 4 hours. The ultimate analysis was done 

on a CHNSO Elemental Analyzer and reported on a dry and ash free basis. Other 

chemicals used include NaOH (96%), sulfuric acid (99%), acetone (99.5%), d6-DMSO 

and d-chloroform, tetrahydrofuran (THF, HPLC grade), pyridine, acetic anhydride and 

dibromomethane, all CAS reagent grade, purchased from Sigma-Aldrich and used 

without further purification. 

Table 3-1 Proximate & ultimate analysis of original Kraft lignin (KL) 

Proximate analysis, wt.% (d.b)
a 

Ultimate analysis, wt.% (d.a.f.)
f 

VMb FCc Ashd TS/MCe C H N S Og 

56.3 43.1 0.57 98.5/1.5 63.8 5.4 0.02 5.2 25.6 
a On dry basis; b VM: volatile matter; c FC: Fixed carbon (VM and FC was determined by 

thermogravimetric analysis (TGA) in N2 at 10 oC/min to 900 oC); d Ash content 

determined gravimetrically in a muffle furnace at 700 oC for 4 hours; e TS/MC: Total 

solids /moisture contents in the sample was determined by placing 1-2 g of sample in an 

oven at 105 oC for 24 hours; f On dry and ash free basis; g By difference. 

 

3.2.2 Kraft lignin hydrolysis experiments 

The hydrolysis experiments were carried out in a 100 mL Parr Model 4848 reactor, 

equipped with a pressure gauge, thermocouple, stirrer, gas line and sampling line. In a 

typical run, 12 g KL, 33 g NaOH (10 wt.% solution in distilled water) and 15 g of 

distilled water were loaded into the reactor. The reactor was sealed, evacuated and purged 

thrice with N2 to ensure complete removal of residual air. The reactor was then finally 

pressurized with N2 to a cold pressure of 2 MPa and tested for leaks. The reactor was 

heated under a fixed stirring rate (390 rpm) and allowed to run over a pre-specified length 

of reaction time after reaching the required temperature. During the reaction the pressure 

of the reactor system will increase depending on the temperature mainly due to the water 

vapor pressure (e.g., 5 MPa at 250 oC, 8 MPa at 300 oC up to 16 MPa at 350 oC). After 

the pre-set reaction time elapsed, the reactor was immediately quenched with water to 

stop further reaction. After the system reached a low temperature (near room 
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temperature), the gas was collected in a gas cylinder of known volume (2800 mL) and the 

pressure of the gas cylinder was adjusted to 1.0 atm (abs.) using high purity nitrogen as a 

makeup gas. The gaseous products were analyzed using a Micro-GC-TCD analyzer and 

the overall gas yield was determined. The gaseous products are mainly composed of H2, 

CO, CH4 and C2-C3. Each experiment was conducted 2-3 times to ensure that the relative 

experimental errors in DL yield be within ±10%. 

 

The reactor contents were then completely rinsed into a beaker using distilled water. The 

pH value of the washed reactor contents (varying from 11.0 to 9.5 depending on the 

reaction conditions) was adjusted to approximately 2.0 using 1.0 M H2SO4 solution to 

precipitate the DKL products. The acidified reaction mixture was then filtered through a 

Buchner funnel. The aqueous (Aq) phase was analyzed by TOC-analyzer. As the gas 

yield was found to be very low (≤ 1 wt %) in all tests, a lumped yield of (Gas+Aq) phase 

was reported in this study for simplicity. The solid cake containing depolymerized KL 

was dissolved in acetone (20-25 mL) under sonication and then filtered under vacuum 

with Buchner funnel to get acetone soluble depolymerized lignin (DKL) or polyols and 

solid residues (SR). The SRs were dried at 105 oC for 24 h in an oven and weighed to 

obtain SR yield as wt.% of the original KL on a dry basis. The acetone soluble filtrate 

was transferred to a pre-weighed Erlenmeyer flask to remove acetone with rotary 

evaporator at 60 oC followed by 24 hr drying in a vacuum oven to obtain the DL 

products. The yield of DKL was calculated based on the mass of original KL on dry 

basis. As mentioned previously, the data presented in this work are the average of 

triplicate runs. 

3.2.3 Product characterization 

The DKL were analyzed by Nicolet 6700 Fourier Transform Infrared Spectroscopy (FT-

IR) with smart itr/ATR accessory to verify the presence of hydroxyl groups in the polyols 

structure and other functional groups present in them the range of 500-4000 cm-1 with 

attenuated total reflectance (ATR). Proton nuclear magnetic resonance (1H-NMR) spectra 

for DLs were acquired at 25 oC using a Varian Inova 600 NMR spectrometer equipped 

with a Varian 5mm triple-resonance indirect-detection HCX probe. A total of 16-32 scans 
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were accumulated using a 2s recycle delay, 3.6s acquisition time, a 45-degree tip angle 

(pw =4.8 us), and a spectral width from -2 ppm to 14 ppm (sw =9000.9 Hz). d6-DMSO 

and d-chloroform were used as the 1H-NMR solvents for qualitative study. Quantitative 
1H-NMR analysis was realized using acetylated samples of the KL and DLs. Briefly, 1 g 

of dried KL or DKL was dissolved in a 1:1 (v/v) mixture of pyridine (5 mL) and acetic 

anhydride (5 mL) in a vial followed by stirring for 24 to 48 hr. The well-stirred mixture 

was then transferred into a beaker containing 100 mL of ice-cooled 1 wt.% HCl solution. 

The resulting precipitates of acetylated samples were washed with distilled water to pH 

≈7. The samples were then dried at 105 oC for 24 hr to remove residual water before 

further utilization. Dibromomethane (CH2Br2) was selected as an internal standard as its 

characteristic peak at 4.9 ppm does not overlap with any other peaks in the KL/DKLs. 

Also the solvent selected for the quantitative analysis was d-chloroform instead of d6-

DMSO as peak of the latter overlaps with that of aliphatic acetate. For determining 

hydroxyl number through 1H-NMR, the samples were prepared by first weighing 15 mg 

of the acetylated KL or DKL and 10 mg of internal standard in a vial and then the sample 

was transferred into a 5 mm NMR tube via a transfer pipette using d-chloroform (≈1000-

1500 mg) for the subsequent NMR analysis. 

  

The relative molecular weight distributions (Mw and Mn) of DKLs were measured with a 

Waters Breeze GPC-HPLC instrument (1525 binary pump, UV detector set at 270 nm, 

Waters Styragel HR1 column at 40 oC) using THF as the eluent at a flow rate of 1 ml/min 

with linear polystyrene standards for the molecular weight calibration curve). The range 

of linear polystyrene standard was 100 to 1 million and the reported molecular weights 

are based on polystyrene equivalent weight. Although there is a limitation on utilization 

of linear polystyrene standard for KL or DKL because of KL/DKL multi-branched 

structure however, relative molecular weights can provide useful information for their 

further utilization. Elemental analysis of the DKLs was obtained using a CHNS-O Flash 

Elemental Analyzer 1112 series (Thermo) for determining the contents of CHNS (carbon, 

hydrogen, nitrogen and sulfur) in the samples. The ash contents of KL and DKLs were 

obtained by combustion of 1-2 g of the pre-dried sample of KL or DKLs in a crucible in a 
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muffle furnace at 700 oC for 4 hours. The total organic carbon contents in the aqueous 

phase were obtained with a TOC-analyzer. 

3.3 Results and Discussions 

The hydrolytic depolymerization products were soluble in water, but after acidification 

and subsequent filtration the DKL products were soluble in organic solvent like acetone. 

Thus, we were able to determine their molecular weight distributions and (Mw, Mn and 

PDI) by gel permeation chromatography and UV detection (GPC-UV) using THF as the 

eluent. 

3.3.1 Effects of reaction temperature 

Temperature is the critical parameter for lignin hydrolysis in water (Xu et al., 2008). 

Figure 3-1 shows the effects of reaction temperature on the yields of DL, SR, (Gas+Aq) 

phase and Mw of the DKL from the tests carried out at a temperature ranging from 200 to 

350 oC for 45 min. At 200 oC there was a relatively lower degree of KL 

depolymerization: a DKL yield of ~ 67 wt.% with 9 wt.% SR yield. The remaining mass 

(~24 wt.%) could be attributed to water and aqueous products (monomers, aldehydes, 

alcohols, etc.), understanding that the yield of gases, usually formed due to the cleavage 

of the aliphatic propane chain and removal of ring substituents (Gosselink et al., 2012) 

was relatively low in this work (≤ 1 wt %). The other possible reason of low yield at 200 
oC may be the presence of –SO3H group on lignin unit which shows lesser solubility in 

acetone. From a practical point of view, an overall process can generate minimal waste as 

the aqueous byproduct stream can be either further utilized by supercritical water 

gasification (SCWG) or sent back to the recovery system, if the hydrolysis is integrated 

into pulp mill operations. 

 

At 250 oC, the DKL yield increased to 92 wt.%, which may occur because lignin 

depolymerization is endothermic and hence thermodynamically favorable at a higher 

temperature (Cheng et al., 2012). Increasing lignin solubility at temperature >200 oC also 

helps to improve the yield of DKL by further instigating the lignin hydrolysis reaction 

(Mok and Antal, 1992). Another possible reason of the increased yield of DKL at higher 

temperatures like 250 oC may be related to the special properties of water at elevated 
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pressure (hot-compressed water, or sub-/supercritical water) which greatly increases the 

value of the ion product (Kw = [H+][OH-]), e.g., at 400 oC and 50 MPa, the value Kw is 

more than 100 times that at ambient conditions (Marshall et al., 1981), which may 

efficiently catalyze lignin hydrolysis by [H+] and [OH-] ions. The solid residues yield at 

250 oC was as low as 1-1.4 wt.%. The results (Figure 3-1) clearly indicate that the yield 

of DKL is greatly reduced from ~85 wt.% to 27-28 wt.% as temperature further increases 

from 300 oC to 350 oC, accompanied by a marked increase of SR yield from nearly 1.4-

1.5 wt.% (at 300 oC) to ~38 wt.% (at 350 oC). At 350 oC these results may be explained 

by the presence of prominent dehydration and crosslinking reactions (Knežević, 2009). 

The high yield of SR or char may be attributed to the presence of crosslinking reactions 

between carbon-carbon double bonds (C=C) which lead to the formation of a highly 

crosslinked structure resulting in the formation of char which was insoluble in 

water/acetone. Some researchers consider these char/solid residues as low value soil 

amendment materials (Lehmann and Joseph, 2009). 

 

 

Figure 3-1 Product yields and Mw of DKLs at various reaction temperatures (oC) 

(Reaction time: 45 min; 20 wt.% substrate concentration; NaOH/lignin mass ratio ≈0.27-

0.28) 
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We observed an inverse relationship between temperature and Mw of the DKLs, 

consistent with earlier work (Yuan et al., 2010) and suggesting that temperature has a 

drastic effect on the cleavage of alkyl-aryl ether linkages in lignin. Although, at higher 

temperatures like 350 oC the yield of polyols was lesser than at lower temperatures 

however, the Mw of the polyols reduced significantly at higher temperatures due to the 

sufficient energy available to break the ether linkages. Considering both yield and Mw of 

the DKL, 250-300 oC appears to be the best temperature range for direct hydrolysis of 

KL. However, Mw at 250 oC was considerably high (~5330 g/mole) which makes the 

DKL product unsuitable as a polyol replacement for PU production. Molecular weight 

distribution can be a useful indicator for process optimization, and the Mw can be further 

reduced by optimizing the reaction conditions (e.g., reaction time, pH and substrate 

concentrations). 

3.3.2 Effects of reaction time 

The hydrolysis experiments were conducted at 250 oC and 300 oC for reaction times 

ranging from 30-240 min and 45-120 min, respectively. The product yields and their 

respective Mw are shown in Figures 3-2 and 3-3. As shown in Figure 3-2, at 250 oC an 

increase in reaction time from 30 min to 60 min increased the yield of DKL from 74.6 

wt.% to 92.5 wt.% which could be due to the presence of –SO3H group on lignin unit. At 

lower reaction times it showed non-polar behavior in acetone however, with the 

increasing reaction time –SO3H group could be replaced by –OH group resulting in 

enhanced solubility in acetone. Further increasing the reaction time to 90 min and 240 

min decreased the yield of DKLs to 85.9 wt.% and 76.6 wt.%, respectively, with 

correspondingly increased SR yield. The increased yield of SRs could be due to the 

cross-linking reactions which were prominent at longer reaction times. Where, the 

increasing reaction time from 30 min to 120 min decreased the DKL Mws from ~5330 

g/mole to 2670 g/mole, suggesting that the hydrolytic depolymerization reaction 

proceeded to a greater extent at this longer reaction time. The increase in Mw to 4200 

g/mole caused by further increasing the reaction time to 240 min up was likely caused by 

repolymerization/condensation reactions, as discussed previously in Figure 3-1. 



 

Figure 3-2 Product yields and 

conditions: 20 wt.% substrate conc.; NaOH/lignin mass ratios 

 

Figure 3-3 Product yields and 

conditions: 20 wt.% substrate conc.; NaOH/lignin mass ratios 

 

Product yields and Mw of DKLs vs. reaction time at 250 oC (other reaction 

substrate conc.; NaOH/lignin mass ratios ≈0.27-0.28)

Product yields and Mw of DKLs vs. reaction time at 300 oC 

conditions: 20 wt.% substrate conc.; NaOH/lignin mass ratios ≈0.27
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Figure 3-3 shows the product yield and Mw of DKLs vs. reaction time at 300 oC. The 

yield of DKL decreased from ~85 wt.% to ~61 wt.% when the reaction time increased 

from 45 min to 60 min; further increases in reaction time had a minimal effect on the 

DKL yield. It appears that the system might have already reached an equilibrium state.  

 

The Mw of DKLs decreased from ~3900 g/mole to ~2200 g/mole when the reaction time 

was increased from 45 min to 60 min at 300 °C. After 60 min, the Mw increased with 

further increases in reaction time up to 120 min. This is again attributed to 

repolymerization/condensation reactions between lignin-derived intermediate products 

which become main reaction at longer reaction times and depolymerization of ether bond 

as secondary reaction. Comparing Figures 3-2 and 3-3 indicates that the Mw values were 

almost identical at 120 min reaction time at 250 oC or 300 oC, but the DKL yields at 250 
oC were significantly higher than those at 300 oC. Hence, with respect to both yield and 

Mw of the DKL products, the best reaction conditions appear to be 120 min at 250 oC. 

3.3.3 Effects of NaOH to lignin mass ratio (pH effect) 

The effect of NaOH concentration on lignin hydrolysis was determined by varying NaOH 

to lignin mass ratios from 0.23 to 0.33, while keeping all other variables or process 

parameters constant. Note that the NaOH/lignin ≈0.23 (w/w) corresponds to a 1:1 

molecular ratio of NaOH/lignin, assuming the average molecular weight of each lignin 

monomer to be 180 g/mole. 

 

The product yields and Mws of DKL from the experiments at 250 oC, 120 min and 

20 wt.% substrate concentrations at various NaOH/lignin mass ratios are shown in Figure 

3-4. The yield of DKL was the highest (~91%) at NaOH/lignin ≈0.23 (w/w), the 

corresponding Mw for the DKL product was very high (~5800 g/mol), likely due to the 

repolymerization of intermediate products at low pH corresponding to this mass ratio. 

The DKL yield dropped to approximately 81% when the NaOH/lignin ratio was 

increased from 0.23 to 0.25 and subsequently remained almost constant with further 

increases in NaOH/lignin from to 0.27 and 0.33. Similarly, the Mw of the DKLs decreased 

from 5800 g/mole at NaOH/lignin ratio ≈0.23 to 2700 g/mole at NaOH/lignin ratio ≈0.25 



 

and remained constant with further increases in NaOH/lignin

that the effect of NaOH is minimal after the NaOH/lignin mass ratio is above 0.25

Here the reported NaOH/lignin ratio is on weight basis (w/w) which for unit moles basis 

is much higher than 1.0. At such high molar ratio already all the phenols were transfe

to their sodium phenolate form and dissolved in the water solvent. The hydrolysis of KL 

was mainly due to the breakage of ether linkages attacked by water or hydroxyl ions, 

resulting in lowering the 

ratio could not further decrease the 

experimentation, NaOH/lignin mass ratio was fixed at around 0.27

 

Figure 3-4 Products yields and 

(Reaction temperature: 250 

 

3.3.4 Effects of substrate (KL) concentration

Figure 3-5 displays the product yields and 

min with a NaOH/lignin ratio of 

Figure 3.4 indicates that the yield of D

wt.%) when the substrate concentration was increased from 15 

and remained constant with further increases in NaOH/lignin ratio. These results suggest 

he effect of NaOH is minimal after the NaOH/lignin mass ratio is above 0.25

Here the reported NaOH/lignin ratio is on weight basis (w/w) which for unit moles basis 

is much higher than 1.0. At such high molar ratio already all the phenols were transfe

to their sodium phenolate form and dissolved in the water solvent. The hydrolysis of KL 

was mainly due to the breakage of ether linkages attacked by water or hydroxyl ions, 

resulting in lowering the Mw of the products. Hence, a further increase in NaO

ratio could not further decrease the Mw of DKLs. Therefore, in the further 

experimentation, NaOH/lignin mass ratio was fixed at around 0.27-0.28. 

Products yields and Mw of DKLs at various NaOH/lignin mass ratios 

(Reaction temperature: 250 oC; Reaction time: 120 min; 20 wt.% substrate concentration

Effects of substrate (KL) concentration 

displays the product yields and Mw of DLs from experiments at 250 

min with a NaOH/lignin ratio of ≈0.27-0.28 (w/w) at various substrate concentrations

indicates that the yield of DKL almost remained constant (81 

) when the substrate concentration was increased from 15 wt.% to 30 
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Here the reported NaOH/lignin ratio is on weight basis (w/w) which for unit moles basis 

is much higher than 1.0. At such high molar ratio already all the phenols were transferred 

to their sodium phenolate form and dissolved in the water solvent. The hydrolysis of KL 

was mainly due to the breakage of ether linkages attacked by water or hydroxyl ions, 

of the products. Hence, a further increase in NaOH/lignin 

Therefore, in the further 

 

 

Ls at various NaOH/lignin mass ratios 

C; Reaction time: 120 min; 20 wt.% substrate concentration 

experiments at 250 oC for 120 

0.28 (w/w) at various substrate concentrations. 

L almost remained constant (81 wt.% vs. 80 

to 30 wt.%, while 
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Mw and SR yield both increased significantly. The reason could be that, at higher 

substrate concentration the amount of the solvent was insufficiently to obtain a 

homogeneous solution/suspension of lignin, and water as the reactant for hydrolysis was 

less available for the lignin hydrolysis reactions (ether bond cleavage). As a result, higher 

substrate concentration would lead to a lower extent of the de-polymerization reactions, 

hence increasing the Mw of the DKLs. Therefore, for the production of bio-based polyols 

of a lower Mw via direct hydrolysis of Kraft lignin, it is recommended that the substrate 

concentration be less than 20 wt.%. 

 

 

Figure 3-5 Products yields and Mw of DKLs at various substrate concentrations (wt.%) 

(Reaction temperature: 250 oC; Reaction time: 120 min; NaOH/lignin ratio ≈0.27-0.28) 

 

3.3.5 Characterization of depolymerized lignin/polyols 

3.3.5.1 FTIR 

IR spectra’s of KL and DKLs at various temperatures were analyzed while the other 

reaction conditions were fixed: 45 min reaction time, NaOH/lignin ratio of ≈0.27- 0.28 

(w/w) and 20 wt.% substrate concentration. FTIR can be used qualitatively for 
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monitoring the changes of functional groups (particularly, hydroxyl groups) in the 

substrate after depolymerization. All spectra of KL and DKL contained the broad 

absorption at 3200-3550 cm-1 attributed to aromatic and aliphatic O-H stretching, as 

expected. IR absorbance at 1400-1700 cm-1 was due to the aryl groups. The peaks at 

1000-1300 cm-1 correspond to C-O stretching of O-H, suggesting the presence of 

primary, secondary and tertiary alcohols, phenols, ethers and esters (Islam et al., 2005; 

Kubo and Kadla, 2005). The ether linkage at 1060-1160 cm-1 was observable for KL 

while the IR spectra for DKLs showed almost no absorption, suggesting that during 

hydrolysis reaction most of the ether linkages were cleaved. The intensities of the 

aromatic absorptions at 1400-1700 cm-1 in the DKLs obtained at various temperatures 

were almost the same as those in the original KL, suggesting that the hydrolytic process 

does not change lignin’s aromaticity. Hence, it is meaningful to compare the relative 

intensities of hydroxyl group absorption in relation to the aromatic absorption for KL and 

DKLs. The results showed that relative intensities of -OH group are much higher in all 

DKLs compared to that of the KL, implying that the hydrolytic depolymerization could 

increase the amount of hydroxyl group in the DKL products. 

3.3.5.2 
1H NMR 

Qualitative 1H-NMR analysis was conducted using the KL and DKLs without any 

modification. The 1H-NMR spectra of these samples showed broad peaks for most of the 

protons, typical of high molecular weight polymers with long relaxation times (Yuan et 

al., 2010), so the spectra are not included for simplification. However, the 1H-NMR 

spectra of the DKLs showed relatively sharper signals for most of the protons, suggesting 

smaller molecular weights in comparison of the untreated KL. Most of the peaks 

appearing at chemical shifts of 0.8-2.0 ppm were due to aliphatic methyl (C-CH3) or 

methylene (C-CH2-C) protons (Duan and Savage, 2011). Peaks attributed to phenolic –

OH and aliphatic –OH were observed at 8.5 ppm and 2.3 ppm, respectively. The peak 

corresponding to aliphatic –OH was relatively stronger in DKL than that in the original 

KL, consistent with the cleavage of ether linkages (e.g., α-O-4 and β-O-4) as a result of 

hydrolytic depolymerization. The protons signals associated with methoxy group (–

OCH3) directly connected to the benzene ring were detected at 3.5 ppm in KL and DKLs. 
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The qualitative NMR analysis thus indicates that the aliphatic and overall hydroxyl 

contents in the DKLs were increased during hydrolytic depolymerization of KL, which 

makes the DKLs a potential substitute for polyols for polyurethane production. 

 

For quantitative 1H-NMR analysis, KL and DKL samples were acetylated to improve 

their solubility in d-chloroform. 1H-NMR spectra of both KL/DKL showed signal for 

internal standard (Dibromomethane) at 4.9 ppm. The signals associated with aliphatic 

acetates, phenolic acetates and methoxyl groups in KL and DKL were at 1.6-2.2 ppm, 

2.2-2.6 ppm and 3.0-4.0 ppm respectively (El Mansouri et al., 2011). Aliphatic and 

phenolic acetate protons actually represent aliphatic and phenolic hydroxyls in their 

acetylated samples. Quantitative estimates of the various proton containing functional 

groups were made by the following step by step calculation. The signal area 

corresponding to internal standard was initially calibrated and then integrated to 1.0, 

followed by the integration of the regions related to aliphatic and phenolic acetate protons 

respectively, and the resulting values are shown in Table 3-2. The moles (MDBM) of 

internal standard were determined as WDBM/173.83; where WDBM is the amount of the 

internal standard used in g and 173.83 is the formula weight of internal standard i.e., 

dibromomethane. In NMR spectra, integrated peak area of each signal is compared with 

that of internal standard, to obtain the relative concentration of respective peak. Then 

moles of total –OH, aliphatic and phenolic –OH groups per lignin unit were calculated 

using the following relation: 

 

180/)]423
2([

3

2

×××−

××

=

DBMTACAC

DBMTAC

TOH

MIW

MI

M   (1) 

 

where MTOH are the moles of total –OH i.e., aliphatic and phenolic, per lignin unit; 2 and 

3 are the number of protons of internal standard and acetyl groups respectively; ITAC is the 

integration of protons of total acetate groups i.e., aliphatic and phenolic acetates; MDBM 

are the moles of internal standard; WAC is the weight of the acetylated samples of either 

KL or DKL/polyols; 42 is the formula weight of acetyl group minus one (43-1); 180 is 
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the average weight of one lignin unit. The determined value of MTOH shows the available 

total number of moles of hydroxyl groups (aliphatic and phenolic) on single lignin unit. It 

was observed that with the increase in treatment severity moles of phenolic –OH 

increased and methoxyl groups decreased especially at higher temperature like 300 oC. 

These results suggested that methoxyl groups were hydrolyzed, similar was observed by 

Beauchet et al., (2012), at the said conditions and as a result the accessibility of –OH 

groups to lignin unit increased giving rise to higher total moles of phenolic –OH per 

lignin unit. Then the functionality (F) of polyols i.e. number of reactive sites can be 

determined by the following relationship: 
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The hydroxyl number of produced DKL/polyols can be then determined by using the 

following relation between functionality and hydroxyl number: 
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The obtained hydroxyl numbers of polyols are given in Table 3-3. In the expression 56.1 

represent the equivalent molecular weight of KOH, 1000 is the conversion of grams to 

mg. It can be observed from the data (Table 3-3) that all the DKLs/polyols produced have 

total hydroxyl number in the range of 678-819 g/mole where aliphatic hydroxyl number 

is varying in the range between 236-352 g/mole, greater than the original KL (128 

mgKOH/g). It can also be observed from Table 3-3 that polyols/DKLs produced at both 

reaction temperatures 250 oC and 300 oC for longer reaction times aliphatic hydroxyl 

number reduced which could be due to the dehydration reactions become prominent at 

these conditions. The reported hydroxyl number of polyols produced via oxypropylation 

ranges between 300-800 (Li and Ragauskas, 2012). Also in some literature it’s mentioned 

that the suitable hydroxyl number of polyols for their utilization in rigid PU varies 

between 250-1000 mgKOH/g (Badri, 2012). Thus, the above results show that direct 
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hydrolytic depolymerization of KL, at moderate operating conditions (temperature, 

pressure and reaction time) can be a viable route for the production of polyols for PU 

synthesis. Among all the conditions tested in this study, the best reaction conditions to get 

the bio-polyols with the highest aliphatic hydroxyl number or functionality appear to be 

250 oC for 60 min with 20 wt.% substrate concentration and NaOH to lignin ratio ≈ 0.27-

0.28 (w/w). 

 

 

Figure 3-6 1H NMR spectra of acetylated KL 
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Figure 3-7 1H NMR spectra of acetylated DKL at 250 oC, 1h at 20 wt.% substrate 

concentration 

 

Table 3-2 Relative integrals of 1H-NMR spectra signals of aliphatic/phenolic acetates in 

the acetylated KL and various DKLs (The DKLs were obtained from the experiments at 

250 and 300 °C for various lengths of time) (Other experimental conditions are: 

NaOH/lignin mass ratio of ≈0.27-0.28, and 20 wt.% substrate concentration) 

Acetylated 

Sample 

Temp. 

(oC) 

Time 

(min) 

Aliphatic acetate        

(1.6-2.2 ppm) 

Phenolic acetate 

(2.2-2.6 ppm) 

KL - - 0.771 0.881 

DL 250 60 1.499 1.387 

90 0.964 1.173 

120 1.264 1.750 

300 60 1.097 1.799 

90 0.960 1.880 

120 0.898 1.999 
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Table 3-3 Hydroxyl No. of the KL and various DKLs (The DKLs were obtained from the 

experiments at 250 and 300 °C for various lengths of time) (Other experimental 

conditions are: NaOH/lignin mass ratio of ~0.28, and 20 wt.% substrate concentration) 

Sample Temp. 

(oC) 

Time 

(min) 

Hydroxyl No. 

(based on Aliphatic -OH) 

(mg KOH/g) 

Hydroxyl No. 

(based on total -OH)                          

(mg KOH/g) 

KL - - 128 275 

DL 250 60 352 678 

90 307 681 

120 288 686 

300 60 310 819 

90 255 755 

120 236 761 

 

3.3.5.3 Carbon balance  

Elemental measurements were carried out to determine the CHNS contents of the KL and 

DKL samples, and to examine the overall carbon balance of the hydrolytic 

depolymerization experiments. In addition, the CHNS measurements can provide useful 

information on the fate of elements like N and S to address the environmental concerns 

related to the reaction process. Table 3-4 shows elemental compositions of the KL and 

two typical DKL products obtained at 250 °C/120 min and 300 °C/60min. The C and H 

contents of the DKL obtained at a lower temperature, even for a longer reaction time (250 

°C/120 min), were not much varied when compared  to that of the original KL, while the 

high temperature DKL product (300 °C/60 min) had a much higher C content (71.0 wt.% 

compared to 63.8 wt.%). N contents were neglected before and after depolymerization. 

The S contents are significantly lower in both DKLs, suggesting the catalytic hydrolytic 

treatment is very effective for de-sulfurization of Kraft lignin. The DKLs contained 

approximately 1% S, compared with 5.2 wt.% S in the original KL. The resulting DKL 

products have almost no odor, making them suitable for polyurethane synthesis. 
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Table 3-4 Elemental compositions of the KL and two typical DKL products obtained at 

250 °C/120 min and 300 °C/60 min (Other reaction conditions: 20 wt.% substrate conc. 

and NaOH to lignin ratio of 0.28 (w/w)) 

Reaction conditions Elements (%, d.a.f.)a 

T (oC) t (min) C H N S Ob 

KL - 63.8 5.4 0.02 5.2 25.6 

250 120 65.6 5.5 0.00 1.3 27.7 

300 60 71.0 5.0 0.00 0.9 23.1 
a Dry and ash-free basis; bDetermined by difference. 

 

TOC analysis was also carried out to determine the concentration of organic carbon in the 

filtrate or aqueous phase (Aq) to enable calculation of the overall carbon balance of the 

hydrolytic depolymerization experiments. At reaction conditions of 250 oC for 120 min, 

substrate concentration of 20 wt.% and NaOH-to-lignin mass ratio of 0.27-0.28, the 

percentage of organic carbon contained in the Aq is 2.0-2.5 wt.% of the total carbon in 

the reaction substrate. It should be noted that, in this work, the %carbon recovered in the 

SR was not available due to their very low yields. Calculated results based on % carbon 

recovered in the DKL, Aq and Gas products showed that the carbon balance for all tests 

was mostly in the range of 80-90 wt.%, which is a reasonable carbon balance considering 

the unavoidable errors in the experiments and product recovery and analysis. For a 

typical run at 250 oC, 120 min, 20 wt.% substrate concentration and NaOH/lignin mass 

ratio of ~0.27-0.28, the carbon distribution in the products was: ~0.50 wt.% in Aq., ~0.02 

wt.% in gas, and ~90 wt.% in DKL, with a total percentage carbon recovery of ~91 wt.%. 

 

3.4 Conclusions 

Hydrolytic depolymerization was very effective for producing depolymerized lignin 

(DKL) from Kraft lignin (KL) at a yield of 80-90% at 250 oC/300 oC for 45-90 min. The 

DLs have Mw of 3000-5000 g/mol, significantly lower than that of the original KL 

(10,000 g/mol). All the DKLs produced had aliphatic-hydroxyl number in the range of 

236-352 mgKOH/g, making them potential bio-polyols for PU foam synthesis. The best 
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operating conditions, from the perspective of yield and obtaining Mw suitable for PU 

polyols, appear to be 250 oC, 1 h, 20 wt.% substrate concentration, and NaOH/lignin ratio 

of ≈ 0.28 (w/w) for polyols. 
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Chapter 4  

4 Production of polyols via direct hydrolysis of Kraft lignin: 
Optimization of process parameters  

Abstract 

Polyols were produced via alkaline hydrolysis of softwood Kraft lignin (KL) without 

employing any organic solvent/capping agent. Optimum reaction conditions for 

producing polyols with characteristics suitable for polyurethane synthesis were 

determined using response surface methodology with a central composite design. The 

optimization was constrained by requirements that a polyol should fulfill for use in 

polyurethane synthesis: aliphatic-hydroxyl number ≥ 300-500 mgKOH/g, weight-average 

molecular weight < 2000 g/mole and moderately high yield. The optimum conditions 

identified were 250 oC, 120 min and 10 wt.% substrate concentration. The polyol 

produced under these conditions had an aliphatic-hydroxyl number ≈365 mgKOH/g, Mw 

≈1700 g/mole and 77 wt.% yield. The predicted and experimental results were in good 

agreement (R2 values are 0.90, 0.82 and 0.98 for yield, Mw and aliphatic-hydroxyl 

number, respectively). Temperature was the most significant parameter.  

 

Keywords: Process optimization, hydrolytic de-polymerization, Kraft lignin, polyols, 

polyurethanes. 
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4.1 Introduction 

Rising and volatile petroleum prices has increased concerns about the environmental 

footprint of industrial processes and generated much interest in the use of forestry and 

agricultural residues as raw materials for bio-based products/chemicals (Maache-Rezzoug 

et al., 2008).  

The major residual stream from the Kraft pulping process is black liquor, which contains 

30-34 wt.% lignin. Black liquor is burned to recover pulping chemicals and to generate 

steam and electricity for mill operations (Font et al., 2003). Although most Kraft lignin is 

not available for isolation, 60-70% of North American Kraft mills experience production 

bottlenecks due to the thermal capacity of their recovery boilers. A moderate-capital 

solution to this problem is to precipitate some portion of Kraft lignin from the black 

liquor, which would increase incremental pulp production and provide an additional 

revenue stream from sale of the Kraft lignin.  

While worldwide1-1.5 million tons/year of lignin are employed for a wide range of 

applications (Lora and Glasser, 2002), almost all of this is lignosulfonates from sulfite 

pulping. This water-soluble, highly sulfonated substance is quite different from Kraft 

lignin. Until recently, the only commercial source of Kraft lignin has been from Mead-

Westvaco, which produces approximately 20,000 metric tons/year of Kraft lignin under 

the trade name Indulin from a plant in South Carolina. However, in the first half of 2013, 

Domtar has begun operation of a 75 m ton/day Kraft lignin plant at its mill in Plymouth, 

North Carolina.  

Lignin, a branched phenolic natural biopolymer, can be used for producing value-added 

bio-based products such as phenol substitutes and polyols (Wang et al., 2012). 

Polyols, with a suitable weight-average molecular weight (Mw) and aliphatic-hydroxyl 

number, are one of the essential raw materials for polyurethanes (PU) (Demharter, 1997). 

Bio-based polyols can be produced from lignin which contains aliphatic and phenolic 

hydroxyls in its structure. Conventionally, polyols employed for PU synthesis are 

petroleum derived with varying hydroxyl number (300-500 mgKOH/g) (Luo et al., 2008) 
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and relatively low molecular weights. Recent high prices for petroleum derived polyols 

have renewed interest in bio-based polyols. Lignin-based polyols with suitable 

characteristics have already been produced via oxidation (Borges da Silva et al., 2009), 

oxypropylation (Li and Ragauskas, 2012; Cateto et al., 2008) and hydrolytic degradation 

in an organic solvent using phenol as a capping agent (Yuan et al., 2010). Oxypropylation 

has been recognized as a promising route to derive liquid polyols (Li and Ragauskas, 

2012; Matos et al., 2010) and optimization studies have already been conducted (Cateto 

et al., 2009) for getting polyols for PU synthesis using different types of lignin(Alcell, 

Indulin AT, Curan 27-11P and Sarkanda). 

Hydrothermal degradation/de-polymerization of lignin was studied in the past using 

alcohols/capping agents/alkaline or acidic catalysts, with major emphasis on determining 

the best operating conditions to obtain the maximal yield of phenolic monomers. The 

studies on hydrothermal degradation of lignin alone are not as common as studies on 

cellulose (Ye et al., 2012). Hydrolytic de-polymerization of lignin produces polyols via 

selective cleavage of β-aryl ether linkages by water molecules or [H+]/[OH-] which 

makes hydroxyl groups more accessible in PU synthesis (Fang et al., 2008). However, 

during lignin hydrolysis there is competition between depolymerization and 

condensation/repolymerization of reaction intermediates, which makes it difficult to 

consistently produce polyols with the desired hydroxyl number, molecular weights and a 

satisfactory yield (Kleinert et al., 2009). The desired characteristics of polyols can be 

controlled via process optimization of reaction conditions and this can be achieved by 

performing a smaller number of experiments under suitable constraints by using surface 

response methodology (SRM) (Abnisa et al., 2011). Optimum reaction conditions for 

producing polyols of desired characteristics via direct hydrolysis for their utilization in 

polyurethane synthesis have not yet been studied.  

The objective of this present study is to determine the optimum reaction conditions for 

hydrolytic de-polymerization of Kraft lignin under alkaline conditions for obtaining 

polyols of suitable characteristics for PU synthesis, i.e., high-aliphatic hydroxyl number, 

lowest possible Mw and moderately high yield. The effects of three input variables, 

reaction temperature, time and substrate concentration were studied using SRM with a 
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rotatable central composite design. Synthesis of PU foam using the produced polyols will 

be reported in future work. 

4.2 Experimental 

4.2.1 Materials  

Kraft lignin (KL) used in this study was provided by FPInnovations, produced using the 

proprietary LignoForce process in its pilot plant in Thunder Bay, Ontario (Kouisni, 2012) 

from commercial softwood black liquor. The black liquor was produced by a modified 

continuous cooking of softwood chips (spruce/fir) in a Kamyr digester. Effective alkali 

was 15% on wood and the alkali addition was split 90/10 between the top of the digester 

and the wash zone. The Mw of KL is 10,000 g/mol (polydispersity index ≈2.0) based on 

GPC-UV analysis. The dried sample contains 0.11 wt.% ash and 63.8 wt.% C, 5.4 wt.% 

H, 0.02 wt.% N and 5.2 wt.% sulfur (on dry and ash free basis). Other chemicals used in 

this study, including NaOH (96%), sulfuric acid (99%), acetone (99.5%), d-chloroform, 

tetrahydrofuran (THF, HPLC grade), pyridine, acetic anhydride and dibromomethane, are 

all CAS reagent grade chemicals purchased from Sigma-Aldrich and were used as 

received. 

4.2.2 Hydrolysis of Kraft lignin (KL) 

In a typical hydrolysis run, 6-12 g KL, 33-40 g NaOH (10 wt.%) solution and 15 g of 

distilled water were loaded into the reactor. The reactor was closed, tightened, purged 

thrice with N2 and then pressurized with 2 MPa N2. The reactor was then heated up at 

approximately 10 oC/min under stirring (285 rpm) to the specified reaction temperature 

and soaked for a pre-specified length of time after the reactor reached the temperature. At 

the end of the reaction, the reactor was immediately quenched with water. The gases were 

released in the fume hood, the reactor contents were washed into a beaker using water 

and the pH was adjusted to ≈2.0 using 1M sulfuric acid. The acidified mixture was 

filtered and the solid cake left after filtration was dissolved in acetone. The solid residues 

were separated from the acetone solution of degraded lignin (DKL)/polyols by filtration 

and dried in an oven (at 105 oC for 24 h).The depolymerized lignin was recovered using a 

rotary evaporator under vacuum at 60-65 oC to remove acetone. The polyol yield (i.e., the 
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depolymerized lignin) was determined based on the dry weight of KL used in each 

experiment.  

4.2.3 Statistical experimental design 

Statistically designed experiments were conceived using response surface methodology 

(RSM) with central composite design (CCD) in order to study the effects of three 

independent variables (reaction temperature, reaction time and substrate concentration) 

on aliphatic-hydroxyl number, Mw and yield of DKL/polyols, which subsequently 

provided a basis for determining the optimized process conditions. A total of 20 

experiments (N=2k+2k+no=8+6+6=20) were performed. The optimization was subjected 

to the following constraints; (a) aliphatic-hydroxyl number ≥300-500 mgKOH/g, (b) 

lowest possible Mw (<2000 g/mole) and (c) moderate to high yield of polyols (≥75%). 

The total numbers of experiments along with their different levels are given in Table 1. A 

full second-order polynomial model for three factors (k =3) by using Minitab 16.0 was 

adopted to describe the response surface. Coding of the independent variables was done 

with the aid of the transformation: ( )2/)( ∆−= xx ioi
iX  where; Xi is the coded value of the 

factor, xi is the natural value of the factor, xio is  the natural value of factor at its basic 

level, ∆ is variation/range/step change interval and i is the number of the independent 

factor. The mathematical relationship of the predicted responses as a function of variables 

(X1, X2 and X3) can be approximated by a quadratic or 2nd degree polynomial equation as 

shown in the following equation (1); 

XbXbXbXXbXXbXXbXbXbXbbY o

2
333

2
222
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111322331132112332211 +++++++++=    )1(  

where, b0 is the constant, b1, b2 and b3 are the linear coefficients b12, b13 and b23 are the 

interaction coefficients, and b11, b22 and b33 are the quadratic coefficients.  

4.2.4 Analysis/characterization of polyols/DKL 

The aliphatic-hydroxyl numbers of the KL/DKL were quantitatively analyzed by proton-

nuclear magnetic resonance (1H-NMR) of acetylated samples, employing d-chloroform as 

a solvent and dibromomethane (CH2Br2) as an internal standard. All the spectra were 
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acquired at 25 oC using a Varian Inova 600 NMR spectrometer equipped with a Varian 

5mm triple-resonance indirect-detection HCX probe. A total of 16-32 scans were 

accumulated using a 2s recycle delay, 3.6s acquisition time, a 45-degree tip angle 

(pw=4.8 us), and a spectral width from -2 ppm to 14 ppm (sw=9000.9 Hz). The relative 

molecular weight distributions (Mw and Mn) of DLs were measured with a Waters Breeze 

GPC-HPLC instrument (1525 binary pump, UV detector set at 270 nm, Waters Styragel 

HR1 column at 40 oC) using THF as the eluent at a flow rate of 1 ml/min with linear 

polystyrene standards for the molecular weight calibration curve). Elemental analysis of 

the DLs was obtained using a CHNS-O Flash Elemental Analyzer 1112 series (Thermo) 

for determining the contents of CHNS (carbon, hydrogen, nitrogen and sulfur) in the 

samples. The ash contents of KL and DKLs were obtained by combustion of 1-2 g of the 

pre-dried sample of KL or DKLs in a crucible in a muffle furnace at 700 oC for 4 hours. 

4.3 Results and discussions 

4.3.1 Single factor analysis at a time 

In the first stage of this study, effects of reaction temperature (200-350 oC), reaction time 

(30-240 min), initial substrate (KL) concentration (15-30 wt.%), NaOH/lignin ratio (0.22-

0.33 w/w) and atmosphere (N2/H2) on the yield, Mw and aliphatic-hydroxyl number of 

polyols/DKL were investigated using single factor analysis at a time and the results were 

given in details elsewhere (Mahmood et al., 2013). In brief, effects of atmosphere and 

NaOH/lignin ratio (≥ 0.25) had negligible effects on the yields and characteristics of the 

polyol products. Also, substrate concentration <20 wt.% was desirable to obtain low Mw 

polyols. Although increasing temperature (350 oC) reduced Mw, it also reduced the yield 

of polyols with increased production of char/ash/solid residues (SR) due to excessive 

cross-linking and repolymerization reactions. Lower temperatures (200-220 oC) did not 

affect the Mw much, but gave a low yield of DKL. Aliphatic-hydroxyl numbers could be 

greatly reduced with increasing the treatment severity especially at higher temperatures. 

With the above preliminary results obtained, experiments in this study were further 

designed using CCD for optimization of reaction conditions. 
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4.3.2 Response surface experiments using rotatable central 
composite design (CCD) 

The 20 designed experiments were carried in accordance with Table 4-1, at a fixed 

NaOH/lignin ratio (0.28-0.30 (w/w)) and a cold pressure of 2 MPa N2. Table 4-2 shows 

all three experimental variables along with the actual and predicted values. The 

regression equations provided in Table 4-3 were obtained from response surface analysis 

of variance (ANOVA). The actual and predicted values for all three responses were in 

good agreement and are shown in Figures 4-3 (a, b, c). Since the linear tendencies were 

obtained with regression fit, therefore model itself is depicting that the experimental 

range was studied quite adequately. 

Table 4-1 Experimental levels of both coded/actual values of independent variables 

Coded 

variables 
Experimental variables 

 Levels  

-1.682 -1 0 1 +1.682 

X1  Reaction temperature (
o
C) 240 250 265 280 290 

X 2  Reaction time (min) 40 60 90 120 140 

X 3  Substrate conc. (wt.%) 7 10 15 20 23 
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Table 4-2 The 23 full factorial and central composite design for experiments along with actual/predicted responses 

No. Variables in coded units Variables in uncoded/original units 

 X1  X 2  X 3  X1  X 2  X 3  Y1  Y2  Y3  

Temp        

(oC) 

Time   

(min) 

Sub.     

conc. 

(wt.%) 

yield of DKL 

(wt.%) 

Mw 

(g/mole) 

Aliphatic-hydroxyl 

No. of DL 

(mgKOH/g) 

       Actual Predicted Actual Predicted Actual Predicted 

1 -1 -1 -1 250 60 10 86 86 1940 1931 411 410 

2 1 -1 -1 280 60 10 69 74 1870 1786 299 295 

3 -1 1 -1 250 120 10 77 75 1700 1825 365 353 

4 1 1 -1 280 120 10 57 56 1780 1945 NA 254 

5 -1 -1 1 250 60 20 84 87 3020 2813 382 374 

6 1 -1 1 280 60 20 72 76 2300 2133 268 272 

7 -1 1 1 250 120 20 92 89 2190 2232 338 335 

8 1 1 1 280 120 20 70 72 1850 1817 256 250 

9 -1.682 0 0 240 90 15 84 86 2480 2490 378 389 

10 1.682 0 0 290 90 15 66 61 1970 2020 NA 221 

11 0 -1.682 0 265 40 15 90 84 1900 2157 367 369 

12 0 1.682 0 265 140 15 69 72 2000 1802 292 301 
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13 0 0 -1.682 265 90 7 74 73 1770 1633 320 327 

14 0 0 1.682 265 90 23 89 87 2070 2267 289 293 

15 0 0 0 265 90 15 83 81 2110 2080 300 299 

16 0 0 0 265 90 15 80 81 2050 2080 NA - 

17 0 0 0 265 90 15 81 81 2080 2080 NA - 

18 0 0 0 265 90 15 80 81 2060 2080 NA - 

19 0 0 0 265 90 15 84 81 2100 2080 NA - 

20 0 0 0 265 90 15 80 81 2090 2080 NA - 
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Figure 4-1 1H NMR spectra of acetylated KL 
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Figure 4-2 1H NMR spectra of acetylated DKL (250 oC, 120 min and 10 wt.% KL 

concentration) 

 

Table 4-3 Regression equations obtained for responses Y1, Y2 and Y3 

Regression equations 
In un-coded units 

Y1 = 81.19- 7.42 X1 - 3.6844 X 2 + 3.97 X 3 - 1.62 XX 21 + 0.37 XX 31 + 3.38 XX 32 - 2.72 X
2
1 - 1.13

X
2
2 - 0.42 X

2
3  

Y2 = 2079.97- 139.69 X1 - 105.57 X 2 + 188.52 X 3 + 66.25 XX 21 - 133.75 XX 31 - 118.75 XX 32 + 

61.78 X
2
1 - 35.45 X

2
2 - 46.05 X

2
3  

Y3 = 299.05- 50.00 X1 - 19.97 X 2 - 10.06 X 3 + 4.17 XX 21 + 3.33 XX 31 + 4.33 XX 32 + 2.09 X
2
1 + 

12.72 X
2
2 + 3.88 X

2
3  
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Figure 4-3 Actual vs predicted values of (a) Y1 (%yield of DKL/polyols), (b) Y2 (Mw of 

polyols) and (c) Y3 (aliphatic-hydroxyl number of polyols) 

4.3.3 Main effect plots 

Figures 4-4 (a, b, c) represent the main effects plots of three independent variables on 

responses. Figure 4-4a shows that the yield of polyols almost remains same with the 

increase in temperature from 240 oC to 250 oC. However, on further increasing X1 

(reaction temperature) above 250 oC lead to significant decline in the yield of polyols due 

to the occurrence of repolymerization/condensation reactions. Similarly the X2 (reaction 

time) was also found to have a negative impact on the polyol yield especially for longer 

reaction times. Slow lignin depolymerization was also observed at temperature <220 oC 

(Yuan et al., 2010; Mahmood et al., 2013), but the low yield of polyols at a higher 

temperature or longer reaction time was believed a result of enhanced 

repolymerization/condensation/crosslinking reactions (Mahmood et al., 2013; Knežević, 

2009), as evidenced by the increased char/SR yield under these conditions.  
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The yield of polyols/DKL increased with increasing X3 (substrate concentration) up to 23 

wt.%, while a higher X3 led to larger Mw for the polyol/DKL products (Figure 4-4b). In 

our previous study (Mahmood et al., 2013) we found that at X3 up to 30 wt.%, polyols and 

SR yields remained unchanged, but the corresponding Mw increased due to the enhanced 

crosslinking reactions. 

On the other hand, Mw of polyols/DKL (Figure 4-4b) decreases with the increasing X1 

likely attributing to enough energy available to break lignin polymer structure (alkyl-aryl 

ether linkages). Increasing X2 above 60 min led to a low Mw, however Mw increased 

significantly at reaction times above 120 min. This is likely due to the enhanced 

repolymerization/condensation reactions at these conditions (Mahmood et al., 2013). 

Lower values of X3 (e.g.10 wt.%) appeared to be more promising for producing polyols of 

a lower Mw. 

Aliphatic hydroxyl content (Y3) decreased with increasing temperature, reaction time or 

substrate concentration. These results could be attributed to the enhanced dehydration 

reactions of lignin or the reaction intermediates with increasing reaction severity (Arami-

Niya et al., 2012; Xu et al., 2008).  
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Figure 4-4 Main effect plots for (a) % yield, (b) Mw and, (c) aliphatic-hydroxyl number in 

actual units 

4.3.4 Analysis of variance (ANOVA) and response surface/contour 
plots 

ANOVA was performed using Minitab 16.0 to explain the effects of the input variables 

(X1, X2 and X3) on the response variables at a predefined confidence interval (CI) in terms 

of their linear, 2-factor interactions (2fi) and quadratic contributions. ANOVA can also 

help identify the most significant parameters in terms of their p-value. The analysis was 

done at 95%CI (or α = 0.05) where α is the level of significance. The models for all 

responses were significant (p-value < α) at 95% CI, as shown in Table 4-4. Linear 

contributions to all responses had a more significant effect than the interaction/quadratic 

contributions over the studied range of the parameters in our experiments (Table 4-4). 

 

Table 4-4 ANOVA for responses (Y1, Y2 and Y3) at 95% CI 
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Source of variance Responses 

 Y1  Y2  Y3  

 F-value p-value F-value p-value F-value p-value 

Model 10.17 0.001 4.99 0.010 21.66 0.005 

Linear contribution  25.41 0.000 10.34 0.002 45.66 0.001 

Interaction contribution 2.50 0.119 3.33 0.062 3.36 0.136 

Quadratic contribution  2.59 0.111 1.31 0.325 0.81 0.551 

 

4.3.4.1 Yields of Polyols 

The fitted model for polyol yield is significant with R2 = 0.902 and p-value of 0.001 <<α. 

All the linear terms had a significant effect on the polyol yield, with X1 (temperature) 

being more significant than other two parameters as shown in Table 4-5. The quadratic 

effect of X1 is less significant (p-value: 0.024) than its linear term, which suggests a 

dominantly linear relationship between the variable and Y1. The model representing 

polyol yield after excluding the insignificant terms is shown in Eq. (2); 

XXXXXXY
2
1323211 7184.23750.39707.36844.34155.71965.81 −++−−=  )2(  

It can be observed from Eq. (2) that X1 and X2 both showed negative effects on Y1, while 

X3 has a positive effect on Y1, i.e., increasing substrate concentration (X3) promoting the 

yield of polyols. However, in our previous study we found that at the substrate 

concentration >20 wt.%, the yield of polyols remained almost the same (Mahmood et al., 

2013). 

Table 4-5 ANOVA for response surface quadratic model at 95% CI for polyol’s yield 

%Yield of polyols 

Source DOF SS MS F-value p-value 

Model 9 1382.34 153.59 10.17 0.001 

X1  1 750.98 750.98 49.71 0.000 

X 2  1 185.39 185.39 12.27 0.006 
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X 3  1 215.32 215.32 14.25 0.004 

XX 21  1 21.13 21.12 1.40 0.264 

XX 31  1 1.12 1.12 0.07 0.790 

XX 32  1 91.12 91.12 6.03 0.034 

X
2
1  1 97.58 106.49 7.05 0.024 

X
2
2  1 17.16 18.32 1.21 0.297 

X
2
3  1 2.55 2.54 0.17 0.690 

Residual error 10 151.07 15.11 - - 

Lack of fit 5 135.12 27.02 8.47 0.017 

Pure error 5 15.95 3.19   

Total 19 1533.42    

R2 0.902     

 

Response surface/contour plots collectively helped to evaluate the relationship between 

input/output variables. Since the model has more than two factors, one factor is held 

constant in each response surface diagram. We kept the third variable fixed at its 

respective zero level (middle value). Figures 4-5a and 4-5b represent the surface/contour 

plots for %yield of DKL/polyols (Y1). The contour plot of X2*X1 at X3 = 0, showed that 

all the values are uniformly distributed over the studied range and that Y1 increases as 

X2*X1 moves from the right upper corner to the left side of the plot. This suggests that the 

high yield could be obtained at low temperature with longer reaction time or vice versa. 

At the fixed value of X2 = 0, a mound-shaped response surface and nearly elliptical 

shaped contours were generated, which suggests that we were operating close to the 

maximum point of Y1. When X1 = 0, contours of X3*X2 are of elliptical shape, 

representing that there is a significant interaction between the corresponding variables 

and we are operating close to the stationary points (maxima). 
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Figure 4-5 Surface (a) and contour (b) plots of % yield of DKL/polyols  

4.3.4.2 Mw of polyols 

The fitted model for Mw of polyols is also significant with R2 = 0.82 and a p-value of 

0.010 <α . As shown in Table 4-6, only the linear terms showed significant effect (p-

values <α ), therefore the model equation may be simplified to show the linear terms 

only. 

Table 4-6 ANOVA for response surface quadratic model at 95% CI for Mw of polyols 

Source DOF SS MS F-value p-value 

Model 9 1309679 145520 4.99 0.010 

X1  1 266487 266487 9.14 0.013 

X 2  1 152220 152220 5.22 0.045 

X 3  1 485342 485342 16.65 0.002 

XX 21  1 35113 35112 1.20 0.298 

XX 31  1 143112 143112 4.91 0.051 

XX 32  1 112812 112812 3.87 0.078 

X
2
1  1 70151 55003 1.89 0.200 

X
2
2  1 13875 18109 0.62 0.449 

X
2
3  1 30567 30567 1.05 0.330 

Residual error 10 291576 29158 - - 
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Lack of fit 5 288893 57779 107.66 0.000 

Pure error 5 2683 537   

Total 19 1601255    

R2 0.82     

The response surface and contour plots are shown in Figures 4-6a and 4-6b, respectively. 

At X3 = 0, the plots show a saddle behavior, suggesting that the lowest Mw can be 

obtained at either a higher temperature with a low reaction time or at a moderately low 

temperature with a longer reaction time. At X2 = 0, rising ridge behavior was observed, 

showing that the lowest possible Mw can be obtained at low substrate concentration with 

moderate to high temperature conditions. Finally, X1 = 0 (rising ridge) the lowest Mw can 

be obtained at the lowest reaction time and lowest substrate concentration. 

 

 

Figure 4-6 Surface (a) and contour (b) plots of Mw (g/mole) of DKL/polyols 

4.3.4.3 Aliphatic-hydroxyl number of polyols 

The fitted model for aliphatic-hydroxyl number of polyols (Y3) is highly significant, with 

R2 = 0.98 and a p-value of 0.005 <α . The linear terms in X1 and X2 and the quadratic 

term in X2 were significant. The model equation for Y3 after dropping the insignificant 

terms can be given simply in Eq. (3): 

XXXY
2
2213 723.12974.19004.50050.299 +−−=      )3(  



97 

 

Table 4-7 ANOVA for response surface quadratic model at 95% CI for aliphatic-

hydroxyl number of polyols 

Source DOF SS MS F-value p-value 

Model 9 28727.3 3191.9 21.66 0.005 

X1  1 20245.7 13275.8 90.07 0.001 

X 2  1 5296.5 4152.8 28.17 0.006 

X 3  1 1338.9 1054.9 7.16 0.056 

XX 21  1 240.1 90.7 0.62 0.477 

XX 31  1 19.8 57.9 0.39 0.565 

XX 32  1 97.9 97.9 0.66 0.461 

X
2
1  1 3.2 22.6 0.15 0.715 

X
2
2  1 1347.4 1437.7 0.75 0.035 

X
2
3  1 137.8 134.0 0.91 0.394 

Residual error 4 589.6 147.4   

Lack of fit 3 589.6 196.5   

Pure error 1 0.0 0.0   

Total 13 29316.9    

R2 0.98     

Surface/contour plots for the aliphatic hydroxyl content are shown in Figure 4-7. These 

show that an increase in the treatment severity – either by increasing reaction temperature 

at fixed reaction time or by increasing reaction time at a fixed reaction temperature 

reduces the aliphatic-hydroxyl number. This may be due to the fact that under severe 

conditions dehydration reactions become more dominant than hydration (Arami-Niya et 

al., 2012; Xu et al., 2008).  

At X3 (substrate concentration) = 0, the contours are elliptical, suggesting that at fixed 

substrate concentration the other two variables significantly affect the response. 

Aliphatic-hydroxyl number increases as we move from low to moderate reaction 
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temperatures with the combination of lower reaction times showing near to stationary 

point behavior towards maxima. 

At X2 (reaction time) = 0, moderate to high aliphatic-hydroxyl number can be obtained at 

low to moderate temperature in combination with low to moderate substrate 

concentrations. At X1 (temperature) = 0, elliptical contours were generated, which 

indicates that the maximum response can be predicted in the surface confined in the 

smallest ellipse within the contour diagram (Lan et al., 2005). 

 

 

Figure 4-7 Surface (a) and contour (b) plots of aliphatic-hydroxyl number (mgKOH/g) of 

DKL/polyols 

4.3.5 Optimized process conditions  

The ANOVA of our design model indicates that it is not possible to differentiate local 

minima or maxima in the responses of interest (yield, Mw, aliphatic hydroxyl content), 

since the quadratic terms of the input variables were not significant. Thus, to achieve the 

goal of process optimization, we used a combination of parallel charts, overlaid contour 

plots and a response optimizer (available within Minitab 16.0) as shown in Figure 4-8. 

The most feasible conditions can be obtained from D-optimality aimed to get the 

response with minimized variance and the overlaid contours. The optimum reaction 

conditions to produce DKL/polyols from KL suitable for PU synthesis were: 250 oC, 120 

min with 10 wt.% substrate concentration. The predicted results are compared with the 

experimental data in Table 4-8, revealing satisfactory agreement. 
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Figure 4-8 (a, b, c) Overlaid contour plots; (d) response optimizer plot 

 

Table 4-8 Comparison of predicted and experimental values of responses (Y1, Y2 and Y3) 

Condition Predicted response values 
Experimental response 

values 

X1 = 250 oC Y1  ≈ 75 wt.% Y1  = 77wt.% 

X 2  = 120 min Y2  ≈ 1825 g/mole Y2  = 1700 g/mole 

X 3 = 10 wt.% Y3  ≈ 353 mgKOH/g Y3  = 365 mgKOH/g 

4.4 Conclusions 

Optimum reaction conditions for producing polyols suitable for PU synthesis (a high 

aliphatic-hydroxyl number, a low Mw with a moderately high yield) via direct hydrolysis 

of KL were investigated using a central composite design. The optimal reaction 
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conditions were 250 oC, 120 min and 10 wt.% substrate concentration, which gave a 

lignin polyol with aliphatic-hydroxyl number ≈365 mgKOH/g, Mw ≈1700 g/mole at ≈77 

wt.% yield). Temperature was the most significant parameter affecting the desired 

characteristics of polyols.  
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Chapter 5  

5 Preparation of bio-based rigid polyurethane foam using 
hydrolytically depolymerized Kraft lignin (DKL) via direct 
replacement or oxypropylation 

Abstract 

Bio-based rigid polyurethane (BRPU) foams of densities 54-105 kg/m3 were successfully 

produced using hydrolytically depolymerized Kraft lignin (DKL, with Mw ~1700 g/mole, 

aliphatic hydroxyl number ~365 mgKOH/g and total hydroxyl number ~671 mgKOH/g) 

as bio-polyols replacing 50 wt.% of petroleum-based polyol. Three types of BRPU foams 

were prepared with different routes i.e., replacing PPG400 directly with DKL, 

substituting sucrose polyol directly with DKL, and oxypropylation of DKL. All three 

BRPU foams along with the PPG400 and sucrose polyol reference foams were 

characterized and compared in terms of their physical, mechanical and thermal 

properties. All BRPU foams exhibit good compressive strengths, compared with the 

reference foams, and showed the following sequence for decreasing compression 

modulus: BRPU foam with oxypropylated DKL (10986.0 kPa)>BRPU foam with 50 

wt.% sucrose polyol and 50 wt.% DKL (5152.0 kPa)>sucrose polyol  reference foam 

(2086.0 kPa)>BRPU foam with 50 wt.% PPG 400 and 50 wt.% DKL (1016.0 kPa)>PPG 

400 reference foam (789.1 kPa). Thermal conductivity of all the prepared foams varied 

between 0.029 W/mK to 0.04 W/mK. All BRPU foams also possess better thermal 

insulation properties than reference foams, with lower thermal conductivity, among 

which the BRPU foam with oxypropylated DKL has the lowest thermal conductivity 

(0.029 W/mK),  making it suitable for utilization as an insulation material. 

KEYWORDS: Kraft lignin, depolymerization, bio-polyols, PPG 400, sucrose polyol, 

rigid polyurethane foam, oxypropylation. 
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5.1 Introduction 

Rigid polyurethane (PU) foams are widely used for many engineering applications, such 

as insulation materials, automotive parts, and structural materials (Narine et al., 2007). 

The production of PU foams is realized through the reaction of isocyanates with polyols. 

Currently, both isocyanate and polyols are mostly derived from petrochemical resources. 

With the increasing concerns over the depletion of fossil fuels  and their environmental 

impact, there is a growing interest in exploring renewable feedstock to replace petroleum 

derived polyols either partially or completely for the production of bio-based PU foams 

(Zhao et al., 2012), without sacrificing the physical, mechanical and thermal 

characteristics of the material. 

Lignin, a natural aromatic high molecular weight biopolymer, composed of phenyl 

propanol units (Tejado et al., 2007). It can be  a potential candidate for the production of 

fuels, chemicals and bio-based materials. All native lignin products are heterogonous in 

nature and their molecules mainly consist of two types of linkages: condensed linkages 

(e.g., 5-5 and β-1 linkages) and ether linkages (e.g., α-O-4 and β-O-4) (Chakar and 

Ragauskas, 2004). Aryl ether linkages can be more easily cleaved than the stable C-C 

linkages which are resistant to chemical depolymerization. Large quantities of lignin are 

available from pulp and paper mills or cellulosic ethanol plants. It was estimated that the 

pulp and paper industry generates 50 million tons of lignin in 2010, mainly utilized as a 

low-value fuel for recovery boilers in pulp/paper mills for heat and power generation 

(Borges da Silva et al., 2009),  but only approximately 2% (1 million tonnes) has been 

commercialized for other value-added industrial applications. Recently, lignin has gained 

increasing attention for its potential utilizations either directly or after chemical 

modification as a renewable feedstock for chemicals such as bio-polyols in the 

preparation of polyurethane (PU) foams (Cateto et al., 2011). 

Crude lignin has much lower reactivity (Cheng et al., 2012), however, due to its larger 

molecular weight and steric hindrance effect, so it could only replace less than 30% of 

polyols in the preparation of PU foams. Hydrolytic depolymerization of Kraft lignin (KL) 

employing water alone as a solvent under alkaline conditions was found a promising 

approach to convert KL of a very high molecular weight into low molecular weight 
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depolymerized KL (DKL) (Mahmood et al., 2013). After depolymerization the resulted 

DKLs has lower molecular weights and more functionality such as higher hydroxyl 

numbers (Mahmood et al., 2013), Which could substitute petroleum-based polyols as 

reactive bio-polyols at a larger replacement ratios for the manufacture of rigid PU foams, 

one of the most widely used polymeric foam materials, particularly in the construction 

industry as insulating material . 

The objective of this study is to prepare bio-based rigid polyurethane (BRPU) foams with 

hydrolytically depolymerized KL (DKL) as bio-polyols to substitute petroleum-based 

polyols at a high replacement ratio, i.e., 50 wt.%. Three preparation routes that differ in 

the methods of how to incorporate DKL into the PU foams were employed in the 

preparation of BRPU foams, i.e., (1) partially replacing PPG 400 with DKL, (2) partially 

replacing sucrose polyol with DKL, and (3) oxypropylation of DKL. The obtained BRPU 

foams were characterized and compared in terms of their physical, mechanical and 

thermal properties for potential utilization as insulation materials. 

5.2 Experimental 

5.2.1 Materials 

Kraft lignin (KL) used in this study was provided by FPInnovations, produced using the 

proprietary LignoForce process (Kouisni, 2012) in its pilot plant in Thunder Bay, 

Ontario. The KL has a weight-average molecular weight (Mw ~10,000 g/mole) based on 

GPC-UV analysis, and the dried KL sample contains 0.57 wt.% ash and 5.2 wt.% sulfur 

(on dry ash free basis). Other chemicals used in this work are all CAS reagent grade 

chemicals, purchased from Sigma-Aldrich and used without further purification, 

including NaOH, acetone, pyridine, acetic anhydride, sulfuric acid, HCl, 

dibromomethane, PPG400, polymeric MDI, sucrose polyol (JEFFOL SD-361), 

triethanolamine (co-catalys), triethylene diamine (1,4-Diazabicyclo [2.2.2] octane), 

dibutyltin diluarate, silicon oil, glycerol etc. The physical characteristics of all chemicals 

used in the foam preparation are given in Table 5-1. 

Table 5-1 Physical characteristics of all chemicals used 
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Ingredients Functionality 

Equivalent  

weight 

(g/mol) 

-OH # 

(mgKOH/g) 
Comments 

PMDI 2.7 135.0 - NCO contents: 31.2% 

PPG400 2.0 200.0 280.5 Petroleum polyol 

Glycerol 3.0 30.7 1829.4 Crosslinking agent 

Sucrose polyol 8.0 155.8 360.0 Reference polyol 

Water 2.0 9.0 6233.3 Chemical blowing agent 

Acetone - - - Physical blowing agent 

Poly(siloxane ether) - - - Silicon surfactant 

Triethylene diamine - - - Foaming catalyst 

Dibutyltin dilaurate - -  Gelation catalyst 

Triethanol amine 3.0 49.73 1128.1 Co-catalys 

5.2.2 Depolymerization of KL 

Briefly, in a typical  run, 25 g KL, 7 g NaOH and 218 g of distilled water were loaded 

into a 500 mL autoclave reactor. The reactor was sealed, purged thrice with N2 and then 

finally pressurized with 2 MPa N2, and finally heated up 250 oC under stirring for 2 h 

after the reactor reached the temperature. At the end of the reaction, the reactor was 

immediately quenched in an ice water bath. The gases inside the reactor vented in the 

fume hood, and the reactor contents were washed into a beaker using distilled water and 

the pH was adjusted to ≈2.0 using 1M sulfuric acid to precipitate the DKL products. The 

acidified mixture was filtered and the solid cake left after filtration was dissolved in 

acetone. The solid residues (SRs) remained on the filter paper were separated and dried in 

an oven (at 105 oC for 24 h). The depolymerized Kraft lignin (DKL) in the acetone 

solution was recovered by rotary evaporation at 40-65 oC under reduced pressure. The 

yield of DKL was determined to be ~77 wt.%, based on the dry weight of KL used in 

each run. 
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5.2.3 Oxypropylation of DKL 

Oxypropylation of DKL with 50 wt.% bio-contents was carried out in a 100 mL Parr 

autoclave reactor.  In a typical run, 18.9 g of DKL, 21.21 g propylene oxide (PO), 2.31 g 

of glycerol and KOH mixture with 16.8 g of acetone were loaded to the reactor; the 

reactor was sealed under atmospheric pressure (1 atm-g), and heated up to 150 oC under 

atmospheric pressure (1 atm-g). Initially the pressure increased slightly but after a while 

it restored to the initial start-up pressure (atmospheric pressure) implying complete 

consumption of PO by the oxypropylation reactions. After cooling, the oxypropylated 

DKL in the reactor was washed using acetone and vacuum filtrated. The filtrate was 

evaporated via rotary evaporation under reduced pressure to completely remove all 

acetone and any unused PO if any. The weight of the oxypropylated product was 

approximately equal to the total weight of DKL, PO and glycerol. 

5.2.4 Preparation of DKL based BRPU foam 

All DKL based BRPU foams were prepared in 455-ml plastic cups using one shot 

method. For the BRPU foams prepared by replacing PPG400 or sucrose polyols directly 

with, DKL was pre-dissolved in acetone before the foam preparation. Whereas, 

oxypropylated sample was in liquid form, so it can be used directly for foaming. In 

formulation of the DKL based BRPU foams (as well as the reference foams) glycerol at 

10% (w/w) was added as a cross-linking agent to the polyol (or bio-based polyol). The 

reference foams were prepared with PPG400 and sucrose polyols, respectively. The 

formulation also includes a physical blowing agent (acetone at 20% (w/w)), a catalyst 

(combined mixture of equal amounts of dibutyltin diluarate and triethylene diamine) at 

2% (w/w), surfactant at 2% (w/w) and water at 2% (w/w). The weight amounts of the 

blowing agent, catalyst, surfactant and water were determined with respect to the total 

weight of polyol (s). PMDI was added at a NCO/OH ratio of 1.1. Overall, the foaming 

procedure employed is comprised of the following steps: (1) desired amounts of polyols, 

catalysts and blowing agents were all weighed in the cup, followed by premixing the 

ingredients at a speed of 550 rpm for 10-12 s to obtain a homogeneous mixture, (2) pre-

calculated polymeric MDI was then transferred into the cup and the mixture was stirred 

vigorously for another 12-15s at ambient temperature (23±2 oC), and (3) the mixture was 
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placed on a leveled surface in a fume hood and let the foam rise owing to the self-

generated heat. All the foams were left in the fume hood for 24-48 h for curing prior to 

analysis. The foam shrinkage, structural uniformity, stability and cells appearance were 

observed at this point. Prior to further characterization, the foam samples were 

conditioned for a minimum of 24 h to max of 1 week, depending on the testing 

requirements. 

5.2.5 Characterizations of DKL, oxypropylated DKL and BRPU 
foams 

Hydroxyl number of powdered DKL after acetylation was determined by 1H NMR 

spectra analysis. Hydroxyl number of the oxypropylated sample was measured using a 

Potentiometric Titrator (Titroline 7000 Titrator) in accordance to ASTM D4274-99 

standard. The viscosity of the oxypropylated DKL sample was determined using 

BROOKFELD CAP 2000+VISCOMETER at 80 oC. Functional groups of the bio-polyol 

feedstock and the foam products were investigated using IR analysis and the molecular 

weight distributions of the DKL and oxypropylated DKL were measured on a GPC-

HPLC instrument (1525 binary pump, UV detector set at 270 nm, Waters Styragel HR1 

column at 40 oC) using THF as the eluent at a flow rate of 1 ml/min, calibrated with 

polystyrene standards. 

The apparent density of foam samples was measured according to ASTM D1622-03 with 

the sample size of 16.4 cm3. The mechanical properties of PUF samples were measured at 

ambient conditions with an ADMET UTM (Model SM-1000-38). Modulus of elasticity 

(Young’s modulus/compressive modulus) and compressive strength at 10% and 20% 

deformation were determined according to ASTM D 1621-00 standard. Thermal 

conductivity of the foam samples was measured using KD2 PRO thermal properties 

analyzer with SH-1 dual needle sensor (1.3 mm diameter, 3 cm long, and 6 mm spacing) 

capable of measuring thermal conductivity in the range of 0.02 and 2.00 W/mK. The 

specimen size used was ~ 50 mm × 50 mm × 30 mm. Water absorption capacity of the 

foam samples was determined according to modified ASTM C272 standard using the 

specimen size of ~ 50 mm × 50 mm × 30 m. Initially, a dry foam sample was weighed 

and then placed into a beaker filled with de-ionized water (250 mL) for 24 h at room 
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temperature. The specimen was then taken out of water, removed the excess water and 

weighed it. Water absorption was then reported as percentage of weight gain. Thermal 

stability of the foams was measured by Pyris
TM

 Diamond, Perkin–Elmer 

Thermogravimetric analyzer (TGA), under a N2 flow (20 ml/min) from 40 oC to 800 oC at 

10 oC/min. Glass transition temperature (Tg) of foam samples was determined using DSC 

(differential scanning calorimeter: Mettler Toledo DSC 1) under a N2 flow (50-60 

mL/min) where the sample was heated at a heating rate of 10 oC/min from 50-350 oC. 

Morphology of the foams was observed by Hitachi S-4500 field emission cross beam 

scanning electron microscope (SEM). After examination by SEM, selected locations on 

the foam surface were subjected to a cross-sectional cut and the sample was coated with 

osmium, and imaged using a focused ion beam LEO (Zeiss, Thornwood, NY, USA) 

1540XB SEM. 

5.3 Results and discussions 

Table 5-2 summarizes Mw, hydroxyl numbers and viscosity of the bio-polyols feedstock 

including the original KL, DKL and oxypropylated samples. As shown in the Table, both 

KL and DKL are in solid powder form, while the oxypropylated DKL is in viscous liquid 

state (with viscosity of 0.61 Pa.s at 80 oC). As clearly shown in the Table, the DKL and 

oxypropylated DKL have much higher total hydroxyl numbers (671 mgKOH/g and 350 

mgKOH/g, respectively), as compared with that of original KL (275 mgKOH/g). In 

addition to the total hydroxyl numbers, the other most relevant physico-chemical property 

for a polyol is viscosity. For a polyol (such as KL or DKL) if in solid powder state, it is 

critically important to convert it into liquid form for the preparation of BRPU foams. This 

conversion can be achieved either via oxypropylation or by dissolving DKL in an organic 

solvent (such as acetone in this study) prior to its addition in the foaming reaction 

mixture. Figure 5-1, 5-2 and 5-3 shows the 1H NMR spectra of acetylated KL, DKL and 

oxypropylated DKL. It can be seen clearly from the Figure 5-1 and Figure 5-2 that 

original KL and DKL both have aliphatic and phenolic –OH groups shown in terms of 

aliphatic and phenolic acetates. However, oxypropylation converted all phenolic –OH 

groups into aliphatic –OH groups (shown as a one signal) via oxypropylation reaction. 

Table 5-2 Mw, hydroxyl numbers and viscosity of the bio-polyols feedstock 
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Sample ID Mw 

(g/mole) 

Aliphatic 

hydroxyl number 

(mgKOH/g) 

Total hydroxyl  

number 

(mgKOH/g) 

Viscosity at 

80 oC (Pa.s) 

State of product 

KL 10,000 128 275 - Powder 

DKL 1700 365 671 - Powder 

DKL50PO50 3600 - 350 0.61 Viscous liquid 

 

 

Figure 5-1 1H NMR spectra of acetylated KL 
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Figure 5-2 1H NMR spectra of acetylated DKL 

 

 

Figure 5-3 1H NMR spectra of acetylated oxypropylated DKL 
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5.3.1 Physical properties 

Physical properties of all foams, including 2 reference foams and 3 DKL-based BRPU 

foams, were measured and reported in Table 5-3, in which the foam density, rigidity, 

structural uniformity, structural stability or shrinkage, etc. are presented. It was found that 

the incorporation of the lignin-derived bio-polyols to the rigid foams could positively 

contributes towards overall improvement of the foam’s rigidity, owing to the also 

introduction of hard segments by the bio-polyols. In this study, PPG400 and sucrose 

polyols, whose physical characteristics are shown previously in Table 5-1, were selected 

as reference polyols since they have different functionalities and structure.  PPG400 is a 

di-functional polyol with linear long chain structure, while sucrose polyol has multiple 

branched short chain structure. As shown in Table 5-3, densities of the reference foams 

from PPG 400 and sucrose polyols are similar i.e., 55(±1) kg/m3. However, the DKL-

based BRPU foams prepared by directly replacing 50 wt.%  of PPG 400 or sucrose polyol 

have higher densities of 104(±2) kg/m3. A possible reason for such greatly increased 

foam density by direct incorporation of DKL in the BRPU formula is that DKL has 

relatively lower reactivity, which hence causes a slower gelation reaction rate. A slower 

gelation reaction rate would lead to more gases to escape from the foam structure and 

hence smaller void volumes and higher foam densities. It shall be noted that, density of 

the DKL-based BRPU foams could be tuned by varying the additional amount of 

physical blowing agent. Interestingly, the density of BRPU foam prepared  with the 

oxypropylated DKL (55.3 kg/m3) is very close to that of the  reference foams, likely 

because the oxypropylated DKL has similar molecular structure and hence similar 

reactivity as the reference polyols, as evidenced by the FTIR analysis of all the polyols to 

be discussed in the later part of this section. 

Table 5-3 Physical characteristics of 2 reference and 3 DKL-based BRPU foams 

Foam ID Density 

(kg/m3) 

Structural 

uniformity 

Shrinkage Stability 

before/after 

conditioning 

Water 

absorption 

(wt.%) 

PPG400 (Ref foam) 56.0±1.0 0.5 0 1 31.5±0.20 

DKL50-PPG40050 105.0±2.0 0 1 0 21.3±0.50 
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Sucrose polyol (Ref foam) 54.0±1.5 1 0 1 5.8±0.35 

DKL50-Sucrose50 104.3±1.0 1 0 1 4.3±0.50 

DKL50-PO50 55.3±1.0 1 0 1 11.8±0.50 

Note: “1” and “0” denotes “Yes” and “No”, respectively. 

Water uptake after 24 h in water exposure at room temperature was 31.5 wt.% for the  

PPG400 based reference foam. However, replacing PPG400 polyols directly with  DKL 

at 50 wt.%, the water absorption for the BRPU foam was reduced markedly by 10%. On 

the other hand, sucrose polyol-based RPU foam showed superb water resistance property, 

and it absorbed only 5 wt.% water,  which was further reduced to 4.3 wt.% replacing  

sucrose polyol with DKL at 50 wt.%. The BRPU foam prepared from oxypropylated 

DKL absorbed 11.8 wt.% water, which could result from the rupture of foam’s cell 

windows due to the hydraulic pressure of water, causing water to penetrate inside the 

foam (Mondal and Khakhar, 2004). It was suggested that increasing MDI contents could 

reduce the water absorption capacity of the foam, due to the formation of more closely 

packed small pores Kumar and Kaur (2013).   

As discussed above, the density of BRPU foam prepared with the oxypropylated DKL is 

very close to that of the reference foams. To account for this, a possible reason was 

proposed, i.e., the oxypropylated DKL has similar structure and hence similar reactivity 

as the reference polyols. To provide some evidence, FTIR analysis was carried out on all 

the polyols including KL, DKL, the oxypropylated DKL and the two reference polyols 

(PPG400 polyol and sucrose polyol). The FTIR spectra of all these polyols are illustrated 

in Figure 5-4. All spectra contain a broad absorption peak at 3200-3550 cm-1 attributed to 

aromatic and aliphatic O-H stretching, as expected. For all lignin related samples, there 

are strong peaks at 1400-1700 cm-1 attributed to IR absorbance by aryl groups. In all 

samples, the peaks at 1000-1300 cm-1 correspond to C-O stretching of C-O-H, suggesting 

the presence of primary, secondary and tertiary alcohols, phenols, ethers and esters (Islam 

et al., 2005; Kubo and Kadla, 2005). The C-O ether linkage at 1000-1100 cm-1 was 

observable in KL while the IR spectra of DKL show almost no absorption, suggesting 

that during hydrolytic depolymerization treatment most of the ether linkages were 

effectively cleaved. The intensities of the aromatic absorptions at 1400-1700 cm-1 in DKL 
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sample are almost the same as those in the original KL, suggesting that the hydrolytic 

depolymerization treatment did not change lignin’s aromaticity. The  oxypropylation and 

occurrence of PO grafting on lignins can be evidenced by following FTIR 

observations:(a) an increase in the bands at 2971-2870 cm-1 attributed to the stretching of 

CH3, CH2 and CH aliphatic groups; (b) reduction in the intensity of the carbonyl peak at 

1714 cm-1; (c) a marked increase of the absorption bands in the ether C-O stretching 

region (1000-1100 cm-1); and (d) an increase in the band at 1371 cm-1 confirming the 

introduction of CH3 groups (Cateto et al., 2009). More importantly, from Figure 5-4, the 

FTIR spectrum of the oxypropylated DKL is similar to the spectra of the two reference 

polyols (PPG400 polyols and sucrose polyol), suggesting that the oxypropylated DKL 

has similar molecular structure and hence similar reactivity as the reference polyols used 

in this work. This explains that the BRPU foams prepared from oxypropylated DKL has 

similar properties (e.g., density as shown in Table 5-3).  

 

 

Figure 5-4 FTIR spectra of KL, DKL, the oxypropylated-DKL and the reference polyols 

(PPG400 polyols and sucrose polyols)  
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5.3.2 Mechanical properties 

Mechanical properties of the reference and BRPU foams were measured as shown in 

Table 5-4. It can be seen clearly from Table 5-4 that the PPG400-based reference foam 

has the lowest compression modulus (789.1 kPa) and strengths (101.2 kPa and 113.7 kPa 

at10% and 20% deformations respectively) which could result from  a lower crosslinking 

density due to its bi-functional nature. On the other hand, sucrose based reference foam 

has a high compression modulus (2086.0 kPa) and high strengths (327.0 kPa and 342.8k 

Pa at 10% and 20% deformation respectively) attributed to higher crosslinking density in 

the resulting foam. When comparing the BRPU foams prepared with 50 wt.% partial 

substitution of PPG400 polyols or sucrose polyol with DKL, as clearly shown in Table 5-

4, the sucrose-based BRPU has higher modulus and strengths than the PPG400-based 

BRPU foam. This is again due to the bi-functional structure of PPG400, causing lower 

crosslink density of the resulting foams. Interestingly, the  BRPU foam prepared with the 

oxypropylated DKL has high compression modulus of 10986.0 kPa and strength of 515.0 

kPa and 578.0 kPa at10% and 20% deformation, respectively, The mechanical properties 

of the oxypropylated DKL-based BRPU foam are the best among all the foams, even 

better than the  BRPU foam prepared with 50 wt.% sucrose polyols  and 50 wt.%  DKL. 

The reason that accounts for the superior mechanical properties for the oxypropylated 

DKL-based BRPU foam could be: oxypropylation converted all phenolic OH to aliphatic 

OH, transforming the DKL to highly branch and highly functionalized polyol. 

Table 5-4 Mechanical properties of all RPU foams  

Foam ID Modulus of 

elasticity 

(kPa) 

Compression 

strength at 10% 

displacement (kPa) 

Compression 

strength at 20% 

displacement (kPa) 

Max. 

stress 

(kPa) 

PPG400 (Ref foam 1) 789.1±100.0 101.2±80.0 113.7±75.0 123.8 

DKL50-PPG40050 1016.0±90.0 216.0±45.0 227.2±60.0 238.7 

Sucrose polyol (Ref foam 2) 2086.0±100.0 327.0±68.0 342.8±70.0 361.5 

DKL50-Sucrose50 5152.0±80.0 374.0±42.0 506.0±70.0 526.0 

DKL50-PO50 10986.0±55.0 515.0±50.0 578.0±35.0 611.0 
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5.3.3 Thermal properties 

Thermal conductivity is the key thermal property that governs insulation applications for 

rigid PU foams, and it is closely related to the foam density and cell morphology. Low 

thermal conductivity values for RPU foams results from a small average cell size and 

high contents of closed cell. For better insulation performance rigid PU foams shall have 

closed cell contents as high as possible. The thermal conductivities for all prepared foam 

samples were measured and comparatively given in Table 5-5. In this work thermal 

conductivities of the RPU foam samples either prepared by 50 wt.% replacement of 

PPG400 or sucrose polyol with DKL. The foam using oxypropylated DKL (DKL50-

PO50) as a bio-polyols has the lowest thermal conductivity, 0.029 W/mK, which is 

towards the higher limits of common PU construction foams (thermal conductivities 

between 0.020 to 0.030 W/mK for densities ranging from 30-100 kg/m3) (Ribeiro da 

Silva et al., 2013). The obtained thermal conductivity results are also in a good agreement 

to the reported results of thermal conductivity (0.0257- 0.0329 W/mK) of rigid PU foams 

prepared from various types of lignins (Alcell, Indulin, Curan and Sarkanda) at different 

ratios (Cateto et al., 2010). It was also reported that the thermal conductivities of most 

common RPU foams lies between 0.02 W/mK and 0.05 W/mK (BING, 2006). 

Table 5-5 Thermal conductivity of all RPU foams  

Foam samples  Thermal conductivity (W/mK) 

PPG400 (Reference foam 1) 0.040±0.001 

DKL50-PPG40050 0.038±0.001 

Sucrose polyol (Reference foam 2) 0.033±0.001 

DKL50-Sucrose50 0.032±0.001 

DKL50-PO50 0.029±0.001 

 

Glass transition temperature (Tg) was determined by DSC for the BRPU foam with the 

oxypropylated DKL in 50 mL/min N2 flow heated from 50 oC temperature to 350 oC at 

10 oC/min. The DSC profile is illustrated in Figure 5-5, from which Tg was determined to 

be ~300 oC. Thermal Stability of the oxypropylated DKL-based BRPU foam was 
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investigated by TGA in 20 mL/min N2 flow heated from room temperature to 800 oC at 

10 oC/min. Figure 5-6 displays the TGA profiles of all RPU foams. As shown in the 

Figure 5-6, all the foams were thermally stable to 200 oC, but after that degradation 

started. It was generally believed that the first stage of thermal degradation is related to 

the urethane bond decomposition, through dissociation to form isocyanate and alcohol 

followed by the thermal decomposition leading to the formation of amines,, small 

transition components and carbon dioxide (Ribeiro da Silva et al., 2013; Zhao et al., 

2012). 

The area below 150 oC is considered to be due to the evaporation of water. Pyrolysis of 

PU foam under nitrogen atmosphere starts at ~170 oC and intensified at ~200 oC. Main 

decomposition range of RPU foams took place between 200-450 oC. Where, around 350 
oC the decomposition of polyurethane start releasing components like diisocyanates and 

polyols along with other decomposition products like amines, olefins and carbon dioxide 

because of the destruction of polymer chain (Manocha et al., 2010). For bio-based foams 

after 600 oC, weight loss is negligible. For all the BRPU foams there is not much 

difference between their thermal stability. 

 

 

Figure 5-5 DSC profile for the oxypropylated DKL-based BRPU foam 
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Figure 5-6 TGA and DTG of reference and BRPU foams 

 

5.3.4 Morphology 

In general, the physical properties of foams are not only dependent on the rigidity of the 

polymer matrix, but are related to the morphology of the foam cell. Thus, it is of interest 

to observe the cell structure of the foam using SEM. Figure 5-7, shows SEM images of 

the reference foams from sucrose and PPG400 polyols. As shown in Figure 5-7, the 

reference foam from sucrose polyol (Figure 5-7A) shows an average cell size ~780 µm, 

compared to ~500 µm for the cells for the PPG400-based reference foam. With the 

incorporation of bio-based polyols cellular shape become more homogeneous and less 

regular.  The alteration in the cell morphology was probably due to the fact that the DKL 

may affect the process of cell nucleation in preparation of PU foam (Xue et al., 2014). 

SEM of all BRPU foams showed some broken cells, and some cells have distorted 

structure. The mechanism of cell growth was dominated by the stiffness of gas/polymer 
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matrix, the rate of gas diffusion, and the amount of gas loss (Zhao et al., 2012). For the 

BRPU foams with 50 wt.% DKL and 50 wt.% sucrose polyol or PPG400 polyol have less 

uniform cells, because the polyol’s mixture is less expandable and leads to a bit faster 

foaming reaction, and hence  the evolution of gas via ruptured cells. Bio-based rigid PU 

foams prepared with polyols containing 50% DKL have density 104-105 kg/m3 which 

lead to more smaller cells even difficult to recognize on irregular foam surface. 

 

 

 

Figure 5-7 SEM images of sucrose (A) and PPG400 (B) derived reference foams 

 

 

Figure 5-8 SEM images of bio-based rigid PU foams (DKL-sucrose-50, (B) DKL-PPG-

50 and, (C) DKL50-PO50 

 

Closed 

cell 

Open 

cell 
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As a summary, the reference RPU foams with the sucrose polyol or PPG400 polyol 

showed more closed cell structure than the BRPU foams prepared by partially replacing 

either PPG400 or sucrose polyols with DKL or using oxypropylated DKL. Therefore, the 

production of BRPU foams from DKL needs further optimization of surfactant, catalysts 

and blowing agents to improve the foam’s microstructure.  

5.4 Conclusions 

Bio-based rigid polyurethane (BRPU) foams were prepared with depolymerized Kraft 

lignin (DKL) substituting 50 wt.% of petroleum-based polyols via three routes: directly 

replacing 50 wt.% of PPG400, directly replacing 50 wt.% of sucrose polyol, and using 

oxypropylated DKL as a single polyol feedstock. All foams were characterized in terms 

of physical, mechanical, and thermal properties as well as their morphology, and their 

properties were found to be strongly dependent on the DKL incorporation routes. The 

foams showed the following order in terms of their compression modulus: Oxypropylated 

DKL-based BRPU foam (10986.0 kPa)>BRPU foam with 50 wt.% sucrose polyol and 50 

wt.% DKL (5152.0 kPa)>sucrose polyol based reference foam (2086.0 kPa)>BRPU foam 

with 50 wt.% PPG400polyol and 50 wt.% DKL(1016.0 kPa)>PPG 400 based reference 

foam (789.1 kPa). The similar trend was observed for the compression strengths of the 

foams at 10% and 20% deformations. The lower modulus of PPG400 based RPU foams 

was believed due to its bi-functional long chain structure which leads to lower 

crosslinking density when compared to the multifunctional short chain structure sucrose 

polyol. All the foams showed thermal conductivity between 0.029 W/mK to 0.040 

W/mK. Among three routes investigated for the preparation of BRPU foams, the 

oxypropylated DKL-based BRPU foam showed superior combination of physical, 

mechanical and thermal properties. All BRPU foams are thermally stable up to 

approximately 200°C. 
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Chapter 6  

6 Hydrolytic depolymerization of hydrolysis lignin: Effects 
of catalysts and solvents 

Abstract 

Hydrolytic depolymerization of hydrolysis lignin (HL) in water and water-ethanol co-

solvent was investigated at 250 oC for 1 h with 20% (w/v) HL substrate concentration 

with or without catalyst (H2SO4 or NaOH). The obtained depolymerized HLs (DHLs) 

were characterized with GPC-UV, FTIR, GC-MS, 1H NMR and elemental analyzer. HL 

was efficiently depolymerized employing water alone as a solvent without catalyst, 

producing 68 wt.% yield of DHL with a weight average molecular weight (Mw) of ~2030 

g/mole, and 4.8 wt.% yield of SRs. While introducing sulfuric acid (2%, w/w) as a 

catalyst in water, Mw reduced to ~1110 g/mole however, DHL yield was very low i.e., 

32.8 wt.% with high SR’s yield ~39.4 wt.%. No effective depolymerization of HL was 

observed when employing NaOH as a catalyst from 2%-5% (w/w). However, with 

increasing NaOH loading to 10% (w/w), HL was successfully depolymerized and DHL 

with yield of ~55.6 wt.% (SR’s yield of 30.7 wt.%) was obtained with lower Mw ~850 

g/mole. When water-ethanol mixture was employed without catalyst, DHL yield was 

improved to 70.5 wt.% (SR yield of ~ 9.8 wt.%) with Mw as low as ~1000 g/mole. 

Employing acid as a catalyst in water-ethanol mixture, the yield of DHL was improved to 

~75.2 wt.% with a lower SR yield (~1.8 wt.%). However, the Mw of the DHL produced 

was slightly increased (1660 g/mole). NaOH in combination with water-ethanol mixture 

gave DHL yield ~66.5 wt.% (SR yield 20.9 wt.%) with high Mw (4710 g/mole). In view 

of the utilization of DHL for the preparation of rigid polyurethane foams/resins, un-

catalyzed depolymerization of HL in water-ethanol mixture appeared to be the best route 

with a suitable aliphatic (227.1 mgKOH/g) and phenolic (215 mgKOH/g) hydroxyl 

numbers.  

 

Key words: Hydrolysis lignin, depolymerization, water solvent, water-ethanol mixture, 

acid, base. 
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6.1 Introduction 

Hydrothermal depolymerization/liquefaction (Peterson et al., 2008) and catalytic 

liquefaction of lignocellulosic materials/biomass, have demonstrated promise for 

replacing petroleum derived chemicals with more sustainable alternatives (Huber et al., 

2006), in accordance to the principles of green chemistry. Production of bio-derived 

polymers is challenging due to the variability and complexity of the bio-based starting 

materials; this requires careful control of reaction conditions and the use of catalysts 

capable of selective bond cleavage (Barta et al., 2014). The biggest challenge comes from 

the structure and composition of lignocellulosic biomass composed of three biopolymers: 

cellulose, hemicelluloses and lignin. Cellulose, a linear homopolymer of glucopyranose 

residues linked by β-1, 4-glycosidic bonds, is the most principal chemical component in 

different lignocellulosic biomass (accounting for up to more than 50 wt.%), compared to 

the other two main components (hemicellulose and lignin) (Shen et al., 2011). Currently, 

cellulose is most widely used component of lignocellulosic biomass for the production of 

various bioproducts including paper and biofuels (Varanasi et al., 2013). Hemicellulose is 

easy to undergo hydrolysis/depolymerization under acidic or basic conditions. Lignin 

represents 30% of all non-fossil organic carbon on Earth. Its availability exceeds 300 

billion tons on the earth (Smolarski, 2012), increasing annually by around 20 billion tons 

by the natural photosynthesis process. Large quantities of lignin (in the range of millions 

tons) are yearly available from numerous pulping mills and biorefinery industries (such 

as cellulosic ethanol plants). Lignin is a by-product of pulping process and typically 

burned in recovery boilers to produce heat and/or electricity within paper mills and 

biorefineries. However, the utilization of excessive lignin is usually the bottlenecks in 

recovery boilers. Thus some lignin can be precipitated and removed out from the pulping 

processes without affecting the pulp production, and the precipitated lignin can be a 

cheap renewable raw material for various applications in producing bio-based phenolic 

resins, PU/epoxy resins, etc. Lignin is a naturally occurring aromatic biopolymer 

consisting of phenylpropanoid units, and provides mechanical support and water 

transport to the plant and inhibits the action of various biological agents (e.g., insects) on 

the plants. The presence of phenolic and aliphatic hydroxyl reactive groups and large 

availability of lignin render a significant opportunity for production of a wide range of 
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renewable chemicals and materials using lignin after de-polymerization/liquefaction 

(Varanasi et al., 2013).  

 

Enzymatic hydrolysis of wood/lignocellulosic biomass is already an established approach 

for the degradation of wood fibers. The major reactions during enzymatic hydrolysis are 

on the polysaccharides i.e., cellulose/hemicellulose in the woody biomass (Dahlman et 

al., 2000) for producing sugars for bio-ethanol. The solid residues left after the enzymatic 

hydrolysis of wood are termed as hydrolysis lignin (HL). With woody biomass, 

delignification (thermo-chemically or biologically) or acid pre-hydrolysis is beneficial as 

it provides accessibility to degradable cellulosic part (Santos et al., 2012). The removal of 

most of lignin and extractives from the fibers, enhances swelling and porosity of the 

fibers. Consequently, the cellulose and hemicelluloses can be effectively hydrolyzed to 

their monosaccharides by enzymes. HL is mainly composed of lignin up to 50 to 57% 

balanced with unreacted cellulose, mono and oligosaccharides. Extensive research was 

undertaken in the former Soviet Union to find uses for HL. However, unfortunately, the 

majority of HL was disposed for no valorization, either because the required 

modifications for HL utilizations  were still too expensive or because the HL-derived 

materials did not function well enough. Advances in the lignin 

depolymerization/liquefaction and the utilization of depolymerized/liquefied lignin 

products have shown great promise in the valorization of this type of lignin. 

 

Most of the current depolymerization/liquefaction processes are carried out 

heterogeneously, requiring rigorous conditions in terms of solvent, temperature and 

pressure (Long et al., 2012). Wood and lignocellulosic materials can be easily 

liquefied/depolymerized in the presence of acidic catalysts (sulfuric, hydrochloric, 

phosphoric and oxalic acids) or basic catalysts (NaOH, NaHCO3, FeSO4 etc.) in the 

presence of a suitable solvent. Sulfuric acid has been widely used as an effective catalyst 

for the liquefaction of lignocellulosic biomass (Cheng et al., 2010). More recently, there 

has been an increasing interest in using hot-compressed and sub-/supercritical fluids for 

biomass liquefaction/depolymerization. Hot-compressed or subcritical water has been 

used by many researchers for biomass liquefaction (Karagöz et al., 2005), while the 



128 

 

liquefaction using water alone as a solvent normally produced a relatively lower yield of 

water-insoluble oily products than that of using sub-/supercritical alcohols or acetone (Xu 

and Etcheverry, 2008; Yamazaki et al., 2006; Liu and Zhang, 2008). Another advantage 

of using an alcohol as a solvent or co-solvent for biomass liquefaction is that alcohols are 

expected to readily dissolve relatively high molecular weight products derived from 

cellulose, hemicellulose and lignin because of their lower dielectric constants when 

compared to that of water (Yamazaki et al., 2006). Therefore, biomass solvolysis was 

found to be greatly affected by the solvent type (Liu and Zhang, 2008). Lignin in woody 

biomass could be effectively depolymerized using a mixture of water-ethanol (Cheng et 

al., 2010) to produce low molecular weight products with more reactive aliphatic 

hydroxyl groups and more accessible phenolic –OH groups for their further utilization 

either in polyurethane foams (Mahmood et al., 2013) or in phenolic foams (Zhuang et al., 

2011).  

 

Inspired from the above research work for the depolymerization/liquefaction of 

biomasses, this study for the first time, depolymerization of wood-derived HL was 

comprehensively studied. Both acidic and basic media using sulfuric acid (H2SO4) and 

NaOH as catalysts, respectively, were tested at 250 oC, 1 h for 20% (w/v) HL 

concentration. Effects of solvent type (either water alone or water-ethanol mixture) were 

compared on the DHL and SR products yields and the Mw of the DHL products. 

6.2 Methods 

6.2.1 Materials  

Hydrolysis lignin (HL) used in this study was kindly provided by FPInnovations and was 

initially insoluble in any common organic solvents like ethanol, methanol or acetone etc.  

Lignocellulosic biomass from any type of plant biomass that is composed of cellulose, 

hemicellulose and lignin, typically in amounts of 30-55 wt.%, cellulose; 15-35 wt.%, 

hemicellulose; and 5-31 wt.%, lignin, was used. The novel bio-conversion process used 

(Yuan et al., 2012) comprises of low- pressure mechanical refining to disintegrate 

biomass feedstock, hemicellulose extraction, enzymatic hydrolysis, sugar/lignin 

separation, and fermentation. After hemicellulose extraction and a subsequent hydrolysis, 
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the remaining substrate (solid) residue contains a high percentage of lignin which was 

being recovered and further purified to produce high-quality lignin products. Compared 

to traditional Kraft lignin and steam-explosion lignin, the high-quality sulfur free lignin 

produced from this invention has little degradation. Therefore, its molecular weight was 

unpredictable by using GPC-UV, at least >20,000 g/mol. The pH value of the original HL 

is neutral. The chemical composition of the raw HL (Yuan et al., 2012) is: 56.7 wt.% 

lignin, 29.8 wt.% carbohydrates, 1.2 wt.% ash and 12.3 wt.% others, with elemental 

composition (on dry basis) of 62.8 wt.% carbon, 6.1 wt.% hydrogen, 4.0 wt.% nitrogen 

and 27.1 wt.% others (oxygen plus ash). The other chemicals used in the study included 

NaOH, H2SO4, acetone, pyridine, acetic anhydride, dibromomethane and ethanol, all 

reagent grade chemicals from Sigma-Aldrich etc., and used without further purification 

or treatment. 

6.2.2 Depolymerization of hydrolysis lignin 

The depolymerization of hydrolysis lignin (HL) was carried out in 100 mL Parr autoclave 

reactor, equipped with a pressure gauge, thermocouple, stirrer, gas line and sampling line. 

In a typical run, the reactor was charged with 10 g HL, 0.2-1.0 g of catalyst (NaOH 2-10 

wt.% or H2SO4 2 wt.% of the HL substrate), and ~40 mL of solvent (water or 50/50 (v/v) 

water-ethanol mixture). The reactor was sealed, purged with nitrogen three times and 

finally pressurized to 2000 kPa with N2 to prevent the reactive material from boiling in 

the course of heating process. The reactor was heated under a fixed stirring rate (290 

rpm) and allowed to run over a pre-specified length of time after reaching the required 

temperature i.e. 250 oC. After the reaction time elapsed (1 h), the reactor was 

immediately quenched with a water bath to stop further reactions. Once the reactor was 

cooled down to room temperature, the gaseous products inside the reactor were collected 

and analyzed by GC-TCD. The total gas yields were negligibly low (<1 wt.%) in all tests 

because of low reaction temperature and mainly contained (H2, CO, CO2, CH4 and C2-

C3). The reaction mixture was then poured into a beaker, and the reactor was thoroughly 

rinsed with acetone in case of all experiments except where NaOH was used as a catalyst. 

When NaOH was employed as a catalyst, the reaction products were transferred into a 

beaker with the help of spatula and 5 mL of water, followed by acidification of sample 
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using sulfuric acid, sonication and then dissolving in acetone. The combined reaction 

mixture was filtered through a Buchener funnel. The obtained solid residues (SRs) were 

dried with filter paper at 105 oC in an oven, and were weighed to obtain the yield of solid 

residues (SRs). The acetone soluble filtrate was transferred to a pre-weighed Erlenmeyer 

flask to remove acetone, ethanol and water with a rotary evaporator at 45-60 oC under 

reduced pressure to obtain the depolymerized HL (DHL) products. The yield of DHL 

products was calculated based on the dry mass of input HL. Each experiment was 

repeated 2-3 to ensure that the maximum experimental errors in the DHL yields be within 

± 5%. 

6.2.3 Product characterization 

Original HL and the depolymerized HL (DHL) products were analyzed by Fourier 

Transform Infrared Spectroscopy (FTIR) for functionality changes. The molecular 

weights of DHLs were measured with a Waters Breeze GPC–UV (gel permeation 

chromatography–high performance liquid chromatography) instrument (1525 binary 

pump, UV detector at 270 nm; Waters Styrylgel HR1 column at a column temperature of 

40 oC) using THF as the eluent at a flow rate of 1 ml/min with linear polystyrene 

standards for the molecular weight calibration curve. Proton nuclear magnetic resonance 

(1H NMR) spectra for DHLs were acquired at 25 oC using a Varian Inova 600 NMR 

spectrometer equipped with a Varian 5mm triple-resonance indirect-detection HCX 

probe. A total of 16-32 scans were accumulated using a 2s recycle delay, 3.6s acquisition 

time, a 45-degree tip angle (pw =4.8 us), and a spectral width from -2 ppm to 14 ppm (sw 

=9000.9 Hz). Quantitative 1H NMR spectra analysis was realized using acetylated 

samples of the HL or DHL. Briefly, 1 g of dried HL (or DHL) was dissolved in a 1:1 

(v/v) mixture of pyridine (5 mL) and acetic anhydride (5 mL) in a vial followed by 

stirring for 24 to 48 hr. The well-stirred mixture was then transferred into a beaker 

containing 100 mL of ice-cooled 2 wt.% HCl solution. The resulting precipitates of 

acetylated samples were washed with distilled water to pH ≈ 7. The samples were then 

dried at 50 oC under vacuum for 24 hr to remove residual water before further utilization. 

Dibromomethane (CH2Br2) was used as an internal standard and its characteristic peak is 

at 4.9 ppm. For determining hydroxyl number through 1H-NMR, the samples were 
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prepared by first weighing 30 mg of the acetylated KL or DL and 15 mg of internal 

standard in a vial and then the sample was transferred into a 5 mm NMR tube via a 

transfer pipette using d-chloroform (≈1000-1500 mg) for the subsequent NMR analysis. 

Gas samples were analyzed via GC-TCD. GC-MS analysis was conducted with an 

Agilent 7890B GC coupled a 5977A MSD using 30 m × 0.5 mm × 0.25 µm DB-5 

columns with temperature programming as follows: a 1 min hold at an initial temperature 

of 50 oC followed by a 30 oC min-1 ramp to the final temperature of 280 oC with 1 min 

hold. The elemental analysis of DHL and SR’s was performed using a Thermo Fischer 

Flash EA 1112 series CHNS-O elemental analyzer. The elemental analysis results were 

used to check the carbon balance for some typical runs. 

6.3 Results and discussions  

6.3.1 Effects of solvent type on non-catalytic HL depolymerization 

Depolymerization experiments of HL were conducted employing either single solvent 

(water) or mixture of water-ethanol at 1:1 (v/v), to investigate their effects on the yield of 

products (DHL and SR) and Mw of DHL products. Table 6-1 shows that using water alone 

depolymerization of HL resulted in ~68 wt.% yield of DHL and ~5 wt.% yield of SR. 

The depolymerization of HL leads to DHL product of a low Mw ~2030 g/mole. The 

obtained low Mw DHL showed good solubility in THF and acetone at room temperature. 

Hot-compressed water was demonstrated to be an effective solvent for hydrothermal 

liquefaction of biomass (Karagöz et al., 2005). The high activity of hot-compressed water 

for depolymerizing/liquefying lignin in this study could be ascribed to the unique 

properties of hot-compressed water such as lower dielectric constant, fewer and weaker 

hydrogen bonds, a higher isothermal compressibility, and an enhanced solubility for 

organic compounds than ambient liquid water (Akiya and Savage, 2002). Moreover, hot-

compressed water has been found very effective for promoting ionic, polar non-ionic and 

free-radical reactions, which make it a promising reaction medium for biomass direct 

liquefaction. 

 

When water-ethanol mixture was employed as a solvent for HL depolymerization the 

yield of DHL reached up to 70 wt.%, although the SR yield was increased to ~10 wt.% 
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which could be attributed to the presence of organic solvent (ethanol) in the reaction 

mixture which is less effective for cellulose hydrolysis compared with water alone. The 

SRs (acetone insoluble phase) are mainly comprised of residual cellulose and the sugar 

derivatives along with some char, where the char could be resulted from the cross-linking 

reaction between carbon-carbon double bonds (C=C) which lead to the formation of a 

highly cross-linked insoluble structure (Mahmood et al., 2013). The presence of residual 

cellulose in the SRs was confirmed previously by Xu et al. (2012).  

 

Interestingly, the Mw of DHL was reduced to ~1000 g/mole when employing water-

ethanol as a solvent for the HL de-polymerization. The sub/supercritical ethanol-water 

could acts as a weak acid media therefore, the liquefaction reaction could be considered 

as an acid-catalyzed process (Chen et al., 2012). Where, water still acts as a nucleophile 

and reacted with some active centers in the proton-lignin (Li et al., 2009). A mechanism 

was proposed in earlier literature that (Wang et al., 2012; Yuan et al., 2007) ethanol had  

hydrogen-donor capability to stabilize the intermediates generated and thus increased the 

DHL product yield. It was expected that some low-boiling point compounds could be 

generated in the process, but they might be removed during the rotary evaporation. 

 

Table 6-1 Yields of products (DHL and SRs) and Mw of DHL (Other reaction conditions: 

250 oC, 1h, water-EtOH ratio 50/50 (v/v), substrate (HL) concentration ~ 20% (w/v) and 

initial reaction system pressure ~ 2000 kPa) 

HL 

(g) 

H2SO4 

(g) 

NaOH 

(g) 

H2O 

(mL) 

EtOH 

 (mL) 

DHL yield 

(wt.%) 

SR’s yield 

(wt.%) 

Mw                    Mn 

(g/mole) 

PDI 

10 - - 40.0 - 68.1±1.0 4.8±0.5 2030 223 9.1 

10 - - 20.0 20.0 70.5±0.5 9.8±0.2 1000 500 2.0 

10 0.20 - 40.0 - 32.8±1.0 39.4±0.5 1110 236 4.7 

10 0.20 - 20.0 20.0 75.2±0.2 1.8±0.3 1660 259 6.4 

10 - 0.50 39.5 - No depolymerization of HL was observed 
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10 - 1.00 39.0 - 55.6±1.0 30.7±1.0 850 300 2.8 

10 - 0.50 20.0 20.0 66.5±0.5 20.9±1.0 4710 325 14.5 

 

6.3.2 Effects of alkaline catalyst on HL depolymerization 

Surprisingly, when NaOH was employed as a catalyst at lower loading (0.5 wt.%, 2 wt.% 

and 5 wt.%), almost no depolymerization of HL was observed in water solvent. The 

reason could be on one side the slightly alkaline conditions would suppress the cellulose 

hydrolysis, and on the other side, the pH level is not high enough for catalyzing lignin 

hydrolytic degradation. As is well known, depolymerization of cellulose is readily liable 

to acid and lignin to alkali (Mészáros et al., 2004; Knill and Kennedy, 2003). Base-

catalyzed liquefaction/depolymerization usually requires higher liquefaction temperatures 

(ca. 250 oC) to achieve liquefaction efficiencies comparable to those obtained with acid 

catalysts. Under weak alkaline conditions, the reaction medium can change gradually 

from alkaline to neutral or acidic. The carboxylic acids produced by lignin 

depolymerization reactions could neutralize the input base and the aqueous medium 

becomes neutral, thus retarding the de-polymerization process (Yin and Tan, 2012). Base 

catalyzed liquefaction processes although have the advantage of causing less corrosion to 

metal equipment used in the liquefaction process, when compared to acid catalyzed 

liquefaction, there are not much work was reported on base-catalyzed liquefaction of 

biomass (Hu et al., 2014). The composition of the alkali-catalyzed HL degradation 

products would be influenced by several reaction parameters, e.g. temperature and the 

nature and concentration of the alkali, etc.  

 

Depolymerization of HL was also carried with increased loading of NaOH (10%, w/w, of 

the lignin substrate), and interestingly, efficient depolymerization of HL was realized, 

leading to  55.6 wt.% yield of DHL although accompanied with a high SR yield of ~30.7 

wt.%. More interestingly, however, the Mw of the DHL obtained was very low (850 

g/mole). The final pH of the DHL solution was 7.18 which proved that the reaction 

occurred under an alkaline condition rather than a neutral condition. Similar results were 
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observed by Xu et al. (2012) in liquefaction of southern pine sawdust, where SR yield 

was above 80 wt.% at 2.5 wt.% NaOH loading. 

 

Although catalysts are important, the importance of liquefaction solvent cannot be 

ignored as it plays a paramount role in dissolving the product (Hu et al., 2014). In 

general, low molecular weight alcohols provide favorable permeability and fluidity at 

higher temperatures, which is beneficial for the conversion of lignocellulosic biomass 

(Xu et al., 2012). Also, Cheng et al. (2010) showed that water-ethanol mixture was a very 

effective solvent for the liquefaction of woody biomass. Therefore, depolymerization of 

HL was also carried out in water-ethanol co-solvent mixture with NaOH as a catalyst (5 

wt.% of the HL substrate). The yield of the DHL was ~66.6 wt.% with ~21 wt.% yield of 

SR (as provided in Table 6-1). However, the Mw of DHL was very high ~4710 g/mole. 

The reason could be the unavoidable repolymerization/condensation due to acidic 

medium (at low NaOH loading) (Yin et al., 2011). Bhaskar et al. (2008) and Karagöz et 

al. (2006) studied alkaline hydrothermal conversion of different wood chips to bio-oil and 

found that bio-oil yield increased with increasing the alkalinity of the aqueous solution. 

Where, reduced bio-oil yield with decreasing alkalinity was also reported by other 

researchers (Minowa et al., 1994). Moreover, the initial alkalinity of the reaction medium 

may also affect the reaction pathways. The final pH values of less than 7 were reported 

after alkaline hydrothermal conversion of biomass. This indicates that alkaline 

hydrothermal conversion may involve not only alkaline pathways, but also acidic 

pathway under certain conditions. The decrease of pH during alkaline hydrothermal 

conversion was mainly caused by the formation of carboxylic acids from biomass such as 

lactic acid, acetic acid and formic acid, neutralizing the alkali compound loaded if weak 

alkaline solutions were used (Yin et al., 2011). When the amount of carboxylic acids in 

the products exceeded that of the input alkalis, the reaction media switched from being 

alkaline to acidic, promoting the condensation and repolymerization of the DHL products 

or intermediates, as evidenced by the very large Mw of DHL (~4710 g/mole). 
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6.3.3 Effects of acidic catalyst on HL depolymerization 

The presence of cellulose in biomasses is a big barrier/bottleneck that needs to be tackled 

for lignin depolymerization (Zhou et al., 2011; Zhang, 2013). Acidic catalysts are well 

known to be more effective for hydrolysis of cellulose. Sulfuric acid (H2SO4) has been 

the most frequently used catalyst due to its high catalytic activity combined with lower 

corrosion rates than other acids. Therefore H2SO4 was used in the present study as well 

for hydrolytic depolymerization of HL. In fact, for most lignocellulosic biomass 

materials, H2SO4 loadings of around 2-4 wt.% was believed to provide a good balance 

between high liquefaction efficiency and effective retardation of the detrimental 

recondensation reactions forming high Mw liquid products or char (Hu et al., 2014). 

  

Depolymerization of HL was carried employing water alone as a solvent at 250 oC for 1 h 

under acidic conditions using 2 wt.% H2SO4 based on the weight of HL substrate. The 

yield of DHL was ~32.8 wt.%, accompanied by a markedly increased SR yield of 39.36 

wt.% (as shown in Table 6-1). The DHL yield is much lower when compared with that of 

HL depolymerization when employing water alone as a solvent under neutral condition, 

i.e., 68 wt.%. The Mw of DHL resulted from acidic depolymerization of HL employing 

water as a mono-solvent was ~1100 g/mole, much lower than that (2030 g/mole) of DHL 

obtained in the neutral medium (Table 6-1). The lower molecular weight could be 

attributed to the acid-catalyzed cleavage of alkyl-aryl ether linkages in lignin, as well as 

the acid-catalyzed breakage of the1,4/-β-glycosidic bonds in cellulose (Xu et al., 2012). 

 

HL was also depolymerized employing water-ethanol mixture as a solvent with 2 wt.% 

H2SO4 as a catalyst. The results, as given in Table 6-1, showed that the yield of DHL was 

increased to ~75.2 wt.% with the markedly low yield of SR (~1.83 wt.%). This result 

could be ascribed to the enhanced solubilization of depolymerized products of lignin in 

ethanol, and the catalyzed degradation of cellulose. This demonstrates that the type of 

solvent strongly determine the effects of a catalyst on biomass hydrothermal liquefaction 

(Lin et al., 2009). As expected, the acidic medium resulted in the slightly increased Mw of 

DHL to ~1660 g/mole, when compared with that (~ 1000 g/mole) from the un-catalyzed 

HL depolymerization in ethanol-water mixture.  
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Hence with respect to both yield and Mw of the DHL, the best conditions for the 

depolymerization of HL appeared to be achieved employing water-ethanol co-solvent 

mixture without any catalyst, leading to ~70.5 wt.% yield of DHL with Mw of ~1000 

g/mole and ~9.83 wt.% yield of SR at 250 oC for 1 h with 20% (w/v) substrate (HL) 

concentration.   

6.3.4 Characterization of the depolymerized HL products 

6.3.4.1 FTIR 

The FTIR spectra of the original HL and DHL (at the best selected operational reaction 

condition) are shown in Figure 6-1. Both have typical broad hydroxyl group absorption 

between 3200-3550 cm-1, attributed to the combination and overlap of aliphatic and 

phenolic O-H stretching from the phenolic compounds as well as from the moisture 

inevitably contained in these samples (Cheng et al., 2010). The C-O absorption of 

aliphatic alcohols at 1000-1100 cm-1 is weaker in the DHL than that in the original HL, 

suggesting reduced amount of aliphatic alcohols in the DHL. The intensities related to 

aromatics at 1400-1700 cm-1 remain almost the same in all spectra, suggesting that the 

liquefaction processes did not vary the aromaticity significantly. The peaks between 1200 

and 1300 cm-1 were attributed to the stretching vibrations of C-O connecting to aromatic 

ring, or C-O of acids and esters stretching. It shall be noted that the DHL is a very 

complex mixture, and its aromatic structures could originated from both 

cellulose/hemicellulose through secondary reactions of carbohydrates and the phenolic 

structure from lignin  (Cheng et al. 2010). From Cheng et al. (2010), no big difference in 

the FTIR spectra is expected for liquefied products produced using the different solvents 

i.e. water, ethanol (100%) or water-ethanol mixtures.  
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Figure 6-1 FTIR spectra of the original HL and the DHL obtained at the best operating 

conditions 

6.3.4.2 GC-MS 

Table 6-2 presents the volatile compounds identified by GC-MS in the obtained DHL 

from the depolymerization of HL in water-ethanol mixture at 250 oC for 1 h with 

substrate (HL) concentration of 20% (w/v). The relative area percent of TIC (total ion 

current) for each compound and the total is shown in Table 6-2. It should be noted that 

the area percent values that are presented here show only the volatile portion of the DHL. 

As shown in the Table 6-2, the detectable compounds are mainly phenolic compounds, 

various types of esters and ethers, and substituted aldehydes such as benzaldehyde. 

Table 6-2 GC-MS analysis of DHL obtained from HL depolymerization at the best 

operating conditions 

Peak 

number 

Retention 

time 

(min) 

Relative 

composition by 

percent area 

Compound name 

1 - -a - 

2 13.0615 17.1308 Phenol, 2,6-dimethoxy- 
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3 13.6532 5.0582 Undecanoic acid, 10-methyl-, methyl ester 

4 14.3212 8.3642 Dodecanoic acid 

5 14.5821 11.4956 Dodecanoic acid, ethyl ester 

6 15.4091 6.606 Hydroquinone mono-trimethylsilyl ether 

7 16.497 8.4224 2,4-Hexadienedioic acid, 3-methyl-4-propyl-, dimethyl ester 

8 17.2668 5.0477 Tetradecanoic acid, ethyl ester 

9 18.1639 5.6987 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 

10 18.3738 14.8142 Benzaldehyde, 4-hydroxy-3,5-dimethoxy- 

11 19.748 7.0917 Hexadecanoic acid, ethyl ester 

Total area (%) 89.73  
a: Not including the small peaks with an area less than 2% of the total area. 

6.3.4.3 1H NMR 

As most of the lignin applications are based on phenolic and aliphatic hydroxyl groups, 

quantitative 1H NMR analysis was conducted to measure the hydroxyl number of DHL 

using its acetylated sample (the acetylation was performed to improve their solubility in 

d- chloroform).1H NMR spectra of the acetylated DHL produced at the best operating 

conditions (250 oC for 1 h with substrate concentration of 20% (w/v), employing water-

ethanol mixture) is shown in Figure 6-2.1H NMR spectra of acetylated DHL showed 

strong signals at 1.6-2.1 ppm and 2.1-2.6 ppm for aliphatic acetates and phenolic acetates 

respectively. Aliphatic and phenolic acetate protons in the acetylated samples actually 

represent aliphatic and phenolic hydroxyls in the original samples prior to acetylation. 

Quantification of aliphatic and phenolic hydroxyls was made by peak integration in 

comparison of dibromomethane internal standard. The contents of aliphatic and phenolic 

hydroxyls in the lignin are presented by hydroxyl numbers as described in Mahmood et 

al. (2013). The results are given in Table 6-3.The produced DHL has an aliphatic 

hydroxyl number ~ 227.1 mgKOH/g (total hydroxyl number of ~442.0 mgKOH/g) which 

makes it suitable for the preparation of rigid PU foams. Also DHL showed phenolic 

hydroxyl number ~ 215 mgKOH/g, making DHL also a potential candidate for phenolic 

resins/foams and epoxy resins as well.  
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Figure 6-2 1H NMR spectra of acetylated DHL 

 

Table 6-3 Relative signals of 1H NMR spectra signals of aliphatic/phenolic acetates in 

acetylated DHL and hydroxyl numbers of DHL 

Internal 

standard 

(4.9 ppm) 

Aliphatic 

acetate 

(1.6-2.1 ppm) 

Phenolic 

acetate 

(2.1-2.5 ppm) 

OHAliphatic 

(mgKOH/g) 

OHPhenolic 

(mgKOH/g) 

OHTotal 

(mgKOH/g) 

1.0000 0.9033 0.8539 227.1 215.0 442.0 

 

6.3.4.4 Carbon balance and elemental analysis 

Carbon balance was performed based on the elemental composition analysis for the DHL 

and SR samples obtained from the best operating condition, i.e., 250 oC for 1 h with 20% 

HL substrate concentration in water-ethanol 50/50 (v/v) mixture. It should be noted that, 
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in this work, the % carbon recovery in the gas phase was not included because of the 

negligibly low yield (<1%) of the gas products. The carbon recovery was calculated 

based on the C contents in the DHL and SR products and their C content. As shown in 

the Table 6-4, the calculated results showed that the carbon recovery for the test was 

~86.5 wt.%, which is reasonable carbon balance considering the unavoidable errors in the 

experiments and products analysis and carbon loss in the products recovery. For example, 

the low-boiling point compounds formed from the HL depolymerization process was not 

recoverable as they would be lost in the rotary evaporation during DHL product recovery. 

 

Table 6-4 Elemental analysis of HL and DHL (at 250 oC for 1h with 20% substrate 

concentration in water-ethanol mixture) 

Sample Elemental composition (%, d.b)a Carbon recovery  

(%) C H N Othersb  

HL 62.0 6.0 4.0 28.0 - 

DHL 69.4 6.0 0.6 24.0 78.9 

SR 47.0 6.1 0.0 46.9 7.6 

Total     86.5 
a Dry basis; b Determined by difference 

 

6.4 Conclusions 

Hydrolytic depolymerization of hydrolysis lignin (HL) was carried out with or without 

catalyst (H2SO4 or NaOH) in water or water-ethanol mixture solvent at 250 oC for 1 h 

with 20% (w/v) HL substrate concentration. The results were compared in terms of DHL 

yield and Mw and SR yield. The comparative results implied that HL depolymerization 

pathways might be different under different conditions (depending on the solvent and 

catalyst employed). In view of the utilization of DHL for the preparation of polyurethane 

foams/resins, depolymerization of HL in water-ethanol mixture without catalyst appeared 

to be the best route, producing ~70.5 wt.% yield of DHL which has a low Mw (~1000 

g/mole) and a suitable aliphatic (227.1 mgKOH/g) and phenolic (215 mgKOH/g) 
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hydroxyl numbers.. The overall % carbon recovery for the test under the best operating 

conditions was approximately 87%. 
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Chapter 7  

7 Valorization of hydrolysis lignin for polyols and its direct 
incorporation in rigid polyurethane foams 

Abstract 

 The objectives of this study are to produce polyols through hydrothermal 

depolymerization of hydrolysis lignin (HL) –a by-product from pre-treatment processes 

in cellulosic ethanol plants, in 50/50 (v/v) water-ethanol mixture under N2 atmosphere at 

250 °C for 1h, and utilize the polyols in the preparation of rigid polyurethane (PU) foam. 

Bio-based PU (BPU) foam was prepared with 30% and 50% depolymerized HL (DHL) 

replacing PPG400 and sucrose polyols. The foam samples were analyzed in terms of their 

physical, mechanical and thermal characteristics for potential utilization as an insulation 

material. Foam samples prepared at 0%DHL from sucrose polyol were found to have 

lower density and thermal conductivity however; mechanical properties were inferior 

(1030 kPa) to the foam sample prepared from PPG400 & glycerol (compressive modulus 

~9199 kPa). The replacement of sucrose polyol with DHL both at 30% and 50% 

replacement ratio improved foam sample’s compressive modulus (~3313±25 kPa) and 

strengths (~216±31 kPa and 303±79 kPa at 10% and 20% deformations respectively) 

while maintaining lower thermal conductivities (0.036±0.001 W/mK). Substituting 

PPG400 with DHL in the foam however resulted in inferior mechanical properties and 

higher densities. 

Keywords: Hydrolysis lignin, hydrothermal liquefaction, depolymerization, polyols, 

polyurethane foam. 
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7.1 Introduction 

Polyurethane (PU) is an important polymer, and its annual market in North America is 

about 2.8 million tons (Yu et al., 2008). In the plastic industry, polyurethanes are one of 

the most useful polymers due to their versatile characteristics (Gu et al., 2013). Rigid 

polyurethane foams are mostly closed cell (more or less spherical in shape) foams and 

have glass transition temperature (Tg) well above room utilization temperature (Haboya et 

al., 2011). Their excellent insulation combined with good adhesion, high strength-to-

weight ratio and durability make them indispensable material in the construction industry. 

The most important commercial polyurethane products are foams commonly classified as 

either flexible or rigid depending on their mechanical performance and cross-link 

densities. Rigid polyurethane foams are widely used in building insulation and domestic 

appliances, due to their low density, superior insulation and mechanical properties.  

Polyurethanes are copolymers containing blocks of low molecular weight polyesters or 

polyethers covalently bonded by a urethane group (–NHCOO–). Depending on the 

chemical structure of polyols and isocyanates, as well as the isocyanate index and the 

foam density, the PU can be thermally stable in the range 200-300 oC (Verdolotti et al., 

2013). Polyurethane foams (PUFs) account for the largest market among polymer foams, 

estimated at nearly two billion kilograms in the US alone (Piszczyk et al., 2012). 

Currently, polyols such as polyethers and polyesters are mainly synthesized from 

petroleum resources (Andey et al., 2008). Due to the declining fossil resources and 

environmental issues, more attention has been paid on producing PUFs from bio-

renewable raw materials (Tan et al., 2011). Depending on the formulation, the reaction 

between isocyanate and polyols can regulate the properties of the material. The foaming 

is possible due to the in-situ generation of a foaming agent (CO2) or the vaporization of 

pre-added low boiling point chemical during the exothermal polymerization reaction, 

leading to the gas trapped in the crosslinked cellular structures. Depending on the 

amount, proportions and characteristics of the components, it is possible to obtain foams 

with different densities and cellular structures, and thus adjustable properties (Antunes et 

al., 2011).  
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Lignin is the world’s second most abundant plant polymer after cellulose, making up 25-

40 % of dry mass of wood and agricultural residuals. About 50 million tons of Kraft 

lignin (KL) is generated annually as a by-product in the pulp industry (Borges da Silva et 

al., 2009). There could also be large quantities of hydrolysis lignin (HL) produced as a 

by-product of hydrolysis of cellulose, if the many proposed projects for cellulosic sugar-

based chemicals or ethanol are realized. Different pulping processes produce different 

types of lignin with different chemical properties. HL is the solid residues from the 

enzymatic hydrolysis of woody biomass. It is composed mainly of lignin (55-57 wt.%), 

unreacted cellulose, and mono and oligosaccharides. HL has a very high molecular 

weight, which makes it insoluble in either water or any organic solvents.  

Lignin is an amorphous macromolecule of three phenyl-propanols i.e., p-hydroxyl-phenyl 

propanol, guaiacyl-propanol and syringyl-propanol. These phenyl-propanols are linked 

mainly by condensed linkages (e.g., 5-5 and β-1 linkages), and more dominantly by ether 

linkages (e.g., β-O-4 and α-O-4) between the three main lignin building blocks. 

Therefore, lignin could be potential bio-polyol feedstock to substitute for petroleum-

based polyols for the preparation of rigid panel insulation, however, the replacement ratio 

is generally less than 30% due to its low reactivity and low solubility in the reaction 

systems caused by its large molecular weight (Pan and Saddler, 2013; Li and Ragauskas, 

2012). The macromolecule of lignin can decompose/degrade into oligomeric and 

monomeric phenolic compounds via thermochemical technologies (such as pyrolysis, 

hydrothermal liquefaction, and hydrolysis) and some biological processes. Hydrolysis or 

depolymerization of hydrolysis lignin results in the reduction of molecular weight and 

steric hindrance and makes the hydroxyl groups, especially aliphatic hydroxyl groups, 

more accessible for the further urethane synthesis reactions. In addition, these treatments 

lead to an increase in hydroxyl number (OH number) of the resulting products, which are 

the most important properties of any polyol.     

The main goal of this work is to produce bio-polyols from HL with satisfactory Mw, yield 

and hydroxyl number to replace petroleum derived polyol (PPG400) and sucrose polyol 

(JEFFOL SD-361) for the preparation of rigid PU foam at high replacement ratios of 30% 

and 50%. 
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7.2 Experimental  

7.2.1 Materials 

The materials used in this study were hydrolysis lignin (HL) containing 55-57 wt.% 

lignin with the remainder being cellulose, carbohydrates and others. The HL was supplied 

by FPInnovations researchers (Yuan et al., 2012) who developed a patented fractionation 

process to produce sugars and HL from woody biomass. The other chemicals used were 

NaOH, acetone, pyridine, acetic anhydride, dibromomethane (DBM), ethanol, PPG400, 

glycerol, triethanolamine, triethylene diamine (TEDA), dibutyltin dilaurate, silicon oil, 

glycerol, etc. were all purchased from Sigma-Aldrich and used as received without 

further purification. Polymeric MDI and sucrose polyether polyol (JEFFOL SD-361) 

were kindly provided by Huntsman. Physical properties of chemicals are given in Table 

7-1. 

Table 7-1 Physical properties of the chemicals 

Polyols Functionality Hydroxyl 

value 

(mgKOH/g) 

Equivalent 

weight 

(g/mole) 

Function 

PPG 400 2 280.50 200.00 Petroleum polyol 

Glycerol 3 1829.35 30.68 Petroleum polyol 

JEFFOL SD-361 - 360.00 - Sucrose polyol 

Water 2 2000.00 - Chemical blowing agent 

Acetone - - - Physical blowing agent 

Poly(siloxane ether) - - - Surfactant for cell structure 

stabilization 

Triethylene diamine - - - Blowing catalyst 

Dibutyltin dilaurate - - - Gelation catalyst 

Triethanol amine 3 1128.11 - Co-catalyst 

PMDI 2.70 - 135.00 Isocyanate for foaming 

reaction 
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7.2.2 Hydrothermal depolymerization of HL 

The hydrothermal liquefaction of HL was carried out in a 500 mL Parr stirred autoclave 

reactor. In a typical run, the reactor was charged with 60 g of HL and 300 mL of equi-

volume (50/50) denatured ethanol-water co-solvent (i.e., substrate concentration ~ 20% 

(w/v)). The reactor was sealed, purged and subsequently pressurized to 2-3 MPa with N2. 

The reactor was heated up to 250 oC and then kept constant at this condition for one hour 

followed by immediate quenching with ice water to impede further reactions. The liquid 

product was completely rinsed from the reactor using acetone. Vacuum filtration was 

carried out to separate acetone soluble and insoluble (solid residues) products followed 

by vacuum rotary evaporation of the acetone soluble phase at 50 oC. The yield of 

liquefied HL (denoted as DHL) was 70±1wt.% and when free of solvent was in the form 

of a solid powder denoted as DHL/polyols. The liquefaction process also produced solid 

residues at a yield of 8 wt.%. 

7.2.3 Rigid polyurethane foam (RPUF) sample preparation 

RPUF samples with different formulations were prepared in 455 mL plastic cups through 

free rise one-shot foaming method at room temperature. In case of DHL based BPU 

foams, DHL was pre-dissolved in acetone before utilization in the foam preparation. A 

typical rigid PU foam formulation used a polyol (reference foam or partially replaced 

foams) combined with 7.5% (w/w) glycerol (a co-crosslinking agent in case of PPG400 

based foams). The reference foams were prepared from PPG400 & glycerol and sucrose 

polyol at 0% DHL. Additionally the formulation includes a physical blowing agent 

(acetone at 20% (w/w), a catalyst combination (mixture with equal amounts of dibutyltin 

diluarate and triethylene diamine at 2% (w/w)), surfactant at 2% (w/w) and water 2% 

(w/w). Blowing agents, catalysts and surfactant weight contents were determined with 

respect to total weight of polyols. PMDI was added at a NCO/OH ratio of 1.2 (fixed for 

all formulations). The polyols, surfactant agent, cross-linking agent, catalysts and 

chemical blowing agent were weighed in a cup and thoroughly mixed for 60 s. PMDI 

were then added to the mixture, and the mixture was stirred vigorously at 650 rpm for 12-

15 s and the sample was allowed to rise. The sample was then left for 48 h in the fume 

hood for curing before being sampled for analysis. All the samples were conditioned at 
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23 ± 2 oC and 50 ± 5% relative humidity for more than 24 h prior to the test for density 

and mechanical analysis. 

7.2.4 Analytical methods 

7.2.4.1 Characterization of depolymerized HL and foams 

The depolymerized HL (DHL) was analyzed by Fourier Transform Infrared Spectroscopy 

(FTIR) and its relative molecular weight was measured with a Waters Breeze GPC–

HPLC (gel permeation chromatography–high performance liquid chromatography) 

instrument (1525 binary pump, UV detector at 270 nm; Waters Styrylgel HR1 column at 

a column temperature of 40 oC) using THF as the eluent at a flow rate of 1 ml/min with 

linear polystyrene standards for the molecular weight calibration curve. The hydroxyl 

number of DHL was determined using quantitative analysis of 1H-NMR spectra using 

dibromomethane as an internal standard.  

Foam samples were also analyzed by FTIR. Apparent densities of the foam samples were 

determined according to ASTM D1622-08. . Mechanical properties of PUF samples were 

measured at ambient conditions with INSTRON Universal Testing Machine (UTM). 

Compressive modulus and compressive strengths at 10% and 20% deformation were 

investigated by compressing foam in the foam rise direction according to ASTM D 1621-

00. Glass transition temperature was determined using DSC (differential scanning 

calorimeter) under nitrogen flow (50-60 mL/min), heated at a heating rate of 10 oC/min 

from 40-250 oC. The water absorption of RPU foam samples was measured according to 

ASTM D 2842-01. Thermal conductivity of foam samples was measured using KD2 Pro 

Thermal properties analyzer with SH-1 dual needle. 

 

7.3 Results and discussions  

7.3.1 Depolymerized HL (DHL) 

Hydrothermal depolymerization was used to depolymerize HL to low molecular weight 

products in this study, to reduce molecular weight and steric hindrance of the resulting 
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DHL for its use as a polyol in the preparation of rigid PU foam. Depolymerization also 

increases lignin’s solubility in acetone which serves as a physical blowing agent. The 

main related characteristics of DHL as a polyol are given in Table 7-2.  

Table 7-2 Characteristics of DHL 

DHL’s yield 

(wt.%) 

SR yield 

(wt.%) 

Mw 

(g/mole) 

Aliphatic hydroxyl 

number (mgKOH/g) 

Total hydroxyl 

number (mgKOH/g) 

70.5 (±1) 8±1.0 ~1000 227.1 442 

 

The FTIR spectra of the original HL and DHL are shown in Figure 7-1. They all had the 

typical broad hydroxyl group’s absorption between 3200-3550 cm-1, attributed to the 

combination and overlap of aliphatic and aromatic O-H stretching from the phenolic 

compounds as well as from the moisture inevitably contained in these samples (Cheng et 

al., 2010). Figure 7-1 shows that the C-O absorption of aliphatic alcohol at 1060 cm-1 is 

weaker in the DHL than that of the original HL, probably because of the reduced amount 

of cellulose and hemicelluloses in the DHL. The intensities related to aromatics at 1500-

1600 cm-1 remain almost the same in all spectra, suggesting that the liquefaction 

processes did not change lignin aromaticity. The absorption peaks between 1230 cm-1and 

1260 cm-1 are attributed to the C-O stretching connecting to aromatic ring. 
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Figure 7-1 FTIR spectra of the HL (original) and depolymerized HL (DHL) 

 

7.3.2 Rigid PU and BPU foams  

The utilization of bio-based polyols to substitute for commercial polyols at different 

replacement ratios not only contributes towards overall mixed reactivity but also helps to 

provide more hard segments, which improves the rigidity of PU foam samples. PPG400, 

sucrose, and the DHL polyols provide aliphatic hydroxyl groups for urethane formation, 

where phenolic –OH groups of the DHL impart rigidity to the foam structure. PPG400 

has linear chain structure whereas sucrose polyols have branched structure. Therefore, in 

this study both polyols were used to prepare PU and Bio-based PU (BPU) foams, and 

then the properties of the foams were evaluated against the ratios of their replacement 

with the DHL. 

Figure 7-2 shows the FTIR spectra of the BPU foams with 50 wt.% replacement of 

PPG400 and sucrose polyol, respectively, by the DHL. In the spectra, residual or 

unreacted isocyanate group (NCO) can be identified at the band of 2253.6 cm-1. The inter 

N-H stretching which is in the PU hard segment region is identified at 3454.53 cm-1. 

1710 cm-1 (C=O stretching)) and 1408.84 cm-1 and 1098.30 cm-1 (C-N coupled, C-O 
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stretch) indicates the existence of the urethane linkage (Cinelli et al., 2013; Nurdjannah et 

al., 2013).  

 

 

Figure 7-2 FTIR spectra of BPU foams with 50 wt.% replacement of PPG400 and 

sucrose polyol respectively by DHL 

 

7.3.3 Rigid PU foam formulation using PPG400 and glycerol 

Rigid PU foams were prepared from the DHL by replacing 30 wt.% and 50 wt.% of 

PPG400. A reference foam sample was prepared using pure PPG400 & glycerol at 0 

wt.% DHL. The surface of foams prepared was very uniform with the DHL when 

compared with the reference foam. The cells of the foams appeared to be closed and the 

samples on curing did not shrink. The reference foam sample and foam prepared with 

50% replacement of PPG400 are shown in Figure 7-3. The reference foam was found to 

be more rigid when compared to bio-based foams at different replacement ratios due to 

the lower hydroxyl number of DHL causing lower cross-link density. 
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Figure 7-3 PU foams with 100% PPG400 and glycerol (left) and bio-PU foams with 50% 

replacement of PPG400 with DHL (right) 

 

The obtained foams were cured for atleast 24hours and then the samples were cut 

according to ASTM standards (ASTM D1622-08 and ASTM 1621-00) and analyzed for 

their physical and mechanical characteristics. Moreover, sample of the foams were 

vacuum dried overnight before DSC analysis to determine their glass transition 

temperatures. The characteristics of the obtained foams of PPG400 with 0-50 wt.% DHL 

are provided in Table 7-3. All the prepared foams either reference or BPU foams were 

rigid. 

Table 7-3 Physical, mechanical and thermal characteristics of the PPG400 & glycerol-

based PU foams 

Sample 

ID 

Density 

(kg/m3) 

Young’s 

modulus 

(kPa) 

Comp. 

strength  at 

10% 

deformation 

(kPa) 

Comp. 

strength at 

20% 

deformation 

(kPa) 

Max 

stress 

(kPa) 

Water 

absorption 

(wt.%) 

Dimensional 

stability on 

curing 

Tg 

(oC) 

K 

(W/mK) 

PPG400 58.0 9199.0 521.0 576.0 596.0 0.12 Yes ND1 0.045 

DHL 

(30%) 

55.6 181.0 160.3 153.7 158.3 0.15 Yes 138 0.038 

DHL 

(50%) 

99.0 110.0 90.2 93.0 97.0 0.20 Yes 146 0.039 

1
ND represents not determined. & K: Thermal conductivity 
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Table 7-3 shows that the density of reference foam was about 58 kg/m3, and decreased a 

little to 55.6 kg/m3 when 30 wt.% of the PPG400 was replaced with DHL. This was 

probably because the addition of DHL made the cellular structure of the foam less 

uniform and formed larger cells (bubbles) which reduced the mass per unit volume of the 

foam and thereby the density. However, further increasing DHL content to 50% resulted 

in a higher density, likely because an excess of DHL affected the uniformity of the cells 

and the part of DHL may be assembled together as granules, which reduced the void 

volume and increased density. The results are in good agreement with Pan and Saddler’s 

results (Pan and Saddler, 2013). They used Voranol 270 as a reference polyol and 

replaced it with lignin of Mw~2400 g/mole at ratios of lignin to polyol from 9-28 % 

(w/w). The density of pure polyurethane foam from Voranol 270 was about 116 kg/m3 

and reduced to 100 kg/m3 and 70 kg/m3 with an increasing ratio of lignin in PU foam 

from 9% (w/w) to 19% (w/w) respectively. However, with further increasing ratio of 

lignin in PU foam to 28% (w/w) density increased to 85 kg/m3 which they suspect was 

due to non-uniform dispersion of lignin and granule formation. 

It was also observed that the reference foam (with PPG400 & glycerol alone) has much 

higher compressive modulus and compressive strengths till 20% deformation of the foam 

sample when compared with the BPU foam samples which may be due to higher 

crosslinking density in the reference foam made from PPG400 & glycerol. The BPU 

foam sample at 50% replacement ratio has lower compressive strength than both the 

reference PU foam and the foam with 30% DHL replacement ratio. The reduced 

compressive strength at 50% replacement ratio could be due to the lesser accessibility of 

hydroxyl groups when compared to pure polyols which results in lower crosslinking 

density, or the introduction of DHL reduced the uniformity of the foam cellular structure, 

and the deficiency in cellular structure weakened the stability and strength of the foam 

structure (Pan and Saddler, 2013). The glass transition temperature of reference foam 

from PPG 400 & glycerol was not measured in this study however; it is measurable and is 

expected to be higher than 100 oC (Cinelli et al., 2013). The flexible/soft segments impart 

flexibility to foam, responsible for a lower glass transition temperature. Molecular weight 

of the soft segment also affects glass transition temperature of the foam specimens. As 
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the soft segment molecular weight increased, it was observed that the glass transition 

temperature was narrowed and decreased to a lower temperature (Ósickey et al., 2002). 

As shown in Table 3, the glass transition temperature of 30% BPU foam has a slightly 

lower Tg (138 °C) than that of the 50% BPU (Tg = 146 °C), implying that the former has 

more flexible segments as compared to the latter. Thermal conductivity of the BPU foams 

is lower (0.038-0.039 W/mK) than that of the reference foam (0.045 W/mK) and lies in 

the range needed for thermal insulating materials (BING, 2006). 

7.3.4 RPUF formulation using sucrose polyol 

Sucrose polyol, a commercial polyol, was also selected for the preparation of rigid PU 

foams. Since, sucrose polyols have a higher hydroxyl number than PPG400 with multiple 

short chain structure it was expected that the sucrose-based foams have sufficient 

crosslinking densities to provide stable foam structure especially in terms of the foams’ 

mechanical properties. The physical, mechanical and thermal characteristics of the 

sucrose polyol-based BPU foams with 30 wt.% and 50 wt.% polyol replacement, along 

with the reference foam sample (using sucrose polyol only), are compared in Table 7-4. 

Pictures of the PU foams with 100% sucrose polyol and the bio-PU foams with 50 wt.% 

replacement of sucrose polyol with DHL are illustrated in Figure 7-4. All the prepared 

foam samples were rigid. 

Table 7-4 Physical, mechanical and thermal characteristics of the sucrose polyol-based 

PU foams 

Sample 

ID 

Density 

(kg/m3) 

Young’s 

modulus 

(kPa) 

Comp. 

strength at 

10% 

deformation 

(kPa) 

Comp. 

strength hat 

20% 

deformation 

(kPa) 

Max 

stress 

(kPa) 

Water 

absorption 

(wt.%) 

Dimensional 

stability on 

curing 

Tg 

(oC) 

K 

(W/mK) 

Sucrose 

polyol 

30.1 1030.0 85.0 90.0 101.1 0.99 Yes ND
1 

0.044 

DHL 35.4 3338.0 185.0 224.0 388.0 0.29 Yes 178 0.035 
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(30%) 

DHL 

(50%) 

65.1 3288.0 247.0 382.0 388 - Yes 189 0.037 

1
ND represents not determined. 

K: Thermal conductivity 

 

 

Figure 7-4 Pictures of the PU foams with 100% sucrose polyol (left) and the bio-PU 

foams with 50 wt.% replacement of sucrose polyol with DHL (right) 

 

Table 7-4, shows that the density of reference foam is about 30.1 kg/m3, and the foam 

density increases with increasing replacement of sucrose polyol with DHL from 30 wt.% 

to 50 wt.%. The density of the foam is 35.4 kg/m3 and 65.1 kg/m3 for the 30% BPU foam 

and the 50% BPU foam, respectively. The higher density may be due to lesser void 

volume which leads to higher density of the resulting foams. As shown in Table 7-4, 

compressive strengths of the BPU foams at both 30% and 50% replacement ratios are 

higher than that of the reference foam. The reason could be the multiple short chain 

structure of sucrose polyol, leading to a lower crosslinking density and strength of the 

resulting foam. However, the introduction of DHL into the foam structure enhanced 

crosslinking may lead to higher mechanical strengths than the reference foam. 
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Unlike the PPG400 & glycerol-based PU foams (as shown in Table 7-3), the water 

absorption capacity of the sucrose polyol-based foam samples containing the DHL in 

structure was less than that the reference foam, because the DHL containing foams have 

higher density, therefore less free volume. As is well known, the PU insulating materials 

are largely characterized by their moisture resistance ability. Insulating materials made of 

rigid PU foams do not absorb moisture from the air due to their closed cell structure. 

However, for PU foams, moisture absorption at 2-7wt.% by volume was reported (Bing, 

2006). Glass transition temperature of the 30% sucrose polyol replaced BPU foam was as 

high as 178 oC and increased to 189 oC with the increasing replacement ratio to 50%. 

Thermal conductivity of the BPU foams prepared by the replacement of sucrose polyols 

was found to be slightly lower (0.035-0.037 W/mK), nearer to the thermal conductivity 

values of commercial foams (Bing, 2006), than that of the reference foam (0.044 W/mK) 

and PPG400 replaced foams, making them a good option for their utilization as potential 

insulation materials. 

Comparing the results presented in Tables 7-3 and 7-4, one can observe that the BPU 

foams prepared by replacing sucrose polyols with the DHL have superior mechanical 

characteristics than those prepared by replacing PPG400 with the DHL at the same 

replacement ratio. This result could be attributed to the presence of multifunctional short 

chain branched structure in sucrose polyol and the enhanced chemical crosslinking 

between sucrose polyol and MDI by the low Mw DHL with suitable aliphatic and 

phenolic –OH groups. Also the density and thermal conductivity of foams samples 

prepared by the replacement of sucrose polyol were lower than PPG400 replaced foams.  

 

7.4 Conclusions 

Hydrolysis lignin (HL) was efficiently depolymerized via hydrothermal depolymerization 

in 50% ethanol-water medium at 250 °C for 1h. The produced liquefied hydrolysis lignin 

(DHL) becomes soluble in acetone and tetrahydrofuran (THF) which makes it possible to 
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be employed as a renewable bio-polyol for the preparation of rigid polyurethane (PU) 

foams. The DHL has weighted-average molecular weight (Mw) of ~1000 g/mole and a 

hydroxyl number of ~227.1 mgKOH/g, suitable for application as a polyol for the 

preparation of PU foams. 

In this work DHL was employed to substitute petroleum-based polyol (PPG400 & 

glycerol) or sucrose polyol for the preparation of rigid polyurethane foams at two 

different replacement ratios (30 wt.% and 50 wt.%), and the prepared foams were 

characterized in terms of their physical, mechanical and thermal properties for potential 

utilization as an insulation material. It was observed on comparing the reference foams 

that at 0% DHL, sucrose polyol derived foams have lower density and thermal 

conductivity than PPG400 & glycerol derived foams however, mechanical properties 

were inferior (compressive modulus ~1030 kPa) to foam sample prepared from PPG400 

& glycerol (compressive modulus ~9199 kPa). The replacement of sucrose polyol with 

DHL both at 30% and 50% replacement ratio improved foam sample’s compressive 

modulus and strengths  while maintaining lower thermal conductivities and density of 

foam samples. On the other hand, replacement of PPG400 with DHL led to inferior 

mechanical characteristics of the foam and increased densities. 
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Chapter 8  

8 Hydrolytic depolymerization of hydrolysis lignin for the 
preparation of bio-based rigid polyurethane foam: 
Effects of process parameters  

Abstract 

Hydrolysis lignin (HL) was successfully depolymerized employing 50/50 (v/v) water-

ethanol mixture to low weight-average molecular weight (Mw) depolymerized HL (DHL) 

of moderately high hydroxyl number and yield. The DHL was then used in the 

preparation of rigid polyurethane foam (RPUF) at high bio-content loading (50-70 wt.%). 

The effects of process parameters including reaction temperature, reaction time and HL 

concentration on the depolymerization of HL in water-ethanol mixture were investigated. 

The obtained depolymerized HLs (DHLs) were characterized with GPC-UV, FTIR and 
1H NMR. The best operating conditions appeared to be at 250 oC, 1 h with 20% (w/v) HL 

concentration, leading to ~70 wt.% yield of DHL (Mw ≈1000 g/mole and total hydroxyl 

number ≈442 mgKOH/g) and solid residues ~8 wt.%. The DHL, although in solid form, 

had a suitable hydroxyl number, and was further derivatized into a liquid polyol via 

oxypropylation to produce a polyol feedstock for the preparation of bio-based rigid 

polyurethane (BRPU) foams with 50-70 wt.% bio-contents. All BRPU foams were 

characterized and compared in terms of their physical, mechanical and thermal 

properties. All BRPU foams exhibit good compression strengths, compared with the 

reference foam and at a fixed formulation recipe showed the following sequence for 

increasing compression modulus: sucrose polyol reference foam (2695.0 kPa) 

<DHL50PO50 (9202.0 kPa) <DHL60PO40 (19847.0 kPa) <DHL70PO30 (21288.0 kPa). 

For all BRPU foams, the thermal conductivity was low (0.030±0.001 W/mK) and did not 

vary much with increased bio-contents, making them suitable for use as an insulation 

material. The BRPU foams were thermally stable up to approximately 200 oC.   

Key words: Hydrolysis lignin, depolymerization, oxypropylation, polyols, rigid 

polyurethane foam. 
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8.1 Introduction 

Polyurethanes (PUs) are a broad class of polymers having urethane (-NH-(C=O)-O-) 

moieties as a main linkage. They are known for their versatility, but one of the problems 

related to the production of PU nowadays is their dependence on petroleum-derived 

products (Cinelli et al., 2013). Since petroleum reserves are depleting and their prices are 

increasing, there had been increasing interest in exploring alternative renewable resources 

for the preparation of polyols (polymers having multiple hydroxyl groups in their 

structure) and PUs. Foam materials represent the most important commercial products 

made of PUs and are commonly classified as flexible, semi-rigid and rigid, depending on 

cell morphology (closed or open), mechanical characteristics and densities. Among 

foamed polymers used commercially, rigid polyurethane (RPU) foams have the lowest 

thermal conductivity (Kacperski and Spychaj, 1999). RPU foams have been widely 

utilized in appliances and the construction industry because of their excellent and unique 

combination of thermal insulation and mechanical properties. PU foams are available in a 

wide range of densities from approximately 30-200 kg/m3 (Demharter, 1998). However, 

for use as thermal insulation in buildings the required density of RPU foam lies in the 

range of 30 kg/m3 to 45 kg/m3 (BASF, 2010). 

In recent years effective utilization of biomass resources has gained growing attention 

(Cheng et al., 2010) as an alternative feedstock for bio-chemicals and bio-materials. The 

major advantages in utilizing biomass include: (1) biomass is renewable and available 

essentially for all countries in the world, (2) biomass contains negligible sulfur and other 

detrimental elements, and (3) biomass can be regarded as a carbon-neutral resource as the 

utilization of biomass does not result in a net increase in the CO2 concentration in the 

atmosphere (Tymchyshyn and Xu, 2010). Therefore, biomass is a promising alternative 

source for polyols production. Lignocellulosic biomass consists of three major 

components: cellulose, hemicelluloses and lignin. Cellulose comprises the largest fraction 

of the biomass ranging from 30-50% of the total (MacLellan, 2010). Polysaccharides, i.e., 

cellulose and different hemicelluloses, are the primary constituents of wood and wood 

pulps. Cellulose is a homo-polymer of D-glucose units, joined by β-(1-4) glycosidic 

linkages, whereas the hemicelluloses are heteroglycans containing several different types 
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of neutral (pentose and hexose) and acidic (uronic acid) monosaccharides as structural 

elements. Enzymatic hydrolysis of woods and pulps is an already established approach 

for the degradation of wood fibers. Delignification or acid pre-hydrolysis may be 

required in order for the enzymes to access the degradable cellulosic components in 

wood. During enzymatic hydrolysis the polysaccharides in the woody biomass are broken 

down by the enzymes and the reaction is not hindered by the presence of lignin or 

lipophilic extractives as long as the enzymes can come into contact with the 

polysaccharides. This results in the removal of most of the lignin and extractives from the 

fibers and enhances the swelling and porosity of the fibers. Consequently, the cellulose 

and hemicelluloses in chemical pulps can be effectively hydrolyzed to their 

monosaccharide components by enzymes. If enzymatic hydrolysis is performed without 

pretreatment, then some lignin remains in the hydrolyzed samples (Dahlman et al., 2000; 

Santos et al., 2012). The solid residues left after enzymatic hydrolysis of wood are known 

as hydrolysis lignin (HL) or hydrolyzed wood biomass and are composed of unreacted 

cellulose, mono and oligosaccharides, and lignin, with lignin comprising 50 to 55% 

(Yuan et al., 2012) of the mass. Conventionally lignin is utilized for producing heat via 

direct combustion. However, lignin can be a promising source of phenols, aromatics and 

polyols. Lignin is a natural, aromatic complex biopolymer of three phenyl-propanols, i.e., 

p-hydroxyl-phenyl propanol, guaiacyl-propanol and syringyl-propanol (Tejado et al., 

2007). The phenyl-propanols are linked mainly by two types of linkages: condensed 

linkages (e.g., 5-5 and β-1 linkages) and ether linkages (e.g., α-O-4 and β-O-4) (Chakar 

and Ragauskas, 2004). The ether linkages are reactive and, under proper reaction 

conditions, can be more easily cleaved than the more stable C-C bonds.    

The present paper focuses on the use of hydrolysis lignin (HL) – a by-product from pre-

treatment processes in cellulosic ethanol plants, for the preparation of polyols and their 

utilization in the preparation of RPU foams. In order to overcome the low reactivity of 

lignin, which comprises the largest fraction of HL, and to further increase the ratio of 

lignin/biomass substitution, an effective and promising approach may be the direct 

hydrothermal depolymerization of HL. Typical direct liquefaction processes include fast 

pyrolysis and solvolytic liquefaction. Solvolytic liquefaction is more advantageous than 

fast pyrolysis because it can be carried out in an organic solvents such as alcohols at 
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much lower temperatures (<300 oC) (Xu and Etcheverry 2003). Liquefaction processes 

dissociate the lignin and carbohydrates and partially cleave the primary and secondary 

ether bonds in both lignin and high molecular weight carbohydrates (cellulose and 

hemicellulose) into lower molecular compounds. As a result,  the solid lignocellulosic 

biomass is converted into a liquid OH-rich product which can potentially be used as a 

substitute for polyester or polyether polyol in the preparation of PU foams (Bhunia et al., 

1999). The process and products can be environmentally friendly as well (Breslin, 1993). 

In the literature, a number of studies have been reported for the hydrothermal 

depolymerization/ liquefaction of different biomasses employing water as a solvent (Qian 

et al., 2007; Sun et al., 2010; Minowa et al., 1998; Xu and Lad, 2008) and their utilization 

for PU foams preparation (Maldas et al., 1996). However, the yields of desired products 

were low, between 25-60 %. Higher yields were obtained using organic solvents or 

water/solvent mixtures. Cheng et al. (2010) reported that ethanol-water mixture (50/50, 

v/v) proved to be more effective solvent for the liquefaction of biomass as they showed 

synergistic effects on the direct depolymerization/liquefaction of biomass. They carried 

out direct liquefaction of white pine saw dust in a 50 wt.% ethanol-water medium and 

achieved approximately 66 wt.% bio-oil yield after 15 min reaction at 300 oC (Mw ≈1373 

g/mole) and used the resulting bio-oil as a substitute for phenol in the production of PF 

adhesive resins. Inspired by the above research work, the present work is attempted to 

depolymerize/liquefy HL using a water-ethanol co-solvent to obtain depolymerized HL 

(DHL) for the utilization in the preparation of PU foams. 

The major objectives of this work are; (1) depolymerization of HL employing a water-

ethanol co-solvent and investigating the effects of process parameters (reaction 

temperature, time and HL concentration) to find the best operating conditions; (2) 

oxypropylation of the DHL obtained at the best operating conditions; and (3) the 

preparation and characterization of BRPU foams at high percentages of bio-contents (50 

wt.% - 70 wt.%). To the author’s best knowledge, no systematic study of the successful 

depolymerization of HL and its effective utilization for the preparation of RPU foams at 

high percentage of bio-contents has been reported in the literature. 
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8.2 Materials and methods 

8.2.1 Materials  

The hydrolysis lignin (HL) used in this study was provided by FPInnovations (Yuan et 

al., 2012) and was insoluble in conventional organic solvents. Lignocellulosic biomass 

from any type of plant biomass that is composed of cellulose, hemicellulose and lignin, 

typically in amounts of 30-55 wt.%, cellulose; 15-35 wt.%, hemicellulose; and 5-31 

wt.%, lignin, was used. The novel bio-conversion process outlined by Yuan et al. (2012) 

comprises of low- pressure mechanical refining to disintegrate biomass feedstock, 

hemicellulose extraction, enzymatic hydrolysis, sugar/lignin separation, and 

fermentation. After hemicellulose extraction and a subsequent hydrolysis, the remaining 

substrate (solid) residue contains a high percentage of lignin which was being recovered 

and further purified to produce high-quality lignin products. Compared to traditional 

Kraft lignin and steam-explosion lignin, the high-quality sulfur free lignin produced from 

this invention has little degradation. The original HL was neutral. The chemical 

components of the raw hydrolysis lignin as well as its elemental compositions are 

presented in Table 8-1. The other chemicals used in the study were NaOH, acetone, 

pyridine, acetic anhydride, HCl, dibromomethane, ethanol, polymeric MDI, sucrose 

polyol (JEFFOL SD-361), triethanolamine, triethylene diamine (TEDA), stannous 

octoate, silicon oil, glycerol etc., All were reagent grade, purchased from Sigma-Aldrich, 

used as supplied. 

Table 8-1 Chemical and elemental composition (d.a.f) of hydrolysis lignin (HL) (Yuan et 

al., 2012) 

Component Mass fraction (%) 

Lignin % 56.7 

Carbonhydrates % 29.8 

Ash % 1.2 

Others, % 12.3 

Carbon, % 62.8 

Hydrogen, % 6.1 
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Nitrogen, % 4.0 

Others, % 28.3 

 

8.2.2 Depolymerization of hydrolysis lignin 

The depolymerization of HL was carried out in a 500 mL stainless-steel autoclave reactor 

equipped with a stirrer and a water-cooling coil. In a typical run, the reactor was loaded 

with 60 g of HL and 300 mL of denatured ethanol-water (50/50 v/v) co-solvent. The 

reactor was sealed, purged and was subsequently pressurized to 2 MPa with nitrogen to 

prevent the reactive material from boiling over the course of the heating process. The 

reactor was ramped up to the reaction temperature at 10 oC/min and kept at the desired 

temperature for 60 min before cooling. Once the reactor had cooled to room temperature, 

the negligible gaseous products were vented into the fume hood. The liquid products and 

solid residue (SR) were rinsed from the reactor with acetone, and the resulting suspension 

was filtered under vacuum through a pre-weighed Whatman No. 5 filter paper. The SR 

products and filter paper were dried at 105 oC for 24 h before weighing. The organic 

solvents in the filtrate were then removed by rotary evaporation under vacuum at 40-50 
oC. The yields of DHL and SR were calculated as the mass fraction of each product 

relative to the mass of the HL loaded into the reactor. Since the focus of this research was 

the DHL and due to the difficulty in analysis of the aqueous soluble products (a complex 

mixture of carboxylic acids, aldehydes, etc.); the aqueous products were not analyzed. 

For simplicity, the yield of Gas+Aq including pyrolytic water from the biomass was 

calculated by mass difference. Each experiment was performed twice or thrice to reduce 

the experimental error to ± 5%. Error bars have been reported based on the variation of 

result around their average values.  

8.2.3 Oxypropylation of DHL 

The DHL obtained at the best operating conditions, although in solid form, was used as a 

bio-polyol in this work after being further transformed into a liquid polyol by 

oxypropylation. The oxypropylated lignin polyol was then employed as a feedstock for 

the preparation of PU foam. Oxypropylation of DHL was carried out in a 100 mL Parr 
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reactor. In a typical run, 18.9 g of DHL, 21.21 g propylene oxide (PO), 2.31 g of 

anhydrous glycerol & KOH (%KOH in mixture was 11 wt.%) and 16.8 g of acetone. 

After all the ingredients were loaded, the reactor (under atmospheric pressure) was heated 

up to 150o C. Initially, pressure in the reactor increased to a maximum of 150 psig and 

then decreased to the original pressure ~14.7 psig (or 1.0 atm-g) after 2 h reaction, 

implying complete consumption of PO or completion of the reaction. After cooling the 

system to room temperature, the reactor contents were completely rinsed into a beaker 

using acetone followed by neutralization of the reaction mixture using sulfuric acid. The 

neutralized reaction mixture was then filtered through a Buchner funnel to separate the 

solid residues from the acetone soluble phase. The acetone soluble filtrate was transferred 

to a pre-weighed flask and the remove acetone and unreacted PO (if any) were removed 

by rotary evaporation at 60 oC. 

8.2.4 Rigid polyurethane (PU) foam preparation 

All of the foam samples were prepared in 455 mL plastic cups using a one pot method. 

Typically, the rigid PU foam formulation in this study includes a polyol combined with 

10% (w/w) glycerol (a co-crosslinking agent). The formulation also includes a physical 

blowing agent (acetone at 20% (w/w)), catalyst comprised of equal amounts of stannous 

octoate and triethylene diamine at 2% (w/w), surfactant at 2% (w/w) and water at 2% 

(w/w). For comparison, a reference foam was prepared using sucrose polyols at 0% DHL. 

The amounts of the blowing agent, catalyst, surfactant and water were determined with 

respect to the total weight of polyol used. PMDI was added at a NCO/OH ratio of 1:1. 

The foam preparation procedure used was comprised of the following steps: (1) the 

polyols, catalysts and blowing agents were all weighed into a cup and mixed at 550 rpm 

for 10-12 s to obtain a homogeneous mixture and (2) a predetermined mass of PMDI was 

then added to the cup and the mixture was stirred vigorously for another 12-15s. The 

mixture was then placed on a level surface in a fume hood and the foam was allowed to 

rise at ambient temperature (23±2 oC). All of the foam samples were left in the fume 

hood for 24-48 h for curing before the sample was collected for analysis. Foam 

shrinkage, structural uniformity, stability and cell appearance could be observed at this 

point. However, the foam samples were conditioned for a minimum of 24 h to a 
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maximum of 1 week prior to further characterization, , depending on requirements. In the 

synthesis of bio-based RPU (BRPU) foams at different bio-contents, sucrose polyol was 

not used and glycerol was kept at 10 wt.% based on the total weight of polyols used. 

8.2.5 Product characterization 

The relative molecular weights of the depolymerized HL (DHL) and oxypropylated DHL 

were measured with a Waters Breeze GPC–HPLC (gel permeation chromatography–high 

performance liquid chromatography) instrument (1525 binary pump, UV detector at 270 

nm; Waters Styrylgel HR1 column at a column temperature of 40 oC) using 

tetrahydrofuran (THF) as the eluent at a flow rate of 1 mL/min using linear polystyrene 

standards. The functional groups of the HL, DHL and oxypropylated DHLs were 

analyzed by Fourier Transform Infrared Spectroscopy (FTIR). Proton nuclear magnetic 

resonance (1H-NMR) spectra for the DHL and oxypropylated DHLs were acquired at 

25oC using a Varian Inova 600 NMR spectrometer equipped with a Varian 5 mm triple-

resonance indirect-detection HCX probe. A total of 16-32 scans were accumulated using 

a 2 s recycle delay, 3.6 s acquisition time, a 45-degree tip angle (pw = 4.8 us), and a 

spectral width from -2 ppm to 14 ppm (sw =9000.9 Hz). Quantitative 1H-NMR analysis 

was realized using acetylated samples of DHL and oxypropylated DHL. Briefly, 1 g of 

dried sample was dissolved in a 1:1 (v/v) mixture of pyridine (5 mL) and acetic 

anhydride (5 mL) followed by stirring for 24 to 48 hr. The mixture was then transferred 

into a beaker containing 100 mL of ice-cooled 1 wt.% HCl solution. The resulting 

precipitates of the acetylated samples were washed with distilled water to pH ≈7. The 

samples were then dried at 105 oC for 24 hr to remove residual water prior to the 

quantitative 1H-NMR analysis. Dibromomethane (CH2Br2) was used as an internal 

standard with a characteristic peak is at 4.9 ppm. The hydroxyl number of the DHL and 

oxypropylated DHL were determined by 1H-NMR. The samples were prepared 

dissolving 30.0 mg of the acetylated DHL or oxypropylated DHL and 15.0 mg of the 

internal standard in d-chloroform (≈1000-1500 mg) then transferring the sample into a 5 

mm NMR tube via a transfer pipette for analysis. Hydroxyl numbers of the oxypropylated 

DHL samples were also measured as per ASTM D4274-99 using a Potentiometric 
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Titrator (Titroline 7000 Titrator). The viscosity of the oxypropylated DHL sample was 

measured by using BROOKFIELD CAP 2000+VISCOMETER at 80 oC. 

The apparent densities of foam samples were measured according to ASTM D1622-03. 

The mechanical properties of PUF samples were measured at ambient conditions on an 

ADMET Universal Testing Machine (Model SM-1000-38). Modulus of elasticity 

(Young’s modulus or compressive modulus) (initial linear slope of the stress-strain 

curve) and compressive strength at 10% deformation, were determined by performing the 

stress-strain tests according to ASTM D 1621-00. Thermal conductivities of the foam 

samples were measured using a KD2 PRO thermal properties analyzer with SH-1 dual 

needle sensor (1.3 mm diameter x 3 cm long, 6 mm spacing) capable of measuring 

thermal conductivity in the range of 0.02 to 2.00 W/mK. The specimen size used for 

thermal conductivity analysis was 40 mm x 40 mm x 20 mm. Thermal stability and 

thermal decomposition of the foams were measured using a Pyris
TM

 Diamond, Perkin–

Elmer Thermogravimetric analyzer (TGA), under a N2 and air flow (20 mL/min) 

respectively, from 30 oC to 800 oC at 10 oC/min. The glass transition temperature (Tg) of 

the foam samples was determined using a DSC (differential scanning calorimeter: Mettler 

Toledo DSC 1) under a N2 flow (50-60 mL/min) where the sample was heated at a 

heating rate of 10 oC/min from 50-350 oC. Morphology of the foams was observed by a 

Hitachi S-4500 field emission cross beam scanning electron microscope (SEM). After 

examination by SEM, selected locations on the foam surface were subjected to a cross-

sectional cut and the sample was coated with osmium, and imaged using a focused ion 

beam LEO (Zeiss, Thornwood, NY, USA) 1540XB SEM. 

8.3 Results and discussions  

8.3.1 Depolymerization of HL: Effects of process parameters 

8.3.1.1 Effects of reaction temperature  

Temperature is the most critical parameter for the liquefaction/depolymerization of 

lignocellulosic materials in a water/organic solvent. When biomass was heated in hot 

compressed water, solvolysis of hemicellulose and lignin begins to occur at 

temperature>190 oC, and all of the hemicellulose and much of the lignin is dissolved in 
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the water at 220 oC (Mok and Antal, Jr., 1992; Xu et al., 2008). The effects of reaction 

temperature (from 150 oC to 300 oC) on the depolymerization of HL employing a 50/50 

(v/v) water-ethanol mixture are illustrated in Figure 8-1. As seen in the Figure 8-1, and 

similar to the results observed by Cheng et al., (2010), increasing the reaction 

temperature from 150 oC to 250 oC increased yield of DHL from ~56 wt.% to ~70 wt.%, 

indicating the acceleration of depolymerization/liquefaction. However, contrary to the 

findings of Cheng et al., (2010), increasing the reaction temperature to 300 oC did not 

further increase the yield of desired product. Rather, the DHL yield decreases to ~66 

wt.%. The difference could be due to the difference in composition of HL as compared to  

white pine saw dust. The yield of solid residues (SR) was found to decrease steadily from 

~28 wt.% to ~3 wt.% with increasing reaction temperature.  

Increasing reaction temperature (from 150 oC to 250 oC) resulted in a decrease in the Mw 

of the DHL (from ≈1440 g/mole to ≈1000 g/mole. respectively). This decrease can be 

attributed to the increased availability of energy necessary to cleave the ether linkages 

present. Further increase in temperature to 300 oC, resulted in increased Mw. This increase 

may be due to increased repolymerization/condensation reactions at higher temperature. 

Depolymerization and repolymerization reaction occur concurrently during liquefaction. 

Initially, at lower temperature, depolymerization reactions predominate and lead to the 

formation of lower Mw products (Wang and Chen, 2007). However, as temperature 

increases, repolymerization/condensation reactions are gradually enhanced due to the 

increased concentration of intermediate products in the reaction system which may lead 

to increases Mw. The yield of SRs did not increase at 300 oC, indicating the absence of 

cross-linking reactions. The yield of gas was very low, therefore, for simplicity, Gas+Aq 

phase were combined as a single entity and their value was reported by difference. 

Aqueous (Aq) phase may comprise water produced during glycosidic linkage cleavage, 

glucose, xylose, aldehydes, acids and other monomers resulting from the complete 

hydrolysis of polysaccharides etc. The formation of gas during depolymerization reaction 

is due to the cleavage of the aliphatic propane chain and removal of ring substituents 

(Gosselink et al., 2012). Given these results, the best reaction temperature for the 

depolymerization of HL in water-ethanol co-solvent mixture with respect to both yield 

and Mw of the DHL products, appeared to be 250 oC. 
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Figure 8-1 Effects of reaction temperature on yield and Mw of DHL from HL 

depolymerization (Other reaction conditions: 60 min, 20% (w/v) substrate concentration, 

EtOH/water ratio of 1.0 and initial-system pressure: 2.0MPa) 

8.3.1.2 Effects of reaction time  

The experiments in this section were carried to examine the effects of reaction time on 

hydrolytic depolymerization of HL at 250 oC in (50/50, v/v) water-ethanol reaction 

mixture. The product (DHL and SR) yields and the Mw of DHL obtained from HL 

depolymerization after various reaction times (30-120 min) are illustrated in Figure 8-2.  

At 250 oC, increasing the reaction time from 30 min to 60 min increased the yield of 

DHL from ~60 wt.% to ~70 wt.% and was accompanied by a decrease in SR (from ~15.5 

wt.% to ~8 wt.%). Further increasing the reaction time to 120 min resulted in the lower 

yield of DHL (~57 wt.%) accompanied by an increase in SR (~16.0 wt.%). The increased 

SR indicates pronounced cross-linking reactions between the reaction intermediates. 

There was almost no change in the Mw of the DHL between 30 min and 60 min. However, 

prolonged reaction time resulted in a very slight increase in Mw, from 1000 g/mole to 
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1100 g/mole, which may be due to repolymerization/condensation reactions at 250°C. 

Thus, based on the yield and Mw of the DHL, 60 min appears to be the optimum reaction 

time.     

 

 

Figure 8-2 Effects of reaction time on yield and Mw of DHL (Other reaction conditions: 

250 oC, substrate concentration ~20% (w/v), and initial system pressure: 2MPa) 

8.3.1.3 Effects of HL substrate concentration 

Feedstock concentration is another important parameter in the hydrothermal liquefaction 

of biomass, as higher feedstock concentrations improve the economics of overall process 

(Pye, 1990). The effects of solvent to biomass ratio (HL substrate concentration) were 

investigated by conducting depolymerization runs for 60 min at 250 oC using water-EtOH 

mixture. The product (DHL and SR) yields and the Mw of DHL for different substrate 

concentrations (5% (w/v) to 30% (w/v)) are illustrated in Figure 8-3.  From Figure 8-3, it 

can be clearly seen that with the increase in HL concentration from 5% (w/v) to 20% 

(w/v) the yield of DHL increased from ~54 wt.% to ~70 wt.% and then decreased to ~46 

wt.% with a further increase in HL concentration to 30% (w/v). The opposite trend was 

observed for SR yield. The yield of SR decreased as HL concentration was increased to 

20% (w/v) but then increased as the HL concentration increased further. This increase 
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may be due to insufficient solvent to keep the reaction system homogeneous at higher 

concentrations. This situation would favor the occurrence of pronounced condensation 

and crosslinking reactions of intermediate products. The Mw of the DHL was found to 

increase significantly from 850 g/mole to 2250 g/mole as the HL concentration increased 

from 5% (w/v) to 30% (w/v). This could also be due to the promotion of 

repolymerization/condensation reactions. Figure 8-3 suggests that in order to obtain low 

Mw DHL products, lower HL concentrations (≤ 20% (w/v)) are preferred. However, for 

process efficiency and economics, it is always better to utilize as high a substrate 

concentration as possible. Although, lower substrate concentrations result in lower Mw, 

the product yields are also lower which would significantly increase the number of runs 

required to obtain a given amount of DHL product, thus increasing costs. Therefore, 

keeping both DHL product yield and Mw in mind, a 20% (w/v) substrate concentration 

was selected for further runs. 

 

 

Figure 8-3 Effects of HL concentration (w/v) on yield and Mw of DHL (Other reaction 

conditions: 250 oC, 60 min, and initial system pressure: 2MPa) 

Hence, with respect to both yield and Mw of the DHL product, the best operating 

conditions appear to be liquefaction at 250 oC, for 1 h with a 20% (w/v) HL 
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concentration, leading to ~70 wt.% yield of DHL (Mw ≈1000g/mole and total hydroxyl 

number ~442 mgKOH/g) with a SR yield ~8 wt.%.  

8.3.2 Oxypropylation of DHL 

DHL obtained at the best operating conditions (250 oC, 1 h, 20% (w/v) HL concentration 

in water-ethanol mixture (50/50, v/v)) was used for further experimentation. To obtain a 

large sample of DHL, a 16 L reactor was used and the products were characterized in 

terms of Mw, hydroxyl number and yields. The results were found similar to the ones 

obtained using the 100 mL reactor. Oxypropylation of DHL was carried at three levels of 

bio-contents i.e., 50 wt.%, 60 wt.% and 70 wt.%. Oxypropylated samples were analyzed 

in terms of their Mw, hydroxyl number and viscosity (Table 8-2). These samples were 

then further used for the preparation of RPU foams.  

Table 8-2 Characteristics of DHL and oxypropylated samples 

Sample ID 
Mw 

≈ (g/mole) 

Total Hydroxyl 

number (mgKOH/g) 

Viscosity at 

80 oC (Pa.s) 
State 

DHL 1000 442.0 - Solid powder 

DHL50PO50 1730 221.4 0.39 

Viscous Liquid DHL60PO40 1270 235.8 0.48 

DHL70PO30 1220 253.7 0.64 

 

FTIR spectra of sucrose polyol, original HL and DHL at the best reaction conditions 

along with oxypropylated DHLs at different bio-contents contents are shown in Figure 8-

4. The spectra are normalized to the intensity of the lignin aromatic ring vibration at 1600 

cm-1. In all of the spectra, the O-H stretching vibration at ~3450 cm-1 is easily seen (Li 

and J. Ragauskas, 2012). The oxypropylation and grafting of PO onto the lignin is 

evidenced by the following FTIR observations:(a) an increase in the bands at 2971-2870 

cm-1 attributed to the stretching of CH3, CH2 and CH aliphatic groups; (b) reduction in 

the intensity of the carbonyl peak at 1714 cm-1; (c) a marked increase of the absorption 

bands in the ether C-O stretching region (1000-1100 cm-1); and (d) an increase in the 

band at 1371 cm-1 confirming the introduction of CH3 groups (Cateto et al., 2009). 
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Figure 8-4 FTIR analysis of sucrose polyol, HL, DHL and oxypropylated DHLs 

 

To clearly view the difference in DHL structure before and after oxypropylation, 

quantitative analysis of 1H NMR spectra of acetylated DHL samples was conducted. 

Acetylation of samples was carried to improve their solubility in d- Chloroform. The 

signals associated with internal standard (Dibromomethane) are shown at 4.9 ppm. The 

signals associated with aliphatic and phenolic acetates are seen at 1.6-2.05 ppm and 2.1-

2.6 ppm, respectively. The aliphatic and phenolic acetate protons actually represent 

aliphatic and phenolic hydroxyls after acetylation. 1H NMR spectrum of acetylated DHL 

is shown in Figure 8-5, where its oxypropylated samples are shown in Figure 8-6 and 8-7 

representing acetylated samples of DHL50PO50 and DHL70PO30, respectively. It can be 

seen that after oxypropylation there were no phenolic groups left (Figure 8-6 and Figure 

8-7) when compared to DHL (Figure 8-5) which has both aliphatic and phenolic groups. 

The reason is that oxypropylation resulted in the transformation of the phenolic groups 

into aliphatic groups, a chain extension reaction. 
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Figure 8-5 1H NMR spectra of acetylated DHL 

 

 

Figure 8-6 1H NMR spectra of acetylated DHL50PO50 
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Figure 8-7 1H NMR spectra of acetylated DHL70PO30 

 

8.3.3 Rigid polyurethane foam (RPUF) from oxypropylated DHL 

Polyurethane synthesis is essentially the formation of urethane linkages [–NH-(C=O)-O-] 

by the reaction of polyols (-OH) and isocyanates (-NCO). However, linkages other than 

urethane bonds, such as allophanate bonds, which can arise from the reaction of excess 

diisocyanates with urethane groups, may also form. Moreover, isocyanate dimerization 

and trimerization reactions can also occur (Li and Ragauskas, 2012). Density is reported 

as the main property of RPU foams as it also affects mechanical properties of foam 

(Thirumal et al., 2008). Therefore, in this study BRPU foams were prepared with polyols 

containing 50-70 wt.% of oxypropylated DHL via two approaches; (1) under fixed 

percentage of physical blowing agent (20% (w/w)); and (2) under varying percentages of 

physical blowing agent (20-26% (w/w)) to keep the final density approximately the same.  

The density of BRPU foams prepared with polyols containing 50-70 wt.% oxypropylated 

DHL with a fixed percentage of physical blowing agent (20% (w/w) increased with 
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increasing bio-content (Table 8-3). Consequently, the compressive strength of BRPU 

foams was also found to increase. The reason for this trend could be that DHL70PO30 

has a structure containing multiple short chains when compared to DHL50PO50, which 

may leads to enhanced chemical cross-linking between the polyol and MDI by low Mw 

oxypropylated DHL, and, therefore, more highly cross-linked, denser foam with 

increased compressive modulus and strength was obtained. When BRPU foams were 

prepared with polyols containing 50 wt.% - 70 wt.% bio-contents and efforts were made 

to keep the final density of foam approximately the same to compare mechanical 

characteristics directly, more physical blowing agents was introduced in the foam’s 

formulations. The results are also shown in Table 8-3. It was a tedious task to control the 

foam density exactly; however, for the sake of comparison average foam density varied 

between 38.5-44.7 kg/m3. It can be seen from Table 8-3, that the density of the foams 

slightly decreased with increasing percentage of DHL in oxypropylated sample, which is 

mostly related to their morphological characteristics (larger and fewer cells) due to the 

increased amount of physical blowing agent. The SEM images of DHL50PO50, 

DHL60PO40 and DHL70PO30 at varying percentages of physical blowing agent are 

shown in Figure 8-8. It can be seen from Figure 8-8 that for BRPU foam prepared at 50 

wt.% bio-contents average cell size was ~115 μm. However; increasing bio-content 

percentage to 60 wt.% to 70 wt.% (and the associated increase in physical blowing agent) 

resulted in an increase in average cell size to ~418 μm to ~876 μm, respectively. 

Increased cell size means fewer cells, enclosing larger voids form within a given volume 

leading to decreased foam density and, consequently, decreased Young’s modulus and 

strength. Thus, foam morphology has a greater direct effect on foam strength than 

density. 

Table 8-3 Physical, mechanical and thermal properties of reference and BRPU foams 

Foam  ID Density 

(kg/m3) 

Compressive 

Modulus 

(kPa) 

Compressive strength at 

10% deformation 

(kPa) 

Sucrose reference foam 42.5±0.5 2695.0±100.0 182.0±45.0 

At fixed percentage of physical blowing agent (20%, w/w) 
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DHL50PO50 44.7(±2) 9202.0±100.0 385.0±25.0 

DHL60PO40 61.0(±2) 19847.0±75.0 1088.0±30.0 

DHL70PO30 64.5(±1) 21288.0±50.0 1151.0±20.0 

At varying percentages of physical blowing agent (20% - 26%, w/w) 

DHL50PO50 44.7(±2) 9202.0±100.0 385.0±25.0 

DHL60PO40 40.0(±2) 2315.0±120.0 181.0±35.0 

DHL70PO30 38.5(±2) 1651.0±85.0 120.0±47.0 

 
 

     

Figure 8-8 BRPU foams from DHL50PO50 (left) and DHL60PO40 (right) 
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Figure 8-9 SEM images of DHL50PO50 (top), DHL60PO40 (middle) and DHL70PO30 

(bottom) at varying percentages of physical blowing agent 
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Table 8-4 Thermal characteristics of RPUF from oxypropylated samples 

Foam ID Density  

(kg/m3) 

Glass transition 

temperature 

(oC) 

Thermal 

conductivity  

(W/m-K) 

At fixed percentage of physical blowing agent (20%, w/w) 

DHL50PO50 44.7(±2) 282(±2) 0.029(±0.0010) 

DHL60PO40 61.0(±2) 293(±2) 0.030(±0.0010) 

DHL70PO30 64.5(±1) 310(±2) 0.030(±0.0010) 

At varying percentages of physical blowing agent (20% - 26%, w/w) 

DHL50PO50 44.7(±2) 282(±2) 0.029(±0.0010) 

DHL60PO40 40.0(±2) - 0.032(±0.0010) 

DHL70PO30 38.5(±2) - 0.034(±0.0010) 

 

The glass transition temperature (Tg) of the BRPU foams, as shown in Table 8-4, was 

found to increase with increased bio-contents. This could be attributed to the increased 

aromatic contents in foam formulation which could lead to a greater number of rigid/hard 

segments and a consequent increase in Tg of the associated BRPU foams. Thermal 

conductivity is the key thermal property that governs insulation applications for RPU 

foam. Thermal conductivity is closely related to cell morphology. Low thermal 

conductivity results from small average cell size and high closed cell contents. In this 

work, as shown in Table 8-4, the thermal conductivity of the BRPU foams was found to 

vary between 0.029 and 0.034 W/mK at 50-70 wt.% bio-content respectively, which is 

satisfactory taking into account that the density of the foams is towards the higher limits 

of common polyurethane construction foams (thermal conductivities between 0.020 and 

0.030 W/mK for densities ranging from 30-100 kg/m3) (Ribeiro da Silva, 2013). Also 

some of the specifications available on rigid polyurethane foam report that thermal 

conductivity of most common insulation materials ranges between 0.02 W/mK and 0.05 

W/mK (BING, 2006).  
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Figure 8-10 shows the FTIR spectra of rigid PU foams prepared from oxypropylated 

DHL at 50, 60 and 70 wt.% bio-contents. In the spectra, residual or unreacted isocyanate 

group (NCO) can be identified at the band of 2253.6 cm-1. The inter N-H stretching 

which is in the PU hard segment region is identified at 3454.53 cm-1. 1710 cm-1 (C=O 

stretching)) and 1408.84 cm-1 and 1098.30 cm-1 (C-N coupled, C-O stretch) indicates the 

existence of the urethane linkage (Cinelli et al., 2013; Nurdjannah et al., 2013; Ribeiro da 

Silva et al., 2013). Other characteristic bands, the N-H deformation signal at 1519 cm-1 of 

isocyanurate (resulting from reactions between isocyanate and urethane groups), 

conjugated and unconjugated C-O stretching at 1216 and 1064 cm-1 and CH deformation 

of aromatic groups in the range of 800-600 cm-1 are also noted in the spectrums (Ribeiro 

da Silva et al., 2013). 

 

 

Figure 8-10 FTIR analysis of BRPU foams prepared from oxypropylated samples of 

DHL at three different percentages of bio-contents 

 

Thermogravimetric analysis was performed to investigate the effect of oxypropylated-

DHL incorporation on the thermal behavior of BRPU foam under inert atmosphere. 

Figure 8-11 shows the thermal stability curve of BRPU foam containing 50 wt.% bio-

contents compared to the a reference foam. Thermal degradation of BRPUs is a 
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complicated process involving the dissociation of the initial polyol and isocyanate 

components. Thermal decomposition can lead to the formation of amines, small transition 

components, and carbon dioxide (Zhao et al., 2012). The mass loss up to 150 oC is 

considered to be due to the evaporation of water. Pyrolysis of PU foam under nitrogen 

atmosphere starts at ~170 oC and intensified at ~200 oC. Significant decomposition of 

RPU occurred between 200-450 oC. The decomposition of polyurethane polymer chain, 

around 350 oC produces compounds including diisocyanates and polyols along with other 

decomposition products such as amines, olefins and carbon dioxide (Manocha et al., 

2010). 
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Figure 8-11 Degradation curve and the rate of weight loss of reference foam and BRPU 

foams containing 50 wt.% bio-contents 

 

8.4 Conclusions 

Hydrolysis lignin (HL) was successfully depolymerized to low molecular weight 

depolymerized HL (DHL) in a 50/50 (v/v) water-ethanol reaction mixture. Under the best 

operating conditions (250 oC, 1h, 20% (w/v)) HL depolymerization produced DHL at a 

yield of ~70 wt.% with a weight-average molecular weight (Mw) as low as ~1000 g/mole 

and high aliphatic and total hydroxyl numbers (227.1 mgKOH/g and 442.0 mgKOH/g, 
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respectively). The resulting DHL was solid and derivatized into a liquid polyol via 

oxypropylation for further utilization in the preparation of bio-based rigid polyurethane 

(BRPU) foam at high bio-contents (50-70 wt.%). All of the BRPU foams exhibited good 

compressive strength, compared with the reference foam. At a fixed formulation, i.e. a 

fixed amount of physical blowing agent, the compressive modulus of the BRPU foams 

increased in the following order: sucrose polyol reference foam (2695.0 

kPa)<DHL50PO50 (9202.0 kPa)<DHL60PO40 (19847.0 kPa)<DHL70PO30 (21288.0 

kPa). All of the BRPU foams were thermally stable up to approximately 200 oC. The 

thermal conductivities of the BRPU foams varied between 0.029 W/mK and 0.034 

W/mK, making them suitable for their utilization as an insulation material.  
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Chapter 9  

9 Low pressure depolymerization of hydrolysis lignin for 
the preparation of bio-based rigid polyurethane foam  

Abstract 

Hydrolysis lignin (HL) was successfully depolymerized to low molecular weight (1400-

2000 g/mole) depolymerized HL (DHL) via a highly efficient and cost effective low-

pressure (<150 psig) process employing ethylene glycol (EG) as a solvent and H2SO4 as a 

catalyst. The effects of process parameters including reaction temperature, reaction time, 

HL loading and acid loading were investigated and the DHLs obtained were 

characterized by GPC-UV, FTIR and 1H NMR. The best operating conditions appeared to 

be at 200 oC, 1 h, HL substrate concentration of 20 wt.%, and H2SO4 ~2 wt.% of input 

HL, leading to ~70 wt.% yield of DHL (Mw ~1500 g/mole and total-hydroxyl number 

~247.1 mgKOH/g) and solid residues ~10 wt.%. The obtained DHL was in solid or 

powdered form and derivatized into a liquid polyol via oxypropylation at three different 

bio-contents ratios, i.e. 50, 60 and 70 wt.%. BRPU foams prepared from oxypropylated 

DHLs were then characterized and compared in terms of their physical, mechanical and 

thermal properties. All BRPU foams exhibited good compressive strength, compared 

with to the reference foam. At a fixed formulation, i.e. a fixed percentage of physical 

blowing agent, the BRPU foams showed the following order of sequence in terms of their 

compression modulus: sucrose polyol reference foam (2695.0 kPa)<DHL50PO50 

(5381.0 kPa)<DHL60PO40 (12360.0 kPa). All BRPU foams were thermally stable up to 

approximately 200 oC. Thermal conductivity of the BRPU foams varied between 0.030 

W/mK and 0.033 W/mK, and did not vary with increasing percentage of bio-polyols, 

making them suitable for their utilization as an insulation material.  

Keywords: Hydrolysis lignin, depolymerization, oxypropylation, polyols, rigid 

polyurethane foam. 
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9.1 Introduction 

With an ever-increasing societal focus on environmental and economical sustainability, 

biorenewable energy and materials from non-food bioresources, especially wood, are 

drawing increasing attention from consumers, governments, industries, and research 

institutes (Li and Ragauskas, 2012). Agricultural residues such as cornstalks, wheat 

straw, corn and nut shells are abundant and renewable bioresources in many agricultural 

countries, especially in Canada, China, Indian and Brazil. The main components of 

agricultural residues are cellulose, hemicellulose and lignin (Xu et al., 2012). Where, 

lignin represents 30% of all non-fossil organic carbon on Earth and its availability 

exceeds 300 billion tons (Smolarski, 2012), increasing annually by around 20 billion 

tons. Large quantities of lignin are available from numerous pulping mills and biorefinery 

industries (such as cellulosic ethanol plants). In pulp/paper mills or bio-refining industry, 

wood is used as a feedstock and make full use of cellulose, and residues (lignin) are 

burned in recovery boilers or simply discarded. However, due to its highly functional 

character (i.e., rich in phenolic and aliphatic hydroxyl groups) lignin can be an excellent 

renewable feedstock for a variety of bio-based materials through chemical modifications, 

which has driven numerous research efforts in the past decades. Because of lignin’s 

special phenyl propanol or polymer structure and aryl-alkyl ether bonding, lignin is a 

potential alternative to petroleum for phenolic chemicals and polymers. Substituting 

petroleum with renewable feedstock for chemicals and materials production is especially 

of significance and interests nowadays when petroleum prices are escalating and there are 

growing concerns on depletion of fossil resources. However, original lignin has a 

complex structure with much lower reactivity due to the steric hindrance effects (Cheng 

et al., 2012). In this respect, lignin or for biomasses containing lignin depolymerization 

can be a very promising approach to increase its functionality and reactivity.  

Depolymerization/liquefaction is widely used nowadays by many researchers to make use 

of abundantly available bioresources in an effective way via employing different types of 

solvents and catalysts (Hassan and Shukry, 2008; Chen and Lu, 2009; Lee and Lin, 

2008). The primary purpose of depolymerization is to convert complex compounds into 

smaller molecules of oligomers and monomers for further applications (Wang et al., 
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2013). In literature, a number of studies have reported the hydrothermal 

depolymerization/liquefaction of different biomasses employing water as a solvent (Qian 

et al., 2007; Sun et al., 2010; Minowa et al., 1998; Xu and Lad, 2008). Some researchers 

(Tymchyshyn and Xu, 2010) have liquefied agricultural and forestry waste biomass using 

hot-compressed water with and without catalysts. However, the yields of desired products 

were low, between 25-60 wt.%. Higher yields were obtained using organic solvents or 

water/solvent mixtures. Cheng et al. (2010) reported that ethanol-water mixture (50/50, 

v/v) proved to be more effective solvent for the liquefaction of biomasses as they showed 

synergistic effects on the direct depolymerization/liquefaction of biomass. All the above 

methods for biomass/lignin depolymerization including the hydrolytic depolymerization 

are restricted by their high operation costs due to the intense reaction conditions 

(combination of high temperatures and pressure) under either acidic or basic conditions, 

with low solvent recovery rates. Rezzoug and Capart (2002) found that ethylene glycol is 

a very effective solvent for carrying out the depolymerization/liquefaction of woody 

biomasses under acidic conditions when compared to water alone. Yip et al. (2009) 

employed different organic solvents (phenol, EG and EC) at 180 oC using HCl as a 

catalyst for the successful liquefaction of bamboo, and studied the effects of the liquid 

ratios and treatment time liquefaction yields. Where, Sanghi and Singh (2012) reported 

that the conversion rate of polysaccharides in biomasses is strongly dependent on the 

solvent.  

Hydrolysis lignin – a byproduct from pretreatment processes in cellulosic ethanol plants, 

is expected to be produces in large quantity if the many proposed projects for cellulosic 

sugar-based chemicals or ethanol are realized. HL is a solid residue (Yuan et al., 2012) 

from the enzymatic hydrolysis of woody biomass and is mainly of composed lignin (56-

57 wt.%), unreacted cellulose and mono and oligosaccharides. Compared with sulfur-

containing Kraft lignin (KL), the byproduct of most pulping operations, HL is a sulfur-

free lignin and an environmentally benign biomass. Extensive research was undertaken in 

the former Soviet Union to find uses for this material as they had several hydrolysis 

plants. Several chemical modifications of HL were carried to make an effective use of 

this abundantly available phenolic rich polymer, however, the majority of the HL was 

disposed off because the required modifications were either too expensive or the material 
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did not function well enough in application. These are the same problems that researchers 

are facing today for an effective use for HL (Monica, 2005). These factors, jointly with a 

lack of efficient utilization of HL, give emphasis for the need of further research with 

highlighting aspects such as depolymerization of HL cost effectively and efficiently, 

utilization of depolymerized products for the production of valuable biomaterials like 

bio-based PU foams and resins. 

Therefore, the production of polyhydroxy compounds (biopolyols) from HL, via its 

depolymerization, is of interest for the polyurethane (PU) industry. Depolymerization can 

results in the reduction of structural complexity, molecular weight and steric hindrance 

(Xu et al., 2012), which can make the hydroxyl groups present, especially aliphatic 

hydroxyl groups, more accessible for further reactions. The solid depolymerized products 

can be derivatized into liquid polyols via oxypropylation (Li and Ragauskas, 2012) for 

their further utilization in the preparation of rigid polyurethane (RPU) foam as a single 

polyol feedstock. By means of oxypropylation, the hydroxyl groups, especially phenolic 

hydroxyl groups which are hardly accessible and entrapped inside the molecule, are 

liberated from steric and/or electronic constraints. Moreover, such chain extension 

reactions lead to the formation of liquid polyols due to the introduction of multiple ether 

moieties (Cateto et al., 2014). RPU foams are the materials with a superior combination 

of low density and thermal conductivity with high dimensional stability and strength, and 

used for a variety of high end medical, industrial, and technological applications (Cao et 

al., 2009).  

Nevertheless, the current methods for lignin/biomass depolymerization are restricted by 

their high operation costs due to intense reaction conditions, non-recoverable solvents, 

lower substrate concentrations and resulting lower yields. There is a growing need for the 

exploration of efficient and cost-effective routes employing atmospheric to low pressure. 

The main objectives of the present work were to achieve cost-effective depolymerization 

of HL at low pressure (≤150 psig) employing ethylene glycol (EG) as a solvent and 

H2SO4 as a catalyst, and utilize the produced DHL as bio-polyols after oxypropylation for 

the preparation of RPU foam at high percentage of bio-contents (50 wt.%-70 wt.%). All 

bio-based RPU (BRPU) foams were characterized in terms of their physical, mechanical 
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and thermal properties and compared with reference foam. To the best of the authors’ 

knowledge no systematic study has been reported by far in the public literature for the 

depolymerization of HL into low Mw bio-polyols products operating at low pressure, and 

their effective utilization in the preparation of RPU foams at high bio-contents loading. 

9.2 Materials and methods 

9.2.1 Materials 

Hydrolysis lignin (HL) used in this study was kindly provided by FPInnovations (Yuan et 

al., 2012) and was insoluble in THF or in any organic solvents like ethanol, methanol or 

acetone etc. Lignocellulosic biomass from any type of plant biomass that is composed of 

cellulose, hemicellulose and lignin, typically in amounts of 30-55 wt.%, cellulose; 15-35 

wt.%, hemicellulose; and 5-31 wt.%, lignin, was used. The novel bio-conversion process 

used comprises of low- pressure mechanical refining to disintegrate biomass feedstock, 

hemicellulose extraction, enzymatic hydrolysis, sugar/lignin separation, and 

fermentation. After hemicellulose extraction and a subsequent hydrolysis, the remaining 

substrate (solid) residue contains a high percentage of lignin which was being recovered 

and further purified to produce high-quality lignin products. Compared to traditional 

Kraft lignin and steam-explosion lignin, the high-quality sulfur free lignin produced from 

this invention has little degradation (Yuan et al., 2012). The weight average molecular 

weight (Mw) of HL was not possible to determine by using GPC-UV. The pH value of 

original HL was neutral. The chemical components of raw HL as well as its elemental 

compositions are presented in Table 9-1. The other chemicals used in the study were 

NaOH, H2SO4, acetone, pyridine, acetic anhydride, dibromomethane, ethylene glycol 

(EG), polymeric MDI, sucrose polyol (JEFFOL SD-361), propylene oxide (PO), 

triethanolamine (TEA), triethylene diamine (Diaza, TEDA), stannous octoate, silicon oil, 

glycerol etc. All chemicals were used in experimentation without further purification or 

any treatment. The physical characteristics of the chemicals used in the foam preparation 

are given in Table 9-2. 
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Table 9-1 Chemical (d.b.)a and elemental composition (d.a.f.)b of hydrolysis lignin (HL) 

(Yuan et al., 2012) 

Lignin 

% 

Carbonhydrates 

% 

Ash 

% 

Others, 

% 

Carbon, 

% 

Hydrogen, 

% 

Nitrogen, 

% 

Others, 

% 

56.7 29.8 1.2 12.3 62.8 6.1 4.0 28.3 

a On dry basis 
b On dry and ash free basis 
 

Table 9-2 Physical Characteristics of the Chemicals 

Ingredients Functionality 

Equivalent  

weight 

(g/mol) 

-OH # 

(mgKOH/g) 
Comments 

PMDI 2.7 135.0 - NCO contents: 31.2% 

Glycerol 3.0 30.7 1829.4 Co-crosslinking agent 

Sucrose polyol  8.0 155.8 360.0 
JEFFOL SD-

361(commercial polyol) 

Water 2.0 9.0 6233.3 Chemical blowing agent 

Acetone - - - Physical blowing agent 

Poly(siloxane ether) - - - Silicon surfactant 

Triethylene diamine - - - Foaming catalyst 

Stannous Octoate - -  Gelation catalyst 

Triethanol amine 3.0 49.73 1128.1 Co-catalys 

9.2.2 Hydrolytic depolymerization of HL 

Hydrolysis lignin was depolymerized using EG as a solvent under acidic conditions 

(H2SO4 as a catalyst) under atmospheric pressure to low pressure (<150 psig). All of the 

depolymerization reactions were performed in 100 mL Parr Model 4848 reactor, 

equipped with a pressure gauge, thermocouple, stirrer, gas line and a sampling line. In a 

typical run, 12 g HL, 0.24 g H2SO4 and 47.8 g EG were loaded into an autoclave reactor. 

For all runs, the reagents were measured and loaded into the reactor which was then 

sealed, evacuated and purged with N2 and finally tested for leaks. The reactor was heated 
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up to desired temperature, under the stirring (290 rpm). After the desired temperature was 

attained, the reaction was allowed to proceed until the required duration had elapsed. 

Reactions were quenched by immersion in a cold water bath. The reaction products were 

washed from the reactor using acetone and filtered to separate the acetone-insoluble solid 

residues (SR) and acetone soluble depolymerized HL (DHL). The DHL was isolated via 

rotary evaporation under vacuum to remove the solvent. EG was then removed from 

DHL using water as a solvent followed by a subsequent filtration to separate water 

soluble EG and water insoluble DHL. The DHL cake on filter paper was then dried and 

the product yields were determined. The SRs were dried at 105 oC in air for 24 hr before 

weighing and yield was determined relative to the mass of HL. All the data presented is 

the average of duplicate runs with relative errors. 

9.2.3 Oxypropylation of DHL 

The DHL obtained at the best operating conditions, although in solid form, was used as 

bio-polyols in this work after being further transferred into a liquid polyol via 

oxypropylation. DHL sample was initially neutralized to pH ~7.0 before using for 

oxypropylation reaction. Oxypropylation of DHL was carried out in a 100 mL Parr 

reactor. In a typical run, for the preparation of oxypropylated feedstock at 50 wt.% bio-

replacement , 18.9 g of DHL, 21.21 g propylene oxide (PO), 2.31 g of anhydrous glycerol 

& KOH (%KOH in mixture was 11wt.%) and 16.8 g of acetone were loaded into the 

reactor. The reactor was then heated to 150 oC (under atmospheric pressure). Initially, the 

pressure in the reactor increased to a maximum of 120 psig and then returned to the 

original pressure ~14.7 psig (or 1 atm-g) after 1.5 h reaction, implying the complete 

consumption of PO or completion of the reaction. After cooling, the reactor contents 

were completely rinsed into a beaker using acetone followed by neutralization of the 

reaction mixture using sulfuric acid. The neutralized reaction mixture was then filtered 

through a Buchner funnel to separate solid residues (SRs) from the acetone soluble phase. 

The acetone soluble filtrate was transferred to a pre-weighed Erlenmeyer flask and the 

acetone and any unreacted PO (if any) were removed by rotary evaporation at 60 oC. 
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9.2.4 Polyurethane foam preparation 

All the foam samples were prepared in 455-ml plastic cups using a one pot method. 

Typically the RPU foam formulation investigated in this study includes a polyol 

combined with 10% (w/w) glycerol (a co-crosslinking agent). For comparison, reference 

foam was prepared using sucrose polyols at 0% DHL. Additionally the formulation 

includes a physical blowing agent (acetone at 20% (w/w)), a catalyst comprising equal 

amounts of stannous octoate and triethylene diamine at 2% (w/w), surfactant at 2% (w/w) 

and water at 2% (w/w). The amounts of blowing agent, catalyst, surfactant and water 

were determined with respect to the total weight of polyol used. PMDI was added at fixed  

NCO/OH ratio of 1.1. The foam preparation procedure was comprised of the following 

steps: (1) the desired polyols, catalysts and blowing agents were all weighed in a cup and 

mixed at 550 rpm for 10-12 s until homogeneous and (2) a predetermined mass of MDI 

was then added to the cup and the mixture was stirred vigorously for another 12-15s. The 

mixture was then placed in a fume hood at ambient temperature (23±2 oC) to allow the 

foam to rise. All of the foam samples were left in the fume hood for 24-48 h for curing 

before the sample collected for analysis. Foam shrinkage, structural uniformity, stability 

and cell appearance could be observed at this point. However, prior to further 

characterization, the foam samples were conditioned for a minimum of 24 h to maximum 

of 1 week, depending on the requirements. Sucrose polyol was not used in the 

formulation of BRPU foams at different bio-content percentages. 

9.2.5 Product characterization 

The relative molecular weights of the depolymerized HL (DHL) and oxypropylated DHL 

were measured with a Waters Breeze GPC–HPLC (gel permeation chromatography–high 

performance liquid chromatography) instrument (1525 binary pump, UV detector at 270 

nm; Waters Styrylgel HR1 column at a column temperature of 40 oC) using 

tetrahydrofuran (THF) as the eluent at a flow rate of 1 mL/min using linear polystyrene 

standards. The functional groups of the HL, DHL and oxypropylated DHLs were 

analyzed by Fourier Transform Infrared Spectroscopy (FTIR). Proton nuclear magnetic 

resonance (1H NMR) spectra for the DHL and oxypropylated DHLs were acquired at 

25oC using a Varian Inova 600 NMR spectrometer equipped with a Varian 5 mm triple-
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resonance indirect-detection HCX probe. A total of 16-32 scans were accumulated using 

a 2 s recycle delay, 3.6 s acquisition time, a 45-degree tip angle (pw = 4.8 us), and a 

spectral width from -2 ppm to 14 ppm (sw =9000.9 Hz). Quantitative 1H-NMR spectra 

analysis was realized using acetylated samples of DHL and oxypropylated DHL. Briefly, 

1 g of dried sample was dissolved in a 1:1 (v/v) mixture of pyridine (5 mL) and acetic 

anhydride (5 mL) followed by stirring for 24 to 48 hr. The mixture was then transferred 

into a beaker containing 100 mL of ice-cooled 1 wt.% HCl solution. The resulting 

precipitates of the acetylated samples were washed with distilled water to pH ≈7. The 

samples were then dried at 105 oC for 24 hr to remove residual water prior to the 

quantitative 1H-NMR analysis. Dibromomethane (CH2Br2) was used as an internal 

standard with a characteristic peak is at 4.9 ppm. The hydroxyl number of the DHL and 

oxypropylated DHL were determined by 1H-NMR spectra analysis. The samples were 

prepared dissolving 30.0 mg of the acetylated DHL or oxypropylated DHL and 15.0 mg 

of the internal standard in d-chloroform (≈1000-1500 mg) then transferring the sample 

into a 5 mm NMR tube via a transfer pipette for analysis. Hydroxyl numbers of the 

oxypropylated DHL samples were also measured as per ASTM D4274-99 using a 

Potentiometric Titrator (Titroline 7000 Titrator). The viscosity of the oxypropylated DHL 

sample was measured by using BROOKFIELD CAP 2000+VISCOMETER at 80 oC. 

 

The apparent densities of foam samples were measured according to ASTM D1622-03. 

The mechanical properties of PUF samples were measured at ambient conditions on an 

ADMET Universal Testing Machine (Model SM-1000-38). Modulus of elasticity 

(Young’s modulus or compressive modulus) (initial linear slope of the stress-strain 

curve) and compressive strength at 10% deformation, were determined by performing the 

stress-strain tests according to ASTM D 1621-00. Thermal conductivities of the foam 

samples were measured using a KD2 PRO thermal properties analyzer with SH-1 dual 

needle sensor (1.3 mm diameter x 3 cm long, 6 mm spacing) capable of measuring 

thermal conductivity in the range of 0.02 to 2.00 W/mK. The specimen size used for 

thermal conductivity analysis was 40 mm x 40 mm x 20 mm. Thermal stability of the 

foams were measured using a Pyris
TM

 Diamond, Perkin–Elmer Thermogravimetric 

analyzer (TGA), under a N2 and air flow (20 mL/min) respectively, from 30 oC to 800 oC 
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at 10 oC/min. Morphology of the foams was observed by a Hitachi S-4500 field emission 

cross beam scanning electron microscope (SEM). After examination by SEM, selected 

locations on the foam surface were subjected to a cross-sectional cut and the sample was 

coated with osmium, and imaged using a focused ion beam LEO (Zeiss, Thornwood, NY, 

USA) 1540XB SEM. 

9.3 Results and discussions 

9.3.1 Depolymerization of HL 

Since HL is composed of 50-60 wt.% lignin, therefore initially experiments for the 

depolymerization of HL were carried under both alkaline and acidic medium at 2 wt.% 

catalyst loading using NaOH and H2SO4 as catalysts. No depolymerization of the HL was 

observed under alkaline conditions employing EG as a solvent and, on opening the 

reactor, the resulting HL product was found to be a charred mass. The reason could be on 

one side the slightly alkaline conditions would suppress the cellulose hydrolysis, and on 

the other hand, the pH level is not high enough for catalyzing lignin hydrolytic 

depolymerization (Xu et al., 2012). Since, under weak alkaline conditions, the reaction 

medium can change gradually from alkaline to neutral or acidic due to the carboxylic 

acids produced during depolymerization reactions. Depolymerization was then conducted 

under acidic medium using sulfuric acid (H2SO4) as a catalyst and significant 

depolymerization of HL was observed. Sulfuric acid was selected as a catalyst because of 

it’s an ultra high catalytic activity at low dosage in combination with less corrosion rates. 

Therefore, acid catalyzed depolymerization of HL was considered as a major route for 

further experimentation to study the effect of process parameters. 

9.3.1.1 Effects of reaction temperature 

The depolymerization temperature is an important factor for the residue contents and 

energy saving. Raising the temperature promotes the depolymerization and 

recondensation of the intermediates simultaneously (Chen and Lu, 2009). 

Depolymerization of cellulose in acidic media occurs by breaking glycosidic bonds to 

form glucose monomers and usually requires elevated temperatures of around 200-220 
oC. Depending on the acidic medium and its pH, hemicelluloses also decompose into 
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monosaccharides at temperature above 120 oC. In the case of lignin, -OH and O groups 

are converted into benzylium ions which attack ether groups at 160-180 oC in weak acid 

media in a multiple step reaction. Thermal decomposition of lignin at temperatures higher 

than 250 oC leads to the formation of phenoxyl radicals which form solid residues 

through repolymerization. Therefore, the temperature range selected for investigation was 

180 to 240 oC. Figure 9-1 shows the effects of reaction temperature on the yield of 

products (DHL and SR), and Mw of the DHL from the tests carried out at temperatures 

ranging from 180 to 240 oC at 1h. At 180 oC the yield of DHL was ~56 wt.% with ~18 

wt.% . The remaining mass (~26 wt.%) could be attributed to water and aqueous products 

(monomers, aldehydes, alcohols etc.). While employing EG as a solvent for HL 

depolymerization, there were no gases produced during the reaction. The increased 

pressure noted during the reaction was due to the vapor pressure of water generated from 

the rupture of glycosidic linkages present in cellulose during the depolymerization 

reactions.  

 

 

Figure 9-1 Effects of temperature on yields of products and Mw (Other reaction 

conditions: 60 min, HL loading of 20% (w/w)),and  H2SO4: 2% (w/w)) 
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At 200 oC, the DHL yield increased to 70 wt.%, likely due to the endothermic nature of 

depolymerization reactions and hence thermodynamically favorable at higher 

temperatures (Cheng et al., 2012). The SR yield at 200 oC was as low as 10 wt.%. Further 

increasing the reaction temperature to 220 oC and 240 oC decreased the yields of DHL 

(55 wt.% at 220°C and 52 wt.% at 240 oC). The yield of SR, on the other hand, increased 

from 10 wt.% to 21 wt.% as the temperature was increased from 200 oC to 240 oC. The 

high yield of SR or char may be due to crosslinking reactions between carbon-carbon 

double bonds (C=C) which leads to the formation of a highly cross-linked structure that 

is insoluble in water/acetone. Another reason could be acid catalyzed condensation 

reactions which resulted in the formation of char at higher temperatures. 

The Mw of DHL decreased from 2200 g/mole to ~1500 g/mole when the reaction 

temperature was increased from 180 oC to 200 oC. The reduced Mw at 200 oC, suggests 

that temperature has a drastic effect on the cleavage of alkyl-aryl ether linkages in lignin. 

When the temperature was increased to 220 oC, there was a slight reduction in Mw to 

1420 g/mole. However, a further increase in temperature to 240 oC, increased Mw to 1620 

g/mole. This can be attributed to repolymerization/condensation reactions between the 

reaction intermediates which become the dominant reactions at higher temperatures. 

Although increasing temperature can facilitate the depolymerization/defragmentation of 

cellulose, hemicellulose and lignin, there is a critical temperature for any 

depolymerization/liquefaction technique (Rezzoug and Capart, 2002). Hence, with 

respect to yields of products (DHL and SRs) and DHL and Mw of DHL products, the best 

reaction temperature appears to be 200 oC for 1h. 

 

9.3.1.2 Effects of reaction time  

The experiments in this section were to examine the effects of reaction time on the 

hydrolytic depolymerization of HL at 200 oC employing EG as a solvent under acidic 

conditions. The yield of products (DHL and SRs) and Mw after reaction for various 

lengths of time (30-180 min) are illustrated in Figure 9-2. Increasing the reaction time 

from 30 min to 60 min increased the yield of depolymerized HL (DHL) from 62 wt.% to 
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~70 wt.%. The Mw of the DHL after 60 min reaction time was 1500 g/mole as compared 

to 2250 g/mole at 30 min suggesting that the hydrolytic depolymerization reaction 

proceeded to a greater extent at this longer reaction time. Further increasing the reaction 

time to 90, 120 and 180 min resulted in decreased DHL yields of ~65 wt.%, 64 wt.% and 

60 wt.%, respectively. These decrease DHL yields corresponded with slight increases in 

SR yield as was similarly observed by (Jin et al., 2011). The Mw of the DHL at 120 and 

180 min were found to have increased to 1550 g/mole and 1780 g/mole, respectively. The 

decrease in the yield of DHL accompanied by increased SR yield with extended reaction 

time was likely due to acid catalyzed condensation or char formation, while the increase 

in Mw was likely due to repolymerization/condensation reactions which are usually 

promoted under the acidic conditions. Hence, with respect to both yield and Mw of the 

DHL products, the best reaction time appears to be 60 min at 200 oC. 

 

 

Figure 9-2 Effects of varying reaction time on yields of products and Mw (Other reaction 

conditions: 200 oC, HL loading: 20% (w/w)) and H2SO4 of 2% (w/w))  
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9.3.1.3 Effects of HL substrate loading 

The concentration of feedstock is an important parameter for biomass hydrothermal 

liquefaction as higher concentrations reduce the required amount of organic solvent in the 

reactor and hence the cost for solvent recovery, improving the economics of the process 

(Pye, 1990). Figure 9-3 displays the yield of products (DHL and SRs) and Mw of DHLs 

from experiments at 200 oC for 60 min at various loadings of HL. It can be clearly seen 

that the yield of DHL remained almost the same with an average value of 66.2(±4.0) 

wt.%, while Mw and SR yield both increased significantly from ~1300 g/mole (10 wt.%) 

to ~2200 g/mole (30 wt.%). The increased yield of SRs may be due to the lesser 

availability of solvent which favors enhanced cross-linking reactions or acid catalyzed 

condensation or repolymerization reactions. Akhtar et al. (2011) also found that the 

higher substrate concentrations (or higher biomass-to-solvent mass ratios) resulted in 

greater yields of solid residue during hydrothermal liquefaction of biomass. Hence, in 

view of the utilization of produced DHL as polyols for the preparation of bio-based rigid 

polyurethane foams, 20 wt.% HL loading appears to be the best with high yield and 

acceptable low Mw. 

 

 

Figure 9-3 Effects of varying HL substrate loading on yields of products and Mw (Other 

reaction conditions: 200 oC, 1 h and H2SO4 of 2% (w/w)) 
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9.3.1.4 Effects of acid loading 

The presence of an acid catalyst can promote ether bond cleavage during the 

depolymerization of lignocellulosic biomass and so reduce the liquefaction temperature 

and time as well as improve the liquefaction yields. However, high acid concentrations 

can also enhance recondensation reactions for the liquefied fragments resulting in an 

increase in the amount of insoluble residues after liquefaction (Yao et al., 1993). Figure 

9-4 displays the products yields and Mw of DHL from experiments at 200 oC for 60 min 

with 20 wt.% HL substrate concentration for various acid loadings. The yield of DHL 

was found to initially increase from 57 wt.% to 70 wt.% with the increase in acid loading 

from 1% (w/w) to 2% (w/w) and was accompanied by a decrease in SR yield from 20 

wt.% to 10 wt.%. However further increasing the acid loading to 4 % (w/w) resulted in a 

decreased DHL yield of 50 wt.% and a dramatic increase in SR yield to 35 wt.%. A 

similar trend was observed for the Mw values over the studied range of acid loading: the 

Mw first decreased then slowly increased with increasing acid loading. The amount of 

sulfuric acid used in depolymerization also has a direct effect on the amount of alkali 

needed in the post-processing. Excessive sulfuric acid also exerts a negative effect in 

polyurethane synthesis (Jin et al., 2011). Hence 2% (w/w) acid loading appears to be the 

best condition.   
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Figure 9-4 Effects of varying acid loading on yields and Mw (Reaction temperature: 200 

oC, reaction time: 60 min, EG/HL ratio: 4.0 (w/w)) 

Hence, the best operating conditions for obtaining DHL via low pressure acid catalyzed 

depolymerization appears to be at 200 oC, for 1 h with a HL concentration of 20% (w/w) 

with 2% (w/w) acid loading, leading to ~70 wt.% yield of DHL, with a SR yield of ~10 

wt.% and Mw ≈1500 g/mole and total hydroxyl number ~247.1 mgKOH/g. 

9.3.2 Oxypropylation of DHL 

DHL obtained at the optimum reaction conditions (200 oC, 1 h, and HL concentration 

~20 wt.% with H2SO4 ~2 wt.%) was selected for further the experiments. The DHL was a 

solid and was further oxypropylated at three different percentages of bio-contents (lignin 

and glycerol) of 50, 60 and 70 wt.%, to produce liquid polyols. Polyols used for the 

preparation of RPU foams must be in the liquid state and their hydroxyl number and 

viscosity are the most important physico-chemical properties (Li and Ragauskas, 2012). 

The oxypropylated DHLs were analyzed in terms of their Mw, hydroxyl number and 

viscosity and results are given in Table 9-3. Figures 9-5, 9-6 and 9-7 present 1H NMR 

spectra of acetylated DHL, DHL50PO50 and DHL60PO40 respectively. It is clear from 

Figure 9-5 that DHL has both aliphatic and phenolic –OH groups present in the form of 
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aliphatic and phenolic acetates, respectively. However, after oxypropylation all of the 

phenolic –OH have been altered into aliphatic –OH presented as seen by the presence of 

only aliphatic acetates in Figure 9-6 and Figure 9-7 for DHL50PO50 and DHL60PO40, 

respectively. 

 

Table 9-3 Characteristics of DHL and oxypropylated DHLs 

Sample ID 
Mw 

≈ (g/mole) 

Total Hydroxyl number 

(mgKOH/g) 

Viscosity at 80 oC 

(Pa.s) 
State 

DHL 1420 247.1 - Solid powder 

DHL50PO50 3160 118.2 0.78 
Viscous 

Liquid 
DHL60PO40 3130 138.0 0.89 

DHL70PO30 2530 153.0 1.431 

 

 

Figure 9-5 1H NMR spectra of acetylated DHL 
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Figure 9-6 1H NMR spectra of acetylated DHL50PO50 

 

 

Figure 9-7 1H NMR spectra of acetylated DHL60PO40 
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9.3.2.1 FTIR of HL, DHL and oxypropylated samples  

FTIR spectra of sucrose polyol, original HL and DHL along with the oxypropylated DHL 

at different bio-contents are shown in Figure 9-8. The spectra are normalized to the 

intensity of the lignin aromatic ring vibration at 1600 cm-1. In of all the spectra, the -OH 

stretching vibration is easily seen at ~3450 cm-1 (Li and J. Ragauskas, 2012). The 

oxypropylation and occurrence of PO grafting onto the lignin can be evidenced by 

following FTIR observations:(a) an increase in the bands at 2971-2870 cm-1 attributed to 

the stretching of CH3, CH2 and CH aliphatic groups; (b) reduction in the intensity of the 

carbonyl peak at 1714 cm-1; (c) a marked increase of the absorption bands in the ether C-

O stretching region (1000-1100 cm-1); and (d) an increase in the band at 1371 cm-1 

confirming the introduction of CH3 groups (Cateto et al., 2009). 

 

 

Figure 9-8 FTIR spectra of sucrose polyol, HL, DHL and oxypropylated DHLs 

9.3.3 Rigid polyurethane (RPU) foam 

The density of PU foam is governed by the weight and volume of the foaming ingredients 

which are responsible for making up the matrix of the foam and the gases trapped within 

the foam cells. According to the literature, density plays an important role in the 



212 

 

mechanical performance of rigid PU foam (Li and Ragauskas, 2012). The composition of 

foam matrix includes polyols, additives such as surfactants, catalysts, crosslinking agents 

and isocyanate. Whereas the gas phase composition includes carbon dioxide generated 

from the chemical reaction between the chemical blowing agent (water) and the 

components of the foam formulation (isocyanate), and air, which is either introduced into 

the reaction vessel during the foaming process or diffuses into the cells during the aging 

process. In this study a combination of physical and chemical blowing agents was 

employed to control the density of the resulting foams. The quantity of water was kept at 

2 wt.% based on the total weight of polyols and physical blowing agent (acetone) was 

used to further reduce the density of foam to the desired value, since the consumption of 

MDI increases with increased water in the reaction mixture. Acetone does not react 

chemically with isocyanate or any other foaming ingredient. Acetone uses the heat 

released during exothermic reaction of isocyanate with water (~100-110 kJ/mole of 

urethane) (Tu, 2008) to produce amine and carbon dioxide. During the foaming reaction 

temperature increased above 100 oC and can rise to maximum foam temperature of 168 
oC (Jimoda, 2011).  

9.3.3.1 Physical and mechanical characteristics 

Density is reported as the main property of RPU foams as it also affects mechanical 

properties of foam (Thirumal et al., 2008). Therefore, in this study BRPU foams were 

prepared with polyols containing 50-70 wt.% of oxypropylated DHL via two approaches; 

(1) under fixed percentage of physical blowing agent (20% (w/w); and (2) under varying 

percentages of physical blowing agent (20-26% (w/w) to maintain approximately 

constant foam densities. The physical and mechanical properties of the BRPU foams 

prepared from oxypropylated DHL are provided in Table 9-4.  

Table 9-4 Physical and mechanical properties of BRPU foams 

Foam ID Density 

(kg/m3) 

Compressive 

modulus (kPa) 

Compression strength 

at10% deformation (kPa) 

At fixed percentage of physical blowing agent 

Sucrose Ref. Foam 42.5±0.5 2695.0±100.0 182.0±45.0 
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DHL50PO50 45.0±2.0 5381.0±100.0 235.0±75.0 

DHL60PO40 62.1±2.0 12360.0±55.0 513.0±45.0 

DHL70PO30 - Due to high viscosity of DHL70PO30 foam did 

not form 

At varying percentage of physical blowing agent 

DHL50PO50 45.0±2.0 5381.0±100.0 235.0±75.0 

DHL60PO40 39.0±2.0 2825.0±80.0 193.0±42.0 

DHL70PO30 - Due to high viscosity of DHL70PO30 foam did 

not form 

 

It is clear from Table 9-4 that both the compressive modulus (5381.0 kPa) and 

compression strength of BRPU foams at 50 wt.% bio-content were higher than the 

reference foam (compression modulus: 2695.0 kPa; compression strength at 10% strain: 

182.0 kPa). The sucrose polyol used for the preparation of the reference foam has a 

multiple branched short chain structure. The increased modulus and strengths of BRPU 

foams may be primarily attributed to the aromatic structure and the high functionality of 

DHL’s hydroxyl groups, which introduces more crosslinking in the PU network and leads 

to higher crosslinking density as compared to the control foam. When trials were made to 

keep the final density of BRPU foams approximately the same, more physical blowing 

agent was introduced in the foaming recipe. Therefore, on increasing the bio-content to 

60 wt.%, more acetone was used. The resulting foam showed lower density and 

compressive strength than the BRPU foam prepared with 50 wt.% bio-content. This can 

be attributed to its morphological characteristics. Also BRPU foam with 60 wt.% was 

found to be slightly brittle, possibly due to the introduction of higher percentage of hard 

lignin block than were present in the BRPU foam with 50 wt.% bio-contents. Therefore, 

the greater requirement of physical blowing agent leads to changes in the morphological 

characteristics of the foam, affecting its density and strength. Even so, BRPU foam 

prepared at 60 wt.% bio-content has a compression modulus (2825.0 kPa) and strength 

(compression strength at 10% deformation: 193.0 kPa) that are slightly higher than those 

of the reference foam.  
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On the other hand, if the percentage of physical blowing agent in the formulation was 

kept constant, the increasing percentage of bio-contents in the BRPU foam formulations 

resulted in higher density foams due to extensive cross-linking and, as a result, the 

compression strength of the foam samples was also improved. Figure 9-9 shows 

DHL50PO50 based RPU foam and a SEM micrograph of the foam. The foam cells range 

in size between ~162.3 μm and ~272.1 μm.   

 

 

Figure 9-9 SEM image of BRPU foam prepared with DHL50PO50  

 

Figure 9-10 shows the FTIR spectra of BRPU foams prepared from oxypropylated DHL 

at 50 wt.% and 60 wt.% bio-contents . In the spectra, residual or unreacted isocyanate 

group (NCO) can be identified at the band of 2253.6 cm-1. The inter N-H stretching 

which is in the PU hard segment region is identified at 3454.53 cm-1. 1710 cm-1 (C=O 

stretching)) and 1408.84 cm-1 and 1098.30 cm-1 (C-N coupled, C-O stretch) indicates the 

existence of the urethane linkage (Cinelli et al., 2013; Nurdjannah et al., 2013; Ribeiro da 
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Silva et al., 2013). Other characteristic bands, the N-H deformation signal at 1519 cm-1 of 

isocyanurate (resulting from reactions between isocyanate and urethane groups), 

conjugated and unconjugated C-O stretching at 1216 and 1064 cm-1 and CH deformation 

of aromatic groups in the range of 800-600 cm-1 are also noted in the spectrums (Ribeiro 

da Silva et al., 2013). 

 

 

Figure 9-10 FTIR spectra BRPU foams at 50 wt.% and 60 wt.% bio-contents 

 

9.3.3.2 Thermal characteristics  

RPU foams are remarkable insulation materials due to their low thermal conductivity. 

RPU foams have been recognized all over the world as the most efficient insulation 

material commercially available since their introduction (Cunningham and Sparrow, 

1986). Thermal conductivity value is closely related to foam cell morphology (Ribeiro da 

Silva et al., 2013). Table 9-5 shows the thermal conductivity of the reference and BRPU 

foams. The results showed that the thermal conductivity of the BRPU foams at 50 and 60 

wt.% bio-content did not show much variation and was between 0.030 W/mK and 0.032 

W/mK. There was not much pronounced difference observed for BRPU foams prepared 

with fixed or varying percentage of physical blowing agent. 
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Table 9-5 Thermal conductivity of reference and BRPU foams 

Foam ID 
Thermal conductivity (λ) 

(W/m-K) 

Sucrose ref. foam 0.033±0.0010 

DHL50PO50 0.030±0.0010 

DHL60PO40 0.032±0.0010 

 

In this study, the λ values vary between 0.030 W/mK and 0.032 W/mK, which is in good 

agreement with literature (Cateto et al., 2010) taking into account that the density of the 

prepared foams is at the higher limit of common polyurethane foams where λ values are 

between 0.020-0.030 W/mK for densities (Ribeiro da Silva et al., 2013) ranging from 30-

100 kg/m3. Over time, air diffuses into the cells and can lead to increased thermal 

conductivity. 

Thermogravimetric analysis was performed to investigate the effect of oxypropylated-

DHL incorporation on the thermal behavior of BRPU foam under an inert atmosphere. 

Figure 9-11 shows thermal stability curve of BRPU foam containing 50 wt.% and 60 

wt.% bio-contents. Thermal degradation of PUs is usually described as a complicated 

process involving the dissociation of the initial polyol and isocyanate components. 

Thermal decomposition can lead to the formation of amines, small transition components, 

and carbon dioxide (Zhao et al., 2012). Mass loss at temperatures below 150 oC is 

considered to be due to the evaporation of water. Pyrolysis of PU foam under nitrogen 

atmosphere starts at ~170 oC and intensifies at ~200 oC. Decomposition of the RPU 

foams took place mainly between 200-450 oC. Around 350 oC the decomposition of 

polyurethane produces compounds such as diisocyanates and polyols along with other 

decomposition products including amines, olefins and carbon dioxide (Manocha et al., 

2010). Mass loss for the bio-based foams beyond 600 oC, was negligible. 
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Figure 9-11 Degradation TGA curves and rate of weight loss curves of reference foam 
and BRPU foams from DHL50PO50 and DHL60PO40  

 

9.4 Conclusions 

Hydrolysis lignin (HL) was successfully depolymerized to low molecular weight 

depolymerized HL (DHL) in an acidic medium using sulfuric acid as a catalyst. Under 

the best operating conditions (200 oC, 1h, 20 wt.% HL substrate loading and 2 wt.% acid 

loading) depolymerization produced DHL at a yield of ~70 wt.% with a weight-average 

molecular weight (Mw) of ~1500 g/mole and high aliphatic and total hydroxyl numbers 

(116.0 mgKOH/g and 247.1 mgKOH/g, respectively). The DHL was a solid and was 

subsequently derivatized into liquid polyols via oxypropylation for their further 

utilization in the preparation of bio-based rigid polyurethane (BRPU) foam at high 

percentage of bio-contents (50-70 wt.%). All of the BRPU foams exhibited good 

compressive strength as compared with the reference foam. At the fixed formulation 
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recipe, i.e. fixed percentage of physical blowing agent, the compressive modulus of the 

BRPU foams increased as follows: sucrose polyol reference foam (2695.0 

kPa)<DHL50PO50 (5381.0 kPa)<DHL60PO40 (12360.0 kPa). All of the BRPU foams 

were thermally stable up to approximately 200 oC. The thermal conductivities of the 

BRPU foams were between 0.030 W/mK and 0.032 W/mK, making them suitable for 

their utilization as an insulation material. 
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Chapter 10  

10 Low pressure hydrolytic depolymerization of Kraft lignin 
for the preparation of bio-based rigid polyurethane foam  

Abstract  

A cost-effective and highly efficient low pressure (<150 psig) Kraft lignin (KL) 

depolymerization proprietary process was developed to produce depolymerized KL 

(DKL) with a much lower molecular weight (1000-2000 g/mol) from KL (Mw ~10,000 

g/mole). This process operates in water-polyalcohols (EG, PG or glycerol) mixture media 

under alkaline conditions employing NaOH as a catalyst. The effects of process 

parameters including reaction temperature, reaction time, NaOH/KL ratio (w/w) and KL 

substrate concentration (wt.%) were investigated and the DKLs obtained were 

characterized with GPC, FTIR, 1H NMR and Elemental analysis. The best operating 

conditions appeared to be 250 oC, 1 h, KL substrate concentration of 20 wt.%, NaOH/KL 

ratio ~0.28 (w/w), leading to ≤0.30% solid residues and ~90% yield of DKL (with a total 

hydroxyl number ≈670.1 mgKOH/g and Mw ≈1050 g/mole), suitable for the replacement 

of petroleum polyols in rigid polyurethane (RPU) foam preparation. The effects of type 

of polyalcohols like ethylene glycol (EG), propylene glycol (PG) and glycerol (G) were 

also investigate on the yields and Mw’s of DKLs by performing the reaction at the best 

operating conditions. The results showed that the depolymerization of KL was effectively 

achieved in any of the above mentioned polyalcohols; however, it was found that Mw is 

slightly higher when employing PG or glycerol as the solvent. The polyalcohols used 

were recoverable at a recovery rate of ~95-96 wt.%, which makes this process more 

economically viable. The obtained DKL was in solid powder form and further derivatized 

into liquid polyols via oxypropylation for the preparation of bio-based rigid polyurethane 

(BRPU) foam at high percentage i.e., 50 wt.% to 70 wt.%, of bio-contents. All BRPU 

foams were characterized and compared in terms of their physical, mechanical and 

thermal properties. All BRPU foams exhibit good compressive strength, compared with 

the reference foam. At the fixed formulation recipe i.e., fixed percentage of physical 

blowing agent, BRPU foams showed the following order of sequence in terms of their 
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compressive modulus: Sucrose polyol reference foam (2695.0 kPa)<DKL50PO50 

(6936.0 kPa)<DKL60PO40 (8902.0 kPa)<DKL70PO30 (22436.0 kPa). All BRPU foams 

were thermally stable up to approximately 200 oC and had low thermal conductivities 

varies between 0.031 W/mK and 0.033 W/mK, and did not show much variation with 

increasing percentage of bio-polyols, making them suitable for their utilization as an 

insulation material 

 

Keywords: Kraft lignin, depolymerization, catalyst, ethylene glycol, polyols, rigid 

polyurethane foam. 

10.1 Introduction  

Lignin is considered as the main renewable aromatic resource. It represents a promising 

alternative feedstock for the production of bio-chemicals, bio-polymers and bio-

materials. Lignin (from Latin lignum which means wood) is, after cellulose, the most 

abundant biopolymer on earth, contributing about 15-30 wt.% of the wood and 12-20 

wt.% of the annual plants (Sjöström, 1981). In plants, lignin plays a vital role, ensuring 

water transportation and providing structural support by cementing cellulose fibers and 

fibrils (Harkin, 1969). From a chemical point of view, lignin is composed of carbon, 

hydrogen and oxygen in different proportions and built up of phenylpropane units (C9 or 

C6-C3) covalently linked by mainly two types of linkages: condensed linkages (e.g., 5-5 

and β-1 linkages) and ether linkages (e.g., α-O-4, β-O-4 and 4-O-5) (Chakar and 

Ragauskas, 2004). The type of monomeric units present in lignin structure and their 

relative abundance depend on its botanic origin, so do the major chemical functional 

groups presenting in lignin structure such as hydroxyl, methoxyl, carbonyl and carboxyl 

moieties. Hydroxyl groups and free positions in the aromatic ring are the most 

characteristic functions in lignin, which determines its reactivity and constitutes the 

reactive sites being exploited in macromolecular chemistry (Cateto et al., 2011). The 

percentage of ether linkages in soft- and hardwood lignins was reported to be 

approximately 56% and 72%, respectively (Pu et al., 2008). Aryl ether linkages can be 

more easily cleaved than the stable C-C linkages since the latter are stable.  
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Lignin represents 30% of all non-fossil organic carbon on Earth. Its availability exceeds 

300 billion tons (Smolarski, 2012), increasing annually by around 20 billion tons. Large 

quantities of lignin are yearly available from numerous pulping mills and biorefinery 

industries (such as cellulosic ethanol plants). It was estimated that 50-55 million metric 

tons of lignin was extracted in the pulp and paper industry in 2010, but only 2% (1 

million tonnes) has been commercialized for the formulation of dispersants, adhesives, 

and surfactants or as antioxidants in plastics and rubbers. The challenge is then to explore 

the potential of producing valuable functional molecules from lignin through chemical 

modifications. One of the major problems still remains is its complex structure and its 

versatility depending on its origin, separation and fragmentation processes, which limits 

its utilization.  

 

Currently lignin is often utilized as a filler or additive in plastics, but due to its highly 

functional character (i.e., rich in phenolic and aliphatic hydroxyl groups) it may be an 

excellent renewable feedstock for a variety of bio-based materials through chemical 

modifications, which has driven numerous research efforts in the past decades 

(Laurichesse and Avérous, 2014). Because of lignin’s special phenyl propanol or polymer 

structure and aryl-alkyl ether bonding, lignin is considered as a potential alternative to 

petroleum for phenolic chemicals and polymers. Substituting petroleum with renewable 

feedstock for chemical and material’s production is especially of significance and interest 

nowadays when petroleum prices are escalating and there are growing concerns on 

depletion of fossil resources. However, original lignin with a very large molecular weight 

has much lower reactivity due to the steric hindrance effect (Cheng et al., 2012). In this 

respect, lignin depolymerization can be a very promising approach to increase its 

functionality and reactivity. The primary purpose of lignin depolymerization is to convert 

the complex lignin compound into smaller molecules of oligomers and monomers for 

further applications (Wang et al., 2013). It was found that chemical or thermal chemical 

depolymerization of lignin via the cleavage of ether linkages in lignin structure (Zakzeski 

et al., 2010) has advantages for better reaction control and higher yields, which provides 

great potential in conversion of lignin into renewable chemicals. 
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Chemical depolymerization of lignin can be divided into five categories according to 

Wang et al. (2013) based on different chemicals/catalysts applied in the depolymerization 

process, includes., (1) base-catalyzed, (2) acid-catalyzed, (3) metallic catalyzed, (4) ionic 

liquids-assisted, and (5) sub- or supercritical fluids-assisted lignin depolymerization. In 

lignin chemical depolymerization processes, solvents (single solvent or in combination 

with a co-solvent) and catalysts were found to be critical. Lignin hydrolytic 

depolymerization in water under acidic conditions has been extensively studied 

(Lundquist, 1976; Matsushita and Yasuda, 2005); but its major drawback is the high yield 

of solid residue due to unavoidable repolymerization/condensation of intermediate 

products during the process (Yuan et al., 2010). Metallic catalysts helped to improve the 

selectivity towards the desired product, while the major issue was their fast deactivation, 

making their use much more expensive (Ye et al., 2012). Ionic liquids (ILs) proved to be 

effective solvents for lignin dissolution (Kilpeläinen et al., 2007) and depolymerization. 

However, the high cost of ILs (Zhu, 2008) and their difficulty in separation from 

depolymerized products would greatly limit their use (Zakzeski et al., 2010). Sub- and 

supercritical organic solvents/fluids alone or in combinations with alkaline catalysts have 

been reported very efficient in the depolymerization of lignin (Cheng et al., 2012; Yuan 

et al., 2010). Similar to ionic liquids, Sub- and supercritical organic solvents/fluids have 

also been employed for lignin depolymerization owing to their good solubility for lignin 

(Hossain and Aldous, 2012; Cox, 2012). Recently, hydrolytic depolymerization using 

water alone as a solvent under alkaline medium has gained more attention for the 

depolymerization of KL into low molecular weight products, i.e., depolymerized KL 

(DKL) in a solid or powder form (Mahmood et al., 2013).  

 

Polyurethane (PU) is commonly synthesized through a polyaddition reaction between 

polyfunctional alcohols (polyether or polyester polyols) and polyisocyanate to form 

urethane linkages (-NH-(C=O)-O-). Currently, both the polyisocyanates and polyols are 

derived from petroleum resources. PU has rapidly grown to be one of the most widely 

used synthetic polymers with its continuously increasing global market. It has varied 

applications in different area, including liquid coatings and paints, adhesives, tough 

elastomers, rigid foams, flexible foams, and fibers (Li and Ragauskas, 2012). Rigid PU 
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foam is a highly crosslinked polymer with a closed cell structure. These materials offer 

low density, thermal conductivity, moisture permeability and high dimensional stability 

and strengths leading to wide applications in construction, refrigeration appliances, and 

technical insulations (Li and Ragauskas, 2012; Abi-Saleh et al., 2002). Rigid PU foam is 

the most efficient insulating material. Thermal conductivity of RPU foam is normally 

between 0.020 and 0.030 W/mK depending on the density. The thermal conductivity 

factor of PU foam is two times lower than that of polystyrene which is an alternative 

material for insulation purposes. On the other hand the physical and mechanical 

properties of RPU foam are superior to those of polystyrene (Zatorski et al., 2008).  

Until now, polyols are mostly derived from petroleum resources (Li and Ragauskas, 

2012). However, due to dwindling petroleum resources there are increasing interests to 

explore renewable low cost resources as an alternative feedstock for the preparation of 

polyols and PUs, which are expected to replace petroleum derived polyols either partially 

or completely and to have a positive impact on the characteristics of resulting foam. The 

obtained DKLs have multiple hydroxyl groups in their structures, thus they can be used 

as polyols for the preparation of rigid polyurethanes (RPU) foams (Demharter, 1998). 

Although with much lower reactivity (Cheng et al., 2012), even crude lignin can be 

directly incorporated into PU formulations due to the presence of aliphatic and aromatic 

hydroxyl groups in its structure as the reactive sites (Cateto et al., 2008), however, more 

than 30 wt.% incorporation negatively affect RPU foam properties (Yoshida et al., 1987). 

The most critical properties of polyols are their hydroxyl number/functionality and 

equivalent weight. Original lignins have high molecular weights and lower functionality. 

Thus, depolymerization of lignin is beneficial by reducing molecular weight of lignin and 

increasing OH functionality of the depolymerized products, and hence leading to an 

increase in reactivity. Due to sky-rocketed prices of petroleum-based products, bio-based 

polyols (Bueno-Ferrer et al., 2012) or ligno-polyols (Borges da Silva et al., 2009) have 

drawn increasing attention. Hydrolytic depolymerization can produce low molecular 

weight bio-polyol products with desirable characteristics for their further utilization in the 

preparation of RPU foams. Also, for the polyols feedstocks which are in solid form 

oxypropylation can be used for their transformation into liquid polyols. By means of 

oxypropylation, the hydroxyl groups, in particular the phenolic one which is hardly 
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accessible because they are entrapped inside the molecule (Cateto et al., 2013) can be 

liberated from steric hindrance. Moreover, such chain extension reaction leads to the 

introduction of multiple ether moieties and resulting in liquid polyols from solid lignin. 

 

Nevertheless, the above methods for lignin depolymerization including the hydrolytic 

depolymerization are restricted by their high operation costs due to the intense reaction 

conditions (combination of high temperatures and pressure) under either acidic or basic 

conditions. There is a growing need for exploration of efficient and cost-effective routes 

employing atmospheric to low pressure. The main objectives of the present work were to 

achieve cost-effective depolymerization of KL (Mw ~10,000 g/mole) at low pressure 

(≤150 psig) employing water-polyalcohol mixture as a novel solvent and NaOH as a 

catalyst, and utilize the produced DKL as bio-polyols after oxypropylation for the 

preparation of RPU foam at high percentage of bio-contents (50 wt.%-70 wt.%). All bio-

based RPU (BRPU) foams were characterized and compared in terms of their physical, 

mechanical and thermal properties. To the best of the authors’ knowledge no systematic 

study has been reported by far in the public literature for the depolymerization of KL into 

low Mw bio-polyols products operating at low pressure.  

 

10.2 Methods  

10.2.1 Materials  

Softwood Kraft lignin (KL) used in this study was provided by FPInnovations produced 

using the proprietary LignoForce process (Kouisni, 2012) in its pilot plant in Thunder 

Bay, Ontario. It is a yellow-brown powder with weak odor and specific gravity of 0.80. 

The relative weight-average molecular weight (Mw) of KL is ≈10,000 g/mol (PDI ≈2.0) 

based on our GPC-UV analysis. The original KL has an ash content of 0.5 wt.% (by 

ashing at 700 oC in a muffle furnace for 4 h), and has the following elemental 

composition (on dry and ash free basis): 63.8 wt.% C, 5.4 wt.% H, 0.02 wt.% N, 5.2 wt.% 

S and 25.6 wt.% O (by difference). The other chemicals used in the study were NaOH, 

ethylene glycol (EG), acetone, sulfuric acid (H2SO4), pyridine, acetic anhydride, d-

chloroform, tetrahydrofuran (THF, HPLC grade), HCl, dibromomethane (CH2Br2), 
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glycerol, KOH, propylene oxide (PO), polymeric MDI, sucrose polyol (JEFFOL SD-

361), triethanolamine (TEA), triethylene diamine (TEDA or Diaza), stannous octoate, 

silicon oil etc, were all reagent grade purchased from Sigma-Aldrich, used without 

further purification or any treatment. The physical characteristics of the chemicals used in 

the foam preparation are given in Table 10-1. 

Table 10-1 Physical Characteristics of the Chemicals 

Ingredients Functionality 

Equivalent  

weight 

(g/mol) 

-OH # 

(mgKOH/g) 
Comments 

PMDI 2.7 135.0 - NCO contents: 31.2% 

Glycerol 3.0 30.7 1829.4 Crosslinking agent 

Sucrose polyol 8.0 155.8 360.0 Polyol 

Water 2.0 9.0 6233.3 Chemical blowing agent 

Acetone - - - Physical blowing agent 

Poly(siloxane ether) - - - Silicon surfactant 

Triethylene diamine - - - Foaming catalyst 

Stannous Octoate - -  Gelation catalyst 

Triethanol amine 3.0 49.73 1128.1 Co-catalys 

 

10.2.2 Kraft lignin depolymerization 

Kraft lignin (KL) was depolymerized via a proprietary process using water-polyalcohols 

(EG/PG/GL) mixture as a solvent under acid or alkaline conditions using H2SO4 or 

NaOH, respectively, as a catalyst under low pressure <150 psig. The KL 

depolymerization experiments were performed in a 100 mL Parr reactor, equipped with a 

pressure gauge, thermocouple, stirrer, gas line and a sampling line. In a typical run, 12 g 

KL with 3.4 g NaOH (NaOH/KL ratio ≈0.28 (w/w)), 2.5 g water and 42.1 g EG were 

loaded into the reactor. After leak check with compressed nitrogen, the reactor was 

heated up to the desired temperature (180-280 oC) under the stirring (290 rpm). After 

reaching the desired temperature, the reactor was soaked to allow reactions for a desired 
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time, and then the reactions were stopped by quenching the reactor with a cold water 

bath. The reaction products were washed out from reactor using distilled water followed 

by acidification to pH ~3-4, in order to facilitate the precipitation of the depolymerized 

Kraft lignin (DKL) products. The precipitated DKL was then separated by filtration. The 

aqueous phase was evaporated to recover EG or other polyalcohols. The recovery yield of 

the solvent polyalcohols was at ~95-96 wt.%. The precipitated solid was dissolved in 

acetone and filtered to get solid residual (SR) – the acetone insoluble fraction. Finally, the 

DKL was recovered by rotary evaporation of the acetone under reduced pressure at 50°C, 

and the DKL products yields were determined. All the data for product yields presented 

are the average of duplicate-triplicate runs with relative errors. The SRs were dried at 105 
oC in air for 24 h in an oven and weighed to obtain SR yield as wt.% of the original KL 

on a dry basis. 

10.2.3 Oxypropylation of DKL 

The obtained DKL at the best operating conditions, although in solid form, was used as 

bio-polyols in this work after being further transferred into liquid polyols via 

oxypropylation. The oxypropylated lignin polyol was then employed as a feedstock for 

the PU foam preparation. Oxypropylation of DKL was carried out in a 100 mL Parr 

reactor. In a typical run, 18.9 g of DKL, 21.21 g propylene oxide (PO), 2.31 g of 

anhydrous mixture of glycerol & KOH (%KOH in mixture was 11wt.%) and 16.8 g of 

acetone. After all the ingredients were loaded, the reactor (under atmospheric pressure) 

was heated up to 150 oC. Initially, pressure in the reactor increased to a maximum of 150 

psig and then dropped to the original pressure ~14.7 psig (or 1.0 atm-g) after 2 h reaction, 

implying complete consumption of PO or completion of the reaction. After cooling the 

system to room temperature, the reactor contents were completely rinsed into a beaker 

using acetone followed by neutralization of the reaction mixture using sulfuric acid. The 

neutralized reaction mixture was then filtered through a Buchner funnel to separate solid 

residues from acetone soluble phase. The acetone soluble filtrate was transferred to a pre-

weighed Erlenmeyer flask to remove acetone and any unused PO (if any) with a rotary 

evaporator at 60 oC. 
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10.2.4 Polyurethane foam preparation 

All the foam samples were prepared in 455-ml plastic cups using one pot method. 

Typically the rigid PU foam formulation in this study includes a polyol combined with 

10% (w/w) of glycerol (a co-crosslinking agent). For comparison, reference foam was 

prepared using sucrose polyols at 0% DKL. Additionally the formulation includes a 

physical blowing agent (acetone at 20% (w/w)), a catalyst combination (mixture with 

equal amounts of stannous octoate and Diaza or TEDA at 2% (w/w)), surfactant at 2% 

(w/w) and water at 2% (w/w). The addition amounts of the blowing agent, catalyst, 

surfactant and water were determined with respect to the total weight of polyol used. 

PMDI was added at a NCO/OH ratio of 1.1. The foam preparation procedure used was 

comprised of the following steps: (1) Desired polyols, catalysts and blowing agents were 

all weighed in a cup and the premixing of mixture were carried out at 550 rpm for 10-12 s 

to obtain a well homogeneous mixture and (2) Pre-calculated PMDI was then transferred 

in to the cup and the mixture was stirred vigorously for another 12-15s. The mixture was 

then placed on a leveled surface in a fume hood and let the foam rise at the ambient 

temperature (23±2 oC). All the foam samples were left in the fume hood for 24-48 h for 

curing before the sample would be further analyzed. The sample shrinkage, structural 

uniformity, stability and cells appearance could be observed at this point. However, prior 

to further characterizations, the foam samples were conditioned for a minimum of 24 h to 

a maximum of 1 week, depending on the requirements. In the synthesis of bio-based RPU 

(BRPU) foams at different bio-replacements ratios, sucrose polyol was not used and 

glycerol was kept at 10 wt.% based on the total weight of polyols used. 

10.2.5 Product characterization 

The relative molecular weights of KL, depolymerized KL (DKL) and oxypropylated 

DKL were measured with a Waters Breeze GPC–HPLC (gel permeation 

chromatography–high performance liquid chromatography) instrument (1525 binary 

pump, UV detector at 270 nm; Waters Styrylgel HR1 column at a column temperature of 

40 oC) using tetrahydrofuran (THF) as the eluent at a flow rate of 1 ml/min with linear 

polystyrene standards for building the molecular weight calibration curve. The functional 

groups of KL, DKLs and oxypropylated DKL were analyzed by Fourier Transform 
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Infrared Spectroscopy (FTIR). Proton nuclear magnetic resonance (1H-NMR) spectra for 

KL and DKL were acquired at 25oC using a Varian Inova 600 NMR spectrometer 

equipped with a Varian 5mm triple-resonance indirect-detection HCX probe. A total of 

16-32 scans were accumulated using a 2s recycle delay, 3.6s acquisition time, a 45-

degree tip angle (pw =4.8 us), and a spectral width from -2 ppm to 14 ppm (sw =9000.9 

Hz). Quantitative 1H-NMR spectra analysis was realized using acetylated samples of KL 

and DKLs. Briefly, 1 g of dried sample was dissolved in a 1:1 (v/v) mixture of pyridine 

(5 mL) and acetic anhydride (5 mL) in a vial followed by stirring for 24 to 48 hr. The 

mixture was then transferred into a beaker containing 100 mL of ice-cooled 1 wt.% HCl 

solution. The resulting precipitates of acetylated samples were washed with distilled 

water to pH ≈7. The samples were then dried at 105 oC for 24 hr to remove residual water 

prior to the quantitative 1H-NMR spectra analysis. Dibromomethane (CH2Br2) was used 

as an internal standard with a characteristic peak is at 4.9 ppm. To determine hydroxyl 

number by 1H-NMR, the samples were prepared by first weighing 30.0 mg of the 

acetylated KL or DKL and 15.0 mg of the internal standard in a vial and dissolved in d-

chloroform (≈1000-1500 mg) then the sample was transferred into a 5 mm NMR tube via 

a transfer pipette for the subsequent NMR analysis. Hydroxyl number of the 

oxypropylated DKL sample was measured as per ASTM D4274-99 using a 

Potentiometric Titrator (Titroline 7000 Titrator). The viscosity of oxypropylated DKL 

sample was measured by using BROOKFIELD CAP 2000+VISCOMETER at 80 oC. 

 

The apparent densities of foam samples were measured according to ASTM D1622-03. 

The mechanical properties of PUF samples were measured at ambient conditions on an 

ADMET Universal Testing Machine (Model SM-1000-38). Modulus of elasticity 

(Young’s modulus or compressive modulus) (initial linear slope of the stress-strain 

curve) and compressive strength at 10% deformation, were determined by performing the 

stress-strain tests according to ASTM D 1621-00. Thermal conductivities of the foam 

samples were measured using KD2 PRO thermal properties analyzer with SH-1 dual 

needle sensor (1.3 mm diameter x 3 cm long, 6 mm spacing) capable of measuring 

thermal conductivity in the range of 0.02 to 2.00 W/mK. The specimen size used for 

thermal conductivity analysis was 40 mm x 40 mm x 20 mm. Thermal stability of the 
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foams were measured by Pyris 1 TGA Diamond, Perkin–Elmer Thermogravimetric 

analyzer (TGA), under a N2 and air flow (20 ml/min) respectively, from 30 oC to 800 oC 

at 10 oC/min. Morphology of the foams was observed by Hitachi S-4500 field emission 

cross beam scanning electron microscope (SEM). After examination by SEM, selected 

locations on the foam surface were subjected to a cross-sectional cut and the sample was 

coated with osmium, and imaged using a focused ion beam LEO (Zeiss, Thornwood, NY, 

USA) 1540XB SEM. 

10.3 Results and discussions  

The depolymerized products were soluble in water, but after acidification and subsequent 

filtration the products were water insoluble but organic soluble (in such as acetone and 

THF). 

10.3.1 Depolymerization of KL under acid vs basic medium 

KL was depolymerized under both acidic and basic medium using the H2SO4 and NaOH 

as a catalyst, respectively. Experiments were conducted using same weight percentages 

of both catalysts based on KL loaded into the reactor i.e. 2 wt.% H2SO4 or 2 wt.% NaOH 

(corresponding to 10 mol% based on 1:1 mole ratio of NaOH:KL). The results showed 

that under acidic conditions, the overall yield of DKL was above 100 wt.% implying the 

prominent occurrence of repolymerization of KL and condensation of KL with the 

solvent (moreover, the solvent itself such as EG could also self-polymerize under acidic 

conditions). During acidolysis reaction of KL, repolymerization and condensation 

reactions also increased the molecular weights of the resulting products (Lundquist, 

1976). Under acidic conditions without any added nucleophile, the predominant reactions 

in lignin could be fragmentation by acidolysis of β-O-4/ linkages and repolymerization of 

the fragments via acid catalyzed condensation between the aromatic C3 or C5 and a 

carbonium ion, normally located at Cα of the side chain (Lundquist, 1976; Sturgeon et al., 

2014). In the former reaction, structures of the Hibbert ketone type would be formed 

together with a new phenolic end group, whereas the latter would form a new stable 

carbon-carbon linkage between two lignin units. Both types of reactions have a common 

intermediate, a carbonium ion, and they occur more or less simultaneously. The 
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simultaneous repolymerization of lignin during an acid catalyzed treatment is an 

undesirable reaction since it leads to an increase in heterogeneity of the resulting 

material. In addition, solubility and reactivity properties of the treated lignin products 

could be negatively affected (Li et al., 2007). Under acidic conditions, the yield of solid 

residues (SRs) was as high as ~35 wt.% due to excessive cross-linking reactions. 

Therefore, depolymerization of KL in acidic media is not desirable for obtaining low 

molecular weight products.  

 

In contrast, depolymerization of KL under basic medium using NaOH as a catalyst 

produced DKL products of reduced molecular weights and at very high yields (>95 

wt.%). The yields of DKL and SRs achieved from the acid- and base-catalyzed KL 

depolymerization are given in Table 10-2 and their GPC curves are shown in Figure 10-1. 

Therefore, more studies on effects of various operating parameters on the KL 

depolymerization were carried out in a basic medium using NaOH as the catalyst. 

 

Table 10-2 Yields of DKL and SR’s for KL depolymerization in acidic and basic medium 

(Other reaction conditions: 250 oC, 1 h, 20 wt.% substrate concentration, EG/KL ratio of 

4.0 (w/w) and 2 wt.% catalyst addition) 

Reaction 

media 

Yield of SR's 

(wt.%) 

Yield of DKL 

(wt.%) 

Mw 

(g/mole) 

Original KL - - 10,000 (Bimodal) 

Acidic 35.37±1.0 124.11±2.1 Bimodal 

Alkaline 0.42±1.0 95.32±0.65 9680 
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Figure 10-1 GPC curves of the original KL and the obtained DKL product from the KL 

depolymerization in acidic or alkaline medium (Other reaction conditions: 250 oC, 1 h, 20 

wt.% KL substrate concentration, EG/KL ratio of 4.0 (w/w) and 2 wt.% catalyst addition) 

 

10.3.2 Effects of addition amount of catalyst  

Effects of mole percentage of NaOH on KL depolymerization were studied at 200 oC and 

250 oC under two different reaction conditions employing different reaction media, i.e., 

(a) EG as a sole solvent without the addition of water and (b) water-EG mixture. Initially 

the experiments were conducted at 200 oC for 1 h at an EG/KL ratio of ~4.0 (w/w) and 

initial reactor pressure of ~1 atm-g with varying mole % of NaOH from 10% to 50% 

based on 1:1 mole ratio of NaOH:KL in EG without water. During the whole reaction, 

the pressure of system remained at ~1 atm-g. The yields of SR and DKLs along with their 

associated molecular weights are shown in Table 10-3. The results showed that DKL 

depolymerization at 200 oC employing EG alone as a solvent, no reduction in molecular 

weight was achieved, and the yields of DKL while increasing the mole % of NaOH 

remained the same, although the SR yields decreased slightly. Water as a co-solvent was 

added in reaction system operating at 200 oC, but the results as shown in Table 10-3 were 

not very satisfactory even the mole % of NaOH was further increased up to 128%. 
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Table 10-3 Effects of mole % of NaOH on yields of SRs and DKL (Other reaction 

conditions: 1 h, substrate concentration: 20 wt.% and EG/KL ratio of 4.0 (w/w)) 

Molar 

%NaOH 

NaOH  

(wt.%) 

Yield of SR's  

(wt.%) 

Yield of DKL 

(wt.%) 
Mw (g/mole) 

200 oC in EG without water 

KL - - - 10,000 

Bimodal 

Bimodal 

Bimodal 

Bimodal 

10 2.2 5.20±1.0 95.11±0.50 

20 4.4 4.81±1.0 95.63±0.25 

30 6.6 3.52±1.0 96.54±0.50 

50 11.1 2.82±1.0 96.61±1.0 

200 oC in EG with water as a co-solvent 

50 11.1 2.53±1.0 85.14±1.0 Bimodal 

100 22.2 2.85±0.50 83.73±1.0 Bimodal 

128 28.4 3.37±0.5 95.52±1.0 Bimodal 

250 oC in EG without water  

50 11.1 3.25±1.0 95.81±0.65 Bimodal 

100 22.2 2.86±1.0 96.35±0.35 Bimodal 

128 28.4 2.37±1.0 96.63±0.50 Bimodal 

250 oC in EG with water as a co-solvent 

10 2.2 3.91±1.0 95.34±0.85 9550 

20 4.4 3.62±1.0 95.65±0.45 8360 

7360 

5400 

2450 

1050 

960 

30 6.6 3.55±1.0 95.60±1.1 

50 11.1 0.89±1.0 95.10±1.0 

100 22.2 0.41±0.65 94.68±1.0 

128 28.4 0.30±0.50 90.10±0.50 

140 31.1 0.31±0.50 89.95±0.25 

 

Temperature is the most critical parameter for hydrolytic depolymerization of lignin in 

water (Xu et al., 2008). Thus, trials were made at a higher temperature i.e., 250 oC using 

both solvent systems (EG alone without water and EG with water as a co-solvent). In the 

EG alone solvent system, the results achieved were not satisfactory as the DKL products 
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showed very high Mw values. In contrast, the results were very promising from the 

experiments at 250 oC when employing water as a co-solvent in EG, as shown in Table 

10-3. The presence of a small amount of water in the reaction medium containing KL, 

EG and NaOH catalyst led to generation of some pressure (up to approx. 150 psig) inside 

the reaction system, likely due to the water vapor pressure (i.e., ~150 psig at 250 oC).  

 

At 250 oC employing water-EG solvent mixture, the mole percentages of NaOH were 

varied from 10% to 140% and the corresponding yields of SRs and DKLs and the Mw’s of 

DKLs are shown in Table 10-3. It can be clearly seen that at a lower mole% of NaOH 

between 10% and 50%, the DKL yield remained almost the same. However, the SR yield 

was significantly reduced at 50% suggesting suppressed extent of 

repolymerization/condensation reactions at higher NaOH concentration (Mahmood et al., 

2013). The yield of SRs dropped further to from approximately 0.89 wt.% to 0.41 wt.% 

when increasing the mole percentage of NaOH from 50% to 100%, but then it remained 

almost constant if further increasing the mole % of NaOH from 128% to 140%. The DKL 

yield remained almost the same at 94.5±0.5 wt.% when increasing molar percentage of 

NaOH from 50% to 100%. While further increasing the NaOH mole percentage from 

128% to 140%, the DKL yield was slightly reduced to 90.5±0.5 wt.%. Although the Mw’s 

of DKLs were still high (5000-10000 g/mole) at a lower mole percentage of NaOH (in 

the range of 10 -50%), the Mw’s of DKLs dropped significantly to approximately 2450 

g/mole and ~1000 g/mole when the mole % of NaOH was increased to100% and 128 or 

140%, respectively. A possible reason could be that a higher mole percentage of NaOH 

would transform KL to its sodium phenolate form, which helped to dissolve lignin in the 

solvent, and hence facilitated the depolymerization reactions..The results demonstrated 

that water-EG mixture is an efficient solvent for depolymerizing  high molecular weight 

KL into low Mw products under low pressure (≤150 psig), which is most likely owing to 

the positive role of water in hydrolytic de-polymerization of lignin (Mahmood et al., 

2013). Therefore, in view of the utilization of produced DKL for preparing polyols for 

rigid polyurethane foams production (requiring lower Mw products), 100% and 128 mole 

percentages of NaOH were selected in further investigations on the other operating 
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parameters, e.g., reaction temperature, time, substrate concentration, and type of 

polyalcohol.  

10.3.3 Effects of reaction temperature 

Temperature is one of the most critical parameters for lignin depolymerization in water 

(Xu et al., 2008). The effects of reaction temperatures were investigated on KL 

depolymerization were investigated in water-polyalcohols mixture with 100% and 128% 

mole% of NaOH at a temperature varying from 180 oC to 280 oC. The results are given in 

Table 10-4. The molecular weight distribution curves of some prominent samples are 

illustrated in Figure 10-2. 

Table 10-4 Effects of reaction temperature on the yields of DKL and SR and Mw’s of 

DKL (Other reaction conditions: 1 h, KL substrate concentration of 20 wt.%, EG/KL 

ratio of4.0 (w/w)) 

Reaction 

temp. (oC) 

Molar % NaOH 

(NaOH; wt.%) 

Yield of SR's 

(wt.%) 

Yield of DKL 

(wt.%) 

Mw  

(g/mole) 

KL - - - Bimodal  

180 128 (28.4) 1.46±0.10 98.46±0.25 Bimodal 

200 128 (28.4) 3.37±0.15 95.52±0.25 Bimodal 

220 128 (28.4) 0.28±0.50 93.28±0.50 7230 

250 
100 (22.2) 0.41±0.65 94.68±1.0 2560 

128 (28.4) 0.30±0.50 90.10±0.50 1050 

280 
100 (22.2) 0.67±0.50 86.20±1.0 950 

128 (28.4) 0.53±0.50 87.53±0.5 940 
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Figure 10-2 GPC curves of DKLs obtained from KL depolymerization at various reaction 

temperatures (Other reaction conditions: 1 h, 20 wt.% KL substrate concentration, 

EG/KL ratio of 4.0 (w/w), 128 mole% NaOH or NaOH/KL weight ratio of 0.28) 

 
Experiments were conducted at 128 molar percentages (28.4 wt.%) of NaOH over the 

temperature range of 180 oC to 280 oC. However, at 250 oC and 280 oC, effect of lower 

molar % of NaOH i.e. 100% (22.2 wt.%) was also studied to investigate its effect on 

yield and Mw values. At the 128 molar % (28.4 wt.%) of NaOH when the temperature 

was increased from 180 oC to 200 oC there was a relatively very low degree of KL 

depolymerization. However, at 220 oC for ~128% molar of NaOH (28.4 wt.%), Mw of 

DKL reduced to 7230 g/mole. At 250 oC for 100 molar% of NaOH, the yield of DKL was 

very high (~94.68 wt.%) with a prominent reduction in Mw ~2560 g/mole was observed. 

This suggests that the temperature has a drastic effect on the cleavage of alkyl-aryl ether 

linkages in lignin (Mahmood et al., 2013). At 250 oC varying the molar % of NaOH from 

100% to 128% further reduced the Mw ~1050 g/mole, likely due to the combined effect of 

increasing lignin solubility as sodium phenolate which instigate the KL hydrolysis 

reaction and lead to efficient cleavage of alkyl-aryl ether linkages. The hydrolytic 

depolymerization of KL was mainly due to the breakage of ether linkages being attacked 

by hydroxyl ions. With further increasing temperature to 280 oC at molar percentage of 

NaOH of 100%, the yield of DKL (~86.2 wt.%) was reduced slightly, however Mw (~950 
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g/mole) decrease significantly with a slight increase of SR’s yield (0.41% to 0.67 wt.%). 

At 280 oC, varying NaOH molar % from 100% to 128% has negligible effects on the 

yields of DKL and SR’s as well as on Mw. Considering yields of SR and DKL and Mw of 

DKL, 250 oC at molar percentage of NaOH ~128% appears to be the best temperature for 

the hydrolytic depolymerization of KL in water-polyalcohol co-solvent reaction mixture.  

10.3.4 Effects of reaction time  

The experiments in this section were to examine the effects of reaction time on hydrolytic 

depolymerization of KL at 250 oC with ~128 mole% of NaOH (NaOH/KL =0.28 w/w) in 

a water-polyalcohol mixture medium. The products yields and the Mw of DKL obtained 

from KL depolymerization for various lengths of reaction time (30-240 min) illustrated in 

Figure 10-3. At 250 oC for 30 min the yield of DKL was the highest (~99 wt.%), but the 

corresponding Mw was very high (~4700 g/mole). The yield of DKL dropped to 

approximately 90 wt.% if increasing the reaction time to 60 min, but Mw reduced to 

~1050 g/mole. However, increasing the reaction time to 120 min and 180 min produced 

negligible changes in the yield of DKL and Mw. Further increasing the reaction time to 

240 min, yield of DKL remained almost the same, the yield of SR increased to 2.28 wt.% 

which could be due to the crosslinking reactions, prominent at a longer reaction time 

(Mahmood et al., 2013). The Mw of DKLs was increased from 1170 g/mole at 180 min to 

1720 g/mole at 240 min, which could be attributed to condensation reactions between the 

lignin phenolic ortho positions and aliphatic hydroxyl groups forming cross-linking of 

different lignin molecules. In terms of both yield and Mw of DKL products, the best 

reaction conditions appeared to be 60 min at 250 oC. 
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Figure 10-3 Effects of reaction time on yield and molecular weight of DKL (Other 

reaction conditions: 250 oC, KL substrate concentration of 20 wt.%, EG/KL ratio of 4.0 

(w/w) and 128 mole% of NaOH) 

 

10.3.5 Effects of KL substrate concentration 

KL depolymerization runs with various KL substrate concentration were carried out at 

250 oC for 60 min and 128 mole% of NaOH (or NaOH/KL mass ratio of 0.28), and the 

yields of DKL, SR and the Mw’s of DKLs are given in Table 10-5. The yield of DKL 

remained almost the same with increasing KL substrate concentration from 10 wt.% to 30 

wt.%, while Mw increased significantly from 920 g/mole to 3550 g/mole. At a substrate 

concentration below 20 wt.%, the yield of SR was almost unchanged either. However, the 

yield of SR was found increased drastically from 0.3 wt.% to ~8.70 wt.% while 

increasing KL substrate concentration from 20 to 30 wt.%. The sharp increase in SR yield 

at a very high substrate concentration could be due to the insufficient amount of solvent 

for the KL hydrolytic depolymerization, which favors condensation/repolymerization 

reactions, hence increasing the SR yield and Mw of the DKL. Considering both the 

efficiency and the yield and Mw of DKL, 20 wt.% KL substrate concentration was chosen 

for further studies of this process. 
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Table 10-5 Effects of varying KL (w/w) substrate concentration on the products yields 

and Mw of DKL (Other reaction conditions: 250 oC, 60 min, and 128 mole% of NaOH) 

KL concentration 

(w/w) 

Yield of SR's 

(wt.%) 

Yield of DKL 

(wt.%) 
Mw (g/mole) 

10.0 0.22±0.50 85.6±1.0 920 

20.0 0.30±0.50 90.1±0.50 1020 

30.0 8.70±1.0 83.8±1.0 3550 

 

Hence, with respect to both yield and Mw of the DKL products, the best operating 

conditions appeared to be at 250 oC, 1 h, 20 wt.% KL concentration, polyalcohol/KL ratio 

~4.0 (w/w) and 28.4 wt.% NaOH corresponding to ~128% mole % of NaOH.  

 

10.3.6 Effect of type of polyalcohols on KL depolymerization 

Three polyalcohols, i.e., ethylene glycol (EG), propylene glycol (PG) and glycerol were 

tested respectively as a solvent for KL depolymerization, and the yields of DKL & SRs 

and Mw of DKL are shown in Figure 10-4. The effects of different polyalcohols were 

studied at the selected best reaction conditions as described above. Although all these 

polyalcohols can be used as solvents (with water as a co-solvent) in KL 

depolymerization, producing low Mw (~ 1000 g/mole) DKL products at a yield of ≥ 78 

wt.%. The results as given in Figure 10-4 imply that the type of polyalcohol has a marked 

influence on the yield and Mw of DKL. It was reported previously that solvents that are 

even chemically similar (i.e., with similar functional groups, such as propylene glycol 

and ethylene glycol) might still differ in their performance when used as a solvent for a 

reaction (Sanghi and Singh, 2012). It can be seen from Figure 10-4 that for KL 

depolymerization the EG solvent provides the lowest Mw and highest DKL yield when 

compared with PG and glycerol. The superb performance of EG might be attributed to its 

lower viscosity, superior heat transfer efficiency and moderately low dielectric constant 

(Rezzoug and Capart, 2002). Thus, in this study, EG was selected as the best solvent. The 



243 

 

KL depolymerization products, i.e., DKLs, are -OH rich polyols which can be very 

suitable as feedstock for the preparation of polyurethanes (Ye at al., 2014). 

 

 

Figure 10-4 Effects of various solvents on yield and Mw of DKL (Other reaction 

conditions: 250 oC, 60 min, KL substrate concentration of 20 wt.%, EG/KL ratio of 0.40 

(w/w) and 128 mole% of NaOH) 

 
 

In authors’ previous paper (Mahmood et al., 2013) hydrolytic depolymerization of KL 

was carried using water as the sole solvent in an alkaline medium using NaOH as a 

catalyst. At the same operating conditions of 250 oC, 60 min, substrate concentration ≈20 

wt.% and NaOH/KL ratio (w/w) ≈0.28 (or 128 mole% of NaOH),the yield of DL was 

~92 wt.% with Mw ≈3310 g/mole, and SR ≈0.5wt.%. To reach Mw ≈1000 g/mole, the 

reaction needed to be carried out at 300 oC. For KL hydrolytic depolymerization reaction 

in water, depending on the reaction temperature, the pressure of the reactor reached 5 

MPa at 250 oC and 8 MPa at 300 oC. However, due to costs associated with the high 

pressure reactor systems, it is more advantageous to do depolymerize KL under 

atmospheric to low pressure reaction system.  

 

This present study was conducted to establish a new route for KL depolymerization in 

water-polyalcohols co-solvent mixture. The best operating conditions for KL 
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depolymerization using water-EG co-solvent mixture were 250 oC, 60 min, 20 wt.% 

substrate concentration, NaOH/KL ratio ≈0.28 (w/w) (or 128 mole% of NaOH). The 

corresponding yield of DKL was ~90 wt.%, and the obtained DKL has a low molecular 

weight Mw ≈1000 g/mole and large aliphatic hydroxyl number ≈296 mgKOH/g. Most 

importantly, the maximum operating pressure was below 150 psig. With respect to the 

energy consumption and industrial applications for producing a suitable feedstock for PU 

foams or resins, KL depolymerization in water-polyalcohols mixtures is certainly more 

promising.  

 

For industrial applications of the process, it is pivotally importantly to recover and reuse 

the solvent. In this study, overall EG recovery was investigated for the tests at the 

selected best operating reaction conditions. EG used in the KL depolymerization was 

recovered by post treatment via two routes. One fraction was obtained through distillation 

from the water soluble phase namely the filtrate, and second fraction was recovered from 

the acetone soluble phase through rotary evaporation at 120 oC under high vacuum 

conditions after removal of acetone. As illustrated in Figure 10-5, the EG loss from the 

process was only 2.5 wt.% based on EG input which is negligibly small. Thus, the 

process can be very economical since almost full recovery of EG used in the reaction can 

be attained.  

 

 

Figure 10-5 Overall EG balance of the system 

10.3.7 Chemical analyses of DKLs 

Elemental composition (the CHNS contents) of the KL and DKL samples were analyzed 

to provide information on the fate of elements like N and S that are associated with 

environmental concerns for the industrial applications of lignin. Table 10-6 shows 
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elemental composition of KL and some typical DKL samples. The C and H contents of 

DKL from low-temperature experiments were not varied much from those of the original 

KL, while the high temperature DKL products (250 oC and 260 oC) have a much higher C 

contents (68.8 wt.% and 69.7 wt.%, respectively, compared to 63.8 wt.% for the original 

lignin). N contents for all samples are negligible, thus not presented in the Table 10-6. 

The S contents of all DKLs are 0.6% (±0.2) S, significantly lower than that in the original 

KL (5.2 wt.% S), suggesting that the low pressure hydrolytic depolymerization process is 

very effective for KL desulfurization. The resulting DKL products have nearly no odor, 

making them a suitable feedstock for various industrial applications such as manufacture 

of phenolic adhesives, epoxy resins or polyurethane (PU) foams.  

 

Table 10-6 Elemental composition of the original KL and typical DKL products obtained 

from KL depolymerization at different temperatures (Other reaction conditions: 1 h, KL 

substrate concentration of 20 wt.%, EG/KL ratio of 4.0 (w/w) and 128 mole% of NaOH) 

Reaction condition Elements (%, d.a.f)a 

T (oC) N C H S Ob 

Original KL 0.02 63.8 5.4 5.2 25.6 

180 0.10 63.3 5.4 0.8 30.4 

200 0.10 64.1 5.4 0.4 30.0 

220 0.00 64.7 5.6 0.7 29.0 

250 0.04 68.8 5.6 0.5 25.1 

260 0.05 69.7 5.6 0.6 24.1 
a Dry and ash free basis. 
b Determined by difference  

 

IR spectra of the original KL and the DKL produced in water-EG mixture at 250 oC 

(other reaction conditions are: 1 h, KL substrate concentration of 20 wt.%, EG/KL ratio 

of 4.0 (w/w) and 128 mole% of NaOH) are shown in Figure 10-10, along with 

oxypropylated samples and reference polyols for the sake of comparison. FTIR can be 

used for qualitatively monitoring the changes of functional groups (particularly, hydroxyl 
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groups) in the KL after depolymerization. As shown in Figure 10-10, as expected all 

spectra contain a broad IR absorption at 3200-3550 cm-1 attributed to aromatic and 

aliphatic O-H stretching. IR absorbance’s at 1400-1600 cm-1 are due to the aryl 

(aromatic) groups. The peaks at 1000-1300 cm-1 correspond to C-O stretching, suggesting 

the presence of primary, secondary and tertiary alcohols, phenols, ethers and esters (Islam 

et al., 2005; Kubo and Kadla, 2005). The ether linkage at 1060-1160 cm-1 was clearly 

observable in the original KL, whereas the ether linkage has much lower IR absorption in 

the DKL product, suggesting that ether linkages in the KL were cleaved during the 

hydrolytic de-polymerization reaction. The intensity of the aromatic absorption at 1400-

1600 cm-1 in the DKL sample was almost the same as those in the original KL, suggesting 

that the hydrolytic depolymerization does not change lignin’s aromaticity (Mahmood et 

al., 2013). 

 

10.3.8 Rigid polyurethane foam (RPU foam) 

Rigid polyurethane (RPU) foams are known for their unique combination dimensional 

stability, high mechanical strength and lower thermal conductivity. Table 10-7 shows the 

characteristics of DKL and oxypropylated DKLs. All the polyols produced by 

oxypropylation of DKL were in viscous liquid form. In this work, the oxypropylated 

DKL was further used as bio-polyols for the preparation of BRPU foams with high 

percentage of bio-contents. Figures 10-6, 10-7, 10-8 and 10-9 show the 1H NMR spectra 

of acetylated KL, acetylated DKL, acetylated DKL50PO50 and acetylated DKL70PO30, 

respectively. It is clear from the Figure 10-6 and Figure 10-7 that original KL and DKL 

both have aliphatic and phenolic –OH groups presented here in terms of aliphatic and 

phenolic acetates respectively. However, after oxypropylation all the phenolic –OH 

transferred into aliphatic –OH presented in terms of aliphatic acetates, can be clearly seen 

from Figure 10-8 and Figure 10-9. 

 

Table 10-7 Characteristics of DKL and oxypropylated DKL sample 
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Sample ID 
Mw 

(g/mole) 

Aliphatic –OH 

number 

(mgKOH/g) 

Total –OH  

number 

(mgKOH/g) 

Viscosity at 

80 oC (Pa.s) 
State of product 

DKL 1050 295.5 670.5 - Solid powder 

DKL50PO50 1550 - 331.0 0.812 
Viscous liquid 

 
DKL60PO40 1440 - 340.4 1.101 

DKL70PO30 1420 - 347.5 1.232 

 

 

 

Figure 10-6 1H NMR spectra of acetylated KL 
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Figure 10-7 1H NMR spectra of acetylated DKL 

 

 

Figure 10-8 1H NMR spectra of acetylated DKL50PO50 

Internal 
standard  

(4.9 ppm) 
Aliphatic 
acetate 

Phenolic 
acetate 
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Figure 10-9 1H NMR spectra of acetylated DKL70PO30 

 

FT-IR spectra of original KL, DKL and the oxypropylated DKL samples and reference 

polyol are shown in Figure 10-10. The oxypropylation and occurrence of PO grafting on 

lignins can be evidenced by following FTIR observations from Figure 10-11:(a) an 

increase in the bands at 2971-2870 cm-1 attributed to the stretching of CH3, CH2 and CH 

aliphatic groups; (b) reduction in the intensity of the carbonyl peak at 1714 cm-1; (c) a 

marked increase of the absorption bands in the ether C-O stretching region (1000-1100 

cm-1); and (d) an increase in the band at 1371 cm-1 confirming the introduction of CH3 

groups (Cateto et al., 2009). 
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Figure 10-10 FTIR spectra of KL, DKL and oxypropylated DKL samples 

10.3.8.1 Physical and mechanical properties 

According to the literature, density plays an important role in the mechanical 

performance of rigid PU foam (Li and Ragauskas, 2012) and is one of the most important 

properties of RPU foams. The density of a foam sample is governed by the weight of the 

foaming ingredients which are responsible for generating the gases trapped in the foam 

cells. The foaming gases mainly includes carbon dioxide generated from the chemical 

reaction between the chemical blowing agent (water) and isocyanate, physical blowing 

agents, and air which is either introduced into the reaction vessel during the foaming 

process or diffuses into the cells during the aging process. In this study a combination of 

physical and chemical blowing agents was employed to control the density of the 

resulting foams. The quantity of water was kept at 2 wt.% based on the total weight of 

polyols and physical blowing agent (acetone) was used to further reduce the density of 

foam to the desired level, since the consumption of MDI will increase with the increase in 

water %, which will increase the cost and RPU foam fragility. Acetone uses the heat 

released during exothermic reaction of isocyanate with water and polyol (~100-110 

kJ/mole of urethane) (Tu, 2008). During the foaming reaction temperature increased 

above 100 oC and can rise to maximum foam temperature of 168 oC (Jimoda, 2011). Two 

routes were investigated in this study: (1) at fixed percentage of physical blowing agent 
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and, (2) at varying percentage of physical blowing agent to keep the final density 

approximately at the same level to investigate the effect of increasing bio-contents on 

foam’s mechanical and thermal characteristics. All the prepared foams were 

dimensionally stable and non-shrinking structure, rigid and of uniform structure. Table 

10-9 shows the properties (physical, mechanical and thermal characteristics) of the RPU 

foam prepared from the oxypropylated DKL and a reference foam prepared suing an 

industrial sucrose polyol (JEFFOL SD-361, HUNTSMAN INTERNATIONAL LLC).  

 

Table 10-8 Physical and mechanical properties of reference and BRPU foams 

Sample ID Density 

(kg/m3) 

Compressive 

modulus (kPa) 

Compression strength 

at10% deformation (kPa) 

Sucrose Ref. Foam 42.5±0.5 2695.0±100.0 182.0±45.0 

At varying percentage of physical blowing agent 

DKL50PO50 46.0±1.0 6936.0±55.0 356.0±41.0 

DKL60PO40 40.0±0.5 5273.0±70.0 348.1±21.0 

DKL70PO30 38.0±1.0 4743.0±120.0 315.0±85.0 

At fixed percentage of physical blowing agent 

DKL50PO50 46.0±1.0 6936.0±55.0 356.0±41.0 

DKL60PO40 61.8±0.2 8902.0±35.0 381.0±11.0 

DKL70PO30 82.7±2.0 22436.0±22.0 566.0±10.0 

 

It is clear from Table 10-8 that the compressive modulus and compressive strength of 

BRPU foam at 50 wt.% bio-content were higher than the reference foam from sucrose 

polyol. This could be due to the structural variations between sucrose polyol and DKL. 

Sucrose polyol has a multi branched short chains ether structure, where, DKL sample 

also contains aromatic contents. Therefore, the increased strengths of BRPU foams could 

be primarily attributed to DKL’s aromatic structure combined with high functionality of 

DKL, which lead to higher rigidity and crosslinking density in BRPU foams compared to 

the reference foam. Further increasing bio-contents to 60 wt.% and 70 wt.% in BRPU 
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foam formulations, while maintaining approximately the same final density by increasing 

percentage of acetone, modulus and strength were reduced. This could be either attributed 

to the morphological characteristics of BRPU foam or to the increased brittleness of 

foams leading to cell breakage under applied pressure. However, BRPU foam at 70 wt.% 

bio-contents had higher strength than reference foam. On the other hand, when physical 

blowing agent percentage was kept constant (20% (w/w)) in formulation recipe, the 

increasing percentage of bio-contents in BRPU foams, resulted in more crosslinking due 

to the short chain structure of prepared polyols and lead to dense foams. The final foam’s 

density increased and thus compressive modulus and strength of foam increased as well. 

The prepared BRPU rigid PU foams at 50-70 wt.% bio-contents (DKL and glycerol) were 

analyzed by FTIR for their structural variation. The signal at 2253.6 cm-1 indicates the 

residual/unreacted isocyanate group (NCO) (Ribeiro da Silva et al. 2013). The signals 

corresponding to the stretching vibration of N-H were identified at between 3297 cm-1 

and 3454.53 cm-1. 1710 cm-1 (C=O stretching) (Cinelli et al., 2013) and 1408.84 cm-1 and 

1098.30 cm-1 (C-N coupled, C-O stretch) indicates the existence of the urethane linkage 

(Ribeiro da Silva et al. 2013). 

10.3.8.2 Thermal properties  

RPU foams are the most efficient insulation materials due to their low thermal 

conductivity (Cunningham and Sparrow, 1986). Thermal conductivity value is closely 

related to foam density and cell morphology (Ribeiro da Silva et al., 2013), and the 

insulation capacity of foam increases as its thermal conductivity decreases (Lin et al., 

1996). Thermal conductivities of reference and BRPU foams are summarized in Table 

10-9.  
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Table 10-9 Thermal conductivity of reference and BRPU foams 

Sample ID Thermal conductivity (λ) 

(W/m-K) 

Sucrose ref. foam 0.033±0.0010 

DKL50PO50 0.033±0.0010 

DKL60PO40 0.031±0.0010 

DKL70PO30 0.032±0.0010 

 

In this study, foam’s λ values vary between 0.032±0.001 W/mK, which is in good 

agreement with literature (Cateto et al., 2010) taking into account that the density of the 

prepared foams is towards the higher limit of common PU foams where λ values are 

between 0.020-0.030 W/mK for densities ranging from 30-100 kg/m3 (Ribeiro da Silva et 

al., 2013). Over the passage of time air diffuses into the cells and can lead to the 

increased thermal conductivity of foams. 

 

Thermogravimetric analysis was also performed to investigate the thermal stability of 

reference and BRPU foams under inert atmosphere. Figure 10-11 shows thermal stability 

characteristics of reference foam and BRPU foam with 50 wt.% bio-contents. Thermal 

stability of the BRPU foam was investigated by TGA in 20 mL/min N2 flow heated from 

room temperature to 800 oC at 10 oC/min. As illustrated in Figure 10-11, reference and 

BRPU foams were thermally stable to 200 oC, and after that degradation started (Zhao et 

al., 2012). The area below 150 oC is considered to be due to the evaporation of water. 

Pyrolysis of PU foam under nitrogen atmosphere starts at ~170 oC and intensified at ~200 
oC. Main decomposition range of RPU foams took place between 200-450 oC. Where, 

around 350 oC the decomposition of polyurethane start releasing components like 

diisocyanates and polyols along with other decomposition products like amines, small 

transition components, olefins and carbon dioxide because of the destruction of polymer 

chain (Ribeiro da Silva et al., 2013; Manocha et al., 2010). For all BRPU foams after 600 
oC, weight loss was negligible and, there was not much difference between their thermal 

stability. 
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Figure 10-11 Thermal stability and the rate of weight loss of BRPU foams under nitrogen 

atmosphere 

 

10.3.8.3 Morphology 

In general, the physical properties of foams are not only dependent on the rigidity of 

polymer matrix, but also on the morphology of the foam’s cell. Thus, it is of interest to 

observe the cell structure of BRPU foam using SEM. Cellular structure of RPU foam is a 

balance between the network formation and the expansion of blowing agents, where 



255 

 

surfactants helps to stabilize cell walls through lowering surface tension of foaming 

mixture and prevent their coalescence. Additionally, both gel and blow catalysts were 

added in order to accelerate these reactions according to the requirements. The SEM 

image of BRPU foam prepared with 50 wt.% bio-contents is shown in Figure 10-12. The 

cell size varies between ~422.1 µm and 572.9 µm. 

 

 

Figure 10-12 BRPU foam from DHL50PO50 and its SEM image 

 

10.4 Conclusions 

A new low-pressure (≤150 psig) proprietary process for hydrolytic depolymerization of 

very high molecular weight Kraft lignin (KL) was developed in this work, employing 

water-polyalcohols (EG/PG/glycerol) co-solvent mixture. Under the best operating 

conditions (250 oC, 1 h, 20 wt.% KL substrate concentration, EG/KL ratio of ~4.0 (w/w) 

and NaOH/KL ratio of ~0.28 (w/w) or 128 mole% of NaOH) KL depolymerization 

produced DKL at a yield of ~90 wt.% and with a weight-average molecular weight (Mw) 

as low as ~1050 g/mole and high aliphatic and total hydroxyl numbers (295.5 mgKOH/g 

and 670.1 mgKOH/g, respectively). In this process, the polyalcohols/solvent 
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(EG/PG/glycerol) used was recoverable at a recovery rate of ~95-96 wt.%, which further 

enhance the economic viability of this process. The obtained DKL was in solid form and 

further derivatized into liquid polyols via oxypropylation for their further utilization in 

the preparation of bio-based rigid polyurethane (BRPU) foam at high percentage of bio-

contents (50-70 wt.%). All BRPU foams exhibit good compressive strength, compared 

with the reference foam. At the fixed formulation recipe i.e., fixed percentage of physical 

blowing agent, BRPU foams showed the following order of sequence in terms of their 

compressive modulus: Sucrose polyol reference foam (2695.0 kPa)<DKL50PO50 

(6936.0 kPa)<DKL60PO40 (8902.0 kPa)<DKL70PO30 (22436.0 kPa). Thermal 

conductivity of all BRPU foams varies between 0.032±0.001 W/mK, making them 

suitable candidate as an insulation material. All BRPU foams were thermally stable up to 

approximately 200 oC. 
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Chapter 11  

11 Conclusions 

This thesis work successfully demonstrated the effectiveness of hydrolytic 

depolymerization of Kraft lignin (KL) and hydrolysis lignin (HL) into bio-polyols for 

their further utilization in the preparation of bio-based rigid polyurethane (BRPU) foams 

at a high percentage up to 70 wt.% bio-contents. A proprietary process has also been 

developed for efficient and cost effective depolymerization of KL and HL under low 

pressure. The two processes (high pressure or low pressure) used for the 

depolymerization of KL or HL for their further utilization in the preparation of BRPU 

foams are compared in the following tabulated form before drawing the overall 

conclusions from the current research work. 
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Lignin  Solvent Catalyst/Catalyst 

loading (wt.%) 

T   

(oC) 

Time 

(h) 

KL conc. 

(wt.%) 

Pinitial 

(psig) 

Pmax 

(psig) 

DKL yield 

(wt.%) 

Mw  

(g/mole) 

OHTotal 

(mgKOH/g) 

KL H2O NaOH/ 28.4 250 1.0 10 290  725 77 1700 675.0 

H2O-EG NaOH/ 28.4 250 2.0 20 14.7 120 90 1000 670.5 

Comments 

•••• KL depolymerization employing water alone as a solvent under alkaline medium is a high pressure process. However, when H2O-

EG was employed as a solvent overall system pressure was very low making the process highly efficient for effective KL 

depolymerization. 

•••• Yield of DKL obtained via low pressure KL depolymerization is higher (90 wt.%) than high pressure process (1700 g/mole) at the 

best operating reaction conditions. 

•••• Polystyrene equivalent molecular weight of DKL in case of low pressure KL depolymerization was lower (1000 g/mole) when 

compared to high pressure process derived DKL (1700 g/mole). 

•••• The recovery rate of solvent (EG) used in low pressure depolymerization of KL was very high ~ 94-95 wt.%, which makes overall 

process cost effective.  

•••• The separation of EG from DKL is a single step process which also makes this process highly efficient and easy to employ. 
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•••• Although DKL obtained via both routes was in solid powder form, have suitable hydroxyl numbers and can be transferred into 

liquid polyols via their oxypropylation for their further utilization in the preparation of BRPU foam up to 70 wt.% bio-content 

loading. 

•••• All BRPU foams exhibit good compression strengths, low densities and thermal conductivities with thermal stability up to 

approximately 200 oC, making them a suitable material for their applications an insulation material. 

•••• Therefore, based on overall benefits associated with low pressure depolymerization of KL employing water-EG as a solvent 

mixture appears to be more economical than high pressure process.   

Lignin  Solvent Catalyst/Catalyst 

loading (wt.%) 

T 

(oC) 

Time 

(h) 

HL conc. 

(wt.%) 

Pinitial 

(psig) 

Pmax 

(psig) 

DHL yield 

(wt.%) 

Mw      

(g/mole) 

OHTotal 

(mgKOH/g) 

HL H2O-EtOH None 250 1.0 20 290 750 70 1000 442.0 

EG H2SO4/ 2.0 200 1.0 20 14.7 150 70 1400 247.1 

Comments 

•••• HL depolymerization employing water-EtOH as a solvent mixture is a high pressure process. However, when EG was employed 

as a solvent overall system pressure was very low making the process highly efficient for effective HL depolymerization. 

•••• Yield of DHL obtained via low or high pressure HL depolymerization process are same i.e., 70 wt.% at the best operating reaction 

conditions. 

•••• Polystyrene equivalent molecular weight of DHL in case of low pressure HL depolymerization was slightly higher (1400-1500 
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g/mole) when compared to high pressure process derived DHL (1000 g/mole). 

•••• The recovery rate of solvent (EG) used in low pressure depolymerization of KL was very high ~ 90-92 wt.%, which makes overall 

process cost effective.  

•••• The separation of desired DHL from solvent (water-ethanol) is a single step process involves filtration followed by evaporation. 

Where, the separation of EG from DHL is a two step process which makes separation a bit tedious work. The separation of EG 

solvent from DHL needs to be further improved to make process more convenient to use. 

•••• Hydroxyl number of DHL obtained via high pressure process is higher (442 mgKOH/g) than the hydroxyl number of DHL 

obtained as a result of low pressure HL depolymerization employing sulfuric acid as a catalyst. 

•••• Although DHL, irrespective of their hydroxyl numbers, obtained via both routes was in solid powder form, have suitable hydroxyl 

numbers and can be transferred into liquid polyols via their oxypropylation for their further utilization in the preparation of BRPU 

foam. 

•••• BRPU foams were prepared up to 70 wt.% bio-content from oxypropylated DHL employing DHL obtained via high pressure 

process. However, when DHL obtained via low pressure process was oxypropylated at 70 wt.% bio-loading the oxypropylated 

sample viscosity was very high which makes it difficult to mix with other ingredients to synthesize foam. Therefore, when DHL 

obtained via low pressure was employed the BRPU foams were prepared with the maximum of 60 wt.% bio-contents.  

•••• Al the BRPU showed good compression strengths, low thermal conductivities and thermal stability up to approximately 200 oC.   

•••• Therefore, based on overall benefits associated with low pressure depolymerization of HL employing EG as a solvent mixture 

appears to be more economical than high pressure process.   
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The following conclusions could be drawn from this research: 

• Kraft lignin (KL) of initial molecular weight (Mw) ≈10,000 g/mole was 

depolymerized to low molecular weight Mw ≈1000-3000 g/mole depolymerized KL 

(DKL) via direct hydrolysis of KL employing water alone as  a solvent using NaOH 

as a catalyst, without any organic solvent/capping agent. The effects of process 

parameters including reaction temperature, reaction time, NaOH/lignin ratio (w/w) 

and substrate concentration were investigated and DKLs were characterized. The best 

operating conditions appeared to be at 250 oC, 1 h, and NaOH/lignin ratio ≈0.28 with 

20 wt.% substrate concentration, leading to <0.5% solid residues and ~92% yield of 

DKL (aliphatic-hydroxyl number ≈352 mgKOH/mg and Mw ≈3310 g/mole). The 

overall % carbon recovery under the above best conditions was ~90%. A higher 

temperature favored DKL with lower Mws while a longer reaction time promoted 

dehydration/condensation reactions. NaOH/KL ratio ≥0.28 (w/w) does not have 

significant effect on KL depolymerization and lower substrate concentrations (≤ 20 

wt.%) are desirable for obtaining low molecular weight DKL.  

• Optimum reaction conditions for producing DKL via KL direct hydrolysis in alkaline 

medium for their utilization in the preparation of bio-based rigid polyurethane 

(BRPU) foams were determined using response surface methodology (RSM) with a 

central composite design (CCD). The optimization was constrained by requirements 

that a polyol should fulfill for use in PU foam synthesis: aliphatic-hydroxyl number 

≥300-500 mgKOH/g, Mw<2000 g/mole and moderately high yield. The optimum 

conditions identified were 250 oC, 2h and 10 wt.% substrate concentration. The 

obtained DKL at optimized reaction conditions had an aliphatic-hydroxyl number 

≈365 mgKOH/g, Mw ≈1700 g/mole and 77 wt.% yield, suitable for their utilization in 

the preparation of RPU foam. The predicted and experimental results were in good 

agreement (R2 values are 0.90, 0.82 and 0.98 for yield, Mw and aliphatic-hydroxyl 

number, respectively). Temperature was the most significant parameter. 
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• Bio-based rigid polyurethane (BRPU) foams were prepared with depolymerized Kraft 

lignin (DKL) substituting 50 wt.% of petroleum-based polyols via three routes: 

directly replacing 50 wt.% of PPG400, directly replacing 50 wt.% of sucrose polyol, 

and using oxypropylated DKL as a single polyol feedstock. All foams were 

characterized in terms of physical, mechanical, and thermal properties as well as their 

morphology, and their properties were found to be strongly dependent on the DKL 

incorporation routes. The compression modulus of the foams increased in the 

following order: oxypropylated DKL-based BRPU foam (10986.0 kPa)>BRPU foam 

with 50 wt.% sucrose polyol and 50 wt.% DKL (5152.0 kPa)>sucrose polyol based 

reference foam (2086.0 kPa)>BRPU foam with 50 wt.% PPG400 polyol and 50 wt.% 

DKL (1016.0 kPa)>PPG 400 based reference foam (789.1 kPa). A similar trend was 

observed for the compression strengths of the foams at 10% and 20% deformations. 

The lower modulus of PPG400 based RPU foams was believed due to its bi-

functional long chain structure which leads to lower crosslinking density when 

compared to the multifunctional short chain structure sucrose polyol. All the foams 

showed thermal conductivity between 0.029 W/mK to 0.040 W/mK. Among three 

routes investigated for the preparation of BRPU foams, the oxypropylated DKL-

based BRPU foam showed superior combination of physical, mechanical and thermal 

properties. All BRPU foams are thermally stable up to approximately 200°C. 

• A new low-pressure (≤150 psig) proprietary process for hydrolytic depolymerization 

of KL was also developed in this work, employing a water-polyalcohols 

(EG/PG/glycerol) co-solvent mixture. Under the best operating conditions (250 oC, 1 

h, 20 wt.% KL substrate concentration, EG/KL ratio of ~4.0 (w/w) and NaOH/KL 

ratio of ~0.28 (w/w) or 128 mole% of NaOH) KL depolymerization produced DKL at 

a yield of ~90 wt.% and with a Mw as low as ~1050 g/mole and high aliphatic and 

total hydroxyl numbers (295.5 mgKOH/g and 670.1 mgKOH/g, respectively). In this 

process, the polyalcohols/solvent (EG/PG/glycerol) used was recoverable at a 

recovery rate of ~95-96 wt.%, which enhances the economic viability of this process. 

The obtained DKL was in solid form but it was further transformed into liquid 

polyols via oxypropylation for their further utilization in the preparation of bio-based 

rigid polyurethane (BRPU) foams with a high bio-contents (up to 50-70 wt.%). All 
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BRPU foams exhibited good compressive strength, compared with the reference 

foam. With the fixed formulation recipe i.e., fixed percentage of physical blowing 

agent, the mechanical properties (compressive modulus) of the BRPU foams 

increased in the following order: Sucrose polyol reference foam (2695.0 

kPa)<DKL50PO50 foam (6936.0 kPa)<DKL60PO40 foam (8902.0 

kPa)<DKL70PO30 foam (22436.0 kPa). Thermal conductivity of all BRPU foams 

varied between 0.032±0.001 W/mK, making them suitable candidates as an insulation 

material. All BRPU foams were thermally stable up to approximately 200 oC. 

• Hydrolytic depolymerization of hydrolysis lignin (HL) was carried out with or 

without catalyst (H2SO4 or NaOH) in water or water-ethanol mixture as solvent at 

250 oC for 1 h with 20% (w/v) HL substrate concentration. The results were 

compared in terms of DHL yield, Mw and SR yield. The comparative results implied 

that HL depolymerization pathways might be different under different conditions 

(depending on the solvent and catalyst employed). However, in view of the utilization 

of DHL for the preparation of polyurethane foams/resins, depolymerization of HL in 

water-ethanol mixture without catalyst appeared to be the best route, producing ~70.5 

wt.% yield of DHL which has a low Mw (~1000 g/mole) and a suitable aliphatic 

(227.1 mgKOH/g) and phenolic (215 mgKOH/g) hydroxyl numbers.. The overall % 

carbon recovery for the test under the best operating conditions was approximately 

87%. 

• The obtained DHL (at the best reaction conditions) was in solid form and was used 

for the preparation of BRPU foams via three routes: directly replacing 50 wt.% of 

PPG400, directly replacing 50 wt.% of sucrose polyol, and using oxypropylated DHL 

as a single polyol feedstock. The DHL-PPG400 foams had lower compressive 

strengths than the DHL-sucrose polyol foams, which could be attributed to PPG400 

bi-functional long chain structure. The oxypropylation treatment transformed the 

solid DHL into liquid polyols, which enabled their further utilization in the 

preparation of BRPU foam at a higher percentage of bio-contents (up to 50-70 wt.%). 

All BRPU foams prepared from oxypropylated DHLs exhibit better compressive 

strength, compared with the reference foams. With the fixed formulation recipe i.e., 

fixed percentage of physical blowing agent, the compressive strength of the BRPU 
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foams increased in the following order: Sucrose polyol reference foam (2695.0 

kPa)<DHL50PO50 foam (9202.0 kPa)<DHL60PO40 foam (19847.0 

kPa)<DHL70PO30 foam (21288.0 kPa). All DHL-derived BRPU foams were 

thermally stable up to approximately 200 oC. Thermal conductivities of BRPU foams 

vary between 0.029 W/mK and 0.034 W/mK, making them suitable for utilization as 

an insulation material. 

• Low pressure (≤150 psig) depolymerization of hydrolysis lignin (HL) was 

successfully realized to obtain low molecular weight depolymerized HL (DHL) in an 

acidic medium using sulfuric acid as a catalyst. Under the best operating conditions 

(200 oC, 1h, 20 wt.% HL substrate loading and 2 wt.% acid loading) the low-pressure 

depolymerization of HL produced DHL at a yield of ~70 wt.% with a weight-average 

molecular weight (Mw) of ~1500 g/mole and reasonably high aliphatic and total 

hydroxyl numbers (116.0 mgKOH/g and 247.1 mgKOH/g, respectively). The DHL 

was in solid powder form, but it was subsequently transformed into liquid polyols via 

oxypropylation for their further utilization for preparation of bio-based rigid 

polyurethane (BRPU) foam with bio-contents at a high percentage up to 50-70 wt.%. 

All BRPU foams exhibited good compressive strength as compared with the 

reference foams. With the fixed formulation recipe, i.e. fixed percentage of physical 

blowing agent, the compressive strength of the BRPU foams increased in the 

following order: sucrose polyol reference foam (2695.0 kPa)<DHL50PO50 foam 

(5381.0 kPa)<DHL60PO40 foam (12360.0 kPa). All of the BRPU foams were 

thermally stable up to approximately 200 oC. The thermal conductivities of the BRPU 

foams were between 0.030 W/mK and 0.032 W/mK, making them suitable for 

utilization as an insulation material. 

Therefore, collectively from the above conclusions, several novelties of the current work 

can be summarized as follows: (1) successful depolymerization of KL and HL and the 

use of DKL or DHL for the preparation of BRPU foams through direct incorporation of 

DKL or DHL to substitute 50 wt.% of PPG400 or sucrose polyols, or through 

oxypropylation treatment to transform DKL or DHL into liquid polyols, enabling 

production of BRPU foams with 50-70 wt.% bio-contents; (2) Development of a 

proprietary low-pressure process for depolymerization of KL and HL under basic and 
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acidic medium respectively, employing water-EG as a solvent at low pressure (<150 

psig); (3) Successful utilization of the DKL and DHL prepared via the low pressure 

depolymerization process for the preparation of BRPU foams with bio-contents at 50-70 

wt.%; (4) Effective depolymerization of HL in water alone as a solvent and in water-

ethanol mixture, and the preparation of BRPU foams with 50-70 wt.% bio-contents using 

DHL obtained from the co-solvent mixture. All the prepared BRPU foams in this work 

exhibit good physical, mechanical and thermal properties with satisfactory thermal 

stabilities making them suitable for application as an insulation material. 
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Chapter 12  

12 Future work 

Although this work has achieved great success in depolymerization of KL/HL and the 

utilization of de-polymerized lignin products (DKL/DHL) in the preparation of BRPU 

foam with a high bio-content up to 50-70 wt.%, more research is still needed as follows: 

(1) Conducting pilot scale tests to produce enough amount of depolymerized KL/HL 

(DKL/DHL) for the preparation of larger BRPU foam samples for industrial testing.  

(2) Overall economical analysis of the low-pressure KL/HL depolymerization process for 

producing bio-polyols and BRPU foams from KL/HL resources. 

(3) Further study of foaming process for the lignin-based BRPU foams manufacture to 

tune their physical and mechanical properties for various applications, e.g., insulation, 

structure, packaging, etc. 
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