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Abstract 

A series of studies were conducted to examine the acoustic reflex in normal hearing 

adults, typically developing children and children with suspected auditory processing 

disorder (APD). Elevated acoustic reflex thresholds (ART) and shallower acoustic 

reflex growth functions (ARGF) were found in children with suspected APD in 

comparison to typically developing children and normal hearing adults. These effects 

were strongest in the crossed condition. There were no group differences for 

acoustic reflex latency (ARL) or acoustic reflex decay (ARD).   

In all studies the children with suspected APD were divided into two groups 

based on the diagnosis made on the basis of a behavioral APD battery; (1) APD 

which included children who received APD diagnosis and  (2) Clinical non-APD who 

did not receive APD diagnosis. Children in the clinical non-APD and APD groups 

had similar ART and ARGF abnormalities highlighting a potential weakness in 

relying strictly on behavioral tests in the assessment of children suspected of APD. 

The effect of acoustic reflex activation on middle ear absorbance (MEA) and 

middle ear resonant frequency (MERF) was also investigated. It was found that the 

activation of the acoustic reflex resulted in a decrease of MEA between 226 and 

1000 Hz, an increase MEA between 1000 and 2000 Hz and shift of MERF to a 

higher frequency. These changes in middle ear function may be critical to speech in 

noise perception. The effect of reflex activation was diminished in children with 

suspected APD. 
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Across studies, acoustic reflex measures including ART, ARGF and the effect 

of the reflex on MEA and MERF showed a trend suggesting age-related changes but 

the trends did not reach statistical significance. However, a significant 

developmental trend in ARTs was found when corrected for ear canal volume 

differences. These results suggest that acoustic reflex measures in clinical children 

should be compared with those of typically developing children rather adults. 

Keywords 

Acoustic reflex, acoustic reflex threshold, acoustic reflex growth function, acoustic 

reflex latency, acoustic reflex decay, auditory processing disorder, middle ear 

absorbance, middle ear resonant frequency. 
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Chapter 1  

1 Introduction: Auditory Processing Disorder and Acoustic 
Reflex 

1.1 Auditory processing disorder 

The term “Auditory Processing Disorder” (APD) suggests difficulties in the 

processing of auditory information by the central auditory nervous system 

(American Speech-Language-Hearing Association [ASHA], 2005). Individuals 

with APD form a highly complex group with large individual differences. APD can 

affect children, adults, or elderly persons and its etiology and symptoms may 

vary across individuals (American Academy of Audiology [AAA], 2010; ASHA, 

2005).  

1.1.1 Children with suspected APD: Symptoms and characteristics 

Children with suspected APD are often described as having difficulty hearing 

even in the presence of normal hearing sensitivity. Difficulty understanding 

speech in the presence of background noise, being easily distracted in complex 

acoustic environments, problems following multiple commands and slow 

comprehension of simple auditory information are frequently reported symptoms 

(Benson, Seaton & Johnson, 1997; Keith, 1999; Jerger & Musiek, 2000). APD 

may lead to, or may be associated with, attention, language, reading, learning 

and cognitive disorders, however the nature of the relationships are not well 

understood (AAA, 2010; ASHA, 1996, 2005). The combination of APD and its 

possible comorbid conditions have the potential to negatively impact a child’s 

academic success and social functioning (AAA, 2010).  
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1.1.2 APD: Prevalence in school age children and etiologies 

APD has an estimated prevalence of 2% to 7% in school aged children (Bamiou, 

Musiek & Luxon, 2001; Chermak & Musiek, 1997). Chermak (2002) in 

summarizing possible etiologies of APD in children based on previous reports 

(e.g. Chermak & Musiek, 1997, Musiek, Baran & Pinheiro, 1992; Musiek, 

Gollegly & Ross, 1985; Musiek, Kibbe & Baran, 1984) suggested that 

neuromorphologic disorders are the likely cause behind 65% to 70% of the 

problem of children who are diagnosed with APD. Neuromaturational delay may 

account for 25% to 30%, and neurologic disorders, disease or damage for 5%.  

1.1.3 APD: Diagnosis 

Diagnosing APD in a child can be a challenging task for the audiologist. ASHA 

(2005) recommended a test battery approach that includes tasks to assess 

sound localization and lateralization, auditory discrimination, auditory pattern 

recognition, temporal processing and performance in presence of competing 

acoustic signals. A positive diagnosis of APD is to be made if a child performs 

poorly (> 2 standard deviations below age expected values) on at least 2 auditory 

tests. Since there is no gold standard on the selection of tests, audiologists can 

choose from a wide range of tests. This could lead to a high variability in the 

criterion for APD diagnosis across clinics and in research (Allen & Allan, 2014). 

Also, the most commonly used tests are behavioral (Emanuel, Ficca & Korczak, 

2011) and may be strongly linked to underlying language and cognitive abilities 

(Allen & Allan, 2014). Other possible limitations of behavioral tests include the 

possibility that young children may not understand test instructions, the mode of 
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response required by the test may not be appropriate, and a lack of attention and 

motivation in young children may limit performance. Many of the behavioral tests 

are unavailable in languages other than English and many do not have normative 

data for very young children (AAA, 2010; ASHA, 2005; Jerger & Musiek, 2000). 

Objective tests have been recommended by AAA (2010), ASHA (2005) 

and Jerger and Musiek (2000) but these tests have not been the preferred choice 

among audiologists for APD assessment (Emanuel et al., 2011). However the 

ability of the objective tests to estimate a specific site of dysfunction and the fact 

that objective tests are not influenced by factors such as language or procedure 

can make them highly effective in the assessment of APD, especially in children.  

1.1.4 APD: Neural basis 

The central auditory pathway stretches from the neural fibers originating in the 

cochlea to the auditory cortex. Each anatomical nucleus along this pathway 

serves one or more central auditory processes and auditory processing disorders 

can result from deficit in one or more of these neural structures (Bamiou, Musiek 

& Luxon, 2001; Moore, 2006). The auditory brainstem is the locus of the earliest 

processing of auditory information as it ascends the auditory tract. Trouble with 

the processing of sound at the brainstem level may lead to poor decoding at 

higher neural centres and thus result in perceptual difficulty.  

Objective measurements of acoustic reflexes, contralateral suppression of 

otoaoustic emissions and auditory brainstem responses have indicated auditory 

brainstem abnormalities in children with APD symptoms. Reduced contralateral 
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suppression of transient evoked otoacoustic emissions is reported in children 

with suspected APD when compared to normal hearing children (Muchnik et al., 

2004; Sanches & Carvallo, 2006). However, Butler, Purcell and Allen (2011) 

contradict these findings as they found similar contralateral suppression of 

distortion product otoacoustic emission in children with APD and normal hearing 

children. 

Abnormalities in auditory brainstem responses in children with suspected 

APD are demonstrated in several studies. Significantly reduced amplitude of the 

binaural interaction component of the auditory brainstem responses (Gopal & 

Pieral, 1999) shallower slopes of waves I through V (Gopal & Kowalski, 1999) 

and delayed wave V (Jisra, 2001) have been found in children with suspected 

APD in comparison to normal hearing children. Kraus and colleagues (Banai, 

Nicol, Zecker & Kraus, 2005; Cunningham, Nicol, Zecker, Bardlow & Kraus, 

2001; King, Warrier, Hayes & Kraus, 2002; Wible, Nicol & Kraus, 2004) have also 

suggested atypical speech evoked auditory brainstem responses in one third of 

the children with language learning disorders who also have symptoms of APD. 

Allen and Allan (2007, 2014) investigated acoustic reflex and auditory 

brainstem responses in children with suspected APD. They reported 65% of the 

children tested showed clinically significant abnormalities in either acoustic reflex 

or auditory brainstem responses. High percentages of reflex abnormalities in 

children with suspected APD are also reported by Meneguello et al. (2001) and 

Thomas, McMurry and Pillsbury (1985).  
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Based on the studies described it is apparent that many children with 

suspected APD may have abnormalities in brainstem function. The acoustic 

reflex is a sensitive measure of auditory brainstem dysfunction (Gelfand, 2005; 

Jerger & Jerger, 1977; Silman, 1984) but only limited literature on acoustic 

reflexes, specific to the reflex thresholds, is available in children with suspected 

APD. Detailed studies of the acoustic reflex measures in children with suspected 

APD can provide important information about the auditory brainstem in this 

clinical population. These studies will also provide insight into the relationship 

between the suggested functional role of acoustic reflexes in perceiving speech 

in the presence of noise and children with suspected APD.  

1.2 The acoustic reflex 

The middle ear muscle reflex is one of the primary feedback mechanisms of the 

auditory system (Liberman & Guinan, 1998). The reflex results largely from the 

contraction of the stapedius and tensor tympani muscles following acoustic 

stimulation of the ears. In most animals both the stapedius and tensor tympani 

muscles contribute to the reflex in response to auditory stimuli (Moller 1984; 

Mukerji, Windsor & Lee, 2010). In humans, it is predominantly the stapedius 

muscle while the contraction of the tensor tympani muscle occurs primarily during 

the startle response to intense sounds or to non-auditory stimuli (Borg, 1968; 

Borg, Counter & Rosler, 1984; Moller, 1984; Mukerji et al., 2010).   
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1.2.1 Anatomy of the acoustic reflex pathway 

The acoustic reflex occurs from stimulation to both crossed and uncrossed reflex 

pathways.  The anatomy of the reflex pathway is well described in the literature 

(Moller, 1984; Mukerji et al., 2010). Anatomical structures include the peripheral 

auditory system (external ear, middle ear and the cochlea), the auditory nerve, 

two nuclei of the auditory brainstem (the cochlear nucleus [CN] and the superior 

olivary complex [SOC]), the facial motor nucleus and nerve and the stapedius 

muscle (Figure 1.1). The central segment of the acoustic reflex arc initiates with 

the projection of type I spiral ganglion neurons (afferents from inner hair cells) to 

the cochlear nucleus. Interneurons responsible for the acoustic reflex lie in the 

posterior ventral cochlear nucleus (PVCN). Interneurons from the PVCN 

innervate the stapedius motor neuron (SMN) of the facial nerve through direct 

and indirect projections. Direct projection involves the innervation of SMN directly 

by PVCN interneurons. Indirect projection includes projection of PVCN 

interneurons to the SMN through the superior olivary complex. It is the medial 

superior olive (MSO) that is primarily involved in the acoustic reflex. The PVCN 

supplies second order neurons to the ipsilateral MSO and contralateral MSO. 

The MSO finally sends third order neurons to the SMN of the ipsilateral facial 

nerve (for uncrossed reflex) and SMN of the contralateral facial nerve (for 

crossed reflex).   
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Figure 1.1: The acoustic reflex pathway 

 

The main function of the auditory brainstem is to preserve and extract 

spectral and temporal information for processing in the higher auditory system 

(Irvine, 1992).  The superior olivary complex is also the first nucleus of the 

auditory system where binaural inputs interact (Brugge, 1992). In the presence of 

a normal peripheral auditory system any abnormality in the acoustic reflex may 

indicate a deficit in the functioning of the auditory nerve, the cochlear nucleus or 

the superior olivary complex. Therefore the information provided by the acoustic 

reflex testing in individuals with auditory processing deficits can be useful in 

determining the underlying neural deficit. 
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1.2.2 Functions of the acoustic reflex 

The functional importance of the acoustic reflex has been discussed for many 

years. Several hypotheses are offered regarding its role including primarily its 

roles in protecting against inner ear damage from loud sounds and its facilitation 

in speech perception in the presence of noise (Borg et al., 1984). It has also 

been suggested to aid in the perception of faint sounds, it improves temporal 

resolution and it enhances auditory attention.  

Support for the protective function of acoustic reflex comes from studies 

that investigated the relationship between elicitation of the acoustic reflex and 

temporary threshold shift following noise exposure (Cohen & Bauman, 1964; 

Mills & Lilly, 1971; Ward, 1962; Zakrisson, Borg, Liden & Nilsson, 1980). Studies 

have shown that the presence of a normal acoustic reflex is associated with 

reduced temporary threshold shifts. But the protective role of the acoustic reflex 

is not universally supported (Fletcher, 1962; Henderson, Subramaniam, 

Papazian & Spongr, 1994; Ryan, Bennett, Woolf & Axelsson, 1994). It is 

suggested that the acoustic reflex may provide only limited protection for loud 

sounds because its onset is most often over 100 msec (Borg , 1982; Gorga & 

Stelmachowicz, 1983; Hung & Dallos, 1972; Qiu & Stucker, 1998).This delay 

makes the acoustic reflex relatively meaningless in preventing damage from 

impulse noise or stimulus onsets. Also the acoustic reflex undergoes adaptation 

if the sound is present for very long durations (Gelfand, 2005) and therefore the 

protective function, if present, is limited.  
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The role of the reflex in enhancing speech perception in noise is more 

likely. Simmons (1964) explained that the acoustic reflex helps in improving 

speech intelligibility especially in the presence of noise by attenuating low 

frequency information. The reflex modulates the amplitude and frequency of 

sounds which therefore may increase alertness in listeners, allow better 

separation of background noise and signal and enhance attention to the signal. 

Aiken, Andrus, Bance and Phillips (2013) suggested that the acoustic reflex may 

help in speech perception in noise by preventing upward spread of masking at 

moderate noise levels.  De Andrade et al. (2011) and Colletti, Fiorino, Verlato 

and Carner (1992) found that the acoustic reflex is important for better 

performance in speech discrimination and frequency selectivity tasks, 

respectively. Dorman, Cedar, Hannley and Leek (1986) reported that the 

activation of the acoustic reflex in normal hearing listeners improves their vowel 

recognition. On the contrary, Phillips, Stuart and Carpenter (2002) found no role 

of the reflex in word recognition in quiet but suggested that role of reflex in 

speech perception could be restricted to the adverse listening conditions 

including listening in noise environment. Borg and Zakrisson (1974) found 

greater masking in the ears with acute stapedius muscle paralysis in comparison 

to the ear with normal acoustic reflexes when the stimulus was presented above 

reflex thresholds. Similar masking was reported in both the ears for the stimulus 

presentations below the acoustic reflex threshold. 
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1.2.3 Measures of acoustic reflex 

There are several measurable characteristics of the acoustic reflex, each of 

which provides important details about the reflex activity. The reflex threshold is 

the minimum intensity level of the reflex activator stimulus at which the acoustic 

reflex activates. At threshold, the magnitude of the reflex is observable as a small 

change in the acoustic compliance of the middle ear. Presentation of stimuli 

above the threshold results in a greater magnitude. The magnitude of the reflex 

increases with increase in stimulus level until an asymptote, or maximum 

compliance change is reached. This generally occurs within 30 dB of reflex 

threshold. The relationship between reflex magnitude and activator stimulus level 

can be described by an acoustic reflex growth function. Measures can also be 

made of the time course of the reflex activation. Acoustic reflex latency refers to 

the time taken by the stapedius muscle to contract after the onset of the stimulus. 

The amplitude of the reflex reaches its maximum magnitude after the activator is 

presented for around 250 msec. The reflex then undergoes adaptation and its 

amplitude decreases if the stimulation continues for a longer duration. This 

characteristic of acoustic reflex is known as acoustic reflex decay. 

Individuals with the disorders of auditory nerve and auditory brainstem 

lesions have shown absent or elevated reflex thresholds (Anderson, Barr & 

Wedenberg, 1970; Johnson, 1977; Mangham, Lindeman & Dawson, 1980), low 

reflex amplitudes (Mangham et al., 1980), shallower growth functions (Harrison, 

Silman & Silverman, 1989; Mangham et al., 1980; Silman, Popelka & Gelfand, 

1978;), prolonged reflex latencies (Clemis & Sarno, 1980; Jerger & Haynes, 
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1983; Mangham et al., 1980) and greater or earlier reflex decay (Anderson et al., 

1970; Mangham et al., 1980; Olsen, Noffsinger & Kurdziel, 1975)  

Absent or elevated reflexes would indicate no reflex activity or that reflex 

activity is only initiated at higher stimulus levels. Low reflex amplitude and 

shallower growth of the reflex magnitude may suggest that the acoustic reflex is 

weak. Longer reflex latencies would mean a delay in the activation of acoustic 

reflex and greater or earlier decay may suggest that the reflex is only providing 

limited benefit. Abnormalities in one or more of these characteristics of the reflex, 

if present, may also therefore suggest limited benefit in speech in noise 

perception. 

Despite the importance of the acoustic reflex in assessing auditory nerve 

and brainstem disorders and its potential importance for speech perception in the 

presence of noise, investigations of reflex in children with suspected APD are 

limited. Published studies report only reflex thresholds (Allen & Allan, 2007, 

2014; Meneguello et al., 2001; Thomas et al., 1985). Further Investigations of 

other characteristics of the reflexes may provide greater information about the 

potential role in children with suspected APD.  

Adult and child differences in acoustic reflexes have been investigated for 

reflex threshold, amplitude and decay. Habener and Snyder (1974) found lower 

reflex amplitude and elevated reflex thresholds in normal hearing children (aged 

3 to 19 years) when compared to the young adults (aged 19 to 29 years) but no 

adult-children difference was found in reflex decay. Jerger, Jerger and Mauldin 
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(1972), Jerger, Hayes, Anthony and Mauldin (1978) and Osterhammel and 

Osterhammel (1979) have suggested higher thresholds in children (aged 7 to 15 

years) when compared to adults. The reason for adult-children differences in 

reflex amplitudes and threshold are not well understood. A possible explanation 

could be the differences in the characteristics of the ear canal and middle ear 

static compliance that develop until puberty (Abdala & Keefe, 2012; Obake, 

Tanaka, Hamada, Miura & Funai, 1988). However the relationship between these 

factors and the acoustic reflex has not been investigated. 

The acoustic reflex is bilateral with stimulation to either ear its effect can 

be measured in a crossed and uncrossed configuration referencing stimulus or 

measurement ear. Differences in crossed and uncrossed measures are reported 

in some studies and the suggestion is generally that the crossed pathways are 

weaker showing higher reflex thresholds (Fria, LeBlanc, Kristensen & Alberti, 

1975; Gelfand, 2005; Jerger et al., 1978; Moller, 1961, 1962). The growth of the 

reflex with changes in stimulus magnitude is reported to be shallower for crossed 

stimulation in comparison to those with uncrossed responses (Jerger et al., 1978; 

Moller, 1961). Decay also differs in crossed and uncrossed condition. Lilly, 

Mekaru and Chudnow (1983, cited in: Wilson, Shanks & Lilly, 1984) reported that 

uncrossed reflexes had an earlier onset of reflex decay than reflexes in the 

crossed condition. Oviatt and Kileny (1979) suggested greater reflex decay for 

uncrossed stimulation in comparison to crossed stimulation but a significant 

difference was not found. Allen and Allan (2014) highlighted that acoustic reflex 

abnormalities in children with suspected APD are more likely to occur in the 
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crossed pathways in children with this clinical disorder. This is similar to reports 

of reflexes in brainstem disorders which also shown abnormalities specific to the 

crossed pathways (Griesen & Rasmussen, 1970; Jerger & Jerger, 1977). These 

findings reflect the importance of the estimation of acoustic reflex measures in 

both crossed and uncrossed condition while using acoustic reflex in the auditory 

assessment.  

1.3 Thesis purpose and chapter outline 

Previous reports have suggested auditory brainstem abnormalities may be seen 

in some children with suspected APD. Acoustic reflexes have proven to be an 

important measure to assess auditory brainstem function. But investigations into 

acoustic reflexes in children with suspected APD are few and largely limited to 

the measure of acoustic reflex thresholds. The primary aim of this thesis is to 

better understand the relationship between acoustic reflex measures and 

children with suspected APD. In the first study (chapter 2), acoustic reflex 

thresholds were investigated in children with suspected APD to confirm previous 

findings of abnormal thresholds in children with suspected APD. This study also 

examined real ear corrections on threshold estimates and the role of static 

compliance. The second study was aimed at understanding the acoustic reflex 

growth function (chapter 3) which may be more sensitive to auditory pathology 

than a single threshold estimate. In the third study acoustic reflex latencies and 

decay were investigated to determine if there were pathology or age-related 

differences in the time course of the reflex (chapter 4). And finally, the last study 
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examined the impact of the acoustic reflex on the absorbance and resonant 

frequency of the middle ear (chapter 5). 

The diagnosis of APD can be a difficult task because there is no gold 

standard for diagnosis. Although professional associations suggest a test battery 

approach, individual clinicians are free to select tests from a large number that 

are available and often clinicians limit their test selection to behavioral measures, 

often examining some aspects of degraded speech perception or temporal 

pattern recognition (Emanuel et al. 2011). Yet Allen and Allan (2014), found that 

using a battery of such tests often failed to diagnose children as APD when 

referred for listening difficulties yet these children were found to show clinically 

significant abnormalities in auditory brainstem responses or reflex data 

suggesting some level of neural dysfunction that was missed with a test battery 

restricted to behavioral speech and pattern recognition tests. Therefore, in the 

studies included in this thesis, children with suspected APD were divided into two 

groups: (1) the APD group included children who were diagnosed as having APD 

based on a behavioral test battery of tests including Staggered Spondaic Word 

test (Katz, 1998), the Pitch Pattern Sequence Test (Pinheiro, 1977), the Words in 

Ipsilateral Competition test (Ivey, 1969, 1987) and two custom tests of frequency 

discrimination and gap detection; and (2) the clinical non-APD group included 

children who were referred for APD assessment but who were not diagnosed as 

APD based on this typical clinical battery. This provided the opportunity to 

investigate auditory brainstem functioning using acoustic reflexes in both the 

groups of children who reported listening problems. 
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Because there is generally a lack of published data on acoustic reflexes in 

children, each study also included a group of typically developing children and 

normal hearing adults. Most published studies and clinical normative have 

compared acoustic reflexes in clinical populations to those of normal hearing 

adults. The inclusion of typically developing children as well as adults allowed for 

the evaluation of potential age related effects. 
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Chapter 2  

2 Acoustic Reflexes in Normal Hearing Adults, Typically 
Developing Children and Children with Suspected 
Auditory Processing Disorder: Thresholds, Real Ear 
Corrections and the role of Static Compliance on 
Estimates 

2.1 Introduction 

The Acoustic Reflex Threshold is defined as the minimum stimulus intensity at 

which the stapedius muscle contracts.  Reflex thresholds are used diagnostically 

in clinical audiology, often to determine if a hearing loss is of cochlear or 

retrocochlear origin, but lesions anywhere in the auditory system can cause 

reflex abnormalities (Gelfand, 1984, 2005). Abnormal reflexes are usually 

interpreted along with the results of other auditory tests in order to determine the 

site of dysfunction. Abnormalities in reflexes thresholds due to middle ear or 

cochlear dysfunction are generally interpreted based on the results of pure-tone 

audiometry and tympanometry. An air-bone gap of as little as 30 dB in the 

stimulus ear may make it impossible to elicit a reflex simply because a sufficient 

excitation level cannot be reached within the limits of most equipment. In the 

probe ear even a mild middle ear pathology may be sufficient to make it 

impossible to measure change in impedance associated with reflex activation 

even if it occurs. With cochlear pathologies, reflexes are generally within the 

expected range unless a severe loss of hearing is present in which case 

thresholds are elevated or absent. 
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Reflex abnormalities associated with disorders of the auditory nerve or 

brainstem, i.e. retrocochlear pathology, may be more complex and often requires 

comparison of crossed and uncrossed responses (Jerger & Jerger, 1977). When 

the auditory nerve is affected, reflexes are often elevated or absent with 

stimulation to the affected ear regardless of the degree of hearing loss (e.g. 

Anderson, Barr & Wedenberg, 1970; Ferguson et al., 1996; Jerger, Harford, 

Clemis & Alford, 1974; Mangham, Lindeman & Dawson, 1980; Prasher & Cohen, 

1993; Thomsen & Terkildsen, 1975). When there is an elevation or absence in 

thresholds in the presence of significant sensorineural hearing loss the diagnosis 

of cochlear versus retrocochlear pathology may be more difficult. Generally reflex 

thresholds of 95 dB HL or higher are taken as an indication of retrocohlear 

pathology (Anderson, Barr and Wedenberg (1969) cited in: Silman & Gelfand, 

1981). Gelfand and colleagues (Silman & Gelfand,1981; Gelfand, Scehwander & 

Silman, 1990) estimated the 90th percentile cut-off for reflex thresholds at 500, 

1000 and 2000 Hz in normal hearing adults and adults with cochlear impairment 

to fall at 95, 100 and 100 dB HL, respectively if the hearing thresholds are within 

normal limits (< 15 dB HL). Presently, reflex thresholds beyond these cutoff 

values are used in clinics for determination of reflex abnormalities of 

retrocochlear origin (Gelfand, 2005). 

Recently, Allen and Allan (2007, 2014) reported abnormal reflexes in 

children with suspected auditory processing disorders (APD), often absent or 

elevated, particularly in the crossed configuration. Meneguello et al. (2001) found 

elevated reflexes in 62% of the APD population. Thomas, McMurry and Pillsbury 
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(1985) suggested abnormal reflex thresholds in 32% of children with language 

delay, learning disability and who were suspected of APD but did not find any 

correlation between acoustic reflex abnormalities and children of suspected APD. 

Despite of the high incidences of reflex threshold abnormalities in children with 

suspected APD, measurements of reflex threshold are not typically included as 

diagnostic indicators in the assessment of auditory processing. In order to 

improve the accuracy of reflex threshold testing in the assessment of children 

with auditory processing disorders, normative data from children is preferable to 

that from adults as age-effects have sometimes been reported. As well, different 

norms for crossed and uncrossed reflexes should be used as thresholds for 

uncrossed reflexes are most often lower than for crossed reflexes in adult 

listeners (Fria, LeBlanc, Kristensen & Alberti, 1975; Gelfand, 2005; Jerger, 

Hayes, Anthony & Mauldin, 1978; Moller, 1961, 1962). However, developmental 

differences in crossed and uncrossed thresholds are unknown.  

The morphology and functional characteristics of the conductive 

mechanism mature from birth to puberty (Abdala & Keefe, 2012; Obake, Tanaka, 

Hamada, Miura & Funai, 1988). Both ear canal volume and static compliance are 

smaller in children than in adults (Abdala & Keefe, 2012; Barlow et al., 1988; 

Jerger et al., 1978; Obake et al., 1988) and could influence the measurement 

and interpretation of reflex thresholds when comparing results between children 

and adults. 
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2.1.1 Real ear correction and reflex thresholds 

Real ear corrections for differences in ear canal volume are common in many 

measures of hearing in children. When evaluating behavioral threshold or 

measuring hearing aid gain these corrections are nearly universally recommend 

(American Academy of Audiology [AAA], 2013). However, similar corrections 

have not been applied to reflex threshold measurements. Calibration of the 

stimulus used to elicit reflex thresholds is typically completed using a 2 cc 

coupler (Grason-Stadler, 2005; Interacoustics, 2011). It is known that sounds 

with similar intensities can result in different sound pressure levels (SPL) in ear 

canals with different volumes (Martin, 2003). It is likely that the reflex activator 

presented at a fixed intensity level result in a higher SPL in the ear canal with a 

smaller volume than in an ear with a larger volume. This could result in 

erroneous measurements of reflex thresholds in individuals with ear canal 

volume smaller than 2 cc such as children. While it is well accepted that real ear 

to coupler differences (RECD) in individuals with a small ear canal volume show 

larger RECD values and vice versa (Barlow et al., 1988; Feigin, Kopun, 

Stelmachowicz & Gorga, 1989; Martin, Westwood & Bamford, 1996), there has 

been no systematic investigation into the influence of real ear correction on reflex 

threshold measurements.     

2.1.2 Static compliance and reflex thresholds 

Age-related differences in static compliance could also impact estimates of 

children’s acoustic reflex thresholds.  Static compliance represents an estimate 

of the ease with which sound energy flows through the middle ear. Static 



26 

 

compliance values are often lower in children than in adults (Jerger et al., 1972; 

Obake, et al., 1979). Near threshold, the reflex causes only a small change in the 

compliance of the middle ear. Smaller static compliance values could possibly 

make it difficult to measure this very small change. At higher stimulus levels the 

contraction of the stapedius muscle is stronger resulting in a larger change in 

compliance that may be easier to measure. This measurement parameter, which 

may vary developmentally, could lead to a higher estimate of reflex thresholds in 

children.  

Wilson (1979) examined the impact of static compliance on acoustic reflex 

thresholds in normal hearing adults. He reported a low correlation between 

crossed thresholds and static compliance. But the participants in his study had 

histories of negative middle ear pressure which could have influenced 

measurements of reflex thresholds and static compliance and only crossed 

thresholds were measured. Correlating crossed reflex thresholds with static 

compliance of the measurement ear rather than the stimulus ear may have 

contributed to the lower correlation.  

2.2 Study aims 

The aim of this study was to replicate previous studies showing elevated reflex 

thresholds in children with suspected APD and to compare their crossed and 

uncrossed threshold estimates to those from typically developing children and 

normal hearing adults. Because ear canal volume and static compliance have 

shown developmental effects and because these factors could affect the 

measurements of reflex thresholds the second aim of this study was to examine 
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the effect of real ear corrections for stimulus levels on thresholds and the 

relationship between static compliance and threshold estimates in both adults 

and children.  

2.3 Study 1: Reflex Threshold Estimates in Crossed and 
Uncrossed Pathways for Normal Hearing Adults, 
Typically Developing Children and Children with 
Suspected Auditory Processing Disorder.  

2.3.1 Methods 

2.3.1.1 Participants 

Participants in this study included 20 normal hearing adults (18-30 years of age), 

28 typically developing children (7 to 15 years of age) and 66 children (aged 7 to 

15 years) suspected of having an auditory processing disorder. The children 

suspected of having an auditory processing disorder were referred to the Child 

Hearing Research Laboratory by caregivers, teachers, parents, or physicians for 

an auditory processing assessment. All participants had normal otoscopic 

examination, normal hearing thresholds (American Speech-Language-Hearing 

Association [ASHA], 2005a), normal middle function (ASHA, 1988) and no history 

of neurologic disorder. 

Children referred for the evaluation of suspected APD underwent a behavioral 

assessment that included the Staggered Spondaic Word test (Katz, 1998), the 

Pitch Pattern Sequence test (Pinheiro, 1977), the Words in Ipsilateral 

Competition test (Ivey, 1969, 1987) and two custom tests of signal feature 

encoding that evaluated frequency discrimination and gap detection in an 



28 

 

adaptive 3-alternative forced-choice procedure designed to track the 70.7% 

correct threshold level. As suggested by ASHA (2005b), children who performed 

at least 2 standard deviations below age expectations on at least 2 of these tests 

were classified as APD. Those that did not meet the criterion but who reported 

listening difficulties were classified as clinical non-APD (Allen & Allan, 2014). 

Forty two of the children were therefore classified as APD and 24 as clinical non-

APD.  

2.3.1.2 Instrumentation 

Otoscopic examination was conducted using a hand-held Welch Allyn otoscope. 

Pure tone audiometry and the auditory processing evaluation were administered 

using a Grason Stadler 61 (GSI 61) diagnostic audiometer and a JVC XL Z32 CD 

player.  A GSI Tympstar Middle Ear Analyzer version 2 was used to evaluate 

middle ear function and obtain reflex thresholds. It was professionally calibrated 

for probe tone frequency, probe tone level, compliance, stimulus intensity level, 

volume and pressure according to American National Standard Institute [ANSI] S 

3.39 (1987) standard. 

2.3.1.3 Procedure 

All impedance and reflex measurements were obtained with a 226 Hz probe 

tone. A proper hermetic seal was sustained during the testing.  Crossed and 

uncrossed reflex thresholds were obtained using 500, 1000 and 2000 Hz pure-

tone activator stimuli. For both conditions, reflex threshold measurements were 

made in 5 dB steps.  A reflex amplitude of 0.02 ml or more was considered as 

the criteria for threshold estimation. Reflex measures were made twice at the 
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same stimulus level in order to validate the threshold estimates. For the statistical 

analyses reported in this study, the Greenhouse-Geisser corrected values are 

reported whenever the assumption of sphericity was violated. 
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2.3.2 Results 

Reflexes were absent in 3 typically developing, 6 APD and 4 clinical non-APD 

children in one or more measurement conditions. Therefore they were not 

included in the statistical analysis. Repeated measures analysis of variance (RM-

ANOVA) showed no effect of stimulus ear on reflex thresholds [F (1, 100) = 

1.575, p = 0.212], therefore data from right and left ear were averaged for each 

individual at each frequency and condition combination. Figure 2.1 shows the 

mean and standard error of reflex thresholds measured at 500, 1000 and 2000 

Hz for the uncrossed and crossed conditions in all groups averaged across ears. 

Error bars show +1 standard error. Thresholds in crossed and uncrossed 

conditions are shown by the open and filled symbols, respectively. 
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Figure 2.1: Mean of crossed and uncrossed reflex thresholds at 500, 1000 and 
2000 Hz in normal hearing adults, typically developing children, APD 
and clinical non-APD averaged for right and left ears. Uncrossed and 
crossed reflex thresholds are represented with filled and open 
diamonds respectively.  Error bars show +1 standard error.   

 

Overall, reflex thresholds were higher in crossed than in uncrossed 

conditions [F (1, 97) = 204.945, p < 0.001]. Consistent with previous reports 

(Allen & Allan, 2014), thresholds also varied across groups [F (3, 97) = 9.470, p < 

0.001] and there was a significant group by condition interaction [F (3, 97) = 

7.500, p < 0.001]. As can be seen in Figure 2.1 there was a tendency for higher 
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thresholds and a larger crossed-uncrossed difference in the two groups of clinical 

children when compared to the adults and typically developing children. To better 

visualize the group-condition interaction differences between the crossed and 

uncrossed reflex thresholds (D-ART) were calculated. The mean and standard 

error of these differences (D-ART) at 500, 1000 and 2000 Hz are shown in Figure 

2.2 for each group. 

 

Figure 2.2: Mean of differences between crossed and uncrossed ART (D-ART) 
at 500, 1000 Hz and 2000 Hz (averaged for right and left ears). 
Squares, circles, diamonds and triangles represent normal hearing 
adults, typically developing children, APD and clinical non-APD, 
respectively. Error bars show +1 standard error. 

A Bonferroni corrected post hoc t-test confirmed that typically developing 

children and normal hearing adults had similar D-ARTs (p = 1.000). Normal 

hearing adults had smaller D-ARTs in comparison to both clinical groups of 

children, [APD (p = 0.002) and clinical non-ADP (p = 0.009)]. Typically 

 g g

f 
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developing children also showed significantly different D-ARTs in comparison to 

the APD (p = 0.007) and clinical non-APD (p = 0.030) groups. There were no 

significant differences between the 2 clinical groups of children (p = 1.000). 

These results indicate that, in comparison to the uncrossed reflex thresholds, the 

crossed reflex thresholds were elevated to the greatest degree in the clinical 

groups of children.  

There was a significant effect of stimulus frequency on the reflex 

thresholds [F (1.725, 167.282) = 18.452, p < 0.001] and a significant interaction 

between stimulus frequency and condition [F (1.837, 178.224) = 25.339, p < 

0.001]. In the crossed condition, thresholds at 1000 Hz were significantly lower 

than those at 500 Hz (p < 0.001) or 2000 Hz (p = 0.001) and thresholds at 500 

Hz were higher than 2000 Hz (p = 0.009). In the uncrossed condition, 500 and 

1000 Hz had similar thresholds (p = 0.131) but significantly higher reflex 

thresholds were recorded at 2000 Hz when compared to 500 (p = 0.001) and 

2000 Hz (p < 0.001). 

2.3.3 Discussion  

Crossed and uncrossed reflex thresholds were measured in normal hearing 

adults, typically developing children and children with suspected APD. The latter 

group of children included those who received a diagnosis of APD based upon a 

battery of clinically accepted behavioral tests (APD) and those who did not 

(clinical non-APD). For the participants in this study, there was no right-left ear 

difference on reflex thresholds which is consistent with previous reports 

(Osterhammel & Osterhammel, 1979; Wilson et al., 1981). Crossed reflex 
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thresholds were always higher than the uncrossed thresholds and the effect was 

greatest in the children from the clinical groups. There were no differences 

between reflex thresholds recorded from typically developing children and those 

from normal hearing adults. Reflex thresholds differed between typical 

developing children and the clinical groups of children, especially for the crossed 

condition.  

Reflex thresholds differed on the basis of stimulus frequency but the effect 

varied according to condition. This is consistent with reports from Gelfand (1984) 

who, in summarizing the findings from several studies reported that the effect of 

stimulus frequency on the reflex thresholds was not consistent.  

Jerger et al. (1972), Jerger et al. (1978) and Osterhammel and 

Osterhammel (1979) suggested that children (aged 7 to 15 years) have higher 

reflex thresholds in comparison to adults. In the present study there was a 

tendency towards slightly higher thresholds in the typically developing children 

when compared to the adults but no statistically significant differences were 

found. Further, these results showed that a higher level of stimulation is required 

to activate the acoustic reflex in the crossed condition than in the uncrossed 

condition, consistent with previous reports (Fria et al., 1975; Gelfand, 2005; 

Jerger et al., 1978; Moller, 1962).  

The primary goal of this study was to examine group related differences.  

Consistent with predictions and previous findings (Allen & Allan, 2014; 

Meneguello et al., 2001; Thomas et al., 1985). The children in the clinical groups 
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had higher reflex thresholds when compared to normal hearing adults and 

typically developing children and showed greater differences between crossed 

and uncrossed thresholds. This suggests greater abnormalities in crossed reflex 

thresholds in children with clinical reports of listening difficulties.  

The acoustic reflex is thought to increase speech intelligibility in noise by 

attenuating low frequency acoustic information (Aiken, Andrus, Bance & Phillips, 

2013; Borg, 1968; Borg & Zakrisson, 1974; Colletti, Fiorino, Verlato & Carner, 

1992; De Andrade et al., 2011; Dorman, Lindholm, Hannley & Leek, 1986; 

Simmons, 1964). Elevated reflexes in children with suspected APD may 

contribute to their most commonly reported problem of difficulty understanding 

speech in noise. Compared to typically developing children, reflexes in clinical 

groups of children may only be activated at higher noise levels and therefore the 

benefits of reflex activation may be limited. Greater reflex abnormalities were 

found to be associated with crossed pathways in the clinical population but the 

relative importance of crossed and uncrossed acoustic reflex pathways and their 

activation in speech perception is not well understood.  

Children who were diagnosed with APD had numerically higher reflex 

thresholds compared to typically developing children but the differences were 

significant only in the crossed condition. The clinical non-APD group had both 

crossed and uncrossed reflex thresholds that were significantly different from 

typically developing children. These findings in clinical non-APD children may 

reflect an inability of behavioral tests to identify auditory processing disorders that 

originate due to auditory brainstem dysfunction.  
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2.4 Study 2: Effect of Real Ear Correction and Static 
Compliance on Uncrossed Acoustic Reflex Thresholds 
in Normal Hearing Children and Adults 

Study 1 suggested that reflex thresholds tended to be slightly higher in children 

when compared to adults but stimulus values were not adjusted for potential 

differences in ear canal volume or static compliance. The effects of ear canal 

volume could be predicted to produce erroneous stimulus levels when calibration 

does not consider the smaller volume of the child’s ear and thus potentially 

produce higher SPL in the ear. Similarly, the higher impedance of the child’s 

middle ear could make it more difficult to measure a small change resulting from 

activation of the acoustic reflex and thus give an erroneous threshold 

measurement. In this study, both effects of ear canal volume and static 

compliance on acoustic reflex thresholds were measured in typically developing 

children and normal hearing adults. 

2.4.1 Methods 

2.4.1.1 Participants 

Data were collected from the right ear of 28 normal hearing adults (aged 18 to 30 

years) and 30 children who were typically developing (aged 7 to 15 years).  All 

participants had normal otoscopic examination, normal hearing thresholds 

(ASHA, 2005a), normal middle function (ASHA, 1988) and no history of 

neurologic disorder. 
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2.4.1.2 Procedure 

2.4.1.2.1 Measurement of reflex thresholds, static compliance 
and ear canal volume: 

Reflex thresholds, ear canal volume, static compliance and RECD values were 

measured using the TITAN (Interacoustic, 2011) middle ear measurement 

system. The TITAN was professionally calibrated for stimulus intensity level, 

volume and pressure according to American National Standard Institute [ANSI] 

S3.39 (1987) standard. Uncrossed reflex thresholds were measured at 500, 1000 

and 2000 Hz for all participants. Reflex thresholds were measured using a 1 dB 

step size. The reflex thresholds were measured in dB HL and then converted to 

dB SPL using the Interacoustic standard reference equivalent threshold sound 

pressure level value for 500, 1000 and 2000 Hz (Interacoustic, 2011). Reflex 

amplitude of 0.02 ml or more was considered as the criteria for establishing reflex 

thresholds with each threshold validated by repeating the measure at the 

presumed threshold level at least once. The automatic gain control on the TITAN 

was turned off. A proper hermetic seal was maintained during the 

measurements. 

2.4.1.2.2 Measurement of RECD 

RECD measurements were obtained using the TITAN probe check function from 

the otoacoustic emissions test suite. Clicks with a flat spectrum from 226 to 8000 

Hz were presented at an intensity level of 95 peSPL (approximately 60 dB SPL) 

and were measured in both a 2 cc coupler and the ear canal. Figure 2.3 shows 

an example of probe check measurements obtained in a 0.87cc ear canal and a 



38 

 

2 cc coupler. The continuous and broken lines represent the probe 

measurements in the ear canal and 2 cc coupler, respectively. Sound intensity 

levels in the coupler and ear canals at 500, 1000 and 2000 Hz were used to 

calculate real ear SPL at the stimulus frequencies.  

 

Figure 2.3: Example of a probe check measurement in a child’s ear canal with 
an ear canal volume of 0.87 cc and in a 2 cc coupler. The continuous 
and broken lines represent the probe measurements in the ear canal 
and 2 cc coupler, respectively. 

Ear canal measurements were made at the level of the probe. The 

intensity level measured at the probe for 500, 1000 and 2000 Hz is considered to 

well approximate the intensity level measured at the tympanic membrane 

(Caldwell, Souza & Tremblay, 2006; Gilman & Dirks, 1986; Interacoustics, 2011; 

Siegel, 1994). For this reason the distance of the probe from the tympanic 
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membrane was not considered to be a significant factor in the measurements. 

Also, measurements in the ear canal were made with the same probe placement 

used for estimating reflex thresholds. This procedure ensured that the distance 

between the probe and tympanic membrane was identical while making the 

RECD and the reflex thresholds measurements.  An example of the 

measurements obtained to estimate RECD at 500, 1000 and 2000 Hz in one 

participant with an ear canal volume of 0.87 cc is shown in Figure 2.4. Stars and 

plus signs represent the sound intensity levels measured in the 2 cc coupler and 

in the participant’s ear canal, respectively. RECD was then calculated at 500, 

1000 and 2000 Hz as the difference in the sound intensity level measured in the 

2 cc coupler and participant’s ear canal. These values were used in correcting 

reflex thresholds at the respective frequencies. 
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Figure 2.4: Example of measurements used to estimate RECD at 500, 1000 and 
2000 Hz in a participant with an ear canal volume of 0.087 cc. Stars 
and plus signs represent the sound intensity levels measured in the 2 
cc coupler and in the participant’s ear canal, respectively. 

2.4.2 Results 

2.4.2.1 Real ear correction and reflex thresholds 

Figure 2.5 shows the mean and standard error of RECD values in typically 

developing children and normal hearing adults. The mean and standard error of 

reflex thresholds corrected for volume (Corrected reflex thresholds) and the 

reflex thresholds measured without real ear correction (Uncorrected reflex 

thresholds) in typically developing children and normal hearing adults are shown 

in Figure 2.6. 
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Figure 2.5: Mean of RECD values at 500, 1000 and 2000 Hz. Circles and 
squares represent typically developing children and normal hearing 
adults, respectively. Error bars show +1 standard error. 
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Figure 2.6: Mean of uncorrected (A) and corrected (B) acoustic reflex thresholds 
at 500, 1000 and 2000 Hz for the typically developing children and 
normal hearing adults. Typically developing children and normal 
hearing adults are shown by the circles and squares symbols, 
respectively. Error bars show +1 standard error. 

 

An independent T- test showed significantly [t (56) = 6.371, p < 0.001)] 

smaller ear canal volumes in typically developing children (mean = 0.8573 cc, 

standard deviation = 0.13) in comparison to the normal hearing adults (mean = 

1.16 cc, standard deviation = 0.23). A RM-ANOVA showed a significant effect of 

real ear correction on reflex thresholds in both typically developing children and 

normal hearing adults [F (2, 56) = 515.714, p = 0.000]. Reflex thresholds 

corrected for volume differences were greater than the non-corrected reflex 

thresholds in both groups (Figure 2.6). Real ear correction had a significant 
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interaction with group which was further analyzed using a pair wise comparison. 

It was found that corrected reflex thresholds were significantly higher in the 

typically developing children as compared to the normal hearing adults (p = 

0.002). The two groups had similar reflex thresholds when they were not 

corrected for volume (p = 0.207). This suggests that the effect of real ear 

correction on reflex thresholds was greatest in typically developing children 

(Figure 2.6). 

The effect of stimulus frequency on reflex thresholds, was found to be 

significant [F (1.711, 95.812) = 60.956, p < 0.001], as was the interaction 

between volume correction and stimulus frequency [F (1.659, 92.898) = 81.707, 

p < 0.001)]. Pair-wise analyses were conducted to investigate the volume 

correction-stimulus frequency interaction and it was discovered that the 

uncorrected reflex thresholds were significantly different at 500, 1000 and 2000 

Hz (p < 0.001 for each pair). Uncorrected reflex thresholds had the lowest values 

at 1000 Hz followed by 500 Hz and 2000 Hz.  When reflex thresholds were 

corrected for volume, the threshold values were similar at 500 and 1000 Hz (p = 

1.000) but were significantly higher at 2000 Hz when compared to 500 Hz (p < 

0.001) and 1000 Hz (p < 0.001). This analysis also suggested that the effect of 

the correction for volume was greatest for reflex thresholds at 2000 Hz followed 

by 1000 and then 500 Hz (Figure 2.6).  

2.4.2.2 Static Compliance and reflex thresholds 

The Pearson Correlation Coefficient was used to examine the relationship 

between static compliance and corrected/uncorrected reflex thresholds.  A 
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statistically significant correlation between static compliance and reflex 

thresholds was found in normal hearing adults for corrected and uncorrected 

reflex thresholds at 500, 1000 and 2000 Hz (Table 2.1). Lower reflex thresholds 

were measured in the ears with higher static compliance (Figure 2.7). There was 

no statistically significant relationship observed between static compliance and 

reflex thresholds in typically developing children in both corrected and 

uncorrected reflex thresholds conditions (Table 2.1). Figure 2.7 shows corrected 

acoustic reflex thresholds plotted against static compliance. Adults and children 

are shown in top and bottom panel, respectively 

 

 

Groups 

Uncorrected reflex thresholds Corrected reflex thresholds 

500 Hz 1000 Hz 2000 Hz 500 Hz 1000 Hz 2000 Hz 

Typically 
developing 

children 

0.333 
(p=0.072 ) 

0.301 
(p=0.106) 

0.343 
(p=0.064 ) 

0.088 
(p=0.644 ) 

0.046 
(p=0.810) 

0.261 
(p=0.163 ) 

Normal 
hearing 
adults 

0.769** 
(p<0.001) 

0.749** 
(p<0.001) 

0.624** 
(p<0.001) 

0.815** 
(p<0.001) 

0.719** 
(p<0.001) 

0.616** 
(p<0.001) 

**Correlation Significant at 1% level 

Table 2.1: Pearson Correlation Coefficient for static compliance and reflex 
thresholds (Uncorrected and corrected for ear canal volume 
differences). 
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Figure 2.7: Corrected acoustic reflex thresholds plotted against static 
compliance. Adults and children are shown in top and bottom panel, 
respectively. 

2.4.3 Discussion 

In this experiment ear canal volume, static compliance, acoustic reflex threshold 

and real ear to coupler difference values were measured in typically developing 

children and normal hearing adults. Similar to the findings of Jerger et al. (1978) 

and Barlow et al. (1988), significantly smaller ear canal volumes were found in 

typically developing children as compared to the normal hearing adults. RECD 

values in typically developing children and normal hearing adults were consistent 

with previously reported values (Bagatto, Scollie, Seewald, Moodie & Hoover, 

2002; Sachs & Burkhard, 1972). 
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 The effect of real ear correction on reflex thresholds at 500, 1000 and 

2000 Hz varied because of the distinct RECD values at 500, 1000 and 2000 Hz. 

The reflex thresholds measured at 2000 Hz were most affected by the volume 

correction followed by 1000 Hz and then 500 Hz. The reflex thresholds for 500 

Hz signals were initially measured at significantly higher levels than the reflexes 

for the 1000 Hz signals but after applying a volume correction these reflex 

thresholds were no longer different. The 2000 Hz reflex thresholds were 

significantly higher than those measured with 500 and 1000 Hz signals 

regardless of whether a correction for individual volume differences was applied 

but the extent of differences in the thresholds was increased. These results 

suggest that the frequency effect in reflex thresholds is mainly related to 

measurement issues. Clinical middle ear analyzers often have optional 

corrections for ear canal volume differences but they generally apply the same 

correction across all frequencies and canal volumes, largely to limit potentially 

dangerous SPLs in the smaller ears of young listeners. As seen in this study, 

RECD values were different at different frequencies in the ear canal and for this 

reason ear canal volume correction should be frequency and individual ear 

specific.   

 Typically developing children and normal hearing adults had statistically 

similar reflex thresholds when measured without correcting for volume 

differences. When reflex thresholds in both the groups were corrected for ear 

canal volume using RECD values, a significant difference emerges between 

typically developing children and normal hearing adults. 



47 

 

 In Study 1 of this chapter, typically developing children had reflex 

thresholds that were statistically similar to the normal hearing adults although 

there was a tendency for children to have higher reflex thresholds. When a 

frequency specific real ear correction was applied to the reflex thresholds the two 

groups showed significantly different reflex thresholds. These findings suggest 

that real ear correction of reflex thresholds may impact the interpretation of 

thresholds measured in children. This highlights the clinical importance of ear 

canal volume correction in the measurement of all measures based on sound 

pressure levels in the ear canal.   

 Uncrossed reflex thresholds were found to have strong correlation with 

static compliance in normal hearing adults. This strong correlation showed that 

reflex thresholds in adults vary as a function of static compliance, such that low 

reflex thresholds are recorded in ears with a high static compliance and vice 

versa. Surprisingly, in typically developing children there was no correlation 

between uncrossed reflex thresholds and static compliance. As static compliance 

in children did not correlate with reflex thresholds it can be suggested that the 

elevated thresholds found in children may result from non-mechanical factors, 

perhaps relating to neural maturation. Previously, Gelfand (1984) described 

several factors such as noisiness and fidgetiness in children, instrument 

sensitivity, measurement procedure and chances of undetected conductive 

problems in children in addition to static compliance that could possibly be 

responsible for the difference in reflex thresholds between children and adults.  

But a recent study, Skoe, Keizman, Anderson and Kraus (2013) showed a 
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developmental trend in auditory brainstem maturation measured by the ABR that 

continued until 11 years of age. Therefore it is possible that elevated reflex 

thresholds in children could be due to neural development in the auditory 

brainstem. 

2.5 General conclusions of this chapter  

Children with suspected APD showed elevated reflex thresholds as compared to 

typically developing children and normal hearing adults. Interestingly, reflex 

abnormalities were greater in the clinical group of children who were not 

diagnosed as APD based on the behavioral test battery in comparison to those 

who received the diagnosis. These acoustic reflex findings demonstrate the 

inability of the behavioral test measures, commonly used in the assessment of 

APD, to identify all of the factors possibly contributing to the experience of 

listening difficulty. Functionally elevated reflex thresholds would suggest that 

children with suspected APD require higher stimulus levels for reflex activation 

and therefore the benefits from reflex activation in speech perception in the 

presence of noise may be limited. 

 Typically developing children differed from normal hearing adults when 

reflex thresholds were corrected for ear canal volume differences. The two 

groups also differed in the relationship between static compliance values and 

reflex thresholds. Clinically, these results highlight the necessity to correct reflex 

thresholds for individual ear canal volume differences especially when 

interpreting reflex thresholds in children. It also showed the importance to 

develop children specific reflex norms and to compare reflex measures in the 
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pediatric clinical population to that of typically developing children rather than to 

normal hearing adults.  
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Chapter 3  

3 Crossed and Uncrossed Acoustic Reflex Growth 
Functions in Normal Hearing Adults, Typically 
Developing Children and Children with suspected 
Auditory Processing Disorder 

 

3.1 Introduction 

The acoustic reflex is an auditory system feedback mechanism in which the 

stapedius muscle contracts following sufficient acoustic stimulation (Liberman & 

Guinan, 1998). This contraction acts over a range of stimulus activator levels to 

modify input to the cochlea in a frequency selective manner by increasing middle 

ear impedance. Because it is strongest in response to high level stimulation it is 

believed to have a protective effect, limiting high level sounds entering the 

cochlea (Borg, Counter & Rosler, 1984). However, because its effect is 

frequency specific it likely plays a role in improving the perception of speech in 

noise (Aiken, Andrus, Bance & Phillips, 2013; Borg & Zakrisson, 1974; Colletti, 

Fiorino, Verlato & Carner, 1992; De Andrade et al., 2011; Dorman, Cedar, 

Hannley & Leek, 1986). 

The acoustic reflex is often used in audiology to evaluate auditory 

peripheral and brainstem function. Measurement of acoustic reflex thresholds 

(Anderson, Barr & Wedenberg, 1970; Johnson, 1977), reflex growth functions 

(Harrison, Silman & Silverman, 1989; Mangham, Lindeman & Dawson 1980; 

Silman, Popelka & Gelfand, 1978), reflex decay (Anderson et al., 1970; 
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Mangham et al., 1980; Olsen, Noffsinger & Kurdziel, 1975) and reflex latencies 

(Clemis & Sarno, 1980; Hess, 1979; Mangham et al., 1980) have been shown to 

be important in assessing neural integrity. A less commonly used measure is the 

evaluation of the strength of the reflex response with changes in stimulus 

activator level (Harrison et al., 1989; Mangham & Lindeman, 1980; Silman et al., 

1978). In individuals with normal reflex pathways, the amplitude of the reflex 

grows with increases in the intensity of the activator stimulus from threshold to a 

point at which it reaches saturation. The function describing changes in reflex 

amplitude with stimulus intensity is described as the Acoustic Reflex Growth 

Function (ARGF; Silman, 1984).  

The ARGF may provide a useful measure of neural integrity at the level of 

the brainstem that may be more sensitive to pathology than the more commonly 

measured reflex threshold. Borg (1973) showed in animal models that severing 

some brainstem tracts resulted in depression of the reflex growth function, often 

with no or only minimal impact on the reflex threshold.  In humans, shallower 

reflex growth has been shown in patients with cerebellar (Harrison et al., 1989) 

and eighth nerve tumors (Mangham & Lindeman, 1980). The shallower growth 

was reasoned to reflect a decrement in neural activity caused by the auditory 

nerve compression due to the tumor. Because the acoustic reflex likely plays a 

role in facilitating hearing in noise, it may have functional as well as neuro-

diagnostic value in the assessment of individuals reporting difficulty hearing in 

noise. One such group includes those with suspected auditory processing 

disorders (APD) for whom difficulty hearing in noise is a common complaint 
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(American-Speech-Language-Hearing-Association [ASHA], 2005a). However, to 

date, growth functions have not been measured in these children. 

Some studies have reported abnormal reflex thresholds in APD. 

Meneguello et al. (2001) reported absent or abnormally elevated acoustic reflex 

in nearly two-thirds of the individuals with APD whom they tested. But Thomas, 

McMurry and Pillsbury (1985) reported that only one-third of their subjects 

showed abnormal reflex thresholds. More recently, Allen and Allan (2014) 

examined acoustic reflex thresholds in crossed and uncrossed configurations in 

children with suspected APD. They reported abnormal reflexes in approximately 

half of the children tested, often absent, particularly when measured in the 

crossed configuration. While suggesting that a large number of children with 

listening difficulties and suspected APD may have reflex abnormalities that 

potentially could contribute to their difficulty hearing in noise, these studies used 

only the presence or absence of the acoustic reflex or the reflex threshold as the 

criteria to define abnormalities. Given the suggestion from animal models (Borg, 

1973) that reflex thresholds may be less sensitive to dysfunction of the reflex 

pathway than the ARGF, the potential importance of the acoustic reflex in 

facilitating speech perception in noise, and the knowledge that magnitude 

changes with stimulus level, this study investigated the ARGF in children with 

reported listening difficulties who were suspected of having an APD. Both 

crossed and uncrossed pathways were evaluated and compared. Normal hearing 

children and adults were included as controls. 
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3.2 Method 

3.2.1 Participants 

Participants included 37 children (7 to 15 years of age) referred to the Child 

Hearing Research Laboratory at the National Centre for Audiology for APD 

evaluation because of listening and/or academic problems thought to arise from 

difficulty hearing or understanding auditory information. Sixteen normal hearing 

adults (18-30 years of age) and 17 typically developing children (7 to 15 years of 

age) participated as controls. All participants had normal otoscopic examination, 

normal hearing thresholds (ASHA, 2005b), normal middle function (ASHA, 1988) 

and no history of neurologic disorder. 

Children referred with suspicion of APD received a behavioral assessment 

that included the Staggered Spondaic Word test (Katz, 1998), the Pitch Pattern 

Sequence Test (Pinheiro, 1977), the Words in Ipsilateral Competition test (Ivey, 

1969, 1987) and two custom tests of frequency discrimination and gap detection 

that used an adaptive three-alternative forced-choice procedure designed to 

track 70% correct threshold levels. As suggested by ASHA (2005a), children who 

performed at least 2 standard deviations below age expectations on at least 2 of 

these tests were classified as APD. Previous work (Allen & Allan, 2014) has 

suggested that many children who report listening difficulties but do not meet a 

criterion for APD diagnosis using a strictly behavioral test battery may show 

objective indicators of auditory pathology in the brainstem pathways. Therefore, 

all children who were referred for assessment of listening difficulties were 

included in this study. Those who did not meet the behavioral criterion for APD 



58 

 

diagnosis were classified as clinical non-APD to reflect that they were part of a 

clinical group but not categorized as APD based on behavioral test standards. 

Twenty three of the children were therefore classified as APD and 14 as clinical 

non-APD group.  

3.2.2 Procedure  

A Grason-Stadler GSI TympStar Middle Ear Analyzer version 2 was used to 

measure acoustic reflexes. The instrument was professionally calibrated for 

probe tone frequency, probe tone level, compliance, volume and pressure 

according to American National Standards Institute [ANSI] S3.39 (1987) 

standard. These calibration values are used by the GSI Tympstar software to 

ensure reliable measures of reflex amplitude. 

Reflex growth functions were obtained for crossed and uncrossed 

conditions using 500, 1000 and 2000 Hz pure-tones as activator stimuli.  All 

impedance and reflex measurements were obtained with a 226 Hz probe tone. A 

proper hermetic seal was sustained during the testing.  Acoustic reflex thresholds 

were estimated in 5 dB steps using ascending run. A reflex amplitude of 0.02 ml 

or greater, measured twice, was used as the criteria for establishing an acoustic 

reflex threshold (dB HL). Reflex amplitude was measured at four stimulus levels: 

acoustic reflex threshold and 5, 10 and 15 dB above threshold. If participants felt 

uncomfortable with the stimulus level, measurement was restricted to not exceed 

comfort levels. Limitations of the instrument/transducers occasionally restricted 

the stimulus level for specific frequencies and this also reduced the number of 
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steps in the growth function for some listeners. Obtaining reflex amplitudes for at 

least 3 stimulus levels was the minimum inclusion criteria for any condition.  

Reflex amplitude measurements can be influenced by additive or tympanic 

membrane artifacts especially when measuring uncrossed reflexes. The chances 

of additive artifacts in reflex measurement are higher when the reflex eliciting 

stimulus and probe tone frequencies are close (Danaher & Pickett, 1974; Green 

& Margolis, 1984; Hall, 1982; Kunov, 1977; Newall, Royall & Lightfoot, 1978; 

Niswander & Ruth, 1976). This interaction was avoided by using a low probe 

tone frequency, 226 Hz (Green & Margolis, 1984) and stimulus frequency that is 

higher than 500 Hz (Niswander & Ruth, 1976). Reflex artifacts can also be 

avoided by using instruments with efficient filters (Danaher & Pickett, 1974; 

Newall et al., 1978; Niswander & Ruth, 1976). The efficiency of the filters can be 

assessed by placing the probe in a hard wall cavity and then stimulating it as in 

the uncrossed condition with different stimulus intensities and frequencies 

(Kunov, 1977).  Absence of any response will indicate higher efficiency of the 

filter to separate probe tone and stimuli. A similar assessment was performed 

and verified for 500, 1000 and 2000 Hz pure-tone elicitors at different intensities 

using a 2 cc coupler. In addition, visual inspection was done during reflex 

measurement to rule out tympanic membrane artifacts or a combination of 

tympanic membrane and additive artifacts. 

Large inter-subject variability is possible in ARGF slope measures due to 

differences in static compliance across individuals (Silman, 1984; Sprague, Wiley 

& Gelfand, 1981). For a given stimulus level, a larger reflex amplitude may be 
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measured in ears with larger static compliance (Silman & Gelfand, 1981; Wilson, 

1981). The decibel transformation method suggested by Silman and Gelfand 

(1981) was adopted to normalize reflex amplitudes for differences in static 

compliance. This method involves expressing the reflex amplitude in terms of the 

change in acoustic compliance caused by the activation of the reflex relative to 

the compliance measured in the absence of the reflex and converting this 

acoustic compliance change into decibels. The formula for this decibel 

transformation is given as  

 

where ΔY is the change in acoustic compliance, calculated by subtracting reflex 

amplitude from static compliance (Y).  

A total of 12 reflex growth functions (2 ears X 2 conditions X 3 stimulus 

frequencies) were measured in each participant. For each condition and stimulus 

frequency combination the slopes of the reflex growth functions were calculated 

by a linear fit between acoustic compliance change in dB and stimulus level (in 

dB SL with respect to ART).  

3.3 Results 

Absent and elevated thresholds (> 105 dB HL) were found in one or more 

measures in some participants from all the groups but, consistent with previous 

data (Allen & Allan, 2014) abnormalities were more frequent and more severe in 

the two clinical groups. There were no instances of absent reflexes in the normal 
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hearing adults or typically developing children but elevated thresholds were 

found in 2 of the 16 adults and 3 of the 17 typically developing children. In the 

groups of children with clinical complaints,6 children from the APD and 7 children 

from the clinical non APD were found to have elevated, but not absent  

thresholds at one or more frequencies and 4 children from the APD and 3 

children from the clinical non-APD groups had absent reflexes.  

Slopes of the ARGFs were calculated from the 63 individuals with no 

absent reflexes (16 adults, 17 typically developing children, 19 children with an 

APD diagnosis and 11 clinically referred but non-APD).  Goodness of fit was 

examined using R2 values. Two normal hearing adults, 3 APD and 5 clinical non-

APD had fits in one or more conditions for which the R2  was  < 0.7, mostly 

occurring when there was no or extremely low growth of the reflex magnitude 

with changes in stimulus level. 

Repeated measures analysis of variance (RM-ANOVA) was done to 

examine frequency, ear, condition and group effects. Greenhouse-Geisser 

corrected values are reported whenever the assumption of sphericity was 

violated. Figure 3.1 shows the mean and standard error of the slopes of the 

reflex growth functions in crossed and uncrossed conditions plotted separately 

for the four groups of participants. Slopes in the uncrossed and crossed 

conditions are shown by the filled and open symbols, respectively. Right and left 

ears are shown by the circles and diamonds, respectively. Negative slopes 

represent a decrease in static compliance with increase in reflex activator 

stimulus level. There were no significant slope differences between ears [F (1, 
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59) = 0.942, p = 0.336] and no significant differences for stimulus frequency [F 

(1.706, 100.659) = 0.080, p = 0.897]. Overall, the effect of group was not 

significant [F (3, 59) = 2.591, p = 0.061]. The effect of condition (crossed vs 

uncrossed) [F (1, 59) = 130.720, p < 0.001] and the condition by group 

interaction [F (3, 59) = 5.309, p = 0.003] were significant. Crossed slopes were 

shallower when compared to uncrossed slopes in all the groups but the effect 

was largest for children in the two clinical groups.  When  data from participants 

with functions showing an R2 < 0.7 were excluded, the effects were unchanged 

(Ear [F (1, 49) = 3.324, p = 0.074], frequency [F (1.673, 81.997) = 0.171, p = 

0.805], group [F (3, 49) = 1.616, p = 0.198], condition [F (1, 49) = 119.191, p < 

0.001] and condition by group interaction [F (3, 49) = 5.121, p = 0.004]). 
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Figure 3.1: Mean slopes of the reflex growth functions at 500, 1000 and 2000 
Hz. Separate panels show data from the adults, typically developing 
children, children with an APD diagnosis and clinically referred 
children who did not receive an APD diagnosis. Slopes in the 
uncrossed and crossed conditions are shown by the filled and open 
symbols, respectively. Right and left ears are shown by the circles 
and diamonds, respectively. Error bars show +1 standard error. 

The group by condition interaction was examined by calculating the ratio 

of crossed/uncrossed slopes for each frequency and ear of each participant. 

Figure 3.2 shows the ratio of crossed/uncrossed ARGF slopes for individual 

participants. Open and filled symbols show data in the left and right ears, 

respectively. Data at 500, 1000 and 2000 Hz are shown by the diamonds, 

squares and circles, respectively. For comparison with adult data, dashed and 
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dotted lines show 1 and 2 standard deviations with reference to adult ratios 

averaged across ear and frequency.  

 

Figure 3.2: Ratio of crossed to uncrossed reflex growth function slopes plotted 
against the slope of the uncrossed reflex growth functions. Data from 
the normal hearing adults, typically developing children, APD and 
clinical non-APD are shown in separate panels. Each data point 
shows an individual ratio. Data measured at 500, 1000 or 2000 Hz 
are shown by the diamonds, squares and circles, respectively. Filled 
and open symbols show data in right and left ears, respectively. 
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RM-ANOVA on slope ratios revealed no significant effect of ear [F (1, 59) 

= 0.036, p = 0.851] or frequency [F (2, 118) = 0.322, p = 0.725] but there was a 

significant effect of group [F (3, 59) = 15.312, p < 0.001]. Results of Bonferroni 

post hoc tests showed that normal hearing adults and typically developing 

children had similar crossed/uncrossed slope ratios (p = 1.000). Normal hearing 

adults had significantly greater ratios than did children in the APD (p < 0.001) and 

clinical non-APD (p < 0.001) groups. Typically developing children were also 

found to have greater ratios in comparison to APD (p < 0.001) and clinical non-

APD (p = 0.014) children. Slope ratios were not different when data from children 

in the APD and clinical non-APD groups were compared (p = 1.000). Unlike the 

typically developing children, most of the children from clinical groups (APD and 

clinical non-APD) had crossed/uncrossed ARGF slope ratios that were more than 

1 standard deviation smaller than those of the adults and several had ratios that 

were more than 2 standard deviations smaller. 

3.4 Discussion 

This study measured acoustic reflex growth functions in crossed and uncrossed 

configurations in normal hearing adults, typically developing children and children 

with listening difficulties. The latter group of clinically referred children was further 

divided into two groups, those who received a diagnosis of APD based upon a 

battery of clinically accepted behavioral tests (APD) and those who did not 

(clinical non-APD). Results showed no significant slope differences between ears 

or frequency, consistent with previously reported data from adults (Sprague et 
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al., 1981; Wilson, Shanks & Velde, 1981). Slopes tended to be significantly 

shallower in the crossed than uncrossed conditions and the difference was 

significantly larger in the clinical groups of children than in the typically 

developing children or adults.  

Slope differences in crossed and uncrossed conditions are consistent with 

reports from Moller (1961, 1962 a, b) and Jerger, Hayes, Anthony and Mauldin 

(1978).  The anatomy of the crossed and uncrossed reflex pathways has been 

described in the literature but little has been reported that may account for 

differences in the relative strength of the two pathways. Crossed stimulation has 

previously been reported to require higher level stimulation for activation of the 

reflex, i.e. higher crossed than uncrossed thresholds (Gelfand, 2005) and to 

produce lower amplitude responses (Hall, 1982). These observations may 

suggest weaker crossed pathways compared to uncrossed.  

Comparison of data from typically developing children and adults 

suggested adult-like reflex growth in school-aged children. There have been no 

previous studies that reported reflex growth in children. Age effects have been 

reported in older individuals as compared to younger adults (Silman & Gelfand, 

1981; Thompson, Sills, Recke & Bui, 1980; Wilson, 1981).  

In contrast to typically developing children, children in the two clinical 

groups showed many differences compared to adults. Of the 37 children referred 

to this study with listening difficulties, elevated reflex thresholds were found in 20 

children. Seven had absent reflexes and 13 others had elevated only reflexes in 
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one or more condition.  This finding is consistent with that of reflex abnormalities 

reported in children with suspected APD by Allen and Allan (2014). Acoustic 

reflex growth functions from children in clinical groups were shallower than those 

measured in adults and typically developing children, especially in the crossed 

condition. Crossed and uncrossed differences were most clearly seen in the 

growth ratios comparing crossed to uncrossed growth. With this comparison 24 

of the 30 children in the clinical groups (19 from the APD and 11 from the clinical 

non-APD groups) had ratios more than 1 standard deviation below adult values 

and 10 children (7 APD and 3 clinical non APD) were more than 2 standard 

deviations below.  

Reflex growth measurements are affected by individual differences in 

static compliance (Silman & Gelfand, 1981; Sprague et al., 1981). But this likely 

did not contribute to group differences seen in this study as the raw data was 

normalized for individual differences in static compliance. Further, using 

crossed/uncrossed slope ratios minimized the effect of static compliance on the 

differences. Differences between groups were therefore more likely to reflect 

differences in the neural pathways underlying the reflexes.  

Moller (1961) suggested that neural activity at the level of the superior 

olivary complex underlies growth of acoustic reflex amplitude with stimulus 

activation level. Reduced growth of reflex amplitudes has been documented in 

patients with dysfunction in various neural nuclei of the reflex pathway (auditory 

nerve, cochlear nucleus and stapedius motor neuron). Reduced reflex growth in 
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children with auditory processing difficulties may suggest dysfunction in the 

neural pathways of the brainstem. 

Irrespective of the stimulus frequency eliciting the acoustic reflex , the 

effect of middle ear muscle activation is to increase impedance of the middle ear 

system. The impact on sound transmission due to muscle contraction is 

frequency specific, attenuating low frequency transmission more than high (Borg, 

1968). It is believed that the reflex protects the inner ear from damage due to 

high level sound and improves speech perception, especially in noise. The 

protective role of the acoustic reflex is likely limited because the duration 

between the stimulus onset and the activation of the reflex is most often over 100 

msec (Gorga & Stelmachowicz, 1983; Hung & Dallos, 1972; Qiu & Stucker, 

1998) making it less effective for preventing damage from impulse noise or 

stimulus onsets. Its role in improving speech intelligibility in noise by attenuating 

low frequency information may be more significant (Borg, 1968; Simmons, 1964). 

Several studies have supported its importance in speech perception tasks. Aiken 

et al. (2013) highlighted the role of acoustic reflex in preventing upward spread of 

masking at moderate levels. De Andrade et al. (2011) and Colletti et al. (1992) 

described the importance of acoustic reflex in speech discrimination and 

frequency selectivity, respectively. Dorman et al. (1986) reported improved vowel 

recognition in normal hearing listeners when their acoustic reflexes were 

activated. Borg and Zakrisson (1974) showed that ears with acute stapedius 

muscle paralysis had greater masking compared to ears with reflexes present at 

stimulus levels above reflex thresholds, though masking was the same in both 



69 

 

ears below reflex threshold. A possible implication of shallow reflex growth may 

be that the individual would not obtain as much benefit in noise, or with increased 

signal level, as would an individual with a steeper growth function. The high 

incidence of reduced reflex growth and absent or elevated reflexes in children 

with suspected APD may be related to their most common reported problem of 

difficulty understanding speech in noise. However, abnormalities are most often 

present in the crossed reflex pathway and there has been no investigation into 

the relative importance of crossed and uncrossed pathways on speech 

perception.  

Clinical importance of measuring reflex growth function in children with 

suspected APD is shown in Figure 3.3. Slope ratios were averaged across the 

non-significant factors of stimulus frequency and ear for each participant and 

plotted against uncrossed slopes which were also averaged across ear and 

frequency. Twenty-four of the 30 children from the clinical groups [19 APD (open 

diamonds) and 11 clinical non-APD (open triangles)] showed ratios of 

crossed/uncrossed ARGF slopes less than 0.68 [more than 1 standard deviation 

below the adult data (filled squares)]. Ten fell more than 2 standard deviations 

below adult data (< 0.48). In contrast, none of the typically developing children 

(filled circles) showed averaged ratios less than 2 standard deviation below the 

adult data. Eleven of the clinical children with reduced ratio had normal reflex 

thresholds which suggest greater sensitivity of reflex growth function in assessing 

neural integrity in children with suspected APD. 
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Figure 3.3: Average ratio of crossed to uncrossed reflex growth function slopes 
for each participant plotted against the average slope of the 
uncrossed growth function. Ratios were averaged for each individual 
across ears and frequencies. Data from the normal hearing adults 
and typically developing children are shown by the filled squares and 
circles, respectively. Data from children in the clinical groups, APD 
and non-APD are shown by open diamonds and triangles, 
respectively. 

3.5 Conclusion 

This study showed frequent abnormalities in reflex growth functions in children 

reporting listening difficulties and seeking APD assessment with no significant 

differences in children receiving or not receiving an APD diagnosis based upon 

an entirely behavioral test battery. Many of the children were diagnosed to have 

normal auditory processing but showed similarly reduced reflex growths as seen 

in those who did receive an APD diagnosis. These findings highlight the 

limitations of behavioral APD tests in detecting auditory deficits that may underlie 

the reported listening difficulties similar to previous reports (Allen & Allan, 2014). 
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The relationship between the functional role of acoustic reflexes in speech in 

noise perception and the high incidence of reflex abnormalities and poor speech 

in noise perception in children with suspected APD may suggest the importance 

of detailed acoustic reflex testing in assessing this population. 
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Chapter 4  

4 Time Course of the Acoustic Reflex in Normal Hearing 
Adults, Typically Developing Children and Children with 
Suspected Auditory Processing Disorders: Latency and 
Decay 

4.1 Introduction 

4.1.1 Acoustic reflex latency 

Acoustic reflex latency describes the time course of the middle ear muscle 

contraction following stimulus onset. Bosatra, Russolo and Silverman (1984) 

defined reflex latency as the time between the a onset of reflex activator and the 

first change detected in the impedance of the middle ear as a result of the reflex. 

Both onset and offset latencies can be measured, but the reflex latency can be 

measured using different criteria. For example, onset latency, is measured as the 

time between stimulus onset and the point of certain change in impedance 

generally defined as the point of initial change (Clemis & Sarno, 1980; Hess, 

1989; Mangham, Lindeman & Dawson, 1980; Qui & Stucker, 1998), the point 

where a 5% of the impedance change has occurred (Gorga & Stelmachowicz, 

1983) or the point at which the reflex amplitude reaches 10% or 90% of its 

maximum amplitude (Borg, 1982; Qui & Stucker, 1998). Rise time has been 

defined as the time between the first and maximum change in impedance (Norris, 

Stelmachowicz, Bowling & Taylor, 1974), as the time between stimulus onset and 

a 50% change in impedance (Borg, 1982; Hess, 1989) or as the time between 

10% and 90% of the maximum reflex amplitude (Liden, Nilsson, Laaskine, Roos 

& Miller, 1974; Qui & Stucker, 1998).  
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Similarly, offset latency is measured as the time between stimulus offset 

and the point where reflex amplitude falls to 5% or 95% of its maximum 

amplitude (Norris et al., 1974) or to the point where reflex amplitude falls 10% or 

90% of its maximum amplitude (Qui & Stucker, 1998). Colleti (1974) and Qui and 

Stucker (1998) described the time from the point when the reflex amplitude 

decreases from 90% to 10% (of the maximum reflex amplitude) after stimulus 

offset as the fall time. Borg (1982) defined fall time between the end of the 

stimulus presentation and the point where the reflex decreased to 50% of the 

maximum reflex amplitude. Because of the different definitions of reflex latencies 

described in various studies, there are variations in the normative values for 

reflex latency across studies. As well, the temporal characteristics and sensitivity 

of different immitance instruments can affect reflex latencies (Bosatra et al., 

1984; Gefand, 2005; Lilly, 1984; Qui & Stucker, 1998). It is therefore suggested 

that clinicians develop and use instrument specific norms for reflex latencies for 

clinical comparisons (Jerger, Oliver & Stach, 1986; Qui & Stucker, 

1998).However, in general, most studies show typical onset latencies (10% 

change) around 115 msec, with amplitude reaching 90% of the maximum value 

around 235 msec and 90% and 10% offset latencies around 120 and 235 msec, 

respectively. 

There are no guidelines suggested for clinically significant delays but 

reflex latencies have been measured in individuals with auditory nerve and 

auditory brainstem disorders. For example, Hess (1979) measured the onset 

latency (time between stimulus onset and first change in impedance) and rise 
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time (which was described as the time between the stimulus onset and the point 

where reflex amplitude reaches 50% of its maximum amplitude) for crossed 

reflexes using a 1000 Hz pure-tone activator in patients with multiple sclerosis 

and normal hearing controls. One third of patients with multiple sclerosis were 

found to have delayed onset latency [Mean = 124.1 msec, standard deviation = 

64.8] and rise time [Mean = 343.6 msec, standard deviation = 74.3] in 

comparison to normal hearing individuals (onset latency [Mean = 90.2 msec, 

standard deviation = 17.7] and rise time ([Mean = 201 msec, standard deviation = 

36.5]). Delayed latencies were more frequent for rise time in patients with 

multiple sclerosis. Clemis and Sarno (1980) estimated onset reflex latencies 

(described as the time between stimulus onset and the first change in 

impedance) at 1000 and 2000 Hz in crossed and uncrossed condition in patients 

with eighth nerve tumors and in normal hearing individuals. With a 1000 Hz or 

2000 Hz activator, reflex latencies in patients with eighth nerve tumors were 

prolonged by an average of 78.5 and 168.7 msec, respectively, in comparison to 

normal hearing individuals   Mangham, Lindeman and Dawson (1980) reported 

higher (approximately 200 msec) crossed reflex latency (described as the time 

between stimulus onset and first change in impedance) in the affected ear of 

patients with unilateral auditory nerve tumor in contrast to normal hearing 

individuals. Overall, reflex latencies measured in individuals with auditory nerve 

and auditory brainstem disorders showed delayed onset latencies. There has 

been no investigation of offset latencies in the assessment of auditory nerve or 

auditory brainstem disorders.  
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4.1.2 Acoustic reflex decay 

The amplitude of the reflex grows to its maximum magnitude after the activator 

stimulus is presented but the reflex may undergo some adaptation and amplitude 

decreases if stimulation continues. The decrease in amplitude of the reflex when 

the activator stimulus is sustained for long durations is called reflex decay. Reflex 

adaptation and reflex fatigue are other terms used in literature to describe reflex 

decay.  

 Reflex decay can be estimated by measuring the time for a specified 

decrease in reflex amplitude, for example 50% decrease from its maximum 

amplitude (Gelfand, 2005; Wilson, Shanks & Lilly, 1984).Decay can also be 

measured in terms of the amount of decrease in reflex amplitude after a given 

period of time. Clinically, a decrease of reflex amplitude by 50% within 10 

seconds of the stimulus onset is used as an indication of retrocochlear pathology 

(disorder of auditory nerve and auditory brainstem). Reflex decay is dependent 

on the type and/or frequency of the stimulus (Wilson et al., 1984). Normal 

hearing individuals typically show little decay for pure-tones below 1000 Hz 

during the first 30 seconds of stimulus presentation. In contrast the reflex 

reduces to 50% of its maximum amplitude within 15 seconds for pure-tones 

above 2000 Hz. Decay for broadband stimuli is similar to that of higher frequency 

pure-tones. 
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Like reflex latencies, reflex decay is also reported to be sensitive to 

auditory nerve and auditory brainstem dysfunctions. Anderson, Barr and 

Wedenberg (1970) measured the amount of reflex decay in patients with tumors 

of the auditory nerve or posterior fossa and normal hearing individuals. At 500 

and 1000 Hz, where normal hearing individuals showed minimal decay, the reflex 

amplitude of tumor patients was halved within 3 seconds of stimulus 

presentation. At 2000 and 4000 Hz, normal hearing individuals showed a 50% 

decay in reflex amplitude at 14 and 7 seconds, respectively, while in patients with 

tumors time for 50% decay was reached within only 5 seconds. Similar reports 

showing rapid decay in patients with an acoustic nerve tumor were indicated in 

several other studies (Jerger, Harford, Clemis & Alford, 1974; Olsen, Stach & 

Kurdziel, 1981; Sanders, Josey & Glasscock, 1981; Sheehy & Inzer, 1976). In 

patients with multiple sclerosis, Anderson, Barr and Wedenberg (1969 as cited 

in: Wilson et al., 1974) found that a mean time for the reflex amplitude to decay 

by 50% was only 6.3 seconds. In summary, these studies indicate that 

individuals with auditory nerve and auditory brainstem dysfunctions are more 

prone to show rapid decay of reflex amplitude.  

4.1.3 Children with suspected APD 

Auditory brainstem dysfunction in children with suspected APD has been 

suggested in some previous studies. Sanches and Carvallo (2006) and Muchnik 

et al. (2004) reported that contralateral suppression of transient evoked 

otoacoustic emission in children with suspected APD was significantly reduced in 

comparison to normal hearing children. Banai and Kraus (2007), Gopal and 
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Kowalski (1999), Gopal and Pierel (1999) and Jisra (2001) showed poor 

morphology, prolonged latencies and reduced amplitude of the components of 

auditory brainstem response in children with suspected APD. Absent and 

elevated reflex thresholds have also been reported in children with suspected 

APD (Allen & Allan, 2007, 2014; Meneguello et al., 2001; Thomas, McMurry & 

Pillsbury, 1985). Previous work reported in this thesis (chapter 2 and 3) also 

showed absent or elevated reflex threshold and shallower growth of reflex 

functions in children with suspected APD when compared to normal hearing 

adults and typically developing children. Temporal characteristics of the acoustic 

reflex, including reflex latencies and reflex decay, have been found to be 

sensitive to dysfunction of the auditory brainstem and auditory nerve but have 

rarely been studied in children with suspected APD. 

An important role of acoustic reflexes in facilitating speech perception in 

the presence of noise has been suggested (Aiken, Andrus, Bance & Phillips, 

2013; Borg & Zakrisson, 1974; Colletti, Fiorino, Verlato & Carner, 1992; De 

Andrade et al., 2011; Dorman, Cedar, Hannley & Leek, 1986; Simmons, 1964). 

Abnormal reflex latencies and decay could limit the functional benefit of reflexes 

if reflex activation is delayed, if it decays excessively over time or if it fails to 

release promptly after stimulus cessation. Because difficulty with speech 

perception in the presence of noise is one of the most common reported 

difficulties in children with suspected APD, it is important to study all factors that 

may contribute to the ability. In this study reflex latencies and decay were 

measured in children with suspected APD and were compared with those of 
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typically developing children and normal hearing adults. Detailed investigation of 

reflex latencies and decay may provide important information on the temporal 

characteristics of acoustic reflex in children with suspected APD and will further 

explore the possibilities of estimating auditory brainstem or auditory nerve 

disorders in children with suspected APD using these reflex measures.  

4.2 Methods 

4.2.1 Participants 

Normal hearing adults (aged 18 to 30 years), typically developing children (aged 

7 to 15 years) and children with suspected APD (aged 7 to 15 years) participated 

in this study. Children with suspected APD were referred to the Child Hearing 

Research Laboratory at the National Centre for Audiology by teachers, 

caregivers, parents and educational audiologists for APD evaluation because of 

listening and/or academic problems. All participants had normal otoscopic 

examination, normal hearing thresholds (American-Speech-Language-Hearing-

Association [ASHA], 2005a), normal middle function (ASHA, 1988) and no history 

of neurologic disorder. Children with suspected APD were assessed with a 

behavioral test battery that included the Staggered Spondaic Word test (Katz, 

1998), the Pitch Pattern Sequence Test (Pinheiro, 1977), the Words in Ipsilateral 

Competition test (Ivey, 1969, 1987) and two custom tests of frequency 

discrimination and gap detection that used an adaptive three-alternative forced-

choice procedure designed to track the 70% correct threshold levels. In 

accordance with ASHA (2005b) recommendations, children who showed scores 

at least two standard deviations below age expectations on two measures were 
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classified as APD. Those that did not meet the criterion but who were reported to 

experience listening difficulties were classified as clinical non-APD (Allen & Allan, 

2014).  

Reflex latencies were measured in 17 normal hearing adults, 19 typically 

developing children, 14 children with APD and 10 children classified as clinical 

non-APD. Participants for reflex decay measurements included 12 normal 

hearing adults, 12 typically developing children, 8 children with APD and 6 

clinical referrals who were non-APD. While some adults and typically developing 

children took part in both the studies of latency and decay none of the children in 

the 2 clinical groups did so. 

One typically developing child, 4 APD and 3 clinical non-APD who were 

originally recruited for the latency study had absent reflexes in one or more 

conditions and therefore testing was not completed with them. Similarly, decay 

was not measured in 2 APD children and 1 clinical non-APD child with absent 

reflexes.  

4.2.2 Signals & measurements 

4.2.2.1 Reflex latency 

The GSI TympStar Middle Ear Analyzer version 2 was used to measure reflex 

latencies. The instrument was professionally calibrated for intensity levels, 

compliance, volume and pressure according to American National Standard 

Institute [ANSI] S 3.39 (1987) standard. Crossed and uncrossed reflex latencies 

were obtained for both the right and left ears using 500, 1000 and 2000 Hz pure-
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tone activator signals. Reflex latencies were measured at 10 dB SL (reference to 

the acoustic reflex threshold). Estimation of acoustic reflex thresholds was done 

using an ascending run and stimulus intensity was increased in 5 dB step. A 

reflex amplitude of 0.02 ml or greater was used as the criteria for establishing 

reflex threshold (dB HL). Acoustic reflex threshold was validated by repeating the 

measurement at least twice at the prescribed stimulus level. All measurements 

were obtained using a 220 Hz probe tone. A proper hermetic seal was 

maintained during the testing.   

Reflex latencies were measured using the following parameters; 10% On 

Latency, 90% On Latency, 10% Off Latency, 90% Off Latency, rise time and fall 

time. Figure 4.1 shows the parameters used in the measurements of reflex 

latencies. The 10% and 90% On Latencies refers to the initial latency period from 

the onset of the stimulus to time the reflex reaches 10% and 90% of the 

maximum reflex amplitude. The time duration between 10% and 90% On 

Latencies is defined as the rise time. 90% and 10% Off Latencies refer to the 

time duration between the stimulus offset and the point where the reflex 

amplitude decreased to 90% and 10% of its maximum amplitude. Fall time is the 

duration from 90% to 10% Offset Latencies. 
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Figure 4.1: Parameters of reflex latencies measured in this study 

4.2.2.2 Reflex decay 

The Titan (Interacoustics, 2013) middle ear analyzer was used for measuring 

reflex decay. It was calibrated for intensity levels, compliance, volume and 

pressure according to the American National Standard Institute [ANSI] S3.39 

(1987) standard. Crossed and uncrossed reflex decay was measured as the 

percentage change (decay value) that occurred in reflex amplitude between the 

initial steady amplitude and the amplitude following 15 seconds of a continuous 

stimulus presentation. Reflex decay measurements were conducted using a 226 

Hz probe tone and a broadband activator stimulus presented at a level of 10 dB 

SL (ref acoustic reflex threshold). Acoustic reflex thresholds were established 

following the same methodology used in reflex latency measurements.   



85 

 

4.3 Results 

4.3.1 Acoustic reflex latencies 

Repeated measures ANOVA (RM-ANOVA) were used for data analysis. 

Significance values for ear, group, condition and frequency are summarized in 

Table 4.1. There was no ear difference for any reflex latency parameter. Further 

analyses were therefore conducted with values averaged across ears.  

4.3.1.1 10% On Latency, 90% On Latency, 90% Off Latency and 
10% Off Latency 

Figure 4.2 shows mean and standard errors of acoustic reflex latencies (10% On 

Latency, 90% On Latency, 90% Off Latency and 10% Off Latency) averaged 

across ears. For all the figures mentioned in this section normal hearing adults, 

typically developing children, APD and clinical non-APD are shown in squares, 

circles, diamonds and triangles, respectively. Acoustic reflex latencies for 

crossed and uncrossed reflexes are represented by open and filled symbols, 

respectively. 
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Reflex 
latency 

parameter 

F values (RM-ANOVA) 

Ear Group Condition Frequency 

10% On 
Latency 

0.799 
(p=0.375) 

1.937 
(p=0.134) 

29.247** 
(p=0.001) 

61.934** 
(p<0.001) 

90% On 
Latency 

0.134 
(p=0.715) 

2.091 
(p=0.112) 

63.355** 
(<0.001) 

101.393** 
(p<0.001) 

90% Off 
Latency 

0.536 
(p=0.467) 

0.106 
(p=0.956) 

4.476* 
(p=0.039) 

23.457** 
(p<0.001) 

10% Off 
Latency 

0.021 
(p=0.887) 

0.622 
(p=0.604) 

12.563** 
(p=0.001) 

1.048 
(p=0.354) 

Rise time 
0.006 

(p=0.936) 
0.764 

(p=0.519) 
25.861** 
(p<0.001) 

69.824 
(p<0.001) 

Fall time 
0.273 

(p=0.617) 
0.729 

(p=0.539) 
9.122** 

(p=0.004) 
4.759** 

(p=0.010) 

*Significant at 5% level. 
**Significant at 1% level. 

Table 4.1: F and p values for ear, group, condition and frequency effect on 10% 
On Latency, 90% On Latency, 90% Off Latency, 10% Off Latency, rise 
time and fall time obtained using RM-ANOVA. 
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Figure 4.2: Mean of 10% On Latency, 90% On Latency, 90% Off Latency and 
10% Off Latency averaged across right and left ear. Normal hearing 
adults, typically developing children, APD and clinical non-APD are 
shown in squares, circles, diamonds and triangles respectively. 
Acoustic reflex latencies for crossed and uncrossed reflexes are 
represented by open and filled symbols respectively. Error bars show 
+1 standard error. 

 

Although there was a tendency for mean onset latencies to be numerically 

slightly longer and mean offset latencies to be slightly shorter in children from the 

clinical groups in comparison to typically developing children and normal hearing 

adults there was no group effect for any reflex latency parameter including 10% 
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On Latency, 90% On Latency, 90% Off Latency and 10% Off Latency. This 

suggested no difference in the temporal aspects of the reflex in children with 

clinical listening complaints. 

There was a significant effect of condition in all four latencies measures. 

For each parameter, reflex latencies were greater in the crossed condition when 

compared to the uncrossed condition, potentially reflecting the longer, more 

complex crossed pathways. 

As can be seen in Figure 4.2 and Table 4.1 there was a trend for longer 

onset latencies with increase in frequency. The effect of frequency on offset 

latencies was inconsistent (Table 4.1). There was no significant frequency effect 

for 10% Off Latency. However, 90% Off Latency showed a significant frequency 

effect, but pairwise comparisons showed significantly greater 90% Off Latency 

only at 2000 Hz when compared to 500 (p < 0.001) and 1000 (p < 0.001) Hz. 

There was no significant difference between 90% Off Latency at 500 and 1000 

Hz (p = 0.308). 

4.3.1.2 Rise time and fall time 

Figure 4.3 shows mean and standard error of rise time and fall time for acoustic 

reflexes averaged across right and left ears. 
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Figure 4.3: Mean and standard error of rise time and fall time for acoustic 
reflexes averaged across right and left ear. Normal hearing 
adults, typically developing children, APD and clinical non-
APD are shown in squares, circles, diamonds and triangles 
respectively. Acoustic reflex latencies for crossed and 
uncrossed reflexes are represented by open and filled 
symbols respectively. Error bars show +1 standard error. 

 

There was a tendency for mean fall time to be shorter in clinical children in 

comparison to typically developing children and normal hearing adults but there 

was no statistical difference between rise or fall time in children with suspected 

APD, typically developing children and normal hearing adults. Reflexes in the 

crossed condition had significantly longer rise time and fall time in comparison to 

the uncrossed condition.  

Frequency effect was significant for both rise time and fall time but as with 

the measure of absolute latency the effect showed no clear pattern. Rise time 
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tends to increase with the increase in stimulus frequency as can been seen in 

Figure 5.3. Fall time, in contrast, was shorter at 2000 Hz in comparison to 500 

and 1000 Hz. Pairwise comparison in fall time showed  significant difference only 

between at 500 and 2000 Hz (p = 0.009). Overall, the greatest interest of this 

study was to estimate the effect of group and condition on reflex latencies. 

Results suggested a significant effect of condition on latencies but there were no 

significant differences in latencies between groups. 

4.3.2 Acoustic reflex decay 

Figures 4.4 (right ear) and 4.5 (left ear) shows mean and standard error for 

crossed and uncrossed acoustic reflex decay in all 4 groups. RM-ANOVA 

showed no significant difference between right and left ear on reflex decay [F (1, 

34) = 0.068, p = 0.795]. Decay in the crossed and uncrossed condition was 

statistically similar [F (1, 34) = 0.307, p = 0.583]. There was no statistically 

significant difference in reflex decay between groups [F (3, 34) = 0.303, p = 

0.823]. 
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Figure 4.4: Mean of crossed and uncrossed acoustic reflex decay for right 
ear in normal hearing adults, typically developing children, 
APD and clinical non-APD. Error bars show +1 standard error. 
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Figure 4.5: Mean and standard error of crossed and uncrossed acoustic reflex 
decay for left ear in normal hearing adults, typically developing 
children, APD and clinical non-APD Error bars show +1 standard 
error. 

 

4.4 Discussion 

4.4.1 Acoustic reflex latencies 

Acoustic reflex latencies were measured in normal hearing adults, typically 

developing children, APD and clinically referred children who did not receive APD 

diagnosis based on behavioral testing. Reflex latencies were similar in all groups. 

Crossed latencies were found to be longer in comparison to uncrossed latencies. 

There was no ear effect on reflex latencies. Reflex latencies showed a significant 

effect of stimulus frequency.  
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Clemis and Sarno (1980) and Qiu and Stucker (1998) reported no 

significant differences between crossed and uncrossed reflex latencies. The 

present study showed that the crossed condition resulted in slightly prolonged 

onset and offset latencies in comparison to the uncrossed condition, suggesting 

that crossed stimulation requires longer conduction times to activate the acoustic 

reflex.  The anatomy of the crossed and uncrossed reflex pathways has been 

described and longer latencies in the crossed condition may be due to the 

greater number of neural synapses in the crossed pathway.  

There is no previous report of ear effects on reflex latencies, but these 

findings are consistent with the results of other reflex measures including 

thresholds (Osterhammel & Osterhammel, 1979; Wilson et al., 1981) and growth 

functions (Sprague et al., 1981; Wilson et al., 1981). Chapter 2 and 3 of this 

thesis also suggested no ear differences in thresholds and growth functions, 

respectively. 

4.4.2 Acoustic reflex decay 

Statistically similar reflex decay values were found in children with suspected 

APD, typically developing children and normal hearing adults. There has been no 

previous study that investigated reflex decay in children with suspected APD. 

This study also showed no difference between crossed and uncrossed reflex 

decay, similar to the findings of Borg (1980) in which similar decay was reported 

for crossed and uncrossed reflex.  Oviatt and Kinely (1979) reported greater 

decay for uncrossed reflexes in comparison to the crossed reflex but the 

difference did not reach significance.  
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4.5 General conclusion 

Studies conducted in patients with tumors and brainstem abnormalities have 

shown prolonged reflex latencies and greater reflex decay. In this study there 

were no significant differences in either latencies or decay between children with 

clinical issues when compared to the adults and age matched controls.  

 Reflex latencies represent the neural conduction time across reflex 

pathway (Clemis & Sarno, 1980; Jerger & Haynes, 1983; Mangham et al., 1980;) 

and no difference in reflex latencies for children with suspected APD, typically 

developing children and normal hearing adult suggests no abnormality in neural 

conduction time for the reflex pathway in children with suspected APD.   

Reflex decay was measured as the decrease in reflex amplitude over 

time. As reflex was measured with respect to the initial amplitude of acoustic 

reflex, small or larger amplitude at the onset of the acoustic reflex should have no 

effect on the measurement of reflex decay. Therefore, over the sustained 

duration of stimulus the amount of decrease in reflex amplitude in children with 

suspected APD is within the range of values seen in typically developing children 

and normal hearing adults. But previous studies in which we estimated reflex 

thresholds and growth functions in children with suspected APD showed 

abnormality in this clinical population which might indicate a deficit in the neural 

strength of the reflex pathway in children with suspected APD. 
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Chapter 5  

5 Effect of the Activation of Acoustic Reflex on Middle Ear 
Functioning in Normal hearing adults, Typically 
Developing Children and Children with Suspected 
Auditory Processing Disorder 

5.1 Introduction 

It has been suggested that activation of the middle ear muscle reflex modifies 

transmission of sound to the cochlea in a frequency selective way. Wiggers 

(1937) measured the effect of middle ear reflex on the cochlear electrogram in 

guinea pigs and reported that reflex activation results in reduced transmission 

below 1000 Hz, an improvement in the transmission between 1300 and 1800 Hz 

and no effect above 2000 Hz. Galambos and Rupert (1959) found a reduction in 

the cochlear potential in cats between 500 and 3000 Hz following the activation 

of the reflex.  

Moller (1965) estimated the effect of the stapedius muscle contraction on 

the cochlear potential in cats and calculated the change in middle ear 

transmission, in dB, by measuring the sound pressure required to compensate 

for the change in the cochlear potential caused by the reflex activation. An 

attenuation of 1 to 9 dB was suggested for between 200 and 1500 Hz with the 

maximum reduction of 9 dB occurring at 700 Hz. A small gain of 1-2 dB was 

found between 1500 and 3000 Hz. Simmons (1964) found that the reflex 

activation caused an attenuation of 20 to 25 dB for sounds below 1000 Hz in 

cats. Nuttal (1974) reported that contraction of the tensor tympanic and stapedius 
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muscles resulted in a reduction of 20 to 25 dB and 15 to 20 dB respectively in the 

transmission of frequencies below 1000 Hz. He also found that a contraction of 

tensor tympanic and stapedius muscles provided a gain of 5 dB and 0.5 dB 

respectively for the frequencies between 1000 and 3000 Hz. In human cadavers, 

Neergard, Anderden, Hansen and Jepsen (1963) measured the effect of the 

contraction of the stapedius muscle on the transmission of 125 to 3500 Hz pure 

tones. An attenuation of 10 to 15 dB was reported in the low frequency region 

below 1000 Hz. Comparatively, there was less attenuation at higher frequencies. 

Variations in the magnitude of the reflex effect reported in the reviewed literature 

is primarily due to the different methods by which the middle ear muscles were 

contracted (for example, acoustically or electrically). 

Direct estimation of the effect of the middle ear muscle reflex on middle 

ear transmission in living humans is difficult. It can only be investigated by 

acoustically activating the reflex, and in humans it is the stapedius muscle that 

contracts in response to sound. Moller (1958) measured the absorption of a 785 

Hz pure-tone by the middle ear with and without reflex activation. When the reflex 

was activated there was a decrease in the absorption of the pure-tone which 

increased with an increase in the reflex activator stimulus level. Borg (1968) 

estimated the effect of crossed reflex activation on sound transmission (in dB) in 

patients with short term stapedius muscle paralysis based on impedance 

measurements obtained before and after recovery from paralysis. It was reported 

that the crossed reflex can cause an attenuation of 12 to 15 dB and 0 to 6 dB for 

500 and 1450 Hz pure tones, respectively.  
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The decrease in transmission of low frequency sound energy due to the 

activation of the acoustic reflexes is thought to be helpful in the perception of 

speech, especially in presence of noise (Simmons, 1964). Liden, Nordlund and 

Hawkins (1964) describe the function of the stapedius muscle contraction as 

similar to a high pass filter that ultimately improves the signal to noise ratio for 

high frequency sound which is important for speech perception. The important 

role of the acoustic reflex in speech perception in the presence of noise has been 

reported in several studies. Aiken, Andrus, Bance and Phillips (2013) suggested 

a possible role of the acoustic reflex in improving speech perception in noise by 

preventing upward spread of masking at moderate levels of noise. De Andrade et 

al. (2011) and Colletti, Fiorino, Verlato and Carner (1992) found that the acoustic 

reflex helps in reaching better performance in speech discrimination and 

frequency selectivity tasks. Dorman, Cedar, Hannley and Leek (1986) reported 

vowel recognition in listeners with normal reflexes improved when their reflexes 

were activated. Borg and Zakrisson (1974) found that ears with acute stapedius 

muscle paralysis had greater masking effect in comparison to ears with normal 

acoustic reflexes.  

Difficulty understanding speech in the presence of noise is a common 

complaint from children with suspected auditory processing disorders (APD). 

Previous investigations have suggested acoustic reflex abnormalities in children 

with suspected APD (Allen & Allan, 2007, 2014; Meneguello et al., 2001; 

Thomas, McMurry & Pillsbury, 1985). Chapter 2 and 3 also showed reflex 

abnormalities in this population in terms of elevated or absent reflexes and 
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shallower reflex growth functions, respectively in comparison to age matched 

controls and normal hearing adults. Knowing the contribution of the acoustic 

reflex in perceiving speech in the presence of noise makes it critical to 

investigate the impact of abnormal acoustic reflexes on middle ear function in 

children with suspected APD.  

Middle ear absorbance provides an estimate of sound energy being 

absorbed by the middle ear across frequency. Absorbance is the ratio of acoustic 

energy absorbed by the middle ear to the acoustic energy of the incident sound 

(Keefe, Sanford, Ellison, Fitzpatrick & Gorga, 2012). A change in the absorbance 

(sound absorbed by the middle ear) following activation of the reflex could be 

used to demonstrate the effect of the reflex on middle ear function. 

Another middle ear measurement that could be used to estimate the effect 

of the acoustic reflex on middle ear function is the middle ear resonant 

frequency. The resonant frequency of the middle ear transmission system is the 

frequency at which mass susceptance and stiffness susceptance cancel each 

other and only conductance contributes to the compliance of the middle ear. 

Resonant frequency is reported to change when there is a change in the mass or 

stiffness of the middle ear system (Hanks & Mortensen, 1997). For example, 

resonant frequency lowers when there is an increase in the mass of the middle 

ear and resonant frequency rises to a higher frequency with an increase in the 

stiffness of the middle ear. Stiffness of the ossicular chain increases when the 

reflex activates which ultimately increases the stiffness of the middle ear as is 

evident with the decrease in compliance following the onset of the reflex. This 
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increase in stiffness of the middle ear due to the reflex activation might also 

change the resonant frequency of the middle ear. The aim of this study was to 

investigate the effect of crossed reflex activation on absorbance and resonant 

frequency in children with suspected APD, typically developing children and 

normal hearing adults.  

5.2 Method 

5.2.1 Participants 

Participants in this study included 12 normal hearing adults (18-30 years of age), 

13 typically developing children (7 to 15 years of age) and 20 children (aged 7 to 

15 years) suspected of having an auditory processing disorder. The children 

suspected of having an auditory processing disorder were referred to the Child 

Hearing Research Laboratory by caregivers, teachers, parents, and physicians 

for APD assessment. All the participants had normal otoscopic examination, 

normal hearing thresholds (American-Speech-Language-Hearing-Association 

[ASHA], 2005), normal middle function (ASHA, 1988) and no history of 

neurologic disorder. 

5.2.2 Procedure 

Absorbance and resonant frequency were measured in the resting state and then 

while activating the reflex at three reflex activator intensity levels (acoustic reflex 

threshold [ART], ART + 5 dB and ART + 10 dB) in the crossed condition. 

Crossed ARTs were elicited using a wide band noise (400-12000 Hz) presented 

in 5 dB steps using the TITAN middle ear analyzer (Interacoustic, 2013). Reflex 
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amplitude of 0.02 ml or more was considered the criteria for establishing ART. 

Validation of acoustic reflex measures was done by repeating the measure two 

times at the same stimulus level. The TITAN was professionally calibrated for 

stimulus intensity level, volume and pressure measurements according to the 

American National Standard Institute [ANSI] S3.39 (1987) standard. The reflex 

thresholds were measured in dB HL and then converted to dB SPL using the 

Interacoustic standard reference equivalent threshold sound pressure level value 

for wide band noise (Interacoustic, 2013). Similar wide band noise (400 -12000 

Hz) was generated using the FIR- Kaiser Window design in MATLAB. This wide 

band noise was produced by a Lenovo laptop in conjunction with the CAVRA 

device (Meng, 2009) which operates as a sound card and attenuator. The signal 

was presented through EAR 3A insert ear phones at the desired SPL levels in 

order to activate the crossed reflex while absorbance was estimated under the 

influence of the reflex. In all participants, absorbance and resonant frequency 

were measured in the right ear and the crossed reflex was activated by 

stimulating the left ear. For any measurement, the intensity level of the wide band 

noise was not increased above100 dB SPL. Therefore individuals who had 

reflexes above 100 dB SPL were not considered for absorbance and resonant 

frequency measurements. Also, testing was not completed if the sounds were 

uncomfortable for the participants. 

5.2.3 Data analysis for absorbance 

Absorbance measured without activating a reflex was considered the baseline 

absorbance. Absorbance was also measured in the presence of the activated 
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reflex at ART, ART + 5 dB and ART + 10 dB. To estimate the effect of the 

acoustic reflex on absorbance, the baseline absorbance was subtracted from the 

absorbance measured during reflex activation. This calculation provided the 

change in absorbance when the acoustic reflex was activated at three different 

activator stimulus intensity levels. The Titan provides absorbance values across 

the frequency range of 226 to 8000 Hz. For the purposes of this study 

absorbance from 226 to 4000 Hz was included in the analysis. Figure 5.1 shows 

the baseline absorbance and absorbance measured by activating the reflex at 

threshold for an adult participant (A). It also shows the difference between both 

absorbance measures for the participant (B).  

 

Figure 5.1: Example of baseline absorbance and absorbance measured with 

activation of the acoustic reflex at threshold (A). Also shown in the 

figure is the difference between the same absorbance measured with 

and without activating reflex (B) 
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5.3 Results 

Three children with suspected APD had absent reflexes and therefore were 

excluded from the study. Additionally, one typically developing child and 4 

children with suspected APD were not considered for the absorbance and 

resonant frequency measures because they had crossed ARTs above 100 dB 

SPL.  Measurements of absorbance and resonant frequency were completed in 

the remaining 37 participants. Measurements in the presence of acoustic reflex 

activation in some participants with elevated crossed reflexes were limited 

because signals above 100 dB SPL were not employed. Measurements were 

obtained with all participants at the intensity level that first activated the reflex 

(ART).  Measurements in the presence of a reflex activated at the intensity level 

of ART + 5 dB were obtained in all the participants except one child with 

suspected APD. Absorbance and resonant frequency measures in the presence 

of the crossed reflex activated at an intensity level of ART + 10 dB were not 

obtained in 4 normal hearing adults, 5 typically developing children and 10 

children with suspected APD. 

5.3.1 Effect of reflex activation on absorbance 

Figure 5.2 shows the change in absorbance due to the activation of the crossed 

reflex in normal hearing adults, typically developing children and children with 

suspected APD. The change in absorbance is shown as the difference in 

absorbance measured with and without the activation of the crossed reflex 

between 226 and 4000 Hz. Mean change in absorbance is represented by a solid 
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black line and individual data with grey lines. Absorbance change at different 

activator intensity levels i.e. ART, ART + 5dB and ART +10 dB are shown in the 

first, second and third row of plots, respectively. Mean data suggest that the 

effect of reflex on absorbance varied with frequency. There was a decrease in 

absorbance between 226 and 1000 Hz in all the groups. A small increase in 

absorbance was seen at approximately 1000 to 2000 Hz. Little or no change in 

absorbance was observed above 2000 Hz.  
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Figure 5.2: Mean difference in absorbance measured with and without the 
activation of crossed reflex between 226 and 4000 Hz. Results 
from normal hearing adults, typically developing children and 
children with suspected APD are shown in the first, second and 
third columns respectively. Absorbance change at different 
activator intensity levels i.e. ART, ART + 5dB and ART +10 dB are 
shown in first, second, and third rows respectively. Mean change 
in absorbance is represented by the solid black line and individual 
data with grey lines.  

 

Frequency (Hz) 
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Statistical analysis was not done on the absorbance change measured by 

activating the reflex at ART +10 dB as there was a lack of data at this stimulus 

level. One child with suspected APD was also excluded from the statistical 

analysis as measurement was not done for all the conditions of reflex activator.   

5.3.1.1 Effect of reflex activation on absorbance between 226 and 
1000 Hz 

Mean data suggested that reflex activation causes a decrease in the absorbance 

between 226 and 1000 Hz. For the purpose of statistical analysis the magnitude 

and frequency at the point of maximum absorbance decrease was derived for all 

participants. One child with suspected APD who did not demonstrate any 

decrease in absorbance at the ART + 5 dB reflex activator condition in this 

frequency range was not included in the analysis. 

Repeated measures ANOVA (RM-ANOVA) showed that the magnitude of 

the maximum decrease in absorbance was significantly different [F (1, 32) = 

9.565, p = 0.004] for the two reflex activator conditions (ART and ART + 5 dB) 

but there was no group effect [F (2, 32) = 1.595, p = 0.219]. There was no 

interaction between groups and conditions which suggests that all groups had a 

similar decrease in maximum absorbance for both activator conditions [F (2, 32) 

= 0.641, p = 0.533]. 

The frequency at which the maximum change in absorbance occurred did 

not change for the two conditions of reflex activator [F (1, 32) = 0.835, p = 
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0.368].There was no group effect [F (2, 32) = 2.054, p = 0.145]. Similar to the 

magnitude of the maximum decrease in absorbance, the frequency did not show 

any group-condition interaction [F (2, 32) = 0.296, p = 0.746] which points toward 

similar frequencies at which the maximum decrease occurred in all groups. 

5.3.1.2 Effect of reflex activation on absorbance between 1000 and 
2000 Hz 

Between 1000 and 2000 Hz the magnitude and frequency of the maximum 

absorbance increase was derived for each participant for the purpose of 

statistical analysis. Two adults were not included in the analysis as they did not 

show increased absorbance in this frequency range at one or more reflex 

activator levels. 

The effect of increasing reflex activator level was significant for the 

magnitude [F (1, 31) = 11.542, p = 0.002] of the maximum absorbance increase 

but there was no change in frequency [F (1, 31) = 0.216, p = 0.645] when the 

reflex was activated at a higher level. The effect of condition on the magnitude [F 

(2, 31) = 0.661, p = 0.524] and frequency [F (2, 31) = 1.066, p = 0.357] of 

maximum absorbance increase was statistically similar in all groups. As there 

was no group-condition interaction for magnitude [F (2, 31) = 1.086, p = 0.350] or 

frequency [F (2, 31) = 1.877, p = 0.170] of maximum absorbance increase, it can 

be suggested that all groups had similar magnitude and frequency at the point of 

maximum absorbance increase. 

Figure 5.3 shows maximum decrease between 226 and 1000 Hz (top 

panel) and maximum increase between 1000 and 2000 Hz (bottom panel) in 
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absorbance for all the participants at different activator intensity levels i.e. ART, 

ART + 5dB and ART +10 dB. Negative values in the top panel indicate decrease 

in absorbance. Children with suspected APD, typically developing children and 

normal hearing adults are shown by unfilled black diamonds, filled black circles 

and filled black squares, respectively. The figure includes all participants who 

showed decrease in absorbance between 226 and 1000 Hz and increase in 

absorbance between 1000 and 2000 Hz. Means of maximum decrease or 

increase in absorbance in children with suspected APD, typically developing 

children and normal hearing adults are shown by red diamonds, red circles and 

red squares (unfilled symbols) respectively. 
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Figure 5.3: Maximum decrease between 226 and 1000 Hz (top panel) and 
increase between 1000 and 2000 Hz (bottom panel) in absorbance 
for different activator intensity levels i.e. ART, ART + 5dB and ART 
+10 dB. Children with suspected APD, typically developing children 
and normal hearing adults are shown by unfilled black diamonds, 
filled black circles and filled black squares respectively. Means of 
maximum decrease or increase in absorbance in children with 
suspected APD, typically developing children and normal hearing 
adults are shown by red diamonds, red circles and red squares 
(unfilled symbols) respectively. 

 

Although all groups showed statistically similar magnitude of maximum 

decrease and increase in absorbance following reflex activation, abnormalities in 

children with suspected APD can be clearly seen in Figures 5.2 and 5.3. Only 

some children with suspected APD had maximum decrease or increase of the 
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order of typically developing children and normal hearing adults. This is also true 

for the effect of increasing activator level, from ART to ART + 5 dB, on the 

magnitude of maximum absorbance change. The effect was limited to the 

children with suspected APD who had absorbance changes similar to that of 

control groups. Absorbance change could not be obtained at ART + 10 dB reflex 

activator condition from many participants, especially in the groups of clinical 

children. Interpretation of the results based on the data at this reflex activator 

condition, could be misleading.  

5.3.2 Effect of reflex activation on resonant frequency 

Statistical analysis was conducted to investigate the effect of reflex activation on 

resonant frequency. Resonant frequency measured by activating the reflex at 

ART +10 dB was not part of the statistical analysis because of a lack of data at 

this presentation level. Additionally 1 child with suspected APD in whom resonant 

frequency was measured only at the ART activator level was excluded from the 

statistical analysis. Figure 5.4 shows the mean and standard error of the 

resonant frequency measured without activating the reflex and measured at two 

reflex activator levels (ART and ART + 5 dB) in normal hearing adults, typically 

developing children and children with suspected APD.  

RM-ANOVA revealed a significant effect of reflex activation on resonant 

frequency [F (2, 32) = 23.241, p < 0.001]. Pairwise comparisons showed that 

resonant frequency measured without activating the reflex was significantly 

different from the resonant frequency measured in presence of a reflex activated 

at ART (p < 0.001) and ART + 5 dB (p < 0.001). There was no significant 
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difference between resonant frequency measured under reflex activator at ART 

and ART + 5 dB (p < 1.000). No group effect was evident for the resonant 

frequency measured with and without activating the acoustic reflex [F (2, 33) = 

0.295, p = 0.746]. 

 

Figure 5.4: Mean and standard error of resonant frequency measured without 
activating the reflex and under the influence of reflex activation at two 
reflex activator levels: ART and ART + 5 dB. Error bars show +1 
standard error. 

5.4 Discussion 

5.4.1 Effect of reflex activation on absorbance 

The effect of acoustic reflex activation on middle ear function was 

measured in terms of change in absorbance. The activation of the acoustic reflex 

resulted in a frequency specific effect on absorbance. Between 226 and 1000 Hz, 

reflex activation caused a decrease in absorbance but between 1000 and 2000 

Hz absorbance increased following reflex activation. No effect on absorbance 
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was observed above 2000 Hz upon reflex activation. Studies completed to 

estimate the effect of reflex activation on middle ear transmission have 

suggested similar frequency specific effects following activation of the acoustic 

reflex (Borg, 1966; Moller, 1957; Neergard, Anderden, Hansen & Jepsen, 1956; 

Nuttal, 1974; Simmons, 1964; Wiggers, 1937). 

Feeney and Keefe (1999, 2001) estimated crossed acoustic reflex thresholds by 

measuring the change in middle ear reflectance by stimulating the contralateral 

ear in normal hearing adults. Data from that study showed changes in the 

reflectance of the probe ear when the stimulus level in the contralateral ear was 

at or above reflex threshold. Following reflex activation there was an increase in 

the reflectance between 226 and 1000 Hz and a decrease in reflectance between 

1000 and 2000 Hz. There was little or no change in reflectance measured 

between 2000 to 4000Hz. 

Middle ear reflectance and absorbance are related measures such that 

absorbance is equal to 1 minus middle ear reflectance (Liu et al. 2008). Any 

change in reflectance should be approximately equal to the change in 

absorbance but the direction of change will be in the opposite direction such that 

an increase in reflectance will correspond to a decrease in absorbance. In the 

present study, the magnitude of absorbance change and the frequency range at 

which the change occurred for normal hearing adults were similar to the changes 

in reflectance caused by the reflex activation reported by Feeney and Keefe 

(1999, 2001).The effect of increasing the reflex activator level was also similar in 

the two studies. 
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In the present study the absorbance change was not calculated in dB 

because it was not possible to estimate the actual power of the sound energy as 

absorbance is an estimate of the ratio of the sound energy incident into the ear 

and the sound energy absorbed by the middle ear. Feeney and Keefe (1999, 

2001) gave an estimate of reflectance change in dB. It varied from1 to 2.5 dB at 

reflex threshold and from 2.5 to 7.5 at 16 dB above ART in the low frequency 

region (below 1000 Hz). The maximum increase between 1000 and 2000 Hz at 

the highest reflex activator was 0.75 dB. Since the reflex effect on absorbance 

measured in this study was similar to that of reflectance measured by Feeney 

and Keefe (1999, 2001), similar changes in absorbance in dB due to the reflex 

activation may be suggested.  

One can argue over the difference in the amount of dB change caused by 

the activation of reflex in absorbance/reflectance and in middle ear transmission. 

Change in absorbance/reflectance gives an estimate of the increase or decrease 

in sound energy going into the middle ear. Cochlear potential are measured at 

the oval window to estimate the change in middle ear transmission (in non-

human animals). These two measures will obviously be different as the middle 

ear itself provides a gain up to 30 dB (Kurokawa & Goode, 1995). But they are 

related in a way because transmission of sound through the middle ear in 

dependent upon the sound absorbed by the middle ear. So if at a certain 

frequency less sound energy is absorbed then at that frequency, transmission 

will also be reduced. Thus the effect of reflex on either absorbance or 

transmission will show similar changes in terms of increase or decrease across 
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frequency. An explanation about the relationship between absorbance and 

transmission change comes from the measurement of absorbance in individuals 

with conductive hearing loss (Keefe et al., 2012). Even smaller changes in 

absorbance (less than 0.1) were associated with in an air bone gap of 30 dB. 

Similar changes in absorbance due to reflex activation found in this study and by 

Feeney and Keefe (1999, 2001) could therefore possibly cause a decrease in 

transmission similar to what has been shown in animal studies (Borg, 1966; 

Moller, 1957; Neergard, Anderden, Hansen & Jepsen, 1956; Nuttal, 1974; 

Simmons, 1964; Wiggers, 1937). 

The change in absorbance resulting from acoustic reflex activation further 

strengthens the theory of the role of the acoustic reflex in speech perception, 

especially in the presence of noise. Reflex activation not only causes a reduction 

in the absorbance of low frequency sound where noise is predominant, but also 

an increase in the absorbance of higher frequencies important in speech 

perception, thereby improving the overall signal to noise ratio.  

There is some debate in the literature about the intensity levels at which 

the reflex activates and whether, at those levels, reflex activation will help in 

speech perception. Often it is suggested that reflexes activate at very high 

stimulus levels. But activation of the reflex depends on bandwidth of the signal 

(Gelfand, 1984). Studies have reported activation of crossed reflexes occurring at 

moderate levels for broadband sounds (Gelfand, 1984; Feeney & Keefe, 1999, 

2001; Wilson, 1981). Reflex thresholds are also reliant on the measurement 

systems (Feeney & Keefe, 1999, 2001). Crossed reflex thresholds measured 
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using a reflectance system were reported to be 8 to 24 dB lower than reflex 

thresholds measured with a clinical system (Feeney & Keefe, 1999, 2001). In 

addition, reflex thresholds estimated using invasive techniques in animals are 

suggested to be as low as 40 dB (Simmons, 1959). It is possible that activation of 

the reflex may provide help in speech perception when the noise is presented at 

even moderate levels. Previously, Aiken et al. (2013) and Simmons and Beatty 

(1962) suggested that the acoustic reflex has a role in speech perception in noise 

at moderate levels.  

Only a few children with suspected APD showed the reflex effect 

comparable to normal hearing adults and typically developing children. Most 

children with suspected APD showed much diminished reflex effects especially 

for the frequencies between 226 and 1000 Hz even when their thresholds were 

within normal limit. Noise is predominant in the low frequency region and reflex 

causes reduction in the transmission of sound in this frequency region that can 

be important for speech perception in the presence of noise. Considering the 

effect of reflex on absorbance in this study, a limited benefit in speech perception 

in noise can be suggested in children with suspected APD.  

The effect of increasing reflex activator level was found to be statistically 

similar in all groups when only measured at 2 points although the broader 

frequency effect were suggestive of groups trends towards less increase in the 

clinical group. Children with suspected APD were included in the study 

irrespective of the presence or absence of abnormality in thresholds or reflex 

growth functions. This may have limited the ability to see group trends. 
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5.4.2 Effect of reflex activation on resonant frequency 

Activation of the acoustic reflex caused a significant increase in resonant 

frequency in all groups. An increase in resonant frequency under the influence of 

acoustic reflex activation was also reported by Moller (1960) and Simmons 

(1959). The middle ear plays a crucial role in the transmission of sound as it acts 

as a transformer between the air in the external ear canal and the cochlear fluid, 

providing a gain of up to 22 times the signal sound pressure level. Gain is 

optimum at the resonant frequency (Boillat, 1989). Puria (2003) found that the 

maximum forward gain provided by the middle ear system was 18 dB at 900 Hz 

which is approximately equivalent to the resonant frequency. A small change in 

the resonant frequency may therefore have an important impact on the 

transmission of sound to the cochlea. Reflex activation did not cause a large 

change in resonant frequency, but for speech perception in the presence of noise 

even a small shift towards a higher frequency would enable better transmission 

(more gain) of those frequencies that are important for speech perception. 

Because noise is predominant in lower frequencies, an improvement in the signal 

to noise ratio caused by the small shift in resonant frequency may help with 

speech recognition in the presence of noise. 

The magnitude of the effect of the acoustic reflex activation on resonant 

frequency was statistically similar in children with suspected APD, typically 

developing children and normal hearing adults. However mean values indicated 

a numerically smaller shift in resonant frequency in children with suspected APD 
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in comparison to typically developing children and normal hearing adults. 

Considering the possible role of an increase in resonant frequency in improving 

the signal to noise ratio and potential benefit to speech in noise perception, an 

insufficient increase in resonant frequency upon reflex activation might have little 

value for children with suspected APD. 

Due to some technical limitations of the TITAN, only the effect of the 

crossed reflex could be investigated. The magnitude of the reflex is reported to 

be larger when the reflex is activated in the uncrossed condition as compared to 

the crossed condition (Hall, 1982). Uncrossed acoustic reflex thresholds are also 

reported to be lower than the crossed reflex thresholds (Fria, LeBlanc, Kristensen 

& Alberti, 1975; Gelfand, 2005; Jerger, Hayes, Anthony & Mauldin, 1978; Moller, 

1961, 1962). The results of this study suggested that higher activation resulted in 

greater effects. Therefore the benefits from the activation of the uncrossed reflex 

are expected to be larger and to occur at lower noise levels than that of the 

crossed reflex. 

5.5 Conclusion 

This study revealed that activation of the acoustic reflex results in an overall 

decrease of sensitivity at low frequencies. It was evident that an attenuation of 

low frequencies and a shift of resonant frequency towards higher frequencies 

occurred under the influence of the acoustic reflex. In addition, an increased 

absorbance of frequencies between 1000 and 2000 was also found to occur 

upon acoustic reflex activation. These combined actions might aid in reducing the 

negative impact of noise on speech perception by improving signal to noise ratio.  
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Previous studies have suggested abnormal reflexes in children with 

suspected APD. The results of the present study also suggested that even when 

reflexes were present, the effects of the acoustic reflex activation may have been 

reduced in some children with suspected APD. These findings can be related to 

the most commonly reported problem of difficulty understanding speech in 

presence of noise in children with suspected APD. 
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Chapter 6  

6 Summary, Implications, Strengths, Limitations and 
Future Directions 

6.1 Summary 

The foundation of this thesis was laid on growing evidence of auditory brainstem 

involvement in some children with suspected APD (Allen & Allan, 2007, 2014; 

Baina & Kraus, 2007; Gopal & Kowalski, 1999; Gopal & Pierel, 1999; Jisra, 2001; 

Linares & Carvallo, 2004; Meneguello et al., 2001; Muchnik et al., 2004; Sanches 

& Carvallo, 2006; Thomas, McMurry & Pillsbury, 1985). Previous studies 

reported a high percentage of abnormalities in acoustic reflexes of children with 

suspected APD (Allen & Allan, 2007, 2014; Meneguello et al., 2001; Thomas et 

al., 1985) but only some aspects of the reflex were measured. Despite the many 

reflex measures available for estimating auditory brainstem functioning via the 

acoustic reflex (thresholds, growth functions, latencies and decay), attention in 

the assessment of children with suspected APD was previously given only to 

reflex thresholds. Comparative data on acoustic reflex measures in typically 

developing children is rare and the results of reflex measures in children with 

clinical concerns are most often compared to that of normal hearing adults. 

Therefore the primary objectives of the thesis were to measure reflex thresholds, 

growth functions, latencies and decay in children with suspected APD and to 

compare those data from that obtained from both typically developing children 

and normal hearing adults. As well, a study of the functional consequences of 
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acoustic reflex activation was explored via measurement of changes in 

absorbance and middle ear resonance. 

Children with suspected APD included in this thesis were divided into two 

groups based on the diagnosis made using a clinically accepted, behavioral APD 

test battery. One group of clinical children was labeled as APD and included the 

children who received APD diagnosis on the basis of this battery. The other 

group, labeled clinical non-APD included children with clinical listening concerns 

who did not receive an APD diagnosis. This was done to compare the results of 

acoustic reflex measures with the diagnosis made using behavioral APD tests. 

Children in both clinical groups showed elevated threshold and shallower growth 

functions in contrast to typically developing children and normal hearing adults. 

Thresholds and growth functions were affected mainly in the crossed pathway. 

Although typically developing children had a tendency to show higher mean 

threshold when compared to adults, the effects were statistically similar when 

uncorrected for real ear differences. No statistical differences in reflex latency or 

decay were found between groups.  

Clinically, thresholds are the most often used measure of the acoustic 

reflex. There are some reports of higher reflex thresholds in typically developing 

children in comparison to normal hearing adults (Jerger, Jerger & Mauldin, 1972; 

Jerger Hayes, Anthony & Mauldin, 1978; Osterhammel & Osterhammel; 1979) 

yet age-related norms are seldom applied. Study 1 of chapter 2 confirmed the 

observation that children tended to have slightly higher reflex thresholds when 

compared to adults although the results were not statistically significant. But ear 
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canal volume and middle ear compliance are reported to develop till puberty 

(Abdala & Keefe, 2012; Obake, Tanaka, Hamada, Miura & Funai, 1988) and 

could affect the accurate measurement and interpretation of reflex threshold 

especially in children. In chapter 2, study 2, the effect of real ear correction for 

volume differences and middle ear compliance on reflex thresholds was 

investigated in children and adults. Typically developing children showed 

significantly higher thresholds than adults after the thresholds were corrected for 

ear canal volume differences. The relationship between static compliance and 

thresholds was strong in normal hearing adults which suggested the dependence 

of reflex threshold estimates on the compliance of the middle ear. No such 

relation was found in typically developing children. These results suggested that 

reflex thresholds in school aged children are not mature. Considering recent 

evidence of development in the auditory brainstem till 11 years (Skoe, Keizman, 

Anderson & Kraus, 2013), it is possible that higher reflex thresholds in children 

could be the result of neural development in the auditory brainstem. 

Activation of acoustic reflex is suggested to modify functioning of the 

middle ear (Borg, 1968; Moller, 1958, 1965; Neergard, Anderden, Hansen & 

Jepsen, 1956; Nuttal, 1974; Simmons, 1959; Simmons, 1964; Wiggers , 1937). In 

chapter 5 we investigated the effect of reflex activation on middle ear functioning 

in normal hearing adults, typically developing children and children with 

suspected APD. We measured the effect of crossed reflex activation on middle 

ear function by measuring the change caused by its activation on middle ear 

absorbance and resonant frequency. It was found that following acoustic reflex 
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activation, middle ear absorbance decreased between 226 and 1000 Hz, 

increased from 1000 and 2000 and was not affected above 2000 Hz. Changes in 

absorbance due to reflex activation were diminished and limited to only a few 

children in the suspected APD group. Comparison of maximum changes and 

differences in resonant frequency were, however, not significant between groups 

although individual differences were large. Overall, the effects of activation of 

acoustic reflex on middle ear absorbance and resonant frequency suggests that 

it transforms the middle ear to function like a high pass filter which can be critical 

in perception of speech in noise. Limited effects of acoustic reflex activation on 

middle ear absorbance and resonant frequency seen in some children with 

suspected APD point toward a restricted help in the perception of speech in the 

presence noise. 

6.2 Implications 

Abnormal acoustic reflexes were found in both clinical groups of children 

(APD and clinical non-APD). These results suggest: (1) Auditory brainstem 

involvement in APD is frequent and assessment of its functioning is important in 

children who are referred for auditory processing difficulties; (2) Children who did 

not receive an APD diagnosis based on behavioral APD, but showed abnormality 

in acoustic reflex measures, may have developed good cognitive and language 

skills allowing them to perform well on behavioral tests yet still experience 

listening difficulties in noise, possibly from their poor reflex functioning; and (3) 

Children who were diagnosed with APD based on behavioral APD tests and had 

abnormal acoustic reflex might have both poor auditory brainstem and cortical 
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functioning. These results also suggested the inability of behavioral tests alone to 

diagnose APD if the deficit is limited to the auditory brainstem and good cognitive 

and language skills are in place. The results of this thesis indicate the importance 

of acoustic reflex testing in the assessment of APD and that measures beyond 

uncorrected thresholds be used. Clinical measurement of real ear corrected 

reflex thresholds and reflex growth functions are highly recommended in APD 

assessment. The use of reflex latencies and decay might have limited use in the 

assessment of this clinical population.   

Acoustic reflex thresholds were found to be affected by characteristics of 

the peripheral system. Therefore those characteristics, especially ear canal 

volume and static compliance should be taken into account while making these 

measurements. Further it will be useful to compare results with normal data from 

individuals of similar age. Perhaps the development and use of acoustic reflex 

measures that would compensate for differences in peripheral hearing 

characteristics might be more effective.  

The results of chapter 5 showed that some children with suspected APD, 

showed smaller effects of reflex activation on middle ear absorbance and 

resonant frequency, even when reflexes were present at normal threshold 

values. Understanding speech in presence of noise is the most common 

complaint in children with suspected APD and the result of study 4 suggest that 

this problem might be due the poor acoustic reflex activity in some children with 

suspected APD.  
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6.3 Strengths 

 In all the studies, we compared acoustic reflexes of children with 

suspected APD with those of typically developing children of the same 

age.  

 Children with suspected APD were divided into two groups based on the 

diagnosis made using a behavioral APD battery. This allowed better 

comparison of the findings of acoustic reflex measures with the diagnosis 

made using behavioral APD tests. 

 Multiple aspects of the acoustic reflex were evaluated. 

6.4 Limitations and future directions 

 Threshold measurements in study 1 (Chapter 2) were made using 5 dB 

steps. The use of 1 dB step would take more time and could be 

uncomfortable for the participant but may provide more precise findings. 

 In study 2 (Chapter 2), volume corrections were done only on uncrossed 

reflex thresholds. Similar correction for crossed reflex thresholds, if a 

different transducer is used, should be attempted in future studies. This 

will increase the effectiveness of reflex threshold measurements in clinical 

assessment. 

 Listening in noisy environment is not limited to 15 seconds. But reflex 

decay was measured in chapter 4 for a stimulus presentation of only 15 

seconds. Reflex decay over longer durations of stimulation should be 

measured in future studies. 
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 Abnormalities found in acoustic reflex measures and their physiologic 

impact on middle ear functioning in children with suspected APD was not 

compared with any behavioral speech in noise test. A future study should 

be directed to understand the relationship between abnormal acoustic 

reflexes and their physiologic impact on middle ear functioning with 

behavioral speech in noise difficulties in children with suspected APD. 
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Study:  Testing the efficacy and efficiency of an improved comprehensive test battery for 

the assessment of auditory processing disorders. 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Co-Investigators:  David Purcell, Ph.D. 

   Vijay Parsa, Ph.D. 

Research Associates:  Chris Allan, M.Sc. 

   Udit Saxena, M.Sc. 

 

Place of testing:   National Centre for Audiology, UWO 

London Health Sciences Centre Victoria Hospital Campus 

    

Assent for children 
______________________________________________________________________________ 
 
 
 
Why you are here? 
 

This study is to help learn more about children with listening problems and the kinds of 
tests that can be used to discover those problems.    Children with and without listening 
problems are being asked to be in the study.  Dr. Allen and her research team are asking 
you to be part of this study so that they can learn more about how children listen and if 
the tests can help show who has listening problems. 
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Why are they doing this study? 
 

They want to see how well you listen and if you are able to understand someone when 
they talk to you like when your teacher explains something or asks a question. 

 
What will happen to you? 
 

If you agree to be in the study you will be asked to visit the Child Hearing Research 
Laboratory for some hearing tests.  This is what will happen when you come for your 
visit: 

1. You will have your hearing tested.  You wear earphones and raise your hand 
when you hear soft sounds and repeat some words that are said to you.  This 
will only take a few minutes.   

2. Some measurements will be made of your ears.  To make these measurements 
an earplug will be used in your ear.  You will not have to do anything but you 
will be asked to sit very still and not move your head or talk. 

 
 
 
Will the study hurt? 
 

You will not be wearing the earphones or earplugs long enough for them to hurt your 
ears.  Some of the sounds used for the ear measurements are loud but they will not 
hurt.  

 
Will you be a better listener if you get in the study? 
 

This study won’t make you a better or worse listener.  The research team hopes that 
this study will help them understand how children listen so that in the future they can 
easily find which children will have listening problems and then be able to help teach 
them to be better listeners. 

 
What if you have any questions? 
 

You can ask questions any time, now or later.  You can talk to anyone on the research 
team, your family or someone else. 

 
Do you have to be in the study? 
 
You don’t have to be in the study.  No one will be mad at you if you don’t want to participate. If 
you don’t want to be in the study just say so.  Even if you say yes now, you can change your 
mind later.  It’s up to you. 

 
 
 
Yes, I want to participate in this study 
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_______________________________________ 
Print name of child 
 
 
 
 
_____________________              ____________________                 ______________________ 
Signature of child                               Age                                                     Date 
 
 
 
 
____________________________                                                            ______________________ 
Signature of person obtaining consent                                                      Date 
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Letter of Information and Consent 

UWO National Centre for Audiology 

 

 

 

Study:  Comprehensive assessment of auditory processing (listening) abilities 

 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Co-Investigator: Vijay Parsa, Ph.D. 

Co-Investigator: David Purcell, Ph.D. 

Research Associate:  Chris Allan, M.Sc. 

   Udit Saxena, M.Sc 

Place of testing:  National Centre for Audiology, UWO 

 

 

Dear Potential Participant, 

 

The pronouns “you” and “your” should be read as referring to the participant rather than 

the parent/guardian/next-of-kin who is signing the consent form for the participant. 

 

This letter contains information to help you decide whether or not to participate in this 

research.  It is important for you to know why the data is being collected and the 

research is being conducted and what we are asking you to agree to.  Please take time 

to read this carefully and feel free to ask questions if anything is unclear. 

 

 

Description and Purpose of the Research Project: 
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You are being invited to participate, as part of a normal comparison group, in a study of 

hearing and auditory processing (listening) taking place at Elborn College in the 

University of Western Ontario.  Auditory processing refers to those listening abilities that 

allow us to understand speech when it is unclear (muffled) or when we are trying to 

listen to someone and the room is noisy.  This project has been planned to investigate 

the usefulness of a handheld computer system and several different tests in the 

assessment of various auditory skills.  We plan to compare the performance of normal or 

typically developing individuals with those suspected of having or diagnosed as having 

an auditory processing deficit.  In total there will be approximately 825 children and 75 

adults participating in this research study. 

 

One objective of this project is to investigate eardrum and middle ear function in children 

and adults.  The assessment of eardrum and middle ear function is a routine test that is 

conducted during hearing assessments.  This research project is attempting to 

determine if the test results can provide information about auditory function that may be 

helpful in identifying young children that have listening problems.  

 

If you agree to participate in this part of the project, you will be asked to sit comfortably 

in a soundproof or quiet room listening to different sounds while wearing earphones. 

Several measurements will be made to test your eardrum function.  During these 

measurements you will be asked to sit quietly because you do not have to respond to 

any of the sounds you hear.  The auditory equipment will make all of the ear 

measurements. 

 

Test sessions will last no longer than 45 minutes and will be scheduled for your 

convenience. Free parking will be provided for the study. 

 

 

Benefits and Risks: 

 

This study will involve no known risk to you.  The sounds you will be hearing will never 

be so loud as to be damaging.  You will experience little or no discomfort during this 

study.  At times, long term use of earphones can become uncomfortable however all 
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attempts will be made to avoid this kind of discomfort.  Rest breaks will be provided upon 

request. 

 

 

Protection of Your Privacy: 

 

The information gathered during this study will remain confidential at all times. No 

individual listener will be identified in any analysis or publication, however, if it is 

determined that you may have hearing problems that require further attention you will be 

notified. During the study, a 4 character unique ID code will be used to reference each 

participant, rather then their full names. ID codes and corresponding full names of 

participants will be kept in a journal and locked in a cabinet. Information collected on the 

handheld device or computer will be password protected and locked in a cabinet when 

not in use, to ensure it remains confidential at all times.  Only the local research team 

may have access to the cabinet.  The Representatives of the University of Western 

Ontario Health Sciences Research Ethics Board may contact you or require access to 

your study-related records to monitor the conduct of the research. The data and 

personal information will be kept as it is being collected and analyzed. Once the project 

is completed, all information containing participants’ names and ID codes, including 

backup DVD’s and paper documents, will be deleted and overwritten or destroyed by 

shredding. Upon publication, group data will be reported.  If individual data is reported, 

references will be made to the age group only.  

 

 

Participation in the Study: 

 

Participation in the study is voluntary. You may refuse to participate, refuse to answer 

any questions or withdraw from the study at any time.  You can withdraw your data from 

inclusion in the study up until the data collection process is complete.  At that point, all 

personal information will have been destroyed, leaving the IDs and linked data 

anonymous so it will no longer be possible to identify and remove your data from the 

study. 
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Contacts for Questions about the Research Project: 

 

Representatives of The University of Western Ontario Health Sciences Research Ethics 

Board may contact you or require access to your study-related records to monitor the 

conduct of the research. 

 

This letter is yours to keep. 

 

When you attend the data collection appointment, the letter of information will be 

reviewed with you, any lingering questions will be answered and if you choose to 

participate we will then complete the consent form. You will receive a copy of the signed 

consent form at that time. 

 

If you have any questions about the conduct of this study or your rights as a research 

subject you may contact the Office of Research Ethics, The University of Western 

Ontario, 519-661-3036 or email at: ethics@uwo.ca. Thank you for your time and 

consideration. 

 

 

 

Sincerely, 

Prudence Allen 

[Type a quote from the document or 

the summary of an interesting point. 

You can position the text box 

anywhere in the document. Use the 

Text Box Tools tab to change the 

formatting of the pull quote text box.] 
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CONSENT FORM 

 

Study:  Comprehensive assessment of auditory processing (listening) abilities 

 

Principal Investigator: Dr. Prudence Allen, Associate Professor 

National Centre for Audiology 

University of Western Ontario, 

 

 

I have read the Letter of Information, have had the nature of the study explained to me.  

All questions have been answered to my satisfaction. 

 

 

 I agree to participate  OR   I do not agree to participate 

 

 

 

-------------------------------------------------    

Name of participant (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of participant     Date 

 

 

 

--------------------------------------------------    

Name of legally authorized representative (Print)  

 

 

 

---------------------------------------------------   --------------------------- 

Signature of legally authorized representative  Date 
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--------------------------------------------------    

Name of person obtaining consent (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of person obtaining consent   Date 
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Letter of Information and Consent 

LHSC, Victoria Hospital 

 

 

Study:  Comprehensive assessment of auditory processing (listening) 

abilities 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Co-Investigator: Vijay Parsa, Ph.D. 

Co-Investigator: David Purcell, Ph.D. 

Research Associate: Chris Allan, M.Sc. 

Place of testing:  LHSC, Victoria Hospital ENT & Audiology Department  

 

 

General Information: 

 

The pronouns “you” and “your” should be read as referring to the participant 

rather than the parent/guardian/next-of-kin who is signing the consent form for 

the participant. 

 

This letter contains information to help you decide whether or not to participate in 

this research.  It is important for you to know why the data is being collected and 

the research is being conducted and what we are asking you to agree to.  Please 

take time to read this carefully and feel free to ask questions if anything is 

unclear.   If you have any questions let the receptionist know and someone will 

speak with you directly. 
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During the course of your treatment in the ENT & Audiology Department at LHSC 

Victoria Hospital, you will have a number of tests and treatments done as part of 

your regular care and a great deal of information about your past and current 

medical history will also be collected.  This is all done as part of your standard 

care to help us determine how well you can hear and listen and how best to treat 

you if necessary.   

 

Description and Purpose of the Research Project: 

 

The physicians and staff in the ENT & Audiology Department at LHSC Victoria 

Hospital are engaged in ongoing research to better understand hearing and 

auditory processing difficulties and how best to treat these problems. We are 

asking for your permission to collect and use the information from your health 

record, for research purposes. All patients who attend our clinic will be asked to 

participate.  One objective of this project is to investigate, in children and adults, 

the usefulness of a computer system in the assessment of various auditory skills 

such as the presence of a very brief sound or the ability to distinguish a change 

in the pitch, loudness, or quality of a sound. This hearing measurement device is 

available in a laptop as well as a handheld version and has been developed with 

new digital and wireless technology that has only recently become available.  

The auditory skills that can be assessed by these devices are ones that up until 

now have only been tested in research laboratories, like the University of 

Western Ontario Child Hearing Research Lab, because the older equipment was 

too large and expensive to operate in hospitals or audiology clinics.  If this new 

device is proven to accurately measure auditory skills then, it is the intention of 

the researchers to commercialize the device by establishing a company for the 

manufacturing and sale of the device or license the software to other companies, 

so that the opportunity to better assess and treat hearing disorders can be 

moved into audiology clinics. 
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Protection of Your Privacy: 

 

If you agree to participate, data relating to your health history and current care 

will be copied from your hospital records to a separate research database.  All 

identifying information such as your name, address and OHIP number will be 

removed.  The information in the research database will be identified by a unique 

code number that will link the test results in the research record.  The master list 

that contains the link to the code number and your name and other identifying 

information will be kept in a very secure location at the University of Western 

Ontario under the control of the Director of the research.  The research database 

will be owned by the University of Western Ontario National Centre for Audiology 

and it will be stored in a secure location on the University of Western Ontario 

National Centre for Audiology computer system. The data in the research 

database will be kept as it is being collected and analyzed. Once the project is 

completed, all information containing participants’ names and unique codes, 

including backup DVD’s and paper documents, will be deleted and overwritten or 

destroyed by shredding.  

 

If the results of the research are published or presented at scientific meetings, 

your name will not be used and no information that discloses your identity will be 

released or published without your explicit consent.  Only group data will be 

reported and if individual data is reported, references will be made to the age 

group only. 

 

 

Participation in the Study: 

 

Participation in this study is voluntary.  You may refuse to participate, or refuse to 

allow data to go to the research the database at any time with no effect on your 

future care.   
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Information that has already been transferred to the research database can be 

withdrawn from the study up until the data collection process is complete.  At that 

point, all personal information will have been destroyed, leaving the unique code 

number and linked data anonymous so it will no longer be possible to identify and 

remove your data from the study.  If you wish to stop your participation just let the 

staff at the clinic know.  

 

Regardless of your decision to participate you can still receive continuing care 

through this clinic. You do not waive any legal rights by signing the consent form. 

 

The database will also help us to identify those patients who may be eligible to 

participate in future research projects that involve more that just an analysis of 

existing data.  In the future you may be approached to participate in other 

research projects in the clinic.  In those instances you will be given detailed 

information describing the project and you will have the opportunity to decide at 

that time, whether or not you want to participate in the new project.  

 

 

Benefits and Risks: 

 

You will not be compensated for your participation in this database.  

 

The only known risk to your participation in this study is the possibility that, 

because the research database is linked to our clinical database, someone may 

be able to identify you.  However the research database is secured in the same 

manner as our clinical records and access is limited to authorized personnel only. 

 

You will not benefit directly from participation in this research however the results 

of our research may help other patients in the future who suffer from problems 

similar to yours. 
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Contacts for Questions about the Research Project: 

 

Representatives of The University of Western Ontario Health Sciences Research 

Ethics Board may contact you or require access to your study-related records to 

monitor the conduct of the research. 

 

If you have any questions about the research or the database you may contact 

Dr. Prudence Allen.  If you have any questions about your participation in the 

study or the testing that you completed you can contact Chris Allan  

If you have any questions about your ongoing follow-up at the hospital you can 

contact Denise Lewis in the Victoria Hospital Audiology Department. 

 

If you have any questions about your rights as a research participant or the 

conduct of the study you may contact Dr. David Hill, Scientific Director, Lawson 

Health Research Institute. 

 

This letter is for you to keep. 

You will also be given a copy of the consent form if you agree to sign it. 

 

 

 

Prudence Allen 
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CONSENT FORM 

 

Study:  Comprehensive assessment of auditory processing (listening) 

abilities 

 

Principal Investigator: Dr. Prudence Allen, Associate Professor 

National Centre for Audiology 

University of Western Ontario, 

 

 

I have read the Letter of Information, have had the nature of the database 

explained to me.  All questions have been answered to my satisfaction. 

 

 

 I agree to participate  OR   I do not agree to participate 

 

 

 

-------------------------------------------------    

Name of participant (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of participant     Date 

 

 

 

--------------------------------------------------    

Name of legally authorized representative (Print)  
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---------------------------------------------------   --------------------------- 

Signature of legally authorized representative  Date 

 

 

 

--------------------------------------------------    

Name of person obtaining consent (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of person obtaining consent   Date 
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Letter of Information and Consent 

UWO National Centre for Audiology 

 

 

 

Study:  Comprehensive assessment of auditory processing (listening) abilities 

 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Co-Investigator: Vijay Parsa, Ph.D. 

Co-Investigator: David Purcell, Ph.D. 

Research Associate: Udit Saxena, M.Sc. 

Chris Allan, M.Sc. 

Place of testing:  National Centre for Audiology, UWO 

 

 

Dear Potential Participant, 

 

The pronouns “you” and “your” should be read as referring to the participant rather than 

the parent/guardian/next-of-kin who is signing the consent form for the participant. 

 

This letter contains information to help you decide whether or not to participate in this 

research.  It is important for you to know why the data is being collected and the 

research is being conducted and what we are asking you to agree to.  Please take time 

to read this carefully and feel free to ask questions if anything is unclear. 
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Description and Purpose of the Research Project: 

 

You are being invited to participate in a study of hearing and auditory processing 

(listening) taking place at Elborn College in the University of Western Ontario.  Auditory 

processing refers to those listening abilities that allow us to understand speech when it is 

unclear (muffled) or when we are trying to listen to someone and the room is noisy.  This 

project has been planned to investigate the usefulness of a handheld computer system 

and several different tests in the assessment of various auditory skills.  We plan to 

compare the performance of normal or typically developing individuals with those 

suspected of having or diagnosed as having an auditory processing deficit.  In total there 

will be approximately 825 children and 75 adults participating in this research study. 

 

One objective of this project is to investigate, in children and adults, the usefulness of a 

computer system in the assessment of various auditory skills such as the presence of a 

very brief sound or the ability to distinguish a change in the pitch, loudness, or quality of 

a sound. This hearing measurement device is available in a laptop as well as a handheld 

version and has been developed with new digital and wireless technology that has only 

recently become available.  The auditory skills that can be assessed by these devices 

are ones that up until now have only been tested in research laboratories, like the Child 

Hearing Research Lab, because the older equipment was too large and expensive to 

operate in hospitals or audiology clinics.  If this new device is proven to accurately 

measure auditory skills then, it is the intention of the researchers to commercialize the 

device by establishing a company for the manufacturing and sale of the device or license 

the software to other companies, so that the opportunity to better assess and treat 

hearing disorders can be moved into audiology clinics.   

 

If you agree to participate, you will be asked to sit comfortably in a soundproof or quiet 

room listening to different sounds while wearing earphones. You will be asked to repeat 

words or report what sounds they have heard.  You will also complete listening tasks 

that involve watching a regular size computer screen or handheld computer screen.  You 

will be presented with three colourful cartoon graphics and with each cartoon 

appearance on the screen you will hear a sound.  You will be asked to identify which 

cartoon made the sound that was different from the others by touching one of the 

graphics displayed on the computer regular-size touch-screen monitor or by touching the 
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graphic with a stylus on the handheld system.  The responses will be recorded by the 

computer.  

 

Test sessions will last no longer than 2.5 hours (scheduled for your convenience) and 

testing may be divided into several sessions at your request.  Free parking will be 

provided for the study. 

 

 

Benefits and Risks: 

 

This study will involve no known risk to you.  The sounds you will be hearing are usually 

as loud as conversational speech and will never be so loud as to be uncomfortable or 

damaging.  You will experience little or no discomfort during this study.  At times, long 

term use of earphones can become uncomfortable however all attempts will be made to 

avoid this kind of discomfort.  Rest breaks will be provided at regular intervals as well as 

upon request to prevent fatigue or distraction due to hunger or thirst. 

 

 

Protection of Your Privacy: 

 

The information gathered during this study will remain confidential at all times. No 

individual listener will be identified in any analysis or publication, however, if it is 

determined that you may have hearing problems that require further attention you will be 

notified. During the study, a 4 character unique ID code will be used to reference each 

participant, rather then their full names. ID codes and corresponding full names of 

participants will be kept in a journal and locked in a cabinet. Information collected on the 

handheld device or computer will be password protected and locked in a cabinet when 

not in use, to ensure it remains confidential at all times.  Only the local research team 

may have access to the cabinet.  The Representatives of the University of Western 

Ontario Health Sciences Research Ethics Board may contact you or require access to 

your study-related records to monitor the conduct of the research. The data and 

personal information will be kept as it is being collected and analyzed. Once the project 

is completed, all information containing participants’ names and ID codes, including 

backup DVD’s and paper documents, will be deleted and overwritten or destroyed by 
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shredding. Upon publication, group data will be reported.  If individual data is reported, 

references will be made to the age group only.  

Participation in the Study: 

 

Participation in the study is voluntary. You may refuse to participate, refuse to answer 

any questions or withdraw from the study at any time.  You can withdraw your data from 

inclusion in the study up until the data collection process is complete.  At that point, all 

personal information will have been destroyed, leaving the IDs and linked data 

anonymous so it will no longer be possible to identify and remove your data from the 

study. 

 

 

Contacts for Questions about the Research Project: 

 

Representatives of The University of Western Ontario Health Sciences Research Ethics 

Board may contact you or require access to your study-related records to monitor the 

conduct of the research. 

 

This letter is yours to keep. 

 

When you attend the data collection appointment, the letter of information will be 

reviewed with you, any lingering questions will be answered and if you choose to 

participate we will then complete the consent form. You will receive a copy of the signed 

consent form at that time. 

 

If you have any questions about the conduct of this study or your rights as a research 

subject you may contact the Office of Research Ethics, The University of Western 

Ontario,. Thank you for your time and consideration. 

 

 

 

Sincerely, 
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Prudence Allen 
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CONSENT FORM 

 

Study:  Comprehensive assessment of auditory processing (listening) abilities 

 

Principal Investigator: Dr. Prudence Allen, Associate Professor 

National Centre for Audiology 

University of Western Ontario, 

 

 

I have read the Letter of Information, have had the nature of the study explained to me.  

All questions have been answered to my satisfaction. 

 

 

 I agree to participate  OR   I do not agree to participate 

 

 

 

-------------------------------------------------    

Name of participant (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of participant     Date 

 

 

 

--------------------------------------------------    

Name of legally authorized representative (Print)  

 

 

 

---------------------------------------------------   --------------------------- 

Signature of legally authorized representative  Date 
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--------------------------------------------------    

Name of person obtaining consent (Print) 

 

 

 

---------------------------------------------------   --------------------------- 

Signature of person obtaining consent   Date 
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Auditory function and acoustic signal encoding in school-aged 

children 

CONSENT FORM 

 

I have read the accompanying Letter of Information. The nature of the study has been 

explained to meand I agree to participate in this study. 

All questions have been answered to my satisfaction. 

 

 

Date:  

______________________________________________________________________ 

 

Name:______________________________________________________ 

 

Signature:__________________________________________________ 

 

Did you experience any reading or learning difficulties while attending school?  □ YES

 □ NO 
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Name of person obtaining informed 

consent:_________________________________________ 

 

Signature of person obtaining informed 

consent:______________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 

 

 

 

 

 

 

 

Study:  Auditory function and acoustic signal encoding in school-aged children 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Research Associates:  Chris Allan, M.Sc. 

   Udit Saxena, M.Sc. 

   Moumita Choudhury, M.Sc. 

 

Place of testing:   London Children’s Connection Childcare Centre 

    

Assent for children ages 7 to 13 years 
______________________________________________________________________________
_______ 
 
Why are you here? 
 

This study is to help learn more about children’s hearing and listening abilities and the 
kinds of tests that can be used to discover listening problems.    Children with and 
without listening problems are being asked to be in the study.  Dr. Allen and her 
research team are asking you to be part of this study so that they can learn more about 
how children listen and if the tests can help show who has listening problems. 

 
Why are they doing this study? 
 

They want to see how well you listen and if you are able to understand someone when 
they talk to you like when your teacher explains something or asks a question. 

 
What will happen to you? 
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If you agree to be in the study you will be asked to do some hearing tests after school 
while you are waiting for your parents.  This is what will happen when you see someone 
from the research team: 

1. You will have your hearing tested.  You wear earphones and raise your hand 
when you hear soft sounds.  This will only take a few minutes.   

2. Some measurements will be made of your ears.  To make these measurements 
an earplug will be used in your ear.  You will not have to do anything but you 
will be asked to sit very still and not move your head or talk. 

3. You will play some listening games on the computer.  When you play these easy 
games you will be wearing earphones so you can hear the sounds.  The games 
do not take long, only a few minutes, but you may not want to finish all of them 
on one day. 

 
 
 
Will the study hurt? 
 

You will not be wearing the earphones or earplugs long enough for them to hurt your 
ears.  Some of the sounds used for the ear measurements are loud but they will not 
hurt.  

 
Will you be a better listener if you get in the study? 
 

This study won’t make you a better or worse listener.  The research team hopes that 
this study will help them understand how children listen so that in the future they can 
easily find which children will have listening problems and then be able to help teach 
them to be better listeners. 

 
What if you have any questions? 
 

You can ask questions any time, now or later.  You can talk to anyone on the research 
team, your family or someone else. 

 
Do you have to be in the study? 
 
You don’t have to be in the study.  No one will be mad at you if you don’t want to participate. If 
you don’t want to be in the study just say so.  Even if you say yes now, you can change your 
mind later.  It’s up to you. 

 
 
 

□   Yes, I want to participate in this study 
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_______________________________________ 
Print name of child 
 
 
 
 
_____________________              ____________________                 ______________________ 
Signature of child                               Age                                                     Date 
 
 
 
 
____________________________                                                            ______________________ 
Signature of person obtaining consent                                                      Date 
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Letter of Information and Consent 

 

 

Study:  Auditory function and acoustic signal encoding in school-

aged children. 

 

 

Principal Investigator:  Prudence Allen, Ph.D. 

Research Associates: Chris Allan, Ph.D. 

Udit Saxena, M.Sc. 

    Moumita Choudhury, M.Sc. 

 

 

Place of testing:  London Children’s Connection - School Age Program 

 

 

Dear Potential Participant, 

 

The pronouns “you” and “your” should be read as referring to the 

participant rather than the parent/guardian/next-of-kin who is signing the 

consent form for the participant. 

 

Normal hearing and good auditory processing (listening) abilities are necessary 

for children to experience success in school.  Recent studies have shown that 

some children experiencing school failure have Auditory Processing Disorders.  
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Auditory processing disorders have also been found in children that experience 

difficulty learning to read and/or have delays in their speech development.   You 

are being invited to participate in a study of hearing and listening being 

conducted by Western’s Child Hearing Research Laboratory.  This study is 

investigating the usefulness of various listening tests, such as the ability to 

distinguish a change in pitch, loudness or quality of a sound.  The performance of 

normal or typically developing children will be compared to children with auditory 

processing disorders. 

Participants Initials ________ 

 

The objective of this project is to investigate hearing and listening abilities in 

children so that assessment tools can be developed for early and accurate 

identification of children with listening problems.  In this study we plan to 

compare the performance of typically developing children with that of children 

with known Auditory Processing Disorders. For both groups of children, 

participants between the ages of 4 to 17 years old will be included in this study.   

 

Ear and hearing measurements 

 

This research project has been discussed with London Children’s Connection 

administrators and Board of Directors.  They have agreed to allow for the 

distribution of this letter and for your convenience, they have given permission for 

the testing to take place during the after-school program.  If you agree to 

participate, one of the program staff will bring you to a quiet room where the 

researchers have set-up all of their computers and ear-measurement equipment.  

You will sit comfortably with the program staff and researchers in a quiet room, 

listening to different sounds while wearing earphones. The listening tasks are 

completed by listening to sounds while watching a regular size computer screen 

or handheld computer screen.  You will be presented with child-friendly computer 

graphics and with each graphic appearance on the screen you will hear a sound.  

You will be asked to identify which graphic on the computer screen best 
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corresponds to what was just heard. The responses will be recorded by the 

computer.   

 

We will also be making some measurements of your ears. During these tests you 

will wear earplugs and you will hear a variety of different sounds.  Some of the 

sounds will be loud but they are not harmful.  You can relax during these tests 

because you are not required to do anything other than remain still.  Each test, 

individually, only takes a few minutes to complete but in total there is about 1.5 

hours of testing to be completed. 

 

Test sessions will be arranged so that they do not interfere with the London 

Children’s 

 

Participants Initials ________ 

Connection - School Age Program.  They will also be short and last no longer 

than 20 minutes to help promote attention and focus on the task.  Most children 

will be seen over 3 – 6 sessions in order to complete all of the test measures.  

Once the testing has started it should be completed in 3 – 4 weeks. 

 

Study risks 

 

This study will involve no known risk to you.  The sounds you will be hearing are 

usually as loud as conversational speech and will never be so loud as to be 

uncomfortable or damaging.  You will experience little or no discomfort during 

this study.  At times long term use of earphones can become uncomfortable 

however all attempts will be made to avoid this kind of discomfort.  Rest breaks 

will be provided at regular intervals as well as upon request to prevent fatigue or 

distraction due to hunger or thirst. 

 

Privacy and confidentiality 
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The information gathered during this study will remain confidential at all times. 

Information collected at the program on the computers will be password 

protected to ensure it remains confidential at all times.  No individual listener will 

be identified in any analysis or publication, however, if it is determined that you 

may have hearing problems that require further attention you will be notified. 

During the study, a 4 character unique ID code will be used to reference each 

participant, rather than their full names. ID codes and corresponding full names 

of participants will be kept in a journal and locked in a cabinet at Western. Only 

the local research team may have access to the cabinet.  The Representatives of 

the University of Western Ontario Health Sciences Research Ethics Board may 

contact you or require access to your study-related records to monitor the 

conduct of the research. The data and personal information will be kept as it is 

being collected and analyzed. Once the project is completed, all information 

containing participants’ names and ID codes, including backup DVD’s and paper 

documents, will be deleted and overwritten or destroyed by shredding. Upon 

publication, group  

 

Participants Initials ________ 

data will be reported.  If individual data is reported, references will be made to the 

age group only.  

 

Voluntary participation 

 

Participation in the study is voluntary. You may refuse to participate, refuse to 

answer any questions or withdraw from the study at any time.  You can withdraw 

your data from inclusion in the study up until the data collection process for the 

study is complete.  At that point, all personal information will have been 

destroyed, leaving the IDs and linked data anonymous so it will no longer be 

possible to identify and remove your data from the study. 

 

Contact information 
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This letter is yours to keep. If you agree to participate please sign the attached 

form. You will receive a copy of the signed consent form.  If you have questions 

at any time you may contact me at the above address or at the following phone 

number: (519) 661-2111 extension 88944.  You can also speak to the research 

audiologist, Chris Allan at (519) 661-2111 extension 88968 if you have any 

questions or concerns about the study. If you have any questions about the 

conduct of this study or your rights as a research subject you may contact the 

Office of Research Ethics, The University of Western Ontario, 519-661-3036 or 

email at: ethics@uwo.ca. Thank you for your time and consideration. 

 

Sincerely, 

 

Dr. Prudence Allen, Ph.D. 

pallen@nca.uwo.ca 

Assistant Professor 

Director of the National Centre for Audiology 

Elborn College 

University of Western Ontario,  

1201 Western Rd. 

London, Ontario 
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