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Abstract 

The δ30Si and δ18O values of silica phytoliths have applications for reconstructing 

paleoenvironmental conditions. This study examines the effect of partial dissolution and 

burning of phytoliths on their isotopic compositions, dissolution behaviour, and physical 

characteristics (specific surface area, mean particle size, and visual appearance) and 

discusses problems with the use of phytolith δ18O and δ30Si values that have been 

modified in soils in paleoclimate reconstruction. Dissolution experiments were conducted 

in batch reactors under a range of pH (4-10) and temperature (4-44˚C) conditions. The 

δ18O and δ30Si values of fresh phytoliths behave similarly as dissolution progresses, with 

values increasing until the solution is approximately 30-40% saturated with silicic acid. 

During this phase of the experiment the isotopic composition of the remaining silica is 

dominated by dissolution preferentially removing the light isotope (16O and 28Si) to the 

solution. After ~30-40% saturation back reactions begin to affect the isotopic 

composition of remaining silica, despite net movement in the forward direction (i.e. 

dissolution). The δ18O values of precipitated silica are determined by the δ18O value of 

water in the solution and the temperature of the experiment. The δ30Si values of 

precipitated silica are determined by the δ30Si value of silicic acid. Phytoliths subjected to 

burning at 700˚C have δ18O values that are 2.6 ‰ lower than unburned phytoliths while 

their δ30Si values remain unchanged. This suggests that heating results in the 

incorporation of 18O-depleted hydroxyl groups into the silica structure. Dissolution of 

burned phytoliths progressed more slowly than dissolution of fresh phytoliths in 

conditions that are less favourable for dissolution (i.e. low pH and T) and more quickly in 

conditions that are favourable (i.e. high pH and T). The δ18O values of partially dissolved 

burned phytoliths follow the same general trend as those of unburned phytoliths but with 

less overall change in δ18O values. Burning may increase silanol sites that are more 

susceptible to dissolution. We recommend caution in using the δ18O and δ30Si values of 

soil phytoliths in paleoclimate reconstructions. Care must be taken to identify alteration 

by dissolution or burning, which may not always be visually evident. 

Keywords: phytoliths, oxygen isotopes, silicon isotopes, dissolution, burned phytoliths 
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1. Introduction 

Biogenic silica can be preserved in soils and sediments for thousands of years (Piperno, 

2006).  The oxygen and silicon isotope compositions of both phytolith and diatom silica 

can be used to examine past climate and biogeochemical cycles (Labeyrie, 1974; Juillet-

Leclerc and Labeyrie, 1987; Shahack-Gross et al., 1996; Cardinal et al., 2007; Alexandre 

et al., 2012).  Diatoms provide a useful alternative to carbonates in lakes, and silica from 

phytoliths provides a terrestrial climate proxy that is sensitive to short-term fluctuations 

in climate.  Previous research has demonstrated the potential to use the δ18O values of 

biogenic silica for paleoclimate reconstruction because these values vary with 

temperature and the δ18O values of formation water (e.g. Juillet-Leclerc and Labeyrie, 

1987; Shahack-Gross et al., 1996; Dodd and Sharp 2010).  Researchers have also begun 

using the δ30Si values of biogenic silica to glean information on the silicon cycle in both 

terrestrial and marine environments (e.g. De La Rocha et al., 1998; Basile-Doelsch et al., 

2005).   

Many studies have examined how formation processes and environments affect the final 

isotopic composition of biogenic silica, although most focus on diatoms rather than 

phytoliths (Dodd and Sharp 2010; Brandriss et al., 1998; Moschen et al., 2005; Matheney 

and Knauth, 1989; Labeyrie 1974). It is only more recently that phytoliths have become a 

focus for researchers (Shahack-Gross et al., 1996; Webb et al., 2002; 2003). However, to 

use fossil phytolith or diatom assemblages successfully as paleoclimatic indicators, 

further investigation into the stability of opal-A in soils and sediments is necessary.  Post-

depositional alteration of biogenic silica may change the isotopic composition of samples. 

The dissolution kinetics of diatoms, and those effects on their isotopic compositions, has 

been studied previously (e.g. Schmidt et al., 2001; Demarest et al., 2006; Wetzel et al., 

2014). Studies have demonstrated that the relationship between δ18O values of water, 

diatoms and temperature vary depending on the age of the deposit indicating that isotope 

exchange with pore waters may alter the δ18O values of opal-A (Brandriss et al., 1998; 

Schmidt et al., 2001).  The loss of surface hydroxyl groups from the hydrated opal-A 

structure during burial in the sediments may cause a shift in the 18O values of these 
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proxy materials (Schmidt et al., 2001). Issues such as isotope fractionation during partial 

(thinner parts of the particle may dissolve first) or selective dissolution of 

diatoms/phytoliths from different species or plant tissues must be investigated as they 

have the potential to alter the isotope compositions of fossil opal-A and influence 

paleoclimate estimates (Brandriss et al., 1998; Demarest et al., 2009).  More recently 

phytolith dissolution behaviour has been investigated, but the effect on isotopic 

composition has not been a focus (Fraysse et al., 2006a/b, 2009). In addition, many 

phytoliths dissolution experiments were done using flow-through reactors, where the 

dissolved silica is immediately removed from the system, eliminating the possibility of 

silica re-precipitation.        

Although there is potential for the δ30Si and δ18O values of phytoliths preserved in soils 

to be used as proxies for weathering rates and climate, presently there are no studies that 

extract phytoliths from soils for this purpose. This work is limited by difficulties in 

extracting purified samples from the soil and the uncertainty regarding the preservation of 

their isotope signatures. The present research aims to contribute to the field through the 

development of a technique for analysing small samples and by examining the effect of 

dissolution on the δ18O and δ30Si values of phytolith silica through dissolution 

experiments under a range of temperature and pH conditions. The results from this 

project will contribute to our understanding of silicon isotope systematics in global 

geochemical cycles. 

1.1 Phytoliths 

Phytoliths are silica bodies tens of microns in size that form in plant tissues. They are 

composed of a form of hydrated amorphous silica called opal-A (SiO2·nH2O). Phytolith 

content in plants ranges from approximately 0.5% dry weight or less in dicotyledons, 1-

3% in dryland grasses, and up to 10-15% in some wetland species (Epstein 1994). 

Monocotyledons are the highest accumulators and Equisetum arvense (horsetails), in 

particular, can accumulate up to 25% of their dry weight as silica (Chen and Lewin 

1969). Silica accumulation varies with plant species, plant part, and environmental 
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conditions controlling the amount of dissolved silica available to the plant (Piperno, 

2006).  

1.1.1 Precipitation of silica phytoliths 

When plants take up water they also take up silicon in the form of aqueous silicic acid 

(Si(OH)4) (Piperno, 2006).  The silicic acid is transported throughout the plant and 

precipitates out of solution to form solid silica bodies (phytoliths) in intra- and 

intercellular spaces (Piperno, 2006; Alexandre et al., 1994; Raven, 1983).  Deposition 

occurs where plant water becomes supersaturated with respect to silicic acid, primarily as 

the result of removal of water through transpiration (Piperno, 2006; Raven 1983).  

However, silica deposition also occurs in cells not directly related to water loss as a result 

of induced silica saturation (Walker and Lance 1991).  An increase in the ionic activity of 

Na+ or K+, a change in pH, or reaction with ionized surfaces of some organic compounds 

can trigger silica precipitation (Kaufman et al., 1981; Perry and Mann, 1989). 

Carbohydrate polymers, namely hemicelluloses and cellulose, can also influence 

phytolith formation by helping to initiate silica polymerization and aggregation (Perry 

and Lu 1991). The distribution of silica with specific ultrastructural motifs throughout the 

plant (e.g. small amounts of fibrillar silica that is common in stems can be found at the 

base of leaves) suggests that the fundamental silica particles are nucleated within the 

transpiration stream and then transported throughout the plant before they ripen (Perry 

and Fraser 1991), but this has not been confirmed.  

1.1.2 Phytolith preservation 

The preservation of phytoliths in soils varies widely.  Well-preserved phytoliths have 

been recovered from Pliocene-aged deposits, while in some tropical soils the bulk of 

phytolith input turns over within 6 months (Baker, 1960; Jones; 1964; Alexandre et al., 

1997).  Clearly, preservation is variable, and depends on phytolith morphology and the 

chemical characteristics of the soil (e.g. pH, temperature, Al content) (Alexandre et al., 

1997; Piperno, 2006). It has been suggested that the presence of aluminum in the silica 

structure or adsorbed onto the surface of particles of biogenic silica can aid in 

preservation, but contradictory results have been reported (Bartoli and Wilding 1980; 
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Fraysse et al., 2009).  Alexandre et al. (1994) examined phytoliths found in the litter and 

upper layer of a tropical soil and found that phytolith dissolution was selective, favouring 

the removal of cell wall phytoliths.  The surfaces of those remaining in the soil were 

rugulose or stippled indicating partial dissolution.   

Phytolith preservation can also be influenced by wildfires. Changes in morphology as a 

result of the loss of fine features can occur at temperatures as low as 600ºC (Runge 

1998). Resistance to heat alteration appears to be somewhat species and plant part 

specific; phytoliths from some species of rice plants retained their diagnostic 

morphologies until up to 1000ºC (Wu et al., 2012). In addition, wildfires have the 

potential to regionally re-distribute phytoliths in smoke and ash potentially contaminating 

assemblages with non-local phytoliths (Fredlund and Tieszen 1994). 

Methods of determining the preservation of a phytolith assemblage rely heavily on visual 

examination and consideration of general preservation patterns in the study area (Piperno 

2006). Preservation can be assessed by examining an assemblage for the presence of 

weathered morphotypes (i.e. identifiable shapes that are pitted or display irregular fine 

features) (Fredlund and Tieszen 1997). The presence of phytolith shapes that are 

relatively unstable (e.g. hair and long cells or any shape that is highly decorated) is the 

best indicator of a well-preserved assemblage (Cabanes et al., 2011). Methods of 

determining if assemblages have been subjected to fire, in particular, are phytolith 

colouration (Parr, 2006) and refractive indices (Elbaum et al., 2003). While darker 

coloured phytoliths can occur without burning, darkly coloured burned phytoliths differ 

in appearance when observed through an optical microscope in that burned phytoliths 

have a dull opaque finish while pristine dark phytoliths are transparent/opalescent (Parr, 

2006). The refractive index of a phytolith can also be used to detect assemblages that 

have been subject to burning. A shift to higher refractive indices indicates burning; an 

assemblage that has a large fraction of individual phytoliths with a refractive index higher 

than 1.440 have likely been subject to burning (Elbaum 2003).  

1.2 The silicon cycle 
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The biogeochemical cycle of silicon is complex and links many environments, both on 

continents and in the oceans. The main reservoirs through which silicon cycles are soils, 

aquifers, lakes and rivers, oceans, and marine sediments (Fig. 1-1; Basile-Doelsch, 2006). 

This section will focus on the role of plants in the biogeochemical cycle of silicon. 

 

 

Fig.1-1. Cycle of silicon in continental and marine environments and associated δ30Si 

values of the silicon pools. Arrows denote the direction of movement of silicon through 

the various pools and letters denote the manner of movement. D: dissolution; P: 

precipitation; T: transport; Up: uptake; De: death. Modified from Baile-Doelsch (2006) 

with additional data from Ziegler et al. (2005) and Ding et al. (2009). 

Land plants effect the terrestrial silicon cycle through several pathways. They modify soil 

pH through the production of CO2 and organic acids, they alter the physical properties of 

soils, and contribute to the physical breakdown of bedrock (Drever 1994). In addition, the 

influence of land plants on continental precipitation patterns is likely very important, 

although difficult to quantify (Berner, 1992; Drever, 1994). 
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The concentration of silicic acid in the terrestrial silicon pool is modified by mineral 

weathering, plant uptake, secondary clay mineral formation, adsorption onto oxides, and 

leaching to the hydrosphere (Sommer et al., 2006). The biogeochemical cycling of silicon 

in terrestrial ecosystems has been much less studied than in aquatic ecosystems, despite 

the fact that terrestrial plant silica contributes significantly to the marine silicon content 

and its related biological activity (Meunier et al., 2005). Terrestrial plants take up a large 

portion of the dissolved silica produced during weathering, meaning that much of the 

silicic acid the ultimately ends up in the oceans via rivers goes through plants first 

(Sommer et al., 2006; Derry et al., 2005; Conley 2002; Alexandre et al., 1997). For 

example, in some equatorial rainforests only about 7.5% of phytoliths formed a stable 

pool of biogenic silica in the soil; the rest were dissolved and taken up again by plants, 

deposited as new phytoliths in other soil horizons, or flushed from the system into 

waterways (Alexandre et al., 1997). In temperate deciduous ecosystems about 85% of the 

soluble silicon in soils has been released from biogenic silica, while in a temperate 

coniferous ecosystem only ~15% of the soluble silicon was biogenic in origin (Bartoli 

1983). Turnover of biologically derived silicon in tropical rainforest ecosystems is high 

(up to 75 kg/ha/yr), while in temperate deciduous and pine forests it is considerably lower 

(~35.5 and 4.5 kg/ha/yr, respectively) (Bartoli and Souchier 1987). In general, phytolith 

fixation of silica ranges from 60-200 Tmol/yr among different ecosystems (Conley 2002). 

The land-to-ocean silicon flux contributes more than 80% of the dissolved Si input to the 

oceans (Tréguer et al., 1995) and much of this Si, in some environments, almost all has 

moved through plants (Derry et al., 2005). Decreases in species diversity of both fresh-

water and marine diatoms have been linked with grassland expansion demonstrating the 

role of plants in the link between terrestrial and marine/aquatic silicon cycles (Kidder and 

Gierlowski-Kordesch 2005; Rabosky and Sorhannus 2009). 

1.3 Silicon and oxygen isotope systematics in phytoliths 

1.3.1 Oxygen isotopes 

Phytoliths are composed of silica that precipitates directly from plant water. Their δ18O 

values are determined by a temperature dependant fractionation between the silica and 



7 
 

plant water δ18O values. The δ18O values of plant water are dependent on the δ18O value 

of soil water, the 18O value of atmospheric vapour, temperature, and relative humidity.  

The uptake of soil water by roots is not associated with any oxygen isotope fractionation 

and so water in the root and stem has the same isotopic composition as soil water (Allison 

et al., 1984). The soil water composition is essentially that of local meteoric water (i.e. 

precipitation and shallow groundwater) (Dawson et al., 1998; Gat 1998; Yakir et al., 

1998).  Prior to root uptake, soil water in the shallow soil horizons can be modified by 

evaporation from the soil surface (Barnes and Allison, 1983).   

Relative humidity can also influence the δ18O values of phytolith silica in that the 

isotopic composition of leaf water is modified through evapotranspiration. During 

transpiration leaf water becomes enriched in 18O and the extent of this enrichment is 

inversely correlated with relative humidity (Farris and Strain, 1978).  This signal, along 

with the temperature-related fractionation that occurs during the transition from dissolved 

to solid silica, influences phytolith δ18O values (Shahack-Gross et al., 1996; Webb and 

Longstaffe, 2002). Temperature influences the degree of fractionation between 

amorphous silica and the water from which it forms, and this has been applied to the 

study of phytoliths (Shahack-Gross et al., 1996).  In the stem, where 18O-enrichment of 

plant water through transpiration is not a factor, the primary influence on the δ18O value 

of phytoliths is the temperature-dependent fractionation factor (Webb and Longstaffe, 

2002).  Shahack-Gross et al. (1996) developed a paleo-thermometer equation for silica 

phytoliths: 

t (°C) = 5.8 – 2.8 ( δ18Osilica – δ18Oplant water – 40 )   (1-1) 

However, when phytoliths with high δ18O values from transpiring tissues that carry a 

relative humidity signal are combined with those from non-transpiring tissues in a soil-

phytolith assemblage this relationship can be confounded (Webb and Longstaffe 2002). 

This can be corrected for provided the soil water oxygen isotope composition can be 

estimated with relative confidence (Webb and Longstaffe 2002). 

1.3.2 Silicon isotopes 
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The silicon source for plants is in the form of dissolved silica in soil water. During 

mineral weathering, the lighter silicon isotope (28Si) is preferentially released to the 

dissolved phase, and this process has a strong control on the δ30Si value of soil water 

(Ziegler et al., 2005; Basile-Doelsch 2006). Dissolved silica in soils has a δ30Si value 

between ~ -0.8 to +2.4 ‰ (Ziegler et al., 2005; Ding et al., 2009). It has been shown for 

bamboo that there is a biochemical fractionation of silicon isotopes (αplant-water = 0.9988) 

during root uptake of dissolved silica, which means that 28Si is preferentially taken up by 

the plant (Ding et al., 2009).   Similar 30Si values have been observed for rice and 

banana plants (Ding et al., 2005; Opfergelt et al., 2006).  The δ30Si values of phytoliths 

increase from the plant stem through branches and leaves (Ding et al., 2005; 2009; 

Opfergelt et al, 2006). A Rayleigh fractionation model has been proposed to explain the 
30Si enrichment in both phytoliths and the plant water dissolved silicon pool along this 

gradient (Ding et al., 2005; 2008).  In this model 28Si is taken up during phytolith 

formation and the remaining plant water is enriched in 30Si. Phytoliths formed 

subsequently will have higher δ30Si values. Phytolith δ30Si values ranging from -2.3 to 

+2.8 ‰ have been reported (Douthitt 1982; Ziegler et al., 2005; Ding et al., 2009). 

Although phytolith formation preferentially uses the lighter Si isotope, when the silica 

supply is limited more of the heavy isotope is incorporated into the phytoliths.  As a 

result, the lower the concentration of silicic acid inside the plant the higher the 30Si 

values of the phytoliths (Ding et al., 2009).  The δ30Si values of phytoliths carry 

information on the δ30Si values of soil water, which can potentially be related to local 

agricultural history and climate conditions (Opfergelt et al., 2008; Ding et al., 2009).   

1.4 Dissolution studies 

It is important to understand how phytoliths dissolve and to what degree this alters their 

oxygen and silicon isotope compositions. The dissolution of silica involves hydrolysis in 

an excess of water: 

SiO2 + 2 H2O ↔ Si(OH)4    (1-2) 

so the majority of silica released to natural waters is in the form of monosilicic acid 

(Langmuir, 1997). Because silica is comprised of Si-O-Si linkages it is Si-O bonds that 
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must be broken for dissolution to occur. Silica solubility increases dramatically above pH 

of approximately 9 as a result of the dissociation of silicic acid, which drives the reaction 

in (1-2) to the right.  

Phytolith solubility is close to that of inorganic amorphous silica, and their dissolution 

rates fall between that of quartz and vitreous silica (Fraysse et al., 2006b; 2009).  Based 

on an examination of the aqueous reactivity of horsetail and pine phytoliths Fraysse et al. 

(2006a) suggest that the rate of phytolith dissolution is independent of topology and the 

geometry of local structures, and that there are no preferential dissolution sites on the 

surface of phytoliths.  Phytoliths of some species are more soluble than others; for 

example, pine phytoliths are more resistant to dissolution than those of other plants such 

as horsetails and beech (Bartoli and Wilding, 1980; Fraysse et al., 2006a).  There are 

conflicting results on the effect of structural aluminum in protecting phytolith silica 

against dissolution (Bartoli and Wilding, 1980; Fraysse et al., 2009).  It has been 

suggested that the protection against dissolution provided by aluminum is the result of 

both chemisorption of Al to the silica surface, and a coagulative effect during silica 

synthesis that results in reduced surface area (Bartoli and Wilding, 1980; Bartoli, 1985).  

However, other studies saw no relationship between phytolith dissolution rate and 

aluminum content (Fraysse et al., 2009). There are no studies that examine the effect of 

dissolution on the isotopic composition of phytolith silica, although this has been studied 

for diatoms. 

Diatom frustules and phytoliths are both composed of hydrated amorphous silica, and the 

surface chemistry and reactivity of diatom silica has been extensively studied. There is a 

notable difference in the dissolution rates and surface properties of fresh versus 

sedimentary diatoms (Dixit and VanCappellen 2002; VanCappellen et al., 2002; Hurd et 

al., 1981; Barker et al., 1994). The discrepancy in dissolution rates estimated for surface 

(fresh) versus sedimentary diatoms has been attributed to differences in Al content, 

specific surface area, temperature, and degree of undersaturation (VanCappellen et al., 

2002). In marine sediments, the decrease in the specific surface area of diatom silica with 

depth and the Al content of pore waters act to reduce silica solubility while diatoms age 
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in the sediment (Dixit et al., 2001; VanCappellen 1996; VanCappellen et al., 2002; Dixit 

and VanCappellen 2002).  

Fresh diatoms have oxygen-isotope values that are fractionated relative to water 3 to 10 

‰ lower than fossil diatoms formed in the same environment (Schmidt et al., 1997; 

Brandriss et al., 1998).  It has been suggested that preferential dissolution of 16O-enriched 

Si-OH groups could alter the δ18Osilica values of fossil diatoms (Schmidt et al., 1997; 

Brandriss et al., 1998).  Schmidt et al. (2001) found no evidence of dissolution of 

isotopically light Si-OH groups but did find that the ratio of integrated peak intensities for 

Si-O-Si/SiOH infrared vibrational modes correlate with increases in δ18Osilica.  This 

suggests that internal condensation reactions are responsible for the enrichment of 

sedimentary diatoms in 18O.  Silica condensation involves the combination of two Si-OH 

groups to form Si-O-Si bonds.  It is suggested that this process selectively releases 16O 

resulting in higher δ18O values of biogenic opal after deposition in sediments (Schmidt et 

al., 2001).  

Studies of the silicon isotope effects during biogenic silica dissolution have focussed on 

the δ30Si value of silicon in solution or the offset in δ30Si values between solid and 

dissolved diatom silica (Demarest et al., 2009; Geilert et al., 2014; Wetzel et al., 2014). 

There are currently no studies examining the effect of dissolution on the silicon isotope 

composition of phytolith silica. For diatoms, the dissolved phase generally has lower 

δ30Si values than its source solid (Demarest et al., 2009; Geilert et al., 2014; Wetzel et al., 

2014). A similar trend was reported for the δ30Si value of dissolved silicon sourced from 

phytoliths (Ziegler et al., 2005). Dissolution of diatom silica was found to discriminate 

against 30Si with an enrichment factor of εdissolved Si-biogenic Si of -0.55 ‰, and this 

enrichment factor did not vary with source material or temperature between 3 and 20°C 

(Demarest et al., 2009). However, a similar study by Wetzel et al. (2014) found no 

significant silicon isotope fractionation accompanying the dissolution of diatom frustules. 

The difference between these studies was attributed to differences in the aluminum 

content of the frustules used, but more work is needed to understand the mechanisms 

responsible for the fractionation, of lack thereof, of silicon isotopes during the dissolution 

of biogenic silica (Demarest et al., 2009; Wetzel et al., 2014). All studies were consistent 
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in that after nearly 50% of the original mass of biogenic silica had dissolved no changes 

in the initial δ30Si values of the solid diatoms were observed (Demarest et al., 2009; 

Geilert et al., 2014; Wetzel et al., 2014). 

1.5 Applications of the isotopic study of phytoliths 

The isotopic composition of paleo-plant material such as cellulose, pollen, and, more 

recently n-alkanes from leaf wax, has been used extensively in the reconstruction of past 

environments (e.g. Liu and Huang, 2005; Lichtfouse et al., 1994; Nelson et al., 2008; 

Richter et al., 2008). Archaeological and sedimentary phytoliths also have the potential to 

provide information about terrestrial climate as their oxygen isotope composition is 

influenced by environmental factors. The temperature models developed and further 

investigated by Shahack-Gross et al. (1996) and Webb and Longstaffe (2002, 2003) have 

not yet been used in reconstructions of past environments. However, the use of modern 

soil phytolith δ18O values to examine relative changes in soil water/precipitation δ18O 

values and annual temperature was successful (Alexandre et al., 2012). Work has been 

done examining the various factors that determine the δ18O values of phytolith silica from 

different plant parts but there are still some inconsistencies and further study of modern 

plants is needed before phytolith δ18O values can be used reliably as a proxy of 

environmental conditions during plant growth (Shahack-Gross et al., 1996; Webb and 

Longstaffe, 2002, 2003; Hodson et al., 2008).  The silicon isotope composition of diatom 

frustules has been applied as a means of tracking the flux of silicon through the oceans 

over long timescales (e.g. Cardinal et al., 2007). A similar approach to tracking Si-fluxes 

may be possible for terrestrial environments via the δ30Si values of phytoliths.  

The yet unstudied issue of the effect of post-deposition alteration of phytolith silica on its 

isotopic composition will be explored in this thesis. Changes in the isotopic composition 

of biogenic silica can effect interpretations of paleoenvironmental conditions.  An 

increase in δ18O values by 2 ‰ would result in an underestimation of temperature by 

more than 5˚C.  Post depositional modification of δ18Osilica values will also impact studies 

concerned only with relative changes in δ18O values if the degree of alteration is not the 

same through the entire chronology (sediment core or soil profile). Changes in δ30Si to 
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higher values would result in underestimations the availability of silicic acid (Ding et al., 

2008). These effects must be taken into account when examining changes in the isotopic 

composition of biogenic silica. This type of study lays the groundwork for improving our 

understanding of the role of terrestrial biogenic silica in global geochemical cycles. 

This thesis is divided into four main chapters written as independent research articles. 

Chapter 2 outlines the development of a microsilicate vacuum line for the extraction, 

purification, and analysis of oxygen and silicon isotopes from a single 1mg sample. 

Chapter 3 discusses the silicon isotope results of a series of dissolution experiments 

conducted on phytolith silica and implications relating to the role of phytoliths in 

modifying the δ30Si values of waters leaving the soil. Chapter 4 reports the oxygen 

isotope results from the same dissolution experiments outlined in chapter 3 and discusses 

the ways in which phytolith δ18O values can be modified once in the soil. Chapter 5 

investigates the effect of burning on the δ18O and δ30Si values of phytoliths. Also 

discussed are changes in specific surface area and dissolution characteristics of burned 

phytoliths. Chapter 6 provides a summary of the results from preceding chapters and 

comments on the utility of phytolith isotopic compositions in investigating paleoclimate 

and the silicon cycle. 
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2 Simultaneous measurement of δ18O and δ30Si values of small samples 

of opal-A 

 

2.1 Introduction 

Isotopic analysis of biogenic opal-A can be applied to studies of paleoclimate and 

biogeochemical cycles. The δ18O values of biogenic silica can provide information about 

growing season temperatures in terrestrial ecosystems (phytoliths; e.g. Shahack-Gross et 

al., 1996; Webb and Longstaffe 2000) and sea surface/ lake water temperature (diatoms; 

e.g. Shemesh et al., 1992; Moschen et al., 2005; Dodd and Sharp 2010). The silicon 

isotope composition of biogenic opal-A yields information regarding both terrestrial and 

marine silicon cycles, and the role organisms play in moving silicon through this system 

(De La Rocha and Bickle 2005; Ding et al., 2009). However, accurate measurement of 

the isotopic composition of phytoliths or diatoms requires special considerations for 

sample purity and size, exchangeable hydroxyl groups on the surface of opal-A and traces 

of carbon occluded within the silica structure. This study presents the development of 

apparatus and techniques that allow for the simultaneous measurement of δ18O and δ30Si 

values from mg-sized samples of silica.  

 

2.1.1 Extraction from soil and sediments  

Prior to analysis, a pure sample of phytoliths or diatoms must be isolated from the soil or 

sediment.  For oxygen isotope analysis a diatom sample must be almost completely pure; 

more than ~3% sediment contamination will result in low δ18O values (Leng and Barker 

2006).  Methods of removing contamination from diatom samples involve chemical 

treatments for the removal of organic matter and carbonates, sieving for the removal of 

clays and fine silts, and differential settling techniques as well as heavy liquid flotation 

for the separation of diatoms from coarser silts (Shemesh et al., 1995; Morley et al., 

2004; Leng and Barker 2006). A SPLITT (split-flow thin cell fractionation) device has 
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also been successfully used for the isolation of diatoms from sediments (Schleser et al., 

2001; Rings et al., 2004). The sample travels through a thin channel (371μm) carried by 

water in laminar flow. The liquid in the upper and lower portions of the channel have 

different velocities, which separates the sample into two streams, with the finer and less 

dense particles forming the upper stream. The process can replace heavy liquid flotation 

but a similar series of pretreatment steps are required prior to the introduction of the 

sample to the SPLITT device (detailed in Rings et al., 2004).  

Phytoliths are routinely extracted from soils for morphological studies leading to species 

identification and ecosystem reconstruction (Piperno 2006).  However, this application 

does not require the same sample purity needed for isotope analyses as phytoliths can still 

be identified if the overall sample contains some soil particles.  Various procedures for 

isolating the phytolith component of soils are compared and summarized in Lentfer and 

Boyd (1998), Zhao and Pearsall (1998), and Piperno (2006).  Similar to diatoms, heavy-

liquid flotation is the process used for collecting the phytoliths, but there are several steps 

(chemical attack and physical separation via sieving) that must be carried out first to 

ensure the phytoliths are free of organic matter, clays, and carbonate cements. Both 

heavy-liquid flotation and the SPLITT device are time consuming and, for phytoliths 

especially, large quantities of material must be processed to retrieve enough biogenic 

silica for isotope analysis. Both methods, if implemented correctly, provide high-purity 

fractions of biogenic silica. However, samples must be processed by the SPLITT device 

several times to obtain a pure sample and the channel must be thoroughly cleaned 

between batches (Leng and Barker 2006).  Heavy-liquid flotation is equally effective but 

care must be taken to thoroughly rinse the sample of the heavy liquid prior to analysis as 

contamination results in low δ18O values (Morley et al., 2004). Given these challenges, it 

is advantageous to be able to obtain accurate isotope analysis on very small sample sizes.  

 

2.1.2 Solving the problem of exchangeable hydroxyl groups on opal-A 

An early investigation into the suitability of radiolarian silica for oxygen isotope 

investigations found that sample δ18O values were difficult to reproduce because of 
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loosely bound water within the silica samples that underwent oxygen-isotope exchange 

with environmental water (Mopper and Garlick, 1971).  Labeyrie (1972) attempted to 

solve this problem by using vacuum dehydration, in which samples were heated under 

vacuum to 1000°C and remained at that temperature for a few hours. Oxygen isotope 

analyses of these samples produced results that were reproducible within ±0.1 ‰ 

(Labeyrie 1972).  However, it was later suggested that this method reorganizes the silica 

structure and may allow the incorporation of 18O-depleted hydroxyl groups into the 

structure through the formation of new Si-O-Si bonds (Labeyrie and Juillet 1982):  

Si-OH + HO-Si ↔ Si-O-Si + H2O                      (2-1) 

This reaction is reversible until approximately 400°C (Alexandre, 1996).  Therefore, any 

analysis of opal-A for stable oxygen isotope analyses must either eliminate the hydroxyl 

groups while preventing back-exchange or account for the 18O values of the hydroxyl 

groups that are incorporated in to the structural oxygen of the sample during dehydration.  

Four different methods are currently used for this purpose: step-wise fluorination, 

inductive high-temperature carbon reduction (iHTC), controlled isotope exchange, and 

inert gas flow dehydration (iGFD).  Comparisons of the 18O values produced for opal-A 

using each of these can be found in Brandiss et al. (1998) and Chapligin et al. (2011) and 

generally produce 18O values that are the same within 0.3 to 0.9 ‰ depending on the 

material analysed.   

 

2.1.2.1 Step-wise fluorination 

In step-wise fluorination, oxygen from hydrous samples is recovered in a series of steps.    

Silica is reacted several times with a fluorinating agent at a high sample to reagent ratio 

to limit the extent of the reaction (Haimson and Knauth 1983). The water and 

exchangeable oxygen component reacts first, leaving the more stable Si-bound oxygen to 

react in later steps (Haimson and Knauth 1983). This produces a series of 2 to 7 oxygen 

fractions that tend to increase sequentially in 18O, eventually reaching a plateau that 

represents the δ18O value of tetrahedral oxygen (Haimson and Knauth 1983; Matheney 
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and Knauth 1989). At each step, the sample is reacted at 450-550°C for 20 minutes to 12 

hours depending on the type of sample (Haimson and Knauth 1983; Matheney and 

Knauth 1989). Higher temperature (550˚C) and shorter reaction time (~20 min) is 

required to achieve reliable results for biogenic amorphous silica (Matheney and Knauth 

1989). Leng and Sloane (2008) successfully use this method on 5-10mg size samples. 

 

2.1.2.2 Inductive High-temperature Carbon Reduction 

The iHTC device is a system designed to remove adsorbed water and exchangeable 

oxygen from hydrated samples, and conduct silica decomposition via carbon reduction all 

in the same chamber (Lucke et al., 2005). This method requires only ~1.5 mg of sample 

and can achieve reproducibility of 0.15 ‰ (Lucke et al., 2005).  Before each sample is 

converted to CO any exchangeable oxygen is removed by heating under vacuum at room 

temperature, 850, and 1050°C.  The high vacuum system removes volatilised gases 

before they can exchange isotopically with the sample.  This method is touted as being 

faster and less involved than other methods used to remove exchangeable oxygen from 

hydrated silica samples.  

 

2.1.2.3 Controlled isotope exchange 

Controlled isotope exchange isotopically labels the exchangeable oxygen in the opal-A so 

that they can be accounted for and the true 18O values of the structural silica can be 

calculated. The method is described in detail in Labeyrie and Juillet (1982) and Leclerc 

and Labeyrie (1987).  Briefly, a sample of biogenic silica is divided in two and each 

sample is allowed to exchange with a water vapour of known isotopic composition at a 

fixed temperature for 6 hours. After exchange the sample tube is isolated from the water 

reservoir, opened to the vacuum, and heated to 1000°C for at least eight hours to initiate 

silica reorganization. Using this method, the proportion of exchangeable oxygen and the 

oxygen isotope composition of only the non-exchangeable oxygen can be calculated 

(Labeyrie and Juillet 1982). 
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2.1.2.4 Inert gas flow dehydration 

Inert gas flow dehydration (iGFD) removes the exchangeable components of hydrated 

silica through ramp degassing under a flow of inert gas. Reliable results have been 

obtained on samples ranging from 0.3 to 1.5 mg, with reproducibility better than 0.25 ‰ 

(Chapligin et al., 2010). In the procedure used by Chapligin et al. (2010), samples are 

weighed into holders and loaded into a horizontal ceramic tube furnace, the end caps of 

which are sealed with o-rings. There is a gas inlet on one end and a small outlet on the 

other to ensure that the atmosphere inside the ceramic tube is free of oxygen. The 

constant flow of inert gas, in this case helium, results in any removed exchangeable 

oxygen being immediately removed from the sample impeding the re-integration of 

oxygen (Chapligin et al., 2010). The dehydration begins with heating from room 

temperature to 1100°C over 2 hours under continuous helium flow at a rate of 5L/min. 

Once reaching 1100°C the temperature is held constant for 3 hours. The temperature is 

then ramped down to 400°C over 3.5 hours, and the helium flow rate decreased to 

2L/min. Tests were conducted to ensure that different samples placed near each other in 

the furnace do not interact during the dehydration (Chapligin et al., 2010). With this 

method, samples should be analyzed shortly after the dehydration procedure is complete 

(Chapligin et al., 2010). 

 

2.1.3 Carbon contamination affecting Si-isotopes 

Fluorination of impure samples can produce an aliquot of SiF4 gas that is contaminated 

by volatile fluorides and oxyfluorides of carbon, sulfur, phosphorus, and hydrogen 

(Douthitt 1982). These components are difficult to separate from SiF4. Biogenic silica 

often contains small amounts of carbon; phytoliths can contain up to ~5% carbon in the 

form of inclusions, although most contain less than 1% (Jones and Milne 1963; Kelly et 

al., 1991; Carter 2009). As a result, some researchers dissolve and reprecipitate samples 

for silicon isotope analysis (Douthitt 1982; Ziegler et al., 2005; Demarest et al., 2009). 
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During the precipitation step only pure SiO2 precipitates from the solution (Douthitt 

1982). While this is an effective means of eliminating sources of contamination, the 

process completely resets the oxygen isotope composition of the sample, making the 

determinations of silicon and oxygen isotope compositions from the same sample 

impossible. 

 

2.2 Methods 

2.2.1 Inert Gas Flow Dehydration 

The inert gas flow dehydration technique was adapted for this study to remove the 

exchangeable oxygen from opal-A prior to oxygen gas extraction.  The apparatus and 

methods are based on those described by Chapligin et al. (2010) with some 

modifications.  The apparatus consists of a tube furnace fitted with a quartz tube (Fig 2-

1). The quartz tube is connected to a tank of ultra-high purity nitrogen gas at one end with 

an outlet at the other.  Each sample of opal-A was weighed into a quartz boat and loaded, 

at room temperature into the furnace which was then ramped to 1100°C over one hour 

under a constant flow of 4L/min of nitrogen gas. The sample remains at 1100°C for 1.5 

hours after which the temperature is lowered to 400°C over 3.5 hours. Then the gas flow 

was turned off and the sample was left to cool to room temperature.  The differences 

between this procedure and that of Chapligin et al. (2010) include the inert gas used, the 

quartz tube, the gas flow rate, and the temperature ramp-up time (Table 2-1). This 

method uses ultra-high purity nitrogen gas in place of helium, as nitrogen gas is less 

expensive. The use of a quartz tube instead of ceramic allows us to cool the sample faster 

at the end of the procedure without breaking the tubing. 

 

Figure 2-1. iGFD apparatus depicting gas inlet (A) and outlet (B), glass tubing (C), and 

furnace (D). 

 

A B 
C D 
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Table 2-1. Summary of modifications to the iGFD method originally developed by 

Chapligin et al. (2010). 

  This study Chapligin et al., 2010

Inert gas N2 He
Flow rate 4L/min 5L/min, 2L/min
Ramp-up time 1 hr 2 hrs
Max T 1100ºC 1100ºC  hrs
Time at max T 1.5 hrs 1.5 hrs
Ramp-down time 3.5 hrs 3.5 hrs
Tube material quartz ceramic

 

2.2.2 Dual oxygen and silicon isotope analyses via vacuum extraction line 

Oxygen and silicon isotope analysis of phytoliths requires that the material first be 

converted into oxygen (O2) and silicon tetrafluoride (SiF4) gas.  Laser fluorination 

techniques have been used for oxygen and silicon isotope analysis of silicates (including 

biogenic silica) and oxides (Sharp 1990; Mattey and Macpherson 1993; De La Rocha et 

al., 1997; Crespin et al., 2008; Dodd and Sharp 2010). SIMS has been used for the 

determination of both oxygen and silicon isotope compositions of single mineral grains, 

but reproducibility can be a problem (Basile-Doelsch et al., 2005; Kita et al., 2009). In 

this study a vacuum extraction line was constructed to produce, purify, and collect these 

gases from silica and silicate minerals.  The design is based largely on that of Leng and 

Sloane (2008) and Ding (2004). This method requires that pure silica or silicate minerals 

be used; samples containing C, S, or B impurities must be treated prior to fluorination to 

remove these elements (Ding, 2004). Minerals are reacted with BrF5 to produce O2 and 

SiF4 and the gases purified in a vacuum extraction line. BrF5 is used as the fluorinating 

agent rather than F2 or ClF3 because of its lower vapour pressure, making it easier to 

transfer by evaporation and condensation within the vacuum system.  

The apparatus is made of stainless steel and copper tubing, with the exception of one 

glass trap and a glass collection tube for the determination of yields (one for O2, one for 

SiF4).  A schematic of the extraction line is shown in Figure 2-2. Sample reaction (O2 and 

SiF4 formation) and gas extraction occurs on the right side of the line. This section 
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Figure 2-2. Schematic and photographs of the reaction vessels and vacuum extraction line 
for the purification of O2 and SiF4 gas. 

 contains Kel-F storage tubes for reagent and waste storage, two pressure gauges, a dry 

nitrogen inlet, Swagelok® valves, stainless steel tubing, and twelve nickel reaction vessels 

(volume = 5.2 cm3). The left side of the line is for O2 and SiF4 purification and collection. 

This section consists of three cold traps, a KBr (lower) trap heated to 120˚C, a CuZn 

(upper) trap heated to 60˚C, yield fingers, and a sample collection tube. The entire system 

is kept under vacuum. 

The line is designed for the purification of both O2 (for δ18O and δ17O analyses) and SiF4 

gas produced from the same sample. This was accomplished by building two distinct 

routes through which to move the gases (Figure 2-2). Oxygen gas is drawn from the 

reaction vessel through the KBr trap by freezing the molecular sieve in the yield finger 

with liquid nitrogen.  To ensure sample purity and reliable δ17O results, transfer from the 

yield finger to the sample collection tube is conducted at -100˚C. The SiF4 gas is drawn 

through the Zn trap by freezing on a yield finger with liquid nitrogen.  The dimensions of 

the Zn trap have been modified from the original design of Ding (2004). Because this line 

processes a much smaller volume of gas than other lines the length of the Cu/Zn trap has 

been significantly reduced (to 28 cm). A 12 mm diameter tube was used to facilitate 

easier gas movement through the trap and ensure there would be enough zinc surface area 

available to react with contaminants. The purpose of both the KBr and zinc trap is to 

eliminate any trace amounts of BrF5 or other fluorine compounds that may react with the 

glass and grease of the sample tube to produce contaminants, such as SiF4 and CF4, that 

can interferes with analysis on the mass spectrometer (Ding, 2004). Oxygen gas cannot 

be passed through a zinc trap without oxidizing the zinc.   

 

2.2.2.1 Reaction and extraction procedure 

Samples are loaded into the reaction vessels under a constant flow of ultra-high purity dry 

nitrogen to prevent atmosphere from entering the line. Reaction vessels are heated to 

100°C overnight under vacuum to remove water adsorbed to the surface of the sample or 
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the sides of the reaction vessel. The next day, 100mmHg of BrF5 reagent is frozen into 

each reaction vessel and samples are reacted for 16 hours at 600°C (for 1mg of pure 

silica). The oxygen extraction must be performed first because SiF4 freezes at a higher 

temperature than O2. For each sample, the reaction vessel is frozen with liquid nitrogen, 

keeping the reagent, SiF4, and any reaction products (e.g., BrF3, CF4, etc.) other than O2 

frozen in the vessel. The valve at the top of the reaction vessel is opened releasing O2 into 

the rest of the line. The O2 gas is passed through a series of cold traps (all at liquid 

nitrogen temperature) and a KBr trap to remove any contaminants that may escape the 

reaction vessel. The gas is collected in the yield finger using a 6Å molecular sieve onto 

which the O2 gas is frozen. After the sample yield is determined, the O2 is transferred 

from the yield tube to the sample collection tube at -100°C using a slurry of ethanol and 

liquid nitrogen. Any nitrogen present in the line or in the sample can react with BrF5 to 

form NF3. When ionized in the mass spectrometer if interferes with mass 33 (16O17O) 

resulting in inaccurate δ17O values (Clayton and Mayeda 1983). The slurry traps NF3 to 

ensure clean O2 gas for analysis. 

After extraction of O2 from all the reaction vessels, they are prepared for extraction of 

SiF4. For each reaction vessel, the lower half is frozen with liquid nitrogen and then 

allowed to warm up to -110°C using an ethanol-liquid nitrogen slurry. This releases the 

SiF4 but keeps other reaction products frozen. The SiF4 is frozen into trap 1 with liquid 

nitrogen (Fig. 2-2). After the bomb is closed and the line pumped, trap 1 is warmed to -

110°C releasing the SiF4 and allowing it to be frozen into the next cold trap down the 

line. This procedure is repeated until the SiF4 has been moved through all three cold 

traps, and the Zn trap. After yield determination, the gas is frozen into a sample collection 

tube to be transported to the mass spectrometer for analysis. 

Oxygen and silicon isotope analyses were performed on a MAT-253 mass spectrometer. 

The increased sensitivity of this instrument means that even with only the gas produced 

from 1mg of sample (16.7 μmol of O2 and 16.7 umol of SiF4), δ
17O, δ18O, δ29Si, and δ30Si 

values can be obtained. All oxygen isotope results were reported in the standard delta 

notation relative to VSMOW: 
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δ17O (‰) = [(17O/16O)sample/(
17O/16O)VSMOW – 1] x 103  (2-2) 

δ18O (‰) = [(18O/16O)sample/(
18O/16O)VSMOW – 1] x 103  (2-3) 

All silicon isotope results were reported in the standard delta notation relative to NBS-28: 

δ29Si (‰) = [(29Si/28Si)sample/(
29Si/28Si)NBS-28 – 1] x 103  (2-4) 

δ30Si (‰) = [(30Si/28Si)sample/(
30Si/28Si)NBS-28 – 1] x 103  (2-5) 

SiF4 is a hazardous gas and care must be taken in handling. After the analysis of SiF4, the 

gas is not pumped through the mass spectrometer but frozen back into the sample tube 

and disposed of safely in a fume hood. This increases the life of the pump on the mass 

spectrometer and eliminates the need for ventilating the pumps on the mass spectrometer. 

 

2.3 Results and Discussion 

Historically, one of the challenges in fluorinating mineral samples for the extraction of 

gases is to ensure that there is little contamination added to the gas sample via reaction 

between the fluorinating gas and the interior of the reaction vessels and vacuum line. 

High precision can be achieved if the analyte gas is present in large enough quantities to 

remain undiluted by contaminants and if reaction temperatures are appropriate for 

mineral decomposition rather than reagent decomposition. The design of this line varies 

from the conventional line housed in the same facility and that of Leng and Sloane (2008) 

in several ways. The most notable difference is the volume of the line, particularly in the 

reaction section. Each reaction vessel has a volume of 5.23cm3 compared to 28.94cm3 on 

the conventional line. This makes it easier to process small sample sizes as the size of the 

blank in the line is reduced; 1mg of sample is analyzed compared to 8mg.  Another 

important modification is the elimination of the step converting O2 gas to CO2 prior to 

analysis. Instead O2 gas is frozen onto a 6Å molecular sieve in both the yield finger and 

sample tube. To determine the precision and accuracy of the isotope analyses using the 

modified apparatus, laboratory and international quartz and opal standards were analyzed 

over a period of one year. 
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2.3.1 Oxygen isotope analyses 

The first measure of the quality of an isotope analysis of a silicate sample is the yield of 

the gas produced. Recovery of 100% of the expected gas volume is important to ensure 

that no isotope fractionation has occurred during combustion or collection of the gas 

through the extraction line. For example, 1 mg of pure SiO2 should produce 16.66 mol 

of O2 gas and 16.66 mol of SiF4 gas.  Over the course of this study, the average yield of 

oxygen gas was 17.0 ± 0.7 μmol/mg (n = 54) for NBS-28 (quartz), 17.1 ± 0.6 (n = 19) for 

ORX (quartz), 16.5 ± 1.2 (n = 6) for G95, 16.2 ± 0.2 for PS (n = 8) and 16.0 ± 0.6 (n = 7) 

for BFC.  The standards G95, PS, and BFC are opal-A and can adsorb atmospheric water 

during weighing. As a result, samples of this type often have yields of less than 100% 

(e.g. Leng and Sloane 2008).  

Initial testing resulted in poor sample yields and it was noted that there was little excess 

of BrF5 or other condensable gases remaining in the reaction vessels after the reaction.  

After a reaction, the excess gas remaining in the reaction vessel may be BrF5 reagent or 

some other product from the breakdown of BrF5 at high temperatures or during reaction 

between BrF5 and the interior walls of the apparatus.  Too much reagent left in the 

reaction vessel can indicate incomplete sample reaction, while too little can suggest 

impure reagent, contaminants in the bomb or sample, or breakdown of reagent during 

heating.  Remaining reagent amounts were low for almost all bombs. It was determined 

that the hot zone in each furnace was quite small. Both the sample and the tip of the 

thermocouple communicating with the furnace controller must be in the center of the hot 

zone to ensure the correct reaction temperature of 600°C. If the tip of the thermocouple 

was not in the hot zone the furnaces will heat up to more than 600°C resulting in the 

breakdown of reagent. This resulted in an incomplete reaction of the sample and 

produced high levels of non-condensables that can skew yield calculations of O2 gas 

which are measured as total non-condensable gas volumes.  Given the small size of the 

bombs care must be taken to ensure that the sample reaction is occurring in the hot zone 

so that temperatures elsewhere in the furnace are not too high.  
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Once adjustments were made to the position of the thermocouples, the following results 

were obtained. A plot of δ17O versus δ18O should have a slope of 0.50 to 0.52 if there is 

no mass independent fractionation occurring during purification of the gas in the 

extraction line. The results obtained for NBS-28 and the opal-A standards display the 1:2 

relationship expected for these materials (Fig. 2-3).  

 

Figure 2-3. A plot of δ17O to δ18O for quartz (NBS-28) and opal-A standards (phytoliths 

(G95), diatoms (BFC), and precipitated amorphous silica (HT, PS)) displaying the 

approximate 1:2 relationship expected for terrestrial materials. 

 

The 18O values of silicates are reported relative to the international standard VSMOW 

(see Eqn. 2-3).  In practice, the 18O values of VSMOW are not measured with each 

oxygen isotope determination of a silicate mineral.  Rather the 18O/16O ratio of O2 gas 

derived from the sample is compared the 18O/16O ratio of a laboratory reference gas to 

produce a 18O value relative to the reference gas.  These values are converted to 

VSMOW values via the construction of a calibration curve, which compares the 

measured 18O values (x-axis) to the 18O values expected for a standard (y-axis).  Once 

developed for a set of standards, a calibration curve can be applied to samples to obtain 
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accurate 18O values relative to VSMOW.  A calibration curve was created using the 

international quartz standard NBS-28, an in-house quartz standard, ORX, and a selection 

of biogenic silica samples and standards that had been prepared for analysis via 

controlled isotope exchange and iGFD (Fig. 2-4).  For standards that were not used to 

construct the calibration curve the standard NBS-28 had an average δ18O (VSMOW) 

value of 9.9 ± 0.6 ‰ (n = 47; expected value = 9.6 ‰ (Brand et al., 2014)). The internal 

quartz standard ORX had an average δ18O value of 11.4 ± 0.6 ‰ (n = 17; expected value 

= 11.5 ‰). The standard Diatomite had an average δ18O value of 22.3 ± 0.6 ‰ (n = 10). 

Diatomite is a silicon isotope standard and does not have a known δ18O value reported in 

the literature. Its oxygen isotope composition was analysed here to test for precision only. 

 

Figure 2-4. The calibration curve used to normalize oxygen isotope compositions to 

VSMOW. Standards included in the calibration curve are: NBS-28 and ORX (quartz) and 

a selection of biogenic silica standards treated via iGFD and samples with known δ18O 

values treated via controlled isotope exchange. 

To evaluate the effectiveness of the iGFD method a selection of opal-A standards with 

known values were analyzed. The standards used were BFC (lacustrine diatomite), PS 

(marine diatom sediment), and G95 (fresh grass phytoliths). These standards were 
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previously analysed by other researchers as part of an inter-laboratory comparison study 

evaluating the effectiveness of different pretreatment and analysis methods for the 

determination of the 18O values of opal-A (Chapligin et al., 2011). Our results are 

compared to the pooled results of multiple pretreatments from that study (Table 2-2). The 

δ18O values obtained for all standards using nitrogen iGFD are within the range of 

accepted values, indicating that iGFD using nitrogen gas is an effective treatment for 

removing exchangeable oxygen from samples of biogenic silica for oxygen isotope 

analysis.  

Table 2-2. Comparison of accepted opal-A standard δ18O values (Chapligin et al. 2011) to 

those determined in this study. 

Standard accepted δ18OVSMOW ‰ SD n δ18OVSMOW ‰ SD n

G95 36.6 0.3 7 36.1 0.6 6

PS 42.8 0.8 6 42.3 0.5 8

BFC 29 0.3 7 28.5 0.5 7

 

2.3.2 Silicon isotope analyses 

The standards used to determine the efficacy of the SiF4 extraction procedure were NBS-

28 and Diatomite, a natural diatomite sample originally deposited as marine biogenic 

opal (Reynolds et al., 2007). The Diatomite standard was provided by Mark Brzezinski 

from the University of California.  Over the course of the experiment the average yield of 

SiF4 gas from NBS-28 was 17.4 ± 0.8 μmol/mg (n = 45). To determine whether the SiF4 

gas was free of contaminants we compared a mass scan of the gas evolved from a 

Diatomite sample to a scan of SiF4 gas from the reference tank on a Finnegan MAT 253 

mass spectrometer.  In the source of the mass spectrometer the SiF4 breaks down and is 

ionized.  Hence, there will be fractions with different masses (e.g., F = 19, Si = 28, SiF = 

47, SiF2 = 66, and SiF3 = 85). SiF4 gas ionizes to SiF3
+ in the source so the collectors are 

set to 85, 86 and 87 m/z for measurement. The similarities of the two scans suggest that 

the SiF4 generated from samples was pure after treatment in the vacuum line (Fig. 2-5). 

The higher intensity peak at mass ~66 in the diatomite sample would suggest that the 
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slightly high yield measured for standards is the result of some of the gas being in the 

form of SiF2. However, this does not appear to alter the δ30Si value of the standard.  

 

 

A 

B 
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Figure 2-5. Mass scans of SiF4 gas obtained from a sample of Diatomite standard (A) and 

SiF4 reference gas (B).  

 

Silicon isotope values are reported as δ29Si and δ30Si according to equations 2-4 and 2-5 

using the average 30Si/29Si and 30Si/28Si ratios of NBS-28 gas collected from two samples 

on the same day. Over 8 months, the average δ29Si and δ30Si values for NBS-28 over all 

runs were 0.00 ± 0.03 ‰ and 0.00 ± 0.04 ‰, respectively (n = 47). The average corrected 

δ29Si and δ30Si values for Diatomite were 0.63 ± 0.05 ‰ and 1.24 ± 0.07 ‰, respectively 

(n = 10). The accepted δ29Si and δ30Si values for diatomite are 0.64 ± 0.07 ‰ and 1.26 ± 

0.09 ‰, respectively (Reynolds et al., 2007). The precision associated with δ30Si values 

of biogenic silica is comparable to those determined via traditional fluorination methods 

(± 0.10; Leng and Sloane 2008), laser fluorination (± 0.1; De La Rocha et al., 1997), and 

SIMS (± 0.75; Basile-Doelsch et al., 2005).  

The relationship between δ29Si and δ30Si as a result of mass dependent isotope 

fractionation should be approximately 1:2 (δ29Si = 0.51 x δ30Si), and can be used as an 

indicator of sample purity (Leng and Sloane 2008). Contaminant gases, such as COF3
+ 

(mass 85), will result in anomalously low δ30Si values, disrupting this relationship (Ding 

et al., 1996). This relationship for the standards NBS-28 and Diatomite is shown in figure 

2-6. Also included in this figure are the δ29Si and δ30Si values of all phytolith silica 

analyzed for this thesis. These data are included to fill in the gap between NBS-28 and 

Diatomite values so that the trend line does not simply connect two clusters of data. 

These data conform to the predicted relationship indicating that any contaminant gases 

(e.g. COF3
+) do not interfere with masses 85, 86, and 87 measured for silicon isotope 

analyses. The iGFD step required to prepare samples for oxygen isotope analysis 

involves heating the sample to 1100ºC. Any trace amounts of carbon would have been 

removed during this step. 
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Figure 2-6. Cross-plot of δ30Si and δ29Si values of phytolith silica and the standards NBS-

28 and Diatomite. 

 

2.4 Summary 

The oxygen and silicon isotope composition can be measured from the same ~1mg size 

sample using slightly modified conventional fluorination techniques. We have shown that 

accurate and reproducible δ18O values (± 0.6 ‰) can be obtained from small samples of 

biogenic silica using BrF5 fluorination and gas purification in a vacuum extraction line. 

The iGFD method of removing exchangeable oxygen developed by Chapligin et al. 

(2010) was modified, and has been proven effective using less expensive nitrogen gas in 

place of helium, a glass tube in place of ceramic, and a gas flow rate of ~4L/min. Very 

reproducible δ29Si and δ30Si values (± <0.1 ‰) were also obtained. Carbon 

contamination, which can affect yields of SiF4 and can be an issue in the silicon isotope 

analysis of biogenic silica samples, was not a problem as it was removed during heating 

to 1100ºC during the inert-gas flow dehydration.  
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3. The effect of progressive dissolution on the silicon isotope 
composition of opal-A 
 

3.1 Introduction 

Silicon isotopes can be used to trace silicon as it cycles through the biosphere and 

lithosphere and to study biomineralization and weathering processes (Basile-Doelsch 

2006 and references therein). During weathering the lighter Si isotopes are preferentially 

released from minerals so that the δ30Si value of dissolved Si in solution is lower than the 

original minerals by up to ~3 ‰ (Ziegler et al., 2005).  The 30Si values of Si in soil 

solutions (and ultimately rivers and oceans over long time scales) vary with weathering 

rates that depend on temperature, humidity and the carbon dioxide concentration of the 

atmosphere (Ziegler et al., 2005).  Silicon isotope values of materials like phytoliths, 

diatoms, and siliceous cements that precipitate from waters containing dissolved Si from 

weathering reactions and it has been suggested that their δ30Si values can be used as a 

proxy for the availability of silicic acid in terrestrial and marine environments, where 

lower δ30Si values would indicate a higher concentration of silicic acid (Ding et al., 2009; 

Basile-Doelsch et al., 2005; De La Rocha and Bickle 2005; De La Rocha et al., 1998). In 

this study we assess whether the δ30Si values of phytoliths are preserved after partial 

dissolution has occurred.   

Aqueous silicic acid is taken up by plants from soil water and precipitated inside plant 

tissues as silica phytoliths. The uptake of silicic acid by plants is associated with a 

biochemical Si-isotope fractionation of αplant-water = 0.9988, which means that phytoliths 

in plants have lower 30Si values that the silicic acid in soils (Ding et al., 2005, 2009). In 

addition, phytoliths become increasingly enriched in 30Si from the lower to the upper 

parts of rice, bamboo, and banana plants as the pool of available silicic acid becomes 

depleted of 28Si as phytolith deposition continues (Ding et al., 2005, 2009; Opfergelt et 

al., 2006). Phytolith δ30Si values can vary by as much as 3.3 ‰ in a single plant (Ding et 

al., 2009). In addition to the variation in 30Si values in phytoliths across the entire plant, 
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there may be some heterogeneity within individual phytoliths because the pool of silicic 

acid from which they precipitate is constantly evolving (Ding et al., 2009). Although 

researchers have suggested that the δ30Si values of phytoliths can be used to understand 

silicon availability during plant growth (Ding et al., 2009) this application is complicated 

by the isotopic heterogeneity of the phytoliths within a plant. However, the silicon 

released from the weathering of phytoliths is depleted in 30Si relative to soil waters and 

can be used to trace the contribution of biogenic silica to the terrestrial silicon cycle 

(Ziegler et al., 2005; Meunier et al., 2010).  

In the soil, post-depositional changes in the isotopic composition of biogenic silica over 

time could affect interpretations of silicon cycling rates. For example, higher δ30Si values 

of phytolith silica would be associated with lower silicic acid availability which is 

associated with lower weathering rates (Ziegler et al., 2005; Derry et al., 2005). If 

phytoliths partially dissolve, if there is selective dissolution of some phytolith 

morphologies, or if there is isotopic exchange with soil water, the δ30Si values of 

phytolith silica could be modified.  For example, previous research has noted, that the 

18O values of fresh diatom silica are 3-10 ‰ lower than diatom frustules extracted from 

sediments in the same environment (Brandriss et al., 1998; Schmidt et al., 2001).  

Changes have been observed in the surface structure of diatoms after digenesis, most 

notably the removal of surface OH groups by either partial dissolution or silica 

condensation reactions that occur after deposition in sediments (Brandriss et al., 1998; 

Schmidt et al., 2001) (Eqn. 3-1).  

SiO2 + 2 H2O ↔ Si(OH)4   (3-1) 

Sedimentary diatoms have slower dissolution rates and lower specific surface areas 

compared to fresh diatoms (Dixit and VanCappellen 2002; VanCappellen et al., 2002; 

Hurd et al., 1981; Barker et al., 1994).  Experimental studies have shown that the δ30Si 

values of fresh diatom silica, fossil diatom silica, and a synthetic silica powder did not 

change even after nearly 50% of the original mass had been dissolved (Demarest et al., 

2009; Geilert et al., 2014; Wetzel et al., 2014).  
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While there are a few studies examining the kinetics of phytolith dissolution and its effect 

on phytolith physical properties (Fraysse et al., 2006a/b; 2009), none consider changes in 

isotopic composition. Because phytolith assemblages are more heterogeneous than 

diatoms, both in terms of the isotope composition and morphologies produced in a single 

species, the silicon-isotope composition of phytoliths may change more drastically than 

that of diatoms during partial or selective dissolution.  The recycling rate of phytoliths in 

soils can be variable. Well preserved phytoliths have been recovered from Pliocene-aged 

deposits, while in some tropical soils the bulk of phytolith input turns over within 6 

months (Baker, 1960; Jones, 1964; Alexandre et al., 1997). Alexander et al. (1994) 

examined phytoliths found in the litter and upper layer of a tropical soil and found that 

the surfaces of phytoliths remaining were rugulose or stippled indicating partial 

dissolution affects phytoliths.  In this study the effects of dissolution on the silicon-

isotope composition of phytoliths will be assessed through dissolution experiments 

performed under a range of temperature and pH conditions. 

 

3.2 Methods 

3.2.1 Source material 

Samples of biogenic silica were obtained from whole horsetails (Equisetum arvense) 

collected at Long Point Conservation Area in Southwestern Ontario, Canada in a single 

season (2009). Whole plants were used because soil phytolith assemblages contain 

phytoliths from all plant parts. Plant material was washed with distilled water to remove 

soil particles and dried at 65°C. Phytoliths were isolated from the dried plant material by 

digestion in an excess of 99% sulphuric acid until tissues were dissolved completely. 

Organic matter was then oxidized with 30% hydrogen peroxide until only silica remained 

(Geis, 1973). Silica was rinsed with distilled water using high-speed centrifugation to 

remove sulphuric acid.  

Samples were examined by x-ray diffraction and contained primarily opal-A with low 

amounts of gypsum and anhydrite. These minerals can form during treatment with 
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sulfuric acid if calcium oxalate is present in plant tissues. Gypsum and anhydrite was 

removed from the sample by reaction with HCl.  

3.2.2 Characterization of phytoliths 

Physical properties of the bulk phytolith sample were assessed prior to and after 

dissolution. Specific surface area (SSA) was determined via single-point N2 adsorption 

using a Micrometrics ASAP 2010 BET surface area analyzer. Grain size analysis was 

performed on phytoliths in suspension using a Malvern Mastersizer 2000. Phytolith 

surface features were examined via scanning electron microscope. Samples were 

mounted on SEM stubs by dispersing phytoliths in acetone and applying a drop to the 

stub. SEM stubs were carbon coated. Images were taken using a Hitachi S2500 tungsten 

source SEM at an accelerating voltage of 10kv and a working distance of 4mm. 

3.2.3 Dissolution experiment 

Dissolution experiments were conducted by reacting a series of 150mg subsamples of 

silica phytolith with 125mL of Millipore water in sealed high-density polyethylene 

bottles that had been treated with 10% HCl for 24 hours to ensure that they were free of 

contaminants. Subsamples were allowed to react for 2 to 70 days. Experiments were 

conducted at pH 4, 6, 8, and 10 and temperatures of 4, 19, 35, and 44°C. Individual 

experiments were set up for each time interval. Low pH and temperature conditions were 

selected to approximate the conditions in soils, while experiments at high pH and 

temperature encouraged a faster dissolution rate and ensured that at least some 

experiments resulted in substantial dissolution of silica. Acidic conditions were achieved 

by the addition of HCl, and high pH conditions by the addition of NaOH to Millipore 

water. At the end of each experiment the contents of each bottle were filtered through a 

5μm sieve to separate the solution from the remaining solid silica. 

The dissolved silicon concentration of each solution was determined via inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) using a Perkin-Elmer Optima-

3000 dual view ICP-Atomic Emission Spectrometer. The percent of dissolved solid for 

each subsample was calculated based on dissolved silicon concentration assuming that 

the original phytoliths had a SiO2 stoichiometry.  
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3.2.4 Measurement of δ30Si values 

Silicon isotope determinations were made by converting 1 mg of biogenic SiO2 to SiF4 

gas via reaction with BrF5 heated in reaction vessels and gas purification in a vacuum 

extraction line (Ding, 2004; Leng and Sloane, 2008). Prior to reaction, all samples were 

heated to 1100°C under a flow of nitrogen gas to remove hydroxyl groups and combust 

occluded carbon (Chapligin et al., 2010; Chapter 2). All stable isotope results are 

expressed in the standard δ-notation, relative to NBS-28 (Brand et al., 2014) where 

ߜ ൌ ቂቀ
ோೞೌ

ோೞೌೌೝ
ቁ െ 1ቃ ൈ 1000	ሺ‰ሻ     (3-2) 

and R represents 30Si/28Si. A dual inlet triple-collecting Finnegan MAT 253 isotope ratio 

mass spectrometer was used for all measurements. The δ30Si value for the standard opal-

A Diatomite was 1.24 ± 0.07 ‰ (n = 10), in agreement with the accepted value of 1.26 ‰ 

(Reynolds et al., 2007). The reproducibility averaged ± 0.07 ‰ on sample duplicates and 

± 0.04 ‰ on untreated phytoliths (n=3). 

3.3 Results 

3.3.1 Degree of dissolution: 

The degree of dissolution for samples reacted under different conditions varied between a 

few percent to nearly 30% of the total amount of solid (Fig. 3-1). As expected, the degree 

of dissolution generally increased as the experiments progressed, and was more 

pronounced at high temperature and pH. The samples reacted under the most extreme 

conditions (pH = 10, T = 44°C) dissolved the most in the shortest period of time. Samples 

reacted at 4°C never lost more than 5% of the solid to the solution over the full range of 

pH (4-10). 
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Figure 3-1. Percent of the solid dissolved plotted versus reaction time for pH 4 (A), pH 6 

(B), pH 8 (C), and pH 10 (D). 

Figure 3-1 indicates that under some conditions (e.g. pH 10) dissolution rates are faster at 

the beginning of the experiment and decrease with time.  The average dissolution rate 

was calculated from the silicon concentration in solution at the end of each sampling 

interval (Fig. 3-2 below).  These results demonstrate that for high pH the rates are 

initially faster and decrease as the system approaches steady state (Fig. 3-2). Experiments 

conducted at pH 4 and 6 display the same trend but dissolution rates are an order of 

magnitude slower than at high pH (Fig. 3-2b). Experiments conducted at pH 6, 44°C and 

pH 10, 19, 35, and 44°C reached saturation by the time each experiment was terminated. 

Throughout the experiments the pH of the solution in each bottle should have shifted as 

silicic acid concentrations increased.  The change in pH in each bottle was modeled over 

the course of the experiments based on the concentration of silicon in solution and the 

initial pH (set at the beginning of the experiment). For experiments in which enough 
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silica was dissolved to alter the pH of the solution, pH decreased over time lowering the 

concentration of dissolved silicic acid required to reach saturation.  The maximum 

concentration of silica that the solution could contain at the calculated pH was then used 

to determine if the experiment had reached saturation.  

 

 

Figure 3-2. Phytolith dissolution rate versus number of day reacted for experiments 

conducted at pH 8 and 10 (A), and at pH 4 and 6 (B). 

3.3.2 Changes in physical characteristics: 

Prior to dissolution most phytolith surfaces were relatively smooth with some smaller 

particles attached to the surface. Images in Appendix A show a group of horsetail 

phytoliths that are representative of the range of morphologies present in the undissolved 

0

2

4

6

8

10

12

0 10 20 30 40

d
is
so
lu
ti
o
n
 r
at
e
 (
m
g/
d
ay
)

days reacted

pH 8, T 4

pH 8, T 19

pH 8, T 35

pH 8, T 44

pH 10, T 4

pH 10, T 19

pH 10, T 35

pH 10, T 44

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

d
is
so
lu
ti
o
n
 r
at
e
 (
m
g/
d
ay
)

days reacted

pH 4, T 4

pH 4, T 19

pH 4, T 35

pH 4, T 44

pH 6, T 4

pH 6, T 19

pH 6, T 35

pH 6, T 44



48 
 

 
 

bulk sample. The phytoliths pictured range in size from 10 to 60 μm. Most are fragments 

of phytoliths that were produced during centrifugation, but rounded phytoliths are also 

visible (Appendix A, A-1A, A-1F). Figures A-2 to A-7 in Appendix A show a selection 

of images of phytoliths that underwent dissolution under a range of pH and temperature 

conditions. Phytoliths post-dissolution have more pitted and irregular surface features 

than those examined prior to dissolution. Some specimens dissolved under high pH and 

temperature conditions appear to have undergone surface alteration such as surface 

pitting, which in some cases is extreme (Appendix A, A-3A, A-6D).  

The unreacted bulk phytolith sample had a SSA of 313.0 m2/g. All reacted samples had a 

SSA lower than that of the original, falling between 191.3 and 271.9 m2/g. There is a 

negative relationship between SSA and δ30Si values of partially dissolved samples (r = 

0.51, n = 21, p < 0.05). The mean particle size of phytoliths prior to dissolution was 33.8 

μm and increased up to a maximum of 40.6 μm post-dissolution (Appendix B). Mean 

particle size increased as dissolution progressed (n = 25, r = 0.49, p < 0.05). The 

relationship between average particle size and δ30Si of phytoliths was not significant (n = 

25, r = 0.14, p > 0.05). 

3.3.3 δ30Si values of phytoliths 

The bulk unaltered phytolith sample had an initial δ30Si value of 0.09 ± 0.04 ‰ (n = 4). 

After different degrees of dissolution, most experiments produced phytoliths with δ30Si 

values higher than or the same as the undissolved sample (Fig. 3-3).  At pH 4 almost all 

δ30Si values of biogenic silica remained the same within error as the starting material.  

Three of the samples treated at pH 4 exceed the 30Si value of the untreated sample, but 

were still enriched in 30Si less than 0.35 ‰ (Fig. 3-3A).  The maximum amount of 

material dissolved was 7.4%. When two phytolith samples were treated under identical 

conditions (pH = 10, T = 35, time = 35 days) the reproducibility on the amount of Si in 

solution was ± 0.40 μg/ml and ± 0.2 for δ30Si values. 

At pH 6 there was an increase in the 30Si values of biogenic silica by up to 0.63 ‰ in the 

initial stages of dissolution (3.7 to 7.8% dissolved, or 31 to 46% saturation) for all 

experiments, after which δ30Sisilica values began to decrease to within the range of 30Si 
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values measured for untreated phytoliths (Fig. 3-3B).  For all temperatures the highest 

δ30Si value occurred after the solution had become at least 30% saturated with respect to 

dissolved silicon (Fig. 3-4B).   

Although dissolution did not proceed as far as some of the other experiments due to the 

shorter reaction time, at pH 8 there was often a slight increase in the δ30Si values 

(maximum 0.37 ‰) of the remaining silica around 1% dissolved, or 5 to 15% saturation 

(Fig. 3-3C, 3-4C). For the 35°C experiment the maximum δ30Sisilica value was reached at 

2.9% dissolved, similar to the experiment conducted at pH 6 for the same temperature. 

The δ30Si value of silica reacted at 44°C did not change from that of the starting material 

over the course of the experiment, despite dissolution of nearly 15% of the initial mass of 

sample. Experiments conducted at pH 10 behave in a similar manner to those conducted 

at pH 6, with the exception of samples dissolved at 44°C (Fig. 3-3D). At temperatures of 

4, 19, and 35°C the δ30Si value of remaining phytoliths increases until the solution 

reaches roughly 40% saturation, at which point silica δ30Si values begin to decrease (Fig. 

3-4D). Samples reacted at 44°C behave differently in that the δ30Si value of remaining 

silica is always the same as or lower (by up to 0.39 ‰) than that of the starting material.  
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 Figure 3-3. δ30Si values of partially dissolved phytoliths versus the % of the solid 

dissolved for each experiment conducted at pH 4 (A), pH 6 (B), pH 8 (C), and pH 10 (D). 

the dashed line denotes the δ30Si value of the untreated sample and the box the error 

associated with that measurement. 
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Figure 3-4. δ30Si values of partially dissolved phytoliths versus % saturation with respect 

to dissolved silica for each experiment conducted at pH 4 (A), pH 6 (B), pH 8 (C), and 

pH 10 (D). 

 

3.4 Discussion 

Whether or not significant changes in the 30Si values of phytoliths were observed during 

partial dissolution was dependant on the amount of silica that dissolved and may reflect 

varying processes of dissolution and ultimately re-precipitation when the system 

approached equilibrium. 

3.4.1 Dissolution behaviour 

Phytolith dissolution begins rapidly, as high as 10 to 74 mg/g/day at pH 10, and then 

slows as the reaction approaches steady state. Under the conditions in this experiment 

rapid dissolution occurred within the first 10 days. Other studies of amorphous silica 

dissolution have also observed an initial, rapid loss of material (e.g. Fraysse et al., 2006b, 

2009; Demarest et al., 2009; .Fraysse et al., 2009; Brady and Walther 1990). After the 

first stage of rapid dissolution, rates slow to about 0.5 to 3.0 mg/g/day after 

approximately the first 10 days, even though saturation was not reached in most 

experiments. In this study, steady state is reached in two of the experiments: pH 10, 35°C 

and pH 10, 44°C. Taking into account the evolution of solution pH with the release of 

silicic acid as dissolution progresses, these experiments reached saturation with respect to 

silicic acid at 10 days and 4 days respectively, but dissolution rates did not slow until 

after 10 days. 

Other researchers have observed initial rapid rates of dissolution of diatom or phytolith 

silica (Barker et al., 1994; Van Cappellen et al., 2002; Fraysse et al., 2006a/b; 2009). A 

comparison of dissolution rates is difficult because experiments were under variable 

conditions; batch versus flow-through reactors; saltwater versus fresh water, temperature, 

pH, and silica aluminum content all varied between experiments. In this study, 

dissolution rates dropped exponentially from initial values of 74.0 to 2.7 mg/g/day when 
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10% of the silica was dissolved. When dissolution was greater than 10%, dissolution 

rates were between 8.2 and 0.5 mg/g/day. In batch experiments similar to those in the 

current study Fraysse et al. (2006a) report dissolution rates for horsetail phytoliths at pH 

6 of 0.40-0.75 mg/g/day,  which is comparable to that observed for pH 6 in this study 

(1.01-2.90 mg/g/day) when differences in specific surface area are considered (92.8 

versus 313.0 m2/g in this study).  Both SSA and dissolution rates are approximately 3 

times higher in this study than in Fraysse et al. (2006a).  

Others have suggested that the initial rapid dissolution is a result of the dissolution of fine 

structures and small particles (<2 μm) adsorbed to the phytolith surfaces (Fraysse et al., 

2009). If a similar dissolution of adsorbed particles or fine surface features were 

occurring in this study we would expect to see decrease in SSA in addition to the 

observed initial rapid dissolution. By the end of each treatment SSA of the remaining 

phytoliths had dropped by 11 to 30 percent across all experiments which represents 3 to 

30% dissolution. If fine particles were being preferentially dissolved we would expect to 

see an increase in the average grain size of the dissolved samples. Grain size analysis 

provides the relative distribution of grain sizes within a sample. The analysis is 

performed on a dispersed sample and the process would dislodge adsorbed particles and 

decrease the average grain size reported. If adsorbed particles are removed by dissolution 

the proportion of larger grains should increase. If fine structures are being dissolved grain 

sizes should decrease and the reported average grain size should be lower. There is a 

positive relationship between mean grain size and the percent of solid dissolved (r = 0.40, 

n = 24, p < 0.05) which suggests rapid dissolution is not the result of the removal of fine 

surface features. However, this relationship cannot entirely be explained by the loss of 

small particles.  Because both the untreated and dissolved samples are filtered through a 5 

m sieve prior to analysis the bulk of each sample should be comprised of particles larger 

than 5 m. Particles smaller than 5 m may be adsorbed particle that were dislodged 

during the dispersion.  In most samples, even those that have experienced >10% 

dissolution, 4-5% of particles are less than 5 m in size.  This means that fine particles 

are not being progressively removed during initial rapid dissolution.  In addition, the < 5 

m particles make up less than 5% by volume of the original sample and cannot account 
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for the 10% mass loss observed during the first stage of dissolution. It is possible that the 

initial rapid dissolution is the result of a reactive surface layer which may be proven by 

examining the behaviour of silicon isotopes. 

3.4.2 Effect of dissolution on phytolith δ30Si values 

3.4.2.1 Initial dissolution 

At the beginning of dissolution the δ30Si values of the remaining solid rapidly increase 

despite only seeing dissolution of a few percent (Fig 3-3).  Investigations using 

transmission electron microscopy, N2 adsorption, and oxygen isotopes suggest the 

presence of a highly reactive surface layer in marine biogenic silica (Hurd et al., 1981; 

Barker et al., 1994; Brandriss et al., 1998). The dramatic decrease in dissolution rate of 

phytoliths as dissolution progresses, both in this study and others (Fraysse et al., 2006a/b; 

2009) may be explained by the removal a layer of more reactive silica on phytolith 

surfaces.  The increase in δ30Si values may be related to the dissolution of a highly 

reactive surface layer.  

The amount of 30Si enrichment observed during initial stages of dissolution was not 

correlated to the rate of dissolution (r = 0.28). If silicon fractionation during dissolution 

was rate dependent we would expect to see greater 30Si enrichment at slower dissolution 

rates (Wetzel et al., 2014). δ30Si values continue to increase until approximately 30-40% 

saturation even in cases where dissolution rates slowed prior to this point. The increase in 

δ30Si values as dissolution progressed, as seen during initial dissolution, indicates 

dissolution dominated silicon isotope fractionation until this point. While other opal-

dissolution studies have not observed significant changes in the δ30Si value of remaining 

solid silica, the δ30Si values of dissolved silica evolve as dissolution progresses (Geilert et 

al., 2014; Ziegler et al., 2005).  During dissolution of synthetic amorphous silica, Geilert 

et al. (2014) observed that the initial δ30Si values of Si in solution were lower than the 

δ30Si values of the dissolving solid, and these values increased as dissolution progressed 

and the reactive surface became depleted of 28Si. The δ30Si values for silica in solution 

were calculated for the current study using the δ30Si values of the remaining solid, the 

concentration of silica in solution, and a mass balance equation. The δ30Si values of silica 
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in solution increased as dissolution progressed as observed by Geilert et al (2014) for 

synthetic opal and Ziegler et al. (2005) for the dissolution of phytoliths. In addition, the 

difference between the δ30Si values of solid and dissolved silica (Δ30Sisolid-dissolved) is 

positive during the initial stage of dissolution, indicating the preferential movement of 
28Si into the liquid phase (Demarest et al., 2009; De Paolo 2011; Geilert et al., 2014, 

Appendix B). 

3.4.2.2 Approach to steady state dissolution 

Almost all experiments that show a significant change in the δ30Si value of remaining 

silica during dissolution follow the same trend; there is an initial increase in the δ30Si 

values of silica followed by a decrease that, in some cases, brings the δ30Sisilica values 

back to that of the starting phytolith material by the time the experiments were terminated 

(Fig. 3-4). We observe a decrease in δ30Si values after approximately 30-40% saturation 

is reached while continuing to see a net transfer of silica from the solid phase to the 

dissolved phase. This indicates that precipitation and/or adsorption reactions are 

important. The decrease in the 30Si values as dissolution progresses might reflect 

condensation reaction (or the “backward reaction” in Equation 1).  Preferential 

incorporation of 28Si into or onto the surface of the solid phase in precipitation 

experiments has been reported previously (Zeigler et al., 2005; Delstanche et al., 2009; 

Opfergelt et al., 2009; Geilert et al., 2014; Oelze et al., 2014). Despite the negative 

surface charge, there is an adsorption of silicic acid to silica surfaces even in basic media 

(Weres et al., 1981). Back-reactions can occur even in significantly undersaturated 

conditions (Truesdale et al., 2005). The peak in δ30Si values observed at approximately 

30-40% saturation and the subsequent decrease in δ30Si of the solid silica (Fig. 3-4) 

indicates the point at which back reactions become important and begin to alter the δ30Si 

value of the remaining solid. Because the relative amounts of dissolution and 

precipitation are unknown it is not possible to calculate the δ30Si value of precipitated 

silica from these experiments. However, in one case (pH 10, T 4ºC) the amount of silica 

in solution increased to 30.6 ug/mL until 6 days and then decreased to 14.3 ug/mL by 10 

days. Precipitation of silica would have been facilitated by the cooler temperature. If we 

assume that only precipitation was occurring we can calculate the δ30Si value of the 
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precipitated silica based on a mass balance between the δ30Si values of the silica at the 

point of maximum Si in solution and the end of the experiment. This results in a δ30Si 

value of -4.61 ‰ for precipitated silica. Precipitation of silica with δ30Si values that are 

much lower than the δ30Si value of the initial solid can explain the decrease in δ30Si 

values of phytoliths when the fluid had reached more than 30% saturation. 

Four of the experiments from this study approached saturation; 19, 35 and 44°C at pH 10, 

and 44°C at pH 6. Using calculated δ30Sidissolved values, under these conditions, Δ30Sisolid-

dissolved was determined to be -0.46 ‰, -0.95 ‰, -0.53 ‰, and -0.51 ‰, respectively 

(average = -0.61 ‰) after the experiments had reached saturation. Others have reported 

negative values for Δsolid-dissolved for silicon isotopes in silica and silicic acid and for 

calcium isotopes between calcite and Ca2+ in solution (DePaolo 2011; Geilert et al., 

2014). When precipitation becomes dominant Δ30Sisolid-dissolved is negative as the lighter 

isotope is partitioned into the solid phase, depleting the liquid of 28Si (DePaolo 2011).  

Others have noted that dissolved silica partially re-adsorbs onto the surface of 

undissolved particles (Flower 1993), this may also be occurring in our experiments. 

Sorption of silica onto mineral surfaces is associated with an increase in the δ30Si value of 

dissolved silica as 28Si is sorbed to mineral surfaces (Delstanche et al., 2009; Oelze et al., 

2014). This sorption of isotopically light silicon onto the phytolith surface could also 

explain the decrease in δ30Si values of the solid that occurs before the fluid reaches 

saturation with respect to silica, but at a similar point in the reaction in each experiment 

(i.e. 30-40% saturation). 

Contrary to other studies of amorphous silica dissolution, we report a significant 

difference in the δ30Si value of remaining silica compared to that of the starting phytolith 

material (Demarest et al., 2009; Geilert et al., 2014; Wetzel et al., 2014). In this study, the 

maximum change in δ30Si of phytolith silica post-dissolution was + 0.63 ‰ and occurred 

after less than 5% of the original material had dissolved (Fig. 3-3). In contrast, Demarest 

et al. (2009) observed a maximum change in δ30Si of fresh diatom silica of +0.27 ‰ 

which occurred at 50% dissolution. In that study most of the sampling intervals occurred 

after more than 10% of the solid had been dissolved and the δ30Si values were unchanged 

from the initial values.  Wetzel et al. (2014) report that ~3-12% dissolution of 
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sedimentary diatom silica was not accompanied by a statistically significant change in the 

δ30Si values of the residual silica. However, in that study most of the experiments were 

conducted at pH 10.7 and 100ºC resulting in up to 7% of the starting mass dissolving in 

minutes. It is likely that these studies failed to capture the initial increase in δ30Si values 

of solid silica observed in the current study as a result of their sampling interval and 

experimental conditions. In our experiment at pH 10, 44ºC the first sampling occurred 

after 15% of the silica dissolved and at that point it appeared that the δ30Si value of solid 

silica had not changed (Fig. 3-3D). 

All experiments, with the exception of those at pH 4, dissolved enough silica to alter the 

pH of the solution. This change was much more extreme for experiments conducted at 

pH 10 (up to 2.08 pH units), and has an influence on silica saturation. In the case of the 

44°C experiment, saturation of the solution with respect to silicic acid was reached 

sometime between day 2 and 4 (14.8 and 23.0% dissolved on figure 3-3D), which 

corresponds to the shift in isotopic composition of the solid to lower values. As pH 

decreases silica precipitates, preferentially incorporating 28Si into the solid. As the system 

approaches steady state between the forward and backward reactions in equation 1 there 

is a constant exchange of Si-isotopes between the solid and the liquid phase with more 

and more 28Si is accumulating the solid. The liquid phase becomes progressively enriched 

in 30Si during this process. Precipitation of silica drives the δ30Si value of the solid 

towards lower values. A similar effect is likely occurring in all of the experiments but is 

more evident at high pH and temperature because the solution reaches saturation. While 

both dissolution and precipitation reactions eventually occur in each experiment, when 

saturation is reached the backward reaction (precipitation) becomes more important than 

the forward reaction (dissolution). At this point the overall direction of movement of 28Si 

between the solid and liquid phase switches and the net result is a decrease in the δ30Si 

value of the solid (DePaolo 2011). 

3.5 Concluding Remarks 

The results from this study, while consistent with the data of others, provide new 

information of the evolution of the δ30Si values of biogenic silica during progressive 

dissolution. We show that dissolution can alter the δ30Si value of remaining silica. This 
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change is most pronounced in the early phases of dissolution when less than 10% of the 

silica has dissolved; the remaining solid silica can be up to 0.63 ‰ higher than its 

original value. The dissolved silica during this phase of dissolution will have δ30Si values 

that are much lower than those of typical soil waters (generally about -1.0 ‰ to +2.0 ‰) 

(Ziegler et al., 2005). For example, under reasonable soil conditions (pH = 6, T = 19˚C) 

the δ30Si value of silicic acid produced by phytolith dissolution in these experiments was 

calculated to be about -12 ‰ when 6% of the silica dissolved. Once precipitation 

reactions became significant, as evidenced by a decrease in the δ30Si values of the solid, 

the δ30Si value of silicon in solution increased to -3 ‰. The δ30Si values of silicic acid in 

soils are generally higher because they are heavily influenced by the precipitation of 

secondary minerals and, in upper soil horizons, plant uptake, both of which enrich the 

dissolved Si pool in 30Si (Ziegler et al., 2005). This study has demonstrated that the 

weathering of opal-A is capable of producing dissolved silica with very low δ30Si values. 

The overall δ30Si values of silicic acid in soils will depend on the balance of dissolution 

and precipitation reactions for a myriad of minerals. However, this study suggests that the 

δ30Si values of silica in solution may be lower in arid environments where soils are dry 

and dissolution rates are low. It has been hypothesized that the δ30Si values of phytoliths 

could be used as an indicator of silicic acid availability to the plant during growth. This 

study suggests that these studies would be complicated for phytoliths extracted from soils 

that had undoubtedly experienced some dissolution. 
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4. The effect of progressive dissolution on the oxygen isotope 

composition of opal-A 

4.1 Introduction 

Phytoliths are micron-sized particles of hydrated amorphous silica (SiO2·nH2O) that form 

inside plants. This form of biogenic silica is important in both terrestrial and global 

silicon cycles (see Alexandre et al., 1997, Derry et al., 2005, Basile-Doelsch 2006).  The 

phytolith content of plants ranges from less than 0.5% up to 15% depending on species, 

plant part, and environmental conditions controlling the amount of silica available to the 

plant. Phytolith content in plants ranges from about 0.5% or less in dicotyledons, 1-3% in 

dryland grasses, and up to 10-15% in some wetland species (Epstein 1994). When plants 

die and decay the silica component remains in the soil. Phytolith accumulation can be 

significant and, in some cases, can comprise almost 100% of the silica in a soil horizon 

(Meunier et al., 1999). Opal-A has a higher dissolution rate than most silicates. Fraysse et 

al. (2006a) showed that horsetail phytoliths reacted at pH 6 had a dissolution rate of 0.40 

to 0.75 mg/g/day. Because of their higher solubility phytoliths contribute a large 

proportion of dissolved silica to the soil solution. For example, in Congolese soils 

phytoliths released from decayed plants contributed three times more dissolved silica to 

runoff than non-biogenic minerals (Alexandre et al., 1997).  

Despite the high solubility rates and generous contribution of phytolith Si to the 

terrestrial Si cycle, biogenic silica can be preserved in soils and sediment for thousands of 

years (Baker, 1960; Jones; 1964). The preservation of phytoliths in soils varies widely.  

Well preserved phytoliths have been recovered from Pliocene-aged deposits, while in 

some tropical soils the bulk of phytolith input turns over within 6 months (Baker, 1960; 

Jones; 1964; Alexandre et al., 1997). Phytoliths recovered from the soil have been 

valuable in studies of ecosystem or climate reconstruction. For example, at many 

archaeological sites phytolith morphology is used to determine the dominant vegetation 

growing on a soil in the past (e.g. Pearsall and Trimble 1984; Tsartsidou et al., 2008; 

Cabanes et al., 2012). In addition, the δ18O values of phytoliths can be related to the δ18O 
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values of plant water and temperature of plant growth (Shahack-Gross et al., 1996). 

Hence, the δ18O values of phytoliths extracted from soils have great potential as a 

paleoclimatic indicator (Shahack-Gross et al., 1996; Webb and Longstaffe 2002; 

Alexandre et al., 2012). However, the reliability of using the δ18O values of soil 

phytoliths as climate indicators depends on the preservation of the isotope signal. 

Other studies have demonstrated that the δ18O values of opal-A diatoms are up to 10 ‰ 

enriched in 18O in fossil assemblages relative to their modern counterparts (Brandriss et 

al., 1998). This shift may be attributed to silica condensation reactions in the sediment 

(Schmidt et al., 2001). This process removes surface hydroxyl groups and allows water 

from sediment pores to exchange with the silica surface. Because the condensation 

reactions occur in waters that have a similar temperature and δ18O value as the water in 

which the diatoms originally formed differences in δ18O values between fossil and fresh 

diatoms are not always observed. Contemporaneous diatoms formed from the same water 

at the same temperatures will have similar δ18O values and fossil assemblages are 

isotopically homogeneous. In contrast, phytolith δ18O values vary up to 15.6 ‰ among 

plant parts as a result of the 18O enrichment of plant water during transpiration in the 

leaves (Webb and Longstaffe 2002). In addition, phytolith shapes can be highly variable 

among different plants and plant parts. If dissolution of phytoliths selectively removes 

phytoliths with different morphologies there is a potential to shift the overall δ18O value 

of a soil phytolith assemblage. 

Previous work on the dissolution behaviour of phytoliths has suggested that phytolith 

dissolution rate is independent of topology and the geometry of local structures (Fraysse 

et al., 2006a). This suggests that there are no preferential dissolution sites on the surface 

of phytoliths. Structural aluminum incorporated in the phytolith may or may not protect 

the phytolith from dissolution (Bartoli and Wilding, 1980; Fraysse et al., 2009). Further 

investigation into the stability of opal-A in soils is necessary in order to use the 18O 

values of soil-phytolith assemblages successfully as paleoclimate indicators. Issues such 

as isotope fractionation during partial (thinner parts of the phytolith may dissolve first) or 

selective dissolution of phytoliths of different shapes must be investigated as they have 

the potential to alter the isotope compositions of opal-A and influence paleoclimate 
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estimates. This study will investigate changes in the δ18O values of a bulk phytolith 

sample as dissolution proceeds. 

4.2 Methods 

Samples were collected from horsetails (Equestium arvense) growing at Long Point 

Provincial Park, Southwestern Ontario, in November 2009. Horsetails were chosen 

because they are high silica accumulators, comprising up to 10% silica by dry weight. 

Phytoliths were isolated from organic matter via acid digestion (Geis, 1973). Samples 

were examined using x-ray diffraction to ensure sample purity. 

Dissolution experiments were performed on silica phytoliths, as outlined in Chapter 3. 

Briefly, 150mg of phytoliths were reacted with 125 mL of Millipore water at 4, 19, 35, 

and 44°C. At the beginning of each experiment the water pH was set to 4, 6, 8, or 10 

through the addition of either HCl or NaOH. Reaction times were between 2 and 70 days.  

The dissolved silicon concentration of each solution was determined via inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) using a Perkin-Elmer Optima-

3000 dual view ICP-Atomic Emission Spectrometer. The percent of dissolved solid for 

each subsample was calculated based on dissolved silicon concentration assuming that 

the original phytoliths had a SiO2 stoichiometry. Additionally, percent saturation with 

respect to silicic acid was calculated based on the concentration of dissolved silicon and 

the pH of the solution, adjusted for the addition of silicic acid during dissolution. 

4.2.1 Removal of OH groups  

All samples were subjected to inert gas flow dehydration (iGFD) prior to isotopic 

analysis to remove exchangeable OH groups that can alter the δ18O values of biogenic 

silica (Mopper and Garlick 1971; Chapligin et al., 2010; Chapter 2). When opal is 

dehydrated in air hydroxyl groups can be incorporated into the silica structure through the 

formation of new Si-O-Si bonds (Labeyrie and Juillet 1980).  This process is reversible 

until at least 400°C (Alexandre 1996). Inert gas flow dehydration removes the 

exchangeable components of hydrated silica by ramp degassing up to a temperature of 

1100°C under a constant flow of inert gas (Chapligin et al., 2010). All samples were 
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heated to 1100˚C, held at that temperature for 1.5 hours, and then allowed to cool. The 

procedure was conducted under a constant flow of nitrogen gas. The details of the 

procedure used here are discussed in chapter 2 of this thesis. 

4.2.2 Measurement of δ18O values 

Oxygen isotope values were determined by converting SiO2 to O2 gas by reaction with 

BrF5 at 600 °C prior to purification in a vacuum extraction line. All stable isotope results 

are expressed in the standard δ-notation, relative to VSMOW where 

ߜ ൌ ቂቀ
ோೞೌ

ோೞೌೌೝ
ቁ െ 1ቃ ൈ 1000	ሺ‰ሻ     (4-1) 

and R represents 18O/16O. A dual inlet triple-collecting isotope ratio mass spectrometer 

was used for all measurements. Over the course of the analyses, the standard NBS-28 had 

an average δ18O value of 9.9 ± 0.6 ‰ (n = 53; expected value = 9.6 ‰ (Brand et al., 

2014)). The internal quartz standard ORX had an average δ18O value of 11.4 ± 0.6 ‰ (n 

= 19; expected value = 11.5 ‰). Dehydrated opal-A had δ18O values of 36.1 ± 0.6 ‰ (n 

= 6), 42.3 ± 0.5 ‰ (n = 8), and 28.5 ± 0.5 ‰ (n = 7) for standards G95, PS, and BFC, 

respectively. The accepted values for these materials are 36.6 ‰ (G95), 42.8 ‰ (PS), and 

29.0 ‰ (BFC) (Chapligin et al., 2011). Reproducibility on sample duplicates was ±0.6 ‰ 

(n pairs = 16). 

A subset of samples was sent for particle size and specific surface area analysis. Particle 

size analysis was performed on suspended particles using a Malvern Mastersizer 2000. 

Specific surface area was determined by single point N2 adsorption using a Mircometrics 

ASAP 2010 BET surface area analyzer.  

4.3 Results 

4.3.1 Amount of dissolution 

The amount and rate of dissolution that occurred during each experiment (Chapter 3, 

Figs. 3-1 and 3-2), as well as specific surface area (SSA) and grain size analysis results 

have been discussed previously. In general, the amount of sample dissolved increased, to 
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a maximum of 28.6 %, over time (up to 10 days or 10 weeks depending on the pH of the 

solution) (Chapter 3, Figure 3-1). This trend was more pronounced at higher temperature 

and pH. The percent saturation reached with respect to dissolved silica for each of the 

experiments is also presented in Chapter 3, figure 3-4. Saturation was reached in one 

experiment at pH 6 (44˚C) and two at pH 10 (35˚C and 44˚C).  

The specific surface area of the unreacted bulk phytolith sample was 313.0 m2/g. The 

specific surface area of reacted samples was lower than that of the unreacted sample, with 

values ranging between 191.3 and 271.9 m2/g. There is no relationship between amount 

dissolved (percent of solid) and SSA (n = 20, r = 20, p = 0.21). The unreacted phytolith 

sample had a mean grain size of 33.8 μm. Mean grain sizes of partially dissolved samples 

range between 32.7 and 43.6 μm. There is a statistically significant relationship between 

amount dissolved and mean grain size (Appendix B); samples that lost more of the solid 

material to the dissolved phase have a larger mean grain size (n = 24, r = 0.40, p < 0.05). 

4.3.2 Oxygen isotope composition of opal-A 

The δ18O value of the untreated sample used in all dissolution experiments was 28.9 ± 0.5 

‰ prior to dissolution (n = 3).  In one case an enrichment in 18O of 5.3 ‰ was observed 

for a sample treated for 4 days at pH 8.  This sample did not show any evidence of Si in 

solution and will not be discussed further.  Most often, samples that underwent 

dissolution had higher δ18O values than the untreated material by up to 3.9 ‰ (Fig. 4-1).  

For example, at pH 10, almost all partially dissolved samples have δ18O values higher 

than the starting value (Fig. 4-1D).  However, 18O enrichment is most pronounced at 

lower temperatures; the experiments conducted at 44°C have both the smallest overall 

change and the smallest range in δ18O values (Fig. 4-1).   
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Figure 4-1. δ18O values of partially dissolved phytolith silica plotted against % of the 

solid dissolved for all temperatures at pH 4 (A), 6 (B), 8 (C), and 10 (D). The blue box 

shows the standard deviation on the mean δ18O value of the untreated phytolith material 

(dashed line). 

For the experiments conducted at pH 4, most phytolith samples had little material 

removed by dissolution (up to 7.4% dissolved) and δ18O values are unchanged or slightly 

higher than the starting material. All samples treated at pH 4,  except those conducted at 

44°C, had δ18O values that reached a maximum in 18O-enrichment of 1.4 to 3.0 ‰ when 

dissolution was 2 to 3 %. Further dissolution resulted in phytolith δ18O values that 

became progressively lower until they were equal to or in some cases were lower than the 

δ18O values of the starting material.  At 44°C, the first set of phytoliths removed from 
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solution had already reached 4% dissolution and it is unknown whether the δ18O values 

of these samples increased before this point. 

At pH 6, samples for all experiments had δ18O values that were higher than the starting 

value, with the exception of those conducted at 4°C. The total range in δ18O values (7.3 

‰) of the reacted samples is similar to that observed for samples from experiments 

conducted at pH 4 (5.6 ‰), but the average δ18O values for the data series are 30.2 ‰ and 

29.0 ‰ for pH 6 and pH 4, respectively. Two of the experiments conducted at pH 6 

(temperature 4°C and 19°C) display a decrease in the amount of sample dissolved 

partway through the experiment (Fig. 4-1B). In both cases this occurs at approximately 

40% saturation with respect to silicic acid (Fig. 4-2B). This roughly coincides with a shift 

to lower δ18O values of the remaining solid. 

At pH 8, all reacted samples have δ18O values that are the same as or higher than the 

starting material by up to 3.7 ‰ as the system approached 20% saturation (Fig. 4-2C). 

Samples reacted at lower temperatures show a greater change from the original oxygen 

isotope composition than those reacted at higher temperature (Fig. 4-1C). Samples 

reacted at 44°C have the smallest change in δ18O values, a maximum of 2.1 ‰ higher 

than the original value. Twenty percent saturation was reached at 2.1 and 2.9 % 

dissolution for 35 and 44 °C respectively, and it is at this point that the highest δ18O 

values are observed.  Beyond 20% saturation the δ18O values of the phytoliths decline 

until returning to the original δ18O value by the time the solution reached a maximum of 

87 % saturation. 

At 4°C (pH 8), the concentration of dissolved silica was below the ICP-AES detection 

level even after reaction for 10 days. However, there was still a change in the δ18O values 

of the solid sample. The changes in δ18O values of the solid increase to 34.2 ‰ after four 

days and then begin to decrease, always remaining higher than the δ18O value of the 

original phytolith material. Samples reacted at 19°C also have very low dissolved silica 

concentrations.  After 8 days only 0.8 % of the solid had dissolved. The δ18O values of 

this sample series increase as dissolution progresses. 
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At pH 10 at all temperatures the δ18O values of partially dissolved silica increased up to 

4.3 ‰ during early dissolution (10 % loss or 60-90% saturation). As dissolution 

continues the phytolith δ18O values begin to decrease until they were at or within 2 ‰ of 

the δ18O value of the original material (Fig. 4-1D). At 4°C and 19°C the sample with the 

highest δ18O value also nears the highest percent saturation (~90%) (Fig. 4-2D). In the 

experiment conducted at 4°C both the amount of material dissolved and the δ18O values 

of remaining phytoliths begin to decrease after the peak in δ18O values (Fig. 4-2D). In the 

experiment conducted at 35°C the highest δ18O value is reached when the percent  
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Figure 4-2. δ18O values of partially dissolved phytolith silica plotted with percent 

saturation of the solution with respect to dissolved silica for all temperatures at pH 4 (A), 

6 (B), 8 (C), and 10 (D). Blue boxes represent the standard deviation associated with the 

δ18O value of untreated phytolith material. 

saturation is at ~60% despite the fact that the degree of saturation continues to increase, 

eventually reaching over 100% (Fig. 4-2D). The experiment conducted at 44°C has 

notably different results from those conducted at lower temperatures, with almost all 

samples having δ18O values that are the same as the starting material. 

There is no direct relationship between δ18O values of partially dissolved silica and SSA 

(n = 28, r = 0.22, p = 0.17) or mean grain size (n = 32, r = 0.17, p = 0.21). Analysis of 

variance between groups that underwent different treatments indicated that samples 

dissolved at pH 4 had δ18O values lower (closer to the original value) than the other 

groups. From the perspective of temperature, samples dissolved at 44°C had δ18O values 

that were lower than those of the other temperature groups. This trend was least 

pronounced for all temperatures at pH 4. 

4.4 Discussion 

The results of these experiments along with the previous results observed for changes in 

δ30Si values of the same samples indicate that dissolution appears to have occurred in two 

stages. The removal of a reactive surface layer is followed by a second stage of 

dissolution of the bulk sample which, in some cases involves re-precipitation. This has 

also been proposed by others for opal-A (Juillet 1980; Barker et al., 1994; Truesdale et 

al., 2005; Fraysse et al., 2009). A two-stage dissolution is supported in this study by 1) 

changes in dissolution rates, 2) changes in SSA, 3) a decrease in percent saturation under 

extreme conditions, and 4) δ18O values that initially increase and then decrease again. As 

the sample begins to dissolve there is an initial increase in δ18O values followed by a 

decrease. Over the course of dissolution SSA decreases. Suggested causes of a two-stage 

dissolution have been the initial dissolution of small particles adsorbed to the surface 

(Fraysse et al., 2009), early removal of a reactive surface layer (Juillet 1980; Truesdale et 
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al., 2005), and re-precipitation as the system approaches saturation (Truesdale et al., 

2005).  

4.4.1 Adsorption of small particles 

The possibility of initial rapid dissolution of small particles contributing to the first stage 

of dissolution was discussed in Chapter 3. Examination of dissolution rates within the 

context of changes in phytolith SSA and mean particle size indicate that the loss of small 

particles from the phytolith assemblage was not responsible for the initial rapid 

dissolution rate observed for all experiments.  

4.4.2 The reactive surface layer 

Much of the literature discussing the presence of a reactive surface layer on biogenic 

silica comes from the study of diatom silica, and the results are inconclusive. The 

relationship between δ18O values of water, diatoms and temperature vary depending on 

the age of the deposit, with fossil diatoms having δ18O values 3-10 ‰ higher than fresh 

diatoms (Brandriss et al., 1998; Schmidt et al., 1997). The presence of an isotopically 

light (Brandriss et al., 1998; Juillet 1980) and more reactive (Hurd et al., 1981; Barker et 

al., 1994; Brandriss et al., 1998) surface layer on fresh diatoms has been suggested. 

Based on weight loss during dehydration, Brandriss et al. (1998) found that there was 

substantially more loosely adsorbed water on the surfaces of fresh diatoms compared to 

diatomite, and suggested that the surface of fresh frustules is more hydrous and reactive 

than fossil diatoms. Partial dissolution would alter the diatom surface at submicroscopic 

levels. The surface area to volume ratio of diatom frustules decreased as dissolution 

progressed, indicating selective, surface-controlled dissolution (Barker et al., 1994). The 

study of biogenic silica (radiolarians) via transmission electron microscopy and nitrogen 

adsorption suggests the presence of a non-porous and a more porous fraction of silica, 

with older assemblages having a lower proportion of porous material than younger 

assemblages (Hurd et al., 1981). Removal of such a surface layer when fresh diatoms 

were partially dissolved in hot acid resulted in δ18O values that were up to 5.3 ‰ higher 

than unaltered diatoms (Juillet 1980). This suggests that diagenesis removes this less 

stable surface layer. However, in similar studies, acid treatments that removed up to 29% 
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of fresh diatom silica or 7% of fossil diatom silica did not change the δ18O value of the 

diatoms (Schmidt et al., 2001). The work of Truesdale et al. (2005) also supports the 

existence of a more reactive fraction of silica in diatoms. They model diatom dissolution 

by having fractions of fast and slow dissolving silica. In these models, the fast dissolving 

silica comprised between 60% and 99.9% of the sample. 

In this study, the SSA of dissolved samples always decreases by about 30% relative to the 

unreacted sample.  Removal of a porous reactive surface layer would explain this 

observation (Hurd et al., 1981). During initial phytolith dissolution δ18O values increase 

to up to 33.3 ‰ until or before 10% dissolution occurs (Fig. 4-1). This is equivalent to 

30-40% saturation of the solution with respect to dissolved silica for pH 4 and 6 (Fig. 4-

2). Peak δ18O values were reached by 15% saturation at pH 8 and above 60% saturation 

at pH 10. Juillet (1980) also saw an increase in δ18O of diatoms after dissolution and 

attributed it to the removal or isotopically light hydroxyl groups. In a study examining the 

alteration of glasses in aqueous solution, the breakdown of the surface resulted in the 

formation of a gel layer which increased with depth over time (Valle et al., 2010). This 

layer was enriched in 18O relative to the pristine sample (Valle et al., 2010). This is 

similar to the initial increase in the δ18O value of silica observed for horsetail phytoliths. 

However, an isotopically light surface layer is not a necessity to explain the increase in 

δ18O of remaining silica observed in this study. Initial dissolution is rapid and 

condensation reactions were prohibited as the initial solution contained no dissolved 

silicic acid. This alone will favour the movement of 16O from the solid to the solution 

causing the δ18O values of remaining silica to increase. 

4.4.3 Progressive dissolution 

Although the majority of post-dissolution δ18Osilica values are higher than that of the 

starting material, the δ18O value of silica begins to decrease in the later stages of the 

experiment. This is likely the result of silica precipitation. The silica-water thermometer 

of Dodd and Sharp (2010) were used to estimate the δ18O values of re-precipitated silica, 

using a δ18O for Millipore water of -7 ‰. This thermometer is applicable because 

dissolved silicic acid equilibrates isotopically with water in less than one second at 25°C 
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(Felipe et al., 2004). This means that silicic acid involved in re-precipitation is not 

affected by the isotopic composition of the solid from which it dissolved. The re-

precipitated silica would have values of 29.9 and 25.9 ‰ in equilibrium with Millipore 

water at 4 and 19°C. Silica that was precipitated at 35°C and 44°C would have δ18O 

values of approximately 22.4 and 21.0 ‰, respectively. This indicates that if re-

precipitation of material was the controlling factor, the δ18O values of the newly formed 

silica would be lower that the δ18O value of the bulk sample. Any precipitated silica 

would cause the δ18O value of the solid to decrease, regardless of the temperature at 

which precipitation occurred.  

Based on the data presented here, precipitation begins to affect the δ18O value of the solid 

once experiments reach approximately 30-40% saturation with respect to silicic acid at 

pH 4 and 6 and 15% saturation at pH 8 (Fig. 4-2). The beginning of precipitation at pH 

10 is difficult to identify with the current data set because of the sampling intervals. 

Condensation/precipitation reactions are thought to be a factor in the dissolution of silica 

even in undersaturated conditions (Truesdale et al., 2005). The magnitude of the back 

reaction is correlated with the concentration of silicic acid in the solution (Truesdale et 

al., 2005). In this study, shifts in the direction of change in δ18O occur before saturation 

with respect to silicic acid.  

We suggest that as the precipitation of new silica progresses, the silica deposited on the 

surface creates a new layer that has an isotopic composition that is different from that of 

the bulk solid. The δ18O value of the precipitated silica will depend on the temperature of 

the experiment, but should always be equal to or lower than the initial phytolith δ18O 

value. The δ18O values of post-dissolution silica analysed from the 44°C experiments is 

much lower than those conducted at lower temperatures. This observation is in agreement 

with the above theory, as the silica deposited in this experiment would have δ18O values 

nearly 10 ‰ lower than that deposited at 4°C. A simple mass balance equation allows us 

to calculate what percentage of the remaining silica (1-f) is comprised of newly 

precipitated material at the end of the experiments.  

  δ18Ofinal = f(δ18Opeak) + (1-f)δ18Onew  (4-2) 
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An important assumption in this calculation is that peak δ18O values of partially dissolved 

silica were captured with our sampling interval. For experiments conducted at pH 10, 

temperature 19 and 35°C, where we are confident that peak δ18O values were captured, 

precipitated silica comprised 36 and 16% of the analysed sample, respectively. More 

silica was precipitated at lower temperatures where solubility is reduced. Over an 

extended period of time, it is expected that the δ18O values of silica would shift towards 

the expected δ18O values for silica forming in equilibrium for the given temperatures.  

The relative rates of the forward (dissolution) and backward (precipitation) reaction is 

always important when considering the effect of dissolution on the isotopic composition 

of minerals (DePaolo 2011). Here, the effect of each is particularly pronounced at the 

beginning versus the end of the experiment.  In soil water, where phytoliths are in 

constant contact with pore waters back reactions may occur even during the initial phase 

of rapid dissolution, but the system used here is different. There is no silicic acid in 

solution to contribute to a back reaction at the outset of the experiment. The pool of 

available silicic acid accumulates as the phytoliths dissolve. This pool is the source of 

silicic acid for precipitation that moves oxygen that is depleted of 18O, relative to the 

starting material, into the solid. This effect becomes evident when the solution becomes 

over 15% saturated when pH is less than 8, which is typical of natural soil conditions. 16O 

is preferentially removed from the solid in the initial phase of dissolution, resulting in an 

increase in δ18O values of the remaining phytoliths. If back reactions begin during this 

phase they are negligible. As the pool of dissolved silicic acid grows precipitation 

reactions become more important and we begin to see the isotopic composition of the 

remaining phytolith silica decrease, even though the net reaction is moving forward in the 

direction of dissolution. 

4.5 Concluding remarks 

We have demonstrated that when ~3-10% of the silica has dissolved phytolith δ18O 

values increase by up to 3.9 ‰. Using the temperature equation of Dodd and Sharp 

(2010), that relates the δ18O value of opal-A to temperature, an increase in the δ18O 

values of phytoliths of 3.9 ‰ would result in an underestimation of growing temperature 
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by nearly 20˚C. In this study, phytolith δ18O values began to decrease after approximately 

10% of the silica had dissolved and approached their initial δ18O value. However, this 

occurs as a result of precipitation of silica in isotopic equilibrium with water in the 

bottles. In the soil environment, if pore waters are less than 15% saturated with respect to 

silicic acid re-precipitation is less likely to occur and phytolith δ18O values may remain 

high. In highly undersaturated conditions δ18O values may continue to increase as 

dissolution progresses, albeit at a slower rate as the rate of dissolution decreased. This 

pattern of dissolution has been observed in phytolith dissolution experiments under flow-

through conditions (Fraysse et al., 2009). If soil water is in contact with phytoliths for a 

sufficient period of time phytolith δ18O values will decrease as silica in isotopic 

equilibrium with soil water is precipitated. This scenario involves the formation of a 

silica coating that would potentially protect the core (original phytolith silica) from 

further alteration. For the dissolution conditions in this study phytolith δ18O values at the 

end of the experiments are similar to the original phytoliths. This might not be the case in 

natural systems. For a soil whose average temperature is 19˚C and soil water δ18O values 

are -7 ‰ precipitated silica has a δ18O value of 26 ‰. The contribution of this new silica 

to a phytolith with an original δ18O value of 29 ‰ would decrease the overall δ18O value 

as seen in this study. However, the δ18O values of soil phytolith assemblages produced by 

grasses have been estimated to range from 25 to 31 ‰ based on a weighted average 

contribution of phytoliths from various plant parts (Webb and Longstaffe 2002). Re-

precipitation of silica with a δ18O value of 26 ‰ could either increase or decrease δ18O 

values of phytoliths in soils depending on their original composition. However, at one 

location the δ18O value of silica precipitated in soil conditions will have a lower δ18O 

value than phytoliths produced from 18O-enriched plant water. If the δ18O values of 

phytoliths drop below the original value during diagenesis temperatures calculated from 

these values will be too high. Any interpretation of paleoclimate based on the δ18O values 

of phytoliths should also look for evidence of phytolith alteration. 
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5. The effect of burning on the dissolution behaviour and silicon and 
oxygen isotope composition of phytolith silica 

5.1 Introduction 

Wildfires are an important component in the maintenance of many ecosystems. Many 

ecosystems thrive when periodic burning clears undergrowth and recycles nutrients 

(Wilson and Shay, 1990; McPherson 1995). As fires play a role in the cycling of 

vegetation they contribute to the deposition of phytoliths in soil. When there is fire there 

is both burning of above ground vegetation and heating of the underlying soil. The 

maximum temperature of grassland fires is typically 700ºC (Engle et al., 1989; 

McPherson 1995). Wildfires can alter plant community structure, often in favour of 

grasses (Vilà et al., 2001; Wilson and Shay 1990). Grasses are well-adapted to fire in that 

their growing tips are located below the soil and they have a short life cycle (Woodcock 

1992). Grasslands provide plenty of fuel and allow fire to easily propagate (Woodcock 

1992). Because they are also high silica accumulators relative to woody vegetation, it is 

important to understand how burning changes the physical and chemical properties of 

phytolith silica, as they can be affected by fire both during the combustion of vegetation 

and after deposition in soil.  

Phytoliths are a useful source of information in archaeological contexts as human 

activities can concentrate phytoliths in archaeological deposits (e.g. Albert et al., 2003; 

Tsartsidou et al., 2008). When diagnostic phytolith morphologies are present analysis of 

phytolith assemblages can provide information on the types of vegetation used in 

agriculture, structures, and as fuel for cooking (Albert et al., 2003; Tsartsidou et al., 

2008). In addition, the oxygen and silicon isotope compositions of phytoliths can be used 

to glean information about past environmental conditions and changes in the silicon 

cycle. Phytoliths are concentrated in hearths when vegetation, including wood, bark and 

grass, is burned and several studies have examined changes in the morphological and 

physical characteristics of phytoliths collected from these deposits (e.g. Cabanes et al., 

2011, 2012; Elbaum et al., 2003). Changes in the morphology of some fine-featured 
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epidermal and hair-cell phytoliths upon heating above 600 °C under laboratory conditions 

have been observed (Runge, 1998). Some phytoliths are more heat-resistant than others.  

For example, phytoliths from different rice species and plant parts lost their diagnostic 

morphologies at significantly different temperatures (600°C-1000°C) (Wu et al., 2012).  

The results of work examining the effect of burning on phytolith dissolution behaviour 

are contradictory. Phytoliths burned at 500ºC for 5 hours were found to be more soluble 

than their unburned counterparts, while phytoliths burned at 450ºC for 6 hours had no 

change in solubility (Cabanes et al., 2011; Fraysse et al., 2006). Studies that examine the 

effects of heating on phytolith isotopic compositions are uncommon, and primarily 

concerned with determining the temperature at which OH- groups are no longer 

exchangeable (Alexandre 1996). Heating phytoliths to 400ºC results in the removal of 

hydrogen bonded surface OH groups, a reaction that is partially reversible at that 

temperature (Alexandre 1996). Because wildfires can easily reach temperatures in excess 

of 400°C this may have a serious impact on the reliability of phytoliths isotopic 

composition in areas prone to burning if oxygen from these OH groups is incorporated 

into the silica structure during dehydroxylation. It has been suggested that changes in 

phytoliths refractive index upon burning are the result of the incorporation of water 

molecules into the silica structure (Elbaum et al., 2003), and this may affect both the 

dissolution behaviour and 18O values of heated phytoliths. The effect of burning on the 

δ30Si values of phytoliths has not been studied. The silicon in the phytoliths should not be 

lost or fractionated during the burning process. In fact, some pre-treatments of phytoliths 

prior to silicon isotope analyses heat the silica to 1100°C with no change in 30Si values 

(Chapter 2).  However, reorganization of the bonds at the surface of the phytolith upon 

heating may alter dissolution behaviours that can fractionate Si-isotopes.  This study 

assesses the effects of heating on phytolith oxygen and silicon isotopic compositions, 

dissolution rate and changes in isotopic composition after partial dissolution.  

5.2 Methods 

Phytoliths were extracted from horsetails (Equisetum arvense) as they are one of the 

highest silica accumulators. Phytoliths were isolated via acid digestion (Geis 1973) and 
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sample purity (i.e. only amorphous silica) was determined using x-ray diffraction. A 

subset of the bulk phytolith sample used in the dissolution experiments described in 

chapters 3 and 4 was heated in a muffle furnace from room temperature to 700°C, held at 

that temperature for 4 hours, and then cooled. This temperature was chosen because grass 

fires usually reach a maximum temperature of 700°C (McPherson, 1995). This provided 

the bulk burned phytolith sample used in the dissolution experiments described here.  

Dissolution experiments were conducted by reacting a series of 150mg subsamples of 

burned phytolith silica with 125mL of Millipore water in high-density polyethylene 

bottles. Samples were reacted for 2 to 56 days depending on the pH of the solution used. 

Experiments conducted at pH 8 (T = 4°C or 19°C) reacted for 2, 4, 6, 8, and 10 days. 

Experiments conducted at pH 4 or 6 (T = 4°C or 19°C) reacted for 14, 28, 42, and 56 

days. At the end of the designated time a small aliquot of the solution was taken from 

each bottle for the determination of dissolved silicon concentration, and the contents of 

each bottle run through a 5μm sieve, separating the solid from the liquid and terminating 

the experiment. 

The dissolved silicon concentration was determined via inductively coupled plasma 

emission spectroscopy (ICP-AES), the results of which were used to determine the 

percent of the solid dissolved in each dissolution experiment and % saturation calculated 

the concentration of dissolved silica and the temperature and pH of the solution at the 

beginning of the experiment. Specific surface area and particle size was determined for 

some of the samples. Specific surface area was determined by single point N2 adsorption 

using a Micrometrics ASAP 2010 BET surface area analyser. Particle size analysis was 

performed on suspended particles using a Malvern Mastersizer 2000. 

Oxygen and silicon isotope values were measured on the same sample via reaction with 

BrF5 at 600 °C to convert phytolith SiO2 to O2 and SiF4. These gases were purified in a 

vacuum extraction line (Ding, 2004; Leng and Sloane 2008; Chapter 2). All samples were 

subjected to inert gas flow dehydration (iGFD) to remove exchangeable oxygen prior to 

analysis (Chapligin et al., 2010; Chapter 2). All stable isotope results are expressed in the 

standard delta notation relative to either VSMOW or NBS-28, where 
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and R represents either 18O/16O or 30Si/28Si. A dual inlet triple-collecting Finnigan MAT 

253 isotope ratio mass spectrometer was used for all measurements. Over the course of 

the analyses, the standard NBS-28 had an average δ18O value of 9.9 ± 0.6 ‰ (n = 53; 

expected value = 9.6 ‰; Brand et al., 2014). The internal quartz standard ORX had an 

average δ18O value of 11.4 ± 0.6 ‰ (n = 19; expected value = 11.5 ‰). The average δ30Si 

value for the standard Diatomite was 1.24 ± 0.07 ‰ (n = 10; expected value = 1.26 ‰; 

Reynolds et al., 2007).  Reproducibility on sample duplicates was ±0.6 ‰ and ±0.07 ‰ 

(n = 16 pairs) for δ18O and δ30Si, respectively. 

5.3 Results 

Silica dissolution rates for the various experiments are shown in Figure 5-1. For all 

experiments, the rate of dissolution was higher initially and decreased over time. The 

concentration of dissolved silica increased as dissolution progressed, reaching a 

maximum of 53.8 μg/mL. The higher initial dissolution rates observed for samples 

treated at pH 8 was observed in the first 10 days of reaction and cannot be compared 

directly to samples treated at pH 4 and 6 which were not sampled during this interval. 

However, taken together, the dissolution rate of all samples from all treatments 

demonstrate that silica dissolution occurs quickly when the samples are first placed in 

water and slows as the system progresses towards equilibrium. A comparison between 

treatments shows that the rate of phytolith dissolution was higher with increasing 

temperature and pH.  

The dissolution rates of burned versus non-burned samples are compared in Figure 5-2.  

Under higher pH and temperature conditions, when both burned and unburned samples 

dissolve at higher rates, it is evident that the burned samples dissolve faster than their 

unburned counterparts. At pH = 8 the dissolution rates could only be calculated for two of 

the unburned samples because dissolution occurred so slowly, whereas dissolved Si was 

produced immediately for the burned samples dissolved at pH= 8 in all instances. When  
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Figure 5-1. Dissolution rate of burned phytoliths over the course of dissolution.  

Figure 5-2. Comparison of dissolution rates between burned and unburned phytoliths 

over the course of dissolution. The sampling interval was the same for both burned and 

unburned dissolution experiments.  
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pH = 6 and temperature = 4°C, or pH= 4 at both temperatures, dissolution rates for both 

burned and unburned samples are less than 0.31 mg/day, and the unburned phytoliths 

dissolve more quickly than the burned phytoliths treated at the same conditions (Fig. 5-

2).  

The specific surface area of the undissolved burned sample, 250.1 m2/g, is significantly 

lower than that of the unburned sample (313.0 m2/g). The average grain size of the 

sample material before dissolution is the same for both the burned and unburned sample 

(33.3 m and 33.8 m, respectively). 

The δ18O value of the burned bulk sample was 26.3 ‰, which is 2.6 ‰ lower than that of 

the unburned sample.  Figure 5-3 shows the change in δ18O values of the remaining solid 

silica of the burned samples as dissolution progressed, along with the δ18O value of the 

both burned and unburned starting material. Phytolith δ18O values all initially increase 

after dissolution. δ18O values of partially dissolved phytoliths from all experiments but 

one (T = 4ºC, pH 6) then decrease. This pattern is similar to what was observed for 

unburned phytoliths (Chapter 4). The average shift in δ18O values of burned phytoliths at 

peak values is +1.1 ‰, compared to +1.8 ‰ for unburned samples reacted under the 

same conditions. The shift to higher δ18O values occurs between about 1-5% dissolved 

(Fig. 5-3A) or 15-45% saturation (Fig. 5-3B). 
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Figure 5-3. The change in δ18O of partially dissolved phytoliths plotted against the 

percent of the solid dissolved (A) and percent saturation (B). 
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Figure 5-4.  The change in δ30Si of partially dissolved phytoliths plotted against the 

percent of the solid dissolved (A) and percent saturation (B). 
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observed for oxygen isotopes. This trend is similar to what was observed for unburned 

phytolith silica. All other experiments, with the exception of T = 4, pH 4, do not display a 

change in δ30Si with dissolution. The maximum change in δ30Si with dissolution was 

+0.33 ‰ for burned samples and +0.63 ‰ for unburned samples.    

5.4 Discussion 

5.4.1 Differences in the rate of dissolution  

The decrease in SAA from 313.0 to 250.1 m2/g after the phytoliths were burned is likely 

a result of partial annealing of the porous surface layer. This observation is in contrast to 

a study by Fraysse et al. (2006) who demonstrated that the SAA of soil phytoliths heated 

to 450°C increased from 5.2 ± 0.1 m2/g to 6.5 ± 0.1 m2/g.  However, in that study the 

SAA of the phytoliths was low to begin with reflecting the loss of fine structures and thin 

cell walls during several hundred years in the soil (Fraysse et al., 2006).  

Because the SSA of the burned sample is lower than the unburned sample we expected 

that the rate of dissolution would also be lower. This is the case for low temperature and 

pH conditions when dissolution rates are below ~0.30 mg/day.  However, the opposite is 

true at higher pH and temperature conditions when dissolution rates are above ~0.30 

mg/day (Fig. 5-2). Hence, the change in SAA that occurs upon burning cannot alone 

explain the differences in dissolution rates observed for burned versus unburned samples. 

The decrease in SSA is not accompanied by a change in the average grain size of the 

sample, suggesting that heating the phytoliths changed the nature of the surface layer 

(Truesdale et al., 2005; Schmidt et al., 2001). The presence of a highly reactive surface 

layer on the surface of marine biogenic silica has been discussed by other authors (Hurd 

et al., 1981; Barker et al., 1994; Brandriss et al., 1998) and suggested as being important 

in the dissolution trends of phytolith silica (Chapter 3, 4). Heating the silica to 700°C 

may have partially reorganized some of the bonds in the surface layer making them easier 

to break. Alexandre (1996) showed that heating to just 400ºC resulted in some permanent 

alteration of phytolith surfaces at the molecular level as the silica was not able to recover 

its initial hydroxyl and molecular water content. However, if bond re-organization were 

the only factor affecting dissolution the burned silica would be easier to dissolve even at 
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the lower pH and temperature conditions. We must consider three types of material being 

dissolved: the reactive surface layer of unburned phytoliths, the rest/bulk of the phytolith, 

and, in the case of burned phytoliths, partially reorganized silica. Examination of SSA 

and average grain size has suggested that the reactive surface layer is absent or greatly 

reduced on the burned phytoliths. At low pH and temperature conditions when 

dissolution rates are slower the dominant process in unburned phytoliths is removal of the 

reactive surface layer. Burned phytoliths, therefore, have a slower dissolution rate under 

these conditions because the reactive surface material has been completely or partially 

altered during the burning process. When pH and temperature conditions promote faster 

dissolution, the reactive surface layer of the unburned phytoliths is quickly removed, and 

the re-organized surface of the burned samples dissolves faster than the bulk silica of the 

unburned phytoliths.  

During heating of biogenic opal, surface water and OH- groups are removed and new 

reaction sites can be created.  It was noted by Fraysse et al. (2006) that heated phytoliths 

had a surprisingly high negative surface charge. They suggest, following Hiemstra et al. 

(1996), that this may be the result of the presence of singly co-ordinated silanol groups 

(Si-O-) that were created throughout the solid (Fraysse et al., 2006). Phytolith silica is 

amorphous so not all bond angles are ideal (Neuefeind and Liss, 1996). Bonds at 

unfavourable angles will be more prone to breaking during heating, exposing oxygen that 

is not fully co-ordinated. This process, in essence, provides new reaction sites without 

drastically changing SSA, as the creation of these new “surfaces” is at an atomic scale. In 

other studies, a higher proportion of singly-coordinated oxygen on the surface of quartz 

has been correlated dissolution rate (Brady and Walther 1990).  From the pH of the zero 

point of charge (pH ~2.5) to high pH, the proportion of the surface species Si-O- controls 

dissolution rate (Walther 2009). 

5.4.2 Isotopic composition of burned and unburned phytoliths 

The δ18O value of the bulk heated phytolith sample is 2.6 ‰ lower than that of the bulk 

sample before heating. The incorporation of 18O-depleted hydroxyl oxygen as silica is 

heated would cause the δ18O value of phytolith silica to decrease in a manner similar to 
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that observed here (Juillet 1980; Brandriss et al., 1998). This is not unexpected since 

hydroxyl oxygen starts to become a permanent part of the amorphous silica structure by 

400°C (Labeyrie and Juillet 1980; Alexandre 1996). The decrease in the δ18O value of the 

burned compared to fresh phytoliths is not accompanied by a change in the δ30Si values 

suggesting that the incorporation of hydroxyl groups is likely the cause.  

The silicon isotope composition of heated phytoliths changes very little during 

dissolution (Fig. 5-4). Almost all partially dissolved samples have δ30Si values that fall 

within the range of error on the δ30Si value of the undissolved material. This is different 

from the results of the unburned samples. During the dissolution of fresh phytolith silica 

δ30Si values of the remaining solid increase until up to ~10% of the material has 

dissolved, after which δ30Si values begin to decrease (Fig. 5-5). There are three possible 

reasons that this trend is not observed during the dissolution of burned phytoliths. The 

maximum % dissolved over the course of dissolution of burned phytoliths was 8.2% (Fig. 

5-4). Because the increase in δ30Si values of the unburned partially dissolved phytoliths 

occurred very early in the experiment it is possible that the peak in δ30Si of the burned 

samples was missed by our sampling intervals. However, because higher δ18O values are 

observed with the dissolution of burned phytoliths it is not likely that changes in δ30Si of 

burned silica were missed (Fig. 5-3). The second possibility concerns the role of the 

reactive layer in the change in δ30Si values with dissolution. The initial increase on the 

δ30Si value of unburned silica was observed as the reactive layer was being removed. If 

the reactive layer was altered on phytoliths that have been burned making it less 

susceptible to dissolution then a shift to higher δ30Si with dissolution may not be 

observed. Third, there may have been some fractionation of silicon isotopes during 

dissolution but of a magnitude that was too small to be detected.   

The oxygen isotope composition of partially dissolved, heated phytoliths behave in a 

similar way to the unburned experiments – they initially increase by ~1-2 ‰ until 

approximately 5-8% of the solid has been dissolved (15-45% saturation) after which δ18O 

values begin to decrease until they are at or below the δ18O value of the initial material. 

In the unburned samples this was the result of preferential dissolution of 16O followed by 

precipitation reactions (Chapter 4). For the unburned samples (Chapter 4), as dissolution 
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progressed the isotopic composition of the remaining silica continued towards lower δ18O 

and 30Si values. The overall magnitude of change in δ18O values with dissolution is less 

for burned phytoliths than for unburned phytoliths (Fig. 5-5).  

Examining the results of both the oxygen and silicon isotope composition of phytoliths as 

dissolution progresses, it appears that the re-organization of silica at the phytolith surface 

has changed the way the silica dissolves. Burning creates new reaction sites on the silica 

surface that dissolve more quickly than the bulk silica and this process results in a smaller 

fractionation between the bulk silica and silicic acid. As a result, it is possible that δ30Si 

values of burned phytoliths also changed with initial dissolution but that these changes 

were not detectable. The relative mass difference between the isotopes of silicon is less 

than for lighter elements and, as a result, the magnitude of fractionation during reactions 

is lower. It is possible that any silicon isotope fractionation that occurred during the 

dissolution of burned phytoliths was too small to be measured.  

 

 

 

 

 

 

 

 

 

Figure 5-5 (next page). The δ18O and δ30Si values of partially dissolved burned and 

unburned phytoliths reacted for the same length of time at pH 4 (A), pH 6 (B), and pH 8 

(C). 
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5.5 Concluding Remarks 

The results presented here indicate that burning phytoliths at 700ºC results in changes in 

their oxygen isotope composition and the manner in which they dissolve. When 

conditions favour the rapid dissolution of silica (i.e. higher temperature and pH) burned 

phytoliths dissolve faster than unburned phytoliths. When conditions for silica dissolution 

are less favourable unburned phytoliths dissolve more quickly, likely a result of the 

reactive surface layer which constitutes less of the total volume of silica in burned 

phytoliths. Burned phytoliths have δ18O values that are lower than their unburned 

counterparts by 2.6 ‰ while δ30Si values are unchanged. Changes to lower δ18O values of 

burned versus unburned phytolith silica would result in overestimations of temperature 

and would complicate interpretations of relative changes in δ18O over time. In addition,  

under some conditions burned phytoliths may be less well preserved than unburned 

phytoliths.  
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6. Summary 

Phytoliths are a highly soluble source of silicon relative to other minerals and can be 

important contributors of silicic acid to soil water. Their oxygen and silicon isotope 

compositions are potentially useful tools for examining past environmental conditions. 

Phytolith δ18O values can be related to their temperature of formation and modern soil 

phytolith δ18O values have been related directly to mean annual temperature and the 

oxygen isotope composition of precipitation (Alexandre et al., 2012). However, 

phytoliths are subject to dissolution after their deposition in the soil, and it is important to 

understand phytolith dissolution behaviour and its effect on the δ18O and δ30Si values 

before phytoliths can be used to provide reliable information regarding past 

environmental conditions. This study demonstrates that both δ18O and δ30Si values of 

phytoliths are modified when phytoliths partially dissolve.  

Phytolith δ30Si values increase by up to 0.63 ‰ with partial dissolution. As a result, the 

alteration of phytolith δ30Si values in the soil will complicate attempts to use phytoliths to 

examine silicic acid availability to plants, as proposed by Ding et al. (2009). However, 

phytolith δ30Si values do not change after burning, and burned phytoliths generally retain 

their original δ30Si values after 8% dissolution. This indicates that burned soil or hearth 

phytolith assemblages may be useful in investigations of silicic acid availability.  

The dissolution of phytolith silica produces dissolved silicic acid with δ30Si values that 

are much lower than those commonly reported for soil solutions (Ziegler et al., 2005). 

Many authors have investigated the δ30Si values of soil solutions and the solid material 

from which they are derived and have discussed the importance of precipitation of new 

mineral phases and preferential adsorption of 28Si onto mineral surfaces in modifying the 

δ30Si values of soil solutions (Zeigler et al., 2005; Delstanche et al., 2009; Opfergelt et 

al., 2009; Geilert et al., 2014; Oelze et al., 2014). Based on the extremely low δ30Si 

values calculated for dissolved silica in this study, we suggest that soil solutions that 

contain silicic acid derived from phytoliths must be highly modified by precipitation 

reactions, adsorption of silicic acid into mineral surfaces, and preferential plant uptake of 
28Si.  
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Phytoliths that have undergone partial dissolution have δ18O values that are up to 3.9 ‰ 

higher than unaltered phytoliths, which translates into an underestimation of temperature 

by nearly 20˚C. However, precipitation of silica in isotopic equilibrium with water onto 

phytolith surfaces acted to drive overall phytolith δ18O values down once the solution was 

30-40% saturated with respect to silicic acid. In soil environments, if soil water is in 

contact with phytoliths for a sufficient period of time, a silica coating may form on the 

outside of the phytolith that has δ18O values that are in isotopic equilibrium with soil 

water. In most cases, the newly precipitated silica would have δ18O values that are lower 

than those of phytoliths precipitated from 18O-enriched plant water. This could potentially 

result in overestimations of past growing temperature.  

Clearly the extent of alteration of a soil phytolith assemblage needs to be assessed prior 

to the use of their isotopic composition in paleoclimate models. While other authors have 

observed the loss of fine features and adsorbed particles on the surface of phytoliths 

subjected to dissolution (e.g. Fraysse et al., 2006), in this study dissolution features were 

not consistently observed on the surfaces of partially dissolved phytoliths. Cabanes et al. 

(2011) have suggested that partially dissolved phytolith assemblages can be identified 

based on their solubility. However, phytoliths produced in different plants can have 

widely variable dissolution rates so this method may not always be accurate. It may be 

possible to use the proportion of Si-O-Si to Si-OH bonds in phytolith silica to determine 

if they have undergone extensive alteration. For example, Schmidt et al. (2001) found 

that the ratio of Si-O-Si to Si-OH bond was higher in fossil diatoms than in fresh ones 

and was related to an increase in the δ18O value of the sample. However, this method 

would need to be calibrated on a range of phytolith assemblages because percent of 

exchangeable oxygen is variable even in fresh samples (Webb and Longstaffe 2002). 

Heating phytoliths to 700˚C results in a decrease in phytolith δ18O values by 2.6 ‰ as 
18O-depleted hydroxyl oxygen is incorporated into the silica structure. As a result, 

archaeological hearth deposits, which often concentrate phytoliths, are not ideal source of 

phytolith silica if the aim is to use δ18O values to determine paleotemperature. Burned 

phytoliths can be identified based on their refractive index (Elbaum et al., 2003), so it is 
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possible to identify assemblages that are not suitable for oxygen isotope analysis as a 

result of burning. 

Despite similar visual trends in the δ18O and δ30Si values of unburned phytoliths as 

dissolution progressed, there is no significant relationship between phytolith δ18O and 

δ30Si values from the same sample. This is likely because the experiments discussed in 

this study were conducted in batch reactors and the precipitation of new silica was 

observed. The controls on the partitioning of silicon and oxygen isotopes during silica 

precipitation are different. The δ18O values of newly precipitated silica were controlled 

by the δ18O value of the water and the temperature of each experiment. Silicon isotope 

fractionation is not temperature dependent. The δ30Si values of newly precipitated silica 

depend on the δ30Si value of the solution from which precipitation occurs. In these 

experiments the δ30Si value of the solution was variable, depending on how much silica 

had dissolved. We suspect that had experiments been conducted in flow-through reactors 

both δ18O and δ30Si values of phytoliths would have continued to increase for the 

duration of the experiment, and a correlation between the oxygen and silicon isotope 

composition of remaining silica would have been observed. 

Recommended future work would monitor phytolith dissolution with earlier sampling at 

low pH and longer sampling over a range of pH conditions. This would provide more 

information on the dissolution behaviour of phytoliths when they first reach the soil and 

allow us to observe trends in δ18O and δ30Si values of silica over an extended period of 

precipitation. In this study, the effects of burning on the isotopic composition of 

phytoliths was only determined for the relatively high temperature of 700˚C. Examining 

changes in the isotopic composition of phytoliths burned at a range of lower temperatures 

would allow us to determine at what temperature burning begins to interfere with the use 

of phytoliths for paleothermometry. Finally, examination of single large fresh and soil 

phytoliths, perhaps from bamboo, for evidence of isotopic zoning would allow us to 

determine if phytoliths are isotopically homogenous and determine if soil phytoliths 

develop a coating of silica precipitated once they are deposited in the soil. 
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Appendix A 

   

 

 
 
A-1. SEM images of phytoliths prior to dissolution. 
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A-2. SEM images of phytoliths after dissolution for 70 days at T = 4˚C and pH = 4. 
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A-3. SEM images of phytoliths after dissolution for 10 days at T = 44˚C and pH = 10. 
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A-4. SEM images of phytoliths after dissolution for 28 days at T = 44˚C and pH = 4. 
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A-5. SEM images of phytoliths after dissolution for 70 days at T = 19˚C and pH = 6. 
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A-6. SEM images of phytoliths after dissolution for 10 days at T = 4˚C and pH = 10. 
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A-7. SEM images of phytoliths after dissolution for 10 days at T = 19˚C and pH = 10. 
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Appendix B. Summary of experimental conditions and results of dissolution experiments conducted on fresh phytoliths
phytolith phytolith dissolved mean particle

Sample ID # days pH T˚C μg/L mg dissolved % dissolved modelled pH % saturation δ18OVSMOW (‰) δ30SiNBS-28  (‰) δ30SiNBS-28  (‰) SSA (m2/g) size (μm)

HT-4-4-14 14 4 4 12.58 3.36 2.24 4.00 33.34
HT-4-4-28 28 4 4 11.91 3.18 2.12 4.00 31.56 28.8 0.15 -3.03
HT-4-4-42 42 4 4 14.93 3.99 2.66 4.00 39.57 30.4 0.33 -8.94
HT-4-4-56 56 4 4 13.93 3.72 2.48 4.00 36.90 29.4 0.08 0.13
HT-4-4-70 70 4 4 15.10 4.04 2.69 4.00 40.02 0.03 2.21
HT-19-4-14 14 4 19 14.77 3.95 2.63 4.00 25.90
HT-19-4-28 28 4 19 15.61 4.17 2.78 4.00 27.38 31.3 0.11 -0.84 209.03 36.20
HT-19-4-42 42 4 19 17.46 4.67 3.11 4.00 30.62 28.8 0.21 -3.83 226.62 32.69
HT-19-4-56 56 4 19 18.63 4.98 3.32 4.00 32.69 28.4 0.19 -2.98
HT-19-4-70 70 4 19 20.65 5.52 3.68 4.00 36.23 26.4 -0.02 2.83 277.29 37.01
HT-35-4-14 14 4 35 10.84 2.90 1.93 4.00 14.00 32.1 0.22 -6.57
HT-35-4-28 28 4 35 14.87 3.98 2.65 4.00 19.22 27.7 0.22 -4.93
HT-35-4-42 42 4 35 18.01 4.82 3.21 4.00 23.28 27.1 0.12 -0.98
HT-35-4-56 56 4 35 21.16 5.66 3.77 4.00 27.34 28.9 0.30 -5.40
HT-35-4-70 70 4 35 23.57 6.30 4.20 4.00 30.46 30.2 0.20 -2.41
HT-44-4-14 14 4 44 15.94 4.26 2.84 4.00 16.84
HT-44-4-28 28 4 44 23.23 6.21 4.14 4.00 24.54 28.1 0.17 -1.88 273.78 37.39
HT-44-4-42 42 4 44 30.52 8.16 5.42 4.00 32.24 28.4 0.18 -1.47
HT-44-4-56 56 4 44 35.85 9.59 6.38 4.00 37.87 28.0 0.41 -4.64 262.72 35.00
HT-44-4-70 70 4 44 41.63 11.13 7.42 4.00 43.98 30.7 0.13 -0.51 218.55 35.69
HT-4-6-14 14 6 4 16.11 4.31 2.87 5.93 42.69 30.7
HT-4-6-28 28 6 4 13.93 3.72 2.48 5.94 36.90 31.8 0.71 -24.57
HT-4-6-42 42 6 4 10.90 2.91 1.94 5.94 28.88 27.8 0.05 1.78
HT-4-6-56 56 6 4 12.75 3.41 2.27 5.94 33.78 29.4 0.20 -4.72
HT-4-6-70 70 6 4 15.44 4.13 2.75 5.93 40.91 25.2 0.08 0.35
HT-19-6-14 14 6 19 13.10 3.50 2.34 5.92 22.98 31.9 0.35 -11.08
HT-19-6-28 28 6 19 21.49 5.75 3.83 5.89 37.70 32.4 0.57 -12.08 200.79 38.73
HT-19-6-42 42 6 19 17.10 4.57 3.05 5.91 30.00 32.5
HT-19-6-56 56 6 19 30.74 8.22 5.48 5.88 53.92 28.9 0.29 -3.40 246.22 39.09
HT-19-6-70 70 6 19 22.00 5.88 3.92 5.89 38.59 29.1 0.22 -3.13 225.54 37.37
HT-35-6-14 14 6 35 15.27 4.08 2.72 5.89 19.73 30.6 0.34 -8.95
HT-35-6-28 28 6 35 24.02 6.42 4.28 5.86 31.04 28.1 0.49 -8.91
HT-35-6-42 42 6 35 29.85 7.98 5.32 5.85 38.58 32.4 -0.02 1.90
HT-35-6-56 56 6 35 34.56 9.24 6.16 5.84 44.67 30.2 0.17 -1.21
HT-35-6-70 70 6 35 45.05 12.05 8.04 5.82 58.22 32.2 0.27 -1.98
HT-44-6-14 14 6 44 26.71 7.14 4.76 5.84 28.21
HT-44-6-28 28 6 44 43.76 11.70 7.80 5.80 46.22 28.9 0.42 -3.89 199.15 43.64
continued on next page
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phytolith phytolith dissolved mean particle

Sample ID # days pH T˚C μg/L mg dissolved % dissolved modelled pH % saturation δ18OVSMOW (‰) δ30SiNBS-28  (‰) δ30SiNBS-28  (‰) SSA (m2/g) size (μm)

HT-44-6-42 42 6 44 70.85 18.95 12.63 5.76 74.84 29.9 0.12 -0.12
HT-44-6-56 56 6 44 89.36 23.90 15.91 5.74 94.39 30.9 -0.14 1.29 37.66
HT-44-6-70 70 6 44 93.85 25.10 16.71 5.74 99.13 30.2 0.00 0.51 336.62 38.14
HT-4-8-4 4 8 4 0 0 0 8.00 0 34.2 0.46
HT-4-8-6 6 8 4 0 0 0 8.00 0 31.9 0.22
HT-4-8-8 8 8 4 0 0 0 8.00 0 32.1 0.20
HT-4-8-10 10 8 4 0 0 0 8.00 0 31.2 0.12
HT-19-8-2 2 8 19 0 0 0 8.00 0 31.9 0.14
HT-19-8-4 4 8 19 0 0 0 8.00 0 31.7 0.08
HT-19-8-6 6 8 19 3.50 0.94 0.62 7.65 6.12 32.3 0.40 -50.24
HT-19-8-8 8 8 19 4.51 1.21 0.80 7.59 7.89 32.6 0.13 -5.93
HT-19-8-10 10 8 19 LOST 31.5 0.28
HT-35-8-2 2 8 35 7.75 2.07 1.38 7.27 9.99 -0.01 6.64
HT-35-8-4 4 8 35 10.11 2.70 1.80 7.17 13.03 31.5 0.27 -10.07 269.32 38.31
HT-35-8-6 6 8 35 12.74 3.41 2.27 7.09 16.44 31.8 -0.07 6.70 271.90 36.46
HT-35-8-8 8 8 35 11.56 3.09 2.06 7.12 14.92 32.7 0.07 0.71
HT-35-8-10 10 8 35 16.16 4.32 2.88 6.99 20.86 32.4 0.32 -7.92
HT-35-8-35 35 8 35 46.17 12.35 8.22 6.57 59.64 28.8 0.08 0.17 271.95 38.56
HT-44-8-2 2 8 44 12.63 3.38 2.25 6.98 13.32 31.1 0.12 -1.21
HT-44-8-4 4 8 44 16.44 4.40 2.93 6.87 17.34 31.0 0.01 2.52 38.08
HT-44-8-6 6 8 44 23.23 6.21 4.14 6.73 24.51 29.1 0.10 -0.21
HT-44-8-8 8 8 44 21.94 5.87 3.91 6.76 23.15 30.4 0.12 -0.80
HT-44-8-10 10 8 44 26.65 7.12 4.75 6.68 28.12 28.5 0.18 -1.90 228.96 35.73
HT-44-8-35 35 8 44 82.07 21.95 14.61 6.20 86.67 29.6 0.25 -0.85 191.31 40.65
HT-4-10-2 2 10 4 11.24 3.00 2.00 9.56 25.06 29.9 0.29 -9.89
HT-4-10-4 4 10 4 14.43 3.86 2.57 9.48 33.06 32.1 0.64 -20.97 36.86
HT-4-10-6 6 10 4 30.57 8.17 5.45 9.21 74.77 32.4 0.39 -5.23 249.12 36.89
HT-4-10-8 8 10 4 20.31 5.43 3.62 9.36 48.11 32.3 0.40 -8.28
HT-4-10-10 10 10 4 14.26 3.81 2.54 9.49 32.64 30.6 0.24 -5.80 230.28 37.17
HT-19-10-2 2 10 19 23.00 6.15 4.10 9.09 36.30 30.3 0.19 -2.35
HT-19-10-4 4 10 19 39.14 10.47 6.97 8.86 64.40 31.4 0.52 -5.69
HT-19-10-6 6 10 19 43.35 11.59 7.73 8.82 71.75
HT-19-10-8 8 10 19 55.28 14.78 9.85 8.71 92.62 33.3 0.45 -3.26
HT-19-10-10 10 10 19 59.20 15.83 10.56 8.68 99.48 30.6 0.04 0.50
HT-35-10-2 2 10 35 31.98 8.55 5.70 8.75 37.91 30.0 0.23 -2.35 245.52 37.89
HT-35-10-4 4 10 35 49.76 13.31 8.87 8.56 60.82 32.8
HT-35-10-6 6 10 35 68.61 18.35 12.23 8.42 85.14 32.2 0.48 -2.75 36.65
continued on next page
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phytolith phytolith dissolved mean particle

Sample ID # days pH T˚C μg/L mg dissolved % dissolved modelled pH % saturation δ18OVSMOW (‰) δ30SiNBS-28  (‰) δ30SiNBS-28  (‰) SSA (m2/g) size (μm)

HT-35-10-8 8 10 35 59.47 15.90 10.60 8.48 73.34 31.7
HT-35-10-10 10 10 35 81.51 21.80 14.52 8.34 101.80 32.2 0.39 -1.69
HT-35-10-35 35 10 35 143.21 38.29 25.49 8.09 181.52 27.4 0.15 0.80 221.92 40.46
HT-44-10-2 2 10 44 83.13 22.23 14.81 8.21 84.90 29.9 0.05 0.28
HT-44-10-4 4 10 44 129.03 34.50 23.00 8.02 133.37 29.3 -0.30 1.37
HT-44-10-6 6 10 44 130.04 34.77 23.18 8.01 134.43 28.9 -0.13 0.80
HT-44-10-8 8 10 44 141.78 37.91 25.29 7.97 146.83 30.1 -0.04 0.47
HT-44-10-10 10 10 44 149.71 40.03 26.69 7.95 155.21 29.6 -0.11 0.63
HT-44-10-35 35 10 44 160.60 42.94 28.60 7.92 166.71 29.8 -0.07 0.47
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Appendix C. Summary of experimental conditions and results of dissolution experiments conducted on burned phytoliths

phytolith phytolith mean particle
Sample ID # days pH T˚C μg/L mg dissolved % dissolved % saturation δ18OVSMOW (‰) δ30SiNBS-28 (‰) SSA (m2/g) size (μm)

HT2-4-4-14 14 4 4 6.68 1.79 1.19 17.70
HT2-4-4-28 28 4 4 8.06 2.16 1.44 21.36 26.9 0.04
HT2-4-4-42 42 4 4 9.43 2.52 1.68 25.00 27.0 0.13
HT2-4-4-56 56 4 4 10.00 2.67 1.78 26.51 27.0 -0.02
HT2-19-4-14 14 4 19 14.76 3.95 2.62 25.90 26.8 0.11 226.0 35.9
HT2-19-4-28 28 4 19 17.31 4.63 3.09 30.38 28.0 0.28 220.2 37.5
HT2-19-4-42 42 4 19 21.93 5.86 3.92 38.47 26.4 0.36 223.0 33.6
HT2-19-4-56 56 4 19 22.83 6.11 4.06 40.06 26.2
HT2-4-6-14 14 6 4 9.52 2.55 1.70 25.23
HT2-4-6-28 28 6 4 13.18 3.52 2.35 34.92 27.1 0.12
HT2-4-6-42 42 6 4 16.10 4.30 2.87 42.66 27.2 0.23
HT2-4-6-56 56 6 4 16.62 4.44 2.95 44.03 28.6 0.22
HT2-19-6-14 14 6 19 29.87 7.99 5.33 52.39 28.0 0.38 254.1 36.3
HT2-19-6-28 28 6 19 39.55 10.58 7.05 69.38 27.8 0.24
HT2-19-6-42 42 6 19 45.68 12.22 8.15 80.14 27.9 0.11 36.8
HT2-19-6-56 56 6 19 53.81 14.39 9.60 94.40 25.4 37.1
HT2-4-8-2 2 8 4 2.91 0.78 0.52 7.68 26.8 0.25 235.2
HT2-4-8-4 4 8 4 4.08 1.09 0.73 10.76 28.6 0.17
HT2-4-8-6 6 8 4 5.14 1.38 0.92 13.56 29.9 0.18 216.3 35.7
HT2-4-8-8 8 8 4 9.09 2.43 1.62 23.96 27.9 0.36
HT2-4-8-10 10 8 4 9.51 2.54 1.69 25.06 28.2 0.42 235.1 39.0
HT2-19-8-2 2 8 19 13.08 3.50 2.33 22.72 25.6 0.23 202.2 36.9
HT2-19-8-4 4 8 19 17.90 4.79 3.19 31.10 26.7 0.25
HT2-19-8-6 6 8 19 22.83 6.10 4.06 39.66 26.9 0.53 199.2 36.9
HT2-19-8-8 8 8 19 26.34 7.04 4.70 45.76 27.7 0.24
HT2-19-8-10 10 8 19 28.37 7.59 5.07 49.29 26.7 0.19 189.0 37.2
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