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Abstract

The main problem this thesis deals with is the characterization of
profinite groups which are realizable as absolute Galois groups of fields:
this is currently one of the major problems in Galois theory. Usually
one reduces the problem to the pro-p case, i.e., one would like to know
which pro-p groups occur as maximal pro-p Galois groups, i.e., maximal
pro-p quotients of absolute Galois groups. Indeed, pro-p groups are
easier to deal with than general profinite groups, yet they carry a lot
of information on the whole absolute Galois group.

We define a new class of pro-p groups, called Bloch-Kato pro-p
group, whose Galois cohomology satisfies the consequences of the Bloch-
Kato conjecture. Also we introduce the notion of cyclotomic orienta-
tion for a pro-p group. With this approach, we are able to recover new
substantial information about the structure of maximal pro-p Galois
groups, and in particular on θ-abelian pro-p groups, which represent
the “upper bound” of such groups.

Also, we study the restricted Lie algebra and the universal envelope
induced by the Zassenhaus filtration of a maximal pro-p Galois group,
and their relations with Galois cohomology via Koszul duality.

Altogether, this thesis provides a rather new approach to maximal
pro-p Galois groups, besides new substantial results.

Keywords: Galois cohomology, pro-p groups, Bloch-Kato conjec-
ture, Elementary Type Conjecture, powerful groups, cyclotomic orien-
tations, Koszul duality in Galois theory.
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Introduction

“Die Zahlentheorie nimmt unter den mathematischen
Disziplinen eine änlich idealisierte Stellung ein wie die
Mathematik selbst unter den anderen Wissenschaften.”2

(J. Neukirch)

One may very well say that the Theory of Profinite Groups is
“daughter” of Galois Theory. Indeed profinite groups arose first in
the study of the Galois groups of infinite Galois extensions of fields, as
such groups are profinite groups, and they carry with them a natural
topology, the Krull topology, which is induced by the Galois subex-
tensions of finite degree, and under this topology they are Hausdorff
compact and totally disconnected topological groups: these properties
characterize precisely profinite groups. Also, the Krull topology allows
us to state the Fundamental Theorem of Galois Theory also for in-
finite Galois extensions: one has a bijective correspondence between
subextensions and closed subgroups, and in particular between finite
subextensions and open subgroups.

In particular, the tight relation between profinite groups and Galois
groups is stated by the following theorem, proved first by H.Leptin in
1955 (cf. [Le55]).

Theorem 0.1. Let G be a profinite group. Then there exists a
Galois extension of fields L/K such that G = Gal(L/K).

The proof of this theorem one commonly refers to nowadays is due
to L. Ribes (1977, see also [RZ10, § 2.11]). Note that the aforemen-
tioned theorem does not say anything about the nature of the field K
nor about the extension L/K. In fact, the essence of the whole Galois
theory is to “lose information”, as one passes from a field, i.e., an alge-
braic structure with two compatible operations, to a (profinite) group,
i.e., an algebraic (and topological) structure with only one operation
(compatible with the topology).

2“Number Theory, among the mathematical disciplines, occupies a similar
ideaized position to that held by Mathematics itself among the sciencies”. From
the introduction of Neukirch’s book Algebraic Number Theory, and quoted at the
beginning of the Introduction of [NSW].
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Every field K comes equipped with a distinguished Galois exten-
sion: the separable closure K̄sep. Its Galois group GK = Gal(K̄sep/K)
is called the absolute Galois group of K. Such extension collects
all (finite and infinite) Galois extensions of K; in particular, all Galois
groups of K are “encoded” in GK : this is why absolute Galois groups
of fields have a prominent place in Galois theory.

Unfortunately (or fortunately, otherwise I would have wasted the
last four years of my life), it is impossible to have a result like Theo-
rem 0.1 for absolute Galois groups: not every profinite group is realiz-
able as absolute Galois group, and in general it is a very hard problem
to understand which profinite group is an absolute Galois group. For
example, the celebrated Artin-Schreier Theorem states that the only
finite group which is realizable as absolute Galois group is the finite
group of order two (for example, as Gal(C/R), see Section 2.3 for the
complete statement of the Artin-Schreier Theorem).

Thus, the problem to understand which profinite groups are real-
izable as absolute Galois groups – and also to recover some arithmetic
information from the group – has caught the attention of algebraists
and number theorists in the last decades, and many are working on it
from different points of view, and using various tools.

A very powerful one is Galois Cohomology. Actually, the first com-
prehensive exposition of the theory of profinite groups appeared in
the book Cohomologie Galoisienne by J-P. Serre in 1964, which is a
milestone of Galois theory. The introduction of Galois cohomological
techniques is doubtlessly one of the major landmarks of 20th century
algebraic number theory and Galois theory. For example, class field
theory for a field K is nowadays usually formulated via cohomological
duality properties of the absolute Galois group GK .

A recent remarkable developement in Galois cohomology is the com-
plete proof of the Bloch-Kato conjecture by V. Voevodsky, with the
substantial contribution of M. Rost (and the “patch” by C. Weibel).
The first formulation of this conjecture is due to J. Milnor, with a later
refinement by J. Tate (see Section 2.2 for a more detailed history of
the conjecture). The conjecture states that there is a tight relation
between the cohomology of the absolute Galois group GK of a field K
(a group-theoretic object), and the Milnor K-ring of K (an arithmetic
object). In particular, one has that the Galois symbol

(0.1) KMn (K)/m.KMn (K)
hK

// Hn (GK , µ
⊗n
m )

2



from the n-th Milnor K-group of K modulo m to the n-th cohomology
group of GK with coefficients in µ⊗nm , with µm the group of m-th roots
of unity lying in K̄sep, is an isomorphism for every n ≥ 1 and for every
m ≥ 2 such that the characteristic of the field K does not divide m.

Therefore, after the proof of what is nowadays called the Rost-
Voevodsky theorem, one has these two hopes:

(1) to recover information about the structure of the absolute Ga-
lois group from the structure of its cohomology;

(2) to recover arithmetic information from the structure of the
cohomology of the absolute Galois group – and thus, possibly,
from the group structure of GK itself.

Yet, in general it is still rather hard to handle an absolute Galois
group. Thus, for a prime number p, we shall focus our attention to the
pro-p groups “contained” in an absolute Galois group GK : the pro-p-
Sylow subgroups of GK (which are again absolute Galois groups) and,
above all, the maximal pro-p Galois group GK(p) of K, i.e., the
maximal pro-p quotient of the absolute Galois group GK .3 Indeed,
pro-p groups are much more understood than profinite groups, and
this reduction is not an “abdication”, as such groups bring substantial
information on the whole absolute Galois group, and in some cases they
determine the structure of the field. Also, many arguments form Galois
cohomology and from the study of Galois representations suggest that
one should focus on pro-p quotient (cf. [BT12, Introduction]).

In particular, the Bloch-Kato conjecture has the following corollary:
if the field K contains a primitive p-th root of unity (and usually one
should assume that

√
−1 lies in K, if p = 2), then the Galois symbol

induces the isomorphisms of (non-negatively) graded Fp-algebras

(0.2)
KM• (K)

p.KM• (K)
' H• (GK , µp) ' H• (GK(p),Fp) ,

where the finite field Fp is a trivial GK(p)-module, and H• denotes the
cohomology ring, equipped with the cup product. Since the Milnor K-
ring KM• (K) is a quadratic algebra – i.e., a graded algebra generated by
elements of degree one and whose relations are generated in degree two.

3Note that every pro-p-Sylow subgroup of an absolute Galois group, i.e., every
absolute Galois group which is pro-p, is also the maximal pro-p quotient of itself,
thus the class of maximal pro-p Galois groups is more general than the class of
absolute Galois pro-p groups, and every result which holds for maximal pro-p Galois
groups, holds also for absolute Galois groups which are pro-p.

3



also the Fp-cohomology ring of the maximal pro-p Galois group GK(p)
is a quadratic algebra over the field Fp This provides the inspiration for
the definition of a Bloch-Kato pro-p group: a pro-p group such that
the Fp-cohomology ring of every closed subgroup is quadratic. Bloch-
Kato pro-p groups were first introduced in [BCMS], and then defined
and studied in [Qu14].

Another tool to study maximal pro-p Galois group is provided by
the cyclotomic character, induced by the action of the absolute Galois
group GK on the roots of unity lying in K̄sep: in the case K contains
µp, then the cyclotomic character induces a continuous homomorphism
from the maximal pro-p Galois group GK(p) to the units of the ring of
p-adic integers Z×p , called the arithmetic orientation of GK(p).

Thus, a continuous homomorphism of pro-p groups θ : G → Z×p
is called an orientation for G, and if G is a Bloch-Kato pro-p group
and certain conditions on the induced Tate-twist module Zp(1) are
satisfied, the orientation is said to be cyclotomic (in particular, the
group H2(G,Zp(1)) has to be torsion-free, see Subsection 2.4.2), and
the group G is said to be cyclo-oriented. Cyclo-oriented pro-p groups
are a generalization of maximal pro-p Galois groups; we may say that
they are “good candidates” for being realized as maximal pro-p Galois
groups, as they have the right cohomological properties.

For a pro-p group G with cyclotomic orientation θ such that either
im(θ) is trivial or im(θ) ' Zp – which is always the case if p 6= 2 – one
has an epimorphism of graded Fp-algebras

(0.3)
∧
• (H1(G,Fp)) // // H•(G,Fp) ,

i.e., the Fp-cohomology ring of G is an epimorphic image of the exterior
algebra over Fp generated by the grup H1(G,Fp).

If G is finitely generated, then we are given two bound-cases: when
the morphism (0.3) is trivial and when it is an isomorphism. The
former case is precisely the case of a free pro-p group, in the latter case
the group is said to be θ-abelian. One may represent this situation
with the picture below.4

4I displayed this picture the first time in a talk during a workshop organized
at the Technion, Haifa, in honor of Prof. J. Sonn.
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In fact, from the “mountain” side it is possible to recover the full
structure of the group G, and also the arithmetic of the base field, in
the case G is a maximal pro-p Galois group, as stated by the following
theorem (see Theorem 3.12 and Theorem 3.18).

Theorem 0.2. Let G be a finitely generated cyclo-oriented pro-p
group. Then the following are equivalent:

(1) the epimorphism (0.3) is an isomorphism;
(2) the cohomological dimension of G is equal to the minimal num-

ber of generators of G;
(3) G has a presentation

G =
〈
σ, τ1, . . . , τd

∣∣∣ στiσ−1 = τ 1+pk

i , τiτj = τjτi ∀ i, j = 1, . . . , d
〉

with d ≥ 1 and k ∈ N ∪ {∞} such that im(θ) = 1 + pkZp.
Moreover, if G is the maximal pro-p Galois group of a field K contain-
ing a primitive p-th root of unity, the above conditions hold if, and only
if, K is a p-rigid field, i.e., K has a p-Henselian valuation of rank d.

This last point has particular relevance, since there is much interest
in construction of non-trivial valuations of fields. Such constructions
became particularly important in recent years in connection with the
so-called birational anabelian geometry, (cf. [BT12], [Po94]). This line
of research originated from ideas of A. Grothendieck and of J. Neukirch:
as stated, the goal is to recover the arithmtic structure of a field from its
various canonical Galois groups. The point is that usually the first step
is to recover enough valuations from their cohomological “footprints”.

The “mountain-case” is discriminant for Bloch-Kato pro-p groups
also in the sense specified by the following Tits alternative-type result
(see Theorem 3.3).

5



Theorem 0.3. Let G be a Bloch-Kato pro-p group. Then either the
epimorphism (0.3) is an isomorphism, or G contains a free non-abelian
closed subgroup.

Thus, every Bloch-Kato pro-p group which is floating in the “un-
charted sea” contains a trace from the West shore. On the other hand,
it is possible to generalize the situation of θ-abelian groups in the fol-
lowing way. Set the θ-centre of a cyclo-oriented pro-p group G to be
the (normal) subgroup

(0.4) Zθ(G) =
{
τ ∈ ker(θ)

∣∣ στσ−1 = τ θ(σ) for all σ ∈ G
}

Then Zθ(G) is the maximal abelian normal subgroup of G (cf. Propo-
sition 4.18), and the short exact sequence

(0.5) 1 // Zθ(G) // G // G/Zθ(G) // 1

splits (cf. Theorem 4.13). Note that in the case of a θ-abelian group,
one has Zθ(G) = ker(θ), and the short exact sequence (0.5) clearly
splits, as the presentation in Theorem 0.2 provides an explicit comple-
ment of the θ-centre in G. And as in Theorem 0.2, the θ-centre of a
maximal pro-p Galois group detects the existence of non-trivial valua-
tions, and its presence can be deduced also from the cohomology ring
(cf. Theorem 4.19).

Theorem 0.4. Let K be a field containing a primitive p-th root of
unity, with maximal pro-p Galois group GK(p) equipped with arithmetic
orientation θ : GK(p)→ Z×p . The following are equivalent:

(1) the θ-centre of GK(p) is non-trivial;
(2) the Fp-cohomology ring of GK(p) is the skew-commutative ten-

sor product of an exterior algebra with a quadratic algebra;
(3) the field K has a p-Henselian valuation of rank equal to the

rank of Zθ(G) as abelian pro-p group.

The above result is particularly relevant for the importance of being
able to find valuations, as underlined above. Indeed, with Theorem 0.4
we come full circle, as it completes the picture with the results con-
tained in [EK98] and [Ef06]. Also, it shows that cyclotomic orienta-
tions provide an effective way to express such results.

It is possible to go a bit further, in order to see how the existence of
a cyclotomic orientation for a pro-p group affects the structure of the
whole group. For example, we show that the torsion in the abelianiza-
tion of a finitely generated pro-p group with cyclotomic orientation is

6



induced by the “cyclotomic action” of the group (cf. Theorem 4.25).
Note that the existence of a cyclotomic orientation is a rather restrictive
condition: for example, certain free-by-Demushkin groups cannot be
equipped with a cyclotomic orientation, as shown in Subsection 4.2.1.

Given a pro-p group G, one may associate to G another graded Fp-
algebra, besides the Fp-cohomology ring: the graded algebra gr•(G) in-
duced by the augmentation ideal of the completed group algebra Fp[[G]].

In many relevant cases – such as free pro-p groups, Demushkin
groups, θ-abelian groups – the Fp-cohomology ring and the graded al-
gebra of a maximal pro-p Galois group happen to be related via Koszul
duality of quadratic algebra, and both algebras are Koszul algebras
(for the definition of Koszul dual of a quadratic algebra see Defini-
tion 17, and for the definition of Koszul algebra see Definition 19).

Moreover, one has that if the relations of G satisfy certain “rea-
sonable” conditions, then H•(G,Fp) and gr•(G) are Koszul dual (cf.
Theorem 5.12). Thus, we conjecture that if K is a field containing a
primitive p-th root of unity with finitely generated maximal pro-p Ga-
lois group GK(p), then Fp-cohomology ring and the graded algebra of
GK(p) are Koszul dual, and also that both algebras are Koszul algebras
(cf. Question 4).

Here we study the graded algebra gr•(G) of a pro-p group G via
the restricted Lie algebra induced by the Zassenhaus filtration of G.
The study of the graded algebras induced by filtrations of pro-p groups
has gained much interest recently, in particular the algebras induced
by the Zassenhaus filtration, as well as the algebras induced by the p-
descending central series (see [La70, La85, La06], [MSp96], [CM08,
CEM]). For example, we prove the following result (Theorem 3.19),
the proof of which uses indeed the Zassenhaus filtration of G, which
generalizes [CMQ, Theorem A]:

Theorem 0.5. It is possible to detect whether a finitely generated
Bloch-Kato pro-p group G is θ-abelian from the third element of its
p-descending central series.

Also, the Zassenhaus filtration is proving to be closely related to
Massey products, which have shifted from their original field of ap-
plication (topology) toward number theory: see [Gä11], [Ef14] and
[MT14].

Albeit we have still only a glimpse of the structure of maximal pro-
p Galois groups but in few specific cases (such as the two shores of
the picture) there is a conjecture which states how a finitely generated

7



maximal pro-p Galois group should look like, the so called Elementary
Type Conjecture (or ETC). Formulated first by I. Efrat in [Ef97b],
the ETC states that finitely generated maximal pro-p Galois groups
have a rather rigid structure: namely, they can be built starting from
“elementary blocks” such as Zp and Demushkin groups, via rather easy
group-theoretic operations, such as free pro-p products and cyclotomic
fibre products (defined in Definition 15).

The only evidences we have for this conjecture are:

(1) we have no counterexamples;
(2) it seems “just” it should be so;

which are not very strong. Yet, we show that all the classes of pro-
p groups we study – Bloch-Kato pro-p groups, cyclo-oriented pro-p
groups, Koszul duality groups and Koszul groups –, which are kind of
generalizations of maximal pro-p Galois groups, are closed with respect
to free pro-p products and cyclotomic fibre products, and this provides
at least more sense to this conjecture.

Therefore, the aim of this thesis is to show that our approach to-
ward Galois theory via the cohomology of maximal pro-p Galois groups
(in particular studying Bloch-Kato pro-p groups and cyclotomic orien-
tations) is particularly powerful and effective, as indeed it provides new
consistent knowledge on maximal pro-p Galois groups, and it promises
to bring more results in the future.

The thesis is structured in the following chapters:

(1) The first introductory chapter presents the theoretical back-
ground of the thesis. In particular, it introduces some prelim-
inaries on pro-p groups, together with cohomology of profinite
groups, Galois cohomology and restricted Lie algebras.

(2) First we introduce quadratic algebras and their properties.
Then we present the Bloch-Kato conjecture, and we define
Bloch-Kato pro-p groups and cyclo-oriented pro-p groups. Here
we explore the first properties of these groups – for example,
we prove an Artin-Schreier-type result for cyclo-oriented pro-p
groups (cf. Corollary 2.14). Also, we introduce Demushkin
groups and the ETC.

(3) Here we study the “mountain side” of cyclo-oriented pro-p
groups, i.e., θ-abelian groups. We study the cup produt of
such groups and we prove Theorem 0.3. In order to describe

8



the group structure of θ-abelian groups we study locally pow-
erful pro-p groups, and we show that the two classes of group
coincides (cf. Theorem 3.12). In order to explain the “arith-
metic role” of θ-abelian groups we introduce p-rigid fields, and
we prove Theorem 0.2. Then we compute the Zassenhaus fil-
tration for such groups and we prove Theorem 0.5. Part of the
content of this chapter is published in [Qu14] and [CMQ].

(4) In the fourth chapter we study free products and cyclotomic
fibre products of cyclo-oriented pro-p groups. In particular,
we show that (0.5) splits and we prove Theorem 0.4. Also, we
show that the defining relations of a finitely generated cyclo-
oriented pro-p group which induce torsion in the abelianization
are induced by the cyclotomic action of the orientation (cf.
Theorem 4.25). Part of the material contained in this chapter
is being developed in [QW2].

(5) First we define the koszul dual of a quadratic algebra, and we
study Koszul duality for cyclo-oriented pro-p groups. Then we
define Koszul algebras. Part of the material contained in this
chapter is being developed in [MQRTW].
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CHAPTER 1

Preliminaries

1. Group cohomology and Galois cohomology

Throughout the whole thesis, subgroups are assumed to be closed
with respect to the profinite topology, and the generators are assumed
to be topological generators (i.e., we consider the closed subgroup gen-
erated by such elements).

1.1. Cohomology of profinite group. We recall briefly the con-
struction of the cohomology groups for profinite groups, and the prop-
erty we will use further. We refer mainly to [NSW, Ch. I].

Let G be a profinite group.

Definition 1. A topological G-module M is an abelian Haus-
dorff topological group which is an abstract G-module such that the
action

G×M −→M

is a continuous map (with G×M equipped with the product topology).

For a closed subgroup H ≤c G, we denote the subgroup of H-
invariant elements in M by MH , i.e.

MH = {m ∈M | h.m = m for all h ∈ H } .

Assume now that M is a discrete module. For every n ≥ 1, let
G×n be the direct product of n copies of G. For a G-module M , define
Cn(G,M) to be the group of (inhomogeneous) cochains of G with
coefficients in M , i.e., Cn(G,M) is the abelian group of the continuous
maps G×n →M , with the group structure induced by M . (Note that,
if M is discrete, then a continuous map from G×n to M is a map which
is locally constant.) Also, define C0(G,M) = M .
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The n+ 1-coboundary operator ∂n+1 : Cn(G,M)→ Cn+1(G,M) is
given by

∂1a(g) = g.a− a for a ∈M

∂2f(g1, g2) = g1.f(g2)− f(g1g2) + f(g1), f ∈ C1(G,M)

...

∂n+1f(g1, . . . , gn+1) = g1.f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn) for f ∈ Cn(G,M).

Then one sets Zn(G,M) = ker(∂n+1), called the group of (inhomoge-
neous) n-cocycles, and Bn(G,M) = im(∂n), called the group of (inho-
mogeneous) n-coboundaries.

Definition 2. For n ≥ 0, the quotient

Hn(G,M) = Zn(G,M)/Bn(G,M)

is called the n-th cohomology group of G with coefficients in the
G-module M .

One has the following facts:

Fact 1.1. (i) The 0-th cohomology group of a profinite group
G with coefficients in M is the subgroup of G-invariant ele-
ments, i.e.,

H0(G,M) = MG.

In particular, if G acts trivially on M , one has H0(G,M) =
M .

(ii) The 1-cocycles are the continuous maps f : G→M such that

f(g1g2) = f(g1) + g1.f(g2) for every g1, g2 ∈ G.

They are also called crossed homomorphisms. The 1-coboundaries
are the continuous maps a : G → M such that a(g) = g.a − a
for every g ∈ G. In particular, if G acts trivially on M , one
has

H1(G,M) = Hom(G,M),

where Hom(G,M) is the group of (continuous) group homo-
morphisms from G to M .

12



The following proposition states a fundamental property of group
cohomology (cf. [NSW, Theorem 1.3.2]).

Proposition 1.2. For an exact sequence 0 → A → B → C → 0
of G-modules, one has connecting homomorphisms

δn : Hn(G,C) −→ Hn+1(G,A)

for every n ≥ 0, such that

· · · // Hn(G,A) // Hn(G,B) // Hn(G,C)
δn

// Hn+1(G,A) // · · ·

is a long exact sequence.

Also, the following result states the behavior of low-degree co-
mology with respect of normal subgroups and quotients (cf. [NSW,
Prop. 1.6.7]).

Proposition 1.3. Let N be a normal closed subgroup of G. Then
one has an exact sequence

0 // H1(G/N,AN)
inf1

G,N

// H1(G,A)
res1

G,N

// H1(N,A)G EDBC tgG,N

GF@A
// H2(G/N,AN)

inf2
G,N

// H2(G,A)

called the five term exact sequence. The map tgG,N is called transgres-
sion.

Let A,B,C be G-modules with bilinear pairings

(1.1) A×B −→ A⊗Z B −→ C.

Then (1.1) induces the map

Hn(G,A)×Hm(G,B)
∪

// Hn+m(G,C)

called the cup-product, which has a very important role in the Bloch-
Kato conjecture, as we shall see later. The cup-product has the follow-
ing property (cf. [NSW, Prop. 1.4.4]).
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Proposition 1.4. The cup-product is associative and skew-commutative,
i.e., for α ∈ Hn(G,A), β ∈ Hm(G,B) and γ ∈ Hh(G,C), one has

(α ∪ β) ∪ γ = α ∪ (β ∪ γ) and α ∪ β = (−1)nmβ ∪ α,

with the identifications

(A⊗B)⊗ C = A⊗ (B ⊗ C) and A⊗B = B ⊗ A.

Remark 1.5. In the case the G-module is a ring k such that k ⊗Z
k = k (e.g., k = Z,Fp), the cup product makes the cohomology of G
with M -coefficients a graded-commutative k-algebra.

For a profinite group G the first Bockstein homomorphism

(1.2) β1 : H1(G,Fp) // H2(G,Fp)

is the connecting homomorphism arising from the short exact sequence
of trivial G-modules

0 // Z/pZ
p

// Z/p2Z // Z/pZ // 0.

In the case p = 2, the first Bockstein morphism is related to the cup
product in the following way (cf. [EM11, Lemma 2.4]).

Lemma 1.6. Let G be a profinite group. Then, for every χ ∈
H1(G,F2) one has β1(χ) = χ ∪ χ.

1.2. Continuous cohomology. Fix a profinite group G. The
complete group algebra of G over Zp is the topological inverse limit

Zp[[G]] = lim←−
UCoG

Zp[G/U ],

where U runs through the open normal subgroups of G, and Zp[G/U ]
is the group algebra defined in the usual way for finite groups. Then
Zp[[G]] is a compact Zp-algebra. Thus, if M is a topological G-module
which is also a (continuous) Zp-module, then M is a topological Zp[[G]]-
module.

Let Qp be the field of p-adic numbers. Then the embedding Zp ⊆ Qp

induces a short exact sequence

(1.3) 0 −→ Zp −→ Qp −→ Ip −→ 0

14



which defines the discrete Zp-module Ip. In particular, Zp and Ip can
be considered as topological Zp[[G]]-modules, the former complete and
the latter discrete, with the topology inherited from Qp. An essential
tool for working with profinite groups and Zp-modules is Pontryagin
duality.

Definition 3. Let M be a Hausdorff, abelian and locally compact
Zp-module (e.g., a pro-p group, a compact Zp-module or a discrete
Zp-module). We call the group

M∨ = Homcts(M, Ip)

the Pontryagin dual of M .

For every Zp module M , one has (M∨)∨ = M . In particular, if
M is a compact Zp-module, then M∨ is a discrete Zp-module, and
conversely. Thus, Pontryagin duality induces an equivalence (of cate-
gories) between the two categories of compact Zp-modules and discrete
Zp-modules.

For a profinite group G, the category of compact Zp[[G]]-modules
has sufficiently many projectives, and the category of discrete Zp[[G]]-
modules has sufficiently many injectives. Hence, it is possible to define
Ext-functors for the two categories in the usual way – see [Br66],
[NSW, § V.2]) and [SW00]. Then, one has the following result.

Proposition 1.7. For continuous Zp[[G]]-module N , one has the
isomorphisms

Hn(G,N) ' ExtnZp[[G]](Zp, N)

for every n ≥ 0 Moreover, if N is discrete, one has the canonical
isomorphisms

Hn(G,N∨) ' Hn(G,N)∨.

For a detailed exposition on continuous cohomology of profinite
groups (which would go far beyond the aims of this thesis) see the
aforementioned works by A. Brumer, by J. Neukirch and by P. Symonds
and Th. Weigel. For a brief introduction to cohomology and homology
of profinite groups, see also [Ri13, § 3.4-7].

For a (topologically) finitely generated torsion-free Zp[[G]]-module
M , one has also the following property. Set V = Qp ⊗Zp M and N =
Ip⊗ZpM . In particular, V is a Qp-vector space of finite dimension, and
N is a discrete divisible p-primary torsion group, and (1.3) induces the
short exact sequence

(1.4) 0 // M // V // N // 0.
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Then one has the following result (cf. [Ta76, Prop. 2.3] and [NSW,
Prop. 2.7.11]).

Proposition 1.8. For every n ≥ 0 one has isomorphisms

Hn(G, V ) ' Hn(G,M)⊗Zp Qp,

and in the exact cohomology induced by (1.4), the kernel of the bound-
ary homomorphism δn : Hn−1(G,N) → Hn(G,M) is the maximal di-
visible Zp-submodule of Hn−1(G,N), and its image is the torsion Zp-
submodule of Hn(G,M).

Definition 4. The cohomological dimension cd(G) of a profinite
group G is the least non-negative integer n such that

Hm(G,M) = 0 for all m > n

and for every discrete G-module M which is a torsion abelian group,
and it is infinite if no such integer exists.

If G is a pro-p group, then cd(G) ≤ n if, and only if Hn+1(G,Fp) =
0, where Fp is a trivial G-module.

2. Preliminaries on pro-p groups

Let G be a profinite group, and let m be a positive integer. We
define Gm and [G,G] to be the closed subgroups of G generated by the
m-th powers of G, resp. by the commutators1 of G. I.e.,

Gm = 〈gm |g ∈ G〉 ≤c G and [G,G] = 〈[g1, g2] |g1, g2 ∈ G〉 ≤c G.

Definition 5. Let G be a profinite group.

(i) A subset X of G is said to be a system of (topological) gen-
erators of G if the closed subgroup of G generated by X is G
itself. Moreover, the system X is said to be minimal if any
proper subset of X generates a proper subgroup of G.

(ii) The group G is finitely generated if it has a generating system
which is a finite subset. The minimal number of generators of
G – i.e., the (finite) cardinality of a minimal generating system

1We use the left notation for the conjugation of group elements: namely,

xy = xyx−1 and [x, y] = xy · y−1 = xyx−1y−1.
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X of G – will be denoted by d(G), and sometimes it will be
called the “dimension” of G.2

(iii) Let F be a free profinite group. A short exact sequence of
profinite groups

(1.5) 1 // R // F
π

// G // 1 ,

is called a presentation of G. The the elements R are called
the relations of G, and the generators of R as (closed) normal
subgroup of F are called defining relations of G. If G is finitely
generated, then the presentation (1.5) is said to be minimal
if d(F ) = d(G). Moreover, if the minimal number of genera-
tors of R as normal subgroup is finite, then it is denoted by
r(G), and G is said to be finitely presented. In particular, it is
possible to present explicitly G in the following way:

G = 〈x ∈ X | ρ = 1, ρ ∈ R〉,

with R ⊂ R a minimal system of defining relations. Finally,
if G is a pro-p group, then

(1.6) r(G) = dimFp
(
H2(G,Fp)

)
(cf. [NSW, Prop. 3.9.5]).

(iv) The rank of G is defined by

rk(G) = sup{d(C) | C ≤c G} = sup{d(C) | C ≤o G}

(see [DdSMS, § 3.2]).

2.1. Filtrations of pro-p groups. Recall that the terms of the
lower central series are defined by

γ1(G) = G, γ2(G) = [G,G], . . . γi(G) = [γn−1(G), G]

for every i ≥ 1.
The Frattini subgroup Φ(G) of a profinite group G is the intersection

of all the maximal proper open subgroups of G. The Frattini subgroup
of G is a closed subgroup, and if X ⊂ G is a system of generators of
G, then XΦ(G)/Φ(G) generates G/Φ(G) (cf. [DdSMS, Prop. 1.9]).
Note that if (1.5) is a minimal presentation of G, then R ⊆ Φ(F ).

2Following the notation of [DdSMS]: indeed this makes sense in the case of
analytic pro-p groups.
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If G is a pro-p group, then one has the following (cf. [DdSMS,
Prop. 1.13]).

Proposition 1.9. If G is pro-p, then

Φ(G) = Gp[G,G],

and the quotient group G/Φ(G) is a Fp-vector space. In particular, G
is finitely generated if, and only if, G/Φ(G) has finite dimension as
Fp-vector space, and d(G) = dim(G/Φ(G)).

The p-descending central series of a pro-p group is a sort of
“p-refinement” of the central series, and it is defined by

λ1(G) = G, λ2(G) = Φ(G), . . . λi+1(G) = λi(G)p [G, λi(G)] ,

for every i ≥ 1.

Remark 1.10. In [DdSMS] the notation Pi(G) is used instead
of λi(G), and D. Segal informally refers to this series as “the pigs
series”. Other authors, as I. Efrat and J. Mináč, use the notation G(i)

instead of λi(G) (see [CEM, CMQ, EM11]). Finally, authors from
the “Neukirch’s school” use the notation Gi instead of λi(G), and Gi

instead of γi(G) (see [NSW, § III.8] and [Gä11]).

The p-descending central series has the following properties.

Proposition 1.11. Let G be a pro-p group.

(i) [λi(G), λj(G)] ≤ λi+j(G) for all i, j ≥ 1.
(ii) If G is finitely generated then λi(G) is open for every i ≥ 1,

and the set {λi(G), i ≥ 1} is a basis of neighbourhoods of 1 ∈
G.

The Zassenhaus filtration of an arbitrary group G (not neces-
sarily a pro-p group) is the descending series defined by D1(G) = G
and

Di(G) = Ddi/pe(G)p
∏
j+h=i

[Dj(G), Dh(G)]

for every i ≥ 1, where di/pe is the least integer m such that pm ≥ i.
This series is also called Jennings filtration and the groups Di(G) are
called dimension subgroups of G in characteristic p. Note that if G is
pro-p, then D2(G) = Φ(G). Such series has the following properties
(cf. [DdSMS, § 11.1]).
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Proposition 1.12. (i) For each i, j ≥ 1, one has

[Di(G), Dj(G)] ≤ Di+j(G) and Di(G)p ≤ Dpi(G),

and it is the fastest descending series with these properties.3

(ii) For each i ≥ 1, one has the formula

(1.7) Di(G) =
∏
jph≥i

γj(G)p
h

,

due to M. Lazard.
(iii) If G is a finitely generated pro-p group, then G has finite rank

if, and only if, Di(G) = Di+1(G) for some i ≥ 1 (this result is
due to M. Lazard and D. Riley).

3. Restricted Lie algebras

Unless stated otherwise, if L is a Lie algebra (over an arbitrary
commutative ring), we denote by ( , ) : L × L → L its Lie bracket,
and for v ∈ L the notation

ad(v) : L −→ L, w 7−→ (v, w)

denotes the adjoint endomorphism. Throughout this section, let F
denote a field of characteristic p > 0.

Definition 6. A restricted Lie algebra over F is a F-Lie algebra L
equipped with a map

[p] : L −→ L

satisfying the following properties:

(i) (av)[p] = apv[p], with a ∈ F and v ∈ L;

(ii) (v + w)[p] = v[p] + w[p] +
∑p−1

i=1
si(v,w)

i
, where v, w ∈ L, and the

si(v, w) denote the coefficients of λi−1 in the formal expression
ad(λv + w)p−1(v);

(iii) ad(v[p]) = ad(v)p, with v ∈ L.

In fact it is possible to see a restricted Lie algebra over F as a
subalgebra of a F-algebra. For any associative F-algebra A, let AL be
the induced Lie algebra, i.e., AL = A and

(a, b) = ab− ba for all a, b ∈ A.
3Namely, if {D̃i(G)} is another descending series satisfying these two properties,

then D̃i(G) ⊇ Di(G) for every i ≥ 1.
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A Lie subalgebra L of AL is said to be restricted if ap ∈ L for every a ∈
L. Equivalently, a F-Lie algebra L together with a unitary operation

[p] is said to be restricted if there exists an associative F-algebra A
and a Lie algebras monomorphisms ι : L→ AL such that

ι
(
a[p]
)

= ι(a)p for every a ∈ L.

The pair (A, ι) is called a restricted envelope for L.
An ideal r of a restricted Lie algebra L is an ideal of the under-

lying Lie algebra of L which is also closed under the operation [p].
Thus the quotient L/r is again a restricted F-Lie algebra. A homo-
morphism of restricted Lie algebras is a homomorphism of Lie algebras
that commutes with the operations [p].

Definition 7. Let L be a restricted Lie algebra over F. An asso-
ciative F-algebra Up(L) equipped with a monomorphism of restricted
Lie algebras

(1.8) ψL : L −→ Up(L)

is called universal restricted envelope of L, if it is a restricted
envelope for L and it satisfies the usual universal property: for any
restricted Lie algebras homomorphism φ : L→ BL, with B a F-algebra,
there exists a unique F-algebra homomorphism φ̃ : Up(L) → B such

that φ̃ ◦ ψL = φ.

For every restricted Lie algebras there exists a unique universal re-
stricted envelope [Gä11, Prop. 1.2.4], and the morphism ψL is injective
[Gä11, Prop. 1.2.5].

Free restricted Lie algebras over F are defined via the usual prop-
erty. It is possible to construct such a restricted Lie algebra as follows.
Given a set of indeterminates X = {Xi, i ∈ I}, let F〈X 〉 be the free
associative F-algebra on X , and let L be the restricted subalgebra of
F〈X 〉L generated by X . Then L is the free restricted F-Lie algebra
with free generating set X , denoted by Lp(X ). In particular, one has
the following (cf. [Gä11, Prop. 1.2.7]).

Proposition 1.13. The restricted universal envelope of the free re-
stricted Lie algebra Lp(X ) is the algebra F〈X 〉, via the monomorphism
which sends every Xi to itself.
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3.1. The restricted Lie algebra induced by the Zassenhaus
filtration. We are interested in restricted Lie algebras, as the Zassen-
haus filtration of a pro-p group induces a structure of restricted Lie
algebra over Fp. Indeed, given a pro-p group put

Li(G) = Di(G)/Di+1(G) and L•(G) =
∞⊕
i=1

Li(G)

for i ≥ 1. Then every Li(G) is a Fp-vector space, and the graded space
L•(G) comes equipped with two further operations. Let v ∈ Li(G),
v = xDi+1(G), and w ∈ Lj(G), w = yDj+1(G), for some x, y ∈ G.
Then one may define

(v, w) = [x, y]Di+j+1 ∈ Li+j(G),

v[p] = xpDpi+1 ∈ Lpi(G),

which make L•(G) a restricted Lie algebra over Fp (cf. [DdSMS,
Theorem 12.8.(i)]).

Moreover, the restricted Fp-Lie algebra L•(G) of a pro-p group G
is thightly related to the group algebra Fp[G]. Let ωFp[G] be the aug-
mentation ideal of Fp[G] (i.e., ωFp[G] is the two-sided ideal of Fp[G]
generated by the elements x− 1, with x ∈ G), and put

gr1(G) = Fp[G]/ωFp[G] ' Fp, gri+1(G) = ωiFp[G]/ω
i+1
Fp[G],

gr•(G) =
∞⊕
i=1

gri(G)

for i ≥ 1. Then every gri(G) is a Fp-vector space, and gr•(G) is a
graded associative Fp-algebra. Then one has the following result, due
to S. Jennings (cf. [DdSMS, Theorems 12.8-12.9]).

Theorem 1.14. Let ϑ : L•(G)→ gr•(G) be the morphism of graded
Fp-algebras defined by

ϑ(xDi+1) = (x− 1) + ωi+1
G , for xDi+1 ∈ Li(G), i ≥ 1.

Then ϑ is a monomorphism of restricted Lie algebras, and gr•(G) is
the universal restricted envelope of L•(G). In particular, one has

Di(G) = (1 + ωiG) ∩G

for every i ≥ 1.
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Let x be an element of G, and let i ≥ 1 such that x ∈ Di(G) r
Di+1(G). Then the image x̄ of x in the quotient Di(G)/Di+1(G) is said
to be the initial form of x in L•(G) (and in gr•(G)).

Remark 1.15. The restricted Lie algebra L•(G) of a pro-p group G
and the restricted envelope gr•(G) are to be intended as “linearizations”
of the group itself: since Lie algebras and associative algebras are easier
to handle than groups, they are supposed to provide new tools to study
pro-p groups.

3.2. Restricted Lie algebras of free groups. The class of pro-
p groups for which the induced restricted Lie algebras are best under-
stood are free pro-p groups. Let F be a finitely generated free pro-p
groups with minimal generating system {x1, . . . , xd}, with d = d(F ),
and let X = {X1, . . . , Xd} be a set of non commutative indeterminates.
Then one has the following (cf. [Gä11, Theorem 1.3.8]).

Theorem 1.16. Let F be a finitely generated free pro-p group, and
let X be as above, with d = d(F ). The restricted Lie algebra over Fp
induced by the Zassenhaus filtration of F is free, i.e., one has

L•(F )
∼−→ Lp(X ), x̄i 7−→ Xi

for every i = 1, . . . , d, where x̄i ∈ L1(F ) is the initial form of xi.

In particular, by Proposition 1.13 and Theorem 1.14, the graded
algebra gr•(F ) is isomorphic to the algebra Fp〈X 〉, considered with the
grading induced by the degree of the monomials.

Remark 1.17. Let Fp〈〈X 〉〉 be the Magnus algebra, i.e., the Fp-
algebra of formal series on the non-commutative indeterminates X . It
is well known that one has a continuous isomorphisms Fp[[F ]] ' Fp〈〈X 〉〉
given by xi 7→ 1 + Xi for every i = 1, . . . , d(F ). Then the powers of
the augmentation ideal ωFp[[F ]] of Fp[[F ]], and the powers of the ideal
〈X1, . . . , Xd(F )〉 of the Magnus algebra induce an isomorphism of graded
Fp-algebras gr•(F ) ' Fp〈X 〉 given by x̄i 7→ Xi for every i = 1, . . . , d(F ).

One has also the following useful property (cf. [Gä11, Prop. 1.2.6])

Proposition 1.18. Let L be a restricted F-Lie algebra and let r C L
be an ideal. Let R denote the left ideal of Up(L) generated by ψL(r)
Then R is a two-sided ideal and the canonical epimorphism L � L/r
induces an exact sequence

0 // R // Up(L) // Up(L/r) // 0 .
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4. Cohomology of Galois groups and Kummer theory

Fix a field K, and let L/K be a Galois extension of fields. Then
the multiplicative group L× is a module of the Galois group Gal(L/K).
The celebrated Hilbert’s Satz 90 (Noether’s version) states that the first
cohomology group of Gal(L/K) with coefficients in L× is trivial, i.e.,

(1.9) H1
(
Gal(L/K), L×

)
= 1.

Given a field K and a positive integer m, let µm = µm(K) be the group
of the roots of unity of order m contained in K, namely,

µm(K) =
{
ζ ∈ K× | ζm = 1

}
.

Thus, one has the short exact sequence of GK-modules

(1.10) 1 // µm(K̄sep) // (K̄sep)×
m

// (K̄sep)× // 1,

which induces the exact sequence in cohomology

K×
m−→ K× −→ H1

(
GK , µm(K̄sep)

)
−→ H1

(
GK , (K̄

sep)×
)

= 0,

and hence an isomorphism K×/(K×)m ' H1(GK , µm(K̄sep)). In par-
ticular, assume that the field K contains a primitive mth-root of unity,
i.e., µm(K̄sep) ⊆ K. Then µm is a trivial GK-module which is isomor-
phic to Z/mZ. This yields the isomorphism

(1.11) φK :
K×

(K×)m
∼

// H1 (GK ,Z/mZ) = Hom (GK ,Z/mZ) ,

where the equality follows from Fact 1.1, called the Kummer isomor-
phism. In particular, fix an isomorphism of G-modules µm ' Z/mZ.
Then one has

(1.12) φK(ā)(σ) =
σ ( m
√
a)

m
√
a
∈ µm,

with ā = a mod (K×)m (cf. [CMQ, (3.1)]).
Now let K(p) be the p-closure of K, i.e., K(p)/K is the maximal

p-extension of K, and let GK(p) = Gal(K(p)/K) be the maximal pro-p
Galois group of K. Assume that K contains all the roots of unity of
p-power order. Then Hilbert’s Sats 90 holds for the extension K(p)/K,
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and (1.12), together with a fixed isomorphism of trivial GK(p)-modules
µp ' Fp, yields an isomorphism

(1.13) K×/(K×)p ' H1(GK(p),Fp)

Recall from Proposition 1.9 that for a pro-p group G, the quotient
G/Φ(G) is a Fp-vector space. Then one has the following (cf. [NSW,
Prop. 3.9.1]).

Corollary 1.19. Let G be a pro-p group. Then the cohomology
group H1(G,Fp) is the Pontryagin dual of the quotient G/Φ(G), i.e.,

(1.14) H1(G,Fp) = Hom(G,Fp) = Hom(G/Φ(G), Ip) = (G/Φ(G))∨,

and the groups H1(G,Fp) and G/Φ(G) are isomorphic as (discrete)
Fp-vector spaces. In particular, if G is finitely generated, then

dimFp(H
1(G,Fp)) = dimFp(G/Φ(G)) = d(G).

Thus, if X = {xi, i ∈ I} ⊂ G is a minimal system of generators of
G, the dual X ∨ is a basis for H1(G,Fp), with X ∨ = {χi, i ∈ I} such
that χi(xj) = δij for every i, j ∈ I. Therefore, the isomorphisms (1.13)
and (1.14) yield the isomorphism of discrete Fp-vector spaces

K×/(K×)p ' GK(p)/Φ (GK(p))

(with K satisfying the above conditions). Hence, if {ai, i ∈ I} ⊂ K×r
(K×)p is a set of representatives of K×/(K×)p, one has the minimal
generating sistem X of GK(p) such that

(1.15)
xj( p
√
ai)

p
√
ai

=

{
ζ if i = j
1 if i 6= j

with ζ ∈ K a fixed primitive p-th root of unity, and the dual basis
X ∨ ⊂ H1(GK(p),Fp).

Finally, one has this classic result (see also [Ge13, § 3.6] and
[BT12, § 3]).

Proposition 1.20. Assume K contains a primitive p-th root of
unity, and let K( p

√
K) = K( p

√
a, a ∈ K). Then K( p

√
K)/K is Galois,

and it is the compositum of all finite cyclic extensions of K of degree
p. Its Galois group is

Gal
(
K(

p
√
K)/K

)
= GK(p)/Φ(GK(p)) '

(
K×/(K×)p

)∨
,

i.e., GK( p
√
K) = Φ(GK(p)).

24



One has an arithmetical interpretation also for the second cohomol-
ogy group of a Galois group. Indeed, for a Galois extension L/K one
has canonical isomorphisms

H2(Gal(L/K), L̄×)
∼

// Br(L/K) ,

where Br(L/K) is the Brauer group of L/K (cf. [NSW, Theorem 6.3.4]).
In particular, one has H2(GK , (K̄

sep)×) ' Br(K), with Br(K) the
Brauer group of K. Thus, for a positive integer m the short exact
sequence (1.10), together with Hilbert’s Satz 90, induces the exact se-
quence in cohomology

0 // H2(GK , µm) // Br(K)
m

// Br(K) ,

which implies the following.

Corollary 1.21. Let m be a positive integer such that the char-
acteristic of K does not divide m. Then H2(GK , µm) is (canonically)
isomorphic to Brm(K), the subgroup of the Brauer group of K of ex-
ponent m.
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CHAPTER 2

The Bloch-Kato conjecture

1. Quadratic algebras

Fix a ring R, and let A• be a non-negatively graded R-algebra, i.e.,
A• =

⊕
n≥0An with A0 = R and An a R-module for every n ≥ 1,

together with a product such that if a ∈ An and b ∈ Am, then ab ∈
An+m.

A graded algebra A• is said to be quadratic if An is generated by
products of n elements of A1, with n > 0, and the defining relations of
A• are generated by elements of degree 2: namely

(2.1) A• '
T •(A1)

R
, T •(A1) =

⊕
n≥0

A⊗n1 ,

where R is a two-sided ideal of T •(A1) generated by elements of A1⊗R
A1.

Examples 1. Let F be a field, and let V be a F-vector space.

(a) The symmetric algebra S•(V ) is a quadratic F-algebra, as

S•(V ) =
T •(V )

〈v ⊗ w − w ⊗ v〉
, v, w ∈ V.

(b) The exterior algebra
∧
•(V ) is a quadratic F-algebra, as

∧
n≥0

(V ) =
T •(V )

〈v ⊗ w + w ⊗ v〉
, v, w ∈ V.

Definition 8. Fix a field K. For a positive integer n, the nth

Milnor K-group of K is the quotient

KMn (K) =
(
K× ⊗Z · · · ⊗Z K

×) /In,
where In is the subgroup generated by the elements a1 ⊗ · · · ⊗ an such
that ai + aj = 1 for some i 6= j. (Such relations are called of Steinberg
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type.) Moreover, set KM0 = Z. Then the Milnor K-ring of K is the
quadratic Z-algebra

KM• (K) =
⊕
n≥0

KMn (K) =
T •(K×)

〈a⊗ b | a+ b = 1〉
,

equipped with the addition induced by the multiplication of K, and
with the multiplication induced by the tensor product.

Given a1, . . . , an ∈ K×, the symbol {a1, . . . , an} denotes the image
of a1 ⊗ · · · ⊗ an in KMn (K). A particular feature of Milnor K-rings of
fields is the anti-commutativity:

(2.2) {a, b} = −{b, a} for all a, b ∈ K×

(cf. [Ef06, Prop. 24.1.2]). Therefore, the algebra KM• (K) is in fact a
quotient of the exterior algebra

∧
•K

×.
For a positive integer m, one may consider the Milnor K-ring mod-

ulo m, i.e.,

KM• (K)/m =
⊕
n≥0

KMn (K)/m.KMn (K).

Then KM• (K)/m is a quadratic, anti-commutative Z/mZ-algebra. In
particular, one has the following (cf. [Ef06, Prop. 24.1.3]).

Proposition 2.1. For positive integers m, one has

KM• (K)/m =
T • (K×/(K×)m)

〈ā⊗ b̄ | a+ b ∈ (K×)m〉
,

where ā = a mod (K×)m and b̄ = b mod (K×)m.

1.1. Constructions with quadratic algebras. Let A• and B•
be two quadratic algebras over a field F. There are several constructions
which produce a new quadratic algebra C• generated by A1 and B1,
i.e.,

C• =
T •(A1 ⊕B1)

R
,

with R the two-sided ideal generated by R1 ≤ (A1 ⊕B1)⊗2.
Let RA

1 ≤ A1 ⊗A1 and RB
1 ≤ B1 ⊗B1 be the relations of A•, resp.

of B•. Then one has the following constructions.
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(a) The direct product C• = A• uB• (also denoted as A• ⊕B•) is
such that Cn = An ⊕Bn for every n ≥ 1. Thus, one has

R1 = RA
1 ⊕RB

1 ⊕ (A1 ⊗B1)⊕ (B1 ⊗ A1).

In particular, ab = ba = 0 for any a ∈ An, b ∈ Bm, n,m ≥ 1.
(b) The free product C• = A•tB• (also denoted as A• ∗B•) is the

associative algebra generated freely by A• and B•. One has

R1 = RA
1 ⊕RB

1 .

(c) The symmetric tensor product A• ⊗1 B• (also called 1-tensor
product) is such that ab = ba for any a ∈ An, b ∈ Bm, n,m ≥
1. Thus,

R1 = RA
1 ⊕RB

1 ⊕ 〈ab− ba〉,

with a ∈ A1 and b ∈ B1.
(d) The skew-commutative tensor product A• ⊗−1 B• (also called

(−1)-tensor product, or graded tensor product, see [Ef06,
§ 23.2]) is such that ab = (−1)nmba for any a ∈ An, b ∈ Bm,
n,m ≥ 1. Thus,

R1 = RA
1 ⊕RB

1 ⊕ 〈ab+ ba〉,

with a ∈ A1 and b ∈ B1.

See [PP05, § 3.1] for further details.

2. The Rost-Voevodsky Theorem

Assume now that the characteristic of K does not divide m, and let
µm be the group of the mth-roots of unity as in (1.10). The isomorphism
(1.11) induces the isomorphism K1(K)/m ' H1(GK , µm). Thus the
cup-product induces a morphism

(2.3)
K×

(K×)m
⊗Z/mZ · · · ⊗Z/mZ

K×

(K×)m
−→ Hn

(
GK , µ

⊗n
m

)
defined by ā1⊗ · · · ⊗ ān 7→ χa1 ∪ · · · ∪χan , whith the χai ’s as in (1.15).
In fact, J. Tate showed in [Ta76] that the map (2.3) factors through
KMn (K)/m, thus one has the homomorphism

hK : KMn (K)/m −→ Hn
(
GK , µ

⊗n
m

)
(cf. [NSW, Theorem 6.4.2]) called the Galois symbol (or the norm
residue map) of degree n.
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Theorem 2.2 (Bloch-Kato Conjecture). For every field K and for
every positive m prime to char(K), the Galois symbol hK is an isomor-
phism for every degree n.

For m = 2 this was conjectured first by J. Milnor in the late ’60s,
whereas the full formulation of the conjecture was stated by S. Bloch
and K. Kato in [BK86]. The complete proof required several steps:

(i) for n = 1 the Galois symbol is just the Kummer isomorphism;
(ii) for n = 2 it was proved by A.S. Merkur’ev and A.A. Suslin in

the early ’80s (cf. [MS82]);
(iii) for n = 3 and m = 2 it was proved by Merkur’ev and Suslin

in the late ’80s (cf. [MS90]) and, independently, by M. Rost;
(iv) for any n and m a power of 2 it was proved by V. Voevodsky

at the beginning of the century (cf. [Vo03]).

For this, Voevodsky was awarded the Fields Medal in 2002. Later, he
announced a proof of the full conjecture in a preprint. Yet, it required
a while to see a complete (and published) proof, which appeared in
2011 (cf. [Vo11]). Also Rost gave a remarkable and substantial con-
tribution to achieve the final proof – further, C. Weibel solved some
technical problems via what is now known as the “Chuck Weibel’s
patch” – so that now the Bloch-Kato Conjecture is adressed as the
Rost-Voevodsky theorem, see also [We08, We09].

3. Bloch-Kato pro-p groups

Let p be a prime. If K contains a primitive pth-root of unity, then
µp is isomorphic to Fp as (trivial) GK-modules. In particular, one has
µ⊗np ' Fp for every n ≥ 1. Therefore, one has the cup product

Hn(GK ,Fp)×Hm(GK ,Fp)
∪

// Hn+m(GK ,Fp) ,

with n,m ≥ 0, and by Remark 1.5 we may define the graded-commutative
Fp-algebra

H•(GK ,Fp) =
⊕
n≥0

Hn(GK ,Fp),

equipped with the cup-product. Since the Galois symbol is defined by
the cup product, hK induces an isomorphism of graded Fp-algebras

hK : KM• (K)/p
∼

// H•(GK ,Fp) ,

30



which implies that the Fp-cohomology ring of GK is a quadratic Fp-
algebra.

For a profinite group G let Op(G) be the subgroup

Op(G) = 〈C ∈ Syl`(G) | ` 6= p〉 ,

where Syl`(G) is the set of the Sylow pro-` subgroups; namely one has
the short exact sequence

(2.4) 1 −→ Op(G) −→ G −→ G(p) −→ 1,

with G(p) the maximal pro-p quotient of G, i.e., the Galois group of the
extensions K(p)/K (cf. [Qu14, § 2]). Therefore, in the case G is the
absolute Galois group GK of a field with the above properties, Op(GK)
is the absolute Galois group of the p-closure K(p), and by the Bloch-
Kato Conjecture the cohomology ring H•(Op(GK),Fp) is quadratic,
and thus generated by H1(Op(GK),Fp). Since Op(GK) is p-perfect, by
Fact 1.1 one has

H1 (Op(GK),Fp) = HomFp (Op(GK),Fp) = 0,

and hence Hn(Op(GK),Fp) = 0 for every n ≥ 1. Thus in the Lyndon-
Hochschild-Serre spectral sequence (cf. [NSW, § II.4]) induced by
(2.4), the terms

Ers
2 = Hr (GK(p), Hs(Op(GK)))

vanish for s > 0, and the spectral sequence collapses at the E2-term.
Hence the inflation map

(2.5) infnGK ,Op(GK) : Hn (GK(p),Fp) −→ Hn (GK ,Fp)

is an isomorphism for every n ≥ 0 (cf. [NSW, Lemma 2.1.2]). This
proves the following.

Proposition 2.3. Let K be a field containing a primitive pth-
root of unity, with p a fixed prime. Then the Fp-cohomology ring
H•(GK(p),Fp) of the maximal pro-p Galois group of K is a quadratic
Fp-algebra.

Definition 9 ([Qu14]). Let G be a pro-p group. Then G is said
to be a Bloch-Kato pro-p group if for every closed subgroup C ≤ G
the Fp-cohomology ring H•(C,Fp) is a quadratic Fp-algebra.
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Thus, the maximal pro-p Galois group GK(p) of a field K containing
µp is a Bloch-Kato pro-p group: indeed, every closed subgroup of the
maximal pro-p Galois group of a field is again a maximal pro-p Galois
group (and this justifies such a requirement in the definition).

By Proposition 1.4, the cohomology ring of a pro-p group G with
Fp-coefficients is skew-commutative. In particular, for G a Bloch-Kato
pro-p group let {χi, i ∈ I} be a basis for H1(G,Fp) as Fp-vector space,
and let R be the defining relations of H•(G,Fp) as in (2.1), i.e.,

(2.6) H•(G,Fp) '
T • (H1(G,Fp))

R
.

Then one has χi⊗χj +χj⊗χi ∈ R for every i, j ∈ I, and (2.6) induces
an epimorphism of quadratic Fp-algebras

(2.7)
∧
•H

1(G,Fp) // // H•(G,Fp) ,

so that, in the case p odd, we may consider the exterior algebra gen-
erated by H1(G,Fp) as an “upper bound” for the Fp-cohomology of
Bloch-Kato pro-p groups, namely, this is the case when the ideal R is
the smallest possible. On the other hand, the ideal R may be gener-
ated by the whole group H2(G,Fp), i.e., the Fp-cohomology ring of G
is concentrated in degrees 0 and 1, and this case can be considered as
“lower bound”. The latter case is completely explained by the following
classic result (cf. [NSW, Prop. 3.3.2 and Prop. 3.5.17]).

Proposition 2.4. Let G be a pro-p group.

(i) for n ≥ 0, one has cd(G) = n if, and only if, Hn+1(G,Fp) = 0.
(ii) the group G is free if, and only if, cd(G) = 1.

In particular, if p is odd and G is a finitely generated Bloch-Kato
pro-p group, then (2.7) and Proposition 2.4 imply the following (see
also [Qu14, Prop. 4.1 and Prop. 4.3]).

Corollary 2.5. For G Bloch-Kato and p odd, one has the follow-
ing:

(i) cd(G) ≤ d(G), and the equality holds if, and only if (2.7) is
an isomorphism;

(ii) r(G) ≤
(
d(G)

2

)
.

The celebrated Artin-Schreier theorem states that the only non-
trivial finite subgroups of an absolute Galois group is the cyclic group

32



of order two.1 A similar condition holds for Bloch-Kato pro-p groups: a
Bloch-Kato pro-p group G may have torsion only if p = 2. In particular
one has the following.

Proposition 2.6. Bloch-Kato pro-p group G is torsion if, and only
if, G is abelian and of exponent 2, and moreover any of such group is
a Bloch-Kato pro-2 group.

Proof. Let p be any prime and let Cp be the cyclic group of order
p, and assume that G admits a finite subgroup. Then G has Cp as a
(closed) subgroup. If p is odd, then the cohomology ring H•(Cp,Fp)
is not quadratic, as H2(Cp,Fp) contains an element which is not a
combination of cup products of elements in H1(Cp,Fp), i.e., the map
(2.7) is not an epimorphism in degree 2. Thus G can’t be a Bloch-Kato
pro-p group.

Moreover, if p = 2 and G has 2n-torsion, with n > 1, the above
argument works also for C2n instead of Cp, with C2n the cyclic group
of order 2n.

On the other hand, if p = 2 and G is abelian and of exponent 2,
then the cohomology ring H•(G,F2) is isomorphic to the symmetric
F2-algebra S•(H

1(G,F2)), and thus G is Bloch-Kato. �

For Bloch-Kato pro-p groups one may deduce the following result
from [CEM].

Theorem 2.7. Let G be a Bloch-Kato pro-p group. Then the in-
flation map induces an isomorphism

H•(G/λ3(G),Fp)dec
∼

// H•(G,Fp),

where H•( ,Fp)dec is the decomposable part of the cohomology ring,
i.e., the subalgebra generated by products of elements of degree one.
Moreover, if φ : G1 → G2 is a homomorphism of Bloch-Kato pro-p
group, then the induced map in cohomology

φ∗ : H•(G2,Fp) −→ H•(G1,Fp)

is an isomorphism if, and only if, the induced map on the quotients
G1/λ3(G1)→ G2/λ3(G2) is an isomorphism.

1In particular, the Artin-Schreier theorem states that if the absolute Galois
group GK of a field K is finite (and non-trivial), then GK ' Z/2Z and K is a real
closed field, i.e., K is of characteristic 0 with an unique ordering such that every
positive element is a square and every polynomial in K[X] of odd degree has a zero
in K.
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We shall study more in detail the quotient G/λ3(G) in Section 4

4. Oriented pro-p groups

Fix a prime p and a field K, and let µp∞ = µp∞(K) be the group of
all the roots of unity of p-power order, i.e., µp∞(K) = lim−→k≥0

µpk(K).

In particular, µp∞ is a discrete torsion Zp-module, and one has

AutK
(
µp∞(K̄sep)

)
' Z×p ,

with AutK(µp∞) the group ofK-automorphisms (cf. [Wr92, Lemma 1]).
Therefore, the action of the absolute Galois group on the separable clo-
sure induces an homomorphism of pro-p groups

(2.8) θ(p,K) : GK −→ Z×p ,

called the p-cyclotomic character of K.
If K ⊇ µp, then the p-closure K(p) contains µp∞(K̄sep), and the

maximal pro-p Galois group GK(p) acts on µp∞ , namely, the cyclotomic
character θp,K is trivial on the subgroup Op(G), and it factors in a
unique way through a homomorphism θ : GK(p) → Z×p . We will call
the map θ the arithmetical orientation of the Galois group GK(p). This
is the arithmetical justification for the following definition.

Definition 10. Let G be a profinite group. A continuous homo-
morphism of profinite groups θ : G→ Z×p will be called a p-orientation
of G, and the group G will be called a p-oriented profinite group.

Thus, absolute Galois groups (and maximal pro-p Galois groups of
fields containing a primitive pth-root of unity) are naturally equipped
with a p-orientation.

A p-orientation θ : G→ Z×p of a profinite group G induces a natural
continuous action of G on Zp in the following way: for every g ∈ G, the
multiplication by θ(g) induces an automorphisms of Zp. Thus Zp(1)
will denote the Zp[[G]]-module isomorphic to Zp as Zp-module,2 and
with the G-action induced by the orientation θ. Also, for m ∈ Z, one
has the Zp[[G]]-module Zp(m), together with the action induced by θm,
i.e., g.λ = θ(g)m · λ for every g ∈ G and λ ∈ Zp.

2In the arithmetical case, the module Zp(m) is called the mth Tate twist of Zp,
as this construction was used first by J. Tate in [Ta76] (see also [NSW, (7.3.6)]).
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4.1. θ-abelian pro-p groups. From now on we will concentrate
on pro-p groups with p-orientations (and we will omit the “p” in the
notation, for simplicity).

Remark 2.8. If G is a pro-p group, then the image of an orientation
θ : G→ Z×p is again a pro-p group.

• If p is odd, then Z×p is virtually pro-p, and the Sylow pro-p
group is 1 + pZp, with |Z×p : (1 + pZp)| = p− 1. In particular,
one has that im(θ) is contained in 1+pZp, and it is isomorphic
to Zp.
• If p = 2, then Z×2 is pro-2, and it is isomorphic to Z/2Z× Z2.

Thus, one has that im(θ) is torsion-free and isomorphic to Z2

if, and only if, im(θ) ≤ 1 + 4Z2.

In a pro-p group with orientation, one has a distinguished subgroup.

Definition 11. Let (G, θ) be an oriented pro-p group. The closed
subgroup defined by

Zθ(G) =
{
h ∈ ker(θ)

∣∣ghg−1 = hθ(g) for all g ∈ G
}

will be called the θ-centre of G. Moreover, the group G will be called
θ-abelian, if Zθ(G) = ker(θ).

Namely, the θ-centre of an oriented pro-p group is given by the
“copies” of the module Zp(1), induced by the orientation, lying inside
G. It is easy to see that Zθ(G) is an abelian normal subgroup of G. If
a pro-p group with an orientation (G, θ) is θ-abelian, then it has a very
simple structure (see [Qu14, Prop. 3.4] and [CMQ, Remark 3.3]).

Proposition 2.9. Let (G, θ) be a pro-p group with an orientation,
ans suppose that im(θ) ' Zp. Then G is θ-abelian if, and only if, there
exists a minimal generating system X = {x0, xi, i ∈ I} ⊂ G, such that
G has a presentation

(2.9) G =
〈
x0, xi

∣∣∣ x0xix
−1
0 = x

θ(x0)
i , [xi, xj] = 1, i, j ∈ I

〉
.

In particular, G can be expressed as a fibre product

G ' im(θ) n Zp(1)I ,

with the action induced by the orientation.
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4.2. Cyclotomic orientations. Let K be a field containing the
pth roots of unity µp, and let GK(p) be the maximal pro-p Galois group.
For every n ≥ 0, the pnth power induces the short exact sequence of
Zp[[GK(p)]]-modules

(2.10) 0 // µpn // K(p)×
pn

// K(p)× // 0.

Since µpn is isomorphic to Zp(1)/pnZp(1) as GK(p)-modules, (2.10)
induces the commutative diagram in cohomology

K×/(K×)p
n

∼
//

��
��

H1 (GK(p), µpn)

pn−1

��

H1 (GK(p),Zp(1)/pnZp(1))

��

K×/(K×)p
m

∼
// H1 (GK(p), µpm) H1 (GK(p),Zp(1)/pnZp(1))

for every n > m ≥ 1, where the left-hand side horizontal arrows are
isomorphisms by (1.13). In particular, one has the epimorphism
(2.11)

H1 (GK(p),Zp(1)/pnZp(1))
πnm

// // H1 (GK(p),Zp(1)/pmZp(1))

for every n > m ≥ 1. In particular, {H1 (GK(p),Zp(1)/pnZp(1)) , πnm}
is a projective system, and by [NSW, Corollary 2.7.6] one has the
isomorphism H1(G,Zp(1)) ' lim←−nH

1(GK(p),Zp(1)/pnZp(1)).

Definition 12. Let (G, θ) be a pro-p group with an orientation.
Then θ is called a cyclotomic orientation (and G is said to be cyclo-
oriented) if the following hold:

(i) G is a Bloch-Kato pro-p group;
(ii) H2(C,Zp(1)) is a torsion-free abelian group for all closed sub-

groups C of G.

Remark 2.10. If F is a free pro-p group, then cd(F ) = 1 by Propo-
sition 2.4. Then for any orientation θ : F → Z×p one has H2(F,Zp(1)) =
0, so that (F, θ) is cyclo-oriented for any θ.

One has the following elementary fact.
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Lemma 2.11. Let (G, θ) be a pro-p group with orientation. Then
H2(G,Zp(1)) is a torsion-free abelian group if, and only if, the map

(2.12) H1(G,Zp(1)) // H1(G,Fp)

induced by the short exact sequence of Zp[[G]]-modules

(2.13) 0 // Zp(1)
p

// Zp(1) // Fp // 0

is an epimorphism.

Proof. The short exact sequence (2.13) induces the exact sequence
in cohomology

H1(G,Zp(1)) // H1(G,Fp) // H2(G,Zp(1))
p

// H2(G,Zp(1)),

and H2(G,Zp(1)) is torsion-free if, and only if, the right-hand side
arrow is injective, namely, if, and only if, the middle arrow is trivial
and the left-hand side arrow is surjective. �

Consequently, by (2.11) one has that H1(GK(p),Zp(1)) projects
onto H1(GK(p),Fp), so that one has the following.

Theorem 2.12. Let K be a field containing a primitive p-th root
of unity, and let GK(p) be its maximal pro-p Galois group. Then the
arithmetical orientation θ : GK(p)→ Z×p is cyclotomic.

The following result is a refinement of Proposition 2.6 for pro-2
groups with a cyclotomic orientation.

Proposition 2.13. Let (G, θ) be a pro-2 group with cyclotomic
orientation.

(i) If G is non-trivial and torsion, then G ' C2 and im(θ) =
{±1}.

(ii) If im(θ) is torsion free, then G is torsion free.

Proof. (i) By Proposition 2.6, G is an elementary abelian 2-group.
Let K = ker(θ). Then (K, θ|K) is an elementary abelian pro-2 group
with trivial cyclotomic 2-orientation, namely, θ|K ≡ 1 and Z2(m) '
Z2(0) = Z2 as K-modules for all m ∈ Z. Since K is torsion, one has
H1(K,Q2) = Hom(K,Q2) = 0, and the connecting map H1(K, I2) →
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H2(K,Z2) induced in cohomology by the exact sequence (1.3) for p = 2
is injective. Thus one has the embedding

K∨ = H1(K, I2) � � // H2(K,Z2) = H2(K,Z2(1)) ,

which is torsion-free. Consequently K∨ = 0 and K is the trivial group,
and θ : G → Z×2 is injective. This shows (i), and (ii) is a direct conse-
quence of (i). �

From Proposition 2.6, Proposition 2.13 and Sylow’s theorem one
deduces the following corollary, which can be considered as a local ver-
sion of the Artin-Schreier theorem for profinite groups with cyclotomic
p-orientation.

Corollary 2.14. Let p be a prime number, and let (G, θ) be a
pro-p group with cyclotomic orientation.

(i) If p is odd, then G has no p-torsion.
(ii) If p = 2, then every non-trivial 2-torsion subgroup is isomor-

phic to C2, the cyclic group of order 2. Moreover, if im(θ) has
no 2-torsion, then G has no 2-torsion.

Remark 2.15. Let θ : Z2 → Z×2 be given by θ(1 + λ) = −1 and
θ(λ) = 1 for all λ ∈ 2Z2. Then θ is a 2-orientation of G = Z2 satisfying
im(θ) = {±1}. As cd2(Z2) = 1, θ is also cyclotomic by Remark 2.10.
This shows that for a torsion free pro-2 group G with cyclotomic 2-
orientation θ : G→ Z×2 , im(θ) is not necessarily torsion free.

On the other hand, if im(θ) ≤ 1 + 4Z2 for a cyclo-oriented pro-2
group (G, θ), one has the following.

Proposition 2.16. Let (G, θ) be a pro-2 group with cyclotomic
2-orientation satisfying im(θ) ' Z2. Then χ ∪ χ = 0 for all χ ∈
H1(G,F2).

Proof. Set Z4(1) = Z2(1)/4Z2(1). By Remark 2.8, Z4(1) is a
trivial Z2[[G]]-module, thus Z4 ' Z/4Z as abelian groups. Since the
group H2(G,Z2(1)) is torsion-free, one has a commutative diagram
with exact rows
(2.14)

H1 (G,Z2(1))
4

//

2
��

H1 (G,Z2(1)) // H1 (G,Z4(1)) //

π

��

0

H1 (G,Z2(1))
2

// H1 (G,Z2(1)) // H1 (G,F2) // 0
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with π the canonical morphism. Hence by the weak four lemma applied
to the diagram (2.14) extended by another column of 0’s to the right,
π is surjective. In particular, the first Bockstein morphism

β1 : H1(G,F2) −→ H2(G,F2)

is the trivial map, and the claim follows by Lemma 1.6. �

Let (G, θ) be a cyclo-oriented pro-p group. The above result, to-
gether with Remark 2.8, shows that if im(θ) is pro-p-cyclic (possibly
trivial), then the cup product in H•(G,Fp) is skew-commutative, and
Corollary 2.5 holds also in the case im ' Z2. In particular, from (2.7)
one gets the epimorphism of quadratic Fp-algebras

(2.15)
T • (H1(G,Fp))
〈χ⊗ χ〉

// // H•(G,Fp)

for all cyclo-oriented pro-p groups (G, θ) with im(θ) ' Zp, or im(θ) =
{1} for p odd.

4.3. Modules of cyclo-oriented groups. Given an oriented pro-
p group (G, θ), the orientation induces a G-action also on the Zp-
modules Qp and Ip. Thus, one may define the Zp[[G]]-modules Qp(m)
and Ip(m), for m ∈ Z, and (1.3) induces the short exact sequence

(2.16) 0 −→ Zp(m) −→ Qp(m) −→ Ip(m) −→ 0.

Fact 2.17. For m ∈ Z, one has Ip(m)∨ ' Zp(−m).

Proof. By definition, one has Ip ' Z∨p as Zp-modules. Thus, for
λ ∈ Ip, φ ∈ Ip(m)∗ and g ∈ G one has

(g.φ)(λ) = φ
(
g−1.λ

)
= φ

(
θ(g−1)m · λ

)
= θ(g)−m · φ(λ),

and this yields the claim. �

Lemma 2.18. For G a profinite group and θ : G→ Z×p an orienta-
tion, the Pontryagin dual induces the natural isomorphism of functors

Zp(m)×⊗̂GHom( , Ip) −→ HomG(Zp(m), )∨, m ∈ Z.
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Proof. Let N be a discrete left Zp[[G]]-module, and let λ ∈ Zp(m)×

and f ∈ Hom(N, Ip). Then define φλ⊗f ∈ HomG(Zp(m), N)∨ such that
φλ⊗f (h) = f(h(λ)) for every h ∈ HomG(Zp(m), N). Then, for every
g ∈ G, one has

φλ.g⊗f (h) = f(h(λ.g)) = f
(
h(g−1.λ)

)
=

= f
(
g−1.h(λ)

)
= g.f(h(λ)) = φλ⊗g.f (h),

and this yields the claim. �

In particular, for m = 0 Lemma 2.18 implies the isomorphism

(2.17) TorZp[[G]]
n (Zp,M∨) ' ExtnZp[[G]] (Zp,M)∨ ,

with M a discrete module (see also [NSW, Corollary 5.2.9]).

Proposition 2.19. Let G be a profinite group with a p-orientation
θ. Then for every m ∈ Z the following are equivalent:

(i) Hm+1(G,Zp(m)) is a torsion-free Zp-module.
(ii) Hm(G, Ip(m)) is a p-divisible Zp-module.

(iii) Hm(G,Zp(−m)) is a torsion-free Zp-module.

Proof. The exact sequence (2.16) induces the exact sequence in
cohomology
(2.18)

Hn (G,Zp(m)) // Hn (G,Qp(m)) // Hn (G, Ip(m)) EDBC δm

GF@A
// Hm+1 (G,Zp(m)) // Hm+1 (G,Qp(m))

for m ≥ 0. Then by Proposition 1.8, one has that ker(δ) is the max-
imal p-divisible subgroup of Hm(G, Ip(m)), and im(δ) is the torsion
subgroup of Hm+1(G,Zp(m)). Thus, Hm+1(G,Zp(m)) is a torsion-
free Zp[[G]]-module if, and only if, δ is the zero map, i.e., ker(δ) =
Hm(G, Ip(m)). This establishes the equivalence between (i) and (ii).

Now set M = Ip(m). Then (2.17) and Fact 2.17 imply that

Hm(G,Zp(−m)) ∼= Hm (G, Ip(m))∨ .

By duality, it follows that Hm(G,Zp(−m)) is a profinite torsion-free
Zp[[G]]-module if, and only if, Hm(G, Ip(m)) is a discrete p-divisible
Zp[[G]]-module. This establishes the equivalence between (ii) and (iii).

�
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The above result has the following consequence.

Corollary 2.20. Let (G, θ) a cyclo-oriented pro-p group. The
abelianization ker(θ)/[ker(θ), ker(θ)] of the kernel of the orientation θ
is a torsion-free group.

Proof. Since the restriction θ|ker(θ) is trivial, Zp(1) is a trivial
Zp[[ker(θ)]]-module. Thus, one has

H1(ker(θ),Zp(1)) = H1(ker(θ),Zp) '
ker(θ)

[ker(θ), ker(θ)]
.

Therefore, ker(θ)/[ker(θ), ker(θ)] is torsion-free by Proposition 2.19.
�

On the other hand, the following result describes the torsion of
H1(G,Zp(1)) as Zp-module ([QW1, Lemma 3.2]).

Lemma 2.21. Let (G, θ) be a cyclo-oriented pro-p group such that
im(θ) = 1 + pkZp ' Zp for some k ≥ 1. The torsion Zp-submodule of
H1(G,Zp(1)) is isomorphic to Z/pkZ.

Proof. The exact sequence of G-modules (2.16) with m = 1 in-
duces the exact cohomology sequence

· · · // H0 (G,Qp(1)) // H0 (G, Ip(1)) EDBC δ0

GF@A
// H1 (G,Zp(1)) // H1(G,Qp(1)) // · · ·

As θ is non-trivial, one has H0(G,Qp(1)) = Qp(1)G = 0. Moreover,
H1(G,Qp(1)) is a torsion free Zp-module, and thus by Proposition 1.8
δ induces an isomorphism between Ip(1)G and the torsion submodule
of H1 (G,Zp(1)). Since

Ip(1)G =
1

pk
Zp(1)/Zp(1) ' Zp/pkZp

as Zp-modules, this yields the claim. �
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5. The Elementary Type conjecture

5.1. Demushkin groups. Let F be a field and let V,W be two
F-vector spaces. Recall that a non-degenerate pairing of V and W is
a F-bilinear form V ×W → F which induces injections V ↪→ W ∗ and
W ↪→ V ∗, where V ∗ and W ∗ are the F-duals. If V and W have finite
dimensions, then such monomorphisms are isomorphisms.

Definition 13. A finitely generated pro-p group G is called a De-
mushkin group if the cohomology ring H•(G,Fp) satisfies the follow-
ing properties:

(i) H1(G,Fp) = 1 is isomorphic to Fp as Fp-vector spaces.
(ii) the cup product ∪ : H1(G,Fp) × H1(G,Fp) → H2(G,Fp) is a

non-degenerate pairing.

If G is an infinite Demushkin group, then G is a Poincaré group
of cohomological dimension cd(G) = 2. On the other hand, the only
torsion Demushkin group is the cyclic group of order 2 (cf. [NSW,
(3.9.9) and (3.9.10)]). In particular, one may find a basis {χ1, . . . , χd}
of H1(G,Fp), with d = d(G), such that

χ1 ∪ χ2 = χ3 ∪ χ4 = . . . = χd−1 ∪ χd, for 2 | d,

χ1 ∪ χ1 = χ2 ∪ χ3 = . . . = χd−1 ∪ χd, for 2 - d,

and H2(G,Fp) is generated by such element.
Demuskin groups are arithmetically interesting, as they appear as

Galois group of p-adic fields. In particular, if K is a p-adic local
field (i.e., a finite extension of the field Qp) containing the roots of
unity of order p, then the maximal pro-p Galois group GK(p) is a
Demushkin group with d(GK(p)) = |K : Qp| + 2 (cf. [NSW, Theo-
rem 7.5.11]). From this, it follows that arithmetical Demushkin groups
are also Bloch-Kato pro-p groups.

By (1.6), a Demushkin group G is a one-relator pro-p group, i.e.,
r(G) = 1. Thus, one has that either

G/[G,G] ' Zdp or G/[G,G] ' Z/pkZ× Zd−1
p ,

with k ≥ 1. Set qG = 0 in the former case and qG = pk in the latter.
The structure of Demushkin groups has been studied in the ’60s by
S.P. Demuškin, J.-P. Serre and finally by J. Labute, who completed the
case p = 2 and equipped Demushkin groups with a suitable orientation.
Altogether, one has the following (cf. [La67]).
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Theorem 2.22. Let G be a finitely generated one-relator pro-p
group, and set qG as above. Then G is a Demushkin group if, and only
if, it is isomorphic to the pro-p group with a presentation 〈x1, . . . , xd|r =
1〉 with d = d(G), such that

(i) if p is odd or if p = 2 and qG 6= 2, one has

r = x−qG1 [x1, x2][x3, x4] · · · [xd−1, xd];

(ii) if qG = 2 and d is odd, one has

r = x−2
1 x−2f

2 [x2, x3][x4, x5] · · · [xd−1, xd],

for some f = 2, 3, . . . ,∞;
(iii) if qG = 2 and d is even, one has

r = x−2−α
1 [x1, x2]x−2f

3 [x3, x4] · · · [xd−1, xd],

for some f = 2, 3, . . . ,∞ and α ∈ 4Z2.

Moreover, let θ : G→ Z×p be the orientation defined by

(i) θ(x2) = (1− qG) and θ(xi) = 1 for i 6= 2, if qG 6= 2;
(ii) θ(x1) = −1, θ(x3) = (1 − 2f ) and θ(xi) = 1 for i 6= 1, 3, if

qG = 2 and d is odd;
(iii) θ(x2) = −(1+α)−1, θ(x4) = (1−2f ) and θ(xi) = 1 for i 6= 2, 4,

if qG = 2 and d is even.

Then θ is a cyclotomic orientation for G.

Remark 2.23. Note that in [La67], the author uses a different
notation:

(a) he uses the “right-action notation” for the commutator, i.e.,
[x, y] = x−1xy = x−1y−1xy, that is why we get the signs minus
in the relations;

(b) he uses χ instead of θ for the orientation (and he does not
use such term, as he calls χ simply a “continuous homomor-
phism”);

(c) he uses Up instead of Z×p .

It is interesting to compute also the restricted Lie algebra L•(G)
induced by the Zassenhaus filtration, when G is a Demushkin group.
Let X = {x1, . . . , xd}, d = d(G), be a minimal generating system for
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G such that G has a presentation with a relation r as described in
Theorem 2.22. Then r lies in D2(G) rD3(G), and one has

r ≡

 [x1, x2] + . . .+ [xd−1, xd] mod D3(G) if qG 6= 2
x2 + [x1, x2] + . . .+ [xd−1, xd] mod D3(G) if qG = 2, 2 | d
x2 + [x2, x3] + . . .+ [xd−1, xd] mod D3(G) if qG = 2, 2 - d

(where we used the additive notation for the quotient D2(G)/D3(G)).
If qG 6= 2, then [Gä11, Theorem 2.4.6] and Theorem 1.14 imply that
the restricted Lie algebra L•(G) is the quotient of the free restricted
Fp-Lie algebra Lp(X ) over the ideal r generated by the image of r in
L2(F ), where F is the free pro-p group generated by X . Moreover, by
Proposition 1.18 one has

(2.19) gr•(G) ' Up(L•(G)) ' Fp〈X 〉
〈[X1, X2] + . . .+ [Xd−1, Xd]〉

,

where X = {X1 . . . , Xd}, with the grading induced by the degrees of
the monomials.

5.2. Free products and the Elementary Type Conjecture.
Let G be a profinite group, and let {Gi, i ∈ I} be a collection of
profinite groups with I a set of indices. For every i ∈ I, let ιi : Gi → G
be a continuous homomorphism. If the set I is not finite, assume
further that for every open neighborhood U of 1 in G, U contains all
but a finite number of the images im(ιi) (if this condition is satisfied,
the family {ιi, i ∈ I} is said to be convergent).

The profinite group G, together with the maps ιi, is said to be the
free profinite product of the groups Gi if the following universal
property is satisfied: whenever {ψi : Gi → H, i ∈ I} is a convergent
family of continuous homomorphisms into a profinite group H, there
exists a unique continuous homomorphism ψ : G→ H such that

(2.20) Gi

ιi
//

ψi
��

G

ψ~~~
~

~
~

H

commutes for every i ∈ I. Such free product is denoted by

G =
∐
i∈I

Gi.
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If the groups Gi’s are all pro-p, then G is the free pro-p product
if (2.20) commutes for every i ∈ I and for any pro-p group H (see,
e.g., [RZ10, § 9.1] and [Ri13, § 2.7] for details). In particular, if I is
finite, let Gabs denote the free abstract product of the Gi’s. Then G
is the projective limit lim←−N G

abs/N , where N is the family of normal

subgroups of Gabs

(2.21) N =
{
N
∣∣ |Gabs : N | = pm, N ∩Gi ≤ Gi open for all i

}
.

One may denote the free pro-p product also by

G = G1 ∗p̂ · · · ∗p̂ Gn.

It is well known that free profinite products of absolute Galois
groups of fields are absolute Galois groups. Moreover, the free pro-
p product of absolute Galois groups which are pro-p is a pro-p group
which is realizable as absolute Galois group for some fields (see, e.g.,
[Er01] and [HJK] for details).

Yet, such a general statement is still missing for maximal pro-p
Galois groups of fields. So far, only partial results are known: for
example

(a) the free pro-p product of two arithmentic Demushkin groups
is realizable as maximal pro-p Galois group of fields (this is a
consequence of [Ef97b, Main Theorem]);

(b) the free pro-p product of θ-abelian maximal pro-p groups (and
of Z/2Z in the case p = 2) is realizable as maximal pro-p
Galois group of fields (this can be deduced from [Ef97a]).

The possibility to use free pro-p products to construct new maximal
pro-p Galois groups provided the inspiration to formulate the Elemen-
tary Type Conjecture (=ETC) on maximal pro-p Galois groups,
which states how a finitely generated maximal pro-p Galois group of a
field should “look like”.

This conjecture originates form the theory of Witt rings: the ETC
on Witt rings of fields was concieved in the early ’80s to study maximal
2-extension of fields via Witt rings, and it states that the Witt rings
of fields of characteristic not 2 can be constructed from elementary
“building blocks” by means of two standard operations (cf. [Ef06,
§ 29.3]). Later, B. Jacob and R. Ware translated the conjecture in the
context of maximal pro-2 Galois groups of fields, and they obtained
a classification of such galois groups with small number of generators
(cf. [JW89] and [JW91]). In this case, finitely generated pro-2 Galois
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groups can be built from some “basic” pro-2 groups, i.e., Z2, Demushkin
groups and Z/2Z.

In the ’90s, I. Efrat stated a stronger pro-p arithmetical version
of the ETC which mimics Jacob and Ware’s “pro-2 translation”: the
maximal pro-p Galois groups of fields of characteristic not p can be
constructed from elementary “building blocks”, such as Zp, Demushkin
groups and Z/2Z, by iterating two rather simple operations, i.e., free
pro-p products and certain fibre products (which we will define in Sec-
tion 4.3), and it was stated explicitly in [Ef97b, Question 4.8] and
reformulated in [En04, Definition 1].

The ETC has been proven in some particular cases, such as maximal
pro-p Galois groups of algebraic extensions of Q, or fields satisfying
certain condition on valuations. A general answer for this conjecture
seems to be still quite far from being obtained (so far).
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CHAPTER 3

The upper bound: θ-abelian groups

1. θ-abelian pro-p groups and the cup product

In this chapter we shall study the “mountain boundary case” of
Bloch-Kato pro-p groups, namely, the case

(3.1)
∧
•H

1(G,Fp)
∼

// H•(G,Fp).

Remark 3.1. Most of the content of this chapter is contained
(sometimes in a different shape) in [Qu14] and [CMQ], plus some
generalizations for the two cases p = 2 and d(G) =∞.

In particular, one has the following fact.

Lemma 3.2. Let (G, θ) be a pro-p group with orientation, and as-
sume that θ is cyclotomic with im(θ) ' Z2 if p = 2. Then the epimor-
phism (2.15) is an isomorphism if, and only if, the map

(3.2) H1(G,Fp) ∧H1(G,Fp)
∧2(∪)

// H2(G,Fp) ,

induced by the cup product, is injective. In particular, if G is finitely
generated, then (3.2) is an isomorphism if, and only if,

(3.3) cd(G) = d(G).

Proof. The proof is an easy argument from elementary linear al-
gebra, together with Proposition 2.16 for the case p = 2. See also
[Qu14, Prop. 4.3]. �

Since every closed subgroup of a maximal pro-p Galois group is
again a maximal pro-p Galois, it is worth asking what does the injec-
tivity of the morphism ∧2(∪) for every closed subgroup imply in the
case of Bloch-Kato pro-p groups. In particular, one has the following
Tits alternative-type result.
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Theorem 3.3. Let (G, θ) be a Bloch-Kato pro-p group, and assume
that θ is cyclotomic with im(θ) ' Z2 if p = 2. Then G does not contain
non-abelian closed free pro-p group if, and only if, the map

(3.4) ∧2(∪) : H1(C,Fp) ∧H1(C,Fp) // H2(C,Fp)

is injective for every closed subgroup C of G.

Proof. Assume that G contains a closed subgroup C such that
(3.4) is not injective. Let {χi, i ∈ I} be an Fp-basis of the H1(C,Fp).
Thus there exists a non-trivial element

η =
∑
i,j∈J

aijχi ∧ χj ∈ ker (∧2(∪)) ,

with J ⊆ I finite. As η 6= 0, there exist m,n ∈ J , m 6= n, such that
amn 6= 0. Let {xi, i ∈ I} ⊂ C be a minimal generating system of C
such that every χi is dual to xi for all i, and let S be the subgroup of
G generated by xm and xn. Then by duality (1.14) the map

res1
C,S : H1(C,Fp) // H1(S,Fp)

is surjective, and, by construction,

ker
(
res1

C,S

)
= SpanFp {χi | i ∈ I, i 6= n,m } .

From the surjectivity of res1
C,S and the commutativity of the diagram

(3.5) H1(C,Fp) ∧H1(C,Fp)

res1
C,S ��

��
res1

C,S ��
��

∧2(∪)
// H2(C,Fp)

res2
C,S

��

H1(S,Fp) ∧H1(S,Fp)
∧2(∪)

// H2(S,Fp)

one concludes that the lower horizontal arrow of (3.5) is the 0-map.
Since S is Bloch-Kato, one has that H2(S,Fp) = 0, i.e., S is a 2-
generated free pro-p group by Proposition 2.4, a contradiction.

Conversely, if G contains a non-abelian free pro-p group C, then
H2(C,Fp) = 0, and (3.4) is not injective. �
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The following theorem is the key to study the group structure of
Bloch-Kato pro-p groups whose Fp-cohomology ring is an exterior al-
gebra. It is due to P. Symonds and Th. Weigel (cf. [SW00, Theo-
rem 5.1.6]).

Theorem 3.4. Let G be a finitely generated pro-p group. Then the
map (3.2) is injective if, and only if, G is powerful.

2. θ-abelian pro-p groups and powerful pro-p groups

2.1. Powerful pro-p groups and Lie algebras. Recall from
Section 1.2 that Gm is generated by the m-th powers of G, for m ≥ 1.
A pro-p group is said to be powerful if

[G,G] ≤
{
Gp for p odd
G4 for p = 2.

Moreover, G is called uniformly powerful, or simply uniform, if G is
finitely generated, powerful, and

|λi(G) : λi+1(G)| = |G : Φ(G)| for all i ≥ 1

Thus, one has the following characterization for uniform pro-p groups
([DdSMS, Ch. 3-4]).

Theorem 3.5. A finitely generated powerful pro-p group G is uni-
form if, and only if, G is torsion-free.

Finally, a pro-p group G is called locally powerful if every finitely
generated closed subgroup K of G is powerful. Moreover, for uni-
form pro-p groups, one has the following property (cf. [DdSMS,
Prop. 4.32]).

Proposition 3.6. Let G be a d-generated uniform pro-p group, and
let {x1, . . . , xd} be a generating set for G. Then G has a presentation
G = 〈x1, . . . , xd|R〉 with relations

(3.6) R =
{

[xi, xj] = x
λ1(i,j)
1 · · · xλd(i,j)

d , 1 ≤ i < j ≤ d
}
,

and for all i, j one has λn(i, j) ∈ p.Zp if p is odd, and λn(i, j) ∈ 4.Z2

if p = 2.

If G is a uniform pro-p group, then it is possible to associate a
Zp-Lie algebra log(G) to it (see [DdSMS, § 4.5] and [Qu14, § 3.1]),

49



i.e., log(G) is the Zp-free module generated by the generators of G,
equipped with the sum

(3.7) x+ y = lim
n→∞

x+n y, x+n y =
(
xp

n

yp
n)p−n

,

and the Lie brackets

(3.8) (x, y) = lim
n→∞

(x, y)n, (x, y)n =
[
xp

n

, yp
n]p−2n

.

Remark 3.7. Note that the Zp-Lie algebra log(G) of a uniform
pro-p group is not related to the restricted Fp-Lie algebra Lp(G) as
defined in Section 1.3.

The following result lists the properties of the Zp-Lie algebras as-
sociated to uniform pro-p groups we will need in the continuation (cf.
[Qu14, § 3.1 and § 3.3]).

Proposition 3.8. (i) If G is uniform with minimal generat-
ing system {x1, . . . , xn}, then it is possible to write every ele-
ment g ∈ G as g = xλ1

1 · · ·xλnn , with λi ∈ Zp, in a unique way.
Thus the map

G −→ log(G), xλ1
1 · · ·xλnn 7−→ λ1x1 + . . .+ λnxn

is a homeomorphism in the Zp-topology (cf. [DdSMS, Theo-
rem 4.9]).

(ii) If G is locally powerful and torsion-free, let C be a finitely gen-
erated subgroup of G. Then one can construct the Lie algebra
log(C), which is in fact a subalgebra of log(G). In particular,
the Zp-submodule SpanZp{x ∈ S} of log(G) is closed under Lie
brackets for every finite subset S ⊆ G.

(iii) An uniform pro-p group G with orientation θ is θ-abelian if,
and only if, the associated Zp-Lie algebra log(G) has a basis
{v1, . . . , vd}, with d = d(G), such that

(v1, vi) = λvi and (vi, vj) = 0

for all 1 < i, j ≤ d, where im(θ) = 1 + λZp and λ ∈ pZp, or
λ ∈ 4Z2 if p = 2 (cf. [Qu14, Prop. 3.6])
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2.2. Locally powerful pro-p groups. In spite of a rather convo-
luted definition, torsion-free locally powerful pro-p groups have a very
simple (and rigid) structure: in fact such a group is naturally equipped
with an orientation θ which makes it θ-abelian.

Theorem 3.9. Let G be a torsion-free pro-p group. Then G is
locally powerful if, and only if, there exists an orientation θ : G → Z×p
such that (G, θ) is θ-abelian.

Proof. If G is θ-abelian, then, by Proposition 2.9, G is locally
powerful and torsion-free.

Conversely, let G be a torsion-free locally powerful pro-p group,
and assume first that G is finitely generated, with d(G) = d ≥ 2,
Thus by Proposition 3.6, G has a presentation G = 〈x1, . . . , xd|R〉 with
relations as in (3.6). Let Hij ≤c G be the closed subgroup generated
by the elements xi, xj. Since Hij is uniform as well, we have that

Hij =
〈
xi, xj

∣∣∣[xi, xj] = x
λi(i,j)
i x

λj(i,j)
j , λi, λj ∈ p.Zp

〉
,

so that R = {[xi, xj] = x
λi(i,j)
i x

λj(i,j)
j , 1 ≤ i < j ≤ d} is the set of

relations.
Since an abelian pro-p group is 1-abelian, where 1 is the trivial

orientation, we may assume that G is not abelian, i.e., we may assume
without loss of generality that x1 and x2 do not commute.

Step 1: First suppose that d = 2. It is well known that if G is non-
abelian, then G has a presentation 〈x, y|[x, y]y−p

k〉 for some uniquely
determined positive integer k (with k ≥ 2 if p = 2, see [DdSMS,
Ch. 4, Ex. 13]) – in fact G is a 2-generated Demushkin group. Thus,
G is θ-abelian by Proposition 2.9, with θ(x) = 1 + pk and θ(y) = 1.

Step 2: Suppose d = 3. By the previously mentioned remark we
may choose x1, x2 such that [x1, x2] = xλ2 , with λ ∈ p.Zp (resp. λ ∈ 4.Z2

if p = 2). Thus

G =
〈
x1, x2, x3

∣∣[x1, x2] = xλ2 , [x1, x3] = xλ1
1 x

λ2
3 , [x2, x3] = xµ1

2 x
µ2

3

〉
,

with λi, µi ∈ p.Zp (resp. in 4.Z2). Let Hij be the subgroups as defined
above, with 1 ≤ i < j ≤ 3, and let L = log(G). Clearly, (xi, xj)n ∈
Hij for all n. Hence (xi, xj) ∈ SpanZp{xi, xj}. In particular, the Lie
brackets in L are such that

(x1, x2) = αx2, (x2, x3) = β2x2 + β3x3, (x1, x3) = γ1x1 + γ3x3,
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with α, βi, γi ∈ p.Zp (resp. in 4.Z2).
By the Jacobi identity, one has

0 = ((x1, x2), x3) + ((x2, x3), x1) + ((x3, x1), x2)

= (αx2, x3) + (β2x2 + β3x3, x1)− (γ1x1 + γ3x3, x2)

= −β3γ1x1 + (αβ2 − αβ2 − αγ1 + β2γ3)x2 + (αβ3 − β3γ3 + β3γ3)x3,

hence β3γ1x1 = 0, and thus β3 = 0 or γ1 = 0.

(1) If β3 = 0, then by definition (x2, x3) ∈ SpanZp{x2}, i.e., the
Zp-module generated by x2 is an ideal of L. Therefore we
may choose without loss of generality x1 and x3 such that
(x1, x3) ∈ SpanZp{x3}, and (xi, x2) ∈ SpanZp{x2} for i = 1, 3.

(2) If γ1 = 0, then by definition (x1, x3) ∈ SpanZp{x3}, i.e., the
Zp-module generated by x2 and x3 is an ideal of L. Therefore
we may choose without loss of generality x2 and x3 such that
(x2, x3) ∈ SpanZp{x2}, and (x1, xi) ∈ SpanZp{xi} for i = 2, 3.

Altogether the Lie brackets in L are

(x1, x2) = α′x2, (x2, x3) = β′x2, (x1, x3) = γ′x3,

with α′, β′, γ′ ∈ p.Zp (resp. in 4.Z2). The matrix of ad(γx3) with
respect to the basis {x1, x2, x3} is given by

ad(γ′x3) =

 0 0 0
0 β′γ′ 0
−γ′2 0 0

 .

In particular, its trace is tr(ad(γ′x3)) = β′γ′. Since ad(γ′x3) = (ad(x1), ad(x3)),
one has tr(ad(γ′x3)) = β′γ′ = 0. Therefore β′ = 0 or γ′ = 0.

(1) If β′ = 0, let v1 = x1 + x2 and v2 = x2 + x3. Then (v1, v2) =
α′x2 + γ′x3. By Proposition 3.8, one has that (v1, v2) is a Zp-
linear combination of v1 and v2. Thus (v1, v2) is necessarily a
multiple of v2, i.e., α′ = γ′.

(2) If γ′ = 0 and β′ 6= 0, let v = x1 + x2. Then (v, x3) = β′x2.
Again by Proposition 3.8, one has that (v, x3) ∈ SpanZp{v, x3}.
In particular, no multiple of x2 lies in SpanZp{v, x3}. There-
fore, this case is impossible.

(3) If β′ = γ′ = 0 then α′ = 0 by (1). So L, and hence G, is
abelian. But this case was excluded previously.
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This yields β′ = 0 and α′ = γ′ 6= 0, with α′ ∈ p.Zp (resp. in 4.Z2),
and the claim follows from Proposition 3.8.

Step 3: Suppose that G is locally powerful, torsion-free with d(G) =
n + 1 ≥ 4, and let G be generated by x1, . . . , xn+1. Since G is non-
abelian we may assume without loss of generality that x1 and x2 do
not commute.

Let H ≤c G be the subgroup generated by x1, . . . , xn. Thus by
induction there is a unique (non-trivial) orientation θ : H → Z×p such

that H is θ-abelian. In particular, we may assume that [x1, xi] = xλi
and [xi, xj] = 1 for all 2 ≤ i, j ≤ n, where

λ = θ(x1)− 1 ∈ p.Zp r {0}

(resp. in 4.Z2 r {0} for p = 2).
Furthermore, let Hi ≤c G be the subgroup generated by x1, xi, xn+1,

for 2 ≤ i ≤ n. By induction, for each i there exists an orientation
θi : Hi → Z×p such that Hi is θi-abelian.

Since θi(x1) = θ(x1) = 1 + λ and θi(xi) = θ(xi) = 1 for all i, then
necessarily θi(xn+1) = 1 for all i; i.e.,

[x1, xn+1] = xλn+1 and [xi, xn+1] = 1

for all i. Hence we may extend θ to G such that θ(xn+1) = 1. Thus G
is θ-abelian.

Step 4: Assume now that G is not finitely generated, and let C be
any finitely generated subgroup of G. Thus G is θC-abelian, for some
orientation θC : C → Z×p . Also, let LC = log(C) be the Lie algebra
associated to C

Also, let VC be the commutator subalgebra (LC , LC) ≤ LC , and let
ZC be the kernel of θC , considered as ideal of LC . Then (v, w) = 0 for
every v ∈ ZC and w ∈ VC , and VC = λCZC , for some λ ∈ pZp (and
λ ∈ 4Z2 for p = 2). Note that VC and ZC are abelian Lie algebras for
every C. Let

H =
⋃
C<G

VC and Z =
⋃
C<G

ZC ,

where the line denotes the closure in the Zp-topology. Then H and Z
are abelian subgroups of G, H is the commutator subgroup of G, and
G/Z ' Zp.

For every element x ∈ G r Z, one has ad(x)z = λxz, for some
λx ∈ pZp (resp., λx ∈ 4Zp). Let x0 ∈ G r Z such that λx0 has the
minimal p-adic value. Then we may define an orientation θ : G → Z×p
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such that ker(θ) = Z and θ(x0) = 1 + λx0 . Then θC = θ|C for every
finitely generated subgroup C, so that G is θ-abelian. �

Remark 3.10. Theorem 3.9 is the union of [Qu14, Theorem A] (for
the finitely generated case) and [CMQ, Prop. 3.5] (for the infinitely
generated case).

Recall from Definition 5 the definition of rank of a pro-p group.
The following is a well-known result.

Fact 3.11. A non-abelian free pro-p group has infinite rank.

From Theorem 3.3 and Theorem 3.9 one gets the following.

Theorem 3.12. Let G be a Bloch-Kato pro-p group (and assume
further that G has a cyclotomic orientation θ′ such that im(θ′) ' Z2

for p = 2). Then the following are equivalent.

(i) G is locally powerful.
(ii) G does not contain non-abelian closed free pro-p subgroups.

(iii) There exists an orientation θ : G → Z×p such that G is θ-
abelian.

Moreover, if G is finitely generated, the above conditions and the below
ones are equivalent.

(iv) G is powerful.
(v) G is p-adic analytic.1

(vi) the cohomology ring H•(G,Fp) is an exterior Fp-algebra.
(vii) cd(G) = d(G).

(viii) d(C) = d(G) for every open subgroup C of G, i.e., G has
constant generating number on open subgroups.

Proof. The equivalence between (i), (ii) and (iii) follows directly
from Theorem 3.3 and Theorem 3.9. Now assume that G is finitely
generated.

Condition (i) implies (iv) by definition. Conversely, if G is pow-
erful, then the rank rk(G) is finite [DdSMS, Theorem 3.13]. Thus,
by Fact 3.11, G contains no non-abelian free subgroups, and by The-
orem 3.3 G is θ-abelian, for some orientation θ : G→ Z×p . This estab-
lishes the equivalence between (iv) and the first three conditions.

1A topological group G is said to be a p-adic analytic group if G has the
structure of analytic manyfold over Qp, and the function

f : G×G −→ G, (x, y) 7−→ xy−1

is analytic (see also [DdSMS, Ch. 8])
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By [DdSMS, Theorem 8.18], condition (i) implies condition (v),
whereas condition (v) implies condition (ii) follows by [DdSMS, The-
orem 8.32].

Conditions (vi) and (vii) are equivalent by Lemma 3.2, and condi-
tions (iv) and (vi) are equivalent by Theorem 3.4.

If G is locally powerful, then it has finite rank by the argument
above, thus every open subgroup C of G is powerful. Thus, (i) implies
(viii) by [DdSMS, Prop. 4.4]. Conversely, if (viii) holds, then one has
rk(G) = d(G), and G contains no non-abelian free subgroups. �

For a finitely generated pro-p group G, consider the property

(3.9) d(C)− n = |G : C|(d(G)− n)

for all open subgroups C of G, with n a fixed poritive integer. In
the early ’80s, K. Iwasawa observed that pro-p groups satisfying (3.9)
have interesting representation-theoretic properties, and he raised the
question of determining the groups satisfying (3.9) for each n ≥ 1.

For n = 1, (3.9) becomes the well-known (topological) Schreier
index formula, which characterizes free pro-p groups [NSW, Corol-
lary 3.9.6]. In [DL83], D. Dummit and Labute answer Iwasawa’s ques-
tion for n = 2 in the case of groups with one defining relation: G is
a Demushkin group if and only if G is a one-relator torsion-free pro-p
group satisfying (3.9) with n = 2.

Hnece, Theorem 3.12(viii) provides the answer to Iwasawa’s ques-
tion with n = d(G) in the category of finitely generated Bloch-Kato
pro-p groups. A similar answer has been proven in [KS11] for the cat-
egory of p-adic analytic pro-p groups. It is interesting to remark that
the groups listed in [KS11, Theorem 1.1.(1)-(2), (4)] are θ-abelian for
some orientation θ (in fact the groups listed in (4) are not powerful,
as the image of the orientation is torsion), whereas the groups listed
in [KS11, Theorem 1.1.(3)] are not Bloch-Kato (and thus they cannot
be realized as maximal pro-p Galois groups), for they have non-trivial
3-torsion.

3. Rigid fields and θ-abelian Galois groups

Let K be a field containing a root of unity of order p, and let GK(p)
be the maximal pro-p Galois group of K, with arithmentic orientation
θ : GK(p)→ Z×p . The condition of θ-abelianity of the group GK(p) can
be translated in the arithmentic “language” (i.e., in conditions on the
field K) in some different ways.
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Recall from (1.13) that the first Fp-cohomology group of GK(p) is
isomorphic to the quotient K×/(K×)p as Fp-vector space. Also, fix
an isomorphism of GK(p)-modules µp ' Fp. Then by (2.5) and by
Corollary 1.21 one has that the second Fp-cohomology group of GK(p)
is canonically isomorphic to the subgroup Brp(K) of the Brauer group
of Br(K).

It is possible to define a map from K×/ (K×)
p ∧ K×/ (K×)

p
to

Brp(K) as follows. For a, b ∈ K×, the cyclic K-algebra generated by
a and b is the K-algebra

(a, b)K =
K〈u, v〉

〈up = a, vp = b, uv = ζvu〉
,

where ζ ∈ K× is the fixed primitive pth-root of the unity (which de-
pends on the isomorphism µp ' Fp). For a, b ∈ K×, the cyclic algebra
(a, b)K represents a class of the Brauer group Br(K). Moreover, for
every a, b ∈ K×, the algebra (ap, b)K splits, so that in fact the class of
(a, b)K lies in Brp(K), and we may define a map

(3.10) K×/ (K×)
p ∧K×/ (K×)

p
( , )K

// Brp(K) .

In their work on the case n = 2 of the Bloch-Kato conjecture,
Merkur’ev and Suslin proved that one has a commutative diagram
(3.11)

K×/ (K×)
p ∧K×/ (K×)

p

o
��

o
��

( , )K
// Brp(K)

H1 (GK(p),Fp) ∧H1 (GK(p),Fp)
∧2(∪)

// H2 (GK(p),Fp)

o

OO

where the upper horizontal arrow (and thus also the lower one) is an
epimorphism of vector spaces over Fp.

3.1. p-rigid fields. Let a be a p-power free unit of K (i.e., a ∈
K× r (K×)p). Then K( p

√
a)/K is a Galois extension of degree p, with

cyclic Galois group generated by an element σ̄ ∈ Gal(K( p
√
a)/K) of

order p. Recall that the norm N : K( p
√
a) → K of the extension
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K( p
√
a)/K is defined by

N(γ) = γ · σ̄(γ) · · · σ̄p−1(γ)

=

p−1∏
i=0

(
c0 + c1ζ

i p
√
a+ . . .+ cp−1ζ

i(p−1) p
√
ap−1

)
,

with γ = c0 + c1
p
√
a+ . . .+ cp−1

p
√
ap−1.

Definition 14. Let K be a field containing a primitive p-th root
of unity (and containing also

√
−1, if p = 2).

(i) An element a ∈ K× which is p-power free is said to be p-rigid
if N(K( p

√
a)) is contained in the set

⋃p−1
n=0 a

nKp.
(ii) The field K is said to be p-rigid if all of the elements in KrKp

are p-rigid.

Remark 3.13. (i) Since N(K) = Kp, every p-power of K is
a norm of K( p

√
a)/K.

(ii) The restriction of the norm on the multiplicative groupK( p
√
a)×

is a group homomorphism.
(iii) If p is odd, then N( p

√
am) = am, with m a positive integer,

whereas if p = 2 then N(
√
a) = −a.

The notion of p-rigidity of fields was introduced by K. Szymiczek
in [Sz77], and it was developed and studed first in the case p = 2,
and then in the case of an odd prime. The notion of p-rigidity is
important expecially for the consequences on the existence of valuations
(see [Ef06, § 11.3-11.4]).

Examples 2. (a) Let ` be a prime different to p and k a pos-
itive integer such that p | (`k − 1), and let K be the field
F`k((X)), i.e, K is the field of Laurent series on the indeter-
minate X with coefficients in the finite field F`k . Then K is
p-rigid [Wr92, p. 727].

(b) Let ζ be a primitive p-th root of unity and ` a prime different
to p. Then the p-adic field Q`(ζ) is p-rigid [CMQ, Exam. 3.1].

In the case p = 2, one may understand a 2-rigid field by studying
the structure of the Witt ring of quadratic forms of the field. The con-
sequences of 2-rigidity were studied in several papers, and today many
results about 2-rigid fields are known, and these fields are rather well
understood (see, for example, [Wr81], [AEJ], [JW89] and [LS02]).

The problem to generalize the results obtained in the case p = 2 for
odd primes has been considered rather hard for long time. A first dif-
ficulty is that there is no usable version of Witt ring for higher degree
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forms. Thus, one has to find an “odd substitute” of a quaternionic
pairing. (Indeed, quaternionic pairings were developed as a tool for
studying abstract Witt rings.) The first attempts to use the cup prod-
uct in Galois cohomology to study the maximal pro-p Galois groups of
p-rigid fields are to be found in [Wr92] first, and then, more explicitly,
in [HJ95]. On the other hand, [EK98] makes no use of cohomological
tools.

It is worth to stress that all the contribuitions to p-rigid fields listed
so far make use of instruments provided by the theory of valuations,
whereas our approach (based only on Galois cohomology and the theory
of pro-p groups) makes it possible to study p-rigid without any “help”
from valuation theory. In fact, the following result is the key to relate
p-rigid fields with the cohomology of maximal pro-p Galois groups.

Proposition 3.14. Let K be a field containing a root of unity of
order p (and also

√
−1, if p = 2). Then K is p-rigid if, and only if,

the map ∧2(∪) in the Fp-cohomology of the Galois group GK(p) is a
monomorphism.

Proof. The definition of p-rigidity states that for every a, the
norms of K( p

√
a)/K modulo (K×)p are precisely the Fp-multiples of

the āi’s, with āi = ai mod (K×)p and 0 ≤ i ≤ p− 1, i.e.,

N( p
√
a) = SpanFp{ā, . . . , ā

p−1} ≤ K×/(K×)p.

It is well known that the class of (a, b)K is trivial in Br(K) if, and
only if, b is a norm of K( p

√
a)/K – in particular, if b is a p-power of K

or if b̄ is Fp-linearly dependent to ā in K×/(K×)p, by Remark 3.13.
Consequently, K is p-rigid if, and only if, the algebra (a, b)K splits

if, and only if, b̄ is Fp-linearly dependent to āi in K×/(K×)p for some
i, namely, the map (3.10) is a monomorphism. Therefore the claim
follows from the commutative diagram (3.11). �

This provides a first immediate consequence.

Corollary 3.15. Let K be a field containing a primitive p-th root
of unity (and also

√
−1, if p = 2), and assume that the quotient

K×/(K×)p is finite. Then K is p-rigid if, and only if, the maximal
pro-p Galois group GK(p) is θ-abelian, with θ : GK(p)→ Z×p the arith-
metical orientation.

Note that under the assumption that K contains
√
−1, one has that

either im(θ) ' Z2 or θ ≡ 1.
In order to study explicitly the structure of maximal pro-p Galois

group of p-rigid fields, R. Ware introduced in [Wr92] also the notion
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of hereditary p-rigidity: a field K is said to be hereditarily p-rigid if
every subextension of the p-closure K(p) is p-rigid. As Ware pointed
out, to conclude that K is hereditary p-rigid, it is enough to check
that each finite extension L/K is p-rigid. In [EK98], A. Engler and
J. Koenigsmann showed that p-rigidity implies hereditary p-rigidity,
and later also the author, with S.K. Chebolu and J. Mináč, proved the
same result using a different argument (cf. [CMQ, § 3.3]). The former
proof makes use of techniques from the theory of valuations.

Theorem 3.16. If a field K containing a primitive p-th root of
unity (and

√
−1 for p = 2) is p-rigid, then every p-extension L of K

is rigid.

Remark 3.17. Note that if the quotient K×/(K×)p is finite, then
it is possible to prove that a p-rigid field is also hereditarily p-rigid
without making use of arithmetical tools. Indeed, assume that the field
K (containing a primitive p-th root of unity and also

√
−1 if p = 2)

is p-rigid. Then by Proposition 3.14 and Theorem 3.4 the maximal
pro-p Galois group GK(p) is powerful, and by Theorem 3.12 it is also
locally powerful. Thus again by Proposition 3.14 and Theorem 3.4
every p-extension L of K is p-rigid.

Therefore, one has an “arithmetical version” of Theorem 3.12.

Theorem 3.18. Let K be a field containing a primitive p-th root
of unity (and

√
−1 for p = 2), and let G be the maximal pro-p Galois

group of K, equipped with the arithmetical orientation θ : G → Z×p .
Then, K is p-rigid if, and only if:

(i) G is θ-abelian and im(θ) = 1 + pkZp, where k is the maximum
positive integer such that µpk ⊆ K and µpk+1 * K (in case
µp∞ ⊆ K, then k =∞ and θ ≡ 1);

(ii) there are no p-extensions L/K such that the maximal pro-p
Galois group GL(p) is free and non-abelian;

(iii) G is solvable;2

Assume further that the quotient K×/(K×)p is finite. Then, K is p-
rigid if, and only if:

(iv) G is powerful;
(v) the cohomology ring H•(G,Fp) is isomorphic to the exterior

Fp-algebra
∧
i≥0K

×/(K×)p;

2I.e., G admits a finite normal series of closed subgroups such that each suc-
cessive quotient is abelian
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(vi) one has

cd(G) = dimFp
(
K×/(K×)p

)
=

1

p

∣∣K×/(K×)p
∣∣ .

(vii) for every finite p-extension L/K one has

dimFp
(
L×/(L×)p

)
= dimFp

(
K×/(K×)p

)
.

The above result extends and generalizes the results proved in
[Wr92] and some in [EK98]. In particular, Corollary 2, Theorem 2
and Theorem 4 in the former paper require the assumption that K
contains also a root of unity of order p2, which is not necessary in our
result.

4. Finite quotients and θ-abelian groups

It is possible to obtain further characterizations of θ-abelian pro-
p groups which involve finite quotients, and which have a particular
arithmetical interpretation.

For a pro-p group G, let Φ2(G) be the Frattini subgroup of the
Frattini subgroup, i.e.,

Φ2(G) = Φ (Φ(G)) .

Thus, Gp2 ≤ Φ2(G), so that the quotient G/Φ2(G) has exponent p2.
In particular, if G is finitely generated, then the quotient G/Φ2(G) is
a finite p-group. Also, one has

(3.12) λ3(G) = Φ2(G) · [G,Φ(G)],

where λ3(G) is the third element of the p-descending central series (see
Subsection 1.2.1).

If G is θ-abelian for some orientation θ, then one has a tighter
relation between λ3(G) and Φ2(G).

Theorem 3.19. Let G be a finitely generated Bloch-Kato pro-p
group. Then there exists an orientation θ : G → Z×p such that G is
θ-abelian if, and only if, one has the equality

Φ2(G) = λ3(G).
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Proof. Assume first that G is θ-abelian, for some orientation θ.
Then one has

Φ2(G) = Φ(G)p[Φ(G),Φ(G)] = Gp2

= λ3(G)

– in fact one has λi(G) = Gpi−1
for every i ≥ 1.

Conversely, assume that Φ2(G) = λ3(G). Since

[D2(G), D2(G)] ≤ D4(G) and D2(G)p ≤ D2p(G),

one has
Φ2(G) = D2(G)p [D2(G), D2(G)] ≤ D4(G),

as Φ(G) = D2(G). Moreover, one has the inclusion γ3(G) ≤ λ3(G).
Therefore, one has the chain of inclusions

(3.13) γ3(G) ≤ λ3(G) = Φ2(G) ≤ D4(G).

We shall split the proof of this implication in three cases.

(i) Assume p > 3. By Lazard’s formula (1.7), one has

D3(G) =
∏
iph≥3

γi(G)p
h

= γ3(G) ·Gp,

D4(G) =
∏
iph≥4

γi(G)p
h

= γ4(G) ·Gp.

Therefore, (3.13) implies

D3(G) = γ3(G) ·Gp ≤ λ3(G) = Φ2(G) ·Gp ≤ D4(G),

as Gp ≤ D4(G). Thus, one has the equality D3(G) = D4(G).
Hence, Proposition 1.12 implies that rk(G) is finite, and thus
by Theorem 3.12 there is an orientation θ : G→ Z×p such that
G is θ-abelian.

(ii) Assume p = 2. From (1.7) one obtains

D3(G) =
∏
i2h≥3

γi(G)2h = γ3(G) · γ2(G)2 ·G4,

D4(G) =
∏
i2h≥4

γi(G)2h = γ4(G) · γ2(G)2 ·G4.

Therefore, (3.13) implies

D3(G) = γ3(G)γ2(G)2G4 ≤ Φ2(G)γ2(G)2G4 ≤ D4(G),
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as γ2(G)2G4 ≤ D4(G). Thus, one has the equality D3(G) =
D4(G). Hence, Proposition 1.12 implies that rk(G) is finite,
and thus by Theorem 3.12 there is an orientation θ : G→ Z×p
such that G is θ-abelian.

(iii) Assume p = 3. By (1.7), one has

D4(G) =
∏
i3h≥4

γi(G)3h = γ4(G) · γ2(G)3 ·G9,

D5(G) =
∏
i3h≥5

γi(G)3h = γ5(G) · γ2(G)3 ·G9.

Therefore, from (3.13) one obtains the chain of inclusions

γ4(G) = [G, γ3(G)] ≤ [G,D4(G)] = [D1, D4(G)] ≤ D5(G),

which implies

D4(G) = γ4(G) · γ2(G)3 ·G9 ≤ D5(G),

as G9, γ2(G)3 ≤ D5(G). Thus, one has the equality D4(G) =
D5(G). Hence, Proposition 1.12 implies that rk(G) is finite,
and thus by Theorem 3.12 there is an orientation θ : G→ Z×p
such that G is θ-abelian.

�

Corollary 3.20. Let G be a finitely generated Bloch-Kato pro-p
group. Then there exists an orientation θ : G → Z×p such that G is
θ-abelian if, and only if, one has

(3.14) Φ(G)/Φ2 ≤ Z (G/Φ2) .

Proof. Assume that G is θ-abelian. Then by Theorem 3.19 one
has λ3(G) = Φ2(G), and λ2(G)/λ3(G) is central in G/λ3(G).

Conversely, assume that Φ(G)/Φ2 is central in G/Φ2(G). This im-
plies that the commutator subgroup [G,Φ(G)] is contained in Φ2(G).
Since

Φ2(G) = Φ (Φ(G)) ≥ (Φ(G))p and λ3(G) = (Φ(G))p [G,Φ(G)] ,

it follows that Φ2(G) contains λ3(G), and thus λ3(G) = Φ2(G). �
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4.1. Rigid fields and small Galois groups. The above results
can be translated in the arithmetical “language” in terms of finite ex-
tensions. Let K be a field containing a root of unity of order p, and let
G be the maximal pro-p Galois group GK(p). Recall that by Propo-
sition 1.20 the quotient G/Φ(G) is the Galois group of the extension

of K( p
√
K)/K. Set L = K( p

√
K). Then L( p

√
L)/K is again a Galois

extension, and one has

Gal
(
L(

p
√
L)/L

)
=

Φ(G)

Φ2(G)
and Gal

(
L(

p
√
L)/K

)
=

G

Φ2(G)
,

as Φ2(G) is the maximal pro-p Galois group of the field L( p
√
L). An

important subextension of L( p
√
L) is the following: let A ⊆ L× be the

set

A =
{
a ∈ L×

∣∣ L ( p
√
a
)
/K is Galois

}
.

Consider the field L( p
√
A). The following well-known fact (cf. [CMQ,

Lemma 2.2]) is necessary to determine the Galois group of L( p
√
A)/K.

Fact 3.21. Let K be a field containing a primitive pth-root of unity,
and let L/K be a p-extension with a ∈ L×. Then L( p

√
a)/K is Galois

if, and only if,

σ(a)

a
∈ Lp

for every σ ∈ Gal(L/K).

Proposition 3.22. Let K be a field containing a root of unity of
order p (and containing also

√
−1 in the case p = 2), and let L/K and

A ⊆ L× be as above. Then the subgroup λ3(G) of G is the maximal

pro-p Galois group of L( p
√
A), i.e.,

G/λ3(G) = Gal
(
L(

p
√
A)/K

)
.

Proof. By Proposition 1.20 one knows that

L×

(L×)p
'
(

Φ(G)

Φ2(G)

)∨
.

By Fact 3.21, the set A corresponds to the G-invariant submodule
(L×/(L×)p)G of L×/(L×)p, considered as discrete G-module.

On the other hand, (3.12) implies that the quotient Φ(G)/λ3(G)
is isomorphic to the G-coinvariant quotient of the discrete G-module
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Φ(G)/Φ2(G). Therefore, by duality one has the isomorphisms of dis-
crete G-modules

A

(L×)p
=

(
L×

(L×)p

)G
'
((

Φ(G)

Φ2(G)

)
G

)∨
'
(

Φ(G)

λ3(G)

)∨
,

so that the claim follows by Kummer duality. �

Theorem 3.19 and Proposition 3.22 have the following consequence.

Corollary 3.23. Let θ : GK(p)→ Z×p be the arithmetical orienta-
tion of the maximal pro-p Galois group of K. Then GK(p) is θ-abelian
if, and only if, the extension L( p

√
a)/K is Galois for every a ∈ L.

The equality of Galois groups λ3(GK(p)) = Φ2(GK(p)) is equivalent
to the equality of extensions

(3.15) L(
p
√
A)/K = L(

p
√
L)/K.

Therefore, K is p-rigid if, and only if, equality (3.15) holds. 3 This is
the main result in [CMQ], and it completes the the result obtained by
D. Leep and T. Smith for 2-rigid fields in [LS02].

In the case p = 2 the quotient GK(p)/λ3(GK(p)) has been exten-
sively studied under the name of “W -group”, in particular in connec-
tion with quadratic forms (see, e.g., [MSp90]). It was further shown
that in this case such quotient has great arithmetical significance, as it
encodes information about orderings and valuations of K. In the case p
odd the quotient GK(p)/λ3(GK(p)) has been studied by S.K. Chebolu,
J. Mináč and Efrat in [CEM] (see also Theorem 2.7).

Also, one has the following (cf. [CMQ, § 4.2]).

Theorem 3.24. Let K be a field containing a root of unity of order
p (and containing also

√
−1 in the case p = 2). Then K is p-rigid

if, and only if the p-closure of K is obtained by adjoining the p-power
roots of all the elements of K, namely,

K(p) = K
(
pm
√
a,m ≥ 1, a ∈ K

)
.

Note that if the field K is p-rigid, then one needs only the quotient
K×/(K×)p and the image of the arithmetical orientation θ : GK(p) →
Z×p to recover the entire structures of the maximal pro-p Galois group
GK(p) and of the p-closure K(p)/K.

3Note that the following notation is rather common in papers on rigid fields:
K(2) = L, K(3) = L( p

√
A) and K{3} = L( p

√
L), see for example [CMQ, § 2.3]
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5. The Zassenhaus filtration for θ-abelian groups

The rather simple structure of a θ-abelian pro-p group makes it
possible to compute explicitly the Zassenhaus filtration and the induced
quotients.

Let (G, θ) be a θ-abelian pro-p group, with k ∈ N∪ {∞} such that
im(θ) = 1+pkZp (in particular, k =∞ if, and only if, θ ≡ 1, as p∞ = 0
in the pro-p topology). Then one has

γi(G) = ker(θ)p
k(i−1)

for every i > 1.

For every n ≥ 1 set ` = dlogp(n)e, i.e., ` is the least integer such that

n ≤ p`. Hence, by Lazard’s formula (1.7), one has

(3.16) Dn(G) = Gp`
∏
iph≥n

ker(θ)p
k(i−1)+h

, with i ≥ 2.

We shall show that for every i, h such that i ≥ 2 and iph ≥ n, one has
the inequality

(3.17) k(i− 1) + h ≥ `,

so that ker(θ)p
k(i−1)+h ≤ Gp` , and Dn(G) = Gp` . If h ≥ `, then inequal-

ity (3.17) follows immediately. Otherwise, notice that i > p`−h−1 ≥ 1,
as iph ≥ n > p`−1, which implies

(3.18) k(i− 1) > k
(
p(`−h)−1 − 1

)
.

Therefore, for `− h ≥ 2, the inequality (3.18) implies k(i− 1) ≥ `− h,
and thus (3.17), whereas for `−h = 1 (3.17) follows from the fact that
i ≥ 2.

Altogether, this shows that

(3.19) Dn(G) = Gp` for p`−1 < n ≤ p`.

Consequently, the quotients induced by the Zassenhaus filtration are

(3.20) Li(G) =
Di(G)

Di+1(G)
'
{
G/Φ(G) for i a pth-power

0 otherwise

as Fp-vector spaces. Therefore, L•(G) is an abelian restricted Lie al-
gebra over Fp, and by Proposition 1.18 the restricted envelope is the
polynomial Fp-algebra in d(G) indeterminates, i.e.,

(3.21) gr•(G) ' Up(L•(G)) ' Fp
[
X1, . . . , Xd(G)

]
,
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with the grading induced by the degrees of the monomials.

Remark 3.25. It is worth to stress that the Zassenhaus filtration
loses completely the information about the image of the orientation θ
– as it happens for Demuškin groups, see (2.19).

Theorem 3.26. Let (G, θ) be a finitely generated pro-p group with
a cyclotomic orientation, and assume further that im(θ) ≤ 1 + 4Z2 if
p = 2. Then the following are equivalent:

(i) G is θ-abelian;
(ii) the algebra L•(G) is an abelian restricted Lie algebra over Fp;

(iii) the algebra gr•(G) is a commutative polynomial Fp-algebra.

Proof. Assume first that G is θ-abelian. Then (ii) and (iii) follow
from (3.20) and (3.21).

Assume that the algebra L•(G) is abelian. Then (3.21) follows
immediately. Moreover, one has Li(G) = Di(G)/Di+1(G) whenever i
is not a p-power. In particular, Di(G) = Di+1(G) for every such i’s, so
that [DdSMS, Theorem 11.4] implies that G has finite rank, and (i)
follows by Theorem 3.12.

Assume now that gr•(G) is a commutative polynomial Fp-algebra.
Since the map ψL•(G) : L•(G) → gr•(G) is a monomorphism, also the
restricted Lie algebra L•(G) has to be commutative, so that (iii) implies
(ii). �

Corollary 3.27. Let K be a field containing a primitive p-th root
of unity such that the quotient K×/(K×)p is finite, and assume further
that

√
−1 lies in K if p = 2. Then the following are equivalent:

(i) K is p-rigid;
(ii) the algebra L•(GK(p)) induced by the maximal pro-p Galois

group GK(p) is an abelian restricted Lie algebra over Fp;
(iii) the algebra gr•(GK(p)) is a commutative polynomial Fp-algebra.
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CHAPTER 4

Products, relations, and the ETC

1. The group H1(G,Zp(1))

Let (G, θ) be a cyclo-oriented pro-p group. Our first goal is to study
the structure of the cohomology group H1(G,Zp(1)) and the continuous
crossed homomorphism f : G→ Zp(1) which represent the cohomology
classes.

The following result is a consequence of [La67, Prop. 6].

Proposition 4.1. Let (G, θ) be a finitely generated pro-p group
with orientation. Then θ is cyclotomic if, and only if, one may ar-
bitrarily prescribe the values of a continuous crossed homomorphisms
f : G→ Zp(1) on a minimal system of generators of G.

Proof. First of all, recall that by Proposition 2.11, θ is a cyclo-
tomic orientation for G if, and only if, one has the epimorphism (2.12).

Assume first that it is possible to arbitrarily prescribe the values of
a crossed homomorphism f on a minimal system of generators of G.
Then it is easy to see that (2.12) is an epimorphism: indeed, for every
χ ∈ H1(G,Fp), χ is the image of a crossed homomorphism f : G →
Zp(1) such that f(x) ≡ χ(x) mod p for every generator x of G.

Conversely, assume that (2.12) is an epimorphism. The composition
of projections Zp(1) � Zp(1)/pnZp(1) � Fp for every n ≥ 1 implies
that the map

H1(G,Zp(1)/pnZp(1)) // H1(G,Fp)

is surjective for every n ≥ 1. In particular, condition (1) of [La67,
Prop. 6] holds, and this yields the thesis. �

For x, y ∈ G and f : G → Zp(1) a continuous crossed homomor-
phism, one has the formula

(4.1) f ([x, y]) = (θ(x)− 1)f(y)− (θ(y)− 1)f(x).
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Let

(4.2) 1 // R // F // G // 1

be a minimal presentation for a finitely generated cyclo-oriented pro-p
group (G, θ). Since R ≤ Φ(G), we may extend θ to an orientation

θ̃ : F → Z×p such that θ ◦ π = θ̃. Note that (F, θ̃) is again a cyclo-
oriented pro-p group by Remark 2.10. Then, one has the following.

Fact 4.2. (i) A continuous crossed homomorphism f : G →
Zp(1) is uniquely determined by the values of f on a mini-
mal set of generators of G. In particular, we may arbitrarily
prescribe such values (cf. [La67, Prop. 6 (3)]).

(ii) For a crossed homomorphism f : G→ Zp(1), let f̃ : F → Zp(1)
be the lift of f induced by the values of f on a minimal set of
generators of G, i.e., f̃ = f ◦ π. Then one has f̃ |R ≡ 0.

(iii) If a crossed homomorphism h : F → Zp(1) is zero on a set of
defining relations of R, then h|R ≡ 0. Indeed, if ρ ∈ R and
h(ρ) = 0, (4.1) implies that

h (xρ) = h
(
[x, ρ]ρ−1

)
= h([x, ρ]) + θ([x, ρ])h(ρ−1)

= (θ(x)− 1)h(ρ)− (θ(ρ)− 1)h(x) + 1 · 0 = 0,

as θ(ρ) = 1.

For every crossed homomorphism f : G → Zp(1), the restriction
f |ker(θ) : ker(θ) → Zp(1) is a morphism of pro-p groups. In particular,
if the orientation θ is trivial, then Zp(1) is a trivial Zp[[G]]-module, and

H1(G,Zp(1)) ' Hom(G,Zp).

Moreover, recall that from Corollary 2.20 one has that the abelianiza-
tion of ker(θ) is torsion-free. Thus one has the isomorphism of abelian
pro-p groups

ker(θ)

[ker(θ), ker(θ)]
' Hom(ker(θ),Zp) ' H1(ker(θ),Zp(1)).

Remark 4.3. Using Proposition 4.4 and Fact 4.2 allows us to prove
Corollary 2.20 in a more “direct” way. Indeed, let (G, θ) be a cyclo-
oriented pro-p group with θ trivial. Let 4.2 be a minimal presentation
for G, and assume for contradiction that there is a relation ρ ∈ R and a
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generator x ∈ F such that ρ ≡ xp
m

mod [F, F ] for some finite m. With
an abuse of notation, consider x as element of G, and let χ ∈ H1(G,Fp)
be the dual of x. Also, let the crossed homomorphism f̃ : F → Zp(1) be

a “lift” of χ, i.e., the cohomology class of f̃ is equivalent to χ modulo
p. By assumption, Zp(1) is a trivial Zp[[G]]-module, and thus also a

trivial Zp[[F ]]-module. Hence f̃ is an homomorphism, and

0 = f̃(ρ) = f̃
(
xp

m)
= pmf̃(x) = pm,

a contradiction. Thus, the abelianization G/[G,G] is torsion-free.

Assume now that im(θ) ' Zp. The orientation θ induces an action
of G on H1(ker(θ),Zp(1)), given by

(4.3) (g.f)(z) = θ(g) · f
(
g−1z

)
, g ∈ G, z ∈ ker(θ),

for f ∈ H1(ker(θ),Zp(1)). Note that every g ∈ G can be written as
g = xλz, with z ∈ ker(θ) and x ∈ G such that θ(x) generates im(θ).
Thus, if f : G → Zp(1) is a continuous crossed homomorphism such
that f(xλ) = 0 for every λ ∈ Zp (i.e., we may consider f as element of
Hom(ker(θ),Zp)), then Fact 1.1 implies that

f
(
xλz
)

= θ
(
xλ
)
· f(z) =⇒ θ

(
x−λ
)
· f
(
xλz
)

= f(z)

for every λ ∈ Zp and z ∈ ker(θ), namely, by (4.3) G acts trivially on
f . Therefore, H1(ker(θ),Zp(1))G embeds in H1(G,Zp(1)).

Moreover, for every crossed homomorphism f and for every x, y ∈
G, one has

f(xy) ≡ f(x) + f(y) mod q,

with q a p-th power such that im(θ) = 1 + qZp. Also, by Fact 1.1 every
λ ∈ Zp(1) induces a crossed homomorphism

λ : G −→ Zp(1), λ(x) = (θ(x)− 1)λ

which is a 1-coboundary. Note that λ|ker(θ) ≡ 0, so that λ factors
through the quotient G/ker(θ), and the image of λ is qλZp. Therefore,
by Lemma 2.21, the reduction modulo q induces the isomorphism

(4.4) torZp (H1(G,Zp(1)))
∼

// H1(G/ker(θ),Z/qZ).
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Moreover, the five term exact sequence induced by the quotient
G/ker(θ) (cf. [NSW, Prop. 1.6.7]) induces the exact sequence in co-
homology

0 // H1(G/ker(θ),Zp(1)) // H1(G,Zp(1)) // H1(ker(θ),Zp(1))G EDBC
GF@A

// H2(G/ker(θ),Zp(1)) // · · ·

which becomes

0 // H1(G/ker(θ),Z/qZ) // H1(G,Zp(1)) // H1(ker(θ),Zp)G // 0

as cd(G/ker(θ)) = 1. Consequently, one has the following.

Proposition 4.4. Let (G, θ) be a cyclo-oriented pro-p group. Then
one has the isomorphism of Zp-modules

H1(G,Zp(1)) ' H1(G/ker(θ),Z/qZ)⊕H(ker(θ),Zp)G.

Examples 3. (a) Let (G, θ) be a finitely generated θ-abelian
pro-p group with d(G) = d and a presentation (2.9), with
I = 1, . . . , d− 1, and set θ(x0) = 1 + p. Then H1(G,Zp(1))
is the Zp-module generated by the classes of the continuous
crossed homomorphisms fi : G → Zp(1), with fi(xj) = δij for
i, j = 0, . . . , d− 1. In particular,

H1(G,Zp(1)) ' Fp ⊕ Zd−1
p

as Zp-modules, and ord(f0) = p, as pf0 is the crossed homo-
morphism induced by 1 ∈ Zp(1). Note that for every i ≥ 1
one has

(x0.fi)(xi) = θ(x0) · f
(
x
θ(x−1

0 )
i x−1

0

)
= θ(x0)θ(x0)−1fi(xi) + 0

i.e., the action of G fixes Hom(Zθ(G),Zp(1)).
(b) Let G be as above, but equip it with the trivial orientation

θ′ : G → Z×p , θ′ ≡ 0. Then by Corollary 2.20 (G, θ′) is not
cyclo-oriented, as the abelianization of G = ker(θ′) is not
torsion-free. Moreover, H1(G,Zp) ' Zp, and such group does
not projects onto H1(G,Fp) – in particular, it is not possible
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to lift the dual of xi from H1(G,Fp) to Hom(G,Zp) for every
i ≥ 1, as one would have p = fi (x

p
i ) = fi([x0, xi]) = 0.

2. Free products

Recall from Subsection 2.5.2 the definition of free product in the
category of pro-p groups. The class of Bloch-Kato pro-p groups is
closed under free pro-p products (cf. [Qu14, Theorem 5.2]). We want
now to extend such closure to the class of cyclo-oriented pro-p groups.

Then for two oriented pro-p groups (G1, θ1) and (G2, θ2), the ori-
entations θ1 and θ2 induce a new orientation on the free product, i.e.,
one has the commutative diagram

(4.5) Gi

ιi
//

θi
��

G1 ∗p̂ G2

θ̃{{w
w

w
w

w

Z×p

with i = 1, 2. Thus, we may define the free pro-p product for oriented
pro-p groups, and one has the following.

Theorem 4.5. Let (G1, θ1) and (G2, θ2) be two cyclo-oriented pro-
p groups, and assume further that im(θi) has non non-trivial torsion

for both i. Then the orientation θ̃ defined as in (4.5) is a cyclotomic
orientation for the free product G1 ∗p̂ G2.

Proof. Set G = G1 ∗p̂G2. First, as stated above, the group G is a
Bloch-Kato pro-p group. Thus, it is enough to show that H2(C,Zp(1))
is torsion-free for every C.

By [NSW, Theorem 4.1.5], the group H1(G,Fp) decomposes as
H1(G1,Fp) ⊕ H1(G2,Fp). Thus, the inclusions ι1, ι2 induce the com-
mutative diagram

(4.6) H1(G,Zp(1)) //

res1
G,Gi

��

H1(G1,Fp)⊕H1(G2,Fp)

��
��

H1(Gi,Zp(1)) // // H1(Gi,Fp)

for i = 1, 2, where the lower arrow is surjective by hypothesis and
by Lemma 2.11. In particular, the groups G1 and G2 are properly
embedded in G (cf. [Qu14, Fact 4.5]).
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Moreover, by (4.5), one has that θ̃|Gi = θi for i = 1, 2. Thus,

the restrictions H1(ker(θ̃),Zp) → H1(ker(θ1),Zp) are surjective. Also,

the monomorphisms ῑi : Gi/ker(θi) → G/ker(θ̃) induce epimorphisms

H1(G/ker(θ̃),Z/q̃Z) � H1(Gi/ker(θi),Z/qiZ), with im(θi) = 1 + qiZp
and im(θ̃) = 1 + q̃Zp, if the respective orientation is not trivial. There-
fore, Proposition 4.4 implies that

(4.7) res1
G,Gi

: H1(G,Zp(1)) −→ H1(Gi,Zp(1))

is surjective for i = 1, 2. Thus the map H1(G,Zp(1)) → H1(Gi,Fp)
is surjective for each i, and therefore also the upper arrow of (4.6) is
surjective, and by Lemma 2.11 H2(G,Zp(1)) is torsion-free.

Now let C be a closed subgroup of G. Then by the proof of [Qu14,
Theorem 5.2], one has C = F ∗p̂ C1 ∗p̂ C2, with F a free pro-p group
and for every i,

Ci =
∐
r∈Ri

(C ∩Gr
i )

where Ri is a set of representatives of the coset space C\G/Gi.
1 Note

that every C ∩Gr
i is a subgroup of a group isomorphic to Gi, thus it is

again cyclo-oriented. Thus, for every r′ ∈ Ri one has the commutative
diagram

H1(Ci,Zp(1)) //

res
Ci,C∩Gr

′
i��

��

⊕
Ri H

1(C ∩Gr
i ,Fp)

��
��

H1(C ∩Gr′
i ,Zp(1)) // // H1(C ∩Gr′

i ,Fp)

with the right-hand side vertical arrow is surjective by [Qu14, Eq. (5.1)].
Hence, also Ci (and consequently C) is cyclo-oriented. �

2.1. Free-by-Demushkin groups. In the short paper [Wü85],
T. Würfel proves the following theorem.

Theorem 4.6. Let K be a field such that char(K) 6= p and µp∞ ⊆
K, and suppose that the maximal pro-p Galois group GK(p) is finitely
generated with one defining relation. Then there exists a normal closed

1This construction is called the free pro-p product of a sheaf of pro-p groups,
see [Qu14, § 5.1] for further details and references.
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subgroup N of G which is pro-p free such that the quotient G/N is a
Demushkin group, and the inflation map

(4.8) H2(C/N,Z/pnZ)
inf2

C,N

// H2(C,Z/pnZ)

is an isomorphism for every closed subgroup C of G containing N .

He concludes with the following question: is it always true that
such GK(p) is a free-by-Demushkin group, i.e., G is decomposable as
free pro-p product G = G/N ∗p̂F , with F a finitely generated free pro-p
group, if the map (4.8) is an isomorphism?

In [KZ05], D. Kochloukova and P. Zalesskĭi construct a pro-p group
as described in Theorem 4.6 such that (4.8) is an isomorphism, but
which is not a free-by-Demushkin group. Also they observe that such
group is not realizable as maximal pro-p Galois group of any field. Such
group is defined by the presentation

(4.9) G = 〈x, y, z |zp[x, y] = 1〉 .

Let N be the normal subgroup of G generated by z, and set D = G/N .
Then N is an (infinitely generated) free pro-p group, and D is a 2-
generated abelian group. In particular, D is a 2-generated Demushkin
group with qD = 0.

We want to show that no orientations θ : G → Z×p make (G, θ) a
cyclo-oriented pro-p group. Assume for contradiction that G has a cy-
clotomic orientation θ. Since the abelianization G/[G,G] is isomorphic
to Z2

p⊕Z/pZ, by Remark 4.3 the orientation θ can not be trivial. Also,

1 = θ (zp[x, y]) = θ (zp) θ([x, y]) = θ(z)p,

thus θ(z) = 1. Let f : G→ Zp(1) be the continuous crossed homomor-
phism representing a lift of the dual of z in H1(G,Fp), i.e., f(z) = 1
and f(x), f(y) = 0 (such f exists by Proposition 4.4 and Fact 4.2, as
we are assuming that θ is cyclotomic). Then, using (4.1), one obtains

f (zp[x, y]) = f(zp) + θ(z)f([x, y])

= pf(z) + (θ(x)− 1)f(y)− (θ(y)− 1)f(x)

= p.

But f(zp[x, y]) = f(1) = 0, a contradiction.
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3. The cyclotomic fibre product

The other basic operation involved in the ETC is the cyclotomic
fibre product induced by the arithmetic orientation of a maximal pro-p
Galois group.

Definition 15. Let (G, θ) be an oriented pro-p group, and let Z
be a pro-p-cyclic group, i.e., Z ' Zp. The cyclotomic fibre product

G̃ = G nθ Z is the fibre product induced by the split short exact
sequence

(4.10) 1 // Z // G̃ // G // 1

with Z ' Zp(1) as Zp[[G]]-module. The group G̃ comes equipped with

an orientation θ̃ : G̃→ Z×p such that θ̃|G = θ and θ̃|Z ≡ 0.

The class of maximal pro-p Galois groups is closed under iterated
cyclotomic fibre products, as shown by the following.

Proposition 4.7. Let K be a field containing a primitive p-th root
of unity with cyclotomic orientation θ : GK(p) → Z×p , and let A be
an abelian free pro-p group, i.e., A ' Zmp , for some m ≥ 1. Then
the cyclotomic fibre product GK(p) nθ A is realizable as maximal pro-p
Galois group GL(p) for some field L ⊃ K.

The above result is well known, and it can be deduced, e.g., from
[En04, § 1, p. 512]. Also, it is clear that the cyclotomic fibre product
“enlarges” the θ-centre of an oriented pro-p group. In particular, one
has the following elementary fact.

Fact 4.8. If (G, θ) is an oriented pro-p group and Z is as above,
then for G̃ = Gnθ Z one has Zθ̃(G̃) = Zθ(G)× Z.

As Theorem 4.13 will show, every θ-centre of oriented Bloch-Kato
pro-p groups can be obtained as the result of a cyclotomic fibre prod-
ucts.

3.1. The θ-centre. Let C ≤ G be a closed subgroup of a pro-p
group G. Then C is called isolated if for every element g ∈ G there
exists m ≥ 1 such that gp

m ∈ C if, and only if, g ∈ C. It follows that
a closed normal subgroup N C G is isolated if, and only if, G/N is
torsion free.

Proposition 4.9. Let (G, θ) be an oriented torsion free Bloch-Kato
pro-p group. Then Zθ(G) is an isolated subgroup of G.
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Proof. Assume first that θ is trivial. Then Zθ(G) is the centre
Z(G). Suppose there exists x ∈ G r Z(G) and m ≥ 1 such that
xp

m ∈ Z(G). Without loss of generality, we may assume that m = 1,
i.e., xp = z ∈ Z(G). As G is torsion free, one has z 6= 1. Since
x 6∈ Z(G), there exists an element g ∈ G such that gxg−1 6= x. Set C
to be the closed subgroup of G generated by x and g. As C is a Bloch-
Kato pro-p group and z ∈ Z(C), C must be abelian by Theorem 3.12.
Hence gxg−1 = x, a contradiction, and this yields the claim.

Assume now that im(θ) ' Zp, and let p be odd. As Zθ(G) is a closed
normal subgroup of G, it suffices to show that G/Zθ(G) is torsion free.
Since Zθ(G) = Z(ker(θ)), the θ-centre of G is isolated in ker(θ). Thus
ker(θ)/Zθ(G) is torsion free. As G/ker(θ) ' im(θ) is torsion free, this
yields the claim in this case.

Now let p = 2, and put K = ker(θ). Since im(θ) ' Z2, Z(K)
is isolated in K. Moreover, Z(K) is a profinite left Z2[[G/K]]-module
which is a torsion free abelian pro-2 group. As

(4.11) Zθ(G) = {z ∈ Z(K) | (g − θ(g)idK)z = 0 for all g ∈ G} ,

Zθ(G) is an isolated subgroup of Z(K). Hence Zθ(G) is an isolated
subgroup of K.

Suppose Zθ(G) is not isolated in G. Then there exists x ∈ G r
Zθ(G) such that x2 = z ∈ Zθ(G) and z 6= 1. As x 6∈ Zθ(G), the
previously mentioned remark shows that x 6∈ K, i.e., θ(x) 6= 1. Hence
z = xzx−1 = zθ(x). As every element in Z×2 acts fixed point freely on
the closed subgroup generated by z, one concludes that θ(x) = 1, a
contradiction, and this yields the claim. �

The following fact is straightforward.

Fact 4.10. Let φ• : A• → B• be a morphism of positively graded Fp-
algebras such that φ1 : A1 → B1 is surjective, and that B• is generated
by B1. Then φn : An → Bn is surjective for all n ≥ 0.

Proposition 4.11. Let G be a Bloch-Kato pro-p group of finite
cohomological dimension, and let Z be a closed normal subgroup of G
isomorphic to Zp such that G/Z is torsion-free. Then Z 6⊆ Φ(G).

Proof. Let d = cd(G). As Z ' Zp, one has cd(Z) = 1 and
H1(U,Fp) ' Fp for all open subgroups U of Z. Thus, the virtual
cohomological dimension of G/Z is vcd(G/Z) = d − 1 (cf. [NSW,
Theorem 3.3.9]). Since G/Z is torsion-free one has cd(G/Z) < ∞,
hence [NSW, Prop. 3.3.5] implies that cd(G/Z) = d− 1.
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Suppose that Z ⊆ Φ(G). Then inf1
G,Z : H1(G/Z,Fp) → H1(G,Fp)

is an isomorphism. Since G is a Bloch-Kato pro-p group, Fact 4.10
implies that

(4.12) infnG,Z : Hn(G/Z,Fp) −→ Hn(G,Fp)

is surjective for all n ≥ 0. In particular, if (Es,t
r , dr) denotes the

Hochschild-Serre spectral sequence associated to the extension of pro-p
groups Z → G→ G/Z with Fp-coefficients, then Es,t

∞ must be concen-
trated on the bottom row. However, H1(Z,Fp) is a trivial G/Z-module
isomorphic to Fp, and thus

(4.13) Ed−1,1
2 = Hd−1

(
G/Z,H1(Z,Fp)

)
6= 0.

For r ≥ 2 the pages of the spectral sequence (Es,t
r , dr) are concentrated

in the rectangle {0, . . . , d − 1} × {0, 1}. Thus the place (d − 1, 1) can
never be hit by a differential non-trivially, and dd−1,1

r = 0 for all r ≥
2. Hence Ed−1,1

∞ = Ed−1,1
2 6= 0. A contradiction, and this yields the

claim. �

Proposition 4.11 has the following consequence.

Proposition 4.12. Let G be a finitely generated Bloch-Kato pro-p
group, and let Z be a closed normal subgroup of G isomorphic to Zp
such that G/Z is torsion-free. Then there exists a Z-complement in G,
i.e., the extension of pro-p groups 1→ Z → G→ G/Z → 1 splits.

Proof. By Proposition 4.11 one has Z 6⊆ Φ(G). Hence there exists
an open subgroup C1 of index p such that C1Z = G and Z1 = C1∩Z =
Zp. Moreover, Z1 is a closed normal subgroup in C1 such that C1/Z
is torsion-free and Z1 ' Zp. Thus again by Proposition 4.11 one has
Z1 6⊆ Φ(C1). Repeating this process one finds open subgroup Cm of G
of index pk such that

CmZ = G and Zm = Cm ∩ Z = Zpm .

Hence
⋂
m≥1Cm is a Z-complement in G. �

Theorem 4.13. Let (G, θ) be a finitely generated cyclo-oriented
pro-p group. Then there exists a closed subgroup G◦ of G which is a
complement for Zθ(G), i.e., the short exact sequence

(4.14) 1 // Zθ(G) // G // G/Zθ(G) // 1

splits, with G◦ ' G/Zθ(G), so that G = G◦ nθ Zθ(G).
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We want now to compute the Zassenhaus filtration for a cyclo-
oriented pro-p group with non-trivial θ-centre, as we did for θ-abelian
groups in Section 3.5.

Let (G, θ) be as in Theorem 4.13, with G = G◦nθ Zθ(G) and Zθ(G)
non-trivial. Also let pk be the p-power such that im(θ) = 1 + pkZp.
Then it is easy to see that for each i ≥ 1 one has

γi(G) = γi(G◦) nθγi
Zθ(G)p

k(i−1)

,

with θγi = θ|γi(G◦). Therefore, an argument as in (3.19) shows that

(4.15) Dn(G) = Dn(G◦) nθn Zθ(G)p
`

for p`−1 < n ≤ p`,

with θn = θ|Dn(G◦). Consequently, the quotients induced by the Zassen-
haus filtration are

(4.16) Li(G) '
{
Li(G◦)⊕ Zθ(G)/Zθ(G)p for i a pth-power

Li(G◦) otherwise

as vector spaces over Fp.

Proposition 4.14. Let (G, θ) be a cyclo-oriented pro-p group, and
assume that im(θ) ' Z2 for p = 2. Then the restricted Lie algebra
L•(G) induced by the Zassenhaus filtration decomposes as

L•(G) = L•(G◦)⊕ A•

with G◦ ≤ G as in Theorem 4.13, and A• an abelian restricted Lie
algebra such that dim(A1) = d(Zθ(G)) = d. Also, one has

(4.17) gr•(G) ' Up(L•(G)) ' gr•(G◦)⊗1 Fp[Z1, . . . , Zd],

where ⊗1 denotes the symmetric tensor product (defined in Subsec-
tion 2.1.1), and the grading in the polynomial part is induced by the
degrees of the monomials.

Proof. The first statement follows from (4.16). As for the sec-
ond one, since (L•(G◦), A•) = 0, one has that ψL(L•(G◦)) and ψL(A•)
commute in Up(L•(G)), and (4.17) holds. �
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3.2. Cohomology of cyclotomic fibre products. The next re-
sult is the cohomological “translation” of Theorem 4.13, namely, it
shows how the presence of the θ-centre decomposes the Fp-cohomology
ring.

Theorem 4.15. Let (G, θ) be a finitely generated Bloch-Kato pro-p
group with orientation such that Zθ(G) is non-trivial, and let G◦ be the
complement of the θ-centre. Then one has the isomorphism of Fp-vector
spaces

(4.18) H2(G,Fp) ' H2(G◦,Fp)⊕ (V ∧W )⊕ (W ∧W ),

with V = H1(G◦,Fp) and W = H1(Zθ(G),Fp).

Proof. We shall prove the result by induction on the minimal
number of generators of Zθ(G).

Assume first that Zθ(G) ' Zp, and let z ∈ Zθ(G) be a generator.
Moreover, let ψ ∈ W be the dual of z, and pick a Fp-basis {χi, i ∈ I}
of V , so that {ψ, χi} is a basis for H1(G,Fp).

Let χ ∈ V be any non-trivial Fp-linear combination of the χi’s,
and let x ∈ G◦ r Φ(G) be such that χ is dual to x. Set C ≤ G be
the closed subgroup generated by x and z. By construction, C is a
2-generated θ|C-abelian pro-p group, and by Theorem 3.12 the coho-
mology ring H•(C,Fp) is the exterior Fp-algebra generated by res1

G,C(χ)

and res1
G,C(ψ). In particular, one has

res2
G,C(χ ∪ ψ) = res1

G,C(χ) ∪ res1
G,C(ψ) 6= 0,

hence χ ∪ ψ 6= 0 in H2(G,Fp). Therefore, all the cup products χi ∪ ψ,
with i ∈ I, are Fp-linearly independent, and V ∧W is a subspace of
H2(G,Fp).

Moreover, the short exact sequence of pro-p groups (4.14) induces
the five term exact sequence
(4.19)

0 // H1(G◦,Fp)
inf1

G,G◦
// V ⊕W

res1
G,Zθ(G)

// WG EDBC tgG,Zθ(G)

GF@A
// H2(G◦,Fp)

inf2
G,G◦

// H2(G,Fp).
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Since WG = H1(Zθ(G),Fp), one has that res1
G,Zθ(G) is surjective, for the

θ-centre is properly embedded in G [Qu14, Fact 4.5]. Thus, the trans-
gression map tgG,Zθ(G) is trivial, and inf2

G,G◦ is injective. In particular,

the image of inf2
G,G◦ is isomorphic to H2(G◦,Fp).

Since the intersection between V ∧ W and inf2
G,G◦(H

2(G◦,Fp)) is
trivial, one has

r(G) = dimFp H
2(G,Fp) ≥ dimFp(V ∧W ) + dimFp H

2(G◦,Fp)

= dimFp(V ) + r(G◦),

by Definition 5. By hypothesis, the minimal number of relations of G
is exactly r(G) = r(G◦) + dimFp(V ), thus H2(G,Fp) is generated by

inf2
G,G◦ H

2(G◦,Fp) and V ∧W .
Assume now that d(Zθ(G)) > 1, and let Z1, Z2 be subgroups of

the θ-centre such that Z2 ' Zp and Zθ(G) = Z1 × Z2. Moreover, set

Wi = H1(Zi,Fp), with i = 1, 2, and G̃◦ = G◦nθZ1. Thus, H1(G̃◦,Fp) =
V ⊕W1, and by induction one has

H2(G̃◦,Fp) ' H2(G◦,Fp)⊕ (V ∧W1)⊕ (W1 ∧W1).

Also, the above argument shows that

H2(G,Fp) ' H2(G̃◦,Fp)⊕ ((V ⊕W1) ∧W2),

and the claim follows. �

Remark 4.16. By Theorem 4.15, the Fp-cohomology ring of the
cyclo-oriented pro-p group is the skew-commutative tensor product

H•(G,Fp) = H•(G◦,Fp)⊗−1

(∧
n≥0

W

)
,

which can be considered also as a graded tensor product2. In particular,
the Fp-cohomology ring of a Bloch-Kato pro-p group can be considered

2Let A• and B• be two (non-negatively) graded rings. The tensor product in
the category of graded rings is defined by

A• ⊗gr B• =
∐
k≥0

 ⊕
i+j=k

Ai ⊗Bj

 ,

with the multiplication law (a⊗ b)(a′ ⊗ b′) = (−1)i
′jaa′ ⊗ bb′ for a ∈ Ai, a

′ ∈ Ai′ ,
b ∈ Bj and b′ ∈ Bj′ (cf. [Ef06, § 23.2]).
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as a κ-structure (cf. [Ef06, Ch. 23]), and H•(G,Fp) is the extension of
κ-structures H•(G◦,Fp)[W ] [Ef06, p. 211].

Example 1. Let G◦ be a Demushkin group with cyclotomic ori-
entation θ : G◦ → Z×p such that im(θ) ' Zp, and let {χ1, . . . , χd} be a

suitable basis for H1(G◦,Fp), with d = d(G◦). Also, let Z be isomor-
phic to Zp(1) as Zp[[G]]-modules, and let ψ be a generator of H1(Z,Fp).
Then for G = G◦ nθ Z, the Fp-vector space H2(G,Fp) is generated by
the elements

χ1 ∪ χ2 = . . . = χd−1 ∪ χd and χi ∪ ψ for every i,

and dim(H2(G,Fp)) = d+ 1.

Theorem 4.15 shows that the class of Bloch-Kato pro-p groups is
closed under cyclotomic fibre products. We want to extend the closure
to the class of cyclo-oriented pro-p groups.

Theorem 4.17. Let (G, θ) be a finitely generated cyclo-oriented
pro-p group, and let G̃ = Gnθ Z be the cyclotomic fibre product with Z
and θ̃ as in Definition 15. Then (G̃, θ̃) is again a cyclo-oriented pro-p
group.

Proof. By Theorem 4.15, G̃ is a Bloch-Kato pro-p group, so it
remains to show that H2(G̃,Zp(1)) is a torsion-free Zp-module. Thus,
by Lemma 2.11, it is enough tho show that the morphism

(4.20) H1(G̃,Zp(1))→ H1(G̃,Fp)

induced by (2.13) is surjective.
Let z be a generator of Z. Then H1(Z,Zp(1)) is the Zp-module

generated by the morphism f : Z → Zp(1) defined by f(z) = 1. Note

that by (4.3) G̃ fixes f , as

(g.f)(z) = θ(g) · f
(
zθ(g

−1)g−1
)

= θ(g)θ(g)−1 · 1 + 0 = 1

for every g ∈ G. Thus, H1(Z,Zp(1))G = H1(Z,Zp(1)). In particular,
this implies that the restriction map

res1
G̃,Z

: H1(G̃,Zp(1)) −→ H1(Z,Zp(1))

is surjective.
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Therefore, by the five term exact sequence induced by (4.10) with
coefficients in Zp(1), one has the commutative diagram

0 // H1(G,Zp(1))

inf1
G̃,Z

//

��
��

H1(G̃,Zp(1))

res1
G̃,Z

//

��

H1(Z,Zp(1)) //

��
��

0

0 // H1(G,Fp) // H1(G,Fp)⊕H1(Z,Fp) // H1(Z,Fp) // 0

where the left-hand side vertical arrow is surjective by hypothesis, and
the right-hand side one is surjective since f mod p generates H1(Z,Fp).
Hence, by the snake lemma, also (4.20) is surjective.

Moreover, every closed subgroup C̃ of G̃ decomposes as cyclotomic
fibre product C̃ = Cnθ|CZ

′, with C a subgroup of G and Z ′ a subgroup

of Z, and by the above argument H2(C̃,Zp(1)) is torsion-free. �

3.3. Arithmetic. Let K be a field. Recall that a valuation of K
is a group homomorphism v from K× into an ordered abelian group
(Γ,≤) such that for every α, β ∈ K× with x 6= −y, one has

v(x+ y) ≥ min{v(x), v(y)}.

The rank of the valuation v is the rank of the abelian group im(v) ≤ Γ.
A valuation v : K× → Γ is said to be p-Henselian if it extends

uniquely to the p-closure K(p), i.e., there exists a unique valuation
w : K(p)× → Γ such that w|K× = v. (For more details on valuation
theory see [Ef06].)

Assume now that K has characteristic prime to p. We are to show
the relation between the structure of the maximal pro-p Galois group
GK(p) of K (and of its Fp-cohomology ring) and the existence of certain
valuations of K.

Proposition 4.18. Let (G, θ) be a cyclo-oriented pro-p group, and
assume that im(θ) is either pro-p-cyclic or trivial. Then the θ-centre
Zθ(G) is the maximal normal abelian subgroup of G

Proof. If G is abelian, then θ is trivial, and Zθ(G) = G. Thus,
assume that G is not abelian, and let N be the maximal normal abelian
subgroup of G. Note that N ≤ ker(θ), as (N, θ|N) is cyclo-oriented.

Fix an element z ∈ N , and choose any x ∈ G. Let C ≤ G be the
closed subgroup generated by x and z: then either C ' Zp or d(C) = 2.
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In the former case, x and z commute, and moreover C ≤ ker(θ): thus,
one has

(4.21) xz = z = zθ(x).

In the latter case, Theorem 3.12 implies that either C is a 2-generated
free pro-p group, or C is θ′-abelian, for some orientation θ′ : C → Z×p .
Since N is normal, the commutator subgroup [C,C] of C is contained in
N , hence [C,C] is abelian, and C is θ′-abelian. Since θ|C is a cyclotomic
orientation for C, one has θ′ = θ|C , and z ∈ Zθ|C (C): thus, one has

(4.22) xz = zθ|C(x) = zθ(x).

Thus for every z ∈ N and x ∈ G one has (4.21) or (4.22). Therefore,
N ≤ Zθ(G), and thus they coincide, as the θ-centre is abelian. �

The following result shows the arithmetic meaning of the θ-centre
of the maximal pro-p Galois group of a field, with θ the arithmetic
orientation.

Theorem 4.19. Let K be a field of characteristic charK 6= p con-
taining a primitive p-th root of unity, and also

√
−1 if p = 2. Let

θ : GK(p) → Z×p be the cyclotomic orientation, and assume that the
maximal pro-p Galois group GK(p) is finitely generated. Then the fol-
lowing are equivalent:

(i) the θ-centre Zθ(G) is non-trivial;
(ii) there exist two Fp-vector subspaces V,W < H1(GK(p),Fp)

such that

H1 (GK(p),Fp) = V ⊕W, and

H2 (GK(p),Fp) = ∧2(∪)(V )⊕ (V ∧W )⊕ (W ∧W ),

with ∧2(∪) as in (3.2).
(iii) there exists a non-trivial p-Henselian valuation v : K× → Γ

with residue characteristic different to p.

Moreover, if the conditions above hold, then

d (Zθ(GK(p))) = dimFp(W ) = rk(v).

Proof. Assume first that d(GK(p)) = 1 and K ⊇ µp∞ . Then
GK(p) is isomorphic to Zp, and the p-closure of K is K(p) = K(µp∞).
Thus, K has non non-trivial valuations. Moreover, θ is not trivial and
Zθ(GK(p)) is trivial. Therefore we may assume that d(GK(p)) ≥ 2.
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We have the second statement as a consequence of Theorem 4.15,
so that the implication (i) ⇒ (ii) is established.

If condition (ii) hold then [HJ95, Theorem 2.11] implies that the
field K is V -rigid (cf. [HJ95, Definition 2.1]), and there exists a non-
trivial p-Henselian (and non-p-adic) valuation v of K of rank rk(v) =
dim(W ).

Thus by [Ef06, Corollary 26.6.2], there exists a valuation v : K× →
Γ which is (K×)p-compatible, and therefore it is also p-Henselian.
Moreover, one has that |v(K×) : v(K×)p| ≥ |V |, hence the rank of
v is at least dimFp H

1(Zθ,Fp) = rk(Zθ(G)). This establishes the impli-
cation from (ii) to (iii).

The equivalence between (i) and (iii) follows from Proposition 4.18
and from [EK98, Theorem 3.1] in the case p 6= 2, and from [EN94,
§ 4] in the case p = 2. In particular, the equality rk(v) = d(Zθ(G))
follows by induction. �

Remark 4.20. Unfortunately the paper [HJ95] contains some es-
sential mistakes due to wrong interpretation of the Bloch-Kato con-
jecture. These mistakes affected also some subsequent articles on the
relations between Galois cohomology and Henselian valuations, written
in the late ’90s. In the ’00s, I. Efrat become aware of such mistakes, and
in fact his later results on valuations – in particular, the ones contained
in his book [Ef06] – are correct.

Recall that in Remark 4.16 we stated condition (ii) in terms of
extensions of κ-structures. Thus, one may prove the implication (ii)⇒
(iii), i.e., the existence of non-trivial p-Henselian valuations, also using
[Ef06, § 26.5]. In particular, [Ef06, Corollary 26.6.2] says that there
exists a valuation v of K which is (K×)p-compatible (i.e., v(α) ≥ 1 for
every p-power α), and therefore v is also p-Henselian. Therefore, the
proof of Theorem 4.19 is not invalidated by the mistakes contained in
[HJ95].

4. Relations

We want now to analise more in depth the relations of a minimal
presentation (4.2) for a finitely generated cyclo-oriented pro-p group
(G, θ), with orientation θ such that either im(θ) ' Zp or θ ≡ 1. So far
we have studied explicitly the group-structure of two types of cyclo-
oriented pro-p groups with non-trivial relations:

(a) θ-abelian groups, and more in general cyclo-oriented groups
(G, θ) with non-trivial θ-centre;

(b) Demushkin groups, with an orientation as in Theorem 2.22.
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In the former case, we may find a minimal system of generators
{x1, . . . , xd−c, z1, . . . , zc} with the xi’s which generate G◦ and the zi’s
which generate Zθ(G), such that θ(x1) = 1 + q, with q = pk for some
k = N ∪ {∞}, and θ(xi) = 1 for i ≥ 2. Thus one has the relations

(4.23) z−qi [x1, zi] = 1 and [xj, zi] = 1,

with i = 1, . . . , c and j = 2, . . . , d− c. In fact, the relations (4.23) are
the “commutator translation” of the cyclotomic action induced by θ
on the θ-centre.

In the latter case, by Theorem 2.22 we may find a minimal system
of generators {x1, . . . , xd} ⊂ G, with θ(x2) = 1− qG, such that one has
the relation

x−qG1 [x1, x2] · · · [xd−1, xd] = 1,

thus

(4.24) xqG1 [x2, x1] ≡ 1 mod [ker(θ), ker(θ)].

Namely, we have the cyclotomic action, as in (4.23), but “perturbed”
by the commutator subgroup of the kernel of the orientation θ.

Recall that θ-abelian pro-p groups and Demushkin groups (together
with free pro-p groups) are the two “bounds” for cyclo-oriented pro-p
groups. Therefore, it is natural to ask the following question: for a
finitely generated cyclo-oriented pro-p group (G, θ), with im(θ) ' Zp,
do (4.23) and (4.24) represent “models” for the behavior of the relations
of G, such that they are induced by the cyclotomic action modulo
[ker(θ), ker(θ)]? Namely...

Question 1. Given a finitely generated cyclo-oriented pro-p group
(G, θ), with im(θ) ' Zp, is it possible to find a minimal presenta-
tion (4.2) with generating system {x1, . . . , xd(G)} and defining rela-
tions r1, . . . , rr(G) such that xi ∈ ker(θ) for i = 2, . . . , d(G) and either
rj ∈ [F, F ] or

(4.25) rj ≡ x
1−θ(x1)
i [x1, xi] mod [ker(θ), ker(θ)]

with i ∈ {2, . . . , d(G)}?

We shall call a relation as in (4.25) a relation of cyclotomic type.
For a cyclo-oriented pro-p group with trivial orientation, the answer to
Question 1 is clearly positive, as Corollary 2.20 and Remark 4.3 imply
the following.
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Proposition 4.21. Let (G, θ) be a finitely generated pro-p group
with trivial cyclotomic orientation θ ≡ 0, and let (4.2) be a minimal
presentation for G. Then R ≤ [F, F ].

The following collects some useful facts.

Fact 4.22. Let (G, θ) a finitely generated cyclo oriented pro-p group,
and let Gab be the abelianization G/[G,G].

(i) There are positive integers f, t, kj, with f+ t = d(G) = d, such
that

Gab ' Zfp ⊕

(⊕
j=1

Z/pkjZ

)
.

(ii) One may find a minimal system of generators {x1, . . . , xd}
such that for 1 ≤ i ≤ t the images x̄i in Gab generate the
torsion-free part, and for t + 1 ≤ i ≤ d the x̄i’s generate the
torsion part (in particular the order of x̄i is pkj for j = i− f).

(iii) Also, one has θ(xi) = 1 for i > f , and one may choose the
xi’s for i ≤ f such that θ(xi) = 1 also for 2 ≤ i ≤ f .

4.1. The module Nab. For a finitely generated pro-p group G
with cyclotomic orientation θ such that im(θ) ' Zp, let N be the
kernel of θ, and set

Nab =
N

[N,N ]
,

i.e., Nab is the abelianization of the ker(θ). Recall that by Corol-
lary 2.20, Nab is a torsion-free abelian pro-p group.

The action induced by the conjugation – i.e.,

x.ȳ = xy ≡ xyx−1 mod [N,N ],

with x ∈ G and y ∈ N – makes N a continuous Zp[[G]]-module, and
a trivial Zp[[N ]]-module. Hence, set Γ = G/N , and let k be such that
im(θ) = 1 + qZp, with q = pk. Then, Γ is isomorphic to Zp as pro p-
group, and it may be identified with 1+qZp = im(θ). In particular, the
complete group ring Zp[[Γ]] is the Iwasawa algebra, and Nab becomes a
Zp[[Γ]]-module, i.e., an Iwasawa module (cf. [NSW, 5.3.6]).

Let g be an element of G such that θ(g) = 1 + q. Without loss of
generality, we may assume that g = x1, with x1 as in Fact 4.22. Let γ
be te image of x1 in Γ. Then γ is a generator of Γ. Also, the Iwasawa
algebra Zp[[Γ]] is isomorphic to the power series ring Zp[[X]], via the
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morphism3 given by γ 7→ 1 +X, so that X 7→ γ − 1, and Nab becomes
a Zp[[X]]-module via

(4.26)
X.ȳ = (γ − 1).ȳ = x1.ȳ − ȳ = x1y · y−1

≡ [x1, y] mod [N,N ]

for every y ∈ N . Hence, one has

(4.27)
λXm.ȳ ≡ [x1,m y]λ mod [N,N ]

≡
[
x1,m y

λ
]

mod [N,N ]

with λ ∈ Zp, m ≥ 1 and [xi,m y] = [x1[x1 . . . [x1, y]]].
Recall that a polynomial ℘ ∈ Zp[[X]] is said to be a Weierstraß

polynomial if

℘ = Xm + αm−1X
m−1 + . . .+ α2X

2 + α1X + α0,

with α0, . . . , αm−1 ∈ pZp (cf. [NSW, Definition 5.3.2]). Thus, one has
the following.

Proposition 4.23. For a finitely generated cyclo-oriented pro-p
group G with N = ker(θ), there are positive integers f, t and irreducible
Weierstraß polynomials ℘j, with j = 1, . . . , t, such that the Zp[[Γ]]-
module Nab is isomorphic to a submodule of finite index of the Zp[[X]]-
module

(4.28) M = Zp[[X]]f ⊕

(
t⊕

j=1

Zp[[X]]

℘
mj
j

)
,

with mj ≥ 1.

Proof. Since Nab is an Iwasawa module, the Structure Theorem
for Iwasawa modules implies that there exist positive integers ah, with
h = 1, . . . , s, together with suitable f, t, s ≥ 0 and ℘j’s such that one
has a morphism of Zp[[X]]-modules

φ : Nab −→ Zp[[X]]f ⊕

(
s⊕

h=1

Zp[[X]]

pah

)
⊕

(
t⊕

j=1

Zp[[X]]

℘
mj
j

)
,

and φ has finite kernel and finite cokernel (cf. [NSW, Theorem 5.3.8]).
Since Nab is a torsion-free Zp-module, the kernel of φ is trivial,

and the p-torsion part (the quotients Zp[[X]]/pah) disappears. Thus,

3Note that this is the same map as in Remark 1.17
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one has that φ : Nab → M is injective, and Nab is isomorphic to a
Zp[[X]]-submodule of M of finite index. �

For every j = 1, . . . , t, set

℘
mj
j = Xhj + α(j,hj−1)X

hj−1 + . . .+ α(j,1)X + αj,0.

Therefore, for every ȳ ∈ Nab, one has ℘
mj
j .ȳ = 0, and thus by (4.27)

(4.29) r = [x1,hj y] · [x1,hj−1 y]α(j,hj−1) · · · [x1, y]α(j,1)yαj,0 ∈ [N,N ].

Now let y ∈ N belong to a generating system of G (e.g., y =
xi for an i ≥ 2, with xi as in Fact 4.22), and let fy : G → Zp(1)
be the continuous crossed homomorphism such that fy(y) = 1 and
fy(x) = 0 for any other generator of G (in particular, fy(x1) = 0).
Such a crossed homomorphism exists by Fact 4.2. Since fy|N is a group
homomorphism and fy|[N,N ] ≡ 0, by (4.1) one has

fy ([x1,m y]α) = α(θ(x1)− 1)fy([x1,m−1 y]) = . . . = αqm

(notice that [x1,m y] ∈ N for any m ≥ 0). Hence, by (4.29),

(4.30) fy(r) = αj,0 + α(j,1)q + . . .+ α(j,hj−1)q
hj−1 + qhj = ℘

mj
j (q).

On the other hand, one has fy(r) = 0, as r ∈ [N,N ], so that ℘
mj
j (q) = 0,

and X − q divides ℘j. Since ℘j is an irreducible polynomial, it follows
that in fact ℘j = X − q for every j = 1, . . . , t. In particular, one has
the monomorphism of Zp[[X]]-modules

(4.31) φ : Nab −→M = Zp[[X]]f ⊕

(
t⊕

j=1

Zp[[X]]

(X − q)mj

)
,

with mj ≥ 1.

Proposition 4.24. Let (G, θ) be a finitely generated pro-p group
with cyclotomic orientation θ such that im(θ) ' Zp, and with minimal
presentation (4.2). Let x1, y ∈ G be as above, and let r ∈ R be a
relation induced by the polynomial (X − q)m, with m ≥ 1, i.e.,
(4.32)

r ≡ y(−q)m [x1, y]m(−q)m−1 · · · [x1,m−1 y]−mq[x1,m y] mod [N,N ].

Then r can occur as defining relation only if m = 1.
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Proof. Consider the short exact sequence

(4.33) 1 // C // G // Ḡ // 1 ,

where C is the closed normal subgroup of G generated by all the gener-
ators xi’s with i 6= 1 and xi 6= y, and Ḡ = G/C. Then Ḡ has a minimal
presentation 1→ R̄→ F̄ → Ḡ→ 1, where d(F̄ ) = d(Ḡ) = 2, and R̄ is
generated as normal subgroup of F̄ by

r̄ = y(−q)m [x1, y]m(−q)m−1 · · · [x1,m−1 y]−mq[x1,m y],

where we consider x1 and y as elements of Ḡ and of F̄ as well with an
abuse of notation. Then (4.33) induces the five term exact sequence
(4.34)

0 // H1(Ḡ,Fp)
inf1

G,Ḡ

// H1(G,Fp)
res1

G,C

// H1(C,Fp)G EDBC tgG,C

GF@A
// H2(Ḡ,Fp)

inf2
G,Ḡ

// H2(G,Fp).

By construction of C, the map res1
G,C is surjective, so that the trans-

gression map is trivial, and inf2
G,Ḡ is injective. In particular, one has

the commutative diagram

(4.35) H1(Ḡ,Fp)×H1(Ḡ,Fp)

inf1
G,Ḡ

��

inf1
G,Ḡ

��

∪
// H2(Ḡ,Fp)

inf2
G,Ḡ

��

H1(G,Fp)×H1(G,Fp)
∪

// H2(G,Fp)

where the vertical arrows are monomorphisms by (4.34).
Assume now that m > 1. In this case the relation r̄ lies in λ3(F̄ ),

thus by [CEM, Corollary 9.2] the cohomology ring H•(Ḡ,Fp) is not a
quadratic Fp-algebra. In particular, let χ, ψ ∈ H1(Ḡ,Fp) be the duals
of x1 and y. Since r̄ ∈ λ3(F̄ ) and r(Ḡ) = 1, [NSW, Propositions 3.9.12-
13] imply that χ ∪ ψ = 0. On the other hand, one has

H2(Ḡ,Fp) ' Fp, as dimFp
(
H2(Ḡ,Fp)

)
= r(Ḡ) = 1.
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Set A = im(inf2
G,Ḡ) ≤ H2(G,Fp). By (4.35) one has that

A 6= 0 and inf1G,Ḡ(χ) ∪ inf1G,Ḡ(ψ) = 0,

thus, A is not induced by the cup product of χ and ψ. Also, by
the Hochschild-Serre spectral sequence Est

2 = Hs(Ḡ,H t(C,Fp)) asso-
ciated to (4.33), A is not generated by cup products of elements of
H1(C,Fp)G, nor by cup products of inf1

G,Ḡ(χ) and inf1
G,Ḡ(ψ) with ele-

ments of H1(C,Fp)G.
Therefore, for m > 1 A is not generated by elements of H1(G,Fp),

i.e., the cohomology ring H•(G,Fp) is not a quadratic Fp-algebra, a
contradiction. Thus, m = 1 and one has r ≡ y−q[x1, y] mod [N,N ].4

�

Therefore, the relations of G which induce the torsion-module part
in the image of Nab in M via φ must be of cyclotomic type, and from
(4.31) and Proposition 4.24 one deduces the following.

Theorem 4.25. Let (G, θ) be a cyclo-oriented pro-p with im(θ) =
1 + qZp and N = ker(θ), and let N/[N,N ] be a Zp[[X]]-module with the
action induced by (4.26) and (4.27). Then (4.31) induces the isomor-
phism of Zp[[X]]-modules

(4.36)
N

[N,N ]

∼
// Zp[[X]]f ⊕

(
Zp[[X]]

X − q

)t

with f + t = d(G)− 1.

In particular, Theorem 4.25 provides a positive answer to Ques-
tion 1.

Examples 4. (a) Let (G, θ) be a finitely generated θ-abelian
pro-p group with im(θ) = 1 + pZp. Then N = Zθ(G), and one
has

Nab '
(
Zp[[X]]

X − p

)d(G)−1

.

4In fact this argument does not work properly, but this one does: assume that
one has a defining relation as (4.32), with m ≥ 2; then

y−q[x1, y] 6≡ 1 mod [N,N ] and
(
y−q[x1, y]

)m ≡ 1 mod [N,N ],

i.e., Nab has non-trivial torsion, a contradiction.
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(b) Let (G, θ) be a Demushkin group with p 6= 2 and im(θ) =
1 + pZp, and let xi, 1 ≤ i ≤ d(G), be as in Theorem 2.22.
Then N is generated by x1, x3, . . . , xd(G), and one has

Nab ' Zp[[X]]

X − p
⊕ Zp[[X]]d(G)−2,

where the torsion-module part is induced by x̄1.

Corollary 4.26. Let (G, θ) be a finitely generated cyclo-oriented
pro-p group with im(θ) = 1 + qZp, with q = pk and k ∈ N∪{∞}. Then
one has

G/[G,G] ' Zd(G)−t
p ⊕ (Zp/qZp)t ,

with t as in Theorem 4.25. In particular, if GK(p) is the maximal pro-p
Galois group of a field K containing a primitive p-th root of unity (and
also

√
−1 if p = 2), then

GK(p)

[GK(p), GK(p)]
' Zd−tp ⊕ (Z/qZ)t or

GK(p)

[GK(p), GK(p)]
' Ztp,

the former case if K contains a primitive q-th root of unity but not a
pq-th one, and the latter if K contains all roots of unity of p-power
order, with d = dimFp(K

×/(K×)p).

Thus, for a finitely generated pro-p group G with non-trivial cy-
clotomic orientation θ : G → Z×p , one may define the 1-torsion rank
t1(G) and the 1-free rank f1(G) of G to be the rank as Zp-module of
the Zp[[Γ]]-torsion part of H1(ker(θ),Zp), resp. of the Zp[[Γ]]-free part of
H1(ker(θ),Zp); i.e.,

t1(G) = t and f1(G) = f,

with t and f as in Theorem 4.25.
By Examples 4 one easily deduces that if Zθ(G) is not trivial, then

also the Zp[[Γ]]-torsion part of H1(ker(θ),Zp) is non-trivial, i.e., t1(G) ≥
d(Zθ(G)).

Then, one may formulate the following questions.

Question 2. Let G be a finitely generated pro-p group with non-
trivial cyclotomic orientation θ : G→ Z×p .

(i) Assume that t1(U) = 0 for every open subgroup U of G. Then
G is a free pro-p group.
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(ii) Assume that t1(U) = 1 for every open subgroup U of G, and
assume also that Zθ(G) is trivial. Then G is a cyclotomic fibre
product F nθ Z, with F a free pro-p group and Z ' Zp, or G

is a Demushkin group, or G is the free pro-p product F ∗p̂ G̃,

with F a free pro-p group and G̃ one of the former two groups
(fibre product or Demushkin).

(iii) Assume that Zθ(G) is trivial and t1(G) ≥ 2. Then there exist
two closed subgroups G1 and G2 of G such that G = G1 ∗p̂G2.

These questions will provide me some work (and hopefully a job)
in the next future.

5. Cyclo-oriented ETC

Now it makes sense to try to extend the Elementary Type Conjec-
ture to the whole class of finitely generated pro-p groups with a cyclo-
tomic orientation. In order to do this, we define the class of elementary
type cyclo-oriented pro-p groups.

Definition 16. For p a prime number, let ET p be the minimal
class of finitely generated pro-p groups with an orientation such that

(i) the pro-cyclic group Zp, together with an orientation θ : Zp →
Z×p (possibly the trivial one), is in ET p;

(ii) if p = 2, then the cyclic group Z/2Z of order 2, together with
the non-trivial orientation θ : Z/2Z→ {±1} ⊂ Z×2 , is in ET 2;

(iii) every Demushkin group equipped with an orientation as de-
scribed in Theorem 2.22 is in ET p;

(iv) if the group (G, θ) is in ET p, then also the cyclotomic fibre
product Gnθ Zp(1) is in ET p;

(v) if the groups (G1, θ1) and (G2, θ2) are in ET p, then also the

free pro-p product G1 ∗p̂ G2 with the induced orientation θ̃ is
in ET p.

Then ET p is called the class of elementary type pro-p groups with a
cyclotomic orientation.

By Theorem 4.5 and Theorem 4.17, every element of ET p is a
finitely generated cyclo-oriented pro-p group. In particular, every ele-
ment of ET p can be realized as maximal pro-p Galois group of a field.
We can now state a new formulation of the ETC.

Question 3. Let K be a field.

(i) Assume that the absolute Galois group GK of K is a finitely
generated pro-p group. Then GK is in ET p.
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(ii) Assume that K contains a primitive p-th root of unity, and that
the maximal pro-p Galois group GK(p) is finitely generated.
Then GK(p) is in ET p.

Obviously, a positive answer to (ii) provides also a positive answer to
(i).

Note that Question 2 is coherent with the ETC, and a positive
answer would be a contribution to the ETC.

Moreover, the recent results obtained independently by Th. Weigel
and P. Zalesskĭi, and by K. Wingberg on free decomposability of pro-
p groups provide new tools also to study the ETC (cf. [WZ13] and
[Wn13]).

92



CHAPTER 5

Koszulity for cyclo-oriented pro-p groups

1. Koszul duality

Let A• be a quadratic algebra over a field F, and let A1 and R be
as in (2.1), with A1 of finite dimension over F. In particular, set R1 to
be the F-vector subspace of A1 ⊗ A1 which generates R as two-sided
ideal of T •(A1).

Since A1 is finitely generated, one has the isomorphism of F-vector
spaces

(5.1) A∗1 ⊗ A∗1 ' (A1 ⊗ A1)∗ .

Let R⊥1 ≤ (A1 ⊗ A1)∗ be the annihilator of R1, namely,

R⊥1 = {f ∈ (A1 ⊗ A1)∗ | f(v) = 0 for all v ∈ R1}.

By (5.1) we may consider R⊥1 as a subspace of A∗1 ⊗A∗1. In particular,
one has that R⊥1 ' (A⊗2

1 /R1)∗. Then, the short exact sequences of
F-vector spaces

0 // R1
// A⊗2

1
// A2

// 0,

0 R∗1oo
(
A⊗2

1

)∗oo R⊥1oo 0,oo

where one is the dual of the other, induce the following definition.

Definition 17. Let A• be a quadratic algebra over a field F with
dim(A1) finite. The Koszul dual A!

• of A• is the quadratic algebra
over F given by

A!
• =
T •(A∗1)

R⊥
,

where R⊥ is the two-sided ideal of T •(A∗1) generated by R⊥1 .

Note that the Koszul dual is an involution, as (A!
•)

! = A• for every
quadratic algebra.
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Examples 5. (a) Let V be a finite-dimensional F-vector space,
and let A• be the tensor algebra T •(V ). Then R = 0, and the
Koszul dual A!

• is the algebra of dual numbers

T •(V )! = F⊕ V ∗,

with trivial multiplication.
(b) Let {v1, . . . , vn} be a basis for the F-vector space V , and let

A• be the symmetric algebra S•(V ). Then a basis for R⊥1 is{
v∗i ⊗ v∗j + v∗j ⊗ v∗i , 1 ≤ i, j ≤ n

}
,

with v∗i ∈ V ∗ the dual of vi. Hence, the Koszul dual of S•(V ) is
the exterior algebra

∧
•(V

∗), and conversely
∧
•(V )! = S•(V

∗).

The Koszul dual behaves with respect to the constructions of qua-
dratic algebras defined in Subsection 2.1.1 in the following way (cf.
[PP05, § 3.1, Corollary 2.1, p. 58]).

Proposition 5.1. Let A• and B• be two quadratic algebras over a
field F.

(i) The Koszul dual of the direct sum is the free product of the
Koszul duals, i.e.

(A• uB•)! = A!
• tB!

• and (A• tB•)! = A!
• uB!

•.

(ii) The Koszul dual of the symmetric tensor product is the skew-
commutative tensor product of the Koszul duals, i.e.(

A• ⊗1 B•
)!

= A!
• ⊗−1 B!

• and
(
A• ⊗−1 B•

)!
= A!

• ⊗1 B!
•.

The Fp-cohomology ring of a Bloch-Kato pro-p group G is a qua-
dratic algebra over Fp: thus, it is worth asking what is the Koszul
dual of such algebra. Also, other important graded algebras for a pro-p
group G are the restricted Lie algebra L•(G) and the algebra gr•(G),
which are related by Theorem 1.14 – and they happen to be quadratic in
some important cases, such as Demushkin groups and θ-abelian groups.
The following definition relates H•(G,Fp) and gr•(G).

Definition 18. Let G be a Bloch-Kato pro-p group. Then G is
said to be a Koszul duality group if the algebra gr•(G) is the Koszul
dual of the algebra H•(G,Fp), i.e.,

H•(G,Fp)! ' gr•(G).
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It follows that if G is a Koszul duality pro-p group, then gr•(G) is
a quadratic Fp-algebra. In particular, let

(5.2) 1 // R // F // G // 1

be a minimal presentation of G, with R generated by {r1, . . . , rr(G)} as
normal subgroup of F . If G is a Koszul duality pro-p group, one has
that the initial forms of the relations ri’s have degree 2 in L•(G), i.e.,

(5.3) ri ∈ D2(F ) rD3(G)(G) for every i = 1, . . . , r(G).

Thus, we say that a pro-p group G is U-quadratic if it has a presen-
tation (5.2) such that (5.3) holds.

We are to see in the following that the basic blocks of the ETC
– i.e., free pro-p groups, Demushkin groups and groups obtained via
cyclotomic fibre products and free pro-p products – are Koszul duality
groups.

Remark 5.2. Note that for a vector space V over Fp, the Pontrya-
gin dual and the Fp-dual are the same, i.e., V ∗ = V ∨.

2. Koszul duality and the ETC

2.1. Free pro-p groups and Demushkin groups. Let F be a
free pro-p group. (recall that by Remark 2.10 every orientation is cy-
clotomic for F .) Then F has cohomological dimension 1, and the coho-
mology ring H•(F,Fp) is concentrated in degree 0 and 1. In particular,
one has

H•(F,Fp) =
T • (F/Φ(F )∨)

R
, with R1 = (F/Φ(F )∨)

⊗2
.

Therefore, by Example 5 the Koszul dual of H•(F,Fp) is the tensor
algebra T •(F/Φ(F )).

Consider now the restricted Lie algebra induced by the Zassenhaus
filtration of F . By Theorem 1.16 the algebra L•(F ) is a free restricted
Lie algebra over Fp, and by Proposition 1.13 the universal envelope a
free non-commutative Fp-algebra, i.e.,

(5.4) gr•(F ) ' Up(L•(F )) ' Fp〈X 〉 = T • (F/Φ(F )∨) ,

with X a minimal generating system of F , where Fp〈X 〉 is to be con-
sidered a graded algebra with the grading induced by the degrees of
the monomials. Therefore, one has the following.
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Proposition 5.3. Let F be a finitely generated free pro-p group.
Then the graded Fp-algebra gr•(F ) is the Koszul dual of the cohomology
ring H•(F,Fp), i.e.,

H•(F,Fp)! ' gr•(F ).

Now letG be a Demushkin group, with qG 6= 2. Let X = {x1, . . . , xd}
be a minimal generating system for G as in Theorem 2.22, and for each
i = 1, . . . , d, let χi ∈ H1(G,Fp) be the dual of xi. Then, one may write

H•(G,Fp) =
T • (H1(G,Fp))

〈R1〉
,

with R1 ≤ H1(G,Fp)⊗2.
Since the element χ2i−1 ∪ χ2i = −χ2i ∪ χ2i−1 generates H2(G,Fp),

with i = 1, . . . , d/2, one has that R⊥1 ' H2(G,Fp)∗ is generated by the
element

ρ = χ∗1 ⊗ χ∗2 − χ∗2 ⊗ χ∗1 + χ∗3 ⊗ χ∗4 − . . .+ χ∗d−1 ⊗ χ∗d − χ∗d ⊗ χ∗d−1,

thus

H•(G,Fp)! =
T • (H1(G,Fp)∗)

〈ρ〉
' Fp〈X1, . . . , Xd〉
〈[X1, X2] + . . .+ [Xd−1, Xd]〉

,

where X = {X1 . . . , Xd} a set of non-commutative indeterminates and
[Xi, Xj] = XiXj − XjXi, with the grading induced by the degrees.
Therefore, by (2.19), one has the following.

Proposition 5.4. Let G be a finitely generated Demushkin group
with qG 6= 2. Then the Fp-cohomology ring H•(G,Fp) is the Koszul
dual of the graded Fp-algebra gr•(G), i.e.,

H•(G,Fp)! ' gr•(G).

2.2. Free products and cyclo-fibre products. In order to deal
with the restricted Lie algebra of a free pro-p product of pro-p groups,
we have to define the free product for restricted Lie algebras.

Let L1 and L2 be two restricted Lie algebras. The free product
of restricted Lie algebras of L1 and L2 is the restricted Lie algebra
L = L1 ∗L L2, equipped with two embeddings ιi : Li → L, i = 1, 2 such
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that for every morphism of restricted Lie algebras φi : Li → H there
exists a unique morphism φ̃i : L→ H such that the diagram

Li
ιi

//

φi
��

L1 ∗L L2

φ̃i{{
H

commutes for both i’s (cf. [Li80, Remark 1]).

Proposition 5.5. Let G1 and G2 be two finitely generated pro-
p groups, and set G to be the free pro-p product G1 ∗p̂ G2. Then the
restricted Lie algebra L•(G) is the free product of restricted Lie algebras
L•(G1) ∗L L•(G2). Moreover, its universal envelope is the free product

(5.5) Up (L•(G)) = Up (L•(G1)) t Up (L•(G2)) .

Proof. Let Gabs be the abstract free product G1 ∗G2. Since both
G1 and G2 are finitely generated, (2.21) implies that the free pro-p
product G = G1 ∗p̂ G2 is the pro-p completion of Gabs. By [Li80,
Theorem 2] one has

(5.6) L•(G
abs) = L•(G1) ∗L L•(G2).

Since G is finitely generated, every element of the Zassenhaus filtration
Di(G) is open in G, and thus every Di(G

abs) has finite index in Gabs.
Therefore Di(G)/Di+1(G) ' Di(G

abs)/Di+1(Gabs) for every i ≥ 1, and
one has the isomorphism of restricted Lie algebras L•(G) ' L•(G

abs).
Equality (5.5) follows directly from [Li80, Theorem 1] and Theo-

rem 1.14. �

Thus, Proposition 5.5 and Proposition 5.1 imply the following.

Proposition 5.6. Let (G1, θ) and (G2, θ) be two finitely generated
cyclo-oriented pro-p groups, and assume that both are Koszul duality
pro-p groups. Then also the free pro-p product G1 ∗p̂ G2 is a Koszul
duality pro-p group.

Proof. By [NSW, Theorem 4.1.4], one has

(5.7) H•(G1 ∗p̂ G2,Fp) = H•(G1,Fp) uH•(G2,Fp)
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(direct product of quadratic Fp-algebras). Therefore,

H• (G1 ∗p̂ G2,Fp)! = (H•(G1,Fp) uH•(G2,Fp))!

= H•(G1,Fp)! tH•(G2,Fp)!

' gr•(G1) t gr•(G2)

= gr• (G1 ∗p̂ G2) ,

and the statement holds. �

Now let (G, θ) be a finitely generated θ-abelian pro-p group, with
im(θ) ' Z2 if p = 2. Then by Theorem 3.12 the Fp-cohomology ring of
G is the exterior algebra

H•(G,Fp) '
d(G)∧
i=0

H1(G,Fp).

Therefore, by Example 5, the Koszul dual of H•(G,Fp) is the symmet-
ric algebra S•(G/Φ(G)). Note that such symmetric algebra is isomor-
phic to the commutative polynomial algebra Fp[X1, . . . , Xd(G)], where
{X1, . . . , Xd(G)} is a set of commutative indeterminates, equipped with
the grading induced by the degrees of the monomials. Thus, by (3.21)
one has

gr•(G) ' Up(L•(G)) ' H•(G,Fp)!.

We are in a similar situation with (G, θ) a finitely generated cyclo-
oriented pro-p group, with non-trivial θ-centre and with im(θ) ' Z2 if
p = 2. Indeed, Theorem 4.15 and Proposition 5.1 imply the following.

Proposition 5.7. Let (G, θ) be a finitely generated cyclo-oriented
pro-p group with non-trivial θ-centre, and assume im(θ) ' Z2 for p = 2.
Moreover, assume that G◦ is a Koszul duality group, with G◦ as in
Theorem 4.13. Then the Fp-cohomology ring H•(G,Fp) is the Koszul
dual of the graded Fp-algebra gr•(G).

98



Proof. Set W = H1(Zθ(G),Fp). Then by Remark 4.16, Proposi-
tion 4.14 and Example 5, one has

H•(G,Fp)! =
(
H•(G◦,Fp)⊗−1

(∧
W
))!

= H•(G◦,Fp)! ⊗1
(∧

W
)!

' gr•(G◦)⊗1 Fp[Y1, . . . , Yd]

= gr•(G),

with d = d(Zθ(G)). �

Example 2. LetG be the cyclotomic fibre product as in Example 1.
Recall that the Fp-vector space H2(G,Fp) is generated by the elements

χ1 ∪ χ2 = . . . = χd−1 ∪ χd and χi ∪ ψ for i = 1, . . . , d.

Let H1(G,Fp)∗ = SpanFp{X1, . . . , Xd, Y }. Then, one has R⊥1 = RD ⊕
RS, with

RD = 〈[X1, X2] + [X3, X4] + . . .+ [Xd−1, Xd]〉,

RS = 〈X1Y − Y X1, . . . , XdY − Y Xd〉.

Therefore,

H•(G,Fp)! ' Fp〈X1, . . . , Xd〉
〈[X1, X2] + . . .+ [Xd−1, Xd]〉

⊗1 Fp[Y ],

with the grading induced by the degrees of the monomials.

Altogether, the class of Koszul duality pro-p groups is closed under
free pro-p products and cyclotomic fibre products, which are the basci
operations of the ETC. Also, the fundamental blocks of the ETC (free
pro-p groups and Demushkin groups) satisfy Koszul duality as well.
Thus, we may summarize the above results in the following theorem.

Theorem 5.8. Every pro-p group of elementary type (i.e., every
finitely generated pro-p group lying in ET p) is a Koszul duality group.
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3. Koszul duality for cyclo-oriented pro-p groups

Let G be a pro-p group, and let (5.2) be a minimal presentation for
G. Then (5.2) induces a short exact sequence of restricted Lie algebras

(5.8) 0 // R• // L•(F ) // L•(G) // 0 .

In particular, R• is the restricted Lie algebra induced by the filtration
R ∩Di(F ), i.e.,

(5.9) Ri−1 =
R ∩Di(F )

R ∩Di+1(F )
for every i ≥ 2.

Since (5.2) is minimal, one has that R ⊆ D2(F ). Thus, one has
R1 = R/R ∩ D3(F ) ' RD3(F )/D3(F ). Also, by Proposition 1.12
the subgroup Rp[R,F ] is contained in D3(F ), and one may define a
morphism φ : R/Rp[R,F ]→ D2(G)/D3(G).

Moreover, H2(F,Fp) = 0, thus by the five term exact sequence the
transgression map tgF,R is an isomorphism. Hence, the map tgF,R and

the isomorphism (R/Rp[R,F ])∗ ' H1(R,Fp)F induce a natural perfect
pairing

(5.10) R/Rp[R,F ]×H2(G,Fp)
( , )

// Fp

given by (r̄, ψ) 7→ tg−1
F,R(ψ).r̄, with ψ ∈ H2(G,Fp) and r ∈ R. Now let

G be a Bloch-Kato pro-p group. Then [CEM, Theorem 8.4] implies
the following.

Proposition 5.9. Let G be a Bloch-Kato pro-p group, and let (5.2)
be a minimal presentationfor G. Then Rp[R,F ] = R ∩D3(F ).

Remark 5.10. Note that all the results produced in [CEM] for
maximal pro-p Galois groups can be generalized to Bloch-Kato pro-
p groups, as they are all developed starting from the characteristics
of the Fp-cohomology of such groups, depending on the Bloch-Kato
conjecture.

Thus, by Proposition 5.9 one has the isomorphism R/Rp[R,F ] =
R/R ∩ D3(F ) ' RD3(F )/D3(F ), so that (5.10) induces the perfect
pairing

(5.11) RD3(F )/D3(F )×H2(G,Fp)
( , )

// Fp .
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The quotient RD3(F )/D3(F ) is a subspace of D2(F )/D3(F ) = L2(F ).
Recall from Remark 1.17 that the universal envelope Up(L•(F )) is
the free Fp-algebra Fp〈X 〉, with X = {X1, . . . , Xd} a set of (non-
commutative) indeterminates, with d = d(F ) = d(G). We may identify
Fp〈X 〉 with the tensor algebra T •(V ∗), with

V = H1(F,Fp) = F/Φ(F )∨ ' G/Φ(G)∨.

Then the embedding ψL, defined as in (1.8), together with (5.1), in-
duces a monomorphism

RD3(F )

D3(F )
� � //

ψ2

++

L2(F ) � � // (V ⊗ V )∗ .

Proposition 5.11. Let G be a finitely generated Bloch-Kato pro-p
group. Then the diagram of perfect pairings

(5.12) (V ⊗ V )∗ × (V ⊗ V )

∪
��

// Fp

RD3(F )

D3(F )
×H2(G,Fp) //

ψ2

OO

Fp

commutes, i.e., tg−1(χ1 ∪ χ2).r̄ = ψ2(r̄)(χ1 ⊗ χ2) for every

χ1, χ2 ∈ V = H1(F,Fp) and r̄ ∈ RD3(F )/D3(F ).

Proof. Set d = d(F ), and let {x1, . . . , xd} ⊂ F be a minimal
generating set and {χ1, . . . , χd} ⊂ V the dual basis. Then, the set
{χi ⊗ χj, 1 ≤ i, j ≤ d} is a basis for V ⊗ V , and it is enough to verify

(5.13) tg−1(χi ∪ χj).r̄ = ψ2(r̄)(χi ⊗ χj)

for every i, j ∈ {1, . . . , d}.
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By [NSW, Prop. 3.9.13] every element r ∈ R may be uniquely
written as

r̄ ≡


d∏

h=1

x2ah
i

∏
h<k

[xh, xk]
ahk mod D3(F ), if p = 2,∏

h<k

[xi, xj]
akh mod D3(F ), if p 6= 2,

with 0 ≤ ai, aij ≤ p − 1. Recall that gr•(F ) ' Fp〈X1, . . . , Xd〉. Thus,
for every i = 1, . . . , d, we may consider Xi to be the dual of χi in V ∗.
Then one has

ψL
(
x2
h

)
= Xh ⊗Xh and ψL([xh, xk]) = Xh ⊗Xk −Xk ⊗Xh.

Therefore

ψ2(r̄)(χi ⊗ χj) =

 aij mod p if i < j
−aij mod p if i > j
−
(
p
2

)
ai mod p if i = j

Again by [NSW, Prop. 3.9.13], the above result is the same we get for
tg−1(χi ∪ χj).r̄, so that equality (5.13) holds. �

Proposition 5.11 implies the following.

Theorem 5.12. Let G be a finitely generated Bloch-Kato pro-p
group with a minimal presentation (5.2), and let r be the ideal of the
restricted Lie algebra L•(F ) generated by the elements

ρi ∈ L2(F ), ρi ≡ ri mod D3(F ),

with i = 1, . . . , r(G). Then Up(L•(F )/r) ' H•(G,Fp)!. In particular,
if G is quadratically defined,1 then G is a Koszul duality pro-p group,
i.e.,

gr•(G) ' H•(G,Fp)!.

Proof. Let R1 ≤ V ⊗ V be the generating relations of the Fp-
cohomology ring H•(G,Fp). Since (5.12) commutes (and both the hor-
izontal lines are perfect pairings), one has that ψ2(r̄) ∈ R⊥1 for every
r̄, i.e., the quotient RD3(F )/D3(F ) embeds in R⊥1 via ψ2. Moreover,
one has

dimFp

(
RD3(F )

D3(F )

)
= dimFp

(
R

Rp[R,F ]

)
= r(G),

1I.e., G is U-quadratic and r = R•, with R• as in (5.9).
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and, on the other hand,

dimFp
(
R⊥1
)

= dimFp(V ⊗ V )− dimFp (R1)

= dimFp
(
H2(G,Fp)

)
= r(G).

Therefore, RD3(F )/D3(F ) and R⊥1 are isomorphic.
Since RD3(F )/D3(F ) generates r as ideal of L•(F ) and R⊥ as ideal

of T •(V ∗), the statement holds by Proposition 1.18. �

Corollary 5.13. A finitely-generated Bloch-Kato pro-p group is
U-quadratic.

Note that in general for a Bloch-Kato pro-p group G the ideal r of
L•(G) as defined in Theorem 5.12 is smaller than the ideal R• as in
(5.9). Namely, one has

r ∩ Li(F ) ⊆ R ∩Di(F )

R ∩Di+1(F )
for every i ≥ 2,

and the initial forms of a set {r1, . . . , rr(G)} of generators of R as normal
subgroup of F may be not enough to generate the whole ideal R•.

Corollary 5.14. Let G be a finitely generated Bloch-Kato pro-p
group, and assume that G is quadratically defined. Then G is a Koszul
duality group.

The material developed in Section 5.3 is partially motivated and
inspired by J. Labute’s work [La06]. In this paper, Labute proves
many properties of mild groups (i.e., pro-p groups with a strongly free
presentation). In particular, he shows that if G is a mild group, then
one has r = R• (cf. [La06, Theorem 5.1]). Yet, in general mild groups
are very different to Bloch-Kato pro-p groups.

4. Koszul algebras and Koszul pro-p groups

Definition 19. (i) A quadratic2 algebra A• over a field F is
said to be a Koszul algebra over F if the homology groups

Hij(A•) = TorA•ij (F,F)

2In fact this definition holds for all positively graded algebras. Indeed, a Koszul
algebra is necessarily quadratic.
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(where the first grading i is the cohomological grading and the
second grading j is the internal grading induced from the grad-
ing of A•) are concentrated on the diagonal, i.e., H ij(A•) = 0
for i 6= j (cf. [PP05, § 2.1], [Ps05] and [Ps14]).

(ii) A Bloch-Kato pro-p group is said to be a H-Koszul pro-p
group if the Fp-cohomology ring H•(G,Fp) is Koszul, and a U-
Koszul pro-p group if the graded algebra gr•(G) ' Up(L•(G))
is Koszul.

Note that the conditions on Hij(A•) for i = 1, 2 imply that A• is
necessarily quadratic. In particular, a U -Koszul pro-p group is neces-
sarily U -quadratic. The definition of a Koszul algebra was introduced
first in the early ’70s by S. Priddy, and later associated to Galois theory
and group cohomology.

In fact, Koszul algebras are strongly related to Galois cohomology,
as they provide an alternative approach to the Bloch-Kato conjecture,
see, e.g., [Ps14, § 0.1 and § 0.2]. Indeed, one has the following (cf.
[Ps05, Theorem 1.3]).

Theorem 5.15. Let K be a field containing a primitive p-th root
of unity, and assume that:

(i) the Galois symbol of degree n KMn (K)/p→ Hn(GK , µ
⊗n
p ) is an

isomorphism for n = 2 and a monomorphism for n = 3;
(ii) the Milnor K-ring KM• (K)/p is a Koszul Fp-algebra.

Then the Galois symbol hK is an isomorphism, i.e., the Bloch-Kato
conjecture holds.

Koszul algebras have the following property.

Proposition 5.16. A quadratic algebra A• is Koszul if, and only
if, the Koszul dual A!

• is Koszul. In particular, if A• is Koszul, then
one has the isomorphism A!

• ' H••(A•).

Example 3. The symmetric algebra S•(V ) and the exterior algebra∧
•(V ) of a vector space V over F are Koszul (cf. [PP05, p. 20]).

Corollary 5.17. Let G be a Bloch-Kato pro-p group, and assume
that G is also a Koszul duality group. Then G is H-Koszul if, and only
if, G is U-Koszul.

Let A• be a (positively) graded algebra over a field F. The Hilbert
series of A• is the formal power series defined by

hA•(t) =
∑
n≥0

dimF(An)tn.
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For a quadratic algebra one has the following (cf. [PP05, Corol-
lary 2.4]).

Lemma 5.18. Let A• be a quadratic F-algebra, and assume that
either A3 = 0 or A!

3 = 0. If hA•(t)hA!
•
(−t) = 1, then A• (and thus also

A!
•) is Koszul.

4.1. H-Koszulity, U-Koszulity and the ETC. It is natural to
ask about the behavior of the fundamental blocks of the ETC with
respect to H-Koszulity and U -Koszulity. So far, the following result
should not be very surprising.

Proposition 5.19. Let G be a free pro-p group or a Demushkin
group. Then G is H-Koszul and U-Koszul.

Proof. Assume first that G = F is a free pro-p group. Then
H•(F,Fp) = Fp ⊕ H1(F,Fp) and gr•(F ) ' Fp〈X1, . . . , Xd〉, with d =
d(F ), and we may computer their Hilbert series:

hH•(F,Fp)(t) = 1 + dt,

hgr•(F )(t) = 1 + dt+ d2t2 + d3t3 + . . .

Thus, we may apply Lemma 5.18, and we obtain

hH•(F,Fp)(−t) · hgr•(F )(t) = (1− dt)(1 + dt+ d2t2 + d3t3 + . . .),

so that H•(F,Fp) and gr•(F ) are Koszul algebras.
Assume now that G is a Demushkin group. Then one has

hH•(G,Fp)(t) = 1 + dt+ t2.

Moreover, since the canonical presentation of a Demushkin group is
strongly free, [La06, Theorem 5.1] implies that the Hilbert series of
gr•(G) is

hgr•(F )(t) =
1

1− (t+ t+ . . .+ t) + t2
=

1

1− dt+ t2
.

Therefore, hH•(G,Fp)(t) · hgr•(G)(−t) = 1, and Lemma 5.18 yields the
claim. �

Moreover, the classes of H-Koszul pro-p groups and of U -Koszul
pro-p groups is closed under free pro-p products and cyclotomic fibre
products.

Proposition 5.20. Let G, G1 and G2 be finitely generated Bloch-
Kato pro-p groups.
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(i) The free pro-p product G1 ∗p̂ G2 is a H-Koszul pro-p group,
resp. a U-Koszul pro-p group, if, and only if, G1 and G2 are
both H-Koszul, resp. U-Koszul.

(ii) Assume that (G, θ) is cyclo-oriented. Then the cyclotomic fibre
product GnθZ, with Z ' Zp, is again a H-Koszul pro-p group,
resp. a U-Koszul pro-p group, if, and only if, G is H-Koszul,
resp. U-Koszul.

Proof. The first statement follows from (5.7) and (5.5) and from
[PP05, Ch. 2, Corollary 1.2]. The second statement follows from
Proposition 5.7, Example 3 and again [PP05, Ch. 2, Corollary 1.2]. �

Theorem 5.21. Every pro-p group of elementary type (i.e., every
finitely generated pro-p group lying in ET p) is a H-Koszul group and
a U-Koszul group.

Question 4. Let K be a field containing a primitive p-th root of
unity such that the maximal pro-p Galois group GK(p) is finitely gen-
erated.

(i) Is GK(p) a Koszul duality group?
(ii) Is GK(p) H-Koszul and/or U-Koszul?

Note that if (i) holds and GK(p) is H-Koszul, resp. U -Koszul, then
by Proposition 5.16 the group GK(p) is also U -Koszul, resp. H-Koszul.
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[MSp90] J. Mináč and M. Spira. Formally real fields, pythagorean fields, C-
fields and W -groups. Math. Z. 205 (1990), no. 4, 519-530.
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