August 2014

The Role of c-Kit Receptor Tyrosine Kinase in Beta-Cell Proliferation, Function and Survival

Zhi Chao Feng
The University of Western Ontario

Supervisor
Dr. Rennian Wang
The University of Western Ontario

Graduate Program in Pharmacology and Toxicology

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Zhi Chao Feng 2014

Follow this and additional works at: http://ir.lib.uwo.ca/etd

Part of the Cell Biology Commons, and the Endocrinology Commons

Recommended Citation
http://ir.lib.uwo.ca/etd/2234

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact tadam@uwo.ca.
THE ROLE OF C-KIT RECEPTOR TYROSINE KINASE IN BETA-CELL PROLIFERATION, FUNCTION AND SURVIVAL

(Thesis format: Integrated Article)

by

Zhi-Chao Feng

Graduate Program in Pharmacology and Toxicology

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Zhi-Chao Feng 2014
Abstract

c-Kit, a receptor tyrosine kinase, interacts with Stem Cell Factor (SCF), mediating cell differentiation, function, and survival. c-Kit is critical for the development and maintenance of beta-cell function in both rodents and humans. The mutation of c-Kit at W locus (c-Kit^{Wv/+}) in mice results in an early onset of diabetes. However, the underlying mechanisms by which c-Kit deficiency leads to beta-cell failure are unknown. Therefore, studying SCF/c-Kit downstream signaling pathways is essential to understanding the precise mechanism by which c-Kit regulates beta-cell survival and function in vivo.

We identified that dysregulated Akt/Glycogen synthase kinase 3β (Gsk3β)/cyclin D1 pathway, downstream of c-Kit, is responsible for reduced beta-cell proliferation, leading to a severe loss of beta-cell mass in c-Kit^{Wv/+} mice. An up-regulation of Fas-mediated caspase-dependent apoptotic machinery is also associated with beta-cell death in c-Kit^{Wv/+} mouse islets. The loss of functional Fas (lpr mutation) reversed beta-cell apoptosis and dysfunction in c-Kit^{Wv/+};Fas^{lpr/lpr} double mutant mice, demonstrating that a balance between c-Kit and Fas signaling is critical for beta-cell survival and function. To further delineate the primary functional role of c-Kit in beta-cells, we developed a transgenic (c-KitβTg) mouse model with beta-cell specific c-KIT overexpression. c-KitβTg mice exhibited increased beta-cell mass with improved insulin secretion, which is mediated by up-regulation of Akt/Gsk3β/cyclin D1 pathway. c-KIT overexpression in beta-cells not only protected islet function from 4 weeks of high-fat-diet (HFD) challenge, but also recused the onset of diabetes observed in c-Kit^{Wv/+} mice. We also found that c-Kit signaling plays a critical role in islet vascularization. c-Kit mediates VEGF-A production via the Akt/mTOR pathway in vivo. c-KIT overexpression in beta-cells rescued the islet vascular defects in c-Kit^{Wv/+} mice. However, under long-term HFD challenge, c-KitβTg mouse islets displayed dilated vessels with reduced beta-cell mass and increased beta-cell apoptosis. The observed beta-cell failure was likely associate with expanded islet vasculature causing increased islet inflammatory response.
In conclusion, this series of studies represent an integrated *in vitro* and *in vivo* approach aimed at unraveling the cellular mechanisms by which SCF/c-Kit regulates beta-cell survival and function.

Keywords

c-Kit, Stem Cell Factor, diabetes, pancreas, islet, beta-cell survival and insulin secretory function, islet vasculature, glucose metabolism
Co-Authorship Statement

Zhi-Chao Feng performed most experiments, and contributed to the writing of manuscripts in Chapters 3-6 with assistance of the co-authors named below in the laboratory of Dr. Rennian Wang.

Chapter 3 is adapted from Feng ZC, Donnelly L, Li J, Krishnamurthy M, Riopel M, Wang R. (2012) Inhibition of Gsk3β activity improves beta-cell function in c-KitWv/+ male mice. Lab Invest. 92:543-555. Donnelly L contributed to some of morphometric analyses. Li J contributed to qRT-PCR analyses, and assisted with mouse islet isolation. Krishnamurthy M contributed to some of western blots analyses. Riopel M assisted with the manuscript revision. Wang R contributed to the conception and design of the study, assisted with data interpretation and analyses, and revised the manuscript.

Chapter 4 is adapted from Feng ZC, Riopel M, Li J, Donnelly L, Wang R. (2013) Improved beta-cell proliferation and function in c-KitWv/+;Fasld/pd double mutant mice. Am J Physiol Endocrinol Metab. 304:E557-E565. Riopel M contributed to some of morphometric analyses, and assisted with the manuscript revision. Li J contributed to qRT-PCR analyses, and assisted with mouse genotyping, mouse islet isolation. Donnelly L contributed to the double mutant mice breeding, phenotype characterization, and manuscript revision. Wang R contributed to the conception and design of the study, assisted with data interpretation and analyses, and revised the manuscript.

Chapter 5 is partially adapted from Feng ZC*, Li J*, Turco B, Riopel M, Yee SP, Wang R. (2012) Critical role of c-Kit in beta-cell function: increased insulin secretion and protection against diabetes in a mouse model. Diabetologia 55:2214-2225. *equal contribution, Turco B contributed to some of morphometric analyses, Riopel M assisted with the manuscript revision. Yee SP generated the c-KitβTg mouse model and assisted with the manuscript revision. Wang R contributed to the conception and design of the study, assisted with data interpretation and analyses, as well as wrote and revised the manuscript.

Chapter 6 is partially adapted from Feng ZC, Popell A, Li J, Silverstein J, Yee SP, Wang R. (2014) c-Kit receptor tyrosine signaling regulates pancreatic islet microvasculature, beta-cell
survival and function \textit{in vivo}. Popell A assisted with some data collection and interpretation, Li J contributed to qRT-PCR analyses and mouse islet isolation. Silverstein J contributed to some of morphometric analyses. Yee SP generated the \textit{c-KitβTg} mouse model and assisted with the manuscript revision. Wang R contributed to the conception and design of the study, assisted with data interpretation and analyses, and revised the manuscript.
Dedication

To my father Yao-Qiang Feng and mother Jian-Xin Zhang, as well as my Ph.D. supervisor Dr. Rennian Wang, and her husband Jinming Li
Acknowledgments

First of all, I would like to extend my deepest gratitude to my Ph.D. supervisor Dr. Rennian Wang. You offered me the opportunity to pursue my Ph.D. studies in your laboratory. You taught me many indispensible skills to further my academic career. More importantly, you taught me more than what one could learn from books. I am extremely humbled and grateful for your guidance.

I would like to thank my Ph.D. advisory committee, Dr. Andy V. Babwah, Dr. Sean P. Cregan, and Dr. John DiGuglielmo, for their support.

I would like to thank all present and past members of the Wang Lab, especially Jinming Li, Matthew Riopel, Alex Popell, Jenna Silverstein, Byren Turco, Amanda Oakie, and Jason Peart.

The work presented in this thesis was supported by grants from the Canadian Institute of Health Research, and the Doctoral Student Research Award from the Canadian Diabetes Association.
Table of Contents

Abstract... ii
Co-Authorship Statement.. iv
Dedication ... vi
Acknowledgments ... vii
List of Figures ... xiv
List of Appendices ... xviii
List of Abbreviations .. xix
Chapter 1 ... 1
 1 General introduction ... 1
 1.1 Significance of the study... 2
 1.2 Pancreas and islet of Langerhans.. 2
 1.2.1 Pancreas ... 2
 1.2.2 Pancreas development in rodents... 3
 1.2.3 Morphogenesis signals in islet development.. 3
 1.2.4 Vasculature in the pancreas and the pancreatic islets..................................... 4
 1.2.5 Pancreatic beta-cell mass .. 5
 1.2.6 Pancreatic beta-cell insulin secretion... 6
 1.3 Diabetes mellitus and current therapies... 7
 1.3.1 Type 1 diabetes mellitus ... 8
 1.3.2 Type 2 diabetes mellitus ... 9
 1.3.3 High-fat diet induced diabetes in C57BL/6J mice.. 10
 1.3.4 Diagnosis of diabetes and current therapies.. 11
 1.4 c-Kit and Stem Cell Factor .. 12
1.4.1 Structure of c-Kit and Stem Cell Factor .. 12
1.4.2 SCF/c-Kit signaling pathways .. 16
1.4.3 SCF/c-Kit function in organ development 20
1.5 c-Kit function in the pancreas ... 21
1.5.1 c-Kit in the developing rodent pancreas 21
1.5.2 SCF/c-Kit in islet cell differentiation .. 22
1.5.3 c-Kit in the regenerating pancreas ... 23
1.5.4 c-Kit in pancreatic disease ... 24
1.6 Rationales, objectives and hypotheses ... 25
1.6.1 Overall objective and hypothesis ... 25
1.6.2 Beta-cell survival and function in c-Kit$^{Wv/+}$ mice 25
1.6.3 Beta-cell apoptosis in c-Kit$^{Wv/+}$ mice .. 26
1.6.4 c-Kit directly affects beta-cell function 27
1.6.5 VEGF-A and islet vasculature in c-Kit mutant and transgenic mouse 28
1.7 References .. 30
4.2 Materials and methods .. 103
4.3 Results .. 104
 4.3.1 c-Kit^{Wv/+} mice show increased beta-cell apoptosis due to increased p53 signaling and resulting up-regulated Fas activity ... 104
 4.3.2 Down-regulation of Fas in c-Kit^{Wv/+} mice leads to improved beta-cell function .. 114
 4.3.3 Increased beta-cell mass and proliferation, and decreased beta-cell apoptosis observed in c-Kit^{Wv/+;Fas^{lpr/lpr}} double mutant mice ... 119
 4.3.4 Down-regulation of Fas in the absence of c-Kit signaling activates the cFlip/NF-κB pathway, and increases islet transcription factor expression ... 122
4.4 Discussion ... 129
4.5 References .. 133

Chapter 5 ... 136
5 Critical role of c-Kit in beta-cell function: increased insulin secretion and protection against diabetes .. 136
 5.1 Introduction .. 137
 5.2 Materials and methods .. 137
 5.3 Results .. 139
 5.3.1 Generation of transgenic mouse model with c-KIT overexpression specifically in beta-cells .. 139
 5.3.2 Improved glucose tolerance and insulin secretion in c-KitβTg mice 144
 5.3.3 Increased islet transcription factors, beta-cell mass and proliferation in c-KitβTg mice .. 149
 5.3.4 Increased PI3K/Gsk3β/cyclin D1 signaling pathway in c-KitβTg mouse islets 156
 5.3.5 c-KitβTg mice tolerate HFD-induced diabetes ... 159
 5.3.6 c-Kit^{Wv/+} mice with specific overexpression of c-KIT in beta-cells display normal glucose metabolism ... 164
 5.4 Discussion .. 169
5.5 References .. 172

Chapter 6 .. 175

6 c-Kit-mediated VEGF-A production regulates islet microvasculature, beta-cell survival, and function in vivo ... 175

6.1 Introduction .. 176

6.2 Materials and methods ... 177

6.3 Results .. 178

6.3.1 c-Kit function is required for maintaining the normal islet microvasculature in vivo ... 178

6.3.2 Beta-cell specific c-Kit maintains islet microvasculature via the PI3K/Akt/mTOR pathway and VEGF-A production in vivo .. 181

6.3.3 c-KIT overexpression in beta-cell promotes islet angiogenesis in vivo .. 186

6.3.4 c-KIT overexpression exaggerates islet hyper-vasculature in 28-week-old c-KitβTg mice under long-term HFD ... 189

6.3.5 c-KIT overexpression-induced hyper-vasculature impairs beta-cell function in 28-week-old c-KitβTg mice under long-term HFD 192

6.3.6 c-KIT overexpression-induced hyper-vasculature is associated with islet inflammatory response and cytokine production in 28-week-old c-KitβTg mice under long-term HFD ... 201

6.4 Discussion .. 206

6.5 References .. 210

Chapter 7 .. 214

7 Summary, limitations and future directions .. 214

7.1 Summary ... 215

7.1.1 Overall rationale and main objective ... 215

7.1.2 The c-Kit W' mutation causes beta-cell loss and dysfunction via the dysregulated Akt/Gsk3β pathway and up-regulated Fas-mediated apoptotic signaling in c-Kit W'/+ mouse model ... 218
7.1.3 c-KIT overexpression positively regulates beta-cell proliferation and function via an up-regulation of the Akt/Gsk3β/cyclin D1 pathway in c-KitβTg mice ... 219

7.1.4 c-Kit signaling positively regulates islet vascular formation via the Akt/mTOR/VEGF-A pathway ... 219

7.2 Limitations ... 220

7.2.1 Chapter 3 .. 220

7.2.2 Chapter 4 .. 222

7.2.3 Chapter 5 .. 223

7.2.4 Chapter 6 .. 225

7.3 Concluding remarks .. 225

7.4 Future directions ... 226

7.5 References .. 228

Appendices ... 231

Curriculum Vitae ... 243
List of Figures

Figure 1-1. Structure of c-Kit and Stem Cell Factor (SCF).. 15

Figure 1-2. c-Kit signaling pathways.. 19

Figure 2-1. Breeding schematic for \(c-Kit^{Wv/+} \) mice... 46

Figure 2-2. Experimental design of 1-AKP treatments for \(c-Kit^{Wv/+} \) mice...................... 48

Figure 2-3. Breeding schematic for \(c-Kit^{Wv/+};Fas^{lp/lpr} \) double mutant mice............... 51

Figure 2-4. Breeding schematic for \(c-Kit\beta Tg;Wv \) mice... 54

Figure 3-1. Down-regulation of phospho-Akt/Gsk3\(\beta \) signaling in the pancreata and isolated islets from \(c-Kit^{Wv/+} \) mice... 69

Figure 3-2. Western blot analyses of phospho-Akt\(^{T308} \), and phospho-Gsk3\(\beta^{Y216} \) protein levels in isolated islets from \(c-Kit^{Wv/+} \) mice... 71

Figure 3-3. Decreased cyclin D1 protein levels in isolated islets of \(c-Kit^{Wv/+} \) mice......... 73

Figure 3-4. Effect of Gsk3\(\beta \) inhibitor on glucose homeostasis of \(c-Kit^{Wv/+}/1-AKP \) mice..... 76

Figure 3-5. Effect of Gsk3\(\beta \) inhibitor on beta-cell function of \(c-Kit^{Wv/+}/1-AKP \) mice. 78

Figure 3-6. Effect of Gsk3\(\beta \) inhibitor on pancreatic morphology of \(c-Kit^{Wv/+}/1-AKP \) mice. 81

Figure 3-7. Inhibition of Gsk3\(\beta \) maintains \(\beta \)-catenin and cyclin D1 level in \(c-Kit^{Wv/+}/1-AKP \) mouse islets... 85

Figure 3-8. Inhibition of Gsk3\(\beta \) results in increased Pdx-1 and MafA expression in \(c-Kit^{Wv/+}/1-AKP \) mice... 87

Figure 3-9. Inhibition of Gsk3\(\beta \) results in increased beta-cell proliferation in \(c-Kit^{Wv/+}/1-AKP \) mice... 89
Figure 3-10. A proposed model involving c-Kit/Akt/Gsk3β signaling pathways in beta-cell survival and function in c-Kit^{Wv/+} mice. ... 91

Figure 4-1. Up-regulation of p53 and Fas signaling in isolated islets from c-Kit^{Wv/+} mice. .. 105

Figure 4-2. Increased SCF/c-Kit interaction in INS-1 cells results in decrease of p53 and Fas expression via the PI3K pathway. ... 108

Figure 4-3. Absence of c-Kit signaling induces the p53/Fas-mediated caspase-dependent apoptotic signaling. ... 110

Figure 4-4. Knockdown of Fas decreases cell apoptosis. .. 112

Figure 4-5. Fasting blood glucose and glucose tolerance on c-Kit^{Wv/+};Fas^{lpr/lpr} (Wv^{-/-}) mice at 8 weeks of age. ... 115

Figure 4-6. GSIS and insulin content in c-Kit^{Wv/+};Fas^{lpr/lpr} (Wv^{-/-}) mice at 8 weeks of age. 117

Figure 4-7. Islet morphology and immunohistochemical analysis of endocrine cell mass, cell proliferation, and cell death in c-Kit^{Wv/+};Fas^{lpr/lpr} (Wv^{-/-}) mice at 8 weeks of age............. 120

Figure 4-8. Expression of transcription factors, endocrine genes, and signaling molecules in c-Kit^{Wv/+};Fas^{lpr/lpr} (Wv^{-/-}) mice. ... 123

Figure 4-9. Expression of cleaved caspase 8 and 3 in c-Kit^{Wv/+};Fas^{lpr/lpr} (Wv^{-/-}) mice at 8 weeks of age. ... 125

Figure 4-10. Proposed model of c-Kit and Fas signaling that mediates beta-cell proliferation, function, and survival... 127

Figure 5-1. Generation of C57BL/6J transgenic mice with c-KIT overexpression specifically in beta-cells (c-KitβTg). ... 140

Figure 5-2. Expression of SCF levels in C57BL/6J transgenic mice with c-KIT overexpression specifically in beta-cells (c-KitβTg)... 142

Figure 5-3. Body weight, food intake and blood glucose level in c-KitβTg mice.............. 145
Figure 5-4. Glucose tolerance, GSIS, and insulin content in c-KitβTg mice.................. 147
Figure 5-5. Islet morphology in c-KitβTg mice at 8 weeks of age. 150
Figure 5-6. Expression of islet transcription factors in c-KitβTg mice at 8 weeks of age... 152
Figure 5-7. Expression of islet endocrine genes, Glut2, and Glp1 receptors in c-KitβTg mice at 8 weeks of age.. 154
Figure 5-8. Levels of phosphorylated Akt/Gsk3β/cyclin D1 signaling and downstream signaling molecules in c-KitβTg mice at 8 weeks of age.. 157
Figure 5-9. Effect of a HFD on c-KitβTg mice... 160
Figure 5-10. Effect of a HFD on islet morphology of c-KitβTg mice. 162
Figure 5-11. Glucose tolerance and insulin secretion in c-KitβTg;Wv mice. 165
Figure 5-12. A proposed model of SCF/c-Kit signaling to mediate beta-cell proliferation and function. ... 167
Figure 6-1. Overexpressing c-KIT in beta-cells rescues loss of islet microvasculature in c-Kit WT mice... 179
Figure 6-2. Rescued islet microvasculature is associated with increased c-Kit-mediated VEGF-A production via the PI3K/mTOR pathway in c-KitβTg;Wv mice.......................... 182
Figure 6-3. Expression of islet transcription factors in c-KitβTg;Wv mice. 184
Figure 6-4. Beta-cell specific c-KIT overexpression promotes islet angiogenesis in vivo. 187
Figure 6-5. Increased vessel dilation in 28-week-old c-KitβTg mice under long-term HFD. .. 190
Figure 6-6. Glucose tolerance and islet morphology in 28-week-old c-KitβTg mice........ 193
Figure 6-7. Expression of islet transcription factors in 28-week-old c-KitβTg mice...... 195
Figure 6-8. Islet hypervascularization results in impaired glucose tolerance in 28-week-old c-KitβTg mice under long-term HFD................................. 197

Figure 6-9. Altered islet morphology is observed in 28-week-old c-KitβTg mice under long-term HFD. ... 199

Figure 6-10. Increased islet inflammation and cytokine production is induced by islet hypervascularization in 28-week-old c-KitβTg mice under long-term HFD......................... 202

Figure 6-11. Proposed model of c-Kit signaling that mediates VEGF-A production and modulates islet vasculature, affecting beta-cell function and survival. 204

Figure 7-1. Summary of c-Kit signaling in the beta-cell. ... 216
List of Appendices

Appendix I. Animal used protocol... 231

Appendix II. Biosafety approval.. 232

Appendix III. Sequences of primers... 233

Appendix IV. Sequences of siRNA ... 234

Appendix V. List of antibodies for immunofluorescence.................................. 235

Appendix VI. List of antibodies for western blot.. 236

Appendix VII. Sequences of primers for real-time RT-PCR............................. 237

Appendix VIII. Copyright of Chapter 3.. 238

Appendix IX. Copyright of Chapter 5... 239
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CTL</td>
<td>Cytotoxic T lymphocyte</td>
</tr>
<tr>
<td>e-KitβTg</td>
<td>Beta-cell specific overexpression of c-KIT</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’-6’-diamidino-2-phenylindol</td>
</tr>
<tr>
<td>eGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinases</td>
</tr>
<tr>
<td>E-cad</td>
<td>E-cadherin</td>
</tr>
<tr>
<td>FasL</td>
<td>Fas ligand</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting blood glucose</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Glp-1r</td>
<td>Glucagon-like peptide-1 receptor</td>
</tr>
<tr>
<td>Glut2</td>
<td>Glucose transporter 2</td>
</tr>
<tr>
<td>GNNK</td>
<td>Gly-Asn-Asn-Lys sequence</td>
</tr>
<tr>
<td>GSIS</td>
<td>Glucose stimulated insulin secretion</td>
</tr>
<tr>
<td>Gsk3β</td>
<td>Glycogen synthase kinase 3 β</td>
</tr>
<tr>
<td>HFD</td>
<td>High-fat diet</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HSCs</td>
<td>Hematopoietic stem cells</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1 β</td>
</tr>
<tr>
<td>INS-1</td>
<td>Rat insulinoma cell lines</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IPITT</td>
<td>Intraperitoneal insulin tolerance test</td>
</tr>
<tr>
<td>IPGTT</td>
<td>Intraperitoneal glucose tolerance test</td>
</tr>
<tr>
<td>JAK/STAT</td>
<td>Janus kinase and signal transducers and activtors of transcription</td>
</tr>
<tr>
<td>Mac-2</td>
<td>Galectin-3</td>
</tr>
<tr>
<td>MafA</td>
<td>V-maf musculoaponeurotic fibrosarcoma oncogene homolog A</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitogen-activated protein</td>
</tr>
<tr>
<td>mSCF</td>
<td>Membrane-bound Stem Cell Factor</td>
</tr>
<tr>
<td>MTT</td>
<td>(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>Ngn3</td>
<td>Neurogenin 3</td>
</tr>
<tr>
<td>Nkx2.2</td>
<td>NK2 homeobox 2</td>
</tr>
<tr>
<td>Nkx6.1</td>
<td>NK6 homeobox 1</td>
</tr>
<tr>
<td>NOD/SCID</td>
<td>Non-obese diabetic/severe combined immune deficient</td>
</tr>
<tr>
<td>ON</td>
<td>Overnight</td>
</tr>
<tr>
<td>PANC-1</td>
<td>Human pancreatic carcinoma epithelial-like cell lines</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly ADP ribose polymerase</td>
</tr>
<tr>
<td>Pax4</td>
<td>Paired box protein 4</td>
</tr>
<tr>
<td>Pax6</td>
<td>Paired box protein 6</td>
</tr>
<tr>
<td>PDGFR</td>
<td>Platelet-derived growth factor receptor</td>
</tr>
<tr>
<td>Pdx-1</td>
<td>Pancreatic duodenal homeobox-1</td>
</tr>
<tr>
<td>PECAM-1</td>
<td>Platelet endothelial cell adhesion molecule-1</td>
</tr>
<tr>
<td>PFT-α</td>
<td>Pifithrin-alpha</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>PLC-γ</td>
<td>Phospholipase C-gamma</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative RT-PCR</td>
</tr>
<tr>
<td>RIP</td>
<td>Rat insulin promoter</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RTK</td>
<td>Receptor tyrosine kinase</td>
</tr>
<tr>
<td>RT</td>
<td>Reverse transcription</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulfate-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Src</td>
<td>V-src avian sarcoma</td>
</tr>
<tr>
<td>sSCF</td>
<td>Soluble Stem Cell Factor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labeling</td>
</tr>
<tr>
<td>T1D</td>
<td>Type 1 diabetes mellitus</td>
</tr>
<tr>
<td>T2D</td>
<td>Type 2 diabetes mellitus</td>
</tr>
<tr>
<td>VEGFs</td>
<td>Vascular endothelial growth factors</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable number of tandem repeats</td>
</tr>
<tr>
<td>W<sup>v</sup></td>
<td>Viable dominant spotting</td>
</tr>
<tr>
<td>1-AKP</td>
<td>1-Azakenpaullone</td>
</tr>
</tbody>
</table>
Chapter 1

1 General introduction1

\begin{itemize}
\end{itemize}

1 Parts of this chapter have been modified and adapted from the following manuscript:
1.1 Significance of the study

The incidence of diabetes mellitus is rising globally. One major cause behind the progression of diabetes is the decline in pancreatic beta-cell mass and function. Repopulating insulin-producing cell-based therapy remains a highly promising therapeutic modality that could provide the solution for treating diabetes. Donor islet availability is limited, so a greater understanding of how cellular machinery maintains islet function and survival is needed. c-Kit, a receptor tyrosine kinase (RTK), plays an important role in mediating islet cell neogenesis, proliferation, differentiation, and function. The objective of this work is to determine the intracellular mechanisms of c-Kit and its ligand, Stem Cell Factor (SCF), in regulating beta-cell survival and function in both physiological and pathological settings. The resulting data from this work will contribute to new and more physiologically relevant cell replacement therapies for treating diabetes.

1.2 Pancreas and islet of Langerhans

1.2.1 Pancreas

The pancreas is a glandular organ that consists of two major functional compartments: exocrine and endocrine. The exocrine pancreas constitutes almost 99% of the total pancreatic mass and is comprised of acinar cells and ducts. Acinar cells release pancreatic juices containing protease, lipases, and amylases to assist in the digestion and absorption of nutrients in the small intestine. The pancreatic ducts join to the common bile duct, which transports the pancreatic juices to the duodenum. The endocrine pancreas is comprised of the islets of Langerhans, and account for only 1-2% of the total pancreatic mass. Islets possess a remarkable architecture and varying levels of cellular organization across different species. In rodents, five primary endocrine cell types are found within islets: insulin-producing beta-cells are the major endocrine cell population in the core of islets (60-80%), and are surrounded by the glucagon-secreting alpha-cells (15-20%). The remaining 5% of endocrine cells are somatostatin-secreting delta-cells, pancreatic polypeptide-secreting F-cells, and ghrelin-secreting epsilon-cells, which appear as single cells or in small groups that are scattered within islets. The levels of glucose in the blood
are rapidly and precisely regulated by hormone production from islets [1, 2]. Thus, islet dysfunction is central to the development of hyperglycemia, and multiple efforts have been made to improve islet survival and function.

1.2.2 Pancreas development in rodents

The development of the pancreas is conserved among species, and the mouse model has been a powerful research tool for examining pancreatic organogenesis. In rodents, the pancreas begins to develop from the mid-gut endoderm on embryonic day e8.5 [3, 4]. The ‘primary transition’ commences when the dorsal bud develops in proximity to the notochord at e9.5, and the ventral bud grows as the pancreatic epithelium evaginations derivate at e10.25. The twisting of the gut tube brings the dorsal and ventral buds together in close proximity, which leads to projections of the epithelium invading into surrounding mesenchyme at approximately e12.5 [3]. The first wave of the pancreatic endocrine differentiation begins during the primary transition. Endocrine cells that co-express both glucagon and insulin are first visible at e9.5 in the dorsal pancreas. Ghrelin- and somatostatin-expressing cells begin to appear between e9.5 and e12.5 at the tip of the dorsal pancreas, and a few pancreatic polypeptide-expressing cells clustered in the ventral pancreas are seen at e11.5 [3]. Following the primary transition, the pancreatic epithelium undergoes a massive wave of expansion and differentiation, marking the ‘secondary transition’. During this transition, the pancreatic primordium branches off, differentiates, and commits to an endocrine or exocrine pancreatic lineage. This indicates the second wave of the pancreatic endocrine cell differentiation, with the majority differentiating into beta-cells or alpha-cells. This is followed by the expansion and maturation of epsilon-cells, delta-cells, and F-cells [3]. Mature islet aggregates with capillaries form during the third transition, and the endocrine pancreas continues to mature, expand, and remodel until the end of the third postnatal week [1, 3-5].

1.2.3 Morphogenesis signals in islet development

The morphogenesis of the pancreas relies on inductive signals from the notochord. Specifically, growth factor activin-β and fibroblast growth factor-2 from the notochord repress expression of the sonic hedgehog (Shh) morphogen in the primitive gut endoderm
Inhibition of Shh signaling promotes pancreatic and duodenal homeobox 1 (Pdx-1) expression at e8.5, marking the onset of the pancreas development [7]. Following Pdx-1 expression, Pancreas transcription factor (Ptf1a) and Homeobox transcription factor (Hlxb9) appear, which are required for ventral and dorsal pancreas formation, respectively. The initial step that specifies pancreatic endocrine cell fate occurs with the expression of the bHLH transcription factor Neurogenin 3 (Ngn3) at e9-9.5 [8]. Mice lacking Ngn3 expression failed to develop any endocrine cells [9]. Ngn3-expressing islet progenitors adopt the pancreatic endocrine cell fate with a specific combinations of lineage-determining transcription factors. In brief, alpha-cell fate is primarily specified by the appearance of aristaless related homeobox, and subsequent expression of brain 4, V-maf musculoaponeurotic fibrosarcoma oncogene homolog B, and paired box protein 6 (Pax6) [8]. In contrast, beta-cell phenotype is determined by transient expression of paired box protein (Pax4), which is followed by the appearance of V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), NK2 homeobox 2 (Nkx 2.2), NK6 homeobox 1 (Nkx 6.1), Pax6, and Pdx-1 [8]. Many transcription factors, such as Pdx-1 and Pax6, appear to serve dual functions in determining the specification of endocrine cell lineage and in maintaining the phenotype and function of islet cells. Thus, loss of these transcriptional regulators correlates with defective pancreatic endocrine cells growth and function, and later corresponding manifestation of impaired glucose homeostasis.

1.2.4 Vasculature in the pancreas and the pancreatic islets

Blood vessels play an important role in pancreatic development. During the primary transition, most of the vessels in the early budding pancreas are not perfused; this provides non-nutrient cues to the developing pancreas. There is emerging evidence showing that the maintenance of Pdx-1, induction of Ptf1A, and subsequent pancreatic budding depends on signals from embryonic aortic endothelial cells [4, 10-12]. Blood vessels also appear to provide nutrient cues to trigger pancreatic growth from e14.5-15 onward [12]. Blood perfusion in vessels is coordinated with rapid pancreas branching and endocrine cell differentiation during the second transition. The capillary network also plays an important role in islet survival and function. The vasculature in the endocrine
Pancreas is five-fold denser than in the exocrine pancreas [13]. Likewise, islets receive 10% of total pancreatic blood flow, and their vessels are approximately ten times more fenestrated than the exocrine pancreas [14]. The denser capillary networks correlate with high vascular endothelial growth factor (VEGF) production from beta-cells. Beta-cells exclusively express the soluble, diffusible splice-forms of VEGF-A 120, VEGF-A 164, and VEGF-A 188. VEGF-A 164 (the predominant form) has the highest bioavailability and biological potency [5, 8, 15]. As demonstrated in mouse models, VEGF-A acts as a messenger to maintain the intimate connection between islet endocrine cells and blood vessels. The dense islet capillary network supplies beta-cells with a nutrient filled environment necessary for survival and function. In return, constitutive release of VEGF-A by beta-cells promotes endothelial cell recruitment and maintains the integrity of islet vasculature. Overall, the efficient communication between blood and beta-cells is essential for the precise glucose sensing and systemic circulation of pancreatic hormone [16]. Thus, disturbance of VEGF-A signaling can lead to abnormal vasculature in islets, and ultimately affects beta-cell survival and function resulting in impaired glucose homeostasis.

1.2.5 Pancreatic beta-cell mass

Pancreatic beta-cell mass is determined by neogenesis, proliferation of pre-existing beta-cells, and apoptosis [17]. In rodent pancreatic development, the major expansion of beta-cells occurs during secondary transition and involves a rapid daily doubling of the beta-cell population. Neogenesis accounts for almost 80% of new beta-cells formed, whereas only a fraction (10-20%) of beta-cell growth is attributed to beta-cell proliferation [17]. Newly formed islet clusters appear adjacent to or are embedded in the ducts, suggesting that the islet cell precursors are a subpopulation found within the ducts or harboured in the ducts [17]. In contrast to gestational stages in rodents, beta-cell mass expansion only occurs at a rate of 2-3% per day [17], consisting of a transient surge in beta-cell neogenesis within the first week, and proliferation after the first week of birth in neonatal rodent pancreas [17]. Loss of some beta-cell mass due to apoptosis is seen around weaning age during the postnatal remodelling period. In the adult rodent pancreas, the mitotic rate of beta-cells slows down due to the limited proliferative capacity of the
terminally differentiated endocrine cells. The turnover rate is less than 0.25% beyond 3 months of age [17, 18]. Interestingly, beta-cells retain a remarkable degree of plasticity in response to a variety of stresses, including pregnancy, obesity, and insulin resistance. Under these scenarios, a robust beta-cell mass compensation is seen in an attempt to maintain insulin production and subsequent euglycemia. However, the underlying mechanism(s) by which beta-cells maintain their own survival and proliferation is (are) not fully determined.

1.2.6 Pancreatic beta-cell insulin secretion

The *Insulin* genes in rodents form a two-gene system in which *Insulin I* was retroposed from the partially processed mRNA of *Insulin II*. These two *Insulin* genes are located on different chromosomes, with *Insulin I* on chromosome 7, and *Insulin II* on chromosome 19 in mice [19]. This is in contrast to humans, in which one copy of the *INSULIN* gene was found on chromosome 11 [19]. *Preproinsulin gene I (Insulin I)* is a rodent specific retrogene that contains only one intron homologous to the first intron of *Preproinsulin gene II (Insulin II)*. *Insulin II* is an ortholog to the *INSULIN* gene in humans that has three exons and two introns. Insulin production involves multiple intermediate steps. Preproinsulin is a large precursor translational product of either *Insulin I* or *Insulin II*, and it contains the N-terminal signal peptide, B chain, C-peptide, and A chain. Preproinsulin is rapidly cleaved to proinsulin by signal peptidases, which remove the signal peptide from its N-terminus. The modification of proinsulin to insulin is a relatively slow process, which comprises both the conversion of proinsulin to insulin in the Golgi apparatus, and the sorting out of insulin polypeptides on their way from the rough endoplasmic reticulum (ER) to the storage secretory granules [19]. Mechanically, proinsulin together with the proteolytic enzymes is stored in trans Golgi vesicles surrounded by a cisternae membrane that contains the adenosine triphosphate (ATP)-dependent proton pump. As ATP increases due to glucose metabolism in beta-cells, the proton pump transports H^+ into the trans Golgi vesicles. The acidic proteolytic enzymes are activated, and the C-peptide is cleaved from the A and B chains of insulin [20]. Mature insulin and cleaved C-peptides are then packaged into secretory granules for release into circulation.
Insulin is exclusively secreted by beta-cells in response to changes in blood glucose levels [21]. In rodents, insulin secretion occurs along a biphasic time course [22]. The first phase lasts approximately 10 minutes, peaking 5 minutes following glucose stimulation. The second phase is characterized by a prolonged slow release, which lasts until the blood glucose level returns to normal. Glucose transporter 2 (Glut2) is involved in metabolic glucose sensing by mediating glucose transport into rodent beta-cells. Subsequently, glucose is phosphorylated by the rate-limiting enzyme glucokinase, and is further metabolized to produce ATP via the mitochondrial tricarboxylic acid cycle in the mitochondria. Increased ATP: adenosine diphosphate ratio causes the closure of ATP-sensitive potassium channels. The increasing concentration of intracellular potassium ions in beta-cells leads to beta-cell depolarization, which triggers calcium influx from opened voltage-gated calcium channels. There is emerging evidence showing that the first phase of insulin secretion depends on the rapid and marked elevation of intracellular calcium level in beta-cells, and corresponds to the release of insulin granules from a readily releasable pool within 5 minutes of glucose stimulation. The second phase of insulin secretion requires paracrine signals other than the intracellular calcium rise, including the amplification of glucose and insulin that may serve to replenish the pool of granules that are releasable at the prevailing intracellular calcium level.

1.3 Diabetes mellitus and current therapies

Diabetes mellitus is a chronic metabolic disease that occurs when the body is either unable to sufficiently produce or properly use insulin. It is widely recognized as an epidemic in Canada. There are currently more than 9 millions Canadians living with diabetes or prediabetes [23]. The prevalence of diabetes translates into a huge economical burden for Canadian society. It is estimated that the total health care costs associated with diabetes is expected to increase to over 8 billion dollars annually by the year 2016 [23]. There are two major forms of diabetes. It is estimated that 5% to 10% of diabetic Canadians have type 1 diabetes mellitus (T1D), while 90% to 95% have type 2 diabetes mellitus (T2D) [23]. T1D, once known as ‘juvenile diabetes’ or ‘insulin dependent diabetes’, is characterized by an absolute deficiency of beta-cells due to an autoimmune attack, resulting in an insufficient supply of insulin that is unable to maintain euglycemia
[23]. In contrast, T2D, also referred to as ‘non-insulin-dependent diabetes’, is a metabolic disorder that occurs when there is insufficient insulin production to compensate for growing systemic insulin resistance [23]. The high secretory demand in overt hyperglycemia results in progressive deterioration of beta-cell function and induction of beta-cell apoptosis. Thus, beta-cell failure is regarded as the primary cause of both forms of diabetes.

1.3.1 Type 1 diabetes mellitus

T1D is an autoimmune disorder, meaning patients often exhibit features reflective of an immunological contribution to the disease. In most cases, genetic predisposition associated with the immune system plays a huge role in the onset of T1D. The region of the human leukocyte antigen (HLA) complex in T1D patients and non-obese diabetic mice is highly linked to T1D susceptibility. The majority of T1D patients carry HLA-DR3 and HLA-DR4, with around 30% being DR3/DR4 heterozygous [24]. Beyond the HLA, the variable number of tandem repeats (VNTR) located upstream of the Insulin gene is the second most susceptible region to T1D. Short VNTR confers high risk for T1D [25]. Other non-HLA genes associated with T1D are cytotoxic T lymphocyte (CTL) associated-4 and PTPN22. CTL associated-4 encodes a molecule that plays a regulatory role in T-cell functionality [26], and the PTPN22 phosphatase is thought to influence immune responsiveness [27]. The genes that confer a risk to T1D may also play an important role in beta-cell death.

Mechanistically, beta-cells develop specific autoantigens expressed as peptide-major histocompatibility complexes. This portends the development of activated CTLs and autoreactive helper T-cells (including CD8+ and CD4+ T-cells) capable of destroying beta-cells. Beta-cells can be selectively killed by the immune system via multiple pathways including: 1) activation of death receptor, 2) perforin and granzyme B released by CD8+ T cells, and 3) interleukin-1 β (IL-1β). Activation of death receptors including Fas and tumor necrosis factor alpha (TNFα) receptors has also been implicated in beta-cell destruction in T1D [28]. While Fas receptor (Fas) expression is negligible in healthy islets, up-regulated Fas expression on beta-cells could be triggered by exposure to cytokine IL-1β. Extrinsic caspase 8 apoptotic pathway is mediated by the interaction
between Fas and Fas ligand (FasL), which contributes to beta-cell destruction in the progression of T1D. Perforin and granzyme B represent an alternative pathway of beta-cell apoptosis in T1D [28]. Perforin released by CTLs are able to integrate into the beta-cell membrane forming pores for granzyme B infiltration. Granzyme B is able to enter the cell and cleave multiple apoptotic proteins, including Bid, to activate apoptosis [29]. Additionally, IL-1β is detectable in islets, and confers another avenue in mediating beta-cell destruction in T1D. In rodent models, injection of recombinant IL-1β induced transient hyperglycemia, and high doses of IL-1β accelerated the onset of diabetes [30]. Furthermore, neutralization of IL-1β was able to delay and reduce diabetes in non-obese diabetic (NOD) mice [31].

1.3.2 Type 2 diabetes mellitus

T2D is characterized by beta-cell failure, hyperinsulinemia, and hyperlipidemia. There is emerging evidence showing that T2D stems from interactions between genetic predisposition and environment, including obesity. Genetically, calpain-10, a member of a ubiquitously expressed family of cysteine proteases, is associated with a high risk of T2D. About 30% of the T2D population is associated with this locus [32]. Obesity is associated with peripheral insulin resistance and systemic inflammation. In obese people, increased beta-cell mass and insulin secretion is required to compensate for the metabolic demand. A failure of this compensatory increase results in beta-cell dysfunction and insulin resistance, and eventually a loss of beta-cell mass during the course of T2D. Compared to weight-matched control subjects, a 40-60% loss of beta-cell mass is also found in T2D subjects, and at least 40% of the beta-cell mass is reduced in pre-diabetic patients [33]. Multiple proposed pathogenic mechanisms are responsible for beta-cell failure during the progression of T2D, including: 1) glucose toxicity, 2) beta-cell exhaustion, 3) lipotoxicity, and 4) pro-inflammatory cytokine. Glucose toxicity implies a direct effect of elevated blood glucose levels, which impairs beta-cell health via various mechanisms, such as Fas-mediated beta-cell apoptosis [34], toxic reactive oxygen species production from mitochondria [35], or induction of the pro-apoptotic protein TXNIP [36] and Bcl family members [37]. Beta-cell exhaustion is another proposed mechanism based on an indirect effect of hyperglycemia to impair beta-cell function by causing a
nonsustainable compensatory increase in insulin secretion. Increased beta-cell workload could result in an increase of misfolded protein production, and activation of the unfolded protein response in the ER and Golgi apparatus [38, 39]. Subsequently, an accumulation of these misfolded proteins can trigger beta-cell failure in T2D. There has been interest in examining excess fatty acids such as palmitate, as they may have toxic effects on beta-cell function and viability via the generation of ceramide and reactive oxygen species. Indeed, previous studies have demonstrated that palmitate is able to trigger beta-cell apoptosis via activation of caspase-mediated mitochondrial dysfunction and reduction of Bcl pro-survival proteins. Moreover, palmitate negatively impacts proinsulin’s conversion to mature insulin by an induced calcium-dependent degradation of carboxypeptidase E [38]. Furthermore, palmitate has been demonstrated to impair the secretory pathways by partially depleting ER calcium stores [39]. Finally, considerable data supports that pro-inflammatory cytokines and immune cell infiltration of the islet are potential underlying mechanisms contributing to beta-cell failure in T2D. An elevated production of IL-1β can be detected in islets exposed to high glucose levels and hyperlipidemia. The induced local islet inflammation recruits subsequent islet infiltration by macrophages to promote beta-cell apoptosis [40]. There is emerging evidence that cytokines, such as IL-1β and TNFα, promote the production of NO, leading to depleted calcium influx into the ER, which in turn promotes ER stress mediated beta-cell apoptosis [41].

1.3.3 High-fat diet induced diabetes in C57BL/6J mice

Obesity represents a major risk factor, and often precedes the onset of T2D. In diabetes research, syndromes resembling T2D have been identified in obese C57BL/6J mice. Several genetic factors contained in the C57BL/6J background allow these mice to develop diabetes in a manner analogous to most cases of T2D in humans through dietary manipulation [42]. C57BL/6J mice fed with food enriched in fat spontaneously developed obesity along with hyperinsulinemia, hyperglycemia, and hypertension. However, lean C57BL/6J mice remain euglycemic when fed a normal diet. Noticeable weight gain is observed after 2 weeks of high-fat diet (HFD), and hyperglycemia usually develops
within 4 weeks of HFD [43], and the full manifestation of diet-induced diabetes develops after 16 weeks of HFD, with 20-30% weight gain, compared to normal diet-fed mice.

1.3.4 Diagnosis of diabetes and current therapies

Blood tests are used to diagnose diabetes and prediabetes, and the amount of glucose in the blood is measured in mmol/L. There are different tests that can be used for a diagnosis, including 1) a glycated hemoglobin (A1C) test; 2) fasting and/or random plasma glucose tests; or 3) an oral glucose tolerance test. The hemoglobin A1C (HbA1c) is a form of hemoglobin that is formed in a non-enzymatic glycation pathway by its exposure to plasma glucose. It is an indication of the average plasma glucose concentration over prolonged periods of time (the past 3 months). If a patient has test results of HbA1c ≥6.5%, fasting plasma glucose ≥7.0 mmol/L, or 2-hour plasma glucose in a 75g oral glucose tolerance test ≥11.1 mmol/L, they are diagnosed with diabetes.

T1D patients require lifelong intensive insulin therapy. Most of them require two or more daily injections of insulin. In contrast, patients with T2D are usually obese, and therefore the first line of treatment includes diet modification and physical activity, with the end goal of weight management. If the blood glucose levels remain high, medications that increase peripheral insulin sensitivity and secretion are usually advised. Over a decade ago, the Edmonton Islet Transplantation Protocol created a new era of therapeutic promise for treating T1D diabetic patients with islet cell replacement. The success of this protocol was driven by a low risk of morbidity and hypoglycemia, normalization of glycosylated hemoglobin values, and sustained freedom from the need for exogenous insulin [44-46]. Unfortunately, many problems accompanied this success, including the shortage of cadaver islets and gradual loss of function and/or viability of transplanted islets due to immunosuppressive drug toxicity [45, 46]. These obstacles have limited islet cell replacement therapy for wide scale application [46]. For these reasons, an extraordinary amount of research is currently underway to search factors that promote beta-cell development and maintain beta-cell function and survival in the pancreas. One such factor currently being researched is c-Kit. Accumulating evidence from recent studies and the present work has demonstrated the prominent role of c-Kit in the formation of the islet of Langerhans. More importantly, c-Kit is a marker and
maintenance factor for putative pancreatic stem/progenitor cells, and activation of c-Kit signaling modulates beta-cell survival and function in normal and diabetic settings.

1.4 c-Kit and Stem Cell Factor

1.4.1 Structure of c-Kit and Stem Cell Factor

c-Kit is a cellular homologue of the v-Kit oncogene, found to be encoded by the W locus on chromosome 4 (4q11-21) in humans, and on chromosome 5 in rodents [47]. c-Kit is a member of the type III group of RTKs. The receptor structure and sequence within the kinase domain of c-Kit is closely related to Platelet-Derived Growth Factor Receptor (PDGFR), macrophage colony-stimulating factor receptor, and Fms-like tyrosine kinase 3 [48-51]. Structurally, c-Kit is characterized by the presence of an extracellular region comprised of five Ig-like domains, a single spanning transmembrane region, and a cytoplasmic region containing a hydrophilic kinase insert domain (Figure 1-1A). The specificity of c-Kit for binding Stem Cell Factor (SCF) depends on the concave surface of the ligand-binding pocket formed by the first three domains. The fourth and fifth domains play a critical role in c-Kit monomer positioning and dimerization [52]. The intracellular portion of c-Kit constitutes a juxtamembrane domain with an ATP-binding region, a phosphotransferase region split into two domains by a kinase insert, and a COOH-terminal tail. Most of the phosphorylation sites are located in the cytoplasmic region and are important in the transduction of intracellular activation signals.

Production of c-Kit is regulated at the mRNA level in both humans and rodents. Transcriptional regulation gives rise to two main isoforms, distinguished by the presence or absence of an in-frame insertion of a four amino acid sequence, Gly-Asn-Asn-Lys (GNNK), in the extracellular compartment [53-55]. Both isoforms of c-Kit are co-expressed in most tissues, with the dominant form lacking the GNNK (GNNK(-)) isoform [56]. Although receptor affinity to SCF is identical between both isoforms, there is a profound difference in the kinetics of receptor phosphorylation and signal transduction in the different isoform types. For instance, the GNNK(-) isoform of c-Kit displays rapid receptor phosphorylation, internalization, and degradation compared to the GNNK(+) isoform. Upon c-Kit phosphorylation, activation of both the extracellular
signal-regulated kinases (ERK) and phosphoinositide 3-kinase (PI3K) pathways are stronger in GNNK(-) expressing cells, as opposed to cells expressing the GNNK(+) isoform [57, 58].

SCF is a ligand for c-Kit and is a product of the Sl locus, mapped to chromosome 12 in humans and 10 in rodents [59]. There are six known SCF transcripts in humans, and four in rodents. Two alternative transcripts (220 and 248) are predominantly expressed (Figure 1-1B). Both transcripts encode for membrane-bound SCF (mSCF), constituting an extracellular domain, a transmembrane domain, and an intracellular region. In humans, SCF 248 contains a proteolytic cleavage site at exon 6, possibly accelerating the production of soluble SCF (sSCF) 165 by posttranscriptional modification. In contrast, both SCF 220 and 248 can be cleaved at exon 7 to generate the soluble form of SCF in rodents [60, 61]. Dimerization in mSCF makes it more biologically active than the monomeric form [16], but most sSCF proteins exist as monomers under physiological conditions [62]. Both mSCF and sSCF are considered biologically active, but with differential effects on c-Kit signal transduction in target cells [63, 64]. It is now apparent that mSCF results in persistent activation and a prolonged c-Kit lifespan, whereas sSCF induces transient receptor activation and enhances receptor degradation.
Figure 1-1. Structure of c-Kit and Stem Cell Factor (SCF).

(A) c-Kit has extracellular, transmembrane, and intracellular regions. The extracellular region consists of five Ig-like domains. The transmembrane region keeps c-Kit attached to the cell membrane. The intracellular region contains two kinase domains split into two parts by the kinase insert domain. (B) The soluble SCF 165 is generated by cleavage of membrane-bound SCF (220 or 248). The primary proteolytic cleavage sites are indicated by the arrows.
1.4.2 SCF/c-Kit signaling pathways

Receptor activation: c-Kit exists as a monomer on the cell membrane and SCF drives the formation of c-Kit homodimerization by binding to the first three Ig-like domains of the c-Kit monomers [65]. The subsequent interaction between Ig-like domain 4 and domain 5 in adjacent c-Kit monomers further stabilizes c-Kit dimerization, allowing for positioning and efficient trans-phosphorylation of cytoplasmic kinases [66-68]. The juxtamembrane domain plays a critical role in regulating c-Kit activity [69]. SCF stimulation promotes the release of the juxtamembrane domain from the activation loop, enabling catalytic function of the tyrosine kinase to convey its downstream signaling transduction [70, 71].

Molecular signal transduction: To date, nine tyrosine phosphorylation sites have been identified in c-Kit (Figure 1-1A). Trans-phosphorylation proceeds on the tyrosine kinase residues, which act as docking sites for signaling molecules containing the v-src avian sarcoma (Src) homology 2 domain and phosphotyrosine-binding domain. c-Kit phosphorylated at Y721 and Y900 activates the PI3K pathway, resulting in cell survival and proliferation (Figure 1-2) [72-74]. Phosphorylation of c-Kit at Y703 and Y936 activates the mitogen-activated protein (MAP) kinase pathway (Figure 1-2) [75]. The MAP kinases can act on transcription factors to affect gene transcription and proliferation [65]. c-Kit phosphorylation at Y568, Y570, and Y936 activates the Src pathway, which is associated with cell adhesion and cell motility (Figure 1-2) [76, 77]. Src also converges with the PI3K and MAP kinase pathways, as well as the janus kinase and signal transducers and activators of transcription (JAK/STAT) pathway [65, 78, 79]. The phospholipase c-gamma (PLC-γ) pathway can interact with tyrosine kinase residue Y730 of c-Kit [80], and was found to be important for suppressing cellular apoptosis (Figure 1-2) [81, 82]. There is also evidence indicating that SCF/c-Kit signaling pathways are not simple linear reactions. Indeed, integrated inputs from different pathways determine the biological consequences in different cellular contexts. This is accomplished by c-Kit cross-talking with other receptors, including erythropoietin receptor or interleukin receptors, to recruit common signaling molecules, such as PI3K, MAP kinase, JAK/STAT, and PLCγ, so that multiple physiological responses may be amplified [83-87].
Receptor down-regulation: A tight regulation of c-Kit signaling is crucial for proper cellular functions. Attenuation of c-Kit signaling can be achieved by several routes, including receptor internalization, tyrosine dephosphorylation, and kinase domain inactivation by serine phosphorylation. Phosphorylation at sites Y568 and Y936 and association with the E3 ubiquitin ligase c-Cbl is required for c-Kit internalization [76, 88, 89]. Studies have demonstrated that suppression of cytokine signaling proteins SOCS1 and SOCS6 negatively regulate c-Kit signaling by endocytosis and subsequent lysosomal degradation [90, 91]. In addition, negative feedback regulation contributes to c-Kit down-regulation: stimulation of ligand binding to c-Kit increases protein kinase C activity, which negatively regulates kinase activity by phosphorylating serine residues S741 and S746 of c-Kit. This results in shedding of the c-Kit extracellular domain from the cell surface [65, 92-95]. Furthermore, the adaptor protein, Lnk, preferentially binds to phosphorylated Y567 in the c-Kit juxtamembrane domain, mediating inhibition of c-Kit activity [96]. c-Kit signaling can also be regulated by tyrosine phosphatases, including SHP-1, even in the absence of SCF [97].
Figure 1-2. c-Kit signaling pathways.

The MAPK pathway (blue) regulates gene transcription and proliferation. PI3K signaling (green) plays an important role in cellular proliferation, survival and adhesion. PLC\(_\gamma\) and JAK/Stat pathways (orange) are implicated in proliferation and differentiation. Shp-1, c-Cbl, SOCs and PKC signal (brown) are involved c-Kit down-regulation. sSCF: soluble Stem Cell Factor; mSCF: membrane-bound Stem Cell Factor.
1.4.3 SCF/c-Kit function in organ development

c-Kit-mediated signal transduction governs proliferation, survival, and adhesion in hematopoietic stem cells (HSCs), mast cells, and dendrite cells. The mechanism involved in this phenomenon is suppression of cell apoptosis through either activation of anti-apoptotic genes, such as Bcl-2, or inactivation of pro-apoptotic genes, such as Bad via the PI3K pathway. SCF functions as a chemotactic factor for HSCs [98]. Cell adhesion, a process SCF is known to play a role in, is required for the maintenance of cells in their microenvironment [99]. sSCF promotes mast cell proliferation, whereas mSCF binds directly to c-Kit, and in mast cells increases the expression of proteins involved in cell-matrix attachment [100, 101]. Animal studies using Sl and W mutant mice demonstrate that defective SCF/c-Kit signaling results in deformity of erythrocytes, megakaryocytes, and mast cells, illustrating that these cells are dependent on c-Kit for their proliferation, survival, and function [102].

c-Kit and SCF play an indispensable role in the pigmentation of the epidermis and hair of mammals. Mice with a heterozygotic mutation in SCF or c-Kit exhibited a lack of hair pigmentation associated with loss of melanocytes [103]. In contrast, overexpression of epidermal SCF leads to hyperpigmentation in mice, and constitutively activated c-Kit results in uncontrolled proliferation of melanocytes, promoting melanogenesis and migration of pigment cells [104, 105]. SCF/c-Kit activity is essential in enabling melanocyte-lineage cell migration from the neural crest into developing mature hair follicles in rodents [106, 107]. Furthermore, c-Kit-activated Src family kinases regulate the microphthalmia-associated transcription factor to govern the proliferation, survival, and maturation of melanocytes [108, 109].

Expression and functional studies have shown that SCF/c-Kit is essential for germ cell development during both the fetal and postnatal periods of life. Humans with a mutation in SCF suffer from idiopathic male infertility [110]. Elevation of c-Kit expression is linked to the commitment of germ cell differentiation in rodents. Both Sl and W mutant mice show defective c-Kit signaling, which is associated with germ cell apoptosis and the corresponding degree of sterility [111]. Activation of the PI3K and MAP kinase pathways by stimulation of SCF has been found to promote germ cell proliferation [74,
Other studies have demonstrated that phosphorylation of Src family kinases, by the juxtamembrane kinase of c-Kit, regulates primitive germ cell migration [114]. In addition, downstream of c-Kit, the PLCγ pathway has been implicated in meiosis of fertilized eggs [115, 116], and the ERK cascade has been shown to act as a regulator of gene transcription involved in the maturation and proliferation of primitive germ cells [112, 114].

The physiological relevance of SCF and c-Kit has been characterized in mice with various naturally occurring mutations in the Sl and W loci. The loss-of-function mutations in these receptor/ligand-defective mice result in defective signaling pathways and underline the complexity of rodent phenotypes. Given the fact that SCF and c-Kit are expressed in a wide variety of normal tissues, it is not surprising that SCF/c-Kit interactions play a crucial role in hematopoiesis, pigmentation, and gametogenesis, as well as in the gastrointestinal tract, cardiovascular system, and neuronal network [117]. Recent studies suggest that c-Kit function may be linked to regulation of pancreatic endocrine cell development, particularly beta-cell maturation, proliferation and function, which will be highlighted in the following sections.

1.5 c-Kit function in the pancreas

1.5.1 c-Kit in the developing rodent pancreas

c-Kit expression was first detected in RINm5F rat insulinoma cell lines and fetal rat islets [118]. Subsequent immunohistochemistry studies revealed the localization of c-Kit to pancreatic ducts [119], and mRNA expression of the c-Kit gene was enriched in the e13 embryonic rat pancreata [120], suggesting that c-Kit expression is important for proper development of the pancreas. One cell-lineage tracing study utilizing LacZ murine embryos showed that c-Kit expression is detectable in a subpopulation of endocrine and epithelial cells [121]. The abundant c-Kit expression in early rodent pancreas development demonstrates that c-Kit might be involved in maintaining the endocrine cell precursor pool in fetal rodents. This statement was further supported by findings from our laboratory. We characterized dynamic changes of c-Kit expression in rodent pancreata during transition from the prenatal to postnatal period, and revealed that c-Kit was
localized to the ductal region and in newly formed islet endocrine cell clusters at e18, and progressively decreased during postnatal life [122]. These observations suggested that decreased c-Kit expression correlated with islet endocrine cell maturation. More recently, the presence of two distinct putative stem cell like populations, expressing either c-Kit or Sca-1, another stem cell antigen, in the developing rodent pancreas was characterized. Flow cytometry analysis revealed that the isolated c-Kit^+ cell population co-expressed markers of islet differentiation including Pdx-1 and Ngn3, but an isolated Sca-1^+ cell population lacked these markers [123]. This data indicates that c-Kit could be used a marker to identify putative islet precursor cells, thus playing a significant role in pancreas morphogenesis, particularly in the developing rodent endocrine pancreas. Interestingly, a report from Bernex et al. has documented pancreatic endocrine cells present in W^LacZ/W^LacZ mouse embryos with a null allele of c-Kit. Findings from this study suggested c-Kit might not be required for the determination and specification of pancreatic endocrine cells [124]. However, it is worth noting that PDGFR is also expressed in islets of Langerhans, which might represent a possible redundant RTK signaling pathway that compensates for the absence of c-Kit expression.

1.5.2 SCF/c-Kit in islet cell differentiation

Accumulating evidence has shown that c-Kit plays an important role in pancreatic morphogenesis and islet maturation. c-Kit-mediated islet differentiation was demonstrated across multiple species in vitro. It was demonstrated that stimulation of c-Kit promotes gene transcription [121] and proliferation in the INS-1 rat insulinoma cell line [125, 126]. Furthermore, exogenous SCF induced differentiation of human pancreatic carcinoma epithelial-like cell lines (PANC-1) into islet-like clusters [127]. In isolated primary rodent islet cultures, Oberg-Welsh et al. demonstrated that rat fetal islet clusters treated with SCF show augmented insulin and total DNA content [119]. The rat islet epithelial monolayer that expanded on collagen I contained an increased number of proliferating c-Kit-expressing cells, with constant expression of Pdx-1, Ngn3, Pax4, and multiple undifferentiated cell markers, including octamer-binding transcription factor-4, and α-fetoprotein [128]. Differentiation of these monolayers was greatly enhanced when cultured on laminin-rich matrigel. Islet-like clusters were formed and cells secreted
insulin in response to glucose [128]. It was found that SCF released from microencapsulated monolayered Sertoli cells significantly accelerated differentiation and maturation of neonatal porcine islets. Increased early islet differentiation markers and co-localization with c-Kit and insulin was found in these porcine islets, demonstrating that the c-Kit positive subpopulation represents islet precursors that can stimulate differentiation of porcine insulin producing cells in vitro [129]. Our group showed that SCF mediates the differentiation of c-Kit-expressing immature endocrine progenitors in the human fetal pancreas, and phosphorylated Akt may have a functional role downstream of c-Kit signaling in mediating their maturation [130]. Furthermore, c-Kit activation results in cellular proliferation via suppression of cell apoptosis in human fetal islet epithelia [131]. Conversely, silencing c-Kit mRNA disrupts islet differentiation in cells of the human fetal pancreas [131], highlighting the importance of c-Kit signaling in mediating early beta-cell differentiation and survival.

1.5.3 c-Kit in the regenerating pancreas

Although there is no consensus about the identity and origin of pancreatic stem/progenitor cells, c-Kit-expressing cells exhibit many stem cell-like features in the regenerating pancreas. Our group showed that following pancreatic duct ligation, pancreatic islets, exocrine acini, and ductal complexes regrew, indicating that c-Kit-expressing proliferating pancreatic progenitors may be a putative source for islet regeneration in rodents [132]. Our study revealed that c-Kit is expressed in the periphery of islets and co-localizes with ductal/progenitor markers cytokeratin 20 and Pdx-1 in the ligated rat pancreas 3 days post-ligation [133]. c-Kit-expressing cells in ligated regions displayed a high proliferative capacity, suggesting that beta-cell neogenesis may arise from these ductal progenitor cells. c-Kit has also been found to participate in islet regeneration in a streptozotocin-induced diabetic model. A few remaining beta-cells that express c-Kit have high proliferative capacity following streptozotocin-induced beta-cell damage, suggesting that these cells are involved in the regenerative process [134]. A similar study was reported in an acute pancreatitis rat model in which extensive pancreatic cellular damage was induced by cerulean and resulted in beta-cell replenishment due to replication of these highly proliferative pre-existing c-Kit
expressing beta-cells [135]. c-Kit-expressing cells from other cell sources may also be involved in beta-cell regeneration. Hess et al. showed that transplanted bone marrow-derived c-Kit-expressing cells initiate islet regeneration in streptozotocin-treated non-obese diabetic/severe combined immune deficient (NOD/SCID) recipient mice. Rapid engraftment of these GFP-tagged c-Kit+ bone marrow-derived cells to the damaged ductal and islet regions stimulated endogenous islet neogenesis [136]. Using multipotent stromal cells expressing surface markers (ALDHhighc-Kit+CD113+CD34+) to treat the streptozotocin-treated NOD/SCID mice nearly restored glucose homeostasis, with formation of beta-cell clusters adjacent to the ductal epithelium [137]. By transferring these purified multipotent stromal cells from umbilical cord blood into the recipient NOD/SCID mice, hyperglycemia was reversed in the animals. Intriguingly, multipotent stromal cells purified from umbilical cord blood were able to augment endogenous beta-cell proliferation and revascularization [138].

1.5.4 c-Kit in pancreatic disease

Despite the necessity of c-Kit in the pancreas, it has also been identified to be a proto-oncogene [47]. Indeed, inappropriate expression of c-Kit or SCF has led to a wide range of pancreatic diseases ranging from pancreatitis (acute and chronic) to pancreatic cancer [117, 139, 140]. Chronic pancreatitis is characterized by chronic inflammation, fibrosis, and loss of pancreatic function [141]. The immune response in chronic pancreatitis is very powerful and contributes to a large portion of chronic pancreatitis pathophysiology. Indeed, increased mast cell presence correlates with inflammation and fibrosis in chronic pancreatitis [142]. It has been reported that SCF/c-Kit interactions have an influential effect on mast cells. During chronic pancreatitis, c-Kit expression is increased on mast cells near affected ducts, and weak immunoreactivity of c-Kit is observed on acini and islets [142]. c-Kit expression is also found in ducts during chronic pancreatitis, consistent with other studies that have shown increased ductal c-Kit expression after pancreatic ductal ligation in rodents [133]. Therefore, it can be concluded that c-Kit plays various important roles dependent upon the cell type in which it is expressed.

Pancreatic cancer is among the most lethal and least common of the human cancers [143]. Diabetes and chronic pancreatitis have been linked to pancreatic cancer, yet
smoking was shown to be responsible for 20-25% of pancreatic cancers. While cancer etiology is varied, SCF/c-Kit interactions play a role in promoting pancreatic cancer cell line proliferation, invasion, and differentiation into endocrine hormone producing cells [127, 144]. Other cell line experiments showed that hypoxia-inducible factor 1-alpha, a protein expressed under hypoxic conditions that can indicate tumor survival and proliferation, was influenced by c-Kit activity in pancreatic cancer cells independent of the oxygen level [145]. c-Kit is also present on neoplastic cells in the pancreas, as well as throughout the duct of the cancerous pancreas [146], indicating that SCF/c-Kit interactions have profound implications on pancreatic cancer cell proliferation and invasiveness. Therefore, the development of c-Kit inhibitors has been useful for the management of cancers by inhibiting proliferation as well as inducing apoptosis of cancer cells [147, 148].

1.6 Rationales, objectives and hypotheses

1.6.1 Overall objective and hypothesis

The overall objective is to understand the physiological role of c-Kit on beta-cells in vivo, and we hypothesize that activation of c-Kit and its downstream PI3K/Akt signaling pathway plays a critical role in determining beta-cell survival and function under normal and diabetic pathophysiological conditions.

1.6.2 Beta-cell survival and function in c-Kit\(^W_{Wv/+}\) mice

The first reported evidence, in vivo, linking c-Kit activity with beta-cell survival and function utilized mice carrying the mutation, viable dominant spotting (\(W^v\))[149]. The \(W^v\) point mutation refers to a threonine to methionine substitution at the first catalytic region of the c-Kit cytoplasmic kinase domain, greatly diminishing its kinase activity without altering the binding site to SCF. As a result, the autophosphorylation activity of c-Kit \(W^v\) mutant monomers is only \(\sim 10-20\%\) of that observed in normal c-Kit monomers. More importantly, c-Kit \(W^v\) mutant monomer can act in a trans-dominant manner to prevent tyrosine phosphorylation of normal c-Kit by dimerization, reflected by \(\sim 60\%\) reduction in c-Kit transduction activity [150]. Phenotypic analysis of c-Kit\(^{Wv/+}\) mice showed high fasting plasma glucose and impaired glucose tolerance between 4 to 8 weeks of age.
Absence of insulin resistance in peripheral tissue was found, indicating that the development of a diabetic phenotype was due to a loss of beta-cell mass, along with a reduced proliferative capacity in c-Kit^{Wv/+} mice. Islet morphology and Pdx-1 expression was altered in c-Kit^{Wv/+} pancreatic islets when compared to controls. In addition, these mice demonstrated a significant reduction in plasma insulin levels 35 minutes after glucose stimulation, and isolated islets exhibited marked insulin secretory defects in response to glucose load [149]. Overall, beta-cell dysfunction emerges as the physiological defect, leading to early onset diabetes in c-Kit^{Wv/+} mice, specifically in males. Interestingly, the female c-Kit^{Wv/+} mice did not show the impaired glucose metabolism until 40 weeks of age [149]. The complex intracellular pathways downstream of c-Kit have been well studied in other cellular contexts, but such information is largely unknown in the context of beta-cell biology in vivo. Therefore, the first objective of this work was to identify the responsible intracellular machinery that had the most influence on beta-cell proliferation and function in c-Kit^{Wv/+} male mice (Chapter 3). We hypothesized that the dysregulated Akt/Gsk3β pathway contributes to severe loss of beta-cell mass and impaired beta-cell function in c-Kit^{Wv/+} mice.

1.6.3 Beta-cell apoptosis in c-Kit^{Wv/+} mice

Beta-cell mass reflects a dynamic balance between cell proliferation and apoptosis. The increase in beta-cell apoptosis and decrease in beta-cell proliferation, followed by loss of beta-cell mass and eventual beta-cell failure, is a hallmark of diabetes. A high rate of apoptosis was detected in the beta-cell population of c-Kit^{Wv/+} mice. However, our current understanding of apoptotic pathways induced by the c-Kit^W mutation in beta-cells is lacking. One attractive candidate is Fas, also known as APO-1 or CD95, which belongs to the tumor necrosis superfamily. The gene coding Fas is located near the lpr locus of chromosome 19 in rodents [151]. The lpr mutation leads to the production of non-functional truncated Fas mRNA due to an early transposable element, similar to an endogenous retrovirus inserted into intron 2 [151]. Thus, the Fas^{lpr/lpr} mouse model is an excellent system to study the effect of a deficiency in Fas signaling in any given tissue. FasL-binding and subsequent activation of Fas leads to programmed cell death in many systems. Experimental data from several studies showed that, at least in T1D models, that
Fas/FasL interaction has been implicated in beta-cell death. In transgenic mice expressing FasL on beta-cells, extensive beta-cell destruction was associated with autoimmune attack, whereas Fas-negative NOD mice with lpr mutation failed to develop T1D [151], and are resistant to adoptive transfer of diabetogenic NOD spleen cells [152]. More experiments using NOD-gld/+ mice, which have reduced FasL expression, also demonstrated that beta-cell apoptosis is possibly mediated by FasL-positive T-lymphocytes on activation of Fas. In addition, Fas deficient (lpr/lpr) NOD/SCID were protected from diabetes induced by adoptive transfer of diabetogenic T-cells [153]. Taking this further, more studies using dominant negative Fas mutation beta-cell specific NOD mice [154] and administration of FasL antibody treatment found that it prevented early onset of autoimmune diabetes [155], and prolonged survival and engraftment of NOD islets in diabetic NOD mice [156]. A conditional knockout of Fas improved beta-cell insulin releasing function [157]. Accumulating evidence demonstrates that Fas signaling contributes to cell apoptosis, which is accompanied by the absence of c-Kit signaling in melanocytes [158], gametes [159], oocytes [160], and HSCs [161], thus leaving an open question as described in Chapter 4. The second objective of this work was to assess the balance between c-Kit and Fas signaling on beta-cell survival and function using c-Kit^{Wv/+} and c-Kit^{Wv/+;Fas_{lpr}lpr} mice, and in vitro rat insulinoma INS-1 cells. We hypothesized that loss of c-Kit signaling leads to activation of Fas-mediated beta-cell loss in c-Kit^{Wv/+} mice, but that the Fas lpr mutation in c-Kit^{Wv/+} mice would protect beta-cells from apoptosis, and improve beta-cell insulin release in the c-Kit^{Wv/+} mouse model.

1.6.4 c-Kit directly affects beta-cell function

Homozygous c-Kit null mutant mice display relatively normal islet morphology, but they die shortly after birth and are not available for further functional studies [124]. We recently characterized c-Kit^{Wv/+} mice with a loss of beta-cell function resulting in early-onset of diabetes [149]. However, the c-Kit^{Wv/+} mice model may not be sufficient to reveal whether c-Kit plays a primary or secondary role in beta-cell survival and function, because the global c-Kit mutation may raise unknown confounding effects from other tissue. Thus, we further generated a novel transgenic mouse model containing beta-cell...
specific overexpression of c-KIT (c-KitβTg mice). Using this novel c-KitβTg mouse model, the third objective of this work was to delineate the physiological role of c-Kit in normal, and HFD-induced diabetic and c-Kit$^{Wv/+}$ mice. This work is described in Chapter 5. It is hypothesized that elevated beta-cell c-Kit expression can improve beta-cell function and survival in normal and HFD-induced diabetic c-KitβTg mice, and c-KIT overexpression in beta-cells could reverse the onset of diabetes in c-Kit$^{Wv/+}$ mice.

1.6.5 VEGF-A and islet vasculature in c-Kit mutant and transgenic mouse

The formation of microvascular networks in the islet relies on vascular endothelial growth factors (VEGFs), a group of receptor tyrosine kinase signaling proteins able to stimulate vasculogenesis and angiogenesis through binding to three functionally distinct VEGF receptors 1-3. Beta-cells express high levels of VEGFs, in particular VEGF-A that binds to and activates VEGF receptors 2 present on the neighboring endothelial cells. This attracts endothelial cells and stimulates their proliferation and growth. By deleting VEGF-A in the pancreas, the fenestration of islet capillaries, required for fine-tuning of blood glucose regulation, is severely impaired [162]. This is further supported by studies using transgenic mice with beta-cell-specific loss of VEGF-A, driven by the rat insulin promoter (RIP)-Cre system. The substantial loss of islet vasculature results in severely impaired development of islet capillaries and beta-cell dysfunction [163, 164]. The causal link between c-Kit and VEGF-A production has been documented previously in multiple cancer pathologies: in lung cancer cells, SCF was shown to induce VEGF expression, and this was associated with increased PI3K signaling and hypoxia-inducible factor 1-alpha transcription, and the effect was blocked by inhibition of c-Kit [165]. Likewise, in neuroblastoma cells, inhibition of c-Kit resulted in a significant reduction in VEGF expression, which led to significant decreases in tumor vasculogenesis and angiogenesis [166]. In a pancreatic islet cancer model, treatment with both SU5416 (VEGFR inhibitor) and Gleevec (c-Kit inhibitor) significantly repressed tumor growth [167]. Therefore, the fourth objective was to assess the role of SCF/c-Kit signaling on islet microvasculature, and its subsequent effect on islet function and glucose homeostasis in vivo under both
normal and diabetic conditions (Chapter 6). It is hypothesized that c-Kit-dependent regulation of VEGF-A is critical for islet vasculature and beta-cell survival.
1.7 References

41. Cardozo AK, Ortis F, Størbling J, et al. (2005) Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum
Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 54:452–461.

Chapter 2

Summary of materials and methods for Chapters 3, 4, 5 and 6
2.1 Mouse models

The crossbreeding strategies used to generate the mouse models used throughout this thesis are detailed below. Mice were maintained in an environment of constant temperature (20°C) and were exposed to regular 12-hour day, 12-hour night cycles. All mice were fed ad libitum with a normal diet (5% vol./vol. fat; Harlan Tekard, Indianapolis, IN, USA), unless specified. Male mice were used in the following studies due to male mice having a more severe diabetic phenotype as compared to females. The animal experimental protocol used in the following studies was approved by the University of Western Ontario Animal Use Subcommittee, in accordance with the guidelines of the Canadian Council of Animal Care (Appendix 1 and 2).

2.1.1 Mouse models used in Chapter 3

Generation of the c-Kit\(^{Wv/+}\) mouse model: Paired c-Kit \(W^v\) heterozygous mutant (c-Kit\(^{Wv/+}\)) mice on a C57BL/6J background obtained from the Jackson Laboratory (stock no. 000049, Jackson Laboratory, Bar Harbor, ME, USA) were bred (Figure 2-1). Mice were genotyped by their distinct differences in fur pigmentation as described previously [1]. Homozygous mutant (c-Kit\(^{Wv/Wv}\)) mice are severely anemic and infertile and do not survive for a long time after maturity. Since sufficient c-Kit\(^{Wv/Wv}\) male mice could not be obtained, they were excluded from this study [1]. Thus, this study focused on c-Kit\(^{+/+}\) and c-Kit\(^{Wv/+}\) male mice at 8 weeks of age.

Treatment with Gsk3β inhibitor: At 6 weeks of age, both c-Kit\(^{+/+}\) and c-Kit\(^{Wv/+}\) male mice were intraperitoneally injected with either 1-Azakenpaullone (1-AKP, Calbiochem, Etobicoke, ON, Canada) at 2 mg/kg or with saline, every other day for 2 weeks, to establish four experimental groups including: c-Kit\(^{+/+}/saline\), c-Kit\(^{+/+}/1-AKP\), c-Kit\(^{Wv/+}/saline\), and c-Kit\(^{Wv/+}/1-AKP\) mice (Figure 2-2).
Figure 2-1. Breeding schematic for c-$Kit^{Wv/+}$ mice.

C57BL/6J/$Kit^{Wv/+}$ (stock no. 000049) from the Jackson laboratory were crossed to obtain three mouse genotypes. The study focused on male c-$Kit^{+/+}$ and c-$Kit^{Wv/+}$ mice as highlighted above.
Saline treatment

1-Akp (2mg/kg) treatment

c-Kit^{+/+} mice
c-Kit^{−/+} mice

c-Kit^{−/+} mice
c-Kit^{−/−} mice

IPGTT and IPITT

Western blot & Morphology
Figure 2-2. Experimental design of 1-AKP treatments for c-KitWv/+ mice.

6-week-old male c-Kit+/+ mice or c-KitWv/+ mice received either i.p. injections of saline or 1-AKP for two weeks. Four experimental groups including, c-Kit+/+/saline, c-KitWv/+/saline, c-Kit+/+/1-AKP, and c-KitWv/+/1-AKP mice were established.
2.1.2 Mouse models used in Chapter 4

c-Kit$^{Wv/+}$ and Fas$^{lpr/lpr}$ mice with a C57BL/6J background were obtained from the Jackson Laboratory (stock no. 000049 for C57BL/6J/Kit$^{Wv/+}$; stock no. 000482 for B6.MRL-Fas$^{lpr/lpr}$; the Jackson Laboratory) and cross-bred to generate six genotypes including: c-Kit$^{+/+}$;Fas$^{+/+}$, c-Kit$^{Wv/+}$;Fas$^{+/+}$, c-Kit$^{Wv/+}$;Fas$^{lpr/lpr}$, c-Kit$^{+/+}$;Fas$^{lpr/+}$, c-Kit$^{Wv/+}$;Fas$^{lpr/+}$, and c-Kit$^{+/+}$;Fas$^{lpr/lpr}$ mice (Figure 2-3). This study focused on three groups: c-Kit$^{+/+}$;Fas$^{+/+}$, c-Kit$^{Wv/+}$;Fas$^{+/+}$, and c-Kit$^{Wv/+}$;Fas$^{lpr/lpr}$ mice. Male mice at 8 weeks of age were used for this study. The c-KitWv mutation was distinguished by fur pigmentation: black for c-Kit$^{+/+}$ and piebaldism for c-Kit$^{Wv/+}$ [1]. The Fas (lpr) mutation was identified by genotyping using PCR with DNA isolated from tails (Appendix 3).
Figure 2-3. Breeding schematic for c-Kit^{Wv/+};Fas^{lpr/lpr} double mutant mice.

C57BL/6J/Kit^{Wv/+} (stock no. 000049) and B6.MRL-Fas^{lpr/lpr} (stock no. 000482) mice from the Jackson Laboratory were crossed to obtain c-Kit^{Wv/+};Fas^{lpr/+} and c-Kit^{+/+};Fas^{lpr/+} mice. Crossbreeding these mice resulted in six mouse genotypes. This study focused on three groups including, c-Kit^{+/+};Fas^{+/+}, c-Kit^{Wv/+};Fas^{+/+}, and c-Kit^{Wv/+};Fas^{lpr/lpr} mice as highlighted above.
2.1.3 Mouse models used in Chapter 5

Generation of the c-KitβTg mouse model: the human c-Kit cDNA (2.9 kbp) followed by IRES2 linked with enhanced green fluorescent protein (eGFP) sequence was inserted into the pKS/RIP plasmid to generate the transgene. Transgenic mice (c-KitβTg) were generated using C57BL/6J embryos and identified by PCR first using primers globin5 and c-Kit, and further confirmed by a second set of primers eGFP3 and globin3 (Appendix 3) [2, 3]. Five RIP-c-Kit transgenic founders were obtained (Dr. Siu-Pok Yee, University of Connecticut), and bred with C57BL/6J mice (the Jackson Laboratory) to establish the independent mouse lines. Initial characterization revealed that they display a similar, if not identical, pattern of transgene expression and phenotype, which eliminated any positional effects due to the location of transgene integration. We therefore used offspring from two independent transgenic lines for subsequent detailed analyses. Male mice were used in this study.

Generation of HFD-induced diabetes in c-KitβTg and wild type (WT) littermates: the HFD study was conducted starting at 6 weeks of age, and male c-KitβTg and WT littermates were fed with HFD containing 60 kcal % fat (D12492, Research Diets, New Brunswick, NJ, USA) for 4 weeks.

Generation of the c-KitβTg;Wv mouse model: the c-KitβTg;Wv mouse model was generated by crossbreeding c-KitβTg with c-Kit^{Wv/+} mice, which would yield mice with four different genotypes including: wild type (WT); c-Kit^{Wv/+}; c-KitβTg; c-KitβTg;c-Kit^{Wv/+} (c-KitβTg;Wv) mice (Figure 2-4). The c-Kit^{Wv} allele was identified by its characteristic fur pigmentation (Figure 2-1) [1], and c-KitβTg allele was determined by PCR (Appendix 3). Male mice at 8 weeks of age were used for this study.
\(\text{c-Kit}^{Wv/+} \times \text{c-Kit}^\beta Tg \)

\[
\begin{align*}
\text{c-Kit}^{+/+} & \downarrow & \text{c-Kit}^\beta Tg \\
\text{c-Kit}^{Wv/+} & & \text{c-Kit}^\beta Tg; Wv
\end{align*}
\]
Figure 2-4. Breeding schematic for c-KitβTg;Wv mice.

C57BL/6J/KitWv/+ mice (stock no. 000049) from the Jackson Laboratory and c-KitβTg mice were crossed to obtain four experimental groups including: c-Kit+/+, c-KitWv+, c-KitβTg, and c-KitβTg;Wv mice.
2.1.4 Mouse models used in Chapter 6

Generation of the c-KitβTg;Wv mouse model: c-KitβTg with c-KitβWv/+ mice were crossed to obtain mice with listed all 4 different genotypes including: WT, c-KitβTg, c-KitβWv/+, and c-KitβTg;Wv mice, as described in 2.1.3 section (Figure 2-4). Male mice at 8 weeks of age were used for this study.

The long-term HFD treatment for c-KitβTg mice: c-KitβTg male mice and their age-matched WT littermates were generated as described in section 2.1.3. A HFD study was performed using HFD (D12492, Research Diets) starting at 6 weeks of age in both c-KitβTg and WT mice for 20-22 weeks (labelled as experimental groups: c-KitβTg-HFD and WT-HFD). In parallel, age-matched c-KitβTg and WT mice under normal diet were also examined.

2.2 DNA extraction and PCR genotyping

Genotyping was performed on all mice at weaning (21 days after birth). In brief, 2 mm of tail was obtained and placed into Eppendorf tubes for DNA extraction, with the exception of c-KitβWv/+ mice. Each tail sample was digested by 50 µL of base solution (25 mM NaOH; 0.2 mM EDTA), and placed on heat block at 95 °C for 30 minutes following by an hour cooldown at room temperature. Fifty µL of 40 mM Tris HCl (pH 5.5) was added to each digested sample, and centrifuged at 13,000 rpm x g for 1 minute. One µL of aliquot was taken for PCR. PCR was performed with a mixture of primer sequences listed in Appendix 3 using a thermocycler (Biometra GmbH, Goettingen, Germany) as follows: 94 °C for 30 seconds (melting temperature), 59 °C for 1 minute (annealing temperature), and 72 °C for 1 minute (primer extension phase), for 25-35 cycles depending on the primers. The PCR products were separated on 2% agarose gel, stained with 1 µg/mL ethidium bromide, and visualized under UV light (Appendix 3).

2.3 Body weight, food intake, and *in vivo* metabolic studies

Body weight, blood glucose level, and intraperitoneal glucose (IPGTT) and insulin tolerance tests (IPITT) were performed on the listed mouse models [1]. Food intake was monitored. In brief, a known amount of a diet is given to the animal. After 7 days, the
food was reweighed and the amount consumed was calculated by measuring the difference. Blood glucose levels were examined under the non-fasting, as well as after 4-hour or 16-hour (overnight) fasting with *ad libitum* water access. For IPGTT and IPITT, an intraperitoneal injection of glucose (D-(+)-glucose; dextrose; Sigma, St. Louis, MO, USA) at a dosage of 2 mg/g of body weight or human insulin (Humalin, Eli Lilly, Toronto, ON, Canada) at 1 U/kg of body weight was administrated. Blood glucose levels were examined at 0, 15, 30, 60, and 120 minutes following injection, and area under the curve (AUC) was used to quantify glucose or insulin responsiveness. The data is shown with units of ([mmol/L] x minutes) [1].

2.4 *In vivo* and *ex vivo* glucose stimulated insulin secretion assay

For *in vivo* glucose stimulated insulin secretion (GSIS), mouse blood samples were collected from the tail vein following 4 hours of fasting (0 minute), and at 5 and 35 minutes after glucose loading [1]. Plasma samples were immediately obtained by centrifuging at 3000 rpm x g for 10 minutes and stored at -20°C.

For *ex vivo* GSIS, islets from each experimental group were isolated. In brief, the bile duct was clamped closed to the duodenum. The pancreas was inflated via an intraductal collagenase V (1 mg/mL, Sigma) injection through the common bile duct (3 mL) [4]. The inflated pancreas was carefully excised and moved into a falcon tube with 3 mL of cold dissociation buffer (Hank’s balanced salt solution with HEPES, 0.6% g/mL). The excised pancreas was digested at 37 °C in a water bath for 20-30 minutes. Freshly isolated islets were hand-picked and incubated with an oxygenated Krebs-Ringer bicarbonate HEPES plus 0.5% BSA buffer containing 2.2 mmol/L or 22 mmol/L glucose for 1 hour. Media and islets were collected and stored at −20 °C for measuring insulin secretion and content by ELISA.

2.5 Insulin ELISA analyses

Insulin secretion and content was measured using an ultrasensitive (mouse) insulin ELISA (ALPCO, Salem, NH, USA) with a sensitivity of 0.15 ng/mL, according to the manufacturer’s instruction [1]. Plasma insulin levels were expressed as ng/mL. A static
glucose stimulation index in isolated islets was calculated by dividing the insulin output from the high glucose (22 mM) incubation by the insulin output during the low glucose (2.2 mM) incubation. Insulin content in the islets was expressed as ng/µg of DNA. DNA content of the islets was determined along with insulin content using a Multiskan spectrum microplate spectrophotometer (Thermo Electron Corp., Waltham, MA, USA) [1].

2.6 Cell culture and treatment

2.6.1 Treatment with Gsk3β inhibitor on isolated islets in Chapter 3

Islets were isolated from c-Kit+/+ and c-KitWv/+ male mice at 8 weeks of age (isolation procedure is described in section 2.4). Isolated islets were cultured in RPMI-1640 medium (Gibco, Burlington, ON, Canada), supplemented with sodium bicarbonate (0.2% g/mL), Soybean trypsin inhibitor (10% mg/mL), fetal bovine serum (10% mL/mL), Penicillin-Streptomycin (1% mL/mL), and Fungizone (1% mL/mL) with or without 1-AKP (10 µM, Calbiochem) for 24 hours [5]. Islets were harvested for protein and quantitative RT-PCR (qRT-PCR) analyses.

2.6.2 INS-1 cell culture in Chapter 4 and 5

Rat insulinoma (INS-1 832/13 cells, a gift from Dr. Christopher Newgard, Duke University Medical Center, USA) were cultured in RPMI-1640 medium (Gibco), containing sodium bicarbonate (0.2% g/mL), fetal bovine serum (10% mL/mL), HEPES (2.5% mL/mL), sodium pyruvate (1% mL/mL), and β-mercaptoethanol (0.4% µL/mL) under a humidified condition of 95% air and 5% carbon dioxide at 37 °C. Medium was replaced every other day until cells reached near 80% confluence.

Treatment with human SCF: INS-1 cells were starved in serum-free RPMI-1640 plus 1% BSA medium (Gibco) for 3 hours. Cell cultures were then treated with either SCF vehicle (10 mM acetic acid) as a control, SCF (50 ng/mL, ID labs, London, ON, Canada), or SCF plus wortmannin (100 nM, Sigma) for 24 hours [6].

c-Kit and Fas siRNA transfection of INS-1 cell lines: INS-1 cells were transfected for 48 hours with either control siRNA (sc-37007, proprietary sequence), c-Kit (rat) siRNA (sc-
63363) with or without a p53 inhibitor, pifithrin-alpha (PFT-α, 5 µM, Sigma), or combined c-Kit (rat) siRNA and Fas (rat) siRNA (sc-270241) (Santa Cruz Biotechnology, Santa Cruz, CA, USA) using an siRNA transfection protocol described by the manufacturer (Santa Cruz Biotechnology) [6]. The sequence for c-Kit (rat) and Fas (rat) siRNAs are listed (Appendix 4). Transfection efficiency was monitored using fluorescein-conjugated control siRNA (sc-36869, Santa Cruz Biotechnology), with approximately 60-70% of the cells being transfected.

At the end of the culture period, cells were harvested and prepared for qRT-PCR analyses, immunofluorescence staining, and protein extraction for western blot. Cell apoptosis was examined using the Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Cell viability was examined using the (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was examined using the Ki67 staining [7].

2.7 Immunofluorescence and morphometric analyses

Pancreata from all mouse models used in this thesis were fixed in 4% paraformaldehyde overnight at 4 °C followed by a standard protocol of dehydration and paraffin embedding. Pancreatic tissue sections (4 µm thick) were prepared and double-stained with primary antibodies of appropriate dilutions as listed in Appendix 5. Secondary antibodies, fluorescein isothiocyanate (FITC, anti-mouse; anti-rabbit; or anti-guinea pig) and TexRed (anti mouse; anti-rabbit; or anti-guinea pig) (Jackson ImmunoResearch, West Grove, PA, USA) were used. Nuclei were counterstained with 4’-6’-diamidino-2-phenylindol (DAPI) (Sigma) and were blue in color. To determine the specificity of the antibodies used in this thesis, the pancreatic sections were processed with the omission of primary or secondary antibodies, and tests resulted in a negative staining reaction [8]. Double-immunolabeled images were captured using a Leica DMIRE2 fluorescence microscope with Openlab image (Improvision, Lexington, MA, USA), or with Image Pro Plus (Media Cybernetics, Rockville, MD, USA).

Quantitative evaluation for islet number, islet size, alpha-cell, and beta-cell mass was performed using computer-assisted image analysis [1]. Islet number (density) was
obtained from total islet counts divided by the total area of the pancreas. Islet size was measured and grouped into different size classes, then expressed as a percentage of the total number of islet. Alpha-cell positive areas were identified by glucagon-staining, whereas beta-cell positive areas were identified by insulin-staining on the pancreatic sections. Alpha-cell or beta-cell mass was calculated by multiplying relative glucagon-positive or insulin-positive area over the total pancreas area by pancreas weight and expressed as mg.

The beta-cell proliferation, apoptosis, and expression of different transcription factors were determined by double immunofluorescence staining and cell counting (Appendix 5). MafA+ staining on pancreatic islets was determined by immunohistochemical staining using the streptavidin-biotin horseradish peroxidase complex and developed with aminoethyl carbazole substrate kit (Invitrogen, Burlington, ON, Canada). In brief, 12 random islets from the head, middle, and tail of the pancreata per pancreatic section were chosen, with a minimum of 5 pancreata per experimental group was analyzed [1].

In Chapter 6, the pancreatic endocrine and exocrine vasculature was analyzed. The capillaries were labeled by platelet endothelial cell adhesion molecule-1 (PECAM-1) on the pancreatic sections (Appendix 5). Islet capillary density, capillary area per islet, average islet capillary size and diameter, exocrine capillary density, and exocrine capillary area were measured [9-11]. Islet capillary density was calculated by dividing the total number of capillaries over the islet area. Capillary area per islet was determined as a ratio of the total islet capillary area to the islet area. Average islet capillary size was determined by dividing the total islet capillary area over the number of islet capillaries. Average islet capillary diameter was determined by dividing the sum of individual islet capillary diameter (the maximum inner diameter of the capillary lumen) over the number of islet capillaries. Exocrine capillary density was determined by dividing the number of capillaries over the pancreatic exocrine area, and exocrine capillary area was determined as a ratio of the exocrine capillary area to the pancreatic exocrine area. A minimum of 5 pancreata per age per experimental group with at least 12 random islets was analyzed.
2.8 Protein extraction and western blot analyses

Proteins from mouse pancreata and isolated islets were extracted by homogenization in a Nonidet-P40 lysis buffer (Nonidet-P40, phenylmethylsulfonyl fluoride, sodium orthovanadate, Sigma; and complete inhibitor cocktail tablet, Roche) [1]. Samples were then centrifuged at 12,000 rpm x g for 20 minutes at 4 °C. The resulting supernatant was collected and frozen at -80 °C until use. The protein concentration was measured by a protein assay using Bradford dye (BioRad Laboratories; Mississauga, ON, Canada), with bovine serum albumin (fraction V) as the standard.

Equal amounts of lysate were separated by 5%, 7.5% or 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a nitrocellulose membrane (Bio-Rad Laboratories). The membrane was then incubated with primary antibodies (Appendix 6), and a goat anti-mouse or rabbit IgG secondary antibody conjugated to horseradish peroxidase (Cell Signaling Technology, Danvers, MA, USA). The blot was probed with antibodies against total proteins or housekeeping proteins for a sample loading control (Appendix 6). The membrane was then incubated with chemiluminescence reagents (Perkin Elmer, Wellesley, MA, USA). The protein bands were visualized on BioMax MR Film (Kodak, Rochester, NY, USA), or were imaged by Versadoc Imaging System (Bio-Rad Laboratories). Densitometric quantification of bands at sub-saturation levels was analyzed by Syngenetool gel analysis software (Syngene, Cambridge, UK) and normalized to the loading controls, or was quantified by Image Lab (Bio-Rad laboratories).

2.9 RNA extraction and real-time RT-PCR analyses

RNA was extracted from isolated islets of mouse pancreata using RNAqueous-4 PCR kit (Ambion, Austin TX, USA), according to the manufacturer’s instruction. The extraction procedure includes a DNase I treatment step, which eliminates any potential DNA contamination [1]. The RNA quality was verified by 1% agarose gel electrophoresis using ethidium bromide staining. Sequences of PCR primers are listed in Appendix 7. For each reverse transcription reaction (RT), 2 µg of DNA-free RNA from isolated islets were incubated with random hexamers/oligo-(dT) primers and superscript reverse
transcriptase (Invitrogen) to generate the complementary DNA (cDNA). The qRT-PCR analyses were performed using 0.1 µg of cDNA with iQ SYBR Green Supermix kit on Chromo4 qRT-PCR system (Bio-Rad Laboratories). Controls were performed by omitting reverse transcriptase, cDNA, or DNA polymerase and showed no reaction bands. Relative expression of mRNA were calculated using the arithmetic formula \(2^{-\Delta \Delta CT}\), where \(\Delta CT\) is the difference between the threshold cycle of a given target cDNA and 18S rRNA subunit cDNA, with at least five repeats per experimental group. The melting curve was used to indicate if the qRT-PCR assay had any amplified target sequence with an excellent specificity.

2.10 Statistical analyses

Data are expressed as means ± SEM. Statistical significance was determined by unpaired student’s \(t\)-test, if comparing only two groups, or a one-way ANOVA followed by least significant difference (LSD) \(post-hoc\) test if there was more than two groups. Differences were considered to be statistically significant when \(p<0.05\).
2.11 References

Chapter 3

3 Inhibition of Gsk3β activity improves beta-cell function in c-KitWv/+ mice2

2 This chapter has been modified and adapted from the following manuscript:

3.1 Introduction

Recent studies by our lab and others demonstrated that c-Kit and its ligand, SCF, are important in pancreatic beta-cell survival and maturation [1-8]. Stimulation of c-Kit by SCF leads to dimerization of c-Kit and subsequent auto phosphorylation of intrinsic tyrosine kinases. Moreover, c-Kit activation mediates multiple intracellular pathways, including the PI3K pathway for modulation of gene transcription, proliferation, differentiation, metabolic homeostasis and cell survival [9-12]. PI3K is, a common signaling pathway, required for the regulation of glucose and preproinsulin gene expression as well as the nuclear translocation of Pdx-1, a transcription factor to regulate beta-cell function [13]. Our previous in vitro studies of human fetal islets demonstrated that increased c-KIT activity leads to enhanced PDX-1 and insulin expression, and cell proliferation via the activation of the PI3K/AKT pathway [14, 15]. Recently, our in vivo study using c-Kit^{Wv/+} male mice showed that reduced c-Kit activity correlated with reduced beta-cell function and proliferation, which is associated with significantly decreased Pdx-1 expression and glucose intolerance [6]. However, the signaling pathway under c-Kit including PI3K/Akt and downstream targets involved in beta-cell proliferation and function in vivo remain unclear.

Gsk3, a serine/threonine kinase, consists of two highly homologous α (Gsk3α) and β (Gsk3β) isoforms that share overlapping physiological functions in terms of regulating a diverse array of cellular processes. Gsk3β is one of the substrates that are directly regulated by the PI3K/Akt pathway. Activation of Akt, which phosphorylates Gsk3β at Serine residue 9, leads to inactivation of Gsk3β [16-18]. Unphosphorylated Gsk3β can directly phosphorylate downstream substrates, and modulate their activity [19]. Apart from the function from which it derives its name (i.e., suppressing glycogen synthesis by phosphorylating glycogen synthase), studies have shown that Gsk3β is involved in mediating cell cycle, motility, and apoptosis [19], and that Gsk3β dysregulation is linked to several prevalent pathological diseases including Alzheimer’s disease, cancer, and diabetes [19]. Indeed, mice with beta-cell-specific overexpression of Gsk3β displayed glucose intolerance due to reduced beta-cell mass and proliferation [20]. Furthermore, isolated adult human and rat islets incubated with Gsk3β inhibitors demonstrated a
significant increase in islet cell proliferation [21]. This evidence was further confirmed by mice with beta-cell specific ablation of Gsk3β [22]. Although the beneficial effect of Gsk3β inhibition has been demonstrated in islet biology, the physiological role of Gsk3β under disrupted c-Kit signaling in beta-cell has yet to be investigated.

In order to understand the intracellular mechanisms that relate c-Kit to physiological changes in beta-cells in c-Kit^{Wv/+} mice [6], we proposed to examine whether beta-cell dysfunction in c-Kit^{Wv/+} mice is associated with down-regulation of the phospho-Akt/Gsk3β pathway. Furthermore, 1-AKP, a specific organic inhibitor that prevents Gsk3β phosphorylation of multiple downstream substrates by competitively binding at its ATP-binding site [23], was used to investigate whether inhibition of Gsk3β could improve beta-cell proliferation and function, delaying the onset of diabetes in c-Kit^{Wv/+} mice. Here, we report that decreased beta-cell proliferation and function in c-Kit^{Wv/+} mice was associated with dysregulated Akt and Gsk3β phosphorylation as well as cyclin D1 protein levels. Treating c-Kit^{Wv/+} mice with 1-AKP delayed onset of diabetes, maintained beta-cell mass and enhanced beta-cell function. This study demonstrates a functional role for c-Kit in mediating glucose homeostasis and beta-cell function via the Akt/Gsk3β axis in c-Kit^{Wv/+} mice.

3.2 Materials and methods

Mouse model: in this study, c-Kit^{+/+} and c-Kit^{Wv/+} mice were bred and genotyped by differences in fur pigmentation as detailed in section 2.1.1. Mice were kept until 8 weeks of age with normal diet at which point, metabolic studies, and subsequent islet morphological studies, islet qRT-PCR, and pancreatic and islet protein analyses were performed. Only male mice were used for this study [6].

In vivo and in vitro treatment with Gsk3β inhibitor: to investigate whether inhibition of Gsk3β activity could prevent early onset of diabetes in c-Kit^{Wv/+} mice at 8 weeks of age [6], both c-Kit^{+/+} and c-Kit^{Wv/+} 6-week-old mice were treated with either 1-AKP at 2 mg/kg or saline injections intraperitoneally every other day for 2 weeks to establish four experimental groups: c-Kit^{+/+}/saline, c-Kit^{+/+}/1-AKP, c-Kit^{Wv/+}/saline and c-Kit^{Wv/+}/1-AKP, as detailed in section 2.1.1 [24, 25]. To examine whether administrating the Gsk3β
inhibitor to isolated c-Kit$^{Wv/+}$ mouse islets could improve islet beta-cell function, islets were isolated from c-Kit$^{+/+}$ and c-Kit$^{Wv/+}$ mice at 8 weeks of age and cultured with or without 1-AKP (10 µM) for 24 hours, as detailed in section 2.6.1 [21].

Metabolic studies: body weight was measured weekly while fasting (4-hour) blood glucose levels, IPGTT and IPITT analyses were performed on c-Kit$^{+/+}$/saline, c-Kit$^{+/+}$/1-AKP, c-Kit$^{Wv/+}$/saline and c-Kit$^{Wv/+}$/1-AKP mice at 8 weeks of age (after 2 weeks of 1-AKP treatment), as detailed in section 2.3.

In vivo, ex vivo GSIS studies, and insulin ELISA analyses: in vivo GSIS, and ex vivo GSIS on isolated islets, were performed on c-Kit$^{+/+}$ and c-Kit$^{Wv/+}$ mice at 8 weeks of age, as detailed in sections 2.4 and 2.5.

Immunofluorescence and morphometric analyses: pancreatic tissue sections from mice at 8 weeks of age were prepared and double-stained with appropriate antibodies listed in Appendix 5. Islet number, islet size, alpha and beta-cell mass were measured. Cell proliferation (Ki67$^+$ labeling), cyclin D1 and Pdx-1 positive staining in beta-cell nuclear was quantified, and the average percent of Ki67$^+/insulin^+$, cyclin D1$^+/insulin^+$, and Pdx-1$^+/insulin^+$ cells was calculated. MafA$^+$ staining on pancreatic islets was determined by immunohistochemical staining, as detailed in section 2.7.

Protein extraction and western blot analyses: protein levels of phospho-AktS473, phospho-AktT308 total-Akt, phospho-Gsk3βS9, phospho-Gsk3βY216, total-Gsk3β, β-catenin, cyclin D1 and Pdx-1 and corresponding housekeeping proteins including calnexin and β-actin in pancreata and isolated islets from c-Kit$^{+/+}$ and c-Kit$^{Wv/+}$ mice at 8 weeks of age with or without 1-AKP were analyzed (Appendix 6), as detailed in section 2.8.

RNA extraction and real-time RT-PCR analyses: RNA was extracted from isolated islets of c-Kit$^{+/+}$ and c-Kit$^{Wv/+}$ mice with or without 1-AKP at 8 weeks of age. mRNA expression of Ccnd1 (cyclin D1), Ins I (Insulin I), Ins II (Insulin II), MafA, Pdx-1 was measured and normalized to 18S rRNA (Appendix 7), as detailed in section 2.9.
3.3 Results

3.3.1 Reduction of phospho-Akt, phospho-Gsk3β and cyclin D1 in c-KitWv/+ mice

Our recent study has demonstrated that mice with mutated c-Kit develop early onset of diabetes with a loss of beta-cell mass and proliferation, suggesting that c-Kit plays a critical role in beta-cell proliferation and function [6]. Moreover, experiments in isolated human fetal islet-epithelial cells revealed that the PI3K/Akt pathway is significantly up-regulated upon exogenous SCF stimulation [14, 15]. Here, we showed that both whole pancreatic tissue and isolated islets from c-KitWv/+ mice displayed a significant reduction in phosphorylated Akt at S473 (Figure 3-1A), but not at T308 (Figure 3-2A). In parallel, decreased protein levels of phosphorylated Gsk3β at S9 was observed in c-KitWv/+ mice when compared to c-Kit+/+ mice (Figure 3-1B), but not at Y216 (Figure 3-2B). No alteration in cyclin D1 protein levels was observed in total pancreatic tissue extract. However, a significant reduction in cyclin D1 protein expression was noted in isolated islets of c-KitWv/+ mice (Figure 3-3A) along with a 60% reduction in the proportion of cyclin D1+/+/insulin+ cells when compared to c-Kit+/+ mice (Figure 3-3B and C).
Figure 3-1. Down-regulation of phospho-Akt/Gsk3β signaling in the pancreata and isolated islets from c-KitWv/+ mice.

Western blot analyses of S473-phosphorylated (P) and total (T) Akt (A), S9-(P) and total (T) Gsk3β (B) protein levels in the pancreata and isolated islets of c-Kit+/+ and c-KitWv/+ mice at 8 weeks of age. Representative blots are shown. Data (A and B) are normalized to total protein and expressed as mean ± SEM (n=11 pancreata; n=3 isolated islets), *p<0.05 analyzed by unpaired student’s t-test.
Figure 3-2. Western blot analyses of phospho-AktT308, and phospho-Gsk3βY216 protein levels in isolated islets from c-$Kit^{Wv/+}$ mice.

T308-phosphorylated (P) and total (T) Akt (A), Y216-(P) and total (T) Gsk3β (B) protein levels in isolated islets of c-$Kit^{+/+}$ and c-$Kit^{Wv/+}$ mice at 8 weeks of age. Representative blots are shown. Data (A and B) are normalized to total protein and expressed as mean ± SEM ($n=3$), analyzed by unpaired student’s t-test.
A

Ratio of cyclin D1/calcemelin

(Pancreatic tissue)

c-Kit^{+/+} c-Kit^{Wt/+}

Isolated islets

c-Kit^{+/+} c-Kit^{Wt/+}

B

Cyclin D1/Insulin/DAPI

c-Kit^{+/+}

c-Kit^{Wt/+}

C

Cyclin D1/Insulin cells (%)
c-Kit^{+/+} c-Kit^{Wt/+}
Figure 3-3. Decreased cyclin D1 protein levels in isolated islets of c-Kit^{Wv/+} mice.

(A) Western blot analysis of cyclin D1 in the pancreata and isolated islets of c-Kit^{+/+} and c-Kit^{Wv/+} mice at 8 weeks of age. Representative blots are shown. Data are normalized to loading control calnexin and expressed as mean ± SEM (n=4 pancreas; n=6 isolated islets), **p<0.01 analyzed by unpaired student’s t-test. (B) Double immunofluorescence staining for cyclin D1 (green), insulin (red) of c-Kit^{+/+} and c-Kit^{Wv/+} mice pancreatic section at 8 weeks of age. Nuclear counter stained by DAPI (blue). Scale bar 20 µm (inset: 10 µm). Arrows indicate cyclin D1/insulin double-positive cells. (C) The percentage of cyclin D1⁺ cells in beta-cells of c-Kit^{+/+} and c-Kit^{Wv/+} mice at 8 weeks of age. Data are expressed as mean percent positive cells over insulin⁺ cells ± SEM (n=6), *p<0.05 analyzed by unpaired student’s t-test.
3.3.2 Inhibition of Gsk3β activity prevents early onset of diabetes in c-Kit\(^{Wv/+}\) mice

c-Kit\(^{+/+}\) and c-Kit\(^{Wv/+}\) mice that received saline or 1-AKP treatment revealed no significant change in body weight at 8 weeks of age (Figure 3-4A). However, fasting blood glucose levels in c-Kit\(^{Wv/+}/1-AKP\) mice showed a significant improvement when compared to c-Kit\(^{Wv/+}/saline\) group (Figure 3-4B) and reached similar fasting blood glucose levels of c-Kit\(^{+/+}/saline\) and c-Kit\(^{+/+}/1-AKP\) groups (Figure 3-4B). These improvements in glucose metabolism were further confirmed by glucose tolerance tests (Figure 3-4C). c-Kit\(^{Wv/+}/1-AKP\) mice showed similar glucose tolerance capacity to both c-Kit\(^{+/+}/saline\) and c-Kit\(^{+/+}/1-AKP\) groups, along with significant decreases in AUC when the IPGTT was performed (Figure 3-4C). Insulin tolerance tests revealed no significant differences between the four experimental groups (Figure 3-4D).

Furthermore, the effects of Gsk3β inhibition on insulin secretion were examined by the GSIS assay \textit{in vivo} and on isolated islets. No significant differences were found in basal plasma insulin levels between the four experimental groups. However, 5 minutes after glucose stimulation, an increase in plasma insulin release was noted in c-Kit\(^{Wv/+}/1-AKP\) mice when compared to c-Kit\(^{Wv/+}/saline\) and c-Kit\(^{+/+}/saline\) groups (Figure 3-5A). There was a further increase in plasma insulin secretion at 35 minutes following stimulation in both 1-AKP treated groups (Figure 3-5A). To further confirm if these changes in insulin secretion upon glucose stimulation are observed in isolated islets, \textit{in vitro} GSIS was performed using isolated islets from all experimental groups. Insulin secretion in response to 22 mM glucose was significantly increased in the islets of c-Kit\(^{Wv/+}/1-AKP\) mice, showing a 2-fold increase in insulin secretion compared to c-Kit\(^{Wv/+}/saline\) group (Figure 3-5B).
Figure 3-4. Effect of Gsk3β inhibitor on glucose homeostasis of c-Kit^{Wv/+/I-AKP} mice.

Body weight (A) and fasting blood glucose (B) of c-Kit^{+/+}/saline, c-Kit^{+/+}/I-AKP, c-Kit^{Wv/+/saline} and c-Kit^{Wv/+/I-AKP} groups. IPGTT (C), and IPITT (D) in c-Kit^{+/+}/saline, c-Kit^{+/+}/I-AKP, c-Kit^{Wv/+/saline}, and c-Kit^{Wv/+/I-AKP} groups. Glucose responsiveness of the corresponding experimental groups is shown as a measurement of AUC of the IPGTT or IPITT graphs with units of (mmol/L x minutes). Data (A-D) are expressed as mean ± SEM (n=6–8), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
A

[Graph showing insulin release (ng/mL) at 0 min, 5 min, and 35 min after i.p. glucose injection.]

B

[Graph showing insulin secretion (fold changed normalized to basal) for each condition.

- **+/Saline**
- **+/1-AKP**
- **+/Saline**
- **+/1-AKP**

Significance levels indicated with asterisks: (*) for p < 0.05, (**) for p < 0.01, (***) for p < 0.001.
Figure 3-5. Effect of Gsk3β inhibitor on beta-cell function of c-Kit^{Wv/+}/1-AKP mice.

(A) In vivo GSIS of c-Kit^{+/+}/saline, c-Kit^{+/+}/1-AKP, c-Kit^{Wv/+}/saline and c-Kit^{Wv/+}/1-AKP groups. c-Kit^{Wv/+}/1-AKP group demonstrated an increase in plasma insulin release after glucose loading (n=3–8), \(*p<0.05, **p<0.01, ***p<0.001 \) analyzed by one-way ANOVA followed by LSD post-hoc test. (B) Insulin secretion is improved in isolated islets from c-Kit^{Wv/+}/1-AKP mice in response to 22 mM glucose challenge; data are expressed as fold change normalized to basal (2.2 mM glucose) secretion as mean ± SEM (n=4–5), \(*p<0.05, **p<0.01 \) analyzed by one-way ANOVA followed by LSD post-hoc test.
3.3.3 Inhibition of Gsk3β activity preserves beta-cell mass in c-Kit^{Wv/+} mice

Our *in vivo* metabolic data suggests that inhibition of Gsk3β activity in c-Kit^{Wv/+} mice could prevent early onset of diabetes. There was no observed difference in pancreatic weight between all experimental groups (data not shown). Morphometric analyses were performed to examine the effects of the Gsk3β inhibitor on islet number and size as well as alpha and beta-cell mass in c-Kit^{+/+} and c-Kit^{Wv/+} mice with or without 1-AKP treatments. A significant increase in the number of pancreatic islets was noted in c-Kit^{Wv/+}/1-AKP mice (Figure 3-6A), with a significant increase in the number of small islets (<500 µm²) when compared to c-Kit^{Wv/+}/saline group (Figure 3-6B). Moreover, the number of large islets (>10000 µm²) was only slightly increased in c-Kit^{Wv/+}/1-AKP mice when compared to c-Kit^{Wv/+}/saline group, while both c-Kit^{+/+}/saline and c-Kit^{+/+}/1-AKP groups had the most number of large islets (Figure 3-6B). Furthermore, beta-cell mass in c-Kit^{Wv/+}/1-AKP mice also increased by 24% when compared to c-Kit^{Wv/+}/saline group (Figure 3-6D), however it only reached 80-90% of the beta-cell mass of c-Kit^{+/+}/saline and c-Kit^{+/+}/1-AKP groups (Figure 3-6D). Increased beta-cell mass was also correlated with increased expression of *Insulin I* and *II* genes in the islets of 1-AKP treated c-Kit^{+/+} and c-Kit^{Wv/+} mice (Figure 3-6E). No alterations were detected in alpha-cell mass among any of the four experimental groups (Figure 3-6C).
Figure 3-6. Effect of Gsk3β inhibitor on pancreatic morphology of \(c-Kit^{Wv+/1}-AKP\) mice.

Morphometric analyses of islet number (A), islet size (B), alpha-cell mass (C) and beta-cell mass (D) in \(c-Kit^{+/+}/\text{saline}\), \(c-Kit^{+/1}-AKP\), \(c-Kit^{Wv+/+}/\text{saline}\), and \(c-Kit^{Wv+/1}-AKP\) groups. (E) qRT-PCR analyses of insulin I and II mRNA in isolated islets of \(c-Kit^{+/+}/\text{saline}\), \(c-Kit^{+/1}-AKP\), \(c-Kit^{Wv+/+}/\text{saline}\) and \(c-Kit^{Wv+/1}-AKP\) mice. Data (A-E) are expressed as mean ± SEM (\(n=5-8\)), *\(p<0.05\), **\(p<0.01\), ***\(p<0.001\) analyzed by one-way ANOVA followed by LSD post-hoc test.
3.3.4 Inhibition of Gsk3β activity preserves β-catenin, cyclin D1, Pdx-1, and MafA expression and increases the proliferative capacity of beta-cells of c-$Kit^{Wv/+}$ mice

The effect of Gsk3β inhibition on downstream signaling mediators of β-catenin protein levels in the islets of c-$Kit^{Wv/+}$/1-AKP mice was significantly higher when compared to c-$Kit^{Wv/+}$/saline group (Figure 3-7A). However, this protein levels only reached 78% of both c-$Kit^{+/+}$/saline and c-$Kit^{+/+}$/1-AKP groups (Figure 3-7A). c-$Kit^{Wv/+}$/saline group showed a significantly lower level of islet β-catenin protein than that of c-$Kit^{+/+}$/1-AKP and c-$Kit^{+/+}$/saline groups (Figure 3-7A). In addition, c-$Kit^{+/+}$/1-AKP mice showed slightly increased β-catenin protein levels in islet protein extracts but did not reach statistical significance when compared to c-$Kit^{+/+}$/saline group (Figure 3-7A). The protein levels of β-catenin were also significantly higher in isolated islets from c-$Kit^{Wv/+}$ mice, when treated with 1-AKP for 24 hours, compared to non-treated c-$Kit^{+/+}$ and c-$Kit^{Wv/+}$ islets (Figure 3-7A). These increases in islet β-catenin corresponded with significantly elevated islet cyclin D1 protein levels in c-$Kit^{Wv/+}$/1-AKP mice and c-$Kit^{Wv/+}$ islets cultured with 1-AKP when compared to c-$Kit^{Wv/+}$/saline mice and untreated isolated c-$Kit^{Wv/+}$ islets, respectively (Figure 3-7B). These findings were further corroborated using qRT-PCR and double immunofluorescence, which revealed a significantly increased Ccnd1 mRNA (Figure 3-7C) and a higher number of cyclin D1+/insulin+ cells in c-$Kit^{Wv/+}$/1-AKP mice (vs. c-$Kit^{Wv/+}$/saline group, Figure 3-7D). Quantitative RT-PCR analyses of Pdx-1 and MafA showed significantly increased mRNA levels in the islets of both 1-AKP treated c-$Kit^{+/+}$ and c-$Kit^{Wv/+}$ mice (Figure 3-8A). Double immunofluorescence demonstrated a significant increase in the number of Pdx-1+ cells in beta-cells of c-$Kit^{Wv/+}$/1-AKP mice (vs. c-$Kit^{Wv/+}$/saline group, Figure 3-8B). Increased MafA staining intensity was also observed in c-$Kit^{Wv/+}$/1-AKP mouse beta-cells (Figure 3-8D). These results were further supported by western blot analysis and showed significantly higher Pdx-1 protein levels in c-$Kit^{Wv/+}$ islets from either 1-AKP injected mice or 1-AKP incubation when compared to c-$Kit^{Wv/+}$/saline mice and c-$Kit^{Wv/+}$ islets without 1-AKP treatment, respectively (Figure 3-8C). Furthermore, increased cyclin D1 expression (Figure 3-7B and C and D) was correlated with a significant increase in Ki67
immunoreactivity in beta-cells of c-$Kit^{Wv/+}/1$-AKP mice (vs. c-$Kit^{Wv/+}$/saline group, Figure 3-9).
A

B

Isolated islets from mice with or without 1-AKP injection for 2 wks in vivo

C

D

Relative CCR41 mRNA expression (normalized to 16S)

Ratio of cyclin D1/β-actin
Figure 3-7. Inhibition of Gsk3β maintains β-catenin and cyclin D1 level in c-Kit^{Wv/+}/l-AKP mouse islets.

Western blot analyses of β-catenin (A) and cyclin D1 (B) protein levels in isolated islets from 8-week-old c-Kit^{+/+}/saline, c-Kit^{+/+}/l-AKP, c-Kit^{Wv/+}/saline and c-Kit^{Wv/+}/l-AKP mice (left column) and isolated islets from 8-week-old c-Kit^{+/+} and c-Kit^{Wv/+} mice cultured with or without 1-AKP treatment for 24 hours (right column). Representative blots are shown. Data (A and B) are normalized to β-actin. qRT-PCR analysis of Ccnd₁ mRNA in isolated islets (C) and the number of nuclear cyclin D1⁺ cells in beta-cells (D) of c-Kit^{+/+}/saline, c-Kit^{+/+}/l-AKP, c-Kit^{Wv/+}/saline, and c-Kit^{Wv/+}/l-AKP mice. Data (A-D) are expressed as mean ± SEM (n=5–8), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
A

Relative mRNA expression (normalized to 18S)

Pdx-1
Maf

***Saline
**/1-AKP
Wv+/Saline
Wv+/1-AKP

B

Pdx-1/Insulin+ cell (%)

***Saline
**/1-AKP
Wv+/Saline
Wv+/1-AKP

C

Isolated islets from mice with or without 1-AKP injection for 2 wks in vivo

Ratio Pdx-1/β-actin

***Saline
**/1-AKP
Wv+/Saline
Wv+/1-AKP

Islets cultured with or without 1-AKP for 24h in vitro

Ratio Pdx-1/β-actin

***DMSO
**/1-AKP
Wv+/DMSO
Wv+/1-AKP

D

Maf

+/Saline
+/1-AKP
Wv+/Saline
Wv+/1-AKP
Figure 3-8. Inhibition of Gsk3β results in increased Pdx-1 and MafA expression in c-Kit$^{Wv+/1}$-AKP mice.

qRT-PCR analyses of Pdx-1 and MafA mRNA in isolated islets (A) and the number of Pdx-1$^+$ cells (B) in beta-cells of c-Kit$^{+/+}$/saline, c-Kit$^{+/+}$/1-AKP, c-Kit$^{Wv+/+}$/saline and c-Kit$^{Wv+/+}$/1-AKP mice. (C) Western blot analysis of Pdx-1 protein levels in isolated islets from 8-week-old c-Kit$^{+/+}$/saline, c-Kit$^{+/+}$/1-AKP, c-Kit$^{Wv+/+}$/saline and c-Kit$^{Wv+/+}$/1-AKP mice (left column) and isolated islets from 8-week-old c-Kit$^{+/+}$ and c-Kit$^{Wv+/+}$ mice cultured with or without 1-AKP treatment for 24 hours (right column). (D) An increased MafA staining intensity was observed in the islet of c-Kit$^{Wv+/+}$/1-AKP mice when compared to c-Kit$^{Wv+/+}$/saline treated mice. No counterstaining was applied and nuclei are white transparent. Scale bar 25 μm. Data (A-C) are expressed mean ± SEM (n=5–8) *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 3-9. Inhibition of Gsk3β results in increased beta-cell proliferation in \(c-Kit^{Wv/+}/1-AKP \) mice.

(A) Double immunofluorescence staining of Ki67 (green) with insulin (red) and nuclear stained with DAPI (blue). Arrows indicate Ki67/insulin double-positive cells. Scale bar 20 µm. (B) Percentage of Ki67\(^+\) cells in beta-cells of \(c-Kit^{+/+}/\text{saline} \), \(c-Kit^{+/+}/1-AKP \), \(c-Kit^{Wv/+}/\text{saline} \) and \(c-Kit^{Wv/+}/1-AKP \) mice. Data are expressed mean ± SEM (\(n=5–8 \)) *\(p<0.05 \), **\(p<0.01 \), ***\(p<0.001 \) analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 3-10. A proposed model involving c-Kit/Akt/Gsk3β signaling pathways in beta-cell survival and function in \(c-Ki\ell^{Wv/+}\) mice.

(A) Mutating the c-Kit receptor (grey star) at the \(W\) locus lead to a down-regulation of the PI3K/Akt pathway via reduced phosphorylation of Akt at S473, which resulted in enhanced active Gsk3β and increased inhibition of Pdx-1 and cyclin D1 expression. (B) Direct inhibition of active Gsk3β with 1-AKP preserved β-catenin protein levels, along with maintained cyclin D1 and Pdx-1 expression that allowed improvement of beta-cell proliferation and function and prevented the onset of diabetes in \(c-Ki\ell^{Wv/+}\) mice. sSCF: soluble Stem Cell Factor; mSCF: membrane-bound Stem Cell Factor. Green arrow: positive signaling; red arrow: negative signaling.
3.4 Discussion

The present study demonstrates that diabetic c-$Kit^{Wv/+}$ mice displayed reduced levels of phospho-Akt at residue S473 and phospho-Gsk3β at residue S9 in both pancreatic and isolated islet protein extracts. These mice also possess decreased cyclin D1 expression in their beta-cells. When treated with 1-AKP, c-$Kit^{Wv/+}$ mice demonstrated significant improvements in fasting glucose, glucose tolerance and insulin secretion along with increased beta-cell mass and proliferation. These results indicate that the Akt/Gsk3β pathway downstream of c-Kit is predominantly involved in regulating beta-cell proliferation and function in c-$Kit^{Wv/+}$ mice and that inhibition of Gsk3β activation can significantly improve glucose tolerance and beta-cell function (Figure 3-10).

The PI3K pathway is one of the major downstream pathways of c-Kit that triggers a variety of pro-survival signaling events, such as cell survival, cell growth, and cell cycle entry via Akt phosphorylation [14, 26]. Akt, a serine/threonine protein kinase, exerts its effects after being phosphorylated by PI3K at two regulatory residues: T308 in the activation segment, and S473 in the hydrophobic motif of the kinase domain [27]. In this study, we showed decreased protein levels of phospho-Akt at S473, but not at T308 in c-$Kit^{Wv/+}$ mice when compared to controls. c-$Kit^{Wv/+}$ mice are heterozygous for the c-Kit mutation caused by substitution of a threonine to methionine at amino acid 660 in the kinase domains of the c-Kit gene [28], and this loss-of-function mutation leads to down-regulation, but not abolition of c-Kit activity. Previous research has demonstrated that Akt monophosphorylation on T308 showed only 10% kinase activity compared to 100% when Akt was doubly phosphorylated on S473 and T308 [27], suggesting that S473 phosphorylation is required for maximal kinase activity of Akt [27]. Therefore, our results demonstrate that c-$Kit^{Wv/+}$ mice showed significant down-regulation of the primary Akt phosphorylation site required conferring maximal activity, S473.

It is well documented that Gsk3β is the target of many important signaling molecules [29]. In particular, Akt blocks the catalytic activity of the kinase, and activates downstream signals repressed by active Gsk3β [26]. In this study, we observed reduced Gsk3β phosphorylation and cyclin D1 protein levels in islets of c-$Kit^{Wv/+}$ mice, which is
consistent with the role of cyclin D1 as essential for postnatal beta-cell growth [30]. Active Gsk3β promotes destabilization of cyclin D1 and thus cell cycle arrest, which is associated with Akt inactivation [31]. Taken together, our results suggest that Akt/Gsk3β axis dysregulation from the c-Kit Wv mutation contributed to loss of beta-cell mass and function, which may have been responsible for the early onset of diabetes observed in c-Kit Wv/+ mice reported previously [6].

It has been previously shown that Gsk3β is involved in differentiation and proliferation of numerous tissue types including beta-cells [21, 22]. Tanabe et al. showed that genetic ablation of Gsk3β in Irs−/+ mice preserved beta-cell function and prevented the onset of diabetes [32]. Moreover, mice with beta-cell-specific ablation of Gsk3β were resistant to HFD-induced diabetes [22]. These studies suggest that endogenous Gsk3β activity is involved in a highly specialized feedback inhibition mechanism with the insulin receptor, which primarily signals via the PI3K/Akt pathway. In this study, c-Kit Wv/+ mice received treatment of a Gsk3β inhibitor for 2 weeks and showed significant improvements in glucose tolerance and beta-cell function when compared to saline-treated c-Kit Wv/+ controls, which showed diabetic symptoms. In addition, no significant differences in insulin tolerance were observed between the experimental groups suggesting that this improvement in glucose tolerance and beta-cell function was not due to enhanced peripheral insulin sensitivity, but primarily to improved beta-cell proliferation and function in c-Kit Wv/+ mice received 1-AKP treatment.

Our morphological analyses revealed that improved glucose tolerance and insulin secretion was associated with preservation of beta-cell mass and an increase in islet number in c-Kit Wv/+ 1-AKP mice. The most notable change was a significant increase in the percentage of small islets (<500 µm²), with a relative increase in the number of large islets (>10000 µm²), suggesting that inhibition of Gsk3β activity is associated with an increase in beta-cell neogenesis and proliferation. β-catenin and cyclin D1 are two potential targets of Gsk3β, and have been implicated in beta-cell growth [30, 33]. Preserved beta-cell mass in c-Kit Wv/+ 1-AKP group was accompanied by increased beta-cell proliferation (Ki67), and maintained β-catenin and cyclin D1 protein levels, which closely matched those in c-Kit +/+ group. This is in agreement with the role of β-catenin in
up-regulating cyclin D1 expression to promote beta-cell expansion [33, 34]. These results suggest that Akt/Gsk3β axis-mediated β-catenin activation in islets may regulate beta-cell growth and function in c-Kit-Wv/+ mice [1-8, 35].

The critically important pancreatic transcription factor, Pdx-1 has been shown to regulate beta-cell survival, function and pancreatic development [9-12, 36, 37]. Previous studies have also demonstrated that reduction of Pdx-1 impairs islet insulin secretion [13, 38, 39], while, a partial reduction in Pdx-1 has a major effect on beta-cell survival with reductions in BclXL and Bcl2 expression [14, 37, 40]. Using c-Kit-Wv/+ mice, we observed a significant reduction in Pdx-1 expression (~50% of c-Kit+/+ controls) along with impaired beta-cell function [6], and an up-regulation in the Fas associated cell death pathway (see Chapter 4). In this study, Pdx-1 mRNA and protein levels were maintained upon Gsk3β inhibition. Previous studies in isolated mouse islets have shown that Pdx-1 is negatively regulated in a Gsk3β-dependent manner [16-18, 41]. In addition, inhibition of Gsk3β by activated Akt could ameliorate Pdx-1 phosphorylation leading to a consequential delay of its degradation, which suggests that Pdx-1 accumulation in beta-cells may be regulated by the Akt/Gsk3β axis [19, 42]. Further in vivo studies have demonstrated that Gsk3β ablation in mouse beta-cells lead to increased Pdx-1 protein levels [19, 22, 32]. In addition, a significant up-regulation of MafA mRNA expression in c-Kit-Wv/+/1-AKP mouse islets was observed. Overexpression of MafA in neonatal rat beta-cells led to enhanced glucose-responsive insulin secretion and beta-cell maturation [19, 43]. Taken together, the findings of the present study showed that Akt/Gsk3β signaling, downstream of c-Kit, is not only required for beta-cell proliferation. By modulating Pdx-1 and MafA expression, this signalling pathway is likely essential for beta-cell function and differentiation.

This study demonstrates that the Gsk3β inhibitor, 1-AKP, predominantly improved beta-cell proliferation and function, and had no significant effects in peripheral tissues, like muscle or liver insulin sensitivity. However, previous studies have shown that treatment of Gsk3β inhibitors improved glucose homeostasis by ameliorating muscle and liver insulin resistance in non-insulin dependent obese animal models [20, 44-46]. The c-Kit Wv point mutation primarily causes defect in melanocytic, hematopoietic, and endocrine
cell lineages, with no apparent muscle and liver dysfunction [6, 21, 28, 47]. This is in contrast to non-insulin dependent diabetic animal models, such as ZDF rat and ob mice that have primary defects in muscle and liver insulin stimulated peripheral glucose transport activity [22, 44-46]. Thus, we speculate that the effect of Gsk3β inhibition is highly tissue-specific depends on functional defects in specific cell types among different mouse models.

In summary, this study elucidates a novel link between c-Kit and the Akt/Gsk3β/cyclin D1 signaling pathways and their effects on beta-cell proliferation and function in vivo. Our results suggest that dysregulated Akt/Gsk3β/cyclin D1 downstream from the c-Kit Wv mutation is the possible signaling mechanism that contributes to the loss of beta-cell mass and function in c-KitWv/+ mice reported in our previous publication [6]. Furthermore, chronic inhibition of Gsk3β in c-KitWv/+ mice resulted in increased β-catenin, cyclin D1, and Pdx-1 protein levels, suggesting that regulation of downstream signaling increased beta-cell proliferative capacity, mass, as well as later improved glucose tolerance, and helped prevent early onset of diabetes. Taken together, the findings of present study emphasizes that understanding the complex intracellular pathways that affect beta-cell proliferation and function in vivo, which c-Kit regulates, will enable the development of more successful treatment protocols for diabetes.
3.5 References

Chapter 4

4 Down-regulation of Fas activity rescues early onset of diabetes in c-$Kit^{Wv/+}$ mice

3 This chapter has been modified and adapted from the following manuscript:

4.1 Introduction

The prevalence of diabetes has been increasing at an alarming rate. During the progression of diabetes, pancreatic beta-cells are often lost because the delicate balance between beta-cell proliferation and death is disrupted [1-4]. Our previous studies showed that c-KitWv/+ mice, which contain a point mutation in the kinase region (Wv) of c-Kit, exhibit severe beta-cell mass loss that was associated with a significant down-regulation of the PI3K/Gsk3/β/cyclin D1 signaling [5, 6] and this affects beta-cell proliferation. However, the underlying mechanisms involved in c-Kit-mediated effects on beta-cell apoptosis have yet to be determined in c-KitWv/+ mice.

Fas belongs to the tumor necrosis factor family and requires the FasL for activation. Fas/FasL interactions result in activation of Fas-associated death domains and cleavage of caspase 8, which triggers apoptotic pathway. In diabetes, beta-cells constitutively express Fas [7-11]. Fas/FasL interactions were suggested to be one of the major mechanisms leading to beta-cell apoptosis in T cell-mediated autoimmune diabetes [12-14]. In addition, cytokine-induced up-regulation of the Fas apoptotic pathway is also involved in glucotoxicity and subsequent increases in beta-cell death [15]; meanwhile, deletion of \textit{FAS} protects human islet amyloid polypeptide deposition-mediated beta-cell apoptosis [16]. \textit{In vivo} studies have demonstrated that non-obese diabetic mice with non-functional \textit{Fas} (global \textit{lpr}/\textit{lpr} mutation) show protection against diabetes [13, 14], and transgenic mice with beta-cell specific knockout of \textit{Fas} exhibit increased beta-cell insulin secretion function [2].

There have been numerous studies in hematopoietic cells, melanocytes and germ cells indicating that Fas-mediated cell apoptosis can be prevented by up-regulation of SCF/c-Kit interactions [17, 18]. Conversely, in cells with deficient c-Kit signaling, down-regulation of Fas can rescue cell death and dysfunction [19-23]. In this study, we generated c-KitWv/+;Faslpr/lpr (\textit{Wv};\textit{-/-}) double mutant mice to understand the inter-relationship between c-Kit and Fas with respect to beta-cell survival and function.
4.2 Materials and methods

Mouse model: In this study, two mouse models were used: 1) c-Kit$^{Wv/+}$ mice (see detail in section 2.1.1, and same mouse model used in Chapter 3), and 2) c-Kit$^{Wv/+};Fas^{lor/lor}$ double mutant mice (see detail in section 2.1.2). c-Kit$^{Wv/+}$, c-Kit$^{Wv/+};Fas^{+/+}$ (Wv;+/+), and c-Kit$^{Wv/+};Fas^{lor/lor}$ (Wv;−/−) mice were the experimental groups, while c-Kit$^{+/+}$ and c-Kit$^{+/+};Fas^{+/+}$ (WT) were designated as the control groups. Genotyping was detailed in section 2.2. Mice were kept until 8 weeks of age with normal diet at which point, metabolic studies, islet morphological studies, and islet qRT-PCR, islet protein analyses were performed. Only male mice were used for this study.

Metabolic studies: Body weight, fasting (4-hour) blood glucose levels, IPGTT and IPITT analyses were performed on Wv;−/− mice and compared to WT and Wv;+/+ littermates at 8 weeks of age, as detailed in section 2.3.

In vivo, ex vivo GSIS studies, and insulin ELISA analyses: in vivo GSIS, and ex vivo GSIS on isolated islets, were performed from WT, Wv;+/+ and Wv;−/− mice at 8 weeks of age, as detailed in sections 2.4 and 2.5.

INS-1 cell culture studies: To study the inter-balance relationship between c-Kit and Fas signaling on cell apoptosis, INS-1 cells were treated with SCF for 24 hours, or cultured for 48 hours with control siRNA, c-Kit siRNA with or without PFT-α (p53 inhibitor), or combined c-Kit siRNA and Fas siRNA, as detailed in section 2.6.2.

Immunofluorescence and morphometric analyses: Pancreatic tissue sections from mice at 8 weeks of age were prepared and double-stained with appropriate antibodies listed in Appendix 5. Islet number, islet size, alpha and beta-cell mass were measured. Cell proliferation (Ki67+ labeling), and apoptosis (TUNEL+ labeling), Fas positive staining in beta-cell nuclei was quantified, and the average percent of Ki67+/insulin+, TUNEL+/insulin+, and Fas+/insulin+ cells was calculated, as detailed in section 2.7.

Protein extraction and western blot analyses: protein levels of Fas, FasL, c-Kit, cleaved caspase 3D175, total caspase 3, cleaved caspase 8D391, total caspase 8, p53, and corresponding housekeeping proteins including calnexin and β-actin in isolated islets.
from mice at 8 weeks of age or in INS-1 cells were analyzed (Appendix 6), as detailed in section 2.8.

RNA extraction and real-time RT-PCR analyses: RNA was extracted from isolated islets of WT, Wv;+/+, Wv;−/− mice at 8 weeks of age. mRNA expression of Bax, Bcl2, Cflar (c-Flip), Kit (c-Kit), Fas, FasL, Glucagon, Insulin, MafA, NFkB1 (Nfκb1), NFkB2 (Nfκb2), Pdx-1, RelA, RelB, Trp53 (p53) was measured and normalized to 18S rRNA (Appendix 7), as detailed in section 2.9.

4.3 Results

4.3.1 *c-Kit*^{Wv/+} mice show increased beta-cell apoptosis due to increased p53 signaling and resulting up-regulated Fas activity

c-*Kit*^{Wv/+} mice had severe beta-cell loss and dysfunction, which was associated with Akt/Gsk3β/cyclin D1 pathway down-regulation[6]. Significantly elevated *p53* mRNA expression and protein levels were observed in the islets of *c-Kit*^{Wv/+} mice when compared to *c-Kit*^{+/+} mice (Figure 4-1A). *Fas* mRNA expression was significantly elevated in *c-Kit*^{Wv/+} islets (Figure 4-1B), which was corroborated with increased Fas protein levels (Figure 4-1B) and Fas-expressing insulin positive cells (Figure 4-1D) relative to *c-Kit*^{+/+} group. However, there was no significant alteration of FasL among all groups (Figure 4-1C). A significant increase in beta-cell apoptosis, as indicated by elevated TUNEL staining in insulin-positive cells, was observed in *c-Kit*^{Wv/+} mice (Figure 4-1E).
Figure 4-1. Up-regulation of p53 and Fas signaling in isolated islets from c-Kit^{Wv/+} mice.

qRT-PCR and western blot analyses of p53 (A), Fas (B), and FasL levels (C) in isolated islets of c-Kit^{+/+} and c-Kit^{Wv/+} mice at 8 weeks of age. Representative blots are shown. Data are normalized to loading control (calnexin). Percentage of Fas⁺ (D) and TUNEL⁺ (E) beta-cells in c-Kit^{+/+} and c-Kit^{Wv/+} mice at 8 weeks of age. Data (A-E) are expressed as mean ± SEM (n=3-10), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test.
In vitro studies on INS-1 cells were used to further understand the relationship between c-Kit, p53, and Fas in the regulation of beta-cell survival. The expression of c-Kit and Fas mRNA in INS-1 cells was measured by qRT-PCR and showed relatively higher c-Kit and lower Fas expression in INS-1 cells when compared to normal mouse islets (Figure 4-2A). INS-1 cells treated with exogenous SCF showed a slight reduction in p53 and a significant decrease in Fas protein levels, which was attenuated by the addition of a PI3K inhibitor, wortmannin (Figure 4-2B). However, when INS-1 cells were transfected with c-Kit siRNA, the protein levels of p53, Fas and cleaved caspase 3 was significantly elevated compared to the controls (Figure 4-3). Interestingly, cells transfected with c-Kit siRNA and treated with PFT-α (p53 inhibitor) or co-transfected with Fas siRNA displayed significantly abated protein levels of p53, Fas and cleaved caspase 3 when compared to c-Kit siRNA-transfected INS-1 cells (Figure 4-3). Fas protein levels were significantly reduced in the Fas siRNA group when compared to the control siRNA group (Figure 4-4A). Furthermore, INS-1 cell apoptosis was measured by TUNEL staining, which demonstrated a significant increase in the c-Kit siRNA group as compared to other experimental conditions (Figure 4-4B).
Figure 4-2. Increased SCF/c-Kit interaction in INS-1 cells results in decrease of p53 and Fas expression via the PI3K pathway.

(A) qRT-PCR analyses of c-Kit and Fas mRNA levels, in 8-week-old c-Kit+/+ mouse islets, INS-1 cells, and INS-1 cells with SCF treatment cultured for 24 hours. (B) Western blot analyses of p53 and Fas protein levels in INS-1 cells cultured with serum-free medium plus 50 ng/mL SCF with and without wortmannin (Wort, PI3K inhibitor) for 24 hours. Representative blots are shown. Data are normalized to loading control (β-actin). Data (A and B) are expressed as mean ± SEM (n=3), *p<0.05 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 4-3. Absence of c-Kit signaling induces the p53/Fas-mediated caspase-dependent apoptotic signaling.

Western blot analyses of c-Kit, p53, Fas, and D175-cleaved (C) and total (T) caspase 3 protein levels in INS-1 cells transfected with c-Kit siRNA and cotreated with PFT-α (p53 inhibitor) or Fas siRNA for 48 hours. Representative blots are shown. Data are normalized to total protein or loading control (calnexin or β-actin) and expressed as mean ± SEM (n=3–4), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 4-4. Knockdown of Fas decreases cell apoptosis.

(A) Fas protein levels in INS-1 cells cultured with control or Fas siRNA for 48 hours. Representative blots are shown. Data is normalized to loading control (calnexin) and expressed as mean ± SEM (n=4), *p<0.05 analyzed by unpaired student’s t-test, (B) Percentage of TUNEL positivity in INS-1 cells under all experimental conditions (control siRNA, c-Kit siRNA, c-Kit siRNA with PFT-α, c-Kit siRNA with Fas siRNA). Data are expressed as mean ± SEM (n=4), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test. Representative images of TUNEL staining (green) and DAPI (blue). Scale bar, 10 µm.
4.3.2 Down-regulation of Fas in $c-Kiil^{Wv/+}$ mice leads to improved beta-cell function

At 8 weeks of age, there was no difference in body weight (Figure 4-5A), but fasting blood glucose levels were significantly lower in $Wv;/-$ mice compared to $Wv;+/+$ mice (Figure 4-5B), while significantly higher than their WT littermates (Figure 4-5B). $Wv;/-$ mice had significantly improved glucose tolerance demonstrated by decreased AUC relative to $Wv;+/+$ mice (Figure 4-5C). There were no significant changes observed in insulin tolerance among the three different groups (Figure 4-5D). *In vivo* GSIS analyses demonstrated that insulin secretion in $Wv;/-$ mice was significantly higher at all three time points (0, 5 and 35 minutes after glucose challenge) when compared to $Wv;+/+$ mice (Figure 4-6A). This was further corroborated with our observations from the *ex vivo* GSIS assay, which showed a significant increase in insulin secretion from $Wv;/-$ mouse islets after incubation in 22 mM glucose, as compared to $Wv;+/+$ mouse islets (Figure 4-6B). However, the ability of $Wv;/-$ mice islets to respond to a 22 mM glucose challenge was significantly lower compared to islets from WT mice (Figure 4-6B). Insulin secretion from the *ex vivo* GSIS assay was comparable to measured insulin content, which was significantly higher in islets from $Wv;/-$ mice relative to $Wv;+/+$ mice (Figure 4-6C), but not significantly lower than WT mice (Figure 4-6C). It was noted that the effect of glucose on islet insulin secretion was smaller in all groups when compared to previous reports, which may be associated with increased sensitivity when islets are freshly isolated.
Figure 4-5. Fasting blood glucose and glucose tolerance on c-Kit$^{Wv/+;}^{Fas^{lpr/lpr}}$ (Wv;−/−) mice at 8 weeks of age.

Body weight (A), fasting blood glucose (B), IPGTT (C), and IPITT (D) of WT, Wv;+/, and Wv;−/− mice at 8 weeks of age. Glucose responsiveness of the corresponding experimental groups is shown as a measurement of AUC of the IPGTT or IPITT graphs with units of (mmol/L x minutes). Data (A-D) are expressed as mean ± SEM (n=5-8), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 4-6. GSIS and insulin content in c-Kit$^{Wv/+}$.Fas$^{lp/lp}(Wv;−/−)$ mice at 8 weeks of age.

(A) *In vivo* GSIS of *WT, Wv;+/*, and Wv;−/* mice at 8 weeks of age, (B) *Ex vivo* GSIS on isolated islets from *WT, Wv;+/*, and Wv;−/* mice at 8 weeks of age. Data are expressed as fold change normalized to basal (2.2 mM glucose) secretion, (C) Insulin content in isolated islets from *WT, Wv;+/*, and Wv;−/* mice at 8 weeks of age where data are normalized to DNA content. Data (A-C) are expressed as mean ± SEM (n=3-7), *p<0.05, **p<0.01 analyzed by one-way ANOVA followed by LSD post-hoc test.
4.3.3 Increased beta-cell mass and proliferation, and decreased beta-cell apoptosis observed in c-Kit^{Wv}/+, Fas^{lpr/lpr} double mutant mice

Islet morphology was analyzed by immunostaining (Figure 4-7A). Pancreatic weight was unchanged between experimental groups at 8 weeks of age (data not shown). However, Wv_{-/-} mice displayed a significant increase in islet number when compared to Wv_{+/+} mice (Figure 4-7B), and no difference when compared to WT mice (Figure 4-7B). Alpha-cell mass was unchanged among the experimental groups (data no shown), but Wv_{-/-} mice exhibited a doubling of beta-cell mass compared to Wv_{+/+} mice (Figure 4-7C). Furthermore, Wv_{-/-} mice showed a significant increase in beta-cell proliferation, determined by Ki67 labeling (Figure 4-7D and F), with a 2-fold decreased in TUNEL positive beta-cells when compared to Wv_{+/+} mice (Figure 4-7E and G).
Figure 4-7. Islet morphology and immunohistochemical analysis of endocrine cell mass, cell proliferation, and cell death in c-KIt^{Wv/+};Fas^{Lpr/Lpr} (Wv;−/−) mice at 8 weeks of age.

(A) Representative images of islet morphology by double immunofluorescence staining for insulin (red) and glucagon (green), and nuclei stained with DAPI (blue). Scale bar, 50 µm. Islet number (B), beta-cell mass (C), percentage of Ki67⁺ (D) and TUNEL⁺ beta-cells (E) in WT, Wv;+/+, and Wv;−/− mice at 8 weeks of age. Data (B-E) are expressed as mean ± SEM (n=3-6), *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA. Representative double immunofluorescence staining images for Ki67 (F) and TUNEL (G) (green) with insulin (red) in islets of WT, Wv;+/+, and Wv;−/− mice at 8 weeks of age. Nuclei are stained with DAPI (blue). Arrows indicate double-labeled cells. Scale bar, 20 µm.
4.3.4 Down-regulation of Fas in the absence of c-Kit signaling activates the cFlip/NF-κB pathway, and increases islet transcription factor expression

To further investigate the underlying mechanisms in Wv;−/− mice, gene expression was assessed in isolated islets by qRT-PCR. Analyses of insulin, glucagon, Pdx-1, and MafA showed significantly increased mRNA expression in Wv;−/− mice when compared to Wv;+/+ and WT mice (Figure 4-8A). Furthermore, the mRNA expression of cFlip, RelA, RelB, and NFκb2 in isolated islets of Wv;−/− mice were significantly increased as compared to Wv;+/+ mice (Figure 4-8B). However, no significant changes were found in the mRNA expression of Bax and a ratio of Bcl-2 over Bax between Wv;+/+ and Wv;−/− mouse islets (Figure 4-8C). Furthermore, western blot analyses showed down-regulation of Fas signaling, as indicated by a significant reduction of cleaved caspase 8 and 3 protein levels in Wv;−/− mouse islets (Figure 4-9) and this was correlated with reduced beta-cell apoptosis in Wv;−/− mice compared to Wv;+/+ group (Figure 4-7E and G).
Figure 4-8. Expression of transcription factors, endocrine genes, and signaling molecules in c-Kit$^{Wv/+};Fas^{Lpr/Lpr}(Wv;−/−)$ mice.

(A) qRT-PCR analyses of insulin (I and II), glucagon, Pdx-1, and MafA. Fas-mediated signaling molecules (B), and Bax and Bcl2/Bax ratio (C) in isolated islets of WT, Wv;+/+, and Wv;−/− mice at 8 weeks of age. Data (A-C) are expressed as mean ± SEM (n=4). *p<0.05, **p<0.01, ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 4-9. Expression of cleaved caspase 8 and 3 in c-Kit^{Wv/+;}Fas^{Jpr/Jpr} (Wv;−/−) mice at 8 weeks of age.

Western blot analyses of Fas levels along with cleaved (C) and total (T) caspase 8 and 3 levels in isolated islets of WT, Wv;+/+, and Wv;−/− mice at 8 weeks of age. Representative blots are shown. Data are normalized to total protein or loading control (calnexin) and expressed as mean ± SEM (n=4). *p<0.05, **p<0.01 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 4-10. Proposed model of c-Kit and Fas signaling that mediates beta-cell proliferation, function, and survival.

The W^v mutation of c-Kit (red star) causes down-regulation of Akt phosphorylation with increased p53 levels and subsequent induction of Fas-mediated beta-cell apoptosis. Down-regulation of the Fas pathway (yellow star) by the lpr mutation in c-Kit^Wv/+ mice rescues early onset of diabetes by down-regulating caspase 8 and 3 cleavage, up-regualting beta-cell proliferation, and key islet transcription factors, suggesting that the interrelationship between c-Kit and Fas signaling is critical for the maintenance of beta-cell mass and function. sSCF: soluble Stem Cell Factor; mSCF: membrane-bound Stem Cell Factor; FasL: Fas ligand. Red arrow: negative signaling; green arrow: positive signaling. Solid line: direct regulation; Dotted line: indirect regulation.
4.4 Discussion

In this study, we demonstrated that the loss of beta-cell mass in c-KitWv/+ mice is due to increased p53 and Fas levels, along with associated downstream caspase-mediated beta-cell death in c-KitWv/+ mouse islets (Figure 4-10). Mutation of Fas (lpr) rescued early onset of diabetes in c-KitWv/+ mice by enhancing insulin secretory function and increasing beta-cell survival. This improvement was associated with down-regulation of the Fas-mediated extrinsic apoptotic pathway, and up-regulation of the cFLIP/NF-κB pathway, as well as the key islet transcription factors (Pdx-1 and MafA). Therefore, the present findings suggest that a balance between c-Kit and Fas signaling pathway is required to maintain beta-cell mass and function.

Both p53 and Fas levels were up-regulated in the islets of c-KitWv/+ mice, which was correlated with increased beta-cell apoptosis. It has been documented that p53 is an important checkpoint protein that regulates cyclin D1 expression during cell cycle progression in many cell types [24, 25]. Although the cellular mechanism by which c-Kit regulates p53 is unclear, we have previously demonstrated that decreased cyclin D1 levels are observed in c-KitWv/+ mouse islets [6], suggesting that inhibition of cell cycle progression by c-Kit deficiency may be p53-dependent. Not only is p53 involved in cell cycle arrest, it also plays a pivotal role in cell apoptosis. Several apoptotic genes are up-regulated by p53 [26-29], in particular, p53 induces Fas mRNA expression by binding to elements that are found in the promoter and first intron regions of the Fas gene [27]. Also, overexpression of p53 may promote trafficking of the Fas to the cell surface via the Golgi apparatus [30]. Thus, the elevated p53 levels observed in c-KitWv/+ mouse islets suggest that p53 serves as a mediator in cell cycle arrest and may induce Fas-mediated apoptosis in the absence of c-Kit signaling, in vivo. However, FasL levels were slightly increased in c-KitWv/+ mouse islets, suggesting that FasL was already present at sufficiently high levels, and that beta-cell apoptosis is dependent upon Fas expression in islets. The inter-relation between c-Kit, p53 and Fas was further examined by stimulation of c-Kit via up- and down-regulation assays in INS-1 cells. Activation of c-Kit by exogenous SCF reduced both p53 and Fas protein levels in a PI3K-dependent manner. When cells were transfected with c-Kit siRNA, there was up-regulation of p53 and Fas
protein levels, which was reversed by the addition of a p53 inhibitor or Fas siRNA transfection and led to reduced apoptosis. These data suggest that c-Kit plays a key role in regulating p53-induced Fas-mediated cell death. p53-mediated Fas up-regulation has been proposed by several in vitro [27, 30, 31] and rodent studies [32, 33], and is likely responsible for increasing beta-cell apoptosis in c-Kit\(^{Wv/+}\) mice.

To further elucidate the physiological role of Fas in the absence of c-Kit signaling, in vivo, we generated Wv;/- mice bearing both c-Kit \(^{W}\) and Fas lpr mutations, and found that anti-apoptotic genes such as cFlip, NF\(\kappa\)B2, and both RelA and RelB were significantly up-regulated in Wv;/- mouse islets. It is well-established that Fas-mediated apoptosis occurs through activation of procaspase-8, the most upstream caspase in the Fas apoptotic pathway, while cFlip, a protease-deficient caspase homolog to caspase-8, is able to modulate activation of procaspase-8, and trigger pro-survival signaling [34]. Although previous studies have documented that caspase 8 may be involved in the activation of NF-\(\kappa\)B [35], the present study suggests that the up-regulation of NF-\(\kappa\)B is independent of caspase-8 activity. Our data indicate that cFlip exerts its physiological function by triggering the NF-\(\kappa\)B signaling pathway, which plays an important role in regulating cell survival and proliferation [36]. Therefore, in Wv;/- mouse islets, an up-regulation of cFlip could have enhanced NF-\(\kappa\)B activity by increasing NF-\(\kappa\)B-inducing kinases, leading to improved beta-cell function and survival.

We further investigated the signaling pathway downstream of Fas that regulates beta-cell apoptosis and dysfunction in c-Kit\(^{Wv/+}\) mice. Cleaved caspase 8 and 3 levels were significantly increased in c-Kit siRNA-transfected INS-1 cells and c-Kit\(^{Wv/+}\) mouse islets. However, down-regulation of Fas in c-Kit-deficient islets resulted in significantly decreased cleaved caspase 8 and 3 levels when compared to controls. Previous ex vivo studies with human pancreatic beta-cells have shown that glucotoxicity-induced beta-cell apoptosis occurs via up-regulation of the Fas-mediated apoptotic pathway, which could be rescued by down-regulation of Fas [15, 16]. Furthermore, deletion of Fas in rodent pancreatic beta-cells has showed protection against FasL-induced apoptosis, and increased in vivo insulin secretion [2]. While much evidence has pointed to Fas as an important mediator of beta-cell apoptosis, downstream caspase 8 and 3 are also well
known for their roles as the principle executioners of beta-cells. *In vivo*, deletion of either caspase 8 or 3 in mouse beta-cells has shown to be protective against low doses of streptozotocin-induced cell death [37, 38]. Taken together, these results suggest that a loss of c-Kit signaling promotes beta-cell apoptosis and dysfunction, in part, by activation of the Fas-dependent apoptotic pathway.

In this study, we demonstrated that c-Kit deficiency led to an increase in Fas expression, and a mutation in *Fas* rescued defects associated with the *c-Kit*^{Wv/+} mutation. The correlation between c-Kit and Fas signaling coincides well with previous studies, which suggest that PI3K/Akt signaling via c-Kit suppresses Fas-mediated extrinsic apoptotic signaling. However, several lines of evidence have also demonstrated that SCF-induced PI3K/Akt pathway signaling can inactivate proapoptotic transcriptional factor, FKHRL-1 [8], as well as Bim, a proapoptotic member of the Bcl-2 family [10]. Therefore, our findings suggest that Fas-mediated apoptotic signaling is directly involved in beta-cell dysfunction, especially when Fas is up-regulated due to the *c-Kit Wv* mutation, but we also cannot exclude the participation of other apoptotic factors that may be regulated by the disrupted c-Kit/PI3K/Akt pathway.

The biological role of Fas signaling is becoming increasingly complex. Controversial findings have reported both apoptotic and anti-apoptotic roles for Fas in the beta-cell *in vivo*. A previous study has reported that Fas is essential for beta-cell insulin secretory function, but not in the regulation of beta-cell mass [7]. Other studies have showed that islet-specific *Fas* deletion is protective against FasL- and ceramide-induced apoptosis *ex vivo*, and enhances beta-cell insulin secretion *in vivo* [2]. These discrepancies may be linked to differences in genetic backgrounds of the mouse strains used in these two studies. In this study, *Wv;−/−* mice were obtained by crossbreeding *c-Kit*^{Wv/+} and *Fas*^{lpr/lpr} mice both from a C57BL/6J background. Using the same mutant mouse model, previous studies have reported that loss of Fas function led to reduced apoptosis and improved function in granulosa cells, oocytes and germ cells of *c-Kit*^{Wv/+} mice [21, 22]. In agreement with these findings, we propose that a balance between c-Kit and Fas signaling is important for beta-cell survival and function.
Through analyses of INS-1 cells and c-Kit$^{Wv/+}$;Fas$^{lp/lpr}$ mice, our results suggest that SCF/c-Kit interactions prevent Fas-mediated beta-cell apoptosis and dysfunction. This study advances the understanding of the relationship between c-Kit-mediated survival signals and Fas-mediated death signals in beta-cells, which will assist in the development of protocols that maintain beta-cell survival and function essential for cell-based therapies in the treatment of diabetes.
4.5 References

33. Kim JM, Yoon YD, Tsang BK (1999) Involvement of the Fas/Fas ligand system in p53-mediated granulosa cell apoptosis during follicular development and atresia. Endocrinology 140:2307–2317. doi: 10.1210/endo.140.5.6726

Chapter 5

5 Critical role of c-Kit in beta-cell function: increased insulin secretion and protection against diabetes\(^4\)

\(^4\) This chapter has been modified and adapted from the following manuscript:

5.1 Introduction

c-Kit is expressed in fetal and adult rodent pancreatic islets [1-4]. Our previous studies demonstrated that human and rat fetal pancreatic ductal cells expressing c-Kit display high proliferation and SCF expression [5-7]. Fetal rat islets treated with SCF demonstrates to a significant increase in insulin and DNA content [1]. Manipulation of islets in cell culture has further revealed that c-Kit-enriched cells can give rise to new beta-cells that secrete insulin in a glucose-responsive fashion [8]. However, down-regulation of c-KIT expression in the human islet-epithelial clusters using siRNA leads to significantly reduced mRNA and protein levels of PDX-1 and insulin in conjunction with decreased cell proliferation and increased cell death [6]. These studies reveal a remarkable correlation between c-Kit function and enhanced beta-cell development and function. After pancreatic duct ligation in the rat, c-Kit is activated in ductal cells during islet cell neogenesis, along with increased of Pdx-1 expression [9]. Furthermore, increased c-Kit and Pdx-1 expression is observed in islets of streptozotocin-induced diabetic rat pancreata, suggesting that c-Kit is involved in beta-cell regeneration [10].

Homozygous c-Kit null mutant mice display relatively normal islet morphology, but they die shortly after birth and are not available for further functional studies [11]. We have previously characterized c-Kit$^{Wv/+}$ mice, which have a point mutation in c-Kit, disrupting its receptor function. These mice exhibit a loss of beta-cell mass and proliferation, resulting in early onset of diabetes [12]. However, the global c-Kit$^{Wv/+}$ mice model may not be sufficient to reveal whether c-Kit plays a primary or secondary role in beta-cell survival and function. In this study, we describe a novel mouse model, c-KitβTg, with specific c-KIT overexpression in beta-cells to further delineate the physiological role of c-Kit in normal, HFD-induced diabetic and c-Kit$^{Wv/+}$ mice.

5.2 Materials and methods

Mouse model: transgenic mice (c-KitβTg) with the human c-KIT gene insertion specifically in beta-cells was the experimental group, while the wild type (WT) littermates without the human c-KIT gene were designated as the control group. Both c-KitβTg and WT mice were kept for 4 to 40 weeks of age with normal diet at which point,
metabolic studies, and subsequent islet morphological studies, islet qRT-PCR, and islet protein analyses were performed. For the HFD study, c-KitβTg and WT mice at 6 weeks of age were fed HFD for 4 weeks, at which point metabolic studies, and islet morphological studies were performed. For a rescue study in c-Kit$^{Wv/+}$ mice, the c-KitβTg;Wv mouse model was generated by crossbreeding c-KitβTg with c-Kit$^{Wv/+}$ mice, yielding mice with four different genotypes including: wild type (WT), c-KitβTg, c-Kit$^{Wv/+}$ (Wv), and c-KitβTg;c-Kit$^{Wv/+}$ (c-KitβTg;Wv), that were kept until 8 weeks of age, at which point metabolic studies were performed. Only male mice were used for this study. Generation of animal models was detailed in section 2.1.3, and genotyping was detailed in section 2.2.

Metabolic studies, in vivo, and ex vivo GSIS analyses: Body weight, blood glucose levels (non-fasting, 4-hour and overnight fasting (16-hour)), IPGTT and IPITT analyses were performed throughout the study. In vivo GSIS, and ex vivo GSIS on isolated islets, were performed on mice in the normal diet, the HFD, and the rescued study. Food intake was monitored at 6 weeks of age for a 2-week period in the HFD study. See description in sections 2.3, 2.4 and 2.5.

Immunofluorescence and morphometric analyses: Pancreatic tissue sections from mice were prepared and double-stained with appropriate antibodies listed in Appendix 5. Islet number, islet size, alpha and beta-cell mass were measured. Proliferation (Ki67$^+$ labeling), Pdx-1, Pax6, Nkx2.2, Nkx.6.1, c-Kit, SCF, eGFP, Glut2, Glp1R (Glucagon-like peptide 1 receptor) positive staining in beta-cell nuclear was determined by double immunofluorescence staining. MafA$^+$ staining on pancreatic islets was determined by immunohistochemical, as detailed in section 2.7.

Protein extraction and western blot analyses: protein levels of Pdx-1, c-Kit, SCF, eGFP, phospho-AktS473, total Akt, phospho-Gsk3βS9, total Gsk3β, cyclin D1, and correspond housekeeping proteins including calnexin and β-actin from isolated mouse islets was analyzed (Appendix 6), as detailed in section 2.8.

RNA extraction and real-time RT-PCR analyses: RNA was extracted from isolated mouse islets. mRNA expression of c-Kit, Glp1r (Glucagon-like peptide 1 receptor), Gcg
Glucagon, Slc2a2 (Glut2), Insulin, MafA, Neurod1, Nkx2.2, Nkx6.1, Pax4, Pax6, Pdx-1, Kitl (SCF) was measured and normalized to 18S rRNA (Appendix 7), as detailed in section 2.9.

5.3 Results

5.3.1 Generation of transgenic mouse model with c-KIT overexpression specifically in beta-cells

We generated c-KitβTg mice on a C57BL/6J background using the RIP to direct overexpression of the human c-KIT gene specifically in beta-cells. Human c-KIT was also linked with an IRES-eGFP to facilitate monitoring of transgene expression. Immunoblot analysis of eGFP in pancreas, liver, muscle, brain and isolated islet protein lysates showed positive signals in the pancreas and islets of c-KitβTg mice (Figure 5-1A). The RIP did not lead to any aberrant transgene expression. Fluorescence microscopy showed that eGFP was present in islets freshly isolated from c-KitβTg, but not in those from WT littermates (Figure 5-1B). This was further confirmed by immunofluorescence staining for eGFP and insulin (Figure 5-1B). The human c-KIT mRNA was only detected in c-KitβTg mouse islets (Figure 5-1C), a finding corroborated by elevated islet c-Kit levels (Figure 5-1D) and c-Kit immunofluorescence staining (Figure 5-1E). We also examined the abundance of SCF, a ligand of c-Kit, in c-KitβTg mouse islets (Figure 5-2A). A significant increase of SCF (also known as Kitl) mRNA was noted in c-KitβTg islets compared with WT islets (Figure 5-2A); however, protein levels of SCF were not statistically different between c-KitβTg and WT islets (Figure 5-2B). Taken together, these results indicate that overexpression of human c-KIT under the transcriptional control of the RIP in c-KitβTg mice is specific to beta-cells.
Figure 5-1. Generation of C57BL/6J transgenic mice with c-KIT overexpression specifically in beta-cells (c-KitβTg).

A) Western blot analysis of eGFP abundance in tissues as indicated and isolated islets. Representative blots are shown. (B) Abundance of eGFP on freshly isolated islets and pancreatic sections of 4-week-old WT and c-KitβTg mice by double immunofluorescence staining for eGFP (green) with insulin (red). (C) qRT-PCR analysis of the human c-KIT mRNA in isolated islets of WT and c-KitβTg mice at 4 weeks of age. (D) Western blot analysis of c-Kit levels in isolated islets of WT and c-KitβTg mice at 8 weeks of age. Data are expressed as mean ± SEM (n=3), **p<0.01 analyzed by unpaired student’s t-test. (E) Immunofluorescence staining for c-Kit (green) and insulin (red) on pancreatic sections from 4-week-old WT and c-KitβTg mice. Nuclei were stained with DAPI (blue). Representative images are shown. Scale bars (B, E), 25 µm. eGFP: enhanced green fluorescent protein.
Figure 5-2. Expression of SCF levels in C57BL/6J transgenic mice with c-KIT overexpression specifically in beta-cells (c-KitβTg).

(A) qRT-PCR and (B) western blot analysis of SCF in isolated islets of WT and c-KitβTg mice at 8 weeks of age. Representative blots are shown. Data are normalized to loading control (β-actin). Data (A and B) are expressed as mean ± SEM (n = 4), ***p<0.001 analyzed by unpaired student’s t-test.
5.3.2 Improved glucose tolerance and insulin secretion in c-KitβTg mice

There were no significant differences in body weight during the 40 weeks of observation (Figure 5-3A), with no changes in food intake at 8 weeks of age, between c-KitβTg and WT mice (Figure 5-3B). No significant differences in 4-hour fasting plasma insulin and blood glucose levels (Figure 5-3C and D) were detected between c-KitβTg and WT mice at 8 weeks of age; however, the overnight fasting blood glucose levels were significantly lower in c-KitβTg mice than in WT littermates (Figure 5-3D). The IPGTT showed a relatively similar response capacity in c-KitβTg and WT mice at 4 weeks of age (Figure 5-4A). However, significantly improved glucose tolerance was observed in c-KitβTg mice at 8 and 20 weeks of age, along with significant decreases in the AUC during the IPGTT (Figure 5-4B and C). No changes were observed in insulin tolerance between the experimental groups (Figure 5-4D). Furthermore, the effect of c-KIT overexpression on beta-cell insulin secretion was significant, with isolated islets from c-KitβTg mice releasing significantly more insulin than WT littermates in response to 22 mmol/L glucose (Figure 5-4E). This was associated with higher insulin content in c-KitβTg islets (Figure 5-4F).
A

Body weight (g)

- WT(M)
- c-KiβTg(M)

4 wk 8 wk 20 wk 40 wk

B

Food intake (g/mouse/day)

- WT(M)
- c-KiβTg(M)

C

Fasting plasma insulin level (pmol/l)

WT c-KiβTg

D

Blood glucose (mmol/l)

- non-FBG
- 4h-FBG
- ON-FBG

WT c-KiβTg
Figure 5-3. Body weight, food intake and blood glucose level in c-KitβTg mice.

(A) Body weight of c-KitβTg and WT mice from 4 to 40 weeks of age. (B) Food intake, (C) Fasting (4-hour) plasma insulin and (D) blood glucose levels in c-KitβTg and WT mice at 8 weeks of age. Data (A-D) are expressed as mean ± SEM (n=5-18). **p<0.01 analyzed by unpaired student’s t-test. FBG: fasting blood glucose; ON: overnight.
Figure 5-4. Glucose tolerance, GSIS, and insulin content in c-KitβTg mice.

IPGTT at 4 (A), 8 (B), and 20 (C) weeks of age, and (D) IPITT at 8 weeks of age on c-KitβTg and WT mice. Glucose responsiveness of the corresponding experimental groups is shown as a measurement of AUC of the IPGTT or IPITT graphs expressed as (mmol/L x minutes). (E) Ex vivo GSIS on isolated islets from c-KitβTg and WT mice at 8 weeks of age. Data are expressed as fold change normalized to basal (2.2 mM glucose) secretion. (F) Insulin content in isolated islets from c-KitβTg and WT mice at 8 weeks of age where data are normalized to DNA content. Data (A-F) are expressed as mean ± SEM (n=3-18). *p<0.05, **p<0.01, ***p<0.001 analyzed by unpaired student’s t-test.
5.3.3 Increased islet transcription factors, beta-cell mass and proliferation in c-KitβTg mice

To further characterize the functional role of c-Kit in beta-cells, we examined levels of transcription factors essential for islet growth, function and morphology in c-KitβTg and WT mice. At 8 weeks of age, we observed a slightly increased islet number (Figure 5-5A), with a significant increase in the number of small (<500 µm²) and large islets (>10,000 µm²; Figure 5-5B) in c-KitβTg mice. No significant alterations in alpha-cell mass were detected between c-KitβTg and WT mice (Figure 5-5C). However, beta-cell mass in c-KitβTg mice was increased by 1.6-fold compared with WT (Figure 5-5D). Increased beta-cell mass was associated with an increase in beta-cell proliferation in c-KitβTg mice (Figure 5-5E and F). qRT-PCR analyses of Pdx-1, Neurod1, MafA, Pax6, Nkx2.2 and Nkx6.1 showed significantly increased mRNA levels in c-KitβTg mice (Figure 5-6A), with elevated intensity of the corresponding signals in the islets of c-KitβTg mice (Figure 5-6B). The expression of Glut2, Ins1 and Ins2, Gcg and Glp1r mRNA in isolated c-KitβTg islets was also significantly increased (Figure 5-7A) with relatively enhanced Glut2 and Glp1R staining (Figure 5-7B).
Figure 5-5. Islet morphology in c-KiβTg mice at 8 weeks of age.

Morphometric analyses of islet number (A), islet size (B), alpha-cell mass (C), beta-cell mass (D), and percentage of Ki67+ beta-cells (E) in c-KiβTg and WT mice at 8 weeks of age. Data (A-E) are expressed as mean ± SEM (n=4–8), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test. (F) Double immunofluorescence staining of Ki67 (green), with insulin (red) on pancreatic sections from 8-week-old c-KiβTg and WT mice. Nuclei were stained with DAPI (blue). Arrows indicate Ki67+/insulin+ cells. Representative images are shown. Scale bar, 25 µm.
Figure 5-6. Expression of islet transcription factors in c-KitβTg mice at 8 weeks of age.

(A) Islet transcription factors in c-KitβTg and WT mice at 8 weeks of age, as analyzed by qRT-PCR. Data are expressed as mean ± SEM (n=4–8), *p<0.05, **p<0.01, and ***p<0.001 analyzed by unpaired student’s t-test. (B) Double immunofluorescence staining for transcription factors (green) with insulin (red), with nuclei stained with DAPI (blue), with immunohistochemistry staining for MafA (red in nuclei) on pancreatic sections from 8-week-old c-KitβTg and WT mice. Representative images are shown. Scale bar, 50 µm.
Figure 5-7. Expression of islet endocrine genes, Glut2, and Glp1 receptors in c-KitβTg mice at 8 weeks of age.

(A) Islet gene expression in c-KitβTg and WT mice at 8 weeks of age, as analyzed by qRT-PCR. Data are expressed as mean ± SEM (n=4–8), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test, (B) double immunofluorescence staining for Glut2 and Glp1R (green) with insulin (red), with nuclei stained with DAPI (blue) on pancreatic sections from 8-week-old c-KitβTg and WT mice. Representative images are shown. Scale bar, 50 µm.
5.3.4 Increased PI3K/Gsk3β/cyclin D1 signaling pathway in c-KitβTg mouse islets

Our previous study showed that the c-Kit Wv mutation caused beta-cell dysfunction [12], and that this mutation was associated with down-regulation of the Akt/Gsk3β/cyclin D1 pathway [13]. We therefore examined whether signaling molecules up- and downstream of the PI3K/Akt pathway or cell survival signals are altered in c-KitβTg islets. We found that protein levels of S473 phospho-Akt (Figure 5-8A), S9 phospho-Gsk3β (Figure 5-8B), cyclin D1 (Figure 5-8C) and Pdx-1 (Figure 5-8D) were significantly increased in c-KitβTg islets compared with islets isolated from WT littermates.
Figure 5-8. Levels of phosphorylated Akt/Gsk3β/cyclin D1 signaling and downstream signaling molecules in c-KitβTg mice at 8 weeks of age.

Western blot analyses of (A) S473-phosphorylated (P) and total (T) Akt, (B) Ser9 P-Gsk3β and T-Gsk3β, (C) cyclin D1 and (D) Pdx-1 abundance in isolated islets of c-KitβTg and WT mice at 8 weeks of age. Representative blots are shown. Data (A-D) are normalized to total protein or loading control (β-actin) and expressed as mean ± SEM (n=4-5), *p<0.05, **p<0.01 and ***p<0.001 analyzed by unpaired student’s t-test.
5.3.5 *c-KitβTg* mice tolerate HFD-induced diabetes

To investigate how beta-cell-specific *c-KIT* overexpression would affect glucose homeostasis of mice under diabetic conditions, *c-KitβTg* and *WT* littermates were subjected to a HFD. Similar body weight gains were observed in both experimental groups (Figure 5-9A). Interestingly, after 4 weeks of HFD, the 4-hour fasting glucose level was lower in *c-KitβTg-HFD* mice than in *WT-HFD* mice (Figure 5-9B). Glucose intolerance was noted in *WT-HFD* littermates, but was significantly improved in *c-KitβTg-HFD* mice (Figure 5-9C), with similar results for insulin response in *WT-HFD* as determined by the IPITT (Figure 5-9D). *In vivo* GSIS assays revealed slightly higher basal and 5-minute plasma insulin levels in *c-KitβTg-HFD* mice (Figure 5-9E); moreover, at 35 minutes after glucose stimulation, the plasma insulin release was significantly reduced in *WT-HFD* compared with *c-KitβTg-HFD* mice (Figure 5-9E). GSIS on isolated islets further demonstrated that *c-KitβTg-HFD* islet insulin secretion was significantly increased in response to 22 mmol/L glucose compared with *WT-HFD* islets (Figure 5-9F). The insulin content was also significantly increased in *c-KitβTg-HFD* islets (Figure 5-9G). The improved metabolic phenotype of *c-KitβTg-HFD* mice was associated with a significant increase in the number of pancreatic islets and beta-cell mass compared with *WT-HFD* mice (Figure 5-10A and C). A slightly increased alpha-cell mass was observed in *c-KitβTg-HFD* mice; however, the increase was not statistically significant (Figure 5-10B). Nevertheless, a significant increase in beta-cell mass was detected, with increased beta-cell proliferation in *c-KitβTg-HFD* mice compared with *WT-HFD* group (Figure 5-10D).
Figure 5-9. Effect of a HFD on c-KitβTg mice.

(A) Weight gained per food intake, and (B) 4-hour fasting blood glucose levels in WT-HFD and c-KitβTg-HFD mice. (C) IPGTT and (D) IPITT in WT-HFD and c-KitβTg-HFD mice. Glucose responsiveness of the corresponding experimental groups is shown as the AUC of the IPGTT (C, insert) or IPITT (D, insert) graphs with units of (mmol/L x minutes). (E) In vivo GSIS of WT-HFD and c-KitβTg-HFD mice (Lighted bars, WT-HFD insulin; darken bars, c-KitβTg-HFD insulin; black circles, WT-HFD glucose; black squares, c-KitβTg-HFD glucose). (F) Ex vivo GSIS on isolated islets from WT-HFD and c-KitβTg-HFD mice. Data are expressed as fold change normalized to basal (2.2 mM glucose) secretion as mean ± SEM. (G) Insulin content in isolated islets from WT-HFD and c-KitβTg-HFD mice where data are normalized to DNA content and expressed as mean ± SEM. Data (A-G) are expressed as mean ± SEM (n = 5-10), *p<0.05 and **p<0.001 analyzed by unpaired student’s t-test.
Figure 5-10. Effect of a HFD on islet morphology of c-KitβTg mice.

Morphometric analyses of islet number (A), alpha-cell mass (B), beta-cell mass (C), and percentage of Ki67+ beta-cells (D) in WT-HFD and c-KitβTg-HFD mice. Data (A-D) are expressed as mean ± SEM (n=6-7), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test.
5.3.6 \textit{c-Kit}^{Wv/+} mice with specific overexpression of \textit{c-KIT} in beta-cells display normal glucose metabolism

c-Kit^{Wv/+} mice were bred with \textit{c-KitβTg} mice to determine whether \textit{c-KIT} overexpression in beta-cells could rescue animals with the \textit{c-Kit} \textit{W} mutation from early onset of diabetes. \textit{WT}, \textit{c-KitβTg} and \textit{c-KitβTg;Wv} mice exhibited similar fasting blood glucose levels, with a significant improvement in fasting blood glucose levels being noted in \textit{c-KitβTg;Wv} compared with \textit{c-Kit}^{Wv/+} mice (Figure 5-11A). \textit{c-KitβTg;Wv} mice also had a similar glucose tolerance capacity to that of \textit{WT} and \textit{c-KitβTg} groups, and also displayed significant decreases in the AUC (Figure 5-11B). The IPITT revealed no differences between the experimental groups (Figure 5-11C). Significantly improved GSIS was observed at 5 and 35 minutes in \textit{c-KitβTg;Wv} mice compared with \textit{c-Kit}^{Wv/+} mice (Figure 5-11D). To further confirm islet function, an \textit{ex vivo} GSIS study was conducted. Insulin secretion in response to a 22 mmol/L glucose challenge in \textit{c-KitβTg;Wv} islets was similar to that in \textit{WT} and \textit{c-KitβTg} islets (Figure 5-11E), but significantly higher than that of \textit{c-Kii}^{Wv/+} islets (Figure 5-11E). These results indicate that the \textit{c-Kit} point mutation is directly responsible for defective beta-cell function in \textit{c-Kit}^{Wv/+} mice and that \textit{c-KIT} overexpression was able to preserve beta-cell function in \textit{c-Kit}^{Wv/+} mice.
Figure 5-11. Glucose tolerance and insulin secretion in c-KitβTg;Wv mice.

(A) 4-hour fasting blood glucose levels, (B) IPGTT, and (C) IPITT in WT, c-KitβTg, c-KitWv/+ and c-KitβTg;Wv mice at 8 weeks of age. Glucose responsiveness of the corresponding experimental groups is shown as the AUC of the IPGTT (B, insert) or IPITT (C, insert) graphs with units of (mmol/L x minutes). (D) In vivo GSIS of WT (white bars), c-KitβTg (black bars), c-KitWv/+ (grey bars) and c-KitβTg;Wv (dotted bars) mice. (E) Ex vivo GSIS on isolated islets from c-KitβTg;Wv mice are improved in response to a 22 mmol/L glucose challenge. Data are expressed as fold change normalized to basal (2.2 mM glucose) secretion. Data (A-E) are expressed as mean ± SEM (n=3-8), *p<0.05, **p<0.01, and ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 5-12. A proposed model of SCF/c-Kit signaling to mediate beta-cell proliferation and function.

SCF/c-Kit interaction activates the PI3K/Akt/Gskβ pathway. This leads to increased cyclin D1, Pdx-1 and MafA expressions which are important to beta-cell proliferation, and function. sSCF: soluble SCF; mSCF: membrane-bound SCF. Green arrow: positive signaling.
5.4 Discussion

Here, we demonstrated that c-KIT overexpression in beta-cells confers improved glucose metabolism by enhancing insulin secretion, and increasing beta-cell mass and proliferation, probably through activation of the PI3K/Akt signaling pathway. When c-KitβTg mice were subjected to a HFD, they displayed resistance to HFD-induced glucose intolerance and preserved beta-cell function relative to WT littermates. Moreover, c-KitβTg mice were protected against early onset of diabetes. These results clearly indicate that c-Kit is intrinsic to beta-cell function and proliferation. This effect is mediated by the regulation of key beta-cell transcription factors (e.g. Pdx-1 and MafA) and possibly through activation of downstream PI3K/Akt signaling (Figure 5-12).

Compared with WT mice, c-KitβTg mice had significantly lower overnight fasting blood glucose levels, improved glucose tolerance and enhanced GSIS. The improvement in glucose metabolism of c-KitβTg mice was associated with an increase in beta-cell mass and proliferation, as well as in Glut2 and Glp1r expression. These results corroborate our previous finding of glucose intolerance in c-KitWv/+ mice [12]. We monitored c-KitβTg mice up to 40 weeks of age and did not detect any abnormal cell growth or islet tumors (data not shown), indicating that beta-cell specific c-KIT overexpression does not lead to malignancy. We detected a significant increase in SCF mRNA, but only a modest increase in the corresponding protein. This is likely to be due to our western blotting technique, which could only detect membrane-associated, not soluble, SCF. Nevertheless, the concentration of SCF may be in excess and is sufficient to interact with the increased number of c-Kit (~25%) to transduce markedly enhanced intracellular signals in c-KitβTg mice. Our data indicate that c-Kit overabundance in beta-cells enhances glucose tolerance and beta-cell function in males. These sex-related differences in glucose metabolism are consistent with our previous results using c-KitWv/+ mice and conditional β1 integrin knockout mice [12, 14], and have also been described in other mouse models indicating that the sex-related differences may involve other pathways, such as the contribution of estrogen to glucose homeostasis in female rodents [15, 16].
Significantly increased Pdx-1 mRNA and protein abundance was observed in c-KitβTg mice. We previously reported that SCF-stimulated c-KIT activity leads to increased PDX-1 mRNA expression in human fetal islet-epithelial clusters [7], while c-KitβWv/+ mice showed a significant reduction in Pdx-1 expression in islets [12]. It is well documented that Pdx-1 is integral to normal pancreas development and beta-cell function [17]. In addition to beta-cell proliferation [18], Pdx-1 expression is also required for modulation of insulin gene expression and glucose metabolism [19]. Our results showed that c-KitβTg islets exhibited high Pdx-1 levels and had increased beta-cell proliferation and mass, confirming a correlation between Pdx-1 and islet beta-cell replication. Indeed, the enhanced islet insulin secretion in response to a high glucose challenge and the improved glucose tolerance observed in c-KitβTg mice may also be due to increased islet Pdx-1 abundance. Interestingly, significant up-regulation of MafA mRNA was observed in c-KitβTg mice. MafA binds to the C1 element of the insulin gene to modulate insulin gene transcription and enhance beta-cell maturation [20]. MafA-null mice had a defect only in adult islet architecture and beta-cell activity, while MafA overproduction enhanced beta-cell insulin biosynthesis and secretion through up-regulation of important beta-cell genes, including Pdx1, Neurod1, Nkx6.1 and Glp1r [21]. Moreover, overexpression of MafA in neonatal rat beta-cells led to enhanced glucose-responsive insulin secretion and beta-cell maturation [22]. Thus, improved glucose metabolism and insulin secretion in c-KitβTg mice may be due to increased c-Kit stimulation of islet Pdx-1 and MafA expression.

The molecular mechanisms associated with the phenotypic changes observed in c-KitβTg mice include significant up-regulation of phospho-Akt and phospho-Gsk3β in beta-cells. Our previous in vitro study on human fetal islet-epithelial clusters demonstrated that increased SCF/c-KIT interactions resulted in up-regulation of PI3K/AKT, but not of ERK pathway signaling [7]. In this study, we also observed significant increases in Akt and Gsk3β phosphorylation together with up-regulation of cyclin D1 in islets isolated from c-KitβTg mice. These results suggest that c-Kit might stimulate beta-cell function and proliferation via direct activation of the Akt/Gsk3β/cyclin D1 pathways [7, 23], in association with Pdx-1 and MafA-induced insulin secretion. Islets of beta-cell specific Gsk3β ablated mice had increased beta-cell mass with lower fasting blood glucose,
along with improved glucose tolerance and GSIS [24]. In contrast, the Akt/Gsk3β signaling pathway is significantly down-regulated in c-Kit$^{Wv/+}$ mouse islets [13]. Taken together, these results suggest that Akt/Gsk3β/cyclin D1 signaling downstream of c-Kit is essential for beta-cell function.

HFD treatment is detrimental to beta-cell function and insulin sensitivity in mice [25, 26], and leads to impaired glucose tolerance due to insulin resistance and insufficient beta-cell insulin secretion [25-28]. c-KitβTg and WT mice maintained on a HFD showed similar food intake and weight gain. Importantly, c-KitβTg-HFD mice exhibited significantly improved glucose tolerance and GSIS, supporting the notion that c-Kit has a direct effect on beta-cell function via up-regulation the PI3K/Akt signaling pathway, which enables c-KitβTg-HFD mice to tolerate HFD-induced diabetes.

Finally, we bred c-KitβTg with c-Kit$^{Wv/+}$ mice to determine whether c-KIT overexpression could prevent beta-cell dysfunction in c-Kit$^{Wv/+}$ mice. Our results showed that c-KitβTg;Wv mice displayed normal fasting glycaemia and glucose tolerance, as well as enhanced glucose-induced insulin secretion. This marked improvement in glucose metabolism in c-KitβTg;Wv mice provided direct evidence of a primary effect of c-Kit on beta-cell function.

In summary, we showed that c-KIT overexpression in beta-cells led to improved beta-cell proliferation and function, and protected mice from HFD-induced diabetes. Furthermore, beta-cell specific overexpression of c-KIT was able to prevent beta-cell defects in c-Kit$^{Wv/+}$ mice. This study provides direct evidence to support the notion that c-Kit plays a primary physiological role in beta-cells, and thus may help efforts to develop gene and cell therapeutic schemes for patients with diabetes.
5.5 References

Chapter 6

6 c-Kit-mediated VEGF-A production regulates islet microvasculature, beta-cell survival, and function in vivo.

This chapter has been modified and adapted from the following manuscript:

6.1 Introduction

Islet angiogenesis and innervation are required for proper endocrine pancreatic organogenesis and function [1-3]. The vascular niche that provides oxygen, exchanges nutrients and metabolites to support beta-cell survival [4], also exposes islets to inflammatory cytokines in the setting of diabetes [5, 6]. Hence, the precise regulation of islet angiogenesis plays a prominent role in the modulation of beta-cell survival and insulin production. One pro-angiogenic factor, vascular endothelial growth factor (VEGF), is produced by the beta-cell and plays a critical role in promoting and maintaining islet vascularization [4, 7, 8].

SCF/c-Kit interactions are implicated in the regulation of angiogenesis. Past studies showed that the high co-expression of c-Kit and SCF is associated with increased microvessel density and VEGF expression in multiple neoplasms [9-11]. SCF treatment of multiple c-Kit-expressing cancer cell lines revealed a significant stimulatory effect on VEGF secretion and, conversely, inhibition of c-Kit signaling by imatinib led to reduced VEGF expression [12-14]. Previous studies reported that bone marrow stem/progenitor cells expressing c-Kit established a proangiogenic milieu by releasing VEGF [15, 16]; however, a mutation in c-Kit prevents angiogenesis, interfering with myocardial repair tissue formation [16]. Furthermore, c-Kit activity was implicated in mobilization of endothelial progenitor cells required for angiogenesis, and SCF was able to enhance the neovascularization of human endothelial progenitor cells [17, 18]. Transplantation of c-Kit-expressing vascular endothelial progenitor cells could generate functional blood vessels in vivo, but inactivation of c-Kit resulted in impaired endothelial cell proliferation and angiogenesis [19]. Taken together, these studies reveal a remarkable correlation between c-Kit and VEGF-driven angiogenesis.

Although c-Kit has been studied in human and murine pancreatic cells, its involvement in the regulation of VEGF production in islets has not been evaluated. Of the six identified members in the VEGF family, the pancreatic beta-cell produces significant levels of VEGF-A, primarily the VEGF-A 120 and VEGF-A 164 isoforms. Prior studies using the genetic mouse model with VEGF-A deficit in beta-cells have demonstrated that there is causal effect between VEGF-A production and proper islet vascular development: the
functional vascular niche is not only required for the assembly of complex coordinated islet architecture, but also for normal islet cell function [2, 4, 8]. In this study, we hypothesized that c-Kit-dependent regulation of VEGF-A is critical for islet vasculature, maintaining islet function and survival. Using the c-Kit \(W^v \) mutant (c-Kit\(^{Wv/+}\)) and beta-cell-specific c-KIT overexpressing (c-Kit\(^βTg\)) mouse models, we aimed to characterize the functional role of SCF/c-Kit interactions in mediating VEGF-A production, islet angiogenesis, as well as beta-cell function and survival under normal diet, and long-term HFD conditions.

6.2 Materials and methods

Mouse model: 1) cross-breeding c-Kit\(^{Wv/+}\) with c-Kit\(^βTg\) mice generated wild-type (WT), c-Kit\(^{Wv/+}\), c-Kit\(^βTg\), and c-Kit\(^βTg\);c-Kit\(^{Wv/+}\) (c-Kit\(^βTg\);\(W^v\)), and these four experimental groups under normal diet were maintained until 8 weeks of age at which point, islet vascular morphological studies, and islet protein analyses were performed. 2) WT and c-Kit\(^βTg\) mice were subjected to either normal diet, or HFD for 20 weeks starting at 6 weeks of age at which point, metabolic studies, islet morphological studies, pancreatic vascular morphological studies, and islet protein analyses were performed. Only male mice were used for this study. Generation of animal models was detailed in section 2.1.4, and genotyping was detailed in section 2.2.

Metabolic studies: Body weight, blood glucose levels (non-fasting, 4-hour and overnight fasting (16-hour)), IPGTT and IPITT analyses were performed on mice in the normal diet study, and the HFD study, as detailed in section 2.3.

Immunofluorescence and morphometric analyses: Pancreatic tissue sections from mice were prepared and double-stained with appropriate antibodies listed in Appendix 5. Islet number, islet size, alpha and beta-cell mass was measured. Islet capillary density, capillary area per islet, average islet capillary size and diameter, and pancreatic exocrine vasculature including exocrine capillary density, and exocrine capillary area were quantified. Proliferation (Ki67\(^+\) labeling), apoptosis (TUNEL\(^+\) labeling), Pdx-1, Nkx6.1, E-cad (E-cadherin), PECAM-1 positive staining in beta-cell nuclei was determined by
double immunofluorescence staining. MafA⁺ staining in pancreatic islets was determined by immunohistochemical staining, as detailed in section 2.7.

Protein extraction and western blot analyses: protein levels of phospho-Akt^{S473}, total Akt, phospho-P70S6K^{T389}, total P70S6K, phospho-NFkBp65^{S536}, total NFkBp65, Pdx-1, VEGF-A, PECAM-1, E-cad, cleaved-PARP^{D214} (cleaved-Poly ADP ribose polymerase), total PARP, Mac-2 (Galectin-3), IL-1β, TNF-α (Tumor necrosis factor-α), and corresponding housekeeping protein GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) from isolated mouse islets was analyzed (Appendix 6), as detailed in section 2.8.

6.3 Results

6.3.1 c-Kit function is required for maintaining the normal islet microvasculature *in vivo*

To investigate the role of c-Kit in islet microvasculature *in vivo*, we examined endothelial cells in 8-week-old mouse pancreatic sections using an immunostaining approach. We observed a reduced staining for PECAM-1⁺ (specific label for endothelial cells) (Figure 6-1A) but no substantial change in islet capillary number (Figure 6-1B) in c-Kit^{Wv/+} mouse islets compared to *WT* group. However, significantly decreased blood vessel area over islet area was found in c-Kit^{Wv/+} mouse islets, compared to *WT* by 8 weeks of age (Figure 6-1C). Intra-islet vessels were also significantly smaller in c-Kit^{Wv/+} mouse islets, as reflected by a 50% reduction in the average islet capillary size (*vs.* *WT* islets, Figure 6-1D). This was confirmed by measurement of the internal capillary diameter that showed ~30% reduction in c-Kit^{Wv/+} mouse islets when compared to *WT* (Figure 6-1E). In contrast to c-Kit^{Wv/+} mice, there was a significant improvement in islet capillary density and area in c-KitβTg;*Wv* mouse islets (*vs.* c-Kit^{Wv/+} islets, Figure 6-1B and C). Furthermore, there was ~30% relative increase in average islet capillary size in c-KitβTg;*Wv* mouse islets (*vs.* c-Kit^{Wv/+} islet, Figure 6-1D) along with significantly increased capillary diameter (*vs.* c-Kit^{Wv/+} islet, Figure 6-1E). No significant changes in islet vasculature were observed in c-KitβTg mice. These data indicate that c-Kit function is required for maintaining the normal islet vasculature.
Figure 6-1. Overexpressing c-KIT in beta-cells rescues loss of islet microvasculature in c-KitWv/+ mice.

(A) Representative images of PECAM-1 (green) co-stained with insulin (red), and nuclei stain DAPI (blue) of 8-week-old WT, c-KitWv/+, c-KitβTg, and c-KitβTg; Wv pancreatic sections. Scale bar, 25 µm. Magnified images are shown in insets. Arrows: PECAM-1+ cells in the islets. Quantitative analyses between all experimental groups of islet capillary density (B), capillary area per islet (C), average islet capillary size (D), and average islet capillary diameter (E). Data (B-E) are expressed as mean ± SEM (n=5), *p<0.05, **p<0.01 and ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
6.3.2 Beta-cell specific c-Kit maintains islet microvasculature via the PI3K/Akt/mTOR pathway and VEGF-A production in vivo

We next sought to determine the underlying mechanisms by which c-Kit regulates islet microvasculature in vivo. Using isolated islets from pancreata of 8-week-old WT, c-Kit_{Wv/+}, c-KitβTg, and c-KitβTg;Wv mice, we found a significant decrease in phosphorylation of Akt, P70S6K, and p65NF-κB in c-Kit_{Wv/+} mouse islets (Figure 6-2A), which were associated with a reduced level of Pdx-1 protein (Figure 6-2B). However, when c-Kit function was restored in c-Kit_{Wv/+} beta-cells, the Akt/mTOR/p65NF-κB pathway was restored in parallel with increased Pdx-1 protein levels (Figure 6-2B). These findings were supported by immunostaining demonstrating that Pdx-1⁺, Nkx6.1⁺ and MafA⁺ staining was lower in c-Kit_{Wv/+} islets when compared to WT and c-KitβTg, as well as c-KitβTg;Wv groups (Figure 6-3). VEGF-A protein levels were also lower in c-Kit_{Wv/+} islets than in WT, c-KitβTg or c-KitβTg;Wv islets, but this only reached significance for c-KitβTg mice (Figure 6-2B).
Figure 6-2. Rescued islet microvasculature is associated with increased c-Kit-mediated VEGF-A production via the PI3K/mTOR pathway in c-KitβTg;Wv mice.

(A) Western blot analyses of S473-phosphorylated (P) and total (T) Akt, T389 P-P70S6K and T-P70S6K, S536 P-NFkBp65 and T-NFkBp65, and (B) VEGF-A and Pdx-1 abundance in islets isolated from 8-week-old WT, c-KitβTg;Wv, c-KitβTg, and c-KitβTg;Wv mice. Representative blots are shown. Data (A and B) are expressed as mean ± SEM (n=4-5), *p<0.05, **p<0.01 and ***p<0.001 analyzed by one-way ANOVA followed by LSD post-hoc test.
Figure 6-3. Expression of islet transcription factors in c-KitβTg;Wv mice.

Double immunofluorescence staining of 8-week-old WT, c-Kit^{Wv/+}, c-KitβTg and c-KitβTg;Wv pancreatic sections for transcription factors Pdx-1 or Nkx6.1 (green) with insulin (red) and nuclei stained with DAPI (blue). Immunohistochemistry staining for MafA (red in nuclei). Representative images are shown. Scale bar 25 µm.
6.3.3 \textit{c-KIT} overexpression in beta-cell promotes islet angiogenesis \textit{in vivo}

We further examined the role of \textit{c-Kit} in islet vasculature in aged (28-week-old) \textit{WT} and \textit{c-Kit}\textsubscript{Tg} mice. Double immunofluorescence for PECAM-1 and insulin showed an increased number of PECAM-1+ cells in \textit{c-Kit}\textsubscript{Tg} mouse islets (Figure 6-4A), which was correlated with an increase in capillary density and vessel area-to-islet area ratio (Figure 6-4B and C) when compared to \textit{WT} mouse islets. However, no changes in average islet capillary size or diameter (Figure 6-4D and E), and no differences in the vasculature of pancreatic exocrine tissue were observed in \textit{c-Kit}\textsubscript{Tg} mice as compared to \textit{WT} group (Figure 6-4F and G). The observed changes in islet vasculature were supported by western blot analyses showing \textasciitilde40\% increase in islet VEGF-A content, with a similar increase in PECAM-1 protein levels (Figure 6-4H).
Figure 6-4. Beta-cell specific c-KIT overexpression promotes islet angiogenesis in vivo.

Islet microvasculature morphology was analyzed in 28-week-old WT and c-KitβTg mice. (A) Representative images of PECAM-1 (green) co-stained with insulin (red). Nuclei were stained with DAPI (blue). Scale bar 25µm. Magnified images are shown in insets. Arrows: PECAM-1+ cells in the islets. Quantitative analyses of islet capillary density (B), islet capillary area per islet (C), average islet capillary size (D), average islet capillary diameter (E), exocrine capillary density (F), and exocrine capillary area (G), and western blot analyses of VEGF-A, and PECAM-1 protein expression in aged c-KitβTg mouse islets (H). Representative blots are shown. Data (B-H) are expressed as mean ± SEM (n=3-5), *p<0.05 analyzed by unpaired student’s t-test.
6.3.4 *c-KIT* overexpression exaggerates islet hyper-vasculature in 28-week-old *c-KitβTg* mice under long-term HFD.

To determine whether the enhanced islet microvasculature resulting from overexpression of *c-KIT* in beta-cell could preserve beta-cell function and survival under long-term (20-22 week) HFD, we first assessed the islet vasculature changes in WT-HFD and *c-KitβTg-HFD* mice. Immunostaining for PECAM-1 and insulin showed more dilated capillaries with accumulated red blood cells in *c-KitβTg-HFD* islets (Figure 6-5A). There were no observed differences in islet capillary density between the two experimental groups (Figure 6-5B). However, there was a significant increase in the overall blood vessel area-to-islet area ratio (Figure 6-5C), average islet capillary size (Figure 6-5D) and intra-islet capillary diameter found in *c-KitβTg-HFD* islets (Figure 6-5E). These results clearly demonstrated that there was an intra-islet capillary enlargement in *c-KitβTg-HFD* islets as compared to WT-HFD group. In contrast to the endocrine compartments, the vasculature of pancreatic exocrine tissue was unchanged (Figure 6-5F and G).
Figure 6-5. Increased vessel dilation in 28-week-old c-KitβTg mice under long-term HFD.

(A) Representative images of PECAM-1 (green) co-stained with insulin (red) in 28-week-old WT-HFD and c-KitβTg-HFD pancreatic sections. Scale bar 25 µm. Magnified images are shown in insets. Arrows: PECAM-1+ cells in islets; asterisk: red blood cells. Quantitative analyses of vasculature in endocrine (B-E), and exocrine compartment (F-G) in 28-week-old WT-HFD and c-KitβTg-HFD mice. Data (B-G) are expressed as mean ± SEM (n=5), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test.
6.3.5

c-KIT overexpression-induced hyper-vasculature impairs beta-cell function in 28-week-old c-KitβTg mice under long-term HFD

It was noted that 28-week-old c-KitβTg mice displayed persistently lower overnight fasting blood glucose, improved glucose tolerance and significant decreases in AUC when IPGTT was performed (Figure 6-6A and B), with no changes in insulin tolerance (Figure 6-6C). In addition, morphological analysis revealed significantly increased islet number (Figure 6-6D) with increased beta-cell proliferative activity (Figure 6-6E) in c-KitβTg mice. An increase in Pdx-1 and Nkx6.1 staining intensity was also noted in c-KitβTg mouse islets as compared to WT group (Figure 6-7).

However, these protective effects were diminished after long-term HFD challenge. There were no significant differences in body, pancreatic or fat pad weights between c-KitβTg-HFD and WT-HFD groups (Figure 6-8A-C). In contrast, the overnight fasting blood glucose was significantly higher in c-KitβTg-HFD mice as compared to WT-HFD group (Figure 6-8D). Glucose tolerance was progressively impaired and there were significant increases in AUC when IPGTT was performed after 20-22 weeks (Figure 6-8E and F). Although c-KitβTg-HFD mice showed a slight insulin resistance, no significant changes in the IPITT AUC were observed between groups (Figure 6-8G). In vivo GSIS assays showed significantly decreased plasma insulin levels at 35 minutes following glucose stimulation in c-KitβTg-HFD mice as compared to WT-HFD mice (Figure 6-8H). The impaired glucose tolerance of c-KitβTg-HFD mice was associated with a significant decrease in islet density (Figure 6-9A), alpha and beta-cell mass (Figure 6-9B and C). Loss of E-cadherin expression on the beta-cell surface (Figure 6-9D) and reduced total E-cadherin protein levels were observed in c-KitβTg-HFD islets when compared to WT-HFD group (Figure 6-9E).
Figure 6-6. Glucose tolerance and islet morphology in 28-week-old c-KitβTg mice.

Overnight fasting blood glucose levels (A), IPGTT (B), and IPITT (C) in WT and c-KitβTg mice at 28 weeks of age. Glucose responsiveness of the corresponding experimental groups is shown as a measurement of AUC of the graphs with units of (mmol/L x minutes). Morphometric analyses of islet number (D), and quantification of Ki67+ beta-cells (E) in WT and c-KitβTg mice at 28 weeks of age. Data (A-E) are expressed as mean ± SEM (n=5-9), *p<0.05 analyzed by unpaired student’s t-test.
Figure 6-7. Expression of islet transcription factors in 28-week-old \textit{c-Kit}β\textit{Tg} mice.

Double immunofluorescence staining for Pdx-1 or Nkx6.1 (green) and insulin (red), and nuclei stained with DAPI (blue) in 28-week-old \textit{WT} and \textit{c-Kit}β\textit{Tg} pancreatic sections. Representative images are shown. Scale bar 25 μm.
Figure 6-8. Islet hypervascularization results in impaired glucose tolerance in 28-week-old c-KitβTg mice under long-term HFD.

Body (A), pancreatic (B), and fat pad weight (C), overnight fasting blood glucose levels (D); measurement of IPGTT AUC after 4, 10, 16 and 20-22 weeks of HFD (E); IPGTT (F), IPITT (G) and in vivo GSIS (H) at 20 weeks of HFD performed on WT-HFD and c-KitβTg-HFD mice. Data (A-H) are expressed as mean ± SEM (n=7-12). *p<0.05, **p<0.01, ***p<0.001 analyzed by unpaired student’s t-test.
Figure 6-9. Altered islet morphology is observed in 28-week-old c-KitβTg mice under long-term HFD.

Quantitative analyses of islet number (A), alpha-cell (B), and beta-cell mass (C) in 28-week-old WT-HFD and c-KitβTg-HFD mice. (D) Representative images of E-cadherin (green) co-stained with insulin (red), and nuclei stained with DAPI (blue) in WT-HFD and c-KitβTg-HFD pancreatic sections. Scale bar 25 μm. (E) Western blot analysis of E-cadherin in isolated WT-HFD and c-KitβTg-HFD islets. Representative blots are shown. Data are normalized to loading control (GAPDH). Data (A-C, and E) are expressed as mean ± SEM (n=4-8), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test.
6.3.6 *c-KIT* overexpression-induced hyper-vasculature is associated with islet inflammatory response and cytokine production in 28-week-old *c-KitβTg* mice under long-term HFD

We further investigated the mechanisms of beta-cell dysfunction in *c-KitβTg-HFD* mouse islets. Total VEGF-A protein levels were significantly higher in *c-KitβTg-HFD* mouse islets (vs. *WT-HFD*, Figure 6-10A). Cleaved PARP protein levels (associated with cell apoptosis) were increased (~45%, Figure 6-10B) in parallel with a significant increase in the number of beta-cells positive for TUNEL staining (vs. *WT-HFD*, Figure 6-10C). Western blot analyses showed that levels of MAC-2, TNF-α and IL-1β were significantly elevated in *c-KitβTg-HFD* islets (Figure 6-10D), indicating increased inflammatory response was observed in *c-KitβTg-HFD* islets.
Figure 6-10. Increased islet inflammation and cytokine production is induced by islet hypervascularization in 28-week-old c-KitβTg mice under long-term HFD.

Western blot analyses of VEGF-A (A) and cleaved-PARP (B) in islets isolated from WT-HFD and c-KitβTg-HFD mice. (C) Representative images of TUNEL (green) co-stained with insulin (red) and quantitative analysis of TUNEL+/insulin+ cells in WT-HFD and c-KitβTg-HFD pancreatic sections. Protein levels of MAC-2, TNF-α, and IL-1β (D) in islets isolated from WT-HFD and c-KitβTg-HFD mice. Representative blots are shown. Data (A-B, and D) are expressed as mean ± SEM (n=4-5), *p<0.05, **p<0.01 analyzed by unpaired student’s t-test.
Figure 6-11. Proposed model of c-Kit signaling that mediates VEGF-A production and modulates islet vasculature, affecting beta-cell function and survival.

(A) c-Kit mediates VEGF-A production via the PI3K/Akt/mTOR signaling, which is essential for islet vascular formation. Subsequently, proper islet vasculature facilitates nutrient and oxygen exchange maintaining beta-cell survival and function. (B) Constitutive c-Kit-mediated VEGF-A overproduction results in increased islet vasculature. Under HFD-induced diabetic conditions, islet hypervascularization attracts macrophage infiltration and cytokine production leading to beta-cell dysfunction and apoptosis.
6.4 Discussion

The present study demonstrated that c-Kit receptor tyrosine kinase activity regulates VEGF-A production to promote islet vascular formation. At age of 8 weeks, mice bearing a loss of c-Kit function showed severe developmental defects in islet vasculature, which was rescued by c-KIT overexpression in beta-cells. c-KIT overexpression improved VEGF-A production through activation of the PI3K/Akt/mTOR signaling pathway, which maintained the vascular formation in c-KitβTg;Wv mice (Figure 6-11A). At age of 28 weeks, mice with beta-cell specific c-KIT overexpression displayed an increase in VEGF-A expression and islet vascularization with persistently improved glucose tolerance compared to WT mice. Interestingly, enhanced vasculature may expose islets to HFD-induced macrophage infiltration leading to increased inflammatory responses and elevated beta-cell apoptosis, which subsequently contributed to the development of hyperglycemia (Figure 6-11B).

The relationship between c-Kit and VEGF-A was observed in the mouse models with a loss or gain of c-Kit function in beta-cells. A substantial loss of islet vascularization was observed in c-KitWv/+ mice, while improved islet vascular formation was found in c-KitβTg;Wv mice. We previously reported that the severe loss of beta-cell mass and function were associated with glucose intolerance in c-KitWv/+ mice [20, 21], but c-KitβTg;Wv mice showed a significant improvement in glucose homeostasis [22]. It is well documented that the vascular niche serves as an inductive signal in pancreatic bud branching and islet maturation. In return, islets release VEGF-A to promote islet endothelium growth and ultimately increase islet vascularization, and this was essential for maintaining beta-cell function and survival [2, 8, 23, 24]. Islet capillaries were not only increased in quantity, but also underwent several changes at the ultrastructural level, including increased capillary diameter and size in c-KitβTg;Wv mice likely due to c-Kit-stimulated VEGF-A production. The improved islet capillary structure caused a reversal of the nutrient flow into islets, leading to improved beta-cell function, and increased insulin exocytosis into the bloodstream [25, 26]. At the cellular level, molecular mechanisms associated with the loss of islet vasculature in c-KitWv/+ mice include a significant down-regulation in the PI3K/Akt/mTOR pathway. Conversely, c-KIT
overexpression stimulates this signaling pathway including an increase in NFkB phosphorylation and VEGF-A expression. These findings were not only in agreement with previous findings [27-31], but also corroborated by our previous studies showing that the Akt-dependent pathway is a key player to mediate mitogenic signaling in human fetal islet-epithelial clusters in vitro [32, 33], and beta-cell proliferation and survival in genetic mouse models [20, 22]. Taken together, this study suggests that c-Kit mediates VEGF-A production likely via the PI3K/Akt/mTOR pathway, and plays a critical role in proper islet vascular formation in maintaining beta-cell health and euglycemia.

The observation that c-Kit promotes islet vascularization has implications not only in maintaining islet function, but could also be considered as a therapeutic target for promoting revascularization of transplanted islets. Following islet isolation, the survival of transplanted islets depends on the degrees of effective revascularization [25]. Given that the endothelial cells residing within isolated islets retained limited angiogenic capacity, it is postulated that their proliferative potential can, in part, be stimulated by VEGF-A production mediated by c-Kit in the beta-cell [1, 4, 34]. At 28 weeks of age, c-KitβTg mice showed significantly increased VEGF-A and PECAM-1 expression with increase of islet vascular formation when compared to WT mice, suggesting a chronic causal relationship between c-KIT overexpression, and increased islet VEGF-A secretion, which in turn leads to increased islet angiogenesis in mice. These in vivo observations further demonstrated that c-Kit-mediated VEGF-A production has a primary role in regulating islet angiogenesis via promoting endothelial cell proliferation and fenestration, and may help to create better methods for revascularization of transplanted islets in the treatment of diabetes.

Previous studies using prediabetic Zucker diabetic fatty rats and HFD-fed mice suggested that islet vessel dilation is an adaptive biological response in the setting of insulin resistance [5, 6, 35]. The fact that intra-islet endothelial cells were in a quiescent state in these insulin resistant animals suggested that such vascular change was independent of angiogenic processes [4, 6]. Indeed, an islet compensatory mechanism characterized by dilation of pre-existing vessels to increased insulin demand was observed in the current chronic HFD studies, in contrast to increased angiogenesis observed in 28-week-old c-
KitβTg mice under normal diet. Interestingly, significantly increased intra-islet capillary size with noticeable red blood cell extravasation were observed in c-KitβTg islets, as compared to WT mice, under chronic HFD treatment. We noticed that the previously reported protective effect against a HFD (4 weeks) in c-KitβTg mice [22], was progressively diminished preceding the development of hyperglycaemia after 22 weeks of HFD consumption. The observed glucose intolerance was associated with severe loss of beta-cell mass, reduced in vivo insulin release and, in particular, loss of E-cadherin expression in beta-cells. E-cadherin, an adhesion molecule of the cadherin family, was found to be down-regulated in secretory defective beta-cells [36, 37]. Treatment of beta-cells with an anti-E-cadherin blocking antibody affected intracellular Ca2+ levels and insulin secretion [38]. Our data suggested that such pronounced islet vasculature remodeling during chronic HFD could be stimulated by severe islet disorganization and beta-cell dysfunction while attempting, but failing, to maintain adequate insulin fenestration and euglycemia. On the other hand, increased islet apoptosis was probably the cause of islet failure in c-KitβTg mice during chronic HFD. Previous studies demonstrated that VEGF-A is a potent chemoattractant for inflammatory cytokines and macrophages [5]. In a HFD-induced diabetes mouse model, excessive amounts of circulating fatty acids and cytokines derived from adipose tissue were able to induce beta-cell apoptosis [39], which was consistent with our findings showing that higher levels of inflammatory cytokines and macrophage infiltration were observed in c-KitβTg-HFD islets. Taken together, our results suggested that c-Kit-mediated VEGF-A production during a HFD-induced diabetic status lead to undesirable hypervascularization, allowing for cytokine and macrophage infiltration, which may contribute to beta-cell loss and dysfunction, as is a major hallmark in the development and progression of T2D [40].

In summary, this study demonstrated that c-KIT overexpression mediated VEGF-A production and secretion via the PI3K/Akt/mTOR pathway, which subsequently modulated islet vascular formation in vivo. We noted that increased c-Kit, specifically in beta-cells, enhanced islet vascular recovery on fibrin culture after an invasive isolation procedure (data not shown), and promoted islet angiogenesis in 28-week-old c-KitβTg
mice without disturbing glucose homeostasis. Interestingly, 28-week-old c-KitβTg mice under chronic HFD displayed dysregulated vascular dilation due to overproduction of VEGF-A, and such vascular changes were associated with beta-cell failure exacerbated by recruitment of inflammatory cytokines, leading to the development of hyperglycemia. This study represents a unique and integrated in vivo approach to unraveling the cellular mechanisms by which SCF/c-Kit interactions mediate VEGF-A production to regulate beta-cell function in both positive and negative ways. The finely turned and tightly regulated c-Kit activity is critical for the control of the microenvironmental VEGF-A concentration in islets, maintaining a normal and stable islet vascular network for proper beta-cell function and survival.
6.5 References

Chapter 7

Summary, limitations and future directions
7.1 Summary

7.1.1 Overall rationale and main objective

In the previous study using the c-Kit W mutant mouse model, our lab showed that deficiency of c-Kit signaling resulted in decreased beta-cell mass and proliferation, leading to the onset of diabetes in c-KitW/+ mice. \cite{1}. However, the mechanisms by which c-Kit regulates beta-cell function and survival, and specifically, how c-Kit activity is coordinated in beta-cells \textit{in vivo}, has not been determined. Thus, the main \textbf{objective} of this work was to dissect the intracellular signaling pathways by which c-Kit regulates beta-cell proliferation, survival and function. The central hypothesis of this work was that activation of c-Kit downstream PI3K/Akt signaling pathway plays a critical role in determining beta-cell growth and beta-cell insulin releasing function under normal and diabetic pathophysiological conditions (Figure 7-1).
c-Kit downstream signaling pathways in beta-cells. c-Kit regulates beta-cell proliferation, survival and function through: 1) via the Akt/Gsk3β pathway, 2) by indirectly suppressing the Fas-mediated caspase dependent apoptotic signalling, 3) by modulating islet vascular formation through VEGF-A production via the Akt/mTOR pathway.
The c-Kit \(W^v \) mutation causes beta-cell loss and dysfunction via the dysregulated Akt/Gsk3\(\beta \) pathway and up-regulated Fas-mediated apoptotic signaling in \(c-Kit^{Wv/+} \) mouse model

We hypothesized that the dysregulated Akt/Gsk3\(\beta \) pathway contributes to a severe loss of beta-cell mass and impaired beta-cell function in \(c-Kit^{Wv/+} \) mice (Chapter 3). We found that reduced c-Kit activity led to a reduction of Akt and Gsk3\(\beta \) phosphorylation, resulting in down-regulation of cyclin D1 gene and protein expression [2, 3] in \(c-Kit^{Wv/+} \) mouse islets [4]. Our results suggested that Gsk3\(\beta \) activity plays a key role in affecting beta-cell proliferation and function. When given the exogenous Gsk3\(\beta \) inhibitor, 1-AKP, \(c-Kit^{Wv/+} \) mice demonstrated significantly enhanced cyclin D1 and Pdx-1 gene and protein expression [4]. This was associated with enhanced beta-cell proliferation and improved glucose tolerance in \(c-Kit^{Wv/+} \) mice that received 1-AKP injections. Overall, the c-Kit mutation triggers beta-cell failure via the impaired Akt/Gsk3\(\beta \) pathway in \(c-Kit^{Wv/+} \) mice [4]. While c-Kit positively regulates beta-cell proliferation, c-Kit signalling is also involved in the regulation of beta-cell apoptosis. We hypothesized that the balance between c-Kit and Fas signaling is essential for maintaining beta-cell mass and function in \(c-Kit^{Wv/+} \) mice (Chapter 4). Deficient c-Kit signaling led to increased beta-cell death in \(c-Kit^{Wv/+} \) mice, which was associated with an up-regulation of both p53 and Fas gene and protein expression in \(c-Kit^{Wv/+} \) islets at 8 weeks of age [5]. p53 is an important checkpoint protein that inhibits cyclin D1 expression in multiple cellular contexts [6, 7]. p53 was not only involved in cell cycle arrest in the absence of c-Kit signaling in beta-cells, but our in vitro INS-1 cell study further determined that the up-regulation of p53 by c-Kit siRNA contributed to increased cell apoptosis via induction of Fas activity. p53/Fas-mediated cell apoptosis was reversed by the treatment of PFT-\(\alpha \) or Fas siRNA [5]. Furthermore, the functional role of Fas was further studied by introducing the \(lpr \) mutation in \(c-Kit^{Wv/+} \) mice (a double mutation of \(c-Kit^{Wv/+};Fas^{lpr/lpr} \) mouse model). Lack of functional Fas expression in \(c-Kit^{Wv/+} \) mice prevented beta-cell death via down-regulation of the caspase 8-mediated extrinsic apoptotic pathway. An increase in beta-cell mass and improved insulin releasing function was associated with increased c-FLIP/NF-\(\kappa B \) pro-survival signaling in \(c-Kit^{Wv/+};Fas^{lpr/lpr} \) mice [5]. Taken together, these findings
suggested that c-Kit signaling regulates beta-cell turnover and beta-cell insulin secretory function.

7.1.3 c-KIT overexpression positively regulates beta-cell proliferation and function via an up-regulation of the Akt/Gsk3β/cyclin D1 pathway in c-KitβTg mice

Although the c-KitWv/+ mouse model is an excellent system to study the functional impact of c-Kit signaling deficiency in any tissue, the non-specific tissue mutation in this mouse model does not allow us to determine whether c-Kit has a primary role in beta-cell function and survival. To this end, we generated a transgenic mouse model with beta-cell specific c-KIT overexpression (c-KitβTg), which has a 30% increase in c-Kit expression on beta-cells (Chapter 5) [5]. c-KitβTg mice displayed improved glucose tolerance without showing differences in peripheral insulin sensitivity. Expansion of beta-cell mass was due to increased islet number and enhanced beta-cell proliferation. Overexpression of c-KIT also led to a profound effect in vivo on insulin secretion in response to glucose challenge, and exposure of these islets to an elevated glucose concentration resulted in increased insulin release and insulin content in beta-cells compared to controls [8]. c-KIT overexpression increased the expression of islet transcriptional factors, including Pdx-1, MafA, insulin and glucagon genes in parallel with significantly elevated Glp1r and Glut2 mRNA levels. The changes in gene expression in c-KitβTg islets revealed that c-Kit regulates islet gene transcription via the Akt/Gsk3β/cyclin D1 signalling cascade [8]. Interestingly, c-KitβTg mice were able to resist HFD-induced diabetes, and maintained beta-cell function and mass. Furthermore, overexpressing c-KIT in beta-cells could partially reverse the diabetic phenotype in c-KitWv/+ mice, demonstrating that c-Kit has a beneficial effect on beta-cell growth and function [8].

7.1.4 c-Kit signaling positively regulates islet vascular formation via the Akt/mTOR/VEGF-A pathway

The relationship between c-Kit signaling and VEGF-A synthesis has been implicated in the regulation of tumor angiogenesis in multiple neoplasms [9-11]; however, c-Kit’s role function in the regulation of VEGF-A production from islets has not been evaluated. In Chapter 6, we hypothesized that c-Kit-dependent regulation of VEGF-A is critical for
islet vascular formation and beta-cell survival. Our initial study using INS-1 cell cultures (presented by MSc candidate Alexei Popell) demonstrated that the Akt/mTOR pathway downstream of c-Kit, *in vitro*, regulated VEGF-A production. Using the mouse models created in Chapter 3 and 5, we observed a substantial loss of islet vasculature in *c-Kit*\(^{Wv/+}\) mice, which was reversed by beta-cell-specific *c-KIT* overexpression via an upregulation of the Akt/mTOR signaling pathway. These results suggested that c-Kit-mediated VEGF-A production is critical for normal islet microvasculature. However, endothelial-to-beta-cell interactions may not always result in a positive outcome: islet endothelial cells have been shown to contribute to islet destruction in an inflammatory environment. After prolonged exposure to a HFD, *c-KitβTg* mice exhibited drastic islet hypervascularization and beta-cell dysfunction and increased beta-cell apoptosis. This observation was explained by the chemoattractant effect that resulted in increased inflammatory factor recruitment via hypervasculature in the islets. These experiments demonstrated that c-Kit is a potential therapeutic target in promoting revascularization during islet cell replacement procedures. However, c-Kit activity must be tightly regulated in order to control the microenvironmental VEGF-A concentration, as this is essential for maintaining a normal and stable islet vascular network for proper beta-cell function and survival.

7.2 Limitations

7.2.1 Chapter 3

Mice homozygous for the c-Kit null mutation (*W* mutation) die late in gestation or shortly after birth, presumably because of the embryo being severely anemic and dying at or near parturition. Compared to *W* mutant mice, the *W*\(^{α}\) mutation on *c-Kit* leads to a relatively mild anemia in both heterozygotes and homozygotes in rodents. Although fertility is affected in *W*\(^{α}\) homozygotes, heterozygous viable *W*\(^{α}\) mutants (*c-Kit*\(^{Wv/+}\)) have normal reproductive capabilities. The molecular basis of the *W* phenotype is different from the *W*\(^{α}\) phenotype as well. The *W* mutation affects *c-Kit* gene transcription, resulting in an absence of c-Kit in tissues. In contrast, the *W*\(^{α}\) mutation results in reduced intracellular kinase activity of c-Kit due to a point mutation that resides in a highly conserved region of the c-Kit intracellular region. Therefore, the nature of the *W*\(^{α}\) phenotype correlates with
the severity of c-Kit signaling deficiency, whereas the mRNA level, protein size, cell surface expression, and binding affinity of c-Kit to SCF is not altered. Although the c-Kit^{Wv/+} mouse model is suitable for examining the functional role of c-Kit signaling on tissue, there are limitations. The c-Kit^{Wv/+} model is a global mutation model wherein multiple cell types are affected by the c-Kit mutation. For instance, the W^o mutation causes a loss of coat pigmentation due to mast cell defects. Moreover, an extensive loss of gastrointestinal cells of Cajal vagal intramuscular arrays results in increased sensitivity to exogenous cholecystokinin in c-Kit^{Wv} mutant mice. Previous studies demonstrated that cholecystokinin acts on the afferent vagal nerve leading back to the nucleus tractus solitarii in the brain, which decreases appetite, and subsequently lowers glucose production from the liver [12, 13]. Whether such metabolic changes may affect the interpretation of our findings in c-Kit^{Wv} mutant mice remains to be studied. Thus, a mouse model with beta-cell specific c-Kit manipulation would be useful to dissect the primary functional role of c-Kit in the beta-cell.

c-Kit^{Wv/+} male mice displayed glucose intolerance at 8 weeks of age, whereas such symptoms were not observed in c-Kit^{Wv/+} females until 40 weeks of age [1]. In accordance with our findings, a higher incidence of diabetes in males is also found in other diabetic models [14-16]. The reason for this sexual dimorphism remains to be investigated, but multiple underlying mechanisms have been proposed. First, the male gonadectomy with additional estradiol treatment showed a protective effect against diabetes in mice [17]. Second, the rise of androgens at puberty is associated with a more severe diabetic state in male rats than in females, since during the neonatal period the effect of streptozotocin was not influenced by gender [18, 19]. Third, the genetic susceptibility represented by inbred mouse strains could be another contributing factor. For example, the inbred cohen diabetic rat males have a more severe glucose intolerance pattern compared to females [20], and spontaneous onset of diabetes with a high cumulative incidence is observed in male inbred insectivore musk shrews compared to females [21]. In addition, gender differences could be related to mitochondrial function [22] or the redox state of beta-cells [23]. More interestingly, sexual dimorphism exists in counter-regulatory responses to different stressors including fasting, hypoglycemia, and exercise [24]. Therefore, underlying mechanisms contributing to the gender bias in c-
KitWv/+ mice remain to be elucidated. For future studies, gonadectomy and estradiol treatment may be performed to examine whether the onset of diabetes is delayed in c-KitWv/+ males. Furthermore, genes involved in mitochondrial dysfunction and oxidative stress, as well as the responses of neural systems to hunger and satiety, deserve additional study between genders.

Phylogenetically, Gsk3 is closely related to cyclin dependent kinases. Therefore, it is not surprising that Gsk3 inhibitors not only inhibit both \(\alpha\) and \(\beta\) forms, but also act on selective cyclin dependent kinases. Compared to previously used Gsk3 inhibitors, 1-AKP has a high potency and selectivity to Gsk3\(\beta\) over the \(\alpha\) form and other cyclin dependent kinases [25]. The difference in charge distribution throughout the molecule confers the ability to distinguish between the ATP cavities of Gsk3\(\beta\) and others on 1-AKP [25]. This warrants the use of 1-AKP to inhibit Gsk3\(\beta\) in our studies. However, Gsk3\(\beta\) is a ubiquitously expressed, highly conserved serine/threonine protein kinase found in all eukaryotes. Therefore, the 1-AKP injection that globally inhibits Gsk3\(\beta\), and may have unknown effects in other tissue. A c-KitWv/+ mouse model with beta-cell specific Gsk3\(\beta\) ablation will be useful to circumvent this challenge. Nevertheless, since we combined \textit{in vitro} and \textit{in vivo} approaches to assess the effect of Gsk3\(\beta\) inhibition on beta-cell function and survival, we are confident that active Gsk3\(\beta\) is the molecular switch leading to beta-cell failure in c-KitWv/+ mice. Gsk3\(\beta\) and Gsk3\(\alpha\) share almost identical sequence homology, they overlap in function and compensate for each other, but also have distinct roles and pathways that they regulate in different tissue [26-28]. The role of Gsk3\(\alpha\) has largely been ignored, therefore the role of Gsk3\(\alpha\) in beta-cells warrants substantial attention in future diabetes research.

7.2.2 Chapter 4

A c-KitWv/+;Faslpr/lpr mouse model was used to study the relationship between c-Kit and Fas in beta-cell turnover and function. The gene coding Fas is located near the \textit{lpr} locus of chromosome 19 in rodents [29]. The \textit{lpr} mutation leads to the production of non-functional truncated \textit{Fas} mRNA due to an early transposable element, similar to an endogenous retrovirus inserted into intron 2. Thus, the \textit{Fas}lpr/lpr mouse is an excellent system to study the effect of a Fas signaling deficiency in any given tissue. A concern is
raised by the global mutation in Fas, which leads to additional effects in the \(\text{Fas}^{\text{lpr}/\text{lpr}} \) mouse model, whereby these mice develop lymphadenopathy and splenomegaly due to the accumulation of lymphocytes. In contrast to the apoptotic role of Fas signaling in some tissues, Fas also triggers pro-survival cellular processes in other cell types under specific conditions. Thus, any phenotype observed in \(c\text{-}\text{Kit}^{\text{Wv}/+};\text{Fas}^{\text{lpr}/\text{lpr}} \) mice cannot be attributed with complete certainty to the Fas lpr mutation in beta-cells. However, given that the percentage of the Fas-expressing beta-cell population was increased, and was correlated with the onset of diabetes in \(c\text{-}\text{Kit}^{\text{Wv}/+};\text{Fas}^{\text{lpr}/\text{lpr}} \) mice at 8 weeks of age, we are confident that the improved beta-cell mass and function was at least partly due to the beneficial effect from the Fas lpr mutation in beta-cells of \(c\text{-}\text{Kit}^{\text{Wv}/+};\text{Fas}^{\text{lpr}/\text{lpr}} \) mice. Furthermore, our findings showed that the Fas lpr mutation only partially restored beta-cell survival and function in \(c\text{-}\text{Kit}^{\text{Wv}/+};\text{Fas}^{\text{lpr}/\text{lpr}} \) mice, indicating that there are other potential mechanisms underlying beta-cell destruction that may be triggered by the c-Kit mutation. These findings open new avenues for research directed at other apoptotic mediators of cell death, such as tumor necrosis factor receptor and tumor necrosis factor-related apoptosis-inducing ligand receptor. In addition, further research may examine whether beta-cell specific \(c\text{-}\text{KIT} \) overexpression is able to block these apoptotic receptors signaling in beta-cells.

7.2.3 Chapter 5

A particular concern is the use of transgene constructs to generate beta-cell-specific gene overexpression in vivo. Multiple transgenic lines indicate that the gene directed by RIP is not only expressed in beta-cells, but also in regions of the brain, as revealed by the presence of fluorescent reporters [30-32]. The brain and islets are linked through the neural-entero-islet axis. The brain regulates insulin production from beta-cells, while circulating insulin may influence energy balance and metabolism due to its action in the hypothalamus. Therefore, targeting gene expression via RIP may yield overlapping metabolic phenotypes. In this study, the human \(c\text{-}\text{KIT} \) gene followed by IRES2eGFP sequence was inserted into the pKS/RIP plasmid, therefore tissue specificity is achieved through the use of RIP allowing for de novo induction of the human \(c\text{-}\text{KIT} \) gene in beta-cells of \(c\text{-}\text{Kit}^{\beta\text{Tg}} \) mice. No eGFP signal in the brain was detected using western blot and
fluorescence microscopy, but we cannot ignore the potential limitations these methods may have. That being said, given that c-KitβTg mice had no changes in body weight, food intake or peripheral insulin sensitivity compared to controls, we are confident that improved glucose tolerance is associated with the specific overexpression of human c-KIT genes in beta-cells of c-KitβTg mice.

Human c-KIT is not structurally identical to mouse c-Kit. Although the C-terminal intracellular signaling domain of mouse c-Kit and human c-KIT are 93% homologous, their extracellular domains share only 74% homology [33, 34]. For this reason, mouse and human c-KIT do not possess identical ligand binding capabilities. This is due to the fact that the ligand recognition site of human c-KIT, which is located in the second Ig-like domain, whereas the binding site of mouse c-Kit lies in the adjacent but noncontiguous region of the receptor [33, 34]. Furthermore, mouse SCF has high affinity for mouse c-Kit ($K_d = 1-5 \times 10^{-9}$ M), but it has reduced affinity for human c-KIT as compared with human SCF [35]. Since c-KitβTg mice contain the human c-KIT gene in beta-cells, this approach may raise the question of species specificity of ligand-receptor interaction. Nevertheless, c-KitβTg mouse islets showed an up-regulation of the PI3K/Akt pathway, which is directly regulated by c-Kit. Our findings indicated that mouse SCF was able to activate human c-KIT and exert its biological function, which is consistent with previous studies showing that the monovalent binding of mouse SCF to mouse c-Kit could induce the formation of human-mouse c-Kit heterodimers through a dimerization site in the receptor itself [35].

Our unpublished data showed that in vitro exposure of INS-1 cells to SCF resulted in increased co-localization of c-Kit with insulin receptor, as revealed by double immunofluorescence and co-immunoprecipitation. SCF not only stimulated INS-1 cell proliferation, but also significantly augmented the protein levels of insulin receptor, phospho-insulin receptor substrate 1/2 and Pdx-1. Increased insulin receptor signaling was suppressed by wortmannin (PI3K inhibitor) but not U0126 (MEK inhibitor). These unpublished findings indicate that there is a potential signaling crosstalk between c-Kit and insulin receptor, and this deserves a closer examination for its implication in regulating insulin secretion from beta-cells.
7.2.4 Chapter 6

The limitations of this study are similar to those of the studies discussed in Chapter 3 and 5, specifically in regard to the non-tissue-specific c-Kit \(W^v \) mutation or the potential leaky expression inherent to the RIP-transgene construct employed in our mouse models. Furthermore, the c-Kit\(\beta \)Tg mouse model is insufficient to determine the direct correlation among c-Kit, VEGF-A, and the subsequent islet vascular formation \textit{in vivo}. A possible future study in this line of work is to examine whether changes in VEGF-A concentration alter islet endothelial cell growth in an \textit{ex vivo} model (e.g. stimulation of isolated c-Kit\(W^v/+ \) mouse islets with VEGF-A) and an \textit{in vivo} model (e.g. knockdown of VEGF-A expression in c-Kit\(\beta \)Tg mouse islets).

In this study one interesting observation was that \textit{c-KIT} overexpression in beta-cells enhanced islet angiogenesis in aged 28-week-old c-Kit\(\beta \)Tg mice. Although the ability of isolated c-Kit\(\beta \)Tg islets to undergo revascularization \textit{in vivo} is unknown. Therefore, it would be interesting to assess the angiogenic capacity of isolated c-Kit\(\beta \)Tg islets following transplantation of these islets in a NOD-SCID mouse model. Another possible study is to examine whether a VEGF-A blocker is able to rescue the hypervascularization-mediated islet inflammatory response seen in c-Kit\(\beta \)Tg mice under HFD conditions. Findings from these future studies will provide a more comprehensive picture of the function of c-Kit in modulating islet vasculature \textit{in vivo}.

7.3 Concluding remarks

In conclusion, the work presented in this thesis has uncovered the mechanisms by which c-Kit modulates beta-cell differentiation, survival, and function \textit{in vivo}. Using the c-Kit\(W^v/+ \) mouse model, we demonstrated that c-Kit through regulation of the downstream Akt/Gsk3\(\beta \) pathway and negatively regulates Fas apoptotic signaling in beta-cells. More convincing evidence showing c-Kit has a primary role in beta-cell survival and function comes from the beta-cell specific c-Kit overexpressing transgenic mouse model (c-Kit\(\beta \)Tg mice). \textit{c-KIT} overexpression not only positively influenced beta-cell proliferation and insulin secretory function under basal and glucose-stimulated conditions in c-Kit\(\beta \)Tg mice, it also improved beta-cell survival and function protecting beta-cells from the detrimental
effects of a HFD. Furthermore, restored c-Kit expression corrected beta-cell failure in c-Kit^{Wv/+} mice. The connection between c-Kit and VEGF-A production in beta-cells was also uncovered. Our findings explained the autocrine regulation of islet vascular formation by beta-cells and that it is at least partly regulated by c-Kit-mediated VEGF-A production through the Akt/mTOR pathway. Taken together, the information provided in this work is particularly valuable for advancing our understanding of receptor signaling that regulates beta-cell survival and function, and for the future development of effective therapies against diabetes.

7.4 Future directions

Building on the foundation of this work, further research must be conducted to provide a better understanding of SCF/c-Kit signaling in the beta-cells of normal and diabetic individuals. Some thoughts regarding the future directions in this line of research are as follows: First, multiple c-Kit isoforms that result from alternative splicing. They vary in their ability to control the duration, efficiency, and targets of c-Kit signal transduction. Moreover, it is important to determine the role of mSCF versus sSCF with respect to c-Kit signaling and to see if they are distinct qualitatively as well as quantitatively. Future work must characterize the distinct functional role of these alternative isoforms of c-Kit and SCF in vivo. Second, although highly proliferative c-Kit expressing beta-cells may contain a pool of islet progenitors, it should be noted that c-Kit serves as a universal marker for the identification and isolation of stem cells from tissue and multiple types of cancers. With this in mind, it is necessary to identify these unique islet progenitors precisely. Thus, research efforts to develop a specific cocktail of multiple cell surface markers would be an asset in identifying these cell populations with greater specificity. Third, oncogenic c-Kit mutants promote tumorigenesis in contrast to normal c-Kit. Thus, it is important to obtain a complete understanding of the segregation of molecular mechanisms underlying mutant and normal c-Kit. This information can be useful in uncovering the potential downstream signaling targets necessary to maximize the positive effects of c-Kit on islet viability and function, while minimizing the oncogenic effects of c-Kit in other normal and neoplastic tissues. Fourth, the propensity of c-Kit-mediated insulin release and islet angiogenesis presents several potential long-term adverse effects.
For instance, excess insulin release triggered by chronic c-Kit activation on beta-cells may lead to hypoglycemia [36]. Additionally, in obese adults with insulin resistance, c-Kit-mediated islet hypervascularization stimulates an inflammatory response within islets, which contributes to a progressive reduction of beta-cell mass and function leading to T2D. Therefore, it is essential to optimize the time-dependent effect of c-Kit function in preclinical applications when aiming to restore beta-cell survival and function.
7.5 References

Appendices

Appendix I. Animal used protocol.

AUP Number: 2008-038-04
PI Name: Wang, Remnian
AUP Title: Pancreatic Beta Cell Development: The Role Of The C-kit And Integrin Receptors
Approval Date: 10/29/2012

Official Notice of Animal Use Subcommittee (AUS) Approval: Your new Animal Use Protocol (AUP) entitled "Pancreatic Beta Cell Development: The Role Of The C-kit And Integrin Receptors" has been APPROVED by the Animal Use Subcommittee of the University Council on Animal Care. This approval, although valid for four years, is subject to annual Protocol Renewal 2008-038-04

This AUP number must be indicated when ordering animals for this project. Animals for other projects may not be ordered under this AUP number. Purchases of animals other than through this system must be cleared through the ACVS office. Health certificates will be required.

The holder of this Animal Use Protocol is responsible to ensure that all associated safety components (biosafety, radiation safety, general laboratory safety) comply with institutional safety standards and have received all necessary approvals. Please consult directly with your institutional safety officers.

Submitted by: Copeman, Laura
on behalf of the Animal Use Subcommittee
University Council on Animal Care

The University of Western Ontario
Animal Use Subcommittee / University Council on Animal Care
Health Sciences Centre, • London, Ontario • CANADA – N6A 5C1
PH: • http://www.uwo.ca/animal/website/
Appendix II. Biosafety approval.

April 28, 2014

Dear Dr. Wang:

Please note your biosafety approval number listed above. This number is very useful to you as a researcher working with biohazards. It is a requirement for your research grants, purchasing of biohazardous materials and Level 2 inspections.

Research Grants:
- This number is required information for any research grants involving biohazards. Please provide this number to Research Services when requested.

Purchasing Materials:
- This number must be included on purchase orders for Level 1 or Level 2 biohazards. When you order biohazardous material, use the on-line purchase ordering system (www.uwo.ca/finance/people/). In the “Comments to Purchasing” tab, include your name as the Researcher and your biosafety approval number.

Annual Inspections:
- If you have a Level 2 laboratory on campus, you are inspected every year. This is your permit number to allow you to work with Level 2 biohazards.

To maintain your Biosafety Approval, you need to:

- Ensure that you update your Biohazardous Agents Registry Form at least every three years, or when there are changes to the biohazards you are working with.

- Ensure that the people working in your laboratory are trained in Biosafety.

- Ensure that your laboratory follows the University of Western Ontario Biosafety Guidelines and Procedures Manual for Containment Level 1 & 2 Laboratories.

- For more information, please see: www.uwo.ca/hr/safety/biosafety/.

Please let me know if you have questions or comments.

Regards,

Tony Hammoud
Biosafety Coordinator for Western
Support Services Building 4190
Phone::
Fax:
Appendix III. Sequences of primers.

Sequences of primers used in PCR for B6.MRL-Fas^{br} mutation genotyping
(The Jackson Laboratory, Bar Harbor, ME, USA)

<table>
<thead>
<tr>
<th>Primer</th>
<th>sequence 5′→3′</th>
<th>Primer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>o1MR1678</td>
<td>GTA AAT AAT TGT GCT TCG TCA G</td>
<td>Common</td>
</tr>
<tr>
<td>o1MR1679</td>
<td>TAG AAA GGT GCA CGG GTG TG</td>
<td>Mutant</td>
</tr>
<tr>
<td>o1MR1680</td>
<td>CAA ATC TAG GCA TTA ACA GTG</td>
<td>Wild type</td>
</tr>
</tbody>
</table>

Sequences of primers used in PCR for c-KitβTg genotyping

<table>
<thead>
<tr>
<th>Primer</th>
<th>sequence 5′→3′</th>
<th>Primer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globin5</td>
<td>GCT CCT GGG CAA CGT GCT GG</td>
<td>c-Kit</td>
</tr>
<tr>
<td>c-Kit</td>
<td>GTG AGA GGA CAG CGG ACC AGC</td>
<td></td>
</tr>
<tr>
<td>eGFP3</td>
<td>CAG TCC GCC CTG AGC AAA GAC C</td>
<td>eGFP</td>
</tr>
<tr>
<td>Globin3</td>
<td>GGT ATT TGT GAG CCA GGG CAT TG</td>
<td></td>
</tr>
</tbody>
</table>
Appendix IV. Sequences of siRNA

A pool of three different c-Kit (r) and Fas (r) siRNA duplexes
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA)

<table>
<thead>
<tr>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-Kit siRNA</td>
<td></td>
</tr>
<tr>
<td>(sc 36533)</td>
<td></td>
</tr>
<tr>
<td>1) CCAUGUGGAUAAAGUGAAAtt</td>
<td>UUCAACUUUAUCCACAUUGGtt</td>
</tr>
<tr>
<td>2) GAUGGUUCUU/GCCUACAAAttt</td>
<td>UUU/GUAGGCAAGAACAUCAttt</td>
</tr>
<tr>
<td>3) GCAAGAAUAGACUGUUAUAtt</td>
<td>UAUGAGGUCUAAUUCUGCtt</td>
</tr>
<tr>
<td>Fas siRNA</td>
<td></td>
</tr>
<tr>
<td>(sc 270241)</td>
<td></td>
</tr>
<tr>
<td>1) CCUGAAAGUCUGCCAAUGAttt</td>
<td>UCAUGGCAACACUUUCAGGtt</td>
</tr>
<tr>
<td>2) GCAUUCUAGUGGCCUACUAttt</td>
<td>AAUGGCAACUAGAAUGCtt</td>
</tr>
<tr>
<td>3) CACAGUUAAGUGGUUCAUUtt</td>
<td>AAGUAAACCACUUACUGGtt</td>
</tr>
</tbody>
</table>
Appendix V. List of antibodies for immunofluorescence.

List of antibodies used for immunofluorescence.

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse anti-insulin</td>
<td>1:1500</td>
<td>Sigma-Aldrich, Saint Louis, Missouri, USA</td>
</tr>
<tr>
<td>Guinea pig anti-insulin</td>
<td>1:50</td>
<td>Zymed, San Francisco, CA, USA</td>
</tr>
<tr>
<td>Mouse anti-glucagon</td>
<td>1:2000</td>
<td>Sigma-Aldrich, Saint Louis, Missouri, USA</td>
</tr>
<tr>
<td>Rabbit anti-Ki67</td>
<td>1:200</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Guinea pig anti-PDX-1</td>
<td>1:1500</td>
<td>Dr. Wright, University of Vanderbilt, USA</td>
</tr>
<tr>
<td>Mouse anti-PAX6</td>
<td>1:300</td>
<td>DHSB, Iowa City, IA, USA</td>
</tr>
<tr>
<td>Mouse anti-NKX2.2</td>
<td>1:500</td>
<td>DHSB, Iowa City, IA, USA</td>
</tr>
<tr>
<td>Mouse anti-NKX6.1</td>
<td>1:100</td>
<td>DHSB, Iowa City, IA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Kit</td>
<td>1:50</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-SCF</td>
<td>1:50</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Fas</td>
<td>1:200</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Mouse anti-cyclin D1</td>
<td>1:200</td>
<td>Cell Signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-PeCAM-1</td>
<td>1:50</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Rabbit anti-MafA</td>
<td>1:100</td>
<td>Bethyl Laboratories, Inc., Montgomery, TX, USA</td>
</tr>
<tr>
<td>Rabbit anti-E-Cadherin</td>
<td>1:200</td>
<td>Cell Signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-eGFP</td>
<td>1:500</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>In Situ Cell Death (TUNEL), Tissue</td>
<td>1:20</td>
<td>Roche Applied Science, Mannheim, Germany</td>
</tr>
<tr>
<td>In Situ Cell Death (TUNEL), Cell</td>
<td>1:10</td>
<td>Roche Applied Science, Mannheim, Germany</td>
</tr>
</tbody>
</table>
Appendix VI. List of antibodies for western blot.

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Dilution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse anti-β-actin</td>
<td>1:5000</td>
<td>Sigma-Aldrich, Oakville, ON, Canada</td>
</tr>
<tr>
<td>Rabbit anti-β-catenin</td>
<td>1:500</td>
<td>Millipore, Billerica, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-Calnexin</td>
<td>1:2000</td>
<td>BD Biosciences, Mississauga, ON, Canada</td>
</tr>
<tr>
<td>Rabbit anti-Caspase 3</td>
<td>1:1000</td>
<td>Cell signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Cleaved Caspase 3 (D175)</td>
<td>1:2000</td>
<td>Cell signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Caspase 8</td>
<td>1:1000</td>
<td>Cell signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-Cleaved Caspase S(D391)</td>
<td>1:1000</td>
<td>Cell signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-c-Kit</td>
<td>1:500</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Fas</td>
<td>1:2000</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Mouse anti-P53</td>
<td>1:1000</td>
<td>Cell signaling, Danvers, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Pdx-1</td>
<td>1:2000</td>
<td>Dr. Wright, University of Vanderbilt, USA</td>
</tr>
<tr>
<td>Mouse anti-Phospho-Akt (S473)</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-Phospho-Akt (T308)</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Akt</td>
<td>1:3000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Gsk3̃β (S9)</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Gsk3̃β (Y216)</td>
<td>1:2000</td>
<td>Abcam Inc. Cambridge, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Gsk3̃β</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-Cyclin D1</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-VEGF</td>
<td>1:2000</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-P70S6K (T389)</td>
<td>1:1000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-P70S6K</td>
<td>1:1000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-NFκBp65 (S536)</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-NFκBp65</td>
<td>1:2000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-GAPDH</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Rabbit anti-PECAM-1</td>
<td>1:1000</td>
<td>Santa Cruz Biotechnology, Inc., CA, USA</td>
</tr>
<tr>
<td>Rabbit anti-E-Cadherin</td>
<td>1:1000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-Cleaved PARP/PARP</td>
<td>1:1000</td>
<td>Cell Signaling, Boston, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-IL-1β</td>
<td>1:500</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Mouse anti-Mac-2 (Galectin 3)</td>
<td>1:1000</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-TNFα</td>
<td>1:500</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
<tr>
<td>Rabbit anti-eGFP</td>
<td>1:5000</td>
<td>Abcam Inc., Cambridge, MA, USA</td>
</tr>
</tbody>
</table>
Appendix VII. Sequences of primers for real-time RT-PCR.

Sequences of primers used in real-time RT-PCR

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Accession & Definition</th>
<th>Primer Pair Sequence 5’-3’ (Sense/Antisense)</th>
<th>Location (nt)</th>
<th>Fragment Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-KIT (Homo sapiens)</td>
<td>NM_000222.1</td>
<td>GCA ACG TGG ACT AIC AGT TGA GC T</td>
<td>904-926</td>
<td>288</td>
</tr>
<tr>
<td>Glp1r</td>
<td>NM_021332.2</td>
<td>TTT ATG TTC AGT AGG AAT GGA GT</td>
<td>1191-1169</td>
<td>282</td>
</tr>
<tr>
<td>Glucagon (Gcg)</td>
<td>NM_008100.2</td>
<td>AAG AGA ATG GCC AAT CCG ATG</td>
<td>673-693</td>
<td>282</td>
</tr>
<tr>
<td>Glut2 (Slc2a2)</td>
<td>NM_031197.1</td>
<td>GAT CAT TCC CAG CTT TAC AGG AG</td>
<td>193-212</td>
<td>163</td>
</tr>
<tr>
<td>Insulin I&II</td>
<td>NM_008386.3 & NM_008387.3</td>
<td>TGT AGA GCC TCC CTC TGG AAT GT</td>
<td>355-336</td>
<td>163</td>
</tr>
<tr>
<td>Bax</td>
<td>NM_007527.3</td>
<td>GAC TTT TCA ACC AGT GGA TGT</td>
<td>468-485</td>
<td>72</td>
</tr>
<tr>
<td>Bcl2</td>
<td>NM_009741.3</td>
<td>CCT TGG CCA CTT AGC GAT CAA TC</td>
<td>379-360</td>
<td>171</td>
</tr>
<tr>
<td>C/EBP (c-130P)</td>
<td>NM_007053.3</td>
<td>AAC GGC TCT CAG AGG AGC GGA</td>
<td>1411-1460</td>
<td>292</td>
</tr>
<tr>
<td>MafA</td>
<td>NM_019430.1</td>
<td>TAT CCA TCC AGA GCT GGC CAA</td>
<td>1372-1713</td>
<td>250</td>
</tr>
<tr>
<td>Neurod1</td>
<td>NM_010994.2</td>
<td>CCG GGC GGG GAA GTA AGT GA</td>
<td>1139-1159</td>
<td>225</td>
</tr>
<tr>
<td>Nkx2-2</td>
<td>NM_010919.1</td>
<td>CGC GCC GCG GAG AAA GTT AGA T</td>
<td>1403-1384</td>
<td>225</td>
</tr>
<tr>
<td>Nkx6-1</td>
<td>NM_144554.2</td>
<td>GCT CAA TTC GCC GCC CTG CAA CAC TCC AT</td>
<td>976-957</td>
<td>225</td>
</tr>
<tr>
<td>Pax4</td>
<td>NM_011038.1</td>
<td>CTC TCA GGG ACC TGG GTG TAA T</td>
<td>933-904</td>
<td>288</td>
</tr>
<tr>
<td>Pax6</td>
<td>NM_013627.3</td>
<td>TAC GCT TCT ACA TCA TAC GT</td>
<td>636-655</td>
<td>173</td>
</tr>
<tr>
<td>Pdx1</td>
<td>NM_008814.2</td>
<td>CCA CCC CAG TTT ACA AGC TG</td>
<td>252-272</td>
<td>324</td>
</tr>
<tr>
<td>Sef (Klf1)</td>
<td>NM_013598.2</td>
<td>GTC GTG AGT AGC GCT T</td>
<td>575-556</td>
<td>324</td>
</tr>
<tr>
<td>Cyclin D1 (Ccn1)</td>
<td>NM_007631.2</td>
<td>GGA ATG GCC CTT CTC GTT TAA T</td>
<td>2661-2680</td>
<td>144</td>
</tr>
<tr>
<td>c-KIT(Rat)</td>
<td>NM_022264.1</td>
<td>CTG TGC GGC CTC CGT AAT CTA TTA</td>
<td>343-363</td>
<td>294</td>
</tr>
<tr>
<td>c-KIT(Mouse)</td>
<td>NM_021099.2</td>
<td>GCC AGA AGT TAA AGT CCA TCC TG</td>
<td>887-906</td>
<td>344</td>
</tr>
<tr>
<td>Fast (Mouse)</td>
<td>NM_007987.1</td>
<td>TAA CAT AGA CCC GAC GAC ACT</td>
<td>1326-1216</td>
<td>172</td>
</tr>
<tr>
<td>Fast(Rat)</td>
<td>NM_139194.2</td>
<td>TCA TGC TCT AAC GAC GCT G</td>
<td>1903-1882</td>
<td>172</td>
</tr>
<tr>
<td>Fas</td>
<td>NM_010177.3</td>
<td>AAG GAT GAG ATT GCC CAA</td>
<td>540-520</td>
<td>172</td>
</tr>
<tr>
<td>NFkB1</td>
<td>NM_008689.2</td>
<td>GCG TGG AGG CAT GTT CTC TAG</td>
<td>375-394</td>
<td>436</td>
</tr>
<tr>
<td>NFkB2</td>
<td>NM_019408.3</td>
<td>GCA GAA GAA GGT TAA TGT G</td>
<td>810-791</td>
<td>436</td>
</tr>
<tr>
<td>RelA</td>
<td>NM_009045.4</td>
<td>GCA GTG TGG GGT TGG TAT</td>
<td>989-1009</td>
<td>190</td>
</tr>
<tr>
<td>RelB</td>
<td>NM_009046.2</td>
<td>GTA AGG ATG CCA GAT GCA TAC TGT</td>
<td>1178-1158</td>
<td>190</td>
</tr>
<tr>
<td>Trp53</td>
<td>NM_011640.3</td>
<td>GCA GGC TCC CCT GCC CAG CAA</td>
<td>476-495</td>
<td>276</td>
</tr>
<tr>
<td>IRS</td>
<td>NR_003278.1</td>
<td>GCC TGC CTA TCC CCC GCA</td>
<td>751-731</td>
<td>276</td>
</tr>
</tbody>
</table>

237
Appendix VIII. Copyright of Chapter 3.

Creative Commons

The request you have made is considered to be non-commercial/educational. As the article you have requested has been distributed under a Creative Commons license (Attribution-Noncommercial 2.5), you may reuse this material for non-commercial/educational purposes without obtaining additional permission from Nature Publishing Group, providing that the author and the original source of publication are fully acknowledged.

For full terms and conditions of the Creative Commons license, please see the attached link http://creativecommons.org/licenses/by-nc/2.5
Appendix IX. Copyright of Chapter 5.

This is a License Agreement between zhi chao Feng ("You") and Springer ("Springer") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Springer, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

<table>
<thead>
<tr>
<th>License Number</th>
<th>3404911086328</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Jun 09, 2014</td>
</tr>
<tr>
<td>Licensed content publisher</td>
<td>Springer</td>
</tr>
<tr>
<td>Licensed content publication</td>
<td>Diabetologia</td>
</tr>
<tr>
<td>Licensed content title</td>
<td>Critical role of c-Kit in beta cell function: increased insulin secretion and protection against diabetes in a mouse model</td>
</tr>
<tr>
<td>Licensed content author</td>
<td>Z. C. Feng</td>
</tr>
<tr>
<td>Licensed content date</td>
<td>Jan 1, 2012</td>
</tr>
<tr>
<td>Volume number</td>
<td>55</td>
</tr>
<tr>
<td>Issue number</td>
<td>8</td>
</tr>
<tr>
<td>Type of Use</td>
<td>Thesis/Dissertation</td>
</tr>
<tr>
<td>Portion</td>
<td>Figures</td>
</tr>
<tr>
<td>Author of this Springer article</td>
<td>Yes and you are a contributor of the new work</td>
</tr>
<tr>
<td>Order reference number</td>
<td>None</td>
</tr>
<tr>
<td>Original figure numbers</td>
<td>Figures 1, 2, 3, 4, 5, 6, 7; Supplemental Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Title of your thesis / dissertation</td>
<td>THE ROLE OF C-KIT RECEPTOR TYROSINE KINASE IN BETA-CELL PROLIFERATION, FUNCTION, AND SURVIVAL</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>Jul 2014</td>
</tr>
<tr>
<td>Estimated size(pages)</td>
<td>200</td>
</tr>
<tr>
<td>Total</td>
<td>0.00 USD</td>
</tr>
</tbody>
</table>

Introduction

The publisher for this copyrighted material is Springer Science + Business Media. By
clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

Limited License
With reference to your request to reprint in your thesis material on which Springer Science and Business Media control the copyright, permission is granted, free of charge, for the use indicated in your enquiry.

Licenses are for one-time use only with a maximum distribution equal to the number that you identified in the licensing process.

This License includes use in an electronic form, provided its password protected or on the university’s intranet or repository, including UMI (according to the definition at the Sherpa website: http://www.sherpa.ac.uk/romeo/). For any other electronic use, please contact Springer at (permissions.dordrecht@springer.com or permissions.heidelberg@springer.com).

The material can only be used for the purpose of defending your thesis limited to university-use only. If the thesis is going to be published, permission needs to be re-obtained (selecting "book/textbook" as the type of use).

Although Springer holds copyright to the material and is entitled to negotiate on rights, this license is only valid, subject to a courtesy information to the author (address is given with the article/chapter) and provided it concerns original material which does not carry references to other sources (if material in question appears with credit to another source, authorization from that source is required as well).

Permission free of charge on this occasion does not prejudice any rights we might have to charge for reproduction of our copyrighted material in the future.

Altering/Modifying Material: Not Permitted
You may not alter or modify the material in any manner. Abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of the author(s) and/or Springer Science + Business Media. (Please contact Springer at (permissions.dordrecht@springer.com or permissions.heidelberg@springer.com)

Reservation of Rights
Springer Science + Business Media reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

Copyright Notice:Disclaimer
You must include the following copyright and permission notice in connection with any reproduction of the licensed material: "Springer and the original publisher /journal title,
Warranties: None

Example 1: Springer Science + Business Media makes no representations or warranties with respect to the licensed material.

Example 2: Springer Science + Business Media makes no representations or warranties with respect to the licensed material and adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in its Billing and Payment terms and conditions for this licensing transaction.

Indemnity
You hereby indemnify and agree to hold harmless Springer Science + Business Media and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

No Transfer of License
This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without Springer Science + Business Media's written permission.

No Amendment Except in Writing
This license may not be amended except in a writing signed by both parties (or, in the case of Springer Science + Business Media, by CCC on Springer Science + Business Media's behalf).

Objection to Contrary Terms
Springer Science + Business Media hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and Springer Science + Business Media (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

Jurisdiction
All disputes that may arise in connection with this present License, or the breach thereof, shall be settled exclusively by arbitration, to be held in The Netherlands, in accordance with Dutch law, and to be conducted under the Rules of the 'Netherlands Arbitrage Instituut' (Netherlands Institute of Arbitration). OR:

All disputes that may arise in connection with this present License, or the breach
thereof, shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, in accordance with German law.

Other terms and conditions:

v1.3

If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number 501323712. Once you receive your invoice for this order, you may pay your invoice by credit card. Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-3006

For suggestions or comments regarding this order, contact RightsLink Customer Support: customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777.

Gratia licenses (referencing $0 in the Total field) are free. Please retain this printable license for your reference. No payment is required.
Curriculum Vitae

Zhi-Chao Feng

EDUCATION

Ph.D. Pharmacology and Toxicology, expected 09/2009 - 07/2014, Western University
Dissertation: The role of c-Kit receptor tyrosine kinase in beta-cell proliferation, function and survival.

B.M.Sc., Honors Specialization in Physiology and Pharmacology, 09/2005 - 04/2009, Western University

SCHOLARSHIPS and AWARDS

Graduate school scholarships

❖ Canadian Diabetes Association Doctoral Student Research Award (Accepted)
 Canada Diabetes Association, Funded Year 2012 - 2015

❖ Queen Elizabeth II Graduate Scholarship in Science and Technology (Declined)
 Government of Ontario, Funded Year 2012 - 2013

❖ Schulich Graduate Scholarship (Accepted)
 Western University, Funded Year 2009 - 2014

Graduate school awards

❖ European Association for the Study of Diabetes Travel Grant
 The European Association for the Study of Diabetes, 2013

❖ Graduate Thesis Research Award
 School of Graduate Studies, Western University, 2013

❖ Trainee Travel Award
 Children’s Health Research Institute, 2013

❖ Featured Trainee
 Children’s Health Research Institute, 2013

❖ Graduate Student Travel Award
 Department of Physiology and Pharmacology, Western University, 2012

❖ Poster Presentation Award, 2nd Prize
 Department of Physiology and Pharmacology, Western University, 2012

❖ Sister Mary Doyle Award for Platform Presentation, Silver medal
 Lawson Health Research Institute, 2011

RELATED ACADEMIC WORK EXPERIENCE
RELATED ACADEMIC WORK EXPERIENCE

- **Graduate Teaching Assistant – Course: Physiology 3130y**
 Department of Physiology and Pharmacology, Western University, 2009-2014
 - Assisting the professors with the instructional responsibilities in Physiology 3130y course, including teaching students in laboratory, tutorial, discussion sessions.

- **Reviewer Board - Health Science Inquiry (HSI), Issue of Diabetes**
 University of Toronto, 2011-2012
 - Critically evaluating and providing the detailed feedback on submissions received by the journal.

CONFERENCE PROCEEDINGS

- **Feng ZC, Li J, Silverstein J, Popell A, Yee SP, Wang R. (2013) Long-term overexpression of c-Kit negatively impacts beta-cell function and survival via capillary and inflammatory recruitment in the islet. The European Association for the Study of Diabetes Abstract. Poster presentation 537 to be delivered at EASD, Barcelona, Spain, October, 2013.**

- **Feng ZC, Li J, Silverstein J, Yee SP, Wang R. (2013) Chronic up-regulation of insulin receptor through cross-talk between c-Kit negatively impacts beta-cell proliferation and function in aging c-KitβTg mice. The 5th Islet Society Meeting Abstract. Platform presentation to be delivered in Vancouver, Canada, July, 2013.**

- **Feng ZC, Jam A, Li J, Wang R. (2012) Cross-talk between the c-Kit and insulin receptors enhances beta-cell proliferation and function. The European Association for the Study of Diabetes Abstract. Poster presentation 393 to be delivered at EASD, Berlin, Germany, October, 2012.**

- **Li J, Wong M, Feng ZC, Wang R. (2012) Role of Aldehyde dehydrogenase 1 (ALDH1) activity in the developing human pancreas. The European Association for the Study of Diabetes Abstract. Poster presentation #16 to be delivered at EASD, Berlin, Germany, October, 2012.**

PEER-REVIEWED PUBLICATIONS

- **Feng ZC, Popell A, Li J, Yee SP, Wang R. (2014) Chronic up-regulation of insulin receptor through cross-talk between c-Kit negatively impacts beta-cell proliferation and function in aging c-KitβTg mice. (Manuscript in preparation)**
Feng ZC, Popell A, Li J, Silverstein J, Yee SP, Wang R. (2014) c-Kit receptor tyrosine regulates islet microvasculature, beta-cell survival and function in vivo. (Prepared in submission to the journal Cell Metabolism)

- ‘Up front’ article that merits special attention in the issue of Diabetologia.
- Featured on Schulisch School of Medicine & Dentistry web page. A “Kit” for increasing insulin production.

REVIEW ARTICLE