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common glandular pattern with a score 4 and the second most common pattern with a 

score 3.  A Gleason score of 7 (4 + 3) is less desirable than a score of 7 (3 + 4), since the 

most common glandular pattern is less aggressive in the latter. 

Based on the results of PSA, staging and grading, cancer patients can be classified 

into three risk groups [39-41].  According to the classification by D’Amico et al. [41], 

patients with Gleason score 8-10, stage ≥T2c or PSA >20 ng/ml are considered high risk, 

with aggressive tumours and advanced disease.  While these patients are not 

recommended for localized therapy, the typical treatment options are radical 

prostatectomy and external beam radiotherapy.  Patients with Gleason score 7, stage T2b 

or PSA 10.1-20 ng/ml are considered to be intermediate risk.  These patients with organ 

confined disease are amenable to be treated with localized treatment methods such as 

focal laser ablation and high intensity focused ultrasound. On the other hand, the patients 

with Gleason score 2-6, stage T1-T2a, and/or PSA <10 ng/ml are considered to be low 

risk and clinically insignificant. 

The prostate biopsy results play a critical role in differentiating between 

aggressive and indolent disease and in selecting treatment options for tumours that need 

attention.  While underdiagnosis and undertreatment of aggressive cancers could cause 

lethal effects on patients, overdiagnosis and overtreatment could lead to undesirable 

health outcomes like urinary incontinence and erectile dysfunction.  Unfortunately, the 

“blind” approach to systematic prostate biopsy has high false negative rates in the range 

10-30% [32, 42-44], leaving uncertainty in the generated results during its role as the 

diagnostic tool for prostate cancer.  As a consequence, clinicians have to base their 

decisions on evidence that is inconclusive and repeat biopsies might need to be 
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tumour.  Epstein et al. [26] suggested a minimum significant prostate tumour volume of 

0.5 cm3 and we refer to this work when discussing the desired level of accuracy in biopsy 

systems.  Assuming we have correctly identified and delineated tumours on MR imaging, 

there are several potential sources of error that limit 3D-guided biopsy systems in 

achieving a level of accuracy that allows for needle targeting with high confidence: (1) 

MR-TRUS co-registration errors, (2) tracking errors in the system, (3) imaging and 

calibration errors, and (4) errors due to patient and prostate motion/displacement during 

the procedure.  Quantification and minimization of these errors are essential to improving 

the needle targeting accuracy in 3D biopsy systems.  The errors due to sources (1)-(3) 

have been previously quantified and mitigated [8, 105] in the context of the 

mechanically-assisted 3D TRUS-guided biopsy system described in [8].  

Prostate motion/deformation can cause target misalignment during 3D TRUS-

guided biopsy [106].  Since the patient is awake and under local anesthesia, he can move 

due to discomfort during procedure, which is approximately 15 minutes in duration.  The 

TRUS probe pressure applied while the physician navigates the probe to different regions 

of the prostate is another potential cause of prostate motion.  The needle insertion and 

biopsy gun firing procedure could also cause some additional motion.  These motions 

during the procedure can disrupt the correspondence between live 2D TRUS images and 

the targets defined in the coordinate system of the baseline 3D TRUS image, causing 

target misalignments and needle targeting errors.  Studying prostate motion during biopsy 

and finding methods for motion compensation is critical to improving the needle 

targeting accuracy of 3D TRUS-guided biopsy systems. 
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Recent clinical studies [12, 14, 107, 108] comparing 3D versus 2D systematic 

TRUS-guided biopsies have demonstrated evidence suggesting that prostate cancer 

detection rates improve with a 3D-guided approach.  However, evidence from previous 

work [109] analysing prostate motion during biopsy suggests that misalignments due to 

motion can cause substantial errors > 5 mm relative to the clinically significant tumour 

sizes reported in the literature [26, 110].  Therefore, improving needle targeting accuracy 

of biopsy systems could help to further improve cancer detection rates of the 3D TRUS 

guided approach and strengthen the confidence in diagnosing low to intermediate risk 

cancer.   Automatic localization of corresponding anatomical landmarks within the 

anatomy is one potential approach to track motion during biopsy.  Surface-based 

registration algorithms are an example where the segmentation of the prostate boundary 

can be used to achieve correspondence.  While this approach relies upon an accurate, 

automatic segmentation algorithm of the prostate, developing such an algorithm that is 

sufficiently robust can be a challenging task in ultrasound images. Therefore, using the 

image intensity information could lead to more robust image registration solutions and 

simplify the workflow by eliminating the need for prostate segmentation. Development 

and successful clinical translation of rapid image intensity-based registration methods to 

compensate for misalignments due to prostate motion is an indispensable step towards 

improving targeting accuracy to enable sampling of clinically significant tumours during 

prostate biopsy.          
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1.6 Image-based registration techniques 

Image registration is the process of transforming multiple images to spatially align them 

in a single coordinate system.  In image-based registration, the alignment is achieved 

using the information in image signal intensities.  A quantitative measure that reflects the 

desirable properties of a good alignment is defined as the objective function, and can 

comprise of an image similarity metric and a regularization term.  For rigid registration 

applications, the objective function is typically the image similarity metric.  One image is 

transformed, interpolated and compared with the other image to calculate the image-

similarity metric. In a rigid, affine or non-rigid transformation space, optimization 

techniques are utilised to find the optimum metric value in an efficient manner.  Thus, the 

registration framework constitutes of multiple components: (1) image similarity metric, 

(2) optimization technique, (3) transformation (e.g., rigid, affine or non-rigid), and (4) 

interpolator. These components need to be specified in developing the image-registration 

technique. 

Live 2D TRUS images acquired during the procedure need to be co-registered 

with the baseline 3D TRUS image acquired at the beginning of the procedure to 

compensate for motion during the biopsy session.  The development of accurate and fast 

2D-3D registration methods could be challenging due to the limited information available 

in the live 2D TRUS image.   In solving uni-modality registration problems [10], the 

sum-of-squared difference (SSD) and normalized cross-correlation (NCC) could be 

suitable image similarity metrics.  While SSD assumes the same level of image intensity 

at homologous pixels in the two images, NCC tolerates a linear relationship in intensities. 

Therefore, NCC is invariant to the changes in intensity scaling and shift.  These metrics 
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can be inherently parallelized to achieve high-speed implementations to be useful for 

clinical application.  The capture range of the metric is another important consideration 

when selecting a useful metric.  If the metric has a wide capture range within the 

transformation space, large misalignments can be compensated using local optimizers to 

successfully converge at the desired solutions. 

Since brute-force searching of the transformation space is intractable due to 

registration time requirements, the optimization technique is an essential component of 

the registration algorithm to traverse the transformation space in an efficient manner.  

While local optimization techniques are widely used in registration problems that have 

convex, quasi-convex or monotonic objective function landscapes [111], some methods 

in the literature [112, 113] have investigated  the development of global optimization 

techniques to improve registration accuracy and robustness.  Multi-start [114], simulated 

annealing [115], particle swarm [116], genetic [117] approaches have been used in 

registration problems with the objective of improving robustness.  However, this could 

lead to an increase in computation times due to the increase in the number of image 

similarity metric evaluations and slower convergence properties.  Efficient 

implementation of optimization algorithms using graphics processing units (GPU) [113] 

and development of algorithms with improved convergence properties [118] could be 

helpful in adopting such algorithms for applications that require rapid registration. 

The properties of some optimization techniques can be more desirable in 

achieving high speed performance in principle. Multiple local optimization techniques 

(e.g., Newton’s method, quasi-Newton method, conjugate gradient method, Powell’s 

method) developed over the years are derived from a quadratic model and have quadratic 
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convergence properties.  These methods assume and approximate second order 

characteristics of the function within its local neighborhood and are capable of finding 

the optimum of the function in a finite number of function/derivative evaluations given a 

reasonable satisfaction of the quadratic model assumption.  This is a useful property that 

aids fast convergence when optimizing a multi-dimensional function in image 

registration.  Techniques that rely on first order properties of the function (e.g., gradient 

descent/steepest descent [119, 120]), on the other hand, have linear convergence 

properties.  There is another classification of optimization methods based on whether the 

calculation of the objective function’s derivative is required.  Some optimization methods 

(e.g., conjugate gradient method, Newton’s method) explicitly calculate the derivative of 

the objective function, while some others (e.g., Powell’s method [121], CMA-ES method 

[122]) are derivative-free and the optimization is achieved using only function 

evaluations.  Derivative-free methods can be useful if the explicit calculation of the 

function derivative is either time consuming or not straightforward.  

1.7 Image registration accuracy required for the clinical application 

The work in this thesis is focused on the errors due to prostate motion that limit the 

biopsy system in achieving the desired targeting accuracy, but had not been previously 

quantified and mitigated from the potential sources of error that we have enumerated in 

section 1.5.  Given that the suspicious tumour locations have been identified in the 

baseline 3D TRUS image, errors due to intermittent patient and prostate 

motion/displacement during the procedure and due to prostate deformation during the 

needle insertion and the biopsy-gun firing could challenge the accurate targeting of those 
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locations using a 3D TRUS-guided biopsy system.  On the other hand, there is evidence 

suggesting that tumours > 0.5 cm3 are clinically significant [26, 110]; such tumours have 

a radius of 5 mm under the spherical assumption. In order to accurately target a 5 mm 

radius spherical tumour with 95% probability, the root mean square (RMS) error of the 

biopsy system should be ≤ 2.5 mm.  

1.8 Hypothesis 

The central hypothesis is that image-based 2D-3D registration of TRUS images can 

correct for intermittent prostate displacement during the biopsy procedure, with an RMS 

target registration error (TRE) ≤ 2.5 mm. 

1.9 Objectives 

To test the central hypothesis, the four major objectives of this thesis work are: 

I. To quantify the prostate motion and deformation due to needle insertion and 

biopsy-gun firing procedure and calculate the 95% prediction interval around the 

tissue deformation and compare this deformation in handheld and mechanically-

assisted systems. 

II. To (a) develop a 2D-3D registration technique with sufficient accuracy and speed 

for prostate motion compensation during biopsy, and (b) validate this registration 

method retrospectively using live 2D TRUS images and baseline 3D TRUS 

images acquired during human clinical biopsy procedures using a mechanically-

assisted 3D TRUS-guided biopsy system [8].  

III. To (a) evaluate the utility of intra-procedural 3D TRUS images in guiding 

registration during motion compensation to robust solutions, (b) identify the 



 

 

28 

 

anatomical regions that benefit the most from such additional intra-procedural 3D 

information, and (c) test whether a robust rigid registration is sufficient to achieve 

clinically desired level of accuracy.    

IV. To (a) improve the robustness of registration optimization using learned 

characteristics from observed prostate motion data, (b) measure the major patterns 

of prostate motion during biopsy, and (c) modify Powell’s direction set method 

initialization to incorporate learned motion characteristics. 

1.10 Thesis outline 

1.10.1 Chapter 2 - Quantification of prostate deformation due to needle 

insertion during TRUS-guided biopsy: Comparison of hand-held and 

mechanically stabilized systems 

In this chapter, we describe our work to quantify the deformation that occurs during the 

needle insertion and the biopsy-gun firing procedure using non-rigid registration of 2D 

TRUS images acquired during human clinical biopsy procedures.  We calculated the 

spatially varying 95% confidence interval on the prostate tissue motion and analysed this 

motion both as a function of distance to the biopsy needle and as a function of distance to 

the lower piercing point of the prostate. The former is relevant because biopsy targets lie 

along the needle axis, and the latter is of particular importance due to the reported high 

concentration of prostate cancer in the peripheral zone, a substantial portion of which lies 

on the posterior side of the prostate where biopsy needles enter the prostate after 

penetrating the rectal wall during transrectal biopsy.  
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The results showed that for both systems, the tissue deformation is such that 

throughout the length of the needle axis, including regions proximal to the lower piercing 

point, spherical tumours with radius 2.1 mm or more can be sampled with 95% 

confidence, under the assumption of zero error elsewhere in the biopsy system. More 

deformation was observed in the direction orthogonal to the needle axis, compared to the 

direction parallel to the needle axis; this is of particular importance given the long, 

narrow shape of the biopsy core. We measured lateral tissue motion proximal to the 

needle axis of not more than 1.5 mm, with 95% confidence. We observed a statistically 

significant, but clinically insignificant maximum difference of 0.38 mm in the 

deformation resulting from the hand held and mechanically assisted systems along the 

needle axis, and the mechanical system resulted in a lower relative increase in 

deformation proximal to the needle axis during needle insertion, as well as lower 

variability of deformation during biopsy gun firing. 

1.10.2 Chapter 3 - 2D-3D rigid registration to compensate for prostate 

motion during 3D TRUS-guided biopsy 

The error due to needle insertion and biopsy gun-firing procedure, described in Chapter 

2, occurs during a very short period of time and is challenging to compensate.  

Intermittent patient and prostate motion cause larger misalignments [109] challenging the 

needle targeting accuracy to meet this requirement. To compensate for this motion, we 

implemented and tested an intensity-based 2D-3D rigid registration algorithm optimizing 

the NCC using Powell’s method.  The 2D TRUS images acquired during the procedure 

prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the 
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beginning of the procedure.  The accuracy was measured by calculating the TRE using 

manually identified fiducial markers (henceforth fiducials) within the prostate for eight 

patients. These fiducials were used for validation only and were not provided as inputs to 

the registration algorithm.  We also measured the accuracy when the registrations were 

performed continuously throughout the biopsy procedure by acquiring and registering 

live 2D TRUS images every second.  This measured the improvement in accuracy 

resulting from performing the registration continuously compensating for motion during 

the procedure.  To further validate the method using a more challenging data set from 10 

patients, registrations were performed using 3D TRUS images acquired by intentionally 

exerting different levels of ultrasound probe pressures in order to measure the 

performance of our algorithm when the prostate tissue was intentionally deformed.  In 

this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D 

TRUS images and registering them to the baseline 3D image.  A GPU-based 

implementation was used to improve the registration speed. We also studied the 

correlation between NCC and TREs.   

With the GPU based implementation, the registrations were performed with a 

mean time of 1.1 s.  The TRE values before, during and after registration showed a weak 

correlation (r2 = 0.23) with the similarity metric.  However, we measured a generally 

convex shape of the metric around the ground truth registration, which may explain the 

rapid convergence of our algorithm to accurate results.  The RMS TRE of registrations 

performed prior to biopsy gun firing was found to be 1.87 ± 0.81 mm.  This was an 

improvement over 4.75 ± 2.62 mm before registration.  When the registrations were 

performed every second during the biopsy, the RMS TRE was reduced to 1.63 ± 0.51 
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mm.  However, for a 3D data set acquired under a more controlled range of probe 

pressures intended to test the robustness of the algorithm, the RMS TRE was found to be 

3.18 ± 1.6 mm. This was an improvement from 6.89 ± 4.1 mm before registration.  

Assuming this TRE and the TRE resulting from tissue displacement during needle 

insertion (Chapter 2) are independent, they can be added in quadrature to determine an 

overall TRE that can be compared against the 2.5 mm TRE threshold in the central 

hypothesis.  From Chapter 2, we measured an RMS TRE of 1.1 mm; adding (in 

quadrature) a further TRE of 2.3 mm to this 1.1 mm yields a total of 2.5 mm.  Thus, for 

the central hypothesis of this work to be confirmed, an image registration algorithm with 

RMS TRE ≤ 2.3 mm is required. While the results in this chapter showed encouraging 

results in improving the accuracy in needle targeting, the measured 3.18 mm RMS TRE 

suggests that further improvements in accuracy and robustness could be helpful to meet 

the clinical requirements for successful translation of this method.   

1.10.3 Chapter 4 – Evaluating the utility of intra-procedural 3D TRUS 

image information in guiding registration for displacement compensation 

during prostate biopsy. 

The 2D-3D registration for motion compensation described in Chapter 3 can be 

challenging in cases where a single plane 2D TRUS plane does not capture enough 

anatomical context to drive the registration algorithm to the desired solution.  While 2D 

TRUS images are widely used for intra-procedural guidance, some solutions utilize richer 

intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by 

specialized probes. In this chapter, the impact of such richer intra-procedural imaging on 
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motion compensation accuracy was measured to evaluate the tradeoff between cost and 

complexity of intra-procedural imaging versus improved motion compensation.  Baseline 

and intra-procedural 3D TRUS images were acquired from 29 patients at standard 

sextant-template biopsy locations. Planes extracted from 3D TRUS images acquired at 

sextant positions were used to simulate 2D and 3D intra-procedural information available 

in different potential clinically-relevant scenarios for co-registration with the baseline 3D 

TRUS image. In practice, intra-procedural 3D information can be acquired either via the 

use of specialized ultrasound probes (e.g., multi-planar or 3D probes) or via axial rotation 

of a tracked 2D TRUS probe. Registration accuracy was evaluated by calculating the 

TRE using manually-identified homologous intrinsic fiducial markers (micro-

calcifications). The TRE was analysed separately at the base, mid-gland and apex regions 

of the prostate. 

The results indicated that TRE improved gradually as the number of intra-

procedural imaging planes used in registration was increased, implying that 3D TRUS 

information assisted the registration algorithm to robustly converge to more accurate 

solutions. The acquisition of a partial volume up to the angle of rotation supported more 

accurate motion compensation than acquiring bi-plane configurations. Additional intra-

procedural 3D TRUS image information was more beneficial to registration accuracy in 

the base and apex regions as compared with the mid-gland region 
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1.10.4 Chapter 5 – Robust 2D-3D registration optimization to motion 

compensation using learned prostate motion data 

In the previous chapter, we investigated a mechanism to achieve robust registration for 

motion compensation during biopsy by acquiring additional intra-procedure image 

information.  In this chapter, we discuss an alternative approach to registration to 

improve accuracy and robustness.  We developed and evaluated a registration algorithm 

in which the optimization is based on learned prostate motion characteristics of the 

prostate. We performed an unsupervised clustering of rigid prostate motion vectors 

observed in our data set.  We developed a multi-start search strategy, starting at each 

cluster mean and then directing the search towards the areas where motion vectors  had 

already been observed by appropriately scaling the search space and specifying the initial 

search directions during optimization using the Powell’s direction set method.   

Prostate motion analysis and registration validation was performed using a leave-

one-out-cross-validation approach using the 3D TRUS images acquired from 29 patients 

at baseline and sextant template biopsy locations.  With this method the RMS TRE ± std 

improved from 4.9 ± 2.35 mm to 2.3 ± 1.1 mm. The initial approach described in Chapter 

3 yielded an accuracy of 3.1 ± 1.7 mm with this data set.  Compared to the initial 

approach, the updated optimization method improved the robustness during 2D-3D 

registration by reducing the number of registrations with a TRE > 5 mm from 9.2% to 

1.2%.  With a total execution time of 2.8 s to perform motion compensation, this method 

is amenable to useful integration into a clinical 3D guided prostate biopsy workflow. 
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system's delivery of needles to targets must be less than 2.5 mm [7].  There are several 

potential sources of error in biopsy systems: (1) mechanical guidance system errors, (2) 

imaging and calibration errors, (3) patient and prostate motion due to discomfort during 

the procedure, (4) prostate deformation due to biopsy needle insertion prior to firing the 

biopsy gun, and (5) prostate deformation due to biopsy gun firing.  The effects of the first 

three sources of error have been quantified previously [3, 5, 7].  The cumulative effect of 

all of the above sources has been quantified in the context of MRI-guided biopsy [8].  We 

hypothesize that deformations due to needle insertion and biopsy gun firing are different 

in the context of TRUS-guided biopsy due to several important differences in physical 

configuration.  In contrast to the robotic procedure described in Xu et al. [8], where an 

endorectal coil in a cylindrical housing is placed parallel to the rectal wall for imaging, 

TRUS-guided biopsy is typically conducted using an end-firing ultrasound transducer, 

where the spherical transducer tip is manipulated against the anterior rectal wall in order 

to obtain images.  The MR-guided robot in Xu et al. [8] inserts needles into the prostate 

through the rectal wall at an oblique angle to the endorectal coil housing, whereas in end-

firing TRUS biopsy, the needles are nearly parallel to the probe axis.  It is reasonable to 

expect that these differences in physical configuration may lead to differing mechanical 

dynamics at the time of biopsy needle insertion and gun firing, resulting in different 

prostate deformation characteristics.  The effect of needle insertion on prostate motion 

has been studied extensively in the context of brachytherapy procedures [9, 10], where 

the patient is under general anesthesia and the brachytherapy needles are inserted slowly 

(relative to the rapid firing speed of a biopsy gun) through the perineum.  It is reasonable 

to consider that the effect of the needle in the context of biopsy may be different due to 
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limiting the fiducials to lie within the particular extracted plane used in the registration.  

The TRE was computed as 

𝑇𝑅𝐸𝑝 =
√
∑ (𝑇3𝐷−𝑤𝑜𝑟𝑙𝑑(𝑓𝑚𝑒𝑑

𝑘)− 𝑇𝑢
𝑏(𝑓{𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}

𝑘))
2𝑁𝑘

𝑘=1

𝑁𝑘
, 

(3.5) 

 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = √
∑ 𝑇𝑅𝐸𝑝

2𝑁𝑝
𝑏=1

𝑁𝑝
  , (3.6) 

where 𝑓{𝑚𝑒𝑑,𝑙𝑜𝑤,ℎ𝑖𝑔ℎ}  ⊂  𝛺  are the fiducials identified in  𝐼𝑚𝑒𝑑, 𝐼𝑙𝑜𝑤, 𝐼ℎ𝑖𝑔ℎ. 

We also computed the optimal rigid alignment using the identified fiducials to 

define the rigid transformation that yielded the minimum TRE for the given fiducials per 

patient.  To do this, we found the fiducial registration error (FRE) [15] for each set of 

fiducial pairs in each patient, after transforming the fiducials with the parameters 

corresponding to the best rigid alignment.  With the presence of non-rigid deformations 

in the probe pressure protocol data set, the FRE gives a lower bound on the 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

that can be obtained using a rigid registration.  In a sense, the FRE gives an indication of 

the amount of non-rigid deformation present in the data set; e.g., an FRE of 0 mm would 

indicate that a rigid transformation could fully compensate for the observed changes in 

the prostate, and an FRE > 0 mm would indicate that some amount of non-rigid 

deformation may have occurred in the prostate.  Thus the FRE gives some indication of a 

“best-case” TRE that could be obtained from a registration algorithm using a rigid 

transformation and it is therefore of interest to compare the FRE to the 𝑇𝑅𝐸𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

obtained from our registration algorithm. 
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We used the fiducials throughout the prostate to calculate the TRE.  To test 

whether the TRE varies with distance to the registration plane, we plotted TRE against 

the distance to the registration plane for each fiducial. 

3.2.6 GPU implementation 

The step consuming the most computation time during execution of the registration was 

the calculation of the image similarity metric during optimization.  Therefore, we 

implemented the 𝑁𝐶𝐶 calculation on an nVidia GTX 690 (Nvidia Corporation, Santa 

Clara, CA) graphics processing unit (GPU) using compute unified device architecture 

(CUDA) C++.  The normalized cross-correlation calculation is inherently parallelizable.  

Instead of using a sequential approach to transform each voxel independently, we 

transformed all voxels in the moving image in parallel during each iteration of 

optimization.  These transformations were followed by 3D linear interpolation of image 

intensities to resample the moving image that was also performed within the GPU.  The 

subsequent calculation of the summations in Equation 3.1 was also done in parallel to 

further accelerate the execution. 

3.2.7 Correlation between image similarity metric and misalignment 

During registration, we optimize an image similarity metric over a 3D transformation 

space.  The relationship between the image similarity metric and the amount of 

misalignment not only conveys the suitability of the metric to be used in registration, but 

also it shows whether the image-similarity metric could be used as an indicator of the 

misalignment.  This could be a useful feature to trigger the registration algorithm in a 

system that does not continuously compensate for motion as during biopsy.  To analyze 
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this relationship using the biopsy protocol data, we plotted the calculated normalized 

cross-correlation measures for each instance before registration, during registration (for 

each iteration during the optimization) and after registration (after the optimizer 

converged) and their corresponding 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 values. 

With manually identified fiducials, we should be able to find a plane within the 

3D TRUS image that yields zero (or near zero) TRE.  We analyzed the behaviour of 

normalized cross-correlation near this “optimum” plane by extracting 2D images lying 

nearby (in terms of the six parameters,  , defining 3D translation and rotation) planes in 

the 3D TRUS image, and computed the image similarity metric for the 2D TRUS image 

and these nearby 2D images from the 3D TRUS image.  Although this approach does not 

fully explore the six-dimensional objective function, to simplify the visualization of the 

results, we analyzed the metrics by varying one degree-of-freedom at a time. 

3.2.8 TRE as a function of distance to the probe tip 

We analyzed the TRE as a function of distance of each fiducial to the ultrasound probe 

tip, to test if the registration error is larger within the regions of the prostate close to the 

ultrasound probe.  Since we used a rigid transformation during registration, non-rigid 

deformation of the prostate would be reflected as part of the TRE.  Ultrasound probe 

pressure might cause inconsistent deformation in different regions of the prostate, which 

could lead to regionally-varying accuracy of motion compensation by a rigid 

transformation.  
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3.3 Results 

3.3.1 Validation: biopsy protocol data 

The 𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦 was calculated according to Equation 3.4 and its RMS±std. was found to 

be 1.87 ± 0.81 mm, after manually localising 52 fiducial pairs over 8 patients.  This was 

an improvement over 4.75 ± 2.62 mm before registration.  Since these TRE distributions 

were found to be not normally distributed using one-sample Kolmogorov-Smirnov test 

with a significance level p < 0.0001, we tested the null hypothesis that their medians were 

equal with a non-parametric test using Prism 5.04 (Graphpad Software Inc., San Diego, 

USA).  The Wilcoxon signed rank matched pairs test rejected the null hypothesis (p < 

0.0001) suggesting that there is a statistically significant difference in TREs before and 

after registration.  When the registrations were performed with the fiducials masked out, 

the TRE was found to be 1.93 ± 0.66 mm.  When compared with the distribution of 

𝑇𝑅𝐸𝑏𝑖𝑜𝑝𝑠𝑦, the Wilcoxon signed rank matched pairs test failed to reject the null 

hypothesis (p = 0.74).  Thus, we were unable to detect a statistically significant difference 

between the TREs resulting from registrations where the fiducials were present and 

registrations where the fiducials were absent. 

When 2D-3D registration was performed incrementally every second during the 

biopsy, the RMS ± std TRE was reduced to 1.63 ± 0.51 mm.  The mean number of 

iterations required for convergence decreased from 5.6 to 2.75.  Figure 3.3 shows 

changes in TRE values before registration, after registration and after registering the 

frame obtained every second for each biopsy taken.  Figure 3.4 contains two 

representative example images, depicting the visual alignment qualitatively for 

registration just prior to biopsy.  The post-registration TRE of these two example images 
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were found to be 1.5 mm (top row) and 1.2 mm (bottom row), which had improvements 

from 3.7 mm (top row) and 5.3 mm (bottom row) before registration.  Grid lines overlaid 

at corresponding locations in image space facilitate visual evaluation of the alignment of 

the anatomy pre- and post-registration. 

 

Figure 3.3: TRE before registration, after registration and after continuous registration every second for 

each biopsy in prostate biopsy protocol.  
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Figure 3.4: Images before and after registration immediately prior to taking a biopsy sample. Left column: 

Real-time 2D TRUS images. Middle column: Corresponding images before registration assuming no 

prostate motion (from the transformation given by the mechanical tracking system). Right column:  

Corresponding images after registration.   

  

Figure 3.5: TRE as a function of time elapsed from the start of the biopsy. (a) TRE before registration.  (b) 

TRE after registration. (c) TRE after registering the images acquired every second.  
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Figure 4.5: Example of the identified fiducials for three pairs of images.  Arrows point to homologous fiducial pairs 

in each row.  Baseline images with the fiducials are shown in the left and the sextant images of the same patient with 

corresponding fiducials are shown in the right. 

4.2.6 TRE for base, mid-gland and apex regions 

The TRE distributions were analysed separately for mid, base and apex regions of the prostate to 

understand the benefit of using additional 3D image planes in each region.  The TRE for each 

probe position was calculated separately as 

𝑇𝑅𝐸𝑗𝛼1,..,𝛼𝑛 =
√∑ (𝑓𝐹

𝑖𝑗𝑘
−𝑇𝛼1,..,𝛼𝑛

𝑖𝑗
(𝑓𝑀
𝑖𝑘))2𝑖,𝑘

𝑁𝑗
. 


