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Abstract 

A reactive groundwater transport model has been developed to investigate the fate of 

nutrients (ammonium, nitrate, and phosphate) in a near-shore coastal aquifer subject to 

oceanic forcing (tides and waves) and their subsequent discharge to coastal waters. The 

model is developed by combining the variable-density groundwater flow model 

SEAWAT-2005 with the reactive multi-component transport model PHT3D v2.10. The 

influence of tides and waves are typically neglected in prior studies that have examined 

the transport and transformation of nutrients in coastal aquifers. Oceanic forcing however 

can induce a highly dynamic surficial salt-freshwater mixing and reaction zone in a near-

shore aquifer and this may modify the transport pathways and concentrations of 

discharging nutrients. The reactions considered in the model include denitrification, 

nitrification, aerobic degradation of dissolved organic matter, iron oxidation, and 

phosphate adsorption. The reaction network implemented, including the kinetic rate 

expressions, has been verified previously by numerical simulations conducted for a near-

shore aquifer not exposed to oceanic forcing. The simulations conducted reveal that 

oceanic forcing significantly modifies the discharge pathway of the groundwater-derived 

nutrients and the reactions occurring along this pathway. This alters the net production 

and consumption of nutrients in the near-shore aquifer and their subsequent loading rates 

to coastal waters. It is further shown that the fate of the nutrients is strongly controlled by 

the availability of chemical species including dissolved organic matter in seawater 

recirculating through the near-shore sediments. Moreover, for the conditions simulated, 

tides led to more intense salt-freshwater mixing in the near-shore aquifer and thus greater 

transformations of nutrients in the near-shore aquifer compared to regular wave forcing. 
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This study significantly enhances conceptual understanding of the processes controlling 

the fate of nutrients in a near-shore aquifer and hence provides a valuable tool for 

improving prediction of nutrient loading rates to coastal waters. 

Keywords: submarine groundwater discharge, tides, waves, salt-freshwater mixing, 

geochemical reactions, subterranean estuary, numerical modeling. 
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Chapter 1 

Introduction 

1.1 Background 

It is widely recognized that submarine groundwater discharge (SGD) can be an important 

source of nutrients (i.e., ammonium, nitrate, and phosphate) to coastal waters (Capone 

and Bautista 1985; Garrison et al. 2003; Santos et al. 2008). This is because high 

concentrations of nutrients are often observed in coastal aquifers due to increasing 

population and urban and agricultural development along shorelines (Postma et al. 1991; 

Spalding and Exner 1993; Howarth et al. 1996; Iversen et al. 1998). Natural reactive 

processes occurring in the aquifer (e.g. denitrification, phosphate adsorption) can 

decrease nutrient fluxes to coastal waters, however, in many cases, subsurface nutrient 

attenuation is limited and nutrient loading via SGD can be significant (Valiela et al. 1978; 

Johannes 1980; Capone and Bautista 1985; Valiela et al. 1992). Understanding the 

transport and transformation of nutrients in a coastal aquifer is therefore important to 

accurately predict nutrient loading rates. 

Nutrient discharge can have severe effects on the coastal ecosystem (Lapointe and 

O’Connell 1989; Valiela et al. 1990; Valiela et al. 1992). Increase of the 

nitrogen:phosphate (N:P) ratio in coastal waters due to groundwater discharge has been 

shown to lead to eutrophication of coastal waters (Capone and Bautista 1985; Valiela et 

al. 1992; Paerl 1997). This promotes excessive plant growth including harmful algal 

blooms and in some cases can lead to changes in the biodiversity of near-shore 

ecosystems (Paerl 1997). Harmful algal blooms can also have acute human health 
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impacts, for example, some cyanobacteria can cause health effects such as skin irritations 

(Pilotto et al. 1997) and more severe respiratory problems (McElhenny et al. 1962). 

The discharge of nutrients from a coastal aquifer to the sea depends on the landward 

groundwater sources as well as on the specific subsurface nutrient discharge pathway and 

the biogeochemical reactions occurring along this pathway (Slomp and van Cappellen 

2004; Spiteri et al. 2005; Charette and Sholkovitz 2006). Two mixing zones of fresh 

groundwater and seawater often exist in the near-shore region of a coastal aquifer 

exposed to tides or waves: a) the mixing zone along the interface of the saltwater wedge 

which forms due to the density-driven seawater recirculation across the aquifer-ocean 

interface (Cooper 1959; Destouni and Prieto 2003; Smith 2004) and b) the upper saline 

plume formed due to tide- and wave-induced recirculation through an aquifer  (Li 1999; 

Boufadel 2000; Li et al. 2000; Turner and Acworth 2004; Vandenbohede and Lebbe 

2005; Robinson et al. 2006; Robinson et al. 2007b; Robinson et al. 2007c; Xin et al. 

2010). The zone where recirculating seawater and fresh groundwater mix in a coastal 

aquifer is often referred to as a subterranean estuary (Moore 1999). This is because it is 

typically characterized by strong biogeochemical gradients (e.g., pH or redox gradients) 

and so is an important zone for the transformation of groundwater-derived reactive 

species. The salt-freshwater mixing zone along the interface of the saltwater wedge was 

traditionally considered as the primary area of mixing between fresh groundwater and 

seawater. However, now it has been widely established that in many cases the upper 

saline plume may be a more dynamic and active zone of mixing and reaction (Robinson 

et al. 2007b). 
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A number of studies have demonstrated that significant nutrient production can occur in a 

subterranean estuary. This means that multiplication of fresh groundwater nutrient 

concentrations with submarine groundwater discharge (SGD) rates often underestimates 

nutrient fluxes to coastal waters (Santos et al. 2009). In a near-shore aquifer, land-derived 

groundwater flows, seawater recirculation rates, aquifer sediment characteristics and 

biogeochemical reactions determine the transport and transformation of nutrients 

discharging to coastal waters (Slomp and van Cappellen 2004).  While field and 

numerical investigations have been undertaken to examine the fate of nutrients in near-

shore aquifers (Andersen et al. 2007; Beck et al. 2007; Kroeger and Charette 2008; 

Spiteri et al. 2008a; Spiteri et al. 2008b), most studies have focused on coastal aquifers 

that are not influenced by oceanic forcing (tides and waves). Tides and waves lead to 

significant amounts of seawater containing oxygen and reactants including organic matter 

to recirculate through the near-shore aquifer (subterranean estuary). It is the availability 

of these reactants that can significantly affect the fate of nutrients in a subterranean 

estuary (Santos et al. 2009).  

As most shorelines are exposed to tides and/or waves, quantifying the effect of these 

oceanic forcing on nutrient behaviour in a coastal aquifer is critical for predicting their 

discharge to coastal waters. Measurement of nutrient behaviour in coastal aquifer system 

exposed to oceanic forcing is complex due to the extremely high temporal and spatial 

variability occurring at a wide range of scales (e.g., frequency of tides, waves, seasonal 

variability). Numerical modeling is able to provide valuable conceptual insight into the 

physical transport and reaction processes that control the fate of nutrients in a near-shore 

aquifer subject to tides and waves and their subsequent discharge to coastal waters.  



4 

 

 

1.2 Research objective 

For effective coastal management it is essential to understand the complex and dynamic 

processes associated with the transport and transformation of nutrients in coastal aquifers. 

The main objective of this thesis is to evaluate the effects of oceanic fluctuations (e.g., 

tides and waves) on the transport and transformation of nutrients in a near-shore coastal 

aquifer and nutrient fluxes to coastal waters. This understanding is required to improve 

prediction of nutrient loading via submarine groundwater discharge. The variable density 

groundwater flow model SEAWAT-2005 (Guo and Langevin 2002) is used in 

combination with the reactive multi-component transport model PHT3D v2.10 (Prommer 

and Post 2010) to simulate the fate of nutrients discharging to the ocean from a coastal 

aquifer. The numerical model developed is first described and the model is verified using 

previously reported simulation results without considering effects of tides and waves 

(Spiteri et al. 2008a). Simulations were performed with oceanic forcing using the verified 

numerical model (no oceanic forcing) to evaluate the exit concentration, chemical flux, 

nutrient accumulation and net discharge of nutrients from a coastal aquifer exposed to 

tides and waves. The numerical model is finally be used to assess the influence of labile 

dissolved organic matter associated with the seawater recirculating through the aquifer on 

the nutrient transformations in the subterranean estuary. 

1.3 Thesis outline 

This thesis is written in “Integrated Article Format”. A brief description of each chapter 

is presented below. 

Chapter 1: Introduces background information and states the objectives of the study.  
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Chapter 2: Reviews past research focused on submarine groundwater discharge and the 

influence of oceanic forcing on groundwater flows and the transport and fate of nutrients 

in coastal aquifers.  

Chapter 3: Details the numerical model development, simulation results and provides 

discussion of the simulations performed to examine nutrient transport and fate in a near-

shore aquifer. 

Chapter 4: Summarizes the research results and outlines recommendations for future 

work.  
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Chapter 2 

Literature Review 

2.1 Introduction 

Increasing development and population growth along coastlines worldwide has caused 

elevated levels of nutrients (e.g., ammonium, nitrate, phosphate) in coastal aquifers. 

Traditionally river inputs have been considered as the main source of nutrients in coastal 

waters. However, it is now widely recognized that submarine groundwater discharge 

(SGD) can also transport considerable amounts of nutrients to coastal waters particularly 

in areas where severe groundwater contamination has been occurred  (Simmons 1992; 

Church 1996; Moore 1996; Li et al. 1999; Burnett et al. 2003; Slomp and van Cappellen 

2004; Burnett et al. 2006). Nutrient loading from coastal aquifers to coastal waters 

depends not only on the landward sources but also the specific nutrient flow pathway and 

the biogeochemical reactions occurring along this pathway (Slomp and van Cappellen 

2004; Spiteri et al. 2005; Charette and Sholkovitz 2006). In particular the flow, transport 

and reaction processes in a near-shore aquifer strongly control the exit conditions for 

nutrients discharging to coastal waters. While several studies have examined the fate of 

nutrients in near-shore aquifers (Andersen et al. 2007; Beck et al. 2007; Kroeger and 

Charette 2008; Spiteri et al. 2008a), the effect of oceanic fluctuations including tides and 

waves is typically neglected. However, oceanic fluctuations can lead to a highly dynamic 

surficial mixing and reaction zone in the near-shore aquifer and significantly alter the 

transport pathway for discharging nutrients (Robinson et al. 2007b; Robinson et al. 

2007c; Robinson et al. 2009; Xin et al. 2010). In this study the variable density 
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groundwater flow model SEAWAT-2005 (Guo and Langevin 2002) is used in 

combination with the reactive multi-component transport model PHT3D v2.10 (Prommer 

and Post 2010) to examine the influence of tides and waves on the transport and 

transformation of nutrients (ammonium, nitrate, and phosphate) in a near-shore coastal 

aquifer. This chapter summarizes previous literature that has investigated the behaviour 

of nutrients in coastal aquifers and their discharge to coastal waters. 

2.2 Coastal water pollution and stressors 

As populations expand in coastal areas, coastal ecosystems are placed under greater stress 

due to increasing pollution. There are a variety of sources that deliver nutrients to coastal 

waters. Sources can be point sources (e.g., wastewater treatment plants or sewage 

overflows) or they can be diffuse non-point inputs such as agricultural run-off, storm 

water run-off and groundwater discharge. Point sources are comparatively simple to 

identify and quantify compared with non-point sources which are often complex and 

difficult to quantify and to control.  

Worldwide, urban shoreline development, wastewater disposal systems and the use of 

fertilizers, for example, have led to elevated nutrient levels in coastal aquifers (Postma et 

al. 1991; Spalding and Exner 1993; Howarth et al. 1996; Iversen et al. 1998). While in 

some cases nutrients are naturally attenuated in the aquifer, often nutrient removal does 

not occur in the aquifer and the nutrients discharge with the groundwater to the sea 

(Valiela et al. 1978; Johannes 1980; Capone and Bautista 1985; Valiela et al. 1992). For 

phytoplankton growth, the optimal ratio of nitrogen (N) to phosphorous (P) is 16:1 

(Redfield ratio). If the N/P ratio is lower than the Redfield ratio, it is the indication of a 
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N-limited system. A high N/P ratio indicates a P-limited system. Changes to the Redfield 

ratio can have a significant effect on the biological state of an ecosystem, including 

phytoplankton biomass and species composition. Generally, the marine environment is 

N-limited with a lower N/P ratio (Howarth 1988; Conley 1999). As phosphate is often 

attenuated in aquifers via adsorption (Krom and Berner 1980; Spiteri et al. 2005), 

groundwater is often P-limited (Lapointe and O’Connell 1989; Weiskel and Howes 

1992). As a result, in some cases where there is significant SGD, N-limited coastal waters 

become P-limited due to the discharge of excess nitrogen (Valiela et al. 1990; Weiskel 

and Howes 1992; Paerl 1997). Increase of the N:P ratio in coastal waters due to SGD 

have been shown to lead to eutrophication (Capone and Bautista 1985; Valiela et al. 

1992; Paerl 1997). This promotes excessive plant growth including harmful algal blooms 

and in some cases can lead to changes in the biodiversity of a near-shore ecosystem 

(Paerl 1997). Harmful algal blooms can also have human health impacts, for example, 

some cyanobacteria can cause human health effect such as skin irritations (Pilotto et al. 

1997) and more severe respiratory problems (McElhenny et al. 1962).  

2.3 Submarine groundwater discharge (SGD) 

The importance of groundwater discharge from coastal aquifers as a pollution source was 

first identified by Johannes (1980) and Bokuniewicz (1980). SGD can be a significant 

source of fresh water and land-derived chemicals (e.g., nutrients, heavy metals, organic 

compounds and radionuclides) to coastal waters (Simmons 1992; Moore 1996; Burnett et 

al. 2001; Taniguchi et al. 2002; Burnett et al. 2003). For example, nutrient inputs via 

SGD have been shown to be similar in magnitude to surface water inputs in Great South 

Bay, New York (Capone and Bautista 1985; Capone and Slater 1990), Discovery Bay, 
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Jamaica (D'Elia et al. 1981), Tomales Bay, California (Oberdorfer 2003) and the eastern 

part of Florida Bay (Corbett et al. 1999). 

SGD is formally defined as all direct discharge of subsurface fluid across the aquifer-

ocean interface (Taniguchi et al. 2002). As such SGD is comprised of terrestrially-

derived groundwater flow and also seawater recirculating across the aquifer-ocean 

interface (Li et al. 1999; Taniguchi et al. 2002; Burnett et al. 2003). Direct measurements 

(Robinson et al. 1998; Kim et al. 2003; Smith and Zawadski 2003; Taniguchi and 

Iwakawa 2004), geochemical tracer experiments (Moore 1996; Moore and Church 1996; 

Hussain et al. 1999; Crotwell and Moore 2003; Boehm et al. 2006), and numerical 

modeling studies (Li et al. 1999; Smith 2004; Kaleris 2006) have shown that the 

recirculating seawater can be a major portion of total SGD. Recirculation of saltwater 

across the aquifer-ocean interface is driven by a number of different mechanisms (Riedl 

et al. 1972; Huettel et al. 1996; Michael et al. 2005; Robinson et al. 2006; Robinson et al. 

2007b; Robinson et al. 2007c). In the near-shore region, which is the focus of this study, 

the main factors driving recirculation are density driven convection, tides, and waves 

(Figure 2.1).  



13 

 

 

 

 

Figure 2.1: Near-shore SGD mechanisms. Figure modified from Robinson et al. (2007c).   

These mechanisms that drive seawater recirculation across the aquifer-ocean interface 

also lead to complex and dynamic flows and transport in the near-shore aquifer (Michael 

et al. 2005). The relative magnitudes of fresh groundwater discharge and recirculated 

discharge has been quantified in numerous field studies (Gallagher et al. 1996; Hussain et 

al. 1999; Kim et al. 2003; Taniguchi and Iwakawa 2004; Boehm et al. 2006; Taniguchi et 

al. 2006). Nevertheless the significance of the various processes that drive seawater 

recirculation, for example their importance for nutrient budgets, still requires 

quantification. The magnitude of seawater recirculation driven by tides and waves in the 

coastal aquifer was first modeled by Li et al. (1999) who showed analytically that tide- 

and wave-induced recirculation may account for up to 96% of the total SGD. Their model 

did not consider density-dependent groundwater flow and hence did not account for 

density-driven seawater recirculation. Studies were also carried out to examine the effect 

of the density-dependent flow processes on SGD but without considering oceanic forcing 

1. Fresh groundwater discharge                        3. Tide-induced recirculation 

2. Density-driven recirculation                        4. Wave-induced recirculation 
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(Destouni and Prieto 2003; Smith 2004). Prieto and Destouni (2005) later conducted 

numerical simulations that examined the effects of tides on three different coastal aquifer 

regions on the Mediterranean Sea. Prieto et al. (2005) found that when the SGD is low, 

the presence of tides significantly enhances the recirculating component of seawater in 

the SGD compared to non-tidal conditions. However, when the SGD is large, even if 

tides are present, they observed higher fresh groundwater components.  

Robinson et al. (2007c) presented a detailed parametric study to quantify the factors that 

influence tide-induced recirculation across the aquifer-ocean interface. They showed that 

the strength of the tidal forcing relative to the magnitude of groundwater flow strongly 

controls the tide-induced recirculation rate. The hydraulic conductivity of the beach 

sediment and aquifer depth has also been shown to influence the magnitude of tide-

induced seawater recirculation (Li et al. 2008). More recently, Xin et al. (2010) 

conducted numerical simulations that demonstrated that wave effects combined with tidal 

fluctuations further enhance the seawater recirculating rates across the aquifer-ocean 

interface. For the conditions that Xin et al. (2010) simulated, when both waves and tides 

were considered, they observed that 61% of the total SGD was comprised of recirculated 

seawater. When tides and waves were simulated separately, it was found that tide-

induced recirculation comprised of 40% of the total SGD whereas wave-induced 

recirculation comprised of 49% of the total SGD. From previous studies it has been 

demonstrated that near-shore SGD may have an important role in chemical budgets for 

coastal waters. However, there is limited understanding of the effect of the different 

mechanisms driving recirculation across the aquifer-ocean interface. It is important to 

understand the influence of these recirculation processes in altering the fate of chemicals 
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in the near-shore aquifer and subsequent chemical fluxes to coastal water. Hence, 

understanding of SGD is crucial as such discharge can alter the species distribution of the 

marine environment. 

2.4 The subterranean estuary and influence of oceanic forcing  

The recirculating seawater component of SGD is important as it transports not only salt 

but also other chemicals from the ocean into the aquifer. The recirculating seawater 

mixes with the fresh groundwater and also interacts with sediments in the near-shore 

aquifer. As the recirculating seawater and fresh groundwater have distinct chemical 

compositions the mixing of these waters can set up active biogeochemical reaction zones 

in the near-shore aquifer (Slomp and van Cappellen 2004; Charette and Allen 2006; 

Robinson et al. 2007b) (Figure 2.2).  

The transport and transformation of groundwater-derived chemicals and subsequent 

chemical loading to the coastal system is strongly influenced by processes occurring in 

these salt-freshwater mixing and reaction zone (Charette and Sholkovitz 2002; Ullman et 

al. 2003; Slomp and van Cappellen 2004; Charette and Sholkovitz 2006). The concept of 

the subterranean estuary was established by Moore (1999) to highlight the importance of 

the salt-freshwater mixing zones. In analogy to the surface estuary (Pritchard 1967), 

Moore defined a subterranean estuary as the mixing zone between the land derived 

groundwater and recirculating seawater in the coastal aquifer. The composition of 

groundwater in a subterranean estuary is altered due to the biogeochemical reactions 

between the mixed waters and aquifer sediments in similar way river particles modify the 

composition of surface estuarine waters (Moore 1999). 
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Figure 2.2: Conceptual model of the near-shore coastal aquifer with seawater 

recirculation and salt-freshwater mixing mechanisms: (1) land-derived fresh groundwater 

(Qf), (2) density-driven convective recirculation (Qd), (3) tide-induced recirculation (Qt), 

(4) wave-induced recirculation (Qw). The salt distribution is shown with the coloured 

shading (red-yellow). The aquifer has 3 distinct zones: saltwater wedge, upper saline 

plume (USP) and the freshwater discharge zone. The wave set-up profile (wave-averaged 

water level) is denoted by the thick black dotted line (Figure modified from Robinson et 

al. 2007b). 

Land-derived chemical fluxes from a coastal aquifer to the ocean are mostly influenced 

by (1) landward sources and form of chemicals released; (2) the specific subsurface 

chemical discharge pathway and flow rate; and (3) the reactions occurring along the 

discharge pathway that alter the mobility, transformation and removal of chemicals 

(Slomp and van Cappellen 2004). The distribution of chemicals, including nutrients, in 

the subterranean estuary and their discharge to coastal waters are strongly controlled by 

the biogeochemical zonations set up by the mixing zone of fresh groundwater and 
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recirculating seawater. For example, it has been shown that the mixing of terrestrially-

derived anoxic groundwater with oxic seawater can lead to the precipitation of Fe and Mn 

(hydr)oxides in a coastal aquifer (Charette and Sholkovitz 2002; Charette et al. 2005). 

The accumulation of these (hydr)oxides in the mixing zone is often referred to as an “iron 

curtain” as they can act as a geochemical barrier that adsorb other dissolved chemical 

species such as phosphorous, arsenic, thorium, and barium. The formation of these 

biogeochemical zonations depends on the flow and mixing of fresh groundwater and 

recirculating seawater in the near-shore aquifer  (Huettel et al. 1998).  

The processes that influence the fresh groundwater flow, salt transport and fresh-

saltwater mixing in a subterranean estuary are: land-derived fresh groundwater discharge, 

(Qf), freshwater and seawater density differences (Qd) (Cooper 1959) and oceanic 

forcing, for example, tides (Qt) and waves (Qw) (Li 1999; Mao et al. 2006; Robinson et 

al. 2006) (Figure 2.2). The interaction of these processes drives complex and dynamic 

flow and mixing in the near-shore aquifer. The variation of density between seawater and 

freshwater and also water level fluctuations by tides create complex flow processes and 

solute transports in a mildly sloping beach than the vertical beach (Mao et al. 2006).  

The density differences between the seawater and fresh groundwater lead to the 

formation of a saltwater wedge in coastal aquifers (Figure 2.2). Hydrodynamic dispersion 

at the salt-freshwater interface of the wedge drives convective circulation through the 

saltwater wedge (Cooper 1959). This density-driven recirculation causes significant water 

exchange across the aquifer-ocean interface in the near-shore region (Smith 2004; Prieto 

and Destouni 2005). This salt-freshwater mixing zone of the saltwater wedge was 
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traditionally viewed as the main area of recirculation and mixing in a subterranean 

estuary (Moore 1999).  

The main oceanic forces acting on coastlines are tides and waves. In the presence of 

tides, the salinity structure in the near-shore aquifer consists of an upper saline plume in 

addition to the classical saltwater wedge (Figure 2.2). This has been shown through 

numerical simulations (Mao et al. 2006; Werner and Lockington 2006; Robinson et al. 

2007b; Robinson et al. 2007c) and field observations (Lebbe 1981; Staver and Brinsfield 

1996; Robinson et al. 1998; Turner and Acworth 2004; Vandenbohede and Lebbe 2005; 

Westbrook et al. 2005).  The upper saline plume is formed primarily by advective salt 

transport driven by tide-induced flow circulations through the intertidal zone (Figure 2.2). 

This flow circulation is caused by seawater infiltration dominating in the upper intertidal 

zone during high tide and exfiltration occurring near the lower intertidal region during 

low tide (Mango et al. 2004) (Figure 2.2). Waves also drive a flow circulation through the 

near-shore region of a coastal aquifer (Longuet-Higgins 1983; Li and Barry 2000). 

Numerical modeling studies have been conducted to examine wave-induced beach 

groundwater flow (Li and Barry 2000; Horn 2006; Xin et al. 2010).  Xin et al. (2010) 

presented numerical simulations that showed that wave-induced recirculation also forms 

an upper saline plume similar to that formed by tides. This upper saline plume extends 

from the wave run-up zone to the wave set-down zone further offshore. They showed that 

when both tides and waves act on a sloping beach, the strength of the flow circulation in 

the aquifer increases further and this subsequently expands the extend of the upper saline 

plume. A freshwater discharge zone exists as a confined discharge tube in between the 

upper saline plume and saltwater wedge (Boufadel 2000; Vandenbohede and Lebbe 
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2005; Mao et al. 2006). The freshwater discharges near the low tide mark with tides 

present and below the set-down zone with waves present.  

The upper saline plume and factors contributing to the formation of this plume are not 

fully understood but it does represent a potentially important zone of mixing and reaction 

between fresh groundwater and seawater in a near-shore aquifer in addition to the mixing 

zone of the saltwater wedge. For example, the upper saline plume has been shown to be 

associated with faster flow rates and lower transit times for recirculating seawater and so 

it may be a more dynamic and active zone of mixing than the saltwater wedge (Li et al. 

1999; Brovelli et al. 2007; Robinson et al. 2007b; Robinson et al. 2007c). The numerical 

study of Xin et al. (2010) indicated that, for the conditions simulated, tides led to more 

intense salt-freshwater mixing around the upper saline plume compared to regular wave 

forcing. It is important to understand the salt-freshwater mixing processes in a 

subterranean estuary as it may alter the biogeochemical conditions in the aquifer and thus 

subsurface species distribution.  

2.5 SGD of nutrients and nutrient dynamics in a near-shore aquifer 

Several studies have shown that SGD can be a significant source of nutrients to coastal 

waters particularly in areas where there is a higher concentration of dissolved nutrients in 

groundwater than in coastal waters (Santos et al. 2008). Previous studies conducted in 

many different environments, including salt marshes (Charette et al. 2003), coral reefs 

(Paytan et al. 2006), river-dominated coastal shelves (Burnett et al. 2007) and coastal 

lagoons (Deborde et al. 2008) have revealed that nutrient inputs from SGD can be 

comparable and in some cases higher than local surface inputs. In a study conducted in 
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Great South Bay of New York, it was found that 50% of the land-derived nitrate flux was 

due to SGD (Capone and Bautista 1985). In Kahana Bay, Hawaii, nitrogen and 

phosphorous loading via SGD is estimated to be 200-500% higher than the surface water 

inputs (Garrison et al. 2003). 

It has been shown that  in some coastal waters N-limited primary production has become 

P-limited due to the presence of high N:P ratios in discharging groundwater (Slomp and 

van Cappellen 2004). The typical approach for predicting groundwater derived nutrient 

loading rates to coastal waters is to multiply the average nutrient concentration in the 

terrestrial groundwater with the land-derived SGD rate (Qf). This method assumes the 

conservative transport of nutrients and does not account for important nutrient 

transformations that may occur in a subterranean estuary. Santos et al. (2009) showed 

that nutrient production can be significant in a near-shore subterranean estuary and 

therefore multiplication of fresh groundwater nutrient concentrations with SGD rates is 

not an accurate method for predicting nutrient fluxes to coastal waters.  In the mixing 

zone of coastal aquifer, groundwater flows, seawater recirculation, aquifer sediment 

characteristics and biogeochemical reactions determine the transport and transformation 

of nutrients discharging to coastal waters (Slomp and van Cappellen 2004).  Figure 2.3 

conceptually illustrates nutrient transformations that may occur in a subterranean estuary 

where anoxic groundwater and oxic seawater are mixed. 
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Figure 2.3: Schematic diagram of the biogeochemical processes leading to 

transformation, removal or release of groundwater-derived nutrients and recirculating 

nutrients in ae subterranean estuary where anoxic groundwater mixes with oxic seawater 

(Figure reproduced from Slomp and van Cappellen 2004). 

There are various biogeochemical processes that may transform nutrients in a 

subterranean estuary (Table 2.1). The major processes are denitrification, nitrification and 

adsorption of phosphate to iron (hydr)oxides (Charette and Sholkovitz 2002; Charette and 

Sholkovitz 2006). Denitrification occurs in the absence of oxygen when an electron 

donor such as organic carbon, ferrous iron or sulphide is present (Postma et al. 1991; 

Starr and Gillham 1993; Tesoriero et al. 2000). Often the absence of a suitable electron 

donor or availability of oxygen limits denitrification rates and consequently conservative 

transport of nitrate occurs through the aquifer (Weiskel and Howes 1992; Wilhelm et al. 

1994; DeSimone and Howes 1996). In some coastal aquifers nitrate removal has been 

observed to occur at freshly precipitated iron (hydr)oxide surfaces by ferrous iron 

(Kroeger and Charette 2008). Oxic nitrification or alternatively ammonium oxidation in 

anoxic groundwater by the reduction of manganese or nitrite (anammox) are the common 
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ammonium removal processes in aquifers (Kroeger and Charette 2008; Spiteri et al. 

2008a) . The general form of reactive phosphorous in groundwater is inorganic dissolved 

phosphate and this often becomes immobile via sorption to iron hydr(oxides) or co-

precipitation with ferrous iron, aluminum or calcium (Weiskel and Howes 1992; 

Robertson 1995; Zanini et al. 1998). Degradation of dissolved organic matter (DOM) can 

occur by oxic degradation, denitrificatoin or reduction of iron hydro(oxides) with all 

these reactions producing ammonium and phosphate (Spiteri et al. 2008a). As tides and 

waves will likely deliver additional oxygen to near-shore sediments via seawater 

recirculation it is expected that this enhance nitrification and aerobic respiration of labile 

DOM from seawater (Ullman et al. 2003). 

Table 2.1: Major reactions for nutrient transformation in coastal aquifer. 

Reaction Reactants  Products  

Denitrification Nitrate , electron donor (DOM, 

ferrous iron, sulphide, pyrite) 

Nitrite, nitrogen oxide, ammonium, 

nitrogen gas, phosphate , sulphate, 

ferrous iron 

Nitrification Ammonium, oxygen Nitrate 

Anammox Ammonium, nitrite Nitrogen gas 

Oxic degradation DOM, oxygen Ammonium, phosphate 

Iron (hydr)oxide 

reduction 

Iron (hydr)oxide, DOM Ammonium, phosphate, ferrous 

iron 

Iron (hydr)oxide 

precipitation 

Ferrous iron,  oxygen Iron-oxides, 

Co-precipitation 

of phosphate 

Phosphate, oxygen and ferrous 

iron, aluminum or calcium  

Strengite, varisite, hydroxiapatite 

Phosphate 

adsorption 

Phosphate, iron (hydr)oxide Adsorbed phosphate 
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Nutrient dynamics in near-shore aquifers have been examined previously but studies have 

focused primarily on coastal aquifers that are not exposed to oceanic forcing (tides and 

waves). A field study conducted in West Neck Bay, Long Island, New York 

demonstrated that DOM acted as conservative species in the near-shore aquifer, whereas 

nitrate and phosphate were attenuated prior to discharge to coastal waters (Beck et al. 

2007). DOM showed conservative behaviour as the change in DOM by decomposition or 

uptake was not large relative to the delivery of DOM to the aquifer by the recirculating 

seawater. Phosphate removal occurred by adsorption onto amorphous iron (hydr)oxides.  

Kroeger and Charette (2008) studied a near-shore subterranean estuary in Waquoit Bay, 

Massachusetts with low DOM concentrations. They observed significant N2 production 

in the near-shore aquifer because of denitrification coupled to oxidation of reduced iron.  

In the presence of tides and waves, oxygen and reactants including DOM are delivered to 

the near-shore aquifer by the recirculating seawater and these chemical species may 

significantly alter the nutrient dynamics in a near-shore aquifer (Santos et al. 2009). 

Santos et al. (2009) suggested that oxygen and reactive DOM continuously recirculating 

into a coastal aquifer on the Gulf of Mexico due to tide-induced recirculation caused 

significant production of nutrients. Anschutz et al. (2009) also showed that the 

mineralized products of organic matters delivered to the aquifer via tide-induced 

recirculation significantly control the nutrient cycling and production in a near-shore 

aquifer.  Therefore, processes occurring in near-shore aquifer subject to tide and/or waves 

needs to be understood before nutrient fluxes to coastal waters can be accurately 

predicted. 
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2.6 Numerical modeling of reactive contaminant transport in near-shore aquifers 

Numerical reactive groundwater transport modeling can be used to investigate and 

quantify the transport and transformation of nutrients in groundwater systems, including 

coastal aquifers. Numerous studies have used reactive transport models to investigate 

nutrient transport and fate along the subsurface flow streamlines (Robertson et al. 1991; 

Harman et al. 1996; Griggs et al. 2003).The various reactions, reaction rates and kinetic 

parameters are well understood. 

Spiteri et al. (2008a) presented a two-dimensional density dependent reactive transport 

model that conceptually examined the transport and transformation of groundwater-

derived nutrients (nitrate, ammonium and phosphate) in a near-shore subterranean estuary 

discharge to coastal waters. This study did not consider the effects of tides or waves. To 

evaluate the extent of nutrient removal in the subterranean estuary and subsequent 

discharge of nitrogen and phosphorous four cases with different redox conditions for the 

fresh groundwater and seawater were simulated. Their numerical study showed that 

nutrient discharge via SGD is significantly affected by the biogeochemical reactions 

occurring in a subterranean estuary and chemical species present in the seawater and 

fresh groundwater. They identified denitrification and phosphate adsorption as the major 

processes influencing the fate of nutrients in the subterranean estuary. They more 

recently applied a modified version of their reactive transport model to simulate observed 

nutrient concentration in a near-shore subterranean estuary in Waquoit Bay (Spiteri et al. 

2008b). At this field site it was found that oxidation of recirculating labile DOM from 

seawater causes elevated concentrations of ammonium
 
and phosphate in the subterranean 

estuary. However, they showed that phosphate is strongly adsorbed by iron (hydr)oxides 



25 

 

 

prior to discharging across the aquifer-ocean interface. This precipitation of iron 

(hydro)oxides is often significant in subterranean estuaries due to the mixing of oxygen-

rich seawater with ferrous iron-rich groundwater (Charette and Sholkovitz 2002).  

While Spiteri et al. (2008a, 2008b) quantified the importance of the salt-freshwater 

mixing in a near-shore aquifer in controlling the fate of nutrients they did not consider the 

effects of oceanic forcing. As oceanic forcing can significantly enhance the delivery of 

seawater (and associated chemical constituents) to the near-shore aquifer and also 

intensify mixing of seawater and fresh groundwater, it is expected that tides and waves 

may also modify the fate of nutrients transported through a subterranean estuary prior to 

discharge. While the factors controlling nutrient dynamics in tide- or wave-influenced 

near-shore aquifers have not been quantified previously, Robinson et al. (2009) did 

develop a coupled density-dependent flow and multi-species reactive transport model in 

PHWAT to illustrate the influence of tides on the transport and transformation of BTEX 

in a near-shore aquifer. This model showed that tide-induced recirculation significantly 

reduced exit concentrations of the industrial contaminant BTEX (Robinson et al. 2009). 

Moreover, the BTEX was significantly attenuated in the aquifer by enhanced oxic 

degradation caused by tide-induced salt-fresh groundwater mixing. For the conditions 

simulated 79% of the toluene initially released in the aquifer was naturally attenuated 

prior to discharge to coastal waters with tides present. In comparison, for non-tidal 

conditions only 1.8% of the toluene was attenuated in the aquifer prior to discharge. In a 

similar way, it is expected that tide-and wave-induced mixing may also lead to increased 

transformation of nutrients in a near-shore aquifer. Thus the objective of this study is to 
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quantify via numerical modeling the effects of oceanic forcing on the fate of nutrients 

discharging to the coastal water via SGD. 

2.7 Summary 

This chapter has summarized the relevant background information for this thesis 

including SGD, the concept of a subterranean estuary, nutrient dynamics in a near-shore 

aquifer and the importance of oceanic forcing. Previous studies that have examined 

nutrient dynamics in coastal aquifers and nutrient fluxes to coastal waters via SGD have 

not accounted the influence of oceanic forcing. Also prior studies that have investigated 

flow and transport processes in coastal aquifers exposed to oceanic forcing have not 

quantified the effects on nutrient behaviour. The original contribution of this thesis is that 

these prior studies are combined to investigate the influence of oceanic forcing on the 

transport, and fate of nutrients in a near-shore aquifer and subsequent fluxes to the coastal 

waters. This is achieved through the development of a numerical reactive groundwater 

transport model.  
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Chapter 3 

Influence of oceanic forcing on fate of nutrients in a near-shore aquifer 

3.1 Introduction 

Elevated nutrient (nitrate, ammonium, and phosphate) levels in coastal aquifers are 

increasingly observed due to growing populations and urban and agricultural 

development along shorelines (Postma et al. 1991; Spalding and Exner 1993; Howarth et 

al. 1996; Iversen et al. 1998). Nutrients can be attenuated in the aquifer by natural 

reactive processes, but in many cases nutrient removal does not occur in the aquifer and 

nutrients discharge with the groundwater to the sea (Valiela et al. 1978; Johannes 1980; 

Capone and Bautista 1985; Valiela et al. 1992). It is widely established that groundwater 

discharge can be an important contributor of nutrients to coastal waters (Capone and 

Bautista 1985; Garrison et al. 2003; Santos et al. 2008). 

Understanding the transport and transformation of nutrients in a coastal aquifer is 

important as nutrient discharge can have severe effects on the coastal ecosystem 

(Lapointe and O’Connell 1989; Valiela et al. 1990; Valiela et al. 1992). The discharge of 

groundwater-derived nutrients to coastal waters depends on the landward groundwater 

sources as well as on the specific subsurface nutrient discharge pathway and the 

biogeochemical reactions occurring along this pathway (Slomp and van Cappellen 2004; 

Spiteri et al. 2005; Charette and Sholkovitz 2006). Oceanic forcing (tides and waves) 

significantly modify the flow and transport of fresh groundwater in a coastal aquifer.  

These forcings can induce a highly dynamic upper salt-freshwater mixing and reaction 

zone in a near-shore aquifer (Figure 3.1) and may significantly modify the flow paths for 
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discharging nutrients (Robinson et al. 2007b; Robinson et al. 2007c; Robinson et al. 

2009; Xin et al. 2010).  

 

Figure 3.1: Conceptual model of a near-shore coastal aquifer showing main water 

exchange and salt-freshwater mixing mechanisms: (1) terrestrially-derived fresh 

groundwater (Qf), (2) density-driven convective recirculation (Qd), (3) tide-induced 

recirculation (Qt), and (4) wave-induced recirculation (Qw). The salinity distribution is 

shown by the coloured shading (red-yellow). The aquifer has 3 distinct zones: saltwater 

wedge, upper saline plume (USP) and the freshwater discharge zone. The wave set-up 

profile (wave-averaged water level) is denoted by the thick black dotted line (Figure 

modified from Robinson et al. 2007b). 

Numerical simulations (Li and Barry 2000; Prieto and Destouni 2005; Mao et al. 2006; 

Werner and Lockington 2006; Robinson et al. 2007b; Xin et al. 2010) and field 

observations (Robinson et al. 1998; Horn 2006; Robinson et al. 2006; Robinson et al. 

2007a) have been conducted previously to understand the groundwater flow and salt 

transport processes in a near-shore aquifer exposed to oceanic forcing. It has been 
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observed in the presence of oceanic forcing two dynamic fresh-saltwater mixing zones  

exist: i) the saltwater wedge that forms due to the density driven seawater recirculation 

across the aquifer-ocean interface (Cooper 1959; Destouni and Prieto 2003; Smith 2004) 

and ii) the upper saline plume that forms due to tide- and wave-induced seawater 

recirculation (Li 1999; Boufadel 2000; Li et al. 2000; Turner and Acworth 2004; 

Vandenbohede and Lebbe 2005; Robinson et al. 2006; Robinson et al. 2007b; Robinson 

et al. 2007c; Xin et al. 2010). The terrestrially-derived fresh groundwater is transported 

between these two saline plumes and discharges near the low tide mark or wave set-down 

zone (Figure 3.1) (Boufadel 2000; Robinson et al. 2006). The seawater recirculating 

across the aquifer-ocean interface mixes with the fresh groundwater, and as these waters 

have distinct chemical compositions, this mixing sets up an active biogeochemical 

reaction zone in the near-shore aquifer (Slomp and van Cappellen 2004; Charette and 

Allen 2006; Robinson et al. 2007b).  

The salt-freshwater mixing zone in a coastal aquifer, referred to as a subterranean 

estuary, (Moore 1999) is important as reactions occurring in this zone may control the 

fate of groundwater-derived chemical species and also chemical species delivered to the 

aquifer by the recirculating seawater (Spiteri et al. 2005; Charette and Sholkovitz 2006; 

Spiteri et al. 2008a; Spiteri et al. 2008b). As a result, processes occurring in a 

subterranean estuary can significantly alter the chemical loading to coastal waters via 

SGD (Robinson et al. 2009). The dispersion zone of the saltwater wedge was initially 

considered the primary area of mixing between fresh groundwater and seawater in a 

subterranean estuary; however, now it is established  that the upper saline plume may be 

a more active and dynamic zone of mixing as it is associated with lower residence times 
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and higher flow rates (Robinson et al. 2007b). Tide- or wave-induced seawater 

recirculations supply ocean-derived chemicals to the mixing zone of the upper saline 

plume at a high rate. Although the residence time is lower, thus providing less reaction 

time, this rapid supply will likely create a significant reaction zone in the near-shore 

aquifer. 

Several studies have shown that SGD can be a significant source of nutrients to coastal 

waters particularly in areas where there is a the higher concentration of dissolved 

nutrients in groundwater than in surface water (Santos et al. 2008). While the fate of 

nutrients in near-shore aquifers has been studied previously through field and numerical 

investigations most studies have focused on systems not exposed to oceanic forcing (i.e., 

stationary sea water level) (Andersen et al. 2007; Beck et al. 2007; Kroeger and Charette 

2008; Spiteri et al. 2008a; Spiteri et al. 2008b). Santos et al. (2009) showed that 

multiplication of fresh groundwater nutrient concentrations with SGD rates may 

underestimate the flux of nutrients discharging to the sea as significant nutrient 

transformations (e.g., nitrate production) can occur in a subterranean estuary.  

 In a subterranean estuary, groundwater fluxes, seawater recirculation, aquifer sediment 

characteristics and biogeochemical reactions determine the fate of nutrients discharging 

to coastal waters (Slomp and van Cappellen 2004).  The transport and transformation of 

groundwater-derived nutrients (nitrate, ammonium, phosphate) in a near-shore aquifer 

not exposed to oceanic forcing (no tides and no waves) was examined numerically by 

Spiteri et al. (2008a). They developed a two-dimensional numerical reactive groundwater 

transport model that conceptually illustrated how nutrient discharge via SGD may be 

significantly influenced by the biogeochemical reactions occurring in a subterranean 
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estuary. In simulating an aquifer not subject to oceanic fluctuations, this study revealed 

the importance of the mixing processes occurring along the interface of the saltwater 

wedge. Denitrification and phosphate sorption to iron hydr(oxides) were identified as the 

major processes influencing the fate of nutrients in a subterranean estuary. They later 

validated and applied a modified version of the reactive transport model to simulate 

observed nutrient concentration in a subterranean estuary in Waquoit Bay (Spiteri et al. 

2008b). At this site it was found that oxidation of recirculating labile dissolved organic 

matter (DOM) from seawater causes high concentrations of ammonium
 
and phosphate in 

the near-shore aquifer (Spiteri et al. 2008b). However, they showed numerically that the 

phosphate produced is rapidly adsorbed by iron hydr(oxides) prior to discharging across 

the aquifer-ocean interface.  

As most coastal shorelines are exposed to tides and/or waves, quantifying the effect of 

these oceanic forcing on nutrient behaviour in a coastal aquifer is critical to predict their 

nutrient discharge to coastal waters. For example, tide- and wave-induced seawater 

circulations through the aquifer deliver chemical species, including oxygen and organic 

matter, into a near-shore aquifer. These species may react with the groundwater-derived 

chemical species in the salt-freshwater mixing zones and in doing so significantly alter 

subsurface biogeochemical conditions and nutrient distributions (Santos et al. 2009).  

In this study the variable density groundwater flow model SEAWAT-2005 (Guo and 

Langevin 2002) is used in combination with the reactive multi-component transport 

model PHT3D v2.10 (Prommer and Post 2010) to examine the influence of tides and 

waves on the fate of nutrients (ammonium , nitrate, and phosphate) in a near-shore 

aquifer. Simulation results are presented for conditions (i) without oceanic forcing, (ii) 
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with tides, and (iii) with waves to quantitatively compare the nutrient transport and 

reaction processes in a coastal aquifer and the influence of the oceanic forcing on nutrient 

discharge rates to coastal waters. The influence of recirculating labile DOM from 

seawater on nutrient transformations in a near-shore aquifer is also examined. 

3.2 Numerical Model 

A reactive variable-density groundwater transport model was developed to quantify the 

effect of oceanic forcing on the fate of subsurface nutrients discharging to coastal waters. 

Simulations were performed by combining SEAWAT-2005 (Guo and Langevin 2002), a 

variable-density groundwater flow model, with PHT3D v2.10 (Prommer and Post 2010). 

PHT3D v2.10 incorporates the program MT3DMS v5.3 (Zheng and Wang 1999) for 

simulation of advective-dispersive multi-species transport with the program PHREEQC 

v2.17 (Parkhurst and Appelo 1999) which simulates complex geochemical reactions.  

3.2.1 Groundwater flow and multi-species transport model 

SEAWAT-2005 (Guo and Langevin 2002) was used to simulate two-dimensional 

variable-density groundwater flow and salt transport in an unconfined shallow coastal 

aquifer subject to oceanic forcing acting on a sloping beach boundary. The governing 

equation used by SEAWAT-2005 for density-dependent groundwater flow is: 

            
    

  
         

   

  
   

  

  
                                                                              

where ρ is the fluid density (ML
-3

), Kf  is the equivalent freshwater hydraulic conductivity 

(LT
-1

), hf is the equivalent freshwater head (L), ρf   is the freshwater density (ML
-3

), z is 

the vertical coordinate in the upward direction (L), Sf is the equivalent freshwater storage 
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coefficient (L
-1

), t is time (T), ne is the effective porosity, and  ρs (ML
-3

) and qs (T
-1

) are 

the density and flow rate per unit volume of aquifer of a source or sink (Langevin et al. 

2003). 

The governing equation for multi-species reactive transport used by SEAWAT-2005 for 

salt transport and in PHT3D v2.10 to transport all other species is: 

   

  
                   

    
 

  
                                                              

where, C
k
 is the concentration of species k (ML

-3
), D is the hydrodynamic dispersion 

tensor (L
2
T

-1
),       is the linear pore water velocity (LT

-1
),   

  is the concentration of 

species k from a source or sink (ML
-3

) and    accounts for the reaction of species k 

(Prommer and Post 2010). The reactions considered and kinetic expressions adopted are 

described in Section 3.2.2. 

A modified version of the groundwater flow and transport model used by Robinson et al. 

(2009) to simulate BTEX transport in a tidally-influenced near-shore aquifer was adopted 

for this study. A brief summary of the model set-up is provided here and a schematic of 

the model domain is shown in Figure 3.2.  
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Figure 3.2: Model domain and flow boundary conditions.  

The model represents a cross-shore transect through a sandy coastal aquifer where 

oceanic forcing is applied on a mildly sloping beach (slope = 0.1). To simulate the tidal 

fluctuations the model domain is divided into two zones: a surface water zone (zone A) 

and an aquifer zone (zone B).  A very high hydraulic conductivity of 10
5
 md

-1
, ne = 1 and 

a constant salt concentration of 35 gL
-1

 is applied in zone A. To simulate a sandy coastal 

aquifer the hydraulic conductivity is 15 md
-1

, porosity is 0.25, longitudinal dispersivity is 

0.2 m (αL) and transverse dispersivity is 0.02 m (αT) in zone B. The model domain is 75 

m long and the location of the x-z co-ordinate origin is shown in Figure 3.2. A shallow 

coastal aquifer system is simulated with an aquifer depth (H) of 10 m.  The model 

domain is discretized into 49 layers and 56 columns with greater refinement around the 

sloping beach interface. The set-up of the groundwater flow model including grid 

discretization was previously tested by Robinson et al. (2009) to ensure the solution was 

converged and independent of the grid size.  

No flow boundary conditions are applied on the bottom of the aquifer and also at the 

vertical seaward boundary. To simulate regional groundwater flow, a constant flux of 0.5 
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m
2
d

-1
 (Qf) with salt concentration of 1 gL

-1 
has been assigned along the vertical landward 

boundary. The upper boundary is a phreatic surface and recharge to the aquifer is not 

considered.  

To simulate tidal fluctuations a time-varying head (htide) is applied to selected cells in 

surface water zone (Figure 3.2). This is given as: 

htide=A cos(ωt) + H                                                                                                           3.3   

where A is the tidal amplitude (L) and ω is the angular frequency for the tidal 

fluctuations. For the simulations with tides A is set to 0.5 m and semi-diurnal tidal period 

of 0.5 day (ω = 12.567 radd
-1

) is considered.  

To simulate the influence of waves acting on a sloping beach the phase-averaged wave 

effects described by wave set-up is simulated. The instantaneous pressure fluctuations 

induced by individual waves are rapidly attenuated in beach sediment due to their high 

frequency. As a result it is the phase-averaged effect of waves that strongly control the 

groundwater flow and transport processes in the aquifer (Xin et al. 2010). Therefore 

simulation of wave set-up acting on the sloping beach interface can be used to adequately 

and more efficiently simulate the wave effects. For the simulations with wave effects 

considered, zone A is not included, but rather constant heads are used along the interface 

to simulate the on-shore pressure gradient of wave set-up. An empirical equation of 

Nielson (2009) was used to set the head values at each cell along the interface.  This 

empirical equation has been well validated with field data. The mean water level, (x) (L) 

is described by:                           
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where Hrms  (L) is the root mean square wave height, and D(x) (L) is the still water depth 

measured from the local beach surface to the still water level ( z = 10 m). To examine the 

effect of waves, simulations were performed with Hrms equal to 1 m and 2 m.  

3.2.2 Nutrient concentrations and geochemical model 

Nine solute species salt, ammonium (NH4
+
), nitrate (NO3

-
), phosphate (PO4), oxygen 

(O2), ferrous iron (Fe
2+

), dissolved organic matter (DOM), adsorbed phosphate (PO4(ads)), 

and iron (hydr)oxide (Fe(OH)3) are considered in the reactive transport model. The 

reactions and rate expressions included in the model are based on Spiteri et al. (2008a) 

who examined nutrient dynamics in a sandy near-shore aquifer not exposed to oceanic 

forcing. The reaction network was validated by a later study by Spiteri et al. (2008b) 

where they simulated the fate of nutrients in a coastal aquifer in Waquoit Bay and 

compared the simulation results with field data.  The reactions simulated and the kinetic 

rate expressions and rate constants adopted are shown in Table 3.1 and 3.2 respectively. 

Spiteri et al. (2008a) took these kinetic parameter values from different literature. These 

values will likely vary for different field sites.  Although the nutrient transformations are 

sensitive to the pH, the pH is not considered in the kinetic expressions (Table 3.1) and 

proton exchange was not simulated. The reaction network and model thus focuses on the 

effect of the redox gradients set-up by the salt-freshwater mixing in the near-shore 

aquifer rather than the pH effect.  
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The concentrations of chemical species along the landward boundary and for cells in 

zone A were set as constant. The concentration values for each species are provided in 

Table 3.3. These concentrations correspond to the anoxic groundwater and oxic seawater 

concentrations (Case 3) used by Spiteri et al. (2008a). At the landward boundary nitrate is 

present in the top 4.5 m of the aquifer and phosphate and ammonium are present in the 

lower 5.5 m of the aquifer. All other species concentrations (ferrous iron, DOM) are 

constant over the entire depth at the landward boundary. 

The complete reactive transport model was first verified by simulating the model results 

of Spiteri et al. (2008a).  For this verification the model set-up was the same as that for 

the simulated presented below but with slightly different aquifer properties and flow 

boundary conditions. The model by Spiteri et al. (2008a) did not consider the effects of 

tides or waves.  A good comparison between the results was observed with the details of 

the verification provided in Appendix A. 

Once verified the model was used to simulate conservative transport and reactive 

transport for the nutrients in a near-shore aquifer without oceanic forcing, with tides, and 

with waves. Details of the simulations performed are provided in Table 3.4. The model 

was first run to steady state for Case 1 (conservative transport without tides and waves). 

Once steady state was reached, the steady state concentrations were set as the initial 

concentrations for all the simulation cases. Model simulations were run for 300 days as 

this time period was required for the nutrient plume to be transported from the landward 

boundary to the aquifer-ocean interface and for the nutrient distributions in the aquifer to 

reach a new steady state. Mass balance calculations were performed for each chemical 
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species for the conservative transport simulations and after 300d the inflow and outflow 

from the aquifer was equal.  

this time period was required for the nutrient plume to be transported from the landward 

boundary to the aquifer-ocean interface and for the nutrient distributions in the aquifer to 

reach a new steady state. Once each model simulation was complete, the results were 

post-processed in MATLAB to extract the concentration distributions and to calculate the 

exit concentrations, chemical fluxes across the aquifer-ocean interface and total nutrient 

removal or accumulation in the aquifer. Details of the post-processing are provided in 

Appendix B. 
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Table 3.1: Reactions and kinetic formulae included (modified from Spiteri et al. 2008(a)) 

Name Reaction  Kinetic Formula 

Oxic Degradation  [(CH2O)106(NH3)11(H3PO4)]+106O2→ 

97CO2+9HCO3
-
 +11NH4

+
+HPO4

2-
+97H2O 

If O2>kmo2; Rate=kfox[(CH2O)106(NH3)11 

(H3PO4)] 

If O2< kmo2; Rate=kfox[(CH2O)106(NH3)11 

(H3PO4)].[O2]/[kmo2] 

Denitrification  [(CH2O)106(NH3)11(H3PO4)]+84.8 NO3 →
 

42.4N2+12.2CO2+93.8HCO3
-
+11NH4

+
+HPO4

2-

+54.6H2O 

If O2>kmo2; Rate = 0 

If O2< kmo2 and NO3
-
 >kmno3 ;  

Rate=kfox[(CH2O)106(NH3)11(H3PO4)] (1-[O2]/[kmo2]) 

If O2< kmo2 and NO3
-
<kmno3 ;  

Rate=kfox[(CH2O)106(NH3)11(H3PO4)] (1-[O2]/[kmo2]). 

[NO3
-
]/[kmno3] 

Nitrification  NH4
+ 

+ 2O2 + 2HCO3
- 
  →  NO3

-
 + 2CO2 + 3H2O Rate = knitri  [NH4

+
][ O2] 

Fe
2+

 oxidation  Fe
2+

 + 0.25O2 + 2HCO3
-
+0.5H2O→Fe(OH)3 + 2CO2  Rate = kfeox [Fe

2+
][ O2] 

PO4 adsorption Kd * ne /(1- ne)= [PO4(ads) ]/[PO4] Kd  = K * Fe(OH)3  
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Table 3.2: Reaction parameter values 

Parameter 

 

Units Description Value  

k
fox1

  
s

-1

  
Rate constant for decomposition of 

DOM 
3.0 X 10

-11a

  

k
fox2

  
s

-1

  
Rate constant for decomposition of 

DOM 
3.0 X 10

-7b

  

k
nitri

  
mM

-1

 s
-1

  
Rate constant for nitrification 

4.8 X 10
-4c

  

k
feox

  
mM

-1

 s
-1

  Rate constant for Fe
2+

 reoxidation  6.4 X 10
-2c

  

kmo2 mM  Limiting concentration of O
2
  

0.008
 c

 

Kmno3 mM 
Limiting concentration of NO

3

-

  0.001
 c

 

Kmfe  mM  Limiting concentration of Fe(OH)
3 

  
18.95

 c

 

K 
dm

3

mmol
-1

  
Adsorption coefficient for PO

4
  

1545
 d

 

a

 (Tromp et al. 1995), 
b

 (Hunter et al. 1998),
c

 (Van Cappellen and Wang 1995),
d

 (Krom and Berner 1980) 
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Table 3.3: Concentration of species in fresh groundwater (landward boundary) and 

seawater (cells in zone A and along aquifer ocean interface)
a
 

Species
b
 Concentration in Anoxic 

Groundwater 

Concentration in Oxic Seawater 

NO3
-
 0.25 (1)

 c
 0.02 (2) 

NH4
+
 0.2 (3)

 c
 – 

a
 

O2 0.0 0.2(2) 

DOM 0.75 (3) – 
a
 

Fe
2+

 0.1 (4) – 
a
 

PO4 0.05 (1)
 c
 0.001 (2) 

Fe(OH)3  (s) – 
a
 – 

a
 

PO4(ads) – 
a
 – 

a
 

a
 In the table, Sources within parentheses are as follows: 1. (Slomp and van Cappellen 2004); 2. (Berner 

and Berner 1996); 3. (Nyvang 2003); 4. (Charette et al. 2005) ‘–’ indicates low concentrations, assumed to 

be 0.  

b 
Units for concentration of species are mM. It is considered that there is no Fe(OH)3 and PO4(ads) in the 

aquifer initially.
  

c 
NO3

- 
and PO4 occur at lower depth (z <4. 5m) and NH4

+
 occurs at higher depth (4.5 m < z > 10  m).
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Table 3.4: Summary of simulations conducted to quantify the effect of oceanic forcing 

Case  Reactive 

transport 

Tides Waves Labile DOM 

1 No No No No 

2 Yes No No No 

3 No A=0.5 m No No 

4 Yes A=0.5 m No No 

5 No No Hrms = 1 m No 

6 Yes No Hrms = 1 m No 

7 No No Hrms = 2 m No 

8 Yes No Hrms = 2 m No 

9 Yes No No Yes 

10 Yes No Hrms = 1 m Yes 

11 Yes No Hrms = 2 m Yes 

 

3.3 Results and Discussion 

3.3.1 Effect of tides  

3.3.1.1 Salinity and oxygen distribution 

The salt and oxygen distributions in the near-shore aquifer for the reactive transport 

simulations without oceanic forcing (Case 2) and with tides (Case 4) are shown in Figure 

3.3. Salt is conservative in the aquifer and so the salt distribution is the same regardless of 

whether reactions are considered in the model. The model was first run to steady state for 

Case 1 and once steady state was reached, the steady state concentrations were set as the 

initial concentrations for all the simulation cases. As expected, in the absence of tides, a 

saltwater water wedge is formed due to density driven recirculation (Figure 3.3a). With 
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tides present, tide-induced seawater recirculation through the intertidal region leads to the 

formation of an upper saline plume in addition to the saltwater wedge (Figure 3.3b). The 

recirculating seawater transports both salt and oxygen into the aquifer. As such, for the 

cases without reactions considered (Cases 1 and 3) the oxygen distribution in the aquifer 

corresponds to the salt distribution but with different concentration values. With reactions 

considered, the oxygen delivered to the aquifer via the recirculating seawater is 

consumed by the reduced species present in the aquifer. For the reactive transport case 

without oceanic forcing (Case 2), the oxygen is consumed along the salt-freshwater 

mixing zone of the saltwater wedge as it reacts with the landward-derived DOM, ferrous 

iron and ammonium (Figure 3.3c). For the reactive transport tidal case (Case 4) oxygen is 

also consumed in the aquifer as the tide-induced recirculating seawater mixes with the 

ammonium, and ferrous iron in the fresh groundwater (Figure 3.3d). Despite this 

consumption of oxygen in the upper saline plume there is a higher availability of oxygen 

in the aquifer close to the aquifer-ocean interface when the tide is present.  
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Figure 3.3: Simulated salt distributions in the near-shore aquifer for simulations (a) 

without oceanic forcing (Cases 1 and 2) and (b) with tides (Cases 3 and 4), and oxygen 

distributions for reactive transport simulations (c) without oceanic forcing (Case 2) and 

(d) with tides (Case 4) after 300 days. 

3.3.1.2 Transport and fate of nitrate and ammonium 

The nitrate and ammonium distributions in the aquifer after 300 days for the conservative 

and reactive transport simulations without oceanic forcing and with tides are shown in 

Figures 3.4 and 3.5. It can be seen that the land-derived nitrate is attenuated (Figure 3.4c) 

and ammonium is produced (Figure 3.5c) in the upper aquifer when there is no oceanic 

forcing (Case 2). This is because denitrification is occurring in this region of the aquifer 

due to the availability of nitrate and DOM and absence of oxygen in the anoxic 

groundwater.  It can also be seen that nitrate increases and ammonium decreases along 

the mixing zone of the saltwater wedge for Case 2 (Figure 3.4c). This is caused by 
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nitrification of the land-derived ammonium as it mixes and reacts with the oxygen 

delivered by recirculating oxic seawater.   

 

Figure 3.4: Concentration profiles of nitrate after 300 days for simulations with (a) 

conservative transport without oceanic forcing (Case 1), (b) reactive transport without 

oceanic forcing (Case 2), (c) change in concentration due to reaction between Cases 1 

and 2 (positive change corresponds to a decrease in concentration) (d) conservative 

transport with tides (Case 3), and (e) reactive transport with tides (Case 4) (f) change in 

concentration due to reaction between Cases 3 and 4 (positive change corresponds to a 

decrease in concentration). 

From the cases with only conservative transport considered (Cases 1 and 3), it is evident 

that the distribution of species in the near-shore aquifer is significantly altered by tides 

with modified flow pathways including the increased recirculation of oxic seawater 

through the aquifer (Figures 3.4d and 3.5d). Tidal fluctuations cause fresh groundwater to 

migrate downwards around the tide-induced flow recirculations (and upper saline plume) 

where it discharges near the low tide mark rather than directly at the shoreline as occurs 
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in the absence of tides. Discharge of the groundwater-derived species occurs in a narrow 

zone between the upper saline plume and the saltwater wedge. For the conservative 

transport simulations the low nitrate and ammonium concentrations in the intertidal 

region are due to the presence of the tide-induced recirculating seawater with low nitrate 

and ammonium concentrations and its mixing with the nitrate- and ammonium-rich fresh 

groundwater (Figures 3.4d and 3.5d).  

Figure 3.5: Concentration profiles of ammonium after 300 days for simulations with (a) 

conservative transport without oceanic forcing (Case 1), (b) reactive transport without 

oceanic forcing (Case 2), (c) change in concentration due to reaction between Cases 1 

and 2 (positive change corresponds to a decrease in concentration) (d) conservative 

transport with tides (Case 3), and (e) reactive transport with tides (Case 4) (f) change in 

concentration due to reaction between Cases 3 and 4 (positive change corresponds to a 

decrease in concentration). 

By comparing the conservative and reactive transport simulations with tides present 

(Figures 3.4e and 3.5e) it can be seen that there is significant production of nitrate and 
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ammonium in the upper mixing zone. With tide-induced recirculating seawater delivering 

more oxygen to the intertidal sediments, ammonium is nitrified and produces nitrate. 

Despite nitrification occurring, the ammonium concentration increases in the upper 

mixing zone as ammonium is also produced as the increased availability of oxygen also 

leads to the oxic degradation of land-derived DOM in this zone (Figures 3.4f and 3.5f). 

The concentrations of nitrate and ammonium along the aquifer-ocean interface for the 

cases without oceanic forcing and with tides are shown in Figures 3.6a, and 3.6b 

respectively. For the simulations with conservative transport only (Cases 1, 3) the tide-

induced seawater recirculation leads to a decrease in the nitrate and ammonium 

concentrations along the interface due to dilution effects. However with reactions 

considered, tides lead to an increase in the nitrate concentrations along the interface. This 

is due to the increased oxygen availability in the upper mixing zone inhibiting 

denitrification and enhancing nitrification. For the reactive transport simulation without 

oceanic forcing (Case 2) (Figure 3.6a), the concentration of nitrate along the interface 

decreases in the upper aquifer (x = 37 - 47 m) and increases near the saltwater wedge 

interface (x = 47 - 50 m). This is because, unlike the tidal case, there is no oxygen 

available in the upper aquifer to inhibit denitrification in this region. For tidal reactive 

transport (Case 4), the exit concentration of nitrate increases along the interface (x = 35 - 

52 m) (Figure 3.6a). The density-driven recirculation causes groundwater-derived 

ammonium to mix with the recirculating oxygen from seawater in the mixing zone of the 

saltwater wedge and so nitrification increases the nitrate concentration and decreases the 

ammonium concentration near the saltwater wedge interface. For both the tidal and non 

tidal reactive transport cases (Cases 4 and 2), the exit concentration of ammonium 
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decreases near the shoreline (x = 47 - 50 m) due to nitrification (Figure 3.6b). However, 

in the upper aquifer (x = 37 - 47 m), an increase in ammonium concentration for the tidal 

reactive case is observed due to the oxic degradation of land-derived DOM which 

subsequently leads to nitrate formation via nitrification (Figure 3.6b). 

 

Figure 3.6: Exit concentration of (a) nitrate and (b) ammonium along the aquifer-ocean 

interface after 300 days for Cases 1-4. 
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Figure 3.7 shows the fluxes of nitrate and ammonium discharging across the aquifer-

ocean interface. The discharge zone for both nitrate and ammonium is moved seaward by 

tides as the fresh groundwater discharges near the low tide mark rather than at the mean 

shoreline as occurs for simulation with no oceanic forcing. The nitrate flux is highest for 

the case with tides and with reactions considered due to the enhanced nitrification in the 

aquifer. Although the nitrate concentrations along the interface are lower for the tidal 

case (Cases 3,4) compared with the no oceanic forcing case (Cases 1,2) (Figure 3.6a), 

high tide-induced recirculation across the aquifer-ocean interface results in a higher 

nitrate discharge flux compared to the cases with no oceanic forcing (Figure 3.7a). It can 

be seen that the discharge flux of ammonium decreases for both the no oceanic forcing 

and tidal cases as it is removed by nitrification.  

Table 3.5 summarizes the percentage removal or production of nutrient species in the 

near-shore aquifer for the simulations conducted. This is calculated by: 

                       
                                                    

                        
      

With reactions considered, 23.6% of ammonium entering the aquifer is attenuated for the 

no oceanic forcing case (Case 2) compared to 39.3% with tides present (Case 4). This 

indicates that, for the conditions simulated the tide-induced recirculation enhances the 

removal of ammonium in the near-shore aquifer. There is however a significant increase 

is in the net discharge of nitrate due to tidal fluctuations. The net discharge of nitrate 

increases by 108% with tides (Case 4) compared to only a 3.5% net discharge increase 

for the simulation with no oceanic forcing (Case 2). 
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Figure 3.7: Discharge of chemical fluxes of (a) nitrate and (b) ammonium along the 

aquifer-ocean interface for Cases 1-4 after 300 days. 
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Table 3.5: Production and consumption of species in the near-shore aquifer for simulated 

cases 1-8 (without the presence of labile DOM). 

Species
 
 NO3

-
  NH4

+
  PO4 Fe(OH)3  (s)  PO4 (ads) 

Case 2 

No forcing 

3.5%  increase 23.6% 

decrease 

96.5% 

decrease 

3.83 moles 

precipitation 

0.96 moles 

adsorption 

Case 4 

A = 0.5 m 

108%  increase 39.3% 

decrease 

100%  

decrease 

4.5 moles 

precipitation 

1.3 moles 

adsorption 

Case 6 

Hrms = 1 m 

9.4%  increase  29.3% 

decrease  

100% 

decrease 

3.6 moles 

precipitation  

1.12 moles 

adsorption  

Case 8 

Hrms = 2 m 

15%  increase 41.7% 

decrease  

100% 

decrease 

3.3 moles 

precipitation  

1.1 moles 

adsorption  

 

3.3.1.3 Transport and fate of phosphate and iron 

The distributions of phosphate and ferrous iron in the near-shore aquifer for the no 

oceanic forcing and tidal cases after 300 days are presented in Figures 3.8 and Figure 3.9. 

As was shown previously for the transport of ammonium and nitrate, the tide 

significantly alters the flow pathways for dissolved phosphate and ferrous iron and 

reactions occurring along these pathways. For the conservative transport simulation of no 

oceanic forcing (Case 1) phosphate is transported along the bottom of the aquifer and 

discharges near the shoreline (Figure 3.8a). The transport pathway is the same for the 

simulation with reactive transport considered, but phosphate is attenuated near the 

aquifer-ocean interface prior to its discharge to coastal waters (Figure 3.8b). For the case 

with no oceanic forcing (Case 2, Figure 3.9b), the groundwater-derived ferrous iron is 
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oxidized by the oxygen-rich recirculating seawater along the interface of the saltwater 

wedge and Fe(OH)3 precipitates. The dissolved phosphate adsorbs to Fe(OH)3 and it is 

predicted that 96.7% is removed in the aquifer prior to its discharge to the sea.  

 Figure 3.8: Concentration profiles of dissolved phosphate after 300 days for simulations 

with (a) conservative transport without oceanic forcing (Case 1), (b) reactive transport 

without oceanic forcing (Case 2), (c) conservative transport with tides (Case 3), and (d) 

reactive transport with tides (Case 4). 

The tide-induced recirculation leads to a greater availability of oxygen in the near-shore 

aquifer leading to greater precipitation of Fe(OH)3. Over the 300 days simulation period 

4.5 moles of Fe(OH)3 precipitates in the subsurface for tidal reactive transport case (Case 

4). This is greater than that for the reactive case with no oceanic forcing (Case 2) where 

3.83 moles of Fe(OH)3 precipitate in aquifer (Table 3.5). Subsequently all the land-

derived phosphate is adsorbed in the near-shore aquifer with negligible discharge to 
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coastal waters with tides present (1.3 moles adsorbed for tidal case compared with 0.96 

moles for the no oceanic forcing case). 

 

Figure 3.9: Concentration profiles of dissolved ferrous iron after 300 days for 

simulations with (a) conservative transport without oceanic forcing(Case 1), (b) reactive 

transport without oceanic forcing (Case 2), (c) conservative transport with tides (Case 3), 

and (d) reactive transport with tides (Case 4). 

Figures 3.10a and 3.10b show that for the simulations with conservative transport the 

concentrations of phosphate and ferrous iron along the aquifer-ocean interface are 

decreased by tides due to the dilution of the phosphate- and iron-rich groundwater plume 

with the recirculating seawater. For the non-tidal case with reactions considered (Case 2), 

only 3.3% of the phosphate entering through the landward boundary is predicted to 

discharge to the sea (Figure 3.8b, 3.10a). However, with tides considered the dissolved 

phosphate plume is completely (100%) attenuated in the aquifer due to the higher 
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Fe(OH)3 precipitation and there is negligible phosphate discharge to the sea (Figures 3.8e 

and 3.10a). The adsorption rate for phosphate is high and hence in all cases (no oceanic 

 

Figure 3.10: Concentrations of (a) dissolved phosphate and (b) ferrous iron along the 

aquifer-ocean interface for Cases 1-4 after 300 days. 

forcing, and tidal fluctuation) more than 96% phosphate gets attenuated. This is because 

of the high sorption coefficient adopted which is consistent with the field data and 

simulations presented by Spiteri et al. (2008b).  For the conservative and reactive 

transport simulations, the discharge occurs near the low tide mark (x = 37 – 43 m) when 
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tides are present and near the shoreline (x = 43 – 50 m) for the no oceanic forcing case. 

Although the exit concentrations of ferrous iron are higher for the no oceanic forcing case 

(Figure 3.10b), the ferrous iron flux is higher for the tidal case (Figure 3.11b). The higher 

chemical flux is due to the higher velocities across the aquifer-ocean interface for the 

tidal case. 

 

Figure 3.11: Discharge fluxes of (a) dissolved phosphate and (b) ferrous iron along the 

aquifer-ocean interface for Cases 1-4 after 300 days. 
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3.3.2 Effect of waves  

3.3.2.1 Salinity and oxygen distribution 

Similar to tides, wave set-up generates a seawater recirculation cell in the near-shore 

aquifer and this leads to the formation of an upper saline plume (Figures 3.12a, 3.12b). 

Two wave heights (1 m, 2 m) were simulated and as expected the wave-induced seawater 

recirculation cell is stronger and thus the upper saline plume is larger for the simulation 

with higher Hrms (2 m). The larger upper saline plume in turn limits the landward 

intrusion of the saltwater wedge. For both wave cases (Hrms = 1 m and 2 m) the saltwater 

wedge does not intrude as far inland as for the cases with no oceanic forcing and with 

tides (Figures 3.3a, b). 

 

Figure 3.12: Salt distribution in the near-shore aquifer for (a) Hrms = 1 m (Cases 5, 6) and 

(b) Hrms = 2 m (Cases 7, 8), and oxygen distribution for reactive transport simulations 

with (c) Hrms = 1 m (Case 6) and (d) Hrms = 2 m (Case 8) after 300 days. 
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Without reactions considered the oxygen distribution with waves present is the same as 

the salt distribution differing only in magnitude. It can be seen that, less oxygen is 

consumed in the upper saline plume for the simulated wave cases (Figures 3.12c, and 

3.12d) compared to the tidal cases (3.3d). This is because the tide causes greater mixing 

between the fresh groundwater and seawater along the boundary of the upper saline 

plume compared to the regular wave conditions simulated via wave set-up.  This result is 

consistent with Xin et al. (2010). From this it is expected that the transformation of 

nutrients in the mixing zone of the upper saline plume may be less for the wave cases 

(Cases 6, 8) compared to the tidal case (Case 4) despite the larger upper saline plume.  

3.3.2.2 Transport and fate of nutrients with wave set-up  

Presence of waves changes the groundwater discharge pathway of nutrients significantly 

compared to the cases with no oceanic forcing and tides (Figures 3.13a, d, g, l). Figure 

3.13 shows the nutrient concentrations considering conservative and reactive transport 

with wave set-up simulations with Hrms = 1 m (Cases 5, 6). 
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Figure 3.13: Concentration profiles from simulations with Hrms = 1 m with conservative 

transport (Case 5) of (a) nitrate, (c) ammonium, (e) phosphate, and (g) ferrous iron; and 

reactive transport (Case 6) of (b) nitrate, (d) ammonium, (f) phosphate, and (h) ferrous 

iron after 300 days.  
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Comparing the nutrient distributions between Figures 3.4a and 3.13a, it can be seen that 

wave set-up up modifies the transport pathways for nitrate with nitrate discharging 

further offshore, near the wave set-down zone (x = 47 - 52 m) with waves present. 

Similar to the other cases (Cases 2, 4) nitrification occurs at the saltwater wedge interface 

(Figure 3.13b). As there is less mixing occurring at this interface compared to the tidal 

case the extent of nitrification is less. Due to less salt-freshwater mixing in the upper 

saline plume for wave cases compared to the tidal cases, there is less production of nitrate 

and less consumption of ammonium in this mixing zone (Figures 3.4e, 3.5e, 3.13b, and 

3.13d). However, compared to the case with no oceanic forcing (Case 2), there is increase 

in nitrate and decrease in ammonium in the aquifer (Case 6). There is 9.4% increase in 

the net discharge of nitrate and 29.3% decrease in the net discharge of ammonium for 

Hrms = 1 m wave. Similar to the tidal case this is primarily due to oxic degradation 

combined with nitrification occurring in the upper saline plume. As the wave height 

increases (Hrms = 2 m) the net production of nitrate and the consumption of ammonium in 

the aquifer increases. For Hrms = 2 m, the net discharge increases by 15% for nitrate and 

decreases 41.7% for ammonium. This is because as expected an increase in wave height 

enhances mixing between fresh groundwater and recirculating seawater with more oxic 

degradation and nitrification occurring around the upper saline plume. The increased 

oxygen recirculation and availability in the near-shore aquifer also further inhibits 

denitrification.  

Figure 3.14 shows the exit concentration of nitrate, ammonium, dissolved phosphate and 

ferrous iron for the cases with no oceanic forcing and Hrms = 1 m. For wave-induced 

recirculation, the exit concentration for the conservative transport of all species decreases 
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compared to no oceanic forcing scenario due to dilution (Figure 3.14a, b). However, for 

wave-induced reactive transport, the nitrate exit concentration increases further seaward 

(x = 58 – 64 m) as the formation of larger upper saline plume modifies the transport 

pathways and enhances nitrification as well as oxic degradation. In both cases, oxygen 

from the recirculating seawater cause nitrification which decreases the reactive 

ammonium concentrations and increases nitrate concentrations.  

Similar to the tidal case (Case 4), phosphate is completely (100%) removed from the 

aquifer in the presence of waves (Cases 6, and 8, Figure 3.14c).  This is because the 

ferrous iron is oxidized and precipitates as Fe(OH)3 around the upper saline plume and 

along the saltwater wedge interface (Figure 3.13h). The dissolved phosphate is adsorbed 

to the Fe(OH)3. The adsorption rate for phosphate is high similar to no oceanic forcing 

and tidal cases. Over the 300 day simulation period 3.6 moles and 3.3 moles of Fe(OH)3 

precipitates in the aquifer for Hrms = 1 m and Hrms = 2 m respectively. The total moles that 

precipitate is less for the wave cases compared to both the no oceanic forcing and tidal 

forcing as only regular, constant wave conditions via simulation of wave set-up is 

considered. The formation of a larger upper saline plume by waves pushes the saltwater 

wedge further seaward and this reduces the length of the mixing zone along the saltwater 

wedge where Fe(OH)3 precipitates.  In addition, the presence of a large upper saline 

plume lengthens the discharge flow path and travel time for the land-derived ferrous iron. 

This increase in travel time means that the time for the ferrous iron to reach the salt-

freshwater mixing zones near the aquifer-ocean interface is longer for wave cases 

compared to the tidal and no oceanic forcing cases. This increased travel time also results 

in less ferrous iron precipitation in the aquifer over the 300 d simulation period. Despite 
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the lower total iron precipitation observed the ferrous iron concentrations along the 

interface are much lower for the reactive transport simulations with waves present 

compared with the case with no oceanic forcing (Figure 3.14d, x = 50 - 65 m). This is 

because once the ferrous iron does reach the mixing zones more iron oxidation and 

Fe(OH)3 oxidation occurs due to the higher availability of oxygen in the subsurface. 
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Figure 3.14: Exit concentrations for (a) nitrate, (b) ammonium, (c) dissolved phosphate, 

and (d) ferrous iron for cases with Hrms = 1 m (Cases 5,  6) and no oceanic forcing (Cases 

1, 2) after 300 days. 
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3.4 Influence of labile DOM from seawater 

It was shown by Spiteri et al. (2008b) that the presence of labile (reactive) DOM in 

seawater can significantly alter the reactions occurring in a subterranean estuary and 

consequently change the fluxes of nutrients to coastal waters. Simulations were 

performed to quantify the influence that increased availability of labile DOM from 

seawater may have on the fate of nutrients in a near-shore aquifer exposed to oceanic 

forcing. For these simulations, the concentration of DOM in seawater is 0.2 mM and the 

reactivity of the seawater-derived DOM is modified by increased kfox to 3.0 X 10
-7

s
-1

. 

Simulation results show that for the case with no oceanic forcing the transport and fate of 

all chemical species are significantly modified by the presence of labile DOM (Case 9, 

Figure 3.15). The labile DOM consumes all of the oxygen in the saltwater wedge via oxic 

degradation (Figures 3.15a and 3.15b). This reaction also produces ammonium as can be 

seen by the increase of ammonium concentration in the saltwater wedge (Figure 3.15c 

and 3.15d).  Unlike previous cases the ammonium produced is not nitrified as the 

abundance of labile DOM rapidly consumed all oxygen in the system. This means that 

nitrate is not produced in the saltwater wedge or along its mixing zone. However, similar 

to Case 2 denitrification still occurs and nitrate is consumed in the upper aquifer due to 

the availability of land-derived DOM and anoxic conditions (Figure 3.15c and 3.15d). 

Table 3.6 summarizes the consumption and production of nutrients in the near-shore 

aquifer. The net discharge of nitrate is reduced by 32.7% whereas the net discharge of 

ammonium increases by 4.5% for Case 9. This is opposite to Case 2 where a net 

production of nitrate and net consumption of ammonium was observed. The total 

precipitation of Fe(OH)3 in the aquifer over the 300 day simulation period is 3.52 mol. 
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This amount is less than for Case 2 (3.83 mol), as there is less oxygen available to ferrous 

iron for oxidation along the interface of saltwater wedge. Despite this the total phosphate 

adsorbed over the 300 d simulation period is 0.97 moles which is almost similar to that of 

Case 2 (0.96 moles). This is due to the high adsorption coefficient used to simulate 

phosphate adsorption which causes 94% sorption of phosphate for Case 9.  

 

Figure 3.15: Simulated (a) oxygen, (c) nitrate and (e) ammonium distributions for 

reactive transport case with no oceanic forcing and labile DOM (Case 9) and change in 

concentrations due to reaction for (b) oxygen, (d) nitrate, and (f) ammonium (positive 

change corresponds to a decrease in concentration) after 300 days. 
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Table 3.6:  Production and consumption of species in the near-shore aquifer for 

simulated cases 9-11 with labile DOM. 

Species
 
 NO3

-
  NH4

+
  PO4  Fe(OH)3  (s)  PO4 (ads) 

Case 9 

No forcing 

32.7% decrease 4.5% 

increase 

94% 

decrease 

3.52 moles 

precipitation 

0.97 moles 

adsorption 

Case 10 

Hrms = 1 m 

99% decrease  61.6% 

increase  

25.7% 

decrease  

3.11 moles 

precipitation  

1.7 moles 

adsorption  

Case 11 

Hrms = 2 m 

100% decrease 73.6% 

increase  

16.7% 

decrease 

2.88 moles 

precipitation  

1.3 moles 

adsorption  

 

3.4.1 Wave effects on nutrients in the presence of labile DOM 

The fate of nutrients in the subterranean estuary are also significantly modified by the 

presence of labile DOM with waves present (Case 10, Hrms =1 m, Figure 3.16). Oxygen 

in both the saltwater wedge and the upper saline plume is rapidly consumed by the labile 

DOM (Figure 3.16a and 3.16b). Ammonium is produced at the interface of the upper 

saline plume due to denitrification of the land-derived nitrate by the recirculating labile 

DOM (Figure 3.16c and 3.16d). Oxic degradation of the labile DOM in the saltwater 

wedge and upper saline plume also increases the subsurface ammonium production 

(Figure 3.16e and 3.16f). It is predicted that with the labile DOM present, nitrate is 

mostly consumed in the aquifer prior to discharge across the aquifer-ocean interface with 

99% removal for the simulation with Hrms = 1 m and 100% removal for Hrms = 2 m. The 

net discharge of ammonium is increased by 61.6% and 73.6% for Hrms = 1 m and Hrms = 2 

m respectively. More ammonium is produced for Hrms = 2 m as the wave-induced 
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seawater recirculation rate is higher and thus the rate of oxic degradation of the labile 

DOM and thus ammonium production is also be greater.  Similar to the case with no 

oceanic forcing it can be seen that the presence of labile DOM significantly alters the 

production and consumption of nutrients in the subterranean estuary.  

 

Figure 3.16: Simulated (a) oxygen, (c) nitrate and (e) ammonium distributions for 

reactive transport case with Hrms = 1 m and labile DOM (Case 10) and change in 

concentrations due to reaction for (b) oxygen, (d) nitrate, and (f) ammonium (positive 

change corresponds to a decrease in concentration) after 300 days. 
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Over the 300 d simulation period 3.11 mol and 2.88 mol of Fe(OH)3 precipitates in the 

aquifer for Hrms = 1 m and Hrms = 2 m respectively. The total Fe(OH)3 formed is less in 

for these cases compared to both the no oceanic forcing (Cases 2 and 9) as well as no 

labile DOM cases with waves (Cases 6 and 8). This is because the increased input of 

labile DOM as the wave conditions increase rapidly consumes the oxygen in the 

subsurface so less oxygen is available to oxidize ferrous iron. In addition, for Hrms = 2 m, 

the larger upper saline plume formed increases the travel time for land-derived ferrous 

iron to reach the mixing zones near the aquifer-ocean interface compared to Hrms = 1 m. 

This results in less precipitation of Fe(OH)3 over the 300 d simulation period for Hrms =  2 

m. For the wave cases with labile DOM present phosphate is not completely removed 

from the aquifer prior to discharge. The phosphate discharge reduces 25.7% (Case 10) 

and 16.7% (Case 11). This is because of increased phosphate production in the aquifer by 

the enhanced oxic degradation of the labile seawater-derived DOM as well as 

denitrification by the sea-derived labile DOM. Although the phosphate adsorption 

coefficient is high not all the phosphate produced is adsorbed to the Fe(OH)3 prior to 

discharge across the aquifer-ocean interface. The total phosphate adsorbed over the 300 d 

simulation period for the wave cases with labile DOM are 1.7 moles (Case 14), and 1.3 

moles (Case 16) compared to 1.12 moles (Case 6) and 1.1 moles (Case 8) for the wave 

cases without labile DOM. This increased phosphate adsorption is consistent with the 

higher phosphate production and concentrations in the aquifer. Although significant 

phosphate is generated in the upper saline plume by oxic degradation it only has a small 

subsurface residence time and flow path available for adsorption to Fe(OH)3 prior to its 

discharge to coastal waters. Hence, net discharge of phosphate via SGD is high. 
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3.5 Conclusions 

In this study the influence of tides and waves on nutrient dynamics in a near-shore 

aquifer has been examined. SEAWAT-2005 combined with PHT3D v2.10 provides a 

powerful modeling platform for simulation and quantification of the multi-component 

reactive transport processes occurring in a near-shore aquifer influenced by oceanic 

forcing. It was shown that the transport and fate of nutrients in a near-shore aquifer are 

strongly influenced by oceanic forcing as these forces alter the subsurface nutrient 

transport pathways and intensify the mixing of fresh groundwater and recirculating 

seawater. The enhanced mixing and modified pathways caused by tides and waves 

greatly influence the reaction processes occurring in the near-shore aquifer. For the 

conditions simulated, oceanic forcing was shown to increase the discharge flux of nitrate 

and decrease the discharge flux of ammonium in the absence of reactive DOM in the 

recirculating seawater. For the cases with oceanic forcing without labile (reactive) DOM 

it was shown that tide- and wave-induced oxic seawater recirculation through the aquifer 

caused a high rate of nitrification and inhibited denitrification. Tides increased the 

precipitation of Fe(OH)3 in the aquifer due to the increased subsurface oxygen 

availability but surprisingly wave effects reduced the total Fe(OH)3 that precipitated over 

the 300 d simulation period. This is likely because the simulations only considered 

regular, constant wave conditions via simulation of wave set-up. Although the spatial 

extent of the upper saline plume was greater with the inclusion of waves, the intensity of 

salt-freshwater mixing around the upper saline plume was not significantly enhanced. 

Irregular wave conditions (i.e., varying wave heights, wave storm events) will likely 

greatly increase the salt-freshwater mixing around the upper saline plume and this is 
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likely to lead to greater precipitation of Fe(OH)3. For all the simulation cases without the 

seawater-derived labile DOM, the sorption of phosphate to Fe(OH)3 in the aquifer was 

high with minimal or negligible amounts discharging across the aquifer-ocean interface.  

Availability of reactive DOM from recirculating seawater alters the geochemical 

reactions and nutrient production/consumption in the subterranean estuary. The seawater-

derived reactive DOM causes a net consumption of nitrate and production of ammonium 

in the aquifer. The oxygen is rapidly consumed in the saltwater wedge and upper saline 

plume as the DOM degrades and this enhances the production of phosphate and 

ammonium in the aquifer.  

This numerical study illustrated that oceanic forcing and the chemical composition of the 

terrestrial groundwater and recirculating seawater strongly controls the fate of nutrients in 

a subterranean estuary prior to their discharge to near-shore waters. The model applied 

was verified using simulation results from Spiteri et al (2008a). However model 

validation with field data from a tide or wave-influenced near-shore aquifer system would 

enhance the applicability of the model to the real aquifer systems. While the model 

considers a complex suite of chemical reactions that typically control subsurface nutrient 

dynamics, further model validation may indicate that additional reactions should be 

considered including annamox, pyrite denitrification and co-precipitation of species. 

Finally, in future work it is recommended that the model be applied to conduct detailed 

sensitivity analysis of the reactions and reaction rates considered, species concentrations, 

landward freshwater flux, tidal amplitude and wave conditions which will also provide a 

broader understanding of the factors controlling nutrient dynamics in a near-shore coastal 

aquifer. 
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Chapter 4 

Summary and Recommendations 

4.1 Summary 

The groundwater flow, salt-freshwater mixing and geochemical reaction processes 

occurring in a near-shore coastal aquifer are complex and understanding and predicting 

the fate of nutrients in a near-shore coastal aquifer is challenging. In this study a 

numerical model has been developed to evaluate the influence of oceanic forcing and 

factors affecting the transport and transformation of nutrients in a near-shore coastal 

aquifer. The model was developed by combining the variable-density groundwater flow 

model SEAWAT-2005 (Guo and Langevin 2002) with the reactive multi-component 

transport model PHT3D v2.10 (Prommer and Post 2010). The numerical model, 

including the geochemical code was first verified against previously reported numerical 

simulation results (Spiteri et al. 2008a). Once verified, the numerical model was used to 

evaluate effects of oceanic forcing on nutrients in a near-shore aquifer exposed to (i) no 

oceanic forcing, (ii) tides, and (ii) waves. The simulation results were post-processed 

using MATLAB to quantify the nutrient exit concentrations, chemical fluxes across the 

aquifer-ocean interface and also the consumption/production of nutrients in the near-

shore aquifer. The model was also applied to examine the influence of recirculating labile 

DOM from seawater on the geochemical reactions and nutrient transformations in the 

near-shore aquifer. 

When estimating groundwater-derived nutrient loading rates to coastal waters, coastal 

managers typically only consider the landward concentration of nutrients in the aquifer. 
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The present study shows that tides and waves lead to dynamic subsurface flows and salt-

freshwater mixing in the near-shore region and this significantly modifies the transport 

pathways as well as the nutrient distributions. Therefore considering only the landward 

concentration of nutrients will not provide an accurate prediction of nutrient discharge 

from coastal aquifers as it neglects important nutrient transformations that can occur 

close to the aquifer-ocean interface. In some cases this approach may underestimate the 

nutrient fluxes (e.g., in the absence of labile DOM in recircualting seawater oceanic 

forcing may significantly enhances the nitrate discharge flux) and in some cases it may 

overestimate nutrient fluxes (e.g., oceanic forcing may reduce the nitrate discharge flux 

when labile DOM is available from recirculating seawater). While previous studies have 

indicated that only a small amount of nitrate removal in the near-shore aquifer prior to its 

discharge to coastal waters (Spiteri et al. 2008b), the present study shows that tide- and 

wave-induced recirculation may lead to significant nitrate production or removal 

depending on the availability of chemical species in the recirculating seawater. Also as 

the water exchanging across the aquifer-ocean interface is higher when tides and waves 

are present the chemical discharge fluxes are increased even though the exit 

concentrations are lower due to dilution of the land-derived groundwater with the 

recirculating seawater.  

Prior studies have indicated that the reactive processes occurring in a subterranean 

estuary, particulay phosphate adsorption and only marginal nitrate removal, may lead to 

the discharge of N-limited groundwater (low N:P ratio) to coastal waters. In contrast the 

results from this study suggest that presence of tides and waves along with the 

availability of labile DOM in recirculating seawater may increase the N:P ratio by 
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enhancing the removal of nitrate and production of phosphate in the near-shore aquifer. 

Oxic degradation and denitrification by the reactive DOM delivered by the tide- and 

wave-induced recirculating seawater are the major reactions leading to the increased N:P 

ratio. However, if the labile DOM concentration is not significant in the seawater, the 

tide- and wave-induced recirculation will not increase phosphate production in the 

subterranean estuary and there may be close to complete adsorption of phosphate in the 

aquifer to iron (hydr)oxides. Also nitrification combined with high water exchange fluxes 

may enhance nitrate loading to coastal waters.  

Consistent with the findings of previous study (Xin et al. 2010), the numerical 

simulations show that tides cause greater salt-freshwater mixing in the near-shore aquifer 

compared to regular wave forcing. This leads to a higher transformation of the nutrients 

in a subterranean estuary subject to tides compared to waves which in turn influences the 

nutrient fluxes across the aquifer-ocean interface. 

The numerical model developed is able to enhance the conceptual understanding of the 

dynamic salt-freshwater mixing and complex reaction processes occurring in a near-shore 

aquifer and is a valuable tool for examining the influence of oceanic fluctuations on 

nutrient fluxes to coastal waters. As required to better predict the nutrient loadings rates 

to coastal waters via SGD, this model provides valuable information on the natural 

attenuation/production of nutrients in a coastal aquifer due to the presence of oceanic 

fluctuations.  
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4.2 Recommendations 

While the model is able to significantly enhance conceptual understanding of the 

processes controlling the fate of nutrients in a near-shore aquifer, model validation with 

field data and sensitivity analysis to quantify the influence of additional variables would 

further enhance understanding of nutrient dynamics in this complex system. The 

following recommendations are provided to form the basis of future work:   

 Only regular, constant wave forcing was considered in the present study via 

simulation of wave set-up. The influence of random wave conditions (e.g., storm 

surges) should be examined in future studies. It is expected that random wave 

conditions will enhance the mixing of recirculating seawater with fresh 

groundwater in a near-shore aquifer. This will significantly influence the 

geochemical reactions and alter the nutrient fluxes to coastal waters.  

 Simulations should be performed with varying tidal amplitudes to analyze the 

sensitivity and response of the system to the strength of tidal forcing.  

 The influence of the fresh groundwater discharge rate, including seasonal 

variations, and also aquifer properties (hydraulic conductivity, porosity, depth of 

the aquifer) were not considered in the present study.  These variables may 

significantly impact the transport and fate of nutrients in a near-shore aquifer. 

 The sensitivity of nutrient fate to the reactions considered, reaction rate constants 

adopted and species concentrations should be examined in future studies. The 

model developed was verified using an existing numerical model that has been 

used to simulate nutrient transport in a coastal aquifer not subject to oceanic 

forcing. Validation of the model with field data collected in tide- or wave-
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influenced coastal aquifer is recommended. Extending the geochemical reaction 

network; for example, including reactions such as anammox, pyrite 

denitrification, and co-precipitation of species may be required to better predict 

nutrient fate in a coastal aquifer.  

 The combined effects of both tides and waves acting on a coastal aquifer should 

be examined as many shoreline areas are exposed to both these forcing 

mechanisms. 
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Appendix A  

Numerical Model Verification 

A.1 Introduction 

The reactive variable-density groundwater flow and transport model including the 

reaction kinetics was verified by simulating the numerical results of Spiteri et al. (2008a) 

who developed a numerical model to examine the flow dynamics and transport of 

nutrients in a near-shore aquifer not exposed to oceanic forcing. 

A.2 Groundwater flow and multi-species transport geochemical model setup 

A brief summary of numerical model presented by Spiteri et al (2008a)) is provided here 

with a schematic of the model domain shown in Figure A1. The model represents a cross-

shore transect through a sandy coastal aquifer. The model domain is divided into two 

zones: a surface water zone (zone A) and an aquifer zone (zone B).  A very high 

hydraulic conductivity of 10
5
 md

-1
, ne = 1 and a constant salt concentration of 27 gL

-1
 is 

applied in zone A to represent surface water. To simulate a sandy aquifer, the 

permeability is 7×10
-12

 m
2
, porosity is 0.3, longitudinal dispersivity is 0.5m (αL), and 

transverse dispersivity is 0.05m (αT) in zone B. The model domain is 95 m long. Spiteri et 

al. (2008a) considered a 60 m long model with a rectangular domain (vertical aquifer-

ocean interface at seawater right-hand boundary). This two zone approach is required in 

our study to simulate the tidal oscillations. Due to difficulties in simulations of tides with 

a rectangular model, for model verification we used a 95 m two zone model with 60 m 

extent in the landward side representing the same domain of Spiteri et al. (2008a). A 
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shallow coastal aquifer system is simulated with an aquifer depth (H) of 20 m. The model 

domain is discretized into 72 layers and 89 columns with greater refinement around the 

sloping beach interface. Grid discretization test were performed to ensure the numerical 

solution was independent of the grid sizing.  

No flow boundary condition was applied on the bottom boundary and also at the vertical 

seaward boundary. A constant head of 0.4 was applied at the landward interface ending 

up with 0.0067 mm
-1

 gradient. The upper boundary is a phreatic surface and recharge to 

the aquifer is not considered.  

 

Figure A.1: Model domain and flow boundary conditions. 

The solute species considered in the reactive transport model are salt, ammonium (NH4
+
), 

nitrate (NO3
-
), phosphate (PO4), oxygen (O2), ferrous iron (Fe

2+
),  dissolved organic 

matter (DOM), adsorbed phosphate (PO4(ads)) and iron hydroxide (Fe(OH)3). The 

reactions and rate expression included in the model are the same as Spiteri et al. (2008a) 

who examined the nutrient dynamics in a sandy near-shore aquifer not exposed to 

oceanic forcing.  The reactions simulated and the kinetic rate expressions and rate 

constants adopted are shown in Tables 3.1 and 3.2 respectively. Constant concentrations 
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of species were set along the landward boundary and also for cells in zone A. The 

concentration values for each species are provided in Table 3.3. These concentrations 

represent the anoxic groundwater and oxic seawater concentrations (Case 3 from Spiteri 

et al. 2008a) used by Spiteri et al. (2008a). The land-derived nitrate plume occurs at a 

depth of 8-12m from the top of the aquifer and an ammonium/phosphate plume occurs at 

a depth of 12-16m from the top of the aquifer. The model was first run to reach steady 

state with regards to the salt distribution and groundwater flows. The reactive transport 

simulation was then run for 1000 days as this simulation time was required for the 

chemical species from the landward boundary to reach the seaward boundary. 

A.3 Salt distribution 

The concentration distribution of salt is shown in Figure A.2. It can be seen that the 

model developed for this study predicts that the saltwater wedge intrudes into the coastal 

aquifer to a distance of approximately 15 m from the landward boundary (Figure A.2a). 

This matches with salt distribution of Spiteri et al. (2008a) (Figure A.2b) as well as 

Glover’s solution. The fresh groundwater discharges into the sea near the shore line. 

 

Figure A.2: Simulated steady state salt distribution in the coastal aquifer from (a) model 

developed, and (b) Spiteri et al. (2008a). 
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Figure A.3 represents the vertical steady state salt distribution profiles at different x 

locations from the present study. Consistent with Figure A.2 the salt intrusion depth 

decreases towards landward boundary (Figure A.3a). 

Figure A.3: Vertical salt distribution profiles at (a) 35 m, (b) 40 m, (c) 45 m, (d) 50 m, 

(e) 55 m, and (f) 60 m from landward boundary in the model at steady state. 

A.4 Nutrient distribution 

The steady state reactive concentration distribution profiles for nitrate, ammonium and 

phosphate from our numerical model simulations and from Spiteri et al. (2008a) are 

shown in Figure A.4. Figure A.5 illustrates the steady state conservative and reactive 

concentration profiles along a vertical profile at 60m for the present study and at seaward 

boundary for Spiteri et al. (2008a). Due to different seaward boundary configuration in 

the present study (sloped rather than vertical boundary), the concentration profiles are 

slightly different however the distribution profiles are very similar to that of Spiteri et al. 

(2008a). 
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Figure A.4: Simulated concentration profiles for (a, b) nitrate, (c, d) ammonium; and (e, 

f) phosphate from present study and Spiteri et al. (2008a) respectively. The subplots on 

the right hand side (b), (d) and (f) are modified from Spiteri et al. (2008a). 

 

Figure A.5: Steady state vertical concentration profiles of (a,e) nitrate, (b,f)) ammonium, 

(c,g) phosphate and (d,h) at interface and seaward boundary from present study and 

Spiteri et al. (2008a) study respectively after 1000 days. Dashed lines represent 
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simulation results conservative transport simulations and solid lines represent simulation 

results from reactive transport simulations. 

Comparing Figure A.5a and A.5b it is evident that both denitrification and nitrification 

occurs along the nitrate discharge flow path and this results in nitrate attenuation at lower 

depth and nitrate production at higher depth in the aquifer. Similar reaction processes are 

observed in the model by Spiteri et al. (2008a) (Figure A.5e and A.5f). For both 

simulations, the phosphate concentration is signifciantly decreased due to sorption 

(Figure A.5c and A.5g) and this results in significant attenuation of phosphate in the 

coastal aquifer prior to discharge via SGD. Due to the reaction processes occuring in the 

near-shore aquifer, the landward depth of the nutrient plume (i.e., nitrate and ammonim 

rich plums) becomes reversed prior to discharing to coastal waters. This is consistent with 

the numerical results of Spiteri et al. (2008a). At the landwater boundary the nitrate 

plumes overlies the ammonium and phosphate plume however mixing and reactions in 

the subterranean esturay cause an ammonium and phosphate plume to discharge above a 

nitrate plume at the aquifer-ocean interface. 

 A.5 Conclusion 

This model verification provides a basis for using the reactive transport model developed 

in SEAWAT-2005 and PHT3D v2.10 to evaluate the mixing and nutrient reaction 

processes in a near-shore coastal aquifer subject to oceanic forcing.  
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Appendix B 

MATLAB code for post processing data 

B.1 Parameters Calculated 

A MATLAB code was written for post-processing the numerical model results.  This 

script includes the procedure for extracting and plotting the concentration distribution 

profiles and calculating the exit concentrations and chemical flux of nutrients (nitrate, 

ammonium, and phosphate) after 300 days. The total moles of precipitates (iron 

hydroxides), and total adsorbed moles of phosphate after 300 days are also calculated. 

For the tidal cases, a tide-averaged velocity approach is adopted for calculating the 

chemical fluxes and exit concentrations. 

B.2 Extracting data for ammonium 

clear all 

  

%Model parameters 

 

column=56 

layer=49 

  

%SEAWAT model information 

 

str=('Reading SEAWAT model information..............................................') 

  

%Bottom of layers 

 

B=textread('grid/bottom.txt','%f','delimiter','whitespace'); 

for i=0:layer-1;               

    k=3+i*column; 

    l=2+(i+1)*column; 

    B1(i+1,:)=B(k:l,1)'; 

end; 
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%Top of layers 

 

T=textread('grid/top.txt','%f','delimiter','whitespace'); 

for i=0:layer-1;        

    k=3+i*column; 

    l=2+(i+1)*column; 

    T1(i+1,:)=T(k:l,1)'; 

end; 

  

Z=(T1+B1)/2;                           %elevations in middle of cell 

dz=T1-B1 ;                               %z discretisation 

  

%Column data 

 

x=xlsread('grid/column.xls');        

x1=x(:,1);                           

x1=x1'; 

for i=1:layer;                       

    x2(i,1:column)=x1; 

end 

  

dx=x(:,2);                           

dx=dx'; 

for i=1:layer; 

    dx1(i,1:column)=dx;              

end 

  

%Porosity data 

 

nee=textread('grid\porosity.txt','%f','delimiter','whitespace'); 

  

for i=0:layer-1;      

    k=3+i*column; 

    l=2+(i+1)*column; 

    ne(i+1,:)=nee(k:l,1)'; 

end; 

  

%Read concentration results 

 

p_amm_ss_raw=textread('p_amm_ss'); 

p_amm_ss=p_amm_ss_raw(2:end,:);  

  

m_amm_ss_raw=textread('m_amm_ss'); 

m_amm_ss=m_amm_ss_raw(2:end,:); 

  

%Set dry/inactive cells (Where concentration is 1 x 10^30) to be NaN (Not a number) 
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for i=1:column; 

    for j=1:layer; 

            if p_amm_ss(j,i)>=1000; 

            p_amm_ss(j,i)=NaN; 

        end 

        if m_amm_ss(j,i)>=1000; 

           m_amm_ss(j,i)=NaN; 

        end  

         

    end 

end 

  

%Change in ammonia  

 

diff_amm_ss=m_amm_ss-p_amm_ss; 

  

% %Reading and extracting flow data 

%Extract flow data for stress period 200 

 

k1=199;  

sp=1;      

  

str=('Reading budget.dat..............................................') 

  

%Opens binary file for reading 

 

fid=fopen('budget.dat');                

  

extra=9;                 

 

%Repositioning in indicator in file ie. location in files to start reading in data 

 

k=((k1)*(6*column*layer+6*extra))*4;     

fseek(fid, k,'bof');                     

  

%Reading in data  

 

m=(6*column*layer+6*extra)*sp;           

L=fread(fid,m,'single'); 

  

%Extracting budget data 

 

str=('Extracting flow data..............................................') 

  

%Replace dry cells with NaN 
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for i=1:length(L);                                    

    if L(i,:)<=-1000; 

       L(i,:)=NaN; 

end; 

end; 

  

%Replace inactive cells with NaN 

 

for i=1:length(L);                                    

    if L(i,:)>=100; 

       L(i,:)=NaN; 

end; 

end; 

  

%Converts column results into a matrix of layer * column 

M=L';                        

%Flow through right face (m3/day) 

 

for n=1:sp 

for i=0:(layer-1);                                               

    p=i*column+(6*(n-1)+2)*column*layer+(6*(n-1)+3)*extra+1;     

    j=p+column-1; 

    C_ss(i+1,1:column,n)=M(1,p:j);                                

end 

  

vC_ss(:,:,n)=C_ss(:,:,n)./dz;                                         %Darcy velocity through right face  

lvC_ss(:,:,n)=vC_ss(:,:,n)./ne;                                      %Linear velocity through right face 

  

%Flow through lower face (m3/day) 

 

for i=0:(layer-1);                                               

    p=i*column+(6*(n-1)+3)*column*layer+(6*(n-1)+4)*extra+1;     

    j=p+column-1; 

    D_ss(i+1,1:column,n)=M(1,p:j);                                 %Flow per stress period 

end 

  

vD_ss(:,:,n)=D_ss(:,:,n)./dx1;                                        %Darcy velocity through bottom 

face  

lvD_ss(:,:,n)=vD_ss(:,:,n)./ne;                                       %Linear velocity through bottom 

face 

end 

  

%Set velocities in surface water region and near interface = 0 

 

I=find(ne>0.9);                  
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vC_ss(I)=0;                       %set velocity at zero for surface water cells  

vD_ss(I)=0; 

   

%Locations where to calculate fluxes from 

 

aa=30:0.05:70; 

  

%Step back from interface at increments  

 

dist=[0.15 0.25 0.5 0.75 1]; 

  

NL=5                      %number of locations back from interface where recirculation will be 

calculated as specified in variable 'dist' 

 

for i=1:NL;          

   aa1(i,:)=aa; 

end; 

        

%Angle of interface ie. beach slope 

 

beta=atan(1/10); 

  

distx=dist/sin(beta);       %distance to step in x-direction 

distz=distx/tan(beta);      %distance to step in z-direction 

  

for i=1:NL 

    aa20(i,:)=aa-distx(1,i); 

end 

  

for i=1:NL 

    bb20(i,:)=-(aa20(i,:)-aa20(i,1))*0.1+11; 

end 

  

xx=x2+dx1/2;               %matrix with right hand faces 

  

%Unit vector normal to interface 

 

uvz=10/(10^2+1^2)^0.5; 

uvx=1/(10^2+1^2)^0.5; 

  

%Calculate concentrations perpendicular to the interface 

 

for i=1:NL;   

    EC(i,:)=interp2(x2,Z,p_amm_ss(:,:),aa20(i,:),bb20(i,:)); 

end 
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%If the concentration == NaN, set it to zero 

 

EC_nan=isnan(EC); 

for i=1:NL; 

    for j=1:length(aa20); 

          if EC_nan(i,j)==1; 

                EC(i,j)=0; 

          end; 

    end; 

end; 

  

%Calculate exchange based on the flow fields (m3/d) 

 

for i=1:NL;   

         U20av(i,:)=interp2(xx,B1,lvC_ss,aa20(i,:),bb20(i,:)); 

         V20av(i,:)=interp2(xx,B1,-lvD_ss,aa20(i,:),bb20(i,:)); 

         EX(i,:)=0.25*(0.05/cos(beta))*(uvx.*U20av(i,:)+uvz.*V20av(i,:)); 

end 

  

%Where the EX = NAN, let the EX = zero             

    

for j=1:length(aa);  

     for i=1:NL 

         TF = isnan(EX(i,j));                       

            if TF==1; 

                  EX(i,j)=0; 

             end; 

     end; 

end; 

 

%To calculate exfiltration rates set all infiltration cells to zero 

 

EXex=EX; 

for j=1:length(aa); 

     for i =1:NL 

         if EXex(i,j)<=0; 

            EXex(i,j)=0; 

         end; 

     end; 

 end; 

 

%To calculate infiltration rates set all exfiltration cells to zero 

 

EXin=EX; 

for j=1:length(aa); 

     for i =1:NL 
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         if EXin(i,j)>=0; 

            EXin(i,j)=0; 

         end; 

     end; 

 end; 

  

%Calculate chemical fluxes for exfiltration as C (mol/L) x EX_tidal (m3/d at each point) 

* 1000 (L/m3)   

 

CF_av=EC.*EXex.*1000; 

  

%Calculate chemical fluxes for infiltration as C (mol/L) x EX_tidal (m3/d at each point) 

* 1000 (L/m3)   

 

CF_in=EC.*EXin.*1000; 

  

%Total mass flux exfiltrating 

 

CF=sum(CF_av') 

  

%Total mass flux infiltrating 

 

Cin=sum(CF_in') 

  

%Total water flux exfiltrating 

 

EXex_total=sum(EXex') 

  

%Total water flux infiltrating 

 

EXin_total=sum(EXin') 

  

%Inland flow 

 

for i=1:sp;                                                      

Inland(:,i)=C_ss(:,1,i);                       %Creates a matrix with first column from each 

stress period  

end 

Inlandt=sum(Inland(:,1:sp));              %Sums the columns to calculate the total freshwater 

discharge per stress period 

Itt=sum(Inlandt)/(sp)                         %total freshwater flow through interface per day 

  

 %Calculate total moles in aquifer 

%Zeroth moment  - Total moles in aquifer 

%If the concentration == NaN, set it to zero 
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C_tot=p_amm_ss; 

C_nan=isnan(C_tot); 

  

for i=1:column; 

    for j=1:layer; 

            if C_nan(j,i)==1; 

            C_tot(j,i)=0; 

            end; 

        end;        

end; 

M=ne.*C_tot*1000.*dx1.*dz; 

M0=sum(sum(M)) 

  

%Plot results 

  

%Total Chemical flux versus x 

 

figure(101) 

plot(aa20(4,:),CF_av(4,:)./0.0502,'k'); 

hold on 

 

title('Total chemical flux along the aquifer-ocean interface')  

xlabel('Distance along the aquifer-ocean interface (m)') 

ylabel('Chemical flux (mol/d/m^2)') 

xlim([35 65]) 

  

%Exit concentration versus x 

 

figure(102) 

plot(aa20(1,:),EC(4,:),'g');               

hold on 

  

title('Exit concentrations along the aquifer-ocean interface')  

xlabel('Distance along the aquifer-ocean interface (m)') 

ylabel('Ammonia concentration (mol/L)') 

xlim([35 65]) 

  

 %Contour plots for ammonium 

 

figure(103); 

 

vfilled_amm_m_ss=([0:max(max(m_amm_ss))/100:max(max(m_amm_ss))]); 

contourf(x2,Z,m_amm_ss,vfilled_amm_m_ss); 

caxis([0 max(max(m_amm_ss))]); 

shading flat 

colorbar 
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hold on 

  

%Plot aquifer-ocean boundary 

 

for j=1:column; 

A{1,j} = find(ne(:,j)>0.5);                     %Finds the interface cells 

G(1,j)=length(A{1,j})+1; 

if G(1,j)==layer+1; 

   G(1,j)=layer; 

end; 

end; 

  

plot(x1,T1(G,1),'k','LineWidth',3); 

hold on 

  

%Plot velocity vectors 

 

quiver(x2(1:2:layer,1:2:column),Z(1:2:layer,1:2:column),vC_ss(1:2:layer,1:2:column),-

vD_ss(1:2:layer,1:2:column),'w'); 

hold on 

  

xlim([2 60]); 

xlabel('x (m)'); 

ylabel('z (m)'); 

title('Ammonium Concentrations - No reaction '); 

  

figure(104); 

 

vfilled_amm_p_ss=([0:max(max(p_amm_ss))/100:max(max(p_amm_ss))]); 

contourf(x2,Z,p_amm_ss,vfilled_amm_p_ss); 

caxis([0 max(max(p_amm_ss))]); 

shading flat 

colorbar 

hold on 

  

%Plot aquifer-ocean boundary 

for j=1:column; 

A{1,j} = find(ne(:,j)>0.5);                     %Finds the interface cells 

G(1,j)=length(A{1,j})+1; 

if G(1,j)==layer+1; 

   G(1,j)=layer; 

end; 

end; 

  

plot(x1,T1(G,1),'k','LineWidth',3); 

hold on 



105 

 

 

  

%Plot velocity vectors 

 

quiver(x2(1:2:layer,1:2:column),Z(1:2:layer,1:2:column),vC_ss(1:2:layer,1:2:column),-

vD_ss(1:2:layer,1:2:column),'w'); 

hold on 

  

xlim([2 60]); 

xlabel('x (m)'); 

ylabel('z (m)'); 

title('Ammonium Concentrations - Reaction'); 

  

figure(105); 

 

vfilled_amm_diff_ss=([0:max(max(diff_amm_ss))/100:max(max(diff_amm_ss))]); 

contourf(x2,Z,diff_amm_ss); 

shading flat 

colorbar 

hold on 

  

%Plot aquifer-ocean boundary 

for j=1:column; 

A{1,j} = find(ne(:,j)>0.5);                     %Finds the interface cells 

G(1,j)=length(A{1,j})+1; 

if G(1,j)==layer+1; 

   G(1,j)=layer; 

end; 

end; 

  

plot(x1,T1(G,1),'k','LineWidth',3); 

hold on 

  

%Plot velocity vectors 

 

quiver(x2(1:2:layer,1:2:column),Z(1:2:layer,1:2:column),vC_ss(1:2:layer,1:2:column),-

vD_ss(1:2:layer,1:2:column),'w'); 

hold on 

  

xlim([2 60]); 

xlabel('x (m)'); 

ylabel('z (m)'); 

title('Ammonium Concentrations - Change from reaction '); 

  

  

  

  



106 

 

 

Vita 

Name:                                 Nawrin Anwar 

Birthplace:                         Dhaka, Bangladesh.  

Date of Birth:                     September 21, 1987. 

Post-secondary                   Bangladesh University of Engineering and Technology, 

Education and Degrees:    Dhaka, Bangladesh. 

                                             B. Sc. in Civil Engineering, 

                                             2004 - 2009.   

Honours and Awards:       Dean Scholarship 

                                             Bangladesh University of Engineering and Technology,        

                                             Dhaka, Bangladesh. 

                                             2005 - 2009.  

                                               

                                             University Merit Scolarship 

                                             Bangladesh University of Engineering and Technology,  

                                             Dhaka, Bangladesh. 

                                             2005 - 2009. 

                                               

Related Work                     Graduate Research and Teaching Assistant, 

Experience:                        The University of Western Ontario,  

                                             2010 - 2012. 

                                             Lecturer, 

                                             Civil Engineering Department, 

                                             University of Asia Pacific, 

                                             Dhaka, Bangladesh. 

                                             October 2009 – April 2010.     

Conference Proceedings:   1) Anwar, N; Lee J; Weber, S; and Robinson, C. (2011).                      

                                              “Nutrient and heavy metal concentration in the groundwater 

                                              At beaches of the Great Lakes”, Proceedings of the 11
th

  

                                              Great Lake Beach Association Conference, Michigan City, 

                                              Indiana, September 26-28, 2011.     

                                              2) Anwar, N; and Robinson, C. (2011).                      

                                              “Nutrient transport and transformation in a tidally influenced 

                                              subterranean estuary”, Proceedings of the 21
st
   

                                              Conference of the Coastal Estuarine Research Federation,  

                                              Daytona Beach, Florida, November 6-10, 2011.     



107 

 

 

                                              3) Anwar, N; and Robinson, C. (2011).                      

                                              “Influence of tides on the transport and fate of groundwater- 

                                              derived nutrients to coastal waters”, Proceedings of the    

                                              AGU Fall Meeting 2011, San Francisco, California,  

                                              December 5-9, 2011. 

                                              4) Anwar, N; and Robinson, C. (2012).                      

                                              “Fate of groundwater-derived nutrients in tidally influenced 

                                              coastal aquifers: numerical simulations”, Proceedings of the    

                                              22
nd

 V.M. Goldschmidt 2012 Conference, Montreal, 

                                              Quebec, June 24-29, 2012. 

 

 


	Influence of Oceanic Forcing on Fate of Nutrients in a Near-Shore-Aquifer
	Recommended Citation

	CERTIFICATE OF EXAMINATION
	Abstract
	Co-Authorship
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1
	Introduction
	1.1 Background
	1.2 Research objective
	1.3 Thesis outline
	References

	Chapter 2
	Literature Review
	2.1 Introduction
	2.2 Coastal water pollution and stressors
	2.3 Submarine groundwater discharge (SGD)
	2.4 The subterranean estuary and influence of oceanic forcing
	2.5 SGD of nutrients and nutrient dynamics in a near-shore aquifer
	2.6 Numerical modeling of reactive contaminant transport in near-shore aquifers
	2.7 Summary
	References

	Chapter 3
	Influence of oceanic forcing on fate of nutrients in a near-shore aquifer
	3.1 Introduction
	3.2 Numerical Model
	3.2.1 Groundwater flow and multi-species transport model
	3.2.2 Nutrient concentrations and geochemical model

	3.3 Results and Discussion
	3.3.1 Effect of tides
	3.3.1.1 Salinity and oxygen distribution
	3.3.1.2 Transport and fate of nitrate and ammonium
	3.3.1.3 Transport and fate of phosphate and iron

	3.3.2 Effect of waves
	3.3.2.1 Salinity and oxygen distribution
	3.3.2.2 Transport and fate of nutrients with wave set-up


	3.4 Influence of labile DOM from seawater
	3.4.1 Wave effects on nutrients in the presence of labile DOM

	3.5 Conclusions
	References

	Chapter 4
	Summary and Recommendations
	4.1 Summary
	4.2 Recommendations
	References

	Appendix A
	Numerical Model Verification
	A.1 Introduction
	A.2 Groundwater flow and multi-species transport geochemical model setup
	A.3 Salt distribution
	A.4 Nutrient distribution
	A.5 Conclusion
	References

	Appendix B
	MATLAB code for post processing data
	B.1 Parameters Calculated
	B.2 Extracting data for ammonium

	Vita

