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5.3 Karstification events 

Previous studies have noted that only the lowermost and uppermost karstic surfaces in the 

Guelph Formation can be correlated between ‘pinnacle features’ and all other exposure surfaces 

within the Guelph Formation cannot be correlated (Charbonneau, 1990; Carter et al., 1994). This 

study corroborates the above observations, in that the majority of exposure surfaces cannot be 

correlated between karst towers or to the topographic lows, and that the penetrative karst and 

brecciation textures contribute to the difficulty in facies characterization. The difficulties in 

correlating karst surfaces with in the Guelph Formation is related to: (i) the irregular topography 

of the Guelph strata resulting from their accumulation on the Gasport and Goat Island formations 

and the later influence of this surface on subsequent karst development within the Guelph 

Formation; (ii) the variability in  facies characteristics of vertical carbonate successions 

deposited on the topographic highs; and (iii) post-Guelph faulting resulting in local uplift in 

some areas (Charbonneau, 1990). 

 

5.4 Guelph-Salina contact 

The nature of the contact between the Lockport and Salina groups has been debated for many 

years. Many workers suggested an ‘unconformable’ contact between the Guelph Formation and 

Salina A-Unit throughout Ontario (Pounder, 1962; Charbonneau, 1990; 1991; Smith, 1990a; 

Carter et al., 1994; and Bailey, 1986; 2000). Smith (1990a) suggested a significant hiatus and 

disconformity, claiming that only the A-0 Carbonate is present in the ‘inter-reef’ and the Guelph 

Formation is absent. This study identifies the Guelph Formation in all of the areas that are 

referred to as ‘inter-reef’ (Sanford, 1969), the areas between karst towers (the localities with the 

less than 10 m of Guelph strata).  

Descriptions of the lithologic contact between the Lockport and Salina groups proposed 

by early authors in Michigan, include: (i) a ‘sharp break’ (Ells, 1967); (ii) a conformable contact 

(Burgess and Benson, 1969); and (iii) a disconformity (Alling and Briggs, 1961; Gill, 1973; 

1977a; Briggs and Briggs, 1974; Huh et al., 1977; Sears and Lucia, 1979). In contrast, Sloss 

(1969) believed that the deposition of the ‘inter-reef’ Salina A-units was contemporaneous with 

the ‘pinnacle reef’ buildup. Similarly, Mesolella et al. (1974) suggested a short hiatus where 

‘quasi-contemporaneous’ deposition took place, one carbonate and one evaporite. Soon after, 

Liberty and Bolton (1971) suggested that the so-called unconformity between the Guelph and 
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Salina in Ontario should be ‘minimized’ based on the suspicion that Guelph ‘inter-reef’ facies 

grade laterally and vertically into the Salina strata, implying little or no erosion between these 

units. 

In northwestern Ohio, based on the presence of sink-holes and mottled red-orange 

paleosols at top of the Lockport/Pebbles Dolomite before the onlap of the Greenfield Dolomite 

(=A-1 Carbonate of this study), Kahle (1971; 1988) suggested a period of subaerial exposure and 

a paleokarst unconformity. Similarly, Janssens (1971) recognized an unconformity in 

northwestern Ohio, and only local disconformities in northeastern Ohio marked by a green shale 

bed, similar to the green shale bed seen at the top of the Guelph Formation in the Appalachian 

Basin (Area 3) of this study. In contrast, no evidence of an unconformity has been reported in 

northwestern Pennsylvania, eastern Ohio (Rickard, 1969) and in northern Indiana: a conformable 

contact and contemporaneously Salina deposition with Niagaran reef growth has been suggested 

(e.g., Shaver et al., 1971).  

To date, no consensus has been reached on the nature of the Guelph-Salina contact 

(Armstrong and Carter, 2010). This is primarily due to the limited studies of the Guelph 

Formation since the 1990s. Cramer et al. (2011) addresses the uncertainty in the age of the 

Guelph-Salina contact, but places both the Guelph and lower Salina units at the base of the 

global Ludlow Series (Niagaran-Cayugan Series). As discussed in Chapter 4 (see Section 4.5), 

the new interpretation proposed in this study – karst terrain produced at the end of Guelph time, 

associated with a significant period of subaerial erosion, better explains the regional 

juxtaposition of Lockport Group formational contact and the character of karst features observed. 

Therefore, the Guelph-Salina contact represents a much longer time break than previously 

thought (Gill, 1977a; Charbonneau, 1990).  

  

5.5 Diagenetic events 

This study corroborates the complex diagenetic history for the Guelph Formation and underlying 

carbonate-dominated rock units of the Lockport Group, as proposed by Zheng (1997) and 

Coniglio (2003). Subaerial exposure and a variable marine diagenetic history have resulted in 

this complex diagenetic history. The diagenetic history of the Guelph Formation was not the 

focus of this study – a brief summary of previous work is provided below.  
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Smith et al. (1988) showed that different stages of diagenetic processes were caused by 

varying pore fluids which were unevenly distributed throughout Silurian ‘bioherms’ due to 

variable karstic-enhanced porosities. These authors suggested that the ‘pinnacle reefs’ underwent 

six diagenetic stages, including: (i) early marine diagenesis characterized by pore-linings of 

isopachous, fibrous calcite; (ii) meteoric diagenesis represented mainly by initial infill of 

stromatactoid cavities; (iii) vadose diagenesis via vadose-silt cement in karstic-enhanced pores; 

(iv) phreatic diagenesis, evidenced by late, iron-poor, blocky calcite infill of stromatactoid 

cavities; (v) karstic marine diagenesis via enhanced porosity in uppermost portion of bioherms; 

(vi) late burial diagenesis typified by rhombic dolomite and equant calcite in vugs and fractures 

from highly saline basinal brines (Cercone and Lohmann, 1986). In comparison, the ‘patch reefs’ 

underwent only diagenetic processes (i), (v) and (vi) that are significantly masked by 

dolomitization. Charbonneau (1990) further proposed that meteoric diagenesis was responsible 

for producing karst surfaces, paleosols and caliche horizons during subaerial exposure and post-

depositional production of stylolitic cross-cutting fabrics throughout the Guelph Formation. 

These above diagenetic characteristics were observed in this study in the subsurface cores from 

the western Michigan Basin, extending from southwestern Ontario to northwestern Michigan.  

Coniglio et al. (2004) suggested that porosity and cavities throughout the Guelph 

Formation were formed by late dolomitization and argued against subaerial exposure fabrics 

(caliche, brecciation, vadose pisoliths, and secondary porosity). In this study, however, these 

vadose diagenetic deposits and fabrics are convincingly documented, which supports the earlier 

interpretation of subaerial exposure and diagenesis by meteoric waters (Cercone, 1988; Smith et 

al., 1988; Charbonneau, 1990).  

 

5.6 Dolomitization  

The intensity of dolomitization apparent in the Lockport Group and basal Salina Group 

throughout the study area is quite variable throughout the study region. All of the outcrops and 

cores examined in Area 2 and Area 3 are pervasively dolomitized, whereas in Area 1 the 

lithology may be either limestone, dolomitic limestone or dolostone. In all cores throughout 

Michigan, the northwestern portion of Area 1, the Lockport Group and the carbonate strata of the 

Salina A-Unit are dolomitized. Only at certain Ontario localities of Area 1 is a portion of the 

Lockport Group limestone. At these localities, a change from dolostone to limestone occurs 
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almost invariably at the unconformity of the Goat Island Formation (Niagara Falls Member) and 

Guelph Formation (Lower Guelph Member), where the Guelph Formation is thickest (> 10 m).  

 In Ontario, it has been shown that a ‘pinnacle reef’ is usually dolomitized if its 

surrounding A-1 Carbonate is dolomitized (Pounder, 1962). In Lambton County, the Guelph 

portion of the ‘pinnacle reefs’ are commonly limestone with little salt infill and an A-2 evaporite 

cap serving as a seal from dolomitization fluids (Carter et al., 1994); however, as discussed in 

Chapter 4 (see Section 4.6), the A-1 Carbonate is always present between the Guelph Formation 

and A-2 Evaporite. A similar trend was observed in Lambton County, where the Guelph 

Formation and overlying A-1 Carbonate of most, but not all, carbonate highs are limestone; 

however dolomitic patches, not previously addressed, were found to exist at the base of these 

cores. In Huron and Grey counties where the so-called ‘reefs’ are dolomitized and salt-plugged, 

Carter (1991) showed that the dolomitization of the A-1 and A-2 carbonates are spatially 

associated with local faulting and complete dissolution of the B-Salt unit; this faulting would 

have occurred in post-Guelph time. In the present study, cores from Lambton County also 

showed variable salt-plugging where the overlying B-salt is present; and those logged from Grey 

County showed salt-plugging variably in the Gasport Formation, but not the Guelph Formation. 

Carter (1991) showed that faulting and associated zones of B-salt dissolution suggest regional 

dolomitization after lithification as such areas would have provided easy pathways for 

dolomitizing fluids. If this was the case and faulting occurred throughout the entire Michigan 

Basin (Sanford et al., 1985), one would expect the entire area including the carbonate highs 

(‘pinnacle reefs’) to be completely dolomitized.  

In contrast to the scenario discussed above, it has been suggested that dolomitized 

travertine (tufa) laminites in the basal A-1 Carbonate of Michigan formed during subaerial 

exposure (Cercone, 1988), and they have been commonly compared to the laminites in the 

Devonian Winnipegosis reefs of the Elk Point Basin of western Canada (Kendall, 1989). 

Dolomitization in the Winnipegosis reefs is suggested to have occurred at the same time of 

deposition of the overlying evaporite unit. Kendall’s (1989) model proposes that sea-level 

drawdown created a large hydraulic head between the brine of the isolated basin and surrounding 

basins, producing hydrodynamic drive of formational waters resulting in dolomitization and 

calcium-rich waters reacting with brines precipitating gypsum. Given the similarity in 

architecture between the Winnipegosis reefs and the karst towers proposed in this study, and the 



201 
 

relationships with overlying evaporite units, dolomitization could possibly be due to upward 

movement of basinal brines into the evaporitic Michigan Basin. The current study suggests 

Kendall’s (1989) hypothesis is a more likely cause of dolomitization throughout the Michigan 

Basin and better explains the presence of limestone at the top of the kart towers (Guelph 

Formation): upward movement of basinal fluids did not reach these heights, but thoroughly 

dolomitized lower-lying areas (the base of and between karst towers and towards the topographic 

low-lying west) and those submerged in shallow restricted lagoonal waters (towards the east). 

However, dolomitization patterns are beyond the scope of this study and needs to be studied 

further with the present stratigraphic framework and proposed architecture of the Lockport 

Group.  

 

5.7 Implications for regional tectonics and the Michigan Basin geometry: Was the basin a 

basin during Lockport Group deposition? 

In previous studies, there has been a general lack of investigation of the architecture of the 

Guelph Formation and underlying units of the Lockport Group across the Michigan Basin. Based 

upon the new data and re-examination of existing cores in this study, a preliminary assessment of 

the observations and interpretations of the Lockport Group strata and their implications for 

tectonics and basin geometry will be provided below.   

Pounder (1962) was the first to suggest that the distribution of the Guelph-Lockport strata 

did not fit the bowl-shape of the Michigan Basin, although this observation was disregarded in 

subsequent studies. Later, Alling and Briggs (1961) showed isopachs of the Michigan Basin 

where the Lockport strata increase in thickness towards the inferred eastern and western edges of 

the basin, in contrast to other Silurian units that dip towards the ‘basin centre’. Bailey (2000) 

proposed that the Silurian Sea was widespread and sea-water washed over the low-lying 

Algonquin Arch from both the Michigan and Appalachian basins and suggested that the water 

replenishment flows to the southeast where the ‘barrier reef complex’ is located (Area 2), 

produced a shallowing and brining water column in the ‘pinnacle reef belt’ (Area 1). In this 

interpretation, Bailey suggested deeper water conditions to the southeast (outcrop-subcrop belt), 

but still placed the basin centre towards present-day Lake Huron. More recently, Smith (2002) 

suggested that the siliciclastic-free karsted carbonates and evaporites of the Guelph and Salina 

strata record a time when the Michigan Basin was an epieric sea. 
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It is generally agreed that the subsidence of North American intracratonic basins was 

initiated by extensional breakup of super-continents and that their circular-shapes were responses 

to reactivation of tectonic structures that accompanied mantle flow instabilities (Allen and 

Armitage, 2012). Despite the evidence that the Michigan Basin tilting eastward in the Late 

Ordovician (Coakley and Gurnis, 1995), most interpret the circular shape of the Silurian 

evaporites to reflect a syndepositonal pattern, implying an anomalous extensive depocentre 

(Allen and Armitage, 2012). However, this interpretation does not explain why the bulk of the 

preserved strata in what is suppose to be the centre of the Michigan Basin reflects sabkha 

environments of the Salina Group (Gill, 1977a). Given that the ‘Salina A Basin’ tilted to the 

northwest (see Section 4.6; Smith, 2002) and the dissolution of salts took place at the end of the 

Salina time (see Section 5.6). It is most likely that the circular shape of the Michigan Basin was 

formed after the accumulation of the Salina A-Unit as a result of the reactivation of tectonic 

structures where the eroded Salina sabkha sediments conformed to the new shape. Or perhaps, at 

one time the evaporites extended much further across parts of Laurentia than the present-day 

erosional boundaries reflect.  

Although the entire Lockport Group is characterized by a series of T-R carbonate-

dominated or stacked cycles and overall display progressive shallowing, resultant regional 

karstification, a subsequent continental-scale sabkha and other hypersaline environments. These 

regional facies mosaics of the Lockport Group suggest the Michigan Basin was tilted to the east 

during Early Silurian time. Sedimentologic and stratigraphic evidence to support this 

interpretation includes: (i) the most open marine strata of the Lockport units that display the 

thickest preservation and least subaerial exposure occur towards the east in outcrop/subcrop belt 

of Ontario; (ii) thick crinoidal reef mounds with the largest and most abundant crinoid and 

invertebrate corals and calcified sponges in the Gasport and Goat Island formations occur in the 

east (see Section 4.5); (iii) karstification and other subaerial exposure features that penetrated the 

Goat Island and Guelph formations in the western portion of the Michigan Basin, such as those 

found in southwestern Ontario, Michigan, and northwestern Ohio, are best developed in central 

and western parts of the Michigan Basin (Gill, 1973; 1977a;  Cercone, 1988; Smith et al., 1988; 

Kahle, 1971; 1988; Charbonneau, 1990; 1991; Carter et al., 1994; Bailey, 2000). These 

depositional and diagenetic features strongly suggest that the Michigan Basin did not have a 

bowl-shaped geometry during the deposition of at least the Lockport Group.  
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Chapter 6: Conclusions  

 

This study forms part of a regional deep bedrock aquifer mapping program by the Ontario 

Geological Survey intended to better understand the stratigraphic controls on groundwater 

flow across southern Ontario. Data from more than 56 cores drilled across southern 

Ontario since 2004 and hundreds of deep bedrock water well and oil/gas well records, 

including selected cores from Michigan, have been incorporated to provide the first 

comprehensive regional stratigraphic perspective of the Guelph Formation and its 

relationships to the rest of the underlying strata of the Lockport Group.  

The Lockport Group, as recognized in southern Ontario and Michigan, is a 

succession of open- to restricted-marine carbonates of Wenlock age, comprising, in 

ascending order, the Gasport, Goat Island, Eramosa, and Guelph formations. Despite a 

history of study for more than 150 years, it has proved difficult to determine the relative 

ages and lithofacies composition of stratal units of the Lockport Group. Major factors that 

have hindered a regional synthesis of the Lockport Group include: 1) the paucity of good 

exposures of the entire Lockport Group succession; 2) no previous designation and 

detailed description of type sections for uppermost strata of the Lockport Group: the 

Eramosa and Guelph formations; 3) correlation difficulties related to lateral changes in 

lithology within and among stacked dolostone units of the Lockport interval; 4) 

complications posed by the overprinting effects of post-depositional processes such as 

karst-related erosion and subsurface dissolution, and diagenetic phenomena related to 

large-scale fluid flow (e.g. dolomitization); and 5) the lack of a unified stratigraphic 

nomenclature between subsurface and surface studies and across political boundaries.  

The Guelph Formation can be divided into two units (herein referred to as the 

Lower and Upper members), each containing distinctive facies that collectively contribute 

to a predictable architectural theme on a regional scale. Eight major facies are recognized 

in the Guelph Formation-Facies 1: Stromatoporoid-algal-skeletal packstone to 

wackestone; Facies 2: Coral-stromatoporoid-skeletal floatstone; Facies 3: Skeletal-algal 

wackestone to mudstone. Facies 4: Gastropod-bryozoan-algal wackestone to mudstone; 

Facies 5: Gastropod-megalodont-algal wackestone to mudstone; Facies 6: Pisolitic-

gastropod wackestone to mudstone; Facies 7: Microbial-laminated mudstone; and Facies 
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8: Brecciated microbial laminites and/or mudstones. Of these, Facies 1 to 3occur in the 

Lower Member, with the remaining five (facies 4-8) occurring in the Upper Member.  

In the eastern part of the Michigan Basin, the Lower Guelph Member is 

characterized by skeletal-rich and reef mound-bearing carbonates indicative of open 

marine conditions. Westward, however, the member consists of carbonates exhibiting a 

more restricted marine aspect or in some areas is completely absent. A similar pattern is 

apparent in carbonates of the Upper Member, which record increasingly restricted marine 

conditions from east to west in overall facies characteristics; and also within small-scale 

shallowing upward cycles. Of the Guelph facies, those showing the most persistent and 

deepest open marine sedimentary character and faunas and displaying the least effects of 

subaerial exposure occur in the eastern portion of the Michigan Basin and the 

northwestern portion of the Appalachian Basin. In contrast, the facies representing the 

most restricted marine conditions and the strongest effects of subaerial exposure (as 

exhibited by karst dissolution features that extend downward into the underlying Goat 

Island Formation) occur in the central to western portions of the Michigan Basin.  

Observations made on the Guelph succession in the present study contradict the 

widely adopted pinnacle reef model inferred from previous investigations of the Guelph 

Formation. More specifically, the recognition that the Guelph Formation in the central 

and northwestern parts of the Michigan Basin largely consists of stacked tabular beds (as 

opposed to thick accretions of massive carbonates showing reefal affinities), 

fundamentally argue against such a model.  Rather, pinnacle-like topography, that is 

reflected in the extreme thickness variations of the Guelph Formation and underlying 

units of the Lockport Group, appears to be entirely a consequence of post-depositional 

erosion associated with karst development.  

Observations made in the present study enable the formulation of a new 

interpretation for the depositional history of the Upper Lockport Group and fresh insight 

to the paleogeography of the Michigan Basin during Wenlock time. Carbonate strata of 

both the Eramosa and Guelph formations are interpreted to have been deposited on an 

easterly dipping carbonate ramp. Evidence of regional erosion/karstification in the upper 

Lockport Group and basal Salina strata points to a period of subaerial exposure that post-

dated Guelph deposition. The proximal juxtaposition of, and envelopment of the karsted 
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remnants of the Guelph through Goat Island-Gasport formational highs with younger 

Salina Group strata in the subsurface of Michigan Basin accentuates the regional 3-D 

seismic character of what is being interpreted as paleokarst towers. The foundations of 

these karst towers are the well-indurated grainstones to wackestones of the Gasport and 

Goat Island formations (basal Lockport Group strata). Between karst towers, a similar 

facies succession occurs, where the facies units are thinner and crinoidal reef mounds are 

generally absent or poorly developed in the Gasport and Goat Island formations. The only 

true Guelph reef mounds occur in the Lower Guelph Member of the eastern Michigan 

Basin (Ontario) in a deeper open-marine ramp setting. The presence of ‘organic reef 

facies’ described from some Guelph pinnacles actually represent Niagara Falls member 

crinoidal reef mounds of the Goat Island Formation – the actual Guelph Formation facies 

present within these composite Lockport Group 3-D ‘pinnacle reef’ structures are not 

reefal in character.   

Regional stratigraphic relationships of Lockport Group strata suggest that the 

paleotopographic relief of the so-called Guelph (or more accurately the upper Lockport 

Group) pinnacles and the paleotopographic low “bullseye” in the Michigan Basin may, in 

fact, be a regionally extensive paleokarst basin. Therefore the paleotopographic low in 

central Michigan Basin (determined from draping of Salina Group strata on Lockport 

Group carbonates with paleo-relief of up to 100 m), is here interpreted as an erosional 

karst-terrain depression and not a deeper water depositional basin feature with seaway 

outlets and rimmed pinnacle reefs, as previously depicted in the majority of 

paleogeographic maps. These paleokarst basins have some common character traits: 1) 

no basin fill spatially and laterally associated with the generally steep, carbonate platform 

margins; 2) they possess numerous isolated karsted table-top-like pinnacles/remnant 

edifices; 3) these karst towers are generally enveloped by younger evaporitic-chemical 

sedimentary successions and no syn-sedimentary basin fills. Other examples within 

Laurentia are arguably the Middle Devonian Keg River and/or Winnipegosis reefs of the 

Elk Point Basin (Kendall, 1989; Jin and Bergman, 2001; Fu et al., 2006). 

The Lockport Group shows a temporal trend in depositional conditions from more 

open marine and higher energy conditions (in the basal Gasport and Goat Island 

formations) to increasingly restricted marine and hypersaline conditions during deposition 
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of the Eramosa and Guelph formations. The basal Gasport and Goat Island rock units of 

the Lockport Group also display similar lateral facies belt trends to that described for the 

Guelph Formation whereby the most open marine facies are found towards the 

Appalachian Foreland Basin and/or inboard of ephemeral forebulge and the most 

restricted marine facies are found in the present-day central portion of Michigan Basin. 

Following Lockport Group karstification and erosion and paleokarst basin development, 

which persisted during A-0 and A-1 time, a regionally extensive Salina Group sabkha or 

salt pan was established, arguably over a large part of Laurentia. 

It is important to note that our perception of the centre of the present-day 

Michigan Basin is strongly influenced by the erosional cuesta cliffs of the Niagara 

Escarpment and Door Peninsula (eastern Wisconsin) and the drape of Salina Group strata 

on the irregular paleotopography of the Lockport Group karst terrain. Silurian facies of 

the Lockport Group most likely extended much farther across Laurentia than the present-

day erosional cuesta-edge depicts. Because the Lockport Group succession comprises 

relatively clean, stacked T-R cyclic carbonates, – chemical dissolution on a regional scale 

during and after Guelph deposition would have produced a karst terrain with virtually no 

residual or inter-pinnacle derived sediments. This is what the facies juxtaposition of the 

Lockport Group and overlying Salina Group microbialites and evaporites record across 

Michigan and parts of southwestern Ontario. 

Re-interpretation of the temporal/spatial architecture of the Lockport Group and, 

in particular, the nature of the so-called ‘Guelph pinnacle reefs‘ adds a new perspective 

on the paleogeographic setting for Michigan Basin during Wenlock time. It is hoped that 

the results of this study will encourage more coring of these complex 3-D targets, and will 

encourage both the re-evaluation of existing plays and enable successful exploration of 

new targets for this challenging oil/gas production play in the deeper subsurface of the 

Michigan Basin.  
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Figure A8: Cross-section G-G’ is located in Michigan State. This section extends from 

southeastern Michigan, 255 km across central Michigan (where Lockport Group core-

hole data is absent at the MGRRE), to northwestern Michigan (see Figs. 3.1, A1). 

 

 

 

 

 


