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ABSTRACT

For many-to-one comparisons of independent binomial proportions using their ratios, we

propose the MOVER approach generalizing Fieller’s theorem to a ratio of proportions by

obtaining variance estimates in the neighbourhood of confidence limits for each propor-

tion. We review two existing methods of inverting Wald and score test statistics and com-

pare their performance with the proposed MOVER approach with score limits and Jeffreys

limits for single proportions. As an appropriate multiplicity adjustment incorporating cor-

relations between risk ratios, a Dunnett critical value is computed assuming a common,

constant correlation of 0.5 instead of plugging in sample correlation coefficients. The sim-

ulation results suggest that the MOVER approach has desirable operating characteristics

comparable to those of the method of inverting score test statistics. The MOVER with Jef-

freys limits yields the median joint coverage percentage closest to the nominal level but its

intervals may be wider than the other intervals in some parameter settings.

KEYWORDS: Bonferroni; Dunnett’s adjustment; Jeffreys; multiple comparisons; rel-

ative risk; Wilson
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Chapter 1

INTRODUCTION

A confidence interval encompasses hypothesis tests by not only indicating statistical

significance but also providing a range of plausible values for the unknown measure of

effect at a pre-specified confidence level (Gardner and Altman, 1986). This additional

information led to the shift of emphasis from significance testing to interval estimation and

editorial policy changes in leading medical journals in the late 1990’s (Gardner and Altman,

1986; Walter, 1995; Ludbrook, 1998; Newcombe, 1998a). The CONSORT statement for

clinical trials recommends that results for each primary and secondary outcome should

be reported with the magnitude of an estimated effect and its precision, which essentially

necessitates interval estimation as the standard statistical procedure in randomized clinical

trials (Schulz et al., 2010). Similar recommendations have been also made in the guidelines

for observational studies in the STROBE statement (von Elm et al., 2008).

Clinical trials may employ multiple primary endpoints, multiple treatment arms, re-

peated analyses over time, or combinations of these features (Cook and Farewell, 1996;

Koch and Gansky, 1996; Hothorn, 2007). In fact, such a practice has gained more pop-

ularity with growing complexities and multi-faceted nature of investigations that need to

address several related questions in evaluating a treatment’s overall efficacy or safety in a

single trial (Cook and Farewell, 1996; Ludbrook, 1998). For example, different combina-

tions of drug regimens, or different schedules or doses of the same drug can be assigned

to multiple treatment arms to compare their relative effectiveness, requiring a joint inter-

pretation of multiple treatment comparisons for the treatment recommendation (Koch and
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Gansky, 1996; Freidlin et al., 2008). For this purpose, investigators require a means to con-

struct confidence intervals that maintain the overall confidence level at the nominal level

for making not a single but multiple inferences from a single trial.

Consider an investigation by Schiller et al. (2002) comparing three experimental

chemotherapy regimens with a standard treatment as a control on their therapeutic effects.

Several binary endpoints included response rates and adverse event rates. In this study,

these binary variables were summarized by testing whether or not any of the treatment

group proportions significantly changed compared to the control group proportion. Never-

theless, quantifying the therapeutic effects of the three experimental regimens by construct-

ing confidence intervals is more informative than indicating the absence or presence of any

statistically significant treatment effects by hypothesis tests.

When the primary outcome is binary, investigators compare two groups on a binary

outcome variable by making inferences on a chosen effect measure. Common effect mea-

sures for binary outcomes include the difference of proportions, the ratio of proportions,

and the ratio of odds, commonly referred to as the risk difference, the risk ratio and the

odds ratio, respectively (Schechtman, 2002). The odds ratio has gained popularity due to

the facts that it can be directly estimated from logistic regression models and that it is the

only estimable effect measure in case-control studies. However, it exaggerates an effect

when interpreted as the risk ratio for common outcomes (Deeks, 1998).

Although several procedures have been proposed and evaluated for risk differences

(Piegorsch, 1991; Schaarschmidt et al., 2008; Donner and Zou, 2011; Klingenberg, 2012)

or odds ratios (Holford et al., 1989; McCann and Tebbs, 2009), there has been relatively

limited attention to simultaneous confidence interval procedures for risk ratios (Klingen-

berg, 2010). Therefore, this thesis concerns methods for constructing simultaneous confi-

dence intervals for risk ratios in the many-to-one comparisons of binomial proportions.

This introductory chapter consists of six sections. Section 1.1 summarizes some key
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results from the studies on existing confidence intervals for a proportion as a preliminary

to risk ratios. Following Section 1.2 that reviews some basic concepts and methods for

multiple comparisons, Section 1.3 presents the problem of this thesis. Sections 1.4 and 1.5

describe the objectives and scope of the thesis, respectively. Finally, Section 1.6 provides a

brief description of each chapter of the thesis.

1.1 Inferences on independent proportions and their ratio

1.1.1 Confidence intervals for a proportion

An extensive literature exists for confidence intervals for single proportions acknowledging

poor performance of the standard large sample confidence interval based on the normal

approximation (Newcombe, 1998a,b; Brown et al., 2001; Brown and Li, 2005; Agresti and

Coull, 1998, see). Wald confidence intervals may have poor, erratic coverage properties

due to the discreteness and skewness in the underlying sampling distribution for proportion

estimates. Moreover, the Wald method may yield inappropriate confidence limits out of

the parameter space or confidence intervals of zero width, which are the two sources of

aberrations, as termed by Newcombe (1998a).

Among alternative large sample methods, a score-based confidence interval for pro-

portions described by Wilson (1927) has been suggested as the method theoretically most

appealing but computationally intensive (Miettinen and Nurminen, 1985). A score-based

confidence interval is obtained by inverting a score test. The score method yields boundary-

respecting confidence limits and coverage probabilities closer to the nominal confidence

level than those of Wald intervals (Agresti and Coull, 1998; Newcombe, 1998a; Brown

et al., 2001, 2002).

Unlike these large sample methods based on asymptotic normality, a Clopper-Pearson

interval is constructed by inverting a binomial test rather than its normal approximation
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(Clopper and Pearson, 1934). Therefore, this interval estimator is guaranteed to have cov-

erage probability of at least the nominal level for every possible value of proportion (Agresti

and Coull, 1998). Unless a minimum coverage greater than the nominal level is demanded,

the Clopper-Pearson method is not recommended in practice for its strict conservativeness

(Agresti and Coull, 1998; Brown et al., 2001). The conservativeness of Clopper-Pearson

confidence intervals reduces slightly using the mid-P value, half the probability of the ob-

served result plus the probability of more extreme results (Lancaster, 1949), but modi-

fied Clopper-Pearson confidence intervals tend to be still over conservative (Newcombe,

1998a).

1.1.2 Confidence intervals for a risk ratio

The ratio of two independent proportions, also commonly referred to as the risk ratio or

relative risk, is an important parameter in both epidemiological and clinical studies. As a

relative measure of the effect on average risk due to an exposure or treatment, it provides a

natural reference point of unity (Graham et al., 2003).

A large literature exists on the methods for constructing an approximate confidence

interval for a risk ratio. Gart and Nam (1988) and Dann and Koch (2005) provide a compre-

hensive summary of these methods classified into three groups, namely the Wald method

(Katz et al., 1978), the Fieller method (Katz et al., 1978) and the score method (Koopman,

1984; Miettinen and Nurminen, 1985). Chapter 2 reviews these methods along with some

other methods for a single risk ratio with respect to the coverage properties, aberrations and

computational complexity. We also review the extension of the Wald and score methods

for a single risk ratio to multiple risk ratios in the many-to-one comparisons of proportions

based on the idea of Dunnett (1955) in Chapter 2.



5

1.2 Simultaneous inferences in multiple comparisons

Performing multiple hypothesis tests from a single trial can be problematic due to multiplic-

ity effects that may inflate the type I error rates (Proschan and Waclawiw, 2000; Ludbrook,

1998; Westfall et al., 1999). Likewise, multiple interval estimates computed without an

appropriate multiplicity adjustment may be misleading and fail to attain the nominal joint

coverage probability (Koch and Gansky, 1996; Hochberg and Tamhane, 1987). For the

sake of clarity, the remaining discussion in this section will be given in terms of hypothesis

testing followed by interval estimation.

Multiple comparison procedures account for multiplicity by considering a set of in-

ferences simultaneously as a family. The rationale is that these inferences are related in

terms of their content or intended use, and therefore, it is meaningful to consider some

combined measure of errors made for the individual inferences in the family (Hochberg

and Tamhane, 1987, p.5). The classical multiple hypothesis tests control the probability of

a type I error in a given family, which is called familywise error rate, to ensure simultane-

ous correctness in the set of these inferences at the desired level of significance (Hochberg

and Tamhane, 1987, pp.8-11). An important issue for multiple comparisons is to determine

the appropriate degree of adjustment that controls the type I error and provides adequate

power at the same time (Koch and Gansky, 1996; Hothorn, 2007). Similarly, simultaneous

confidence interval methods maintain the nominal joint confidence level.

The simplest multiplicity adjustment method is the Bonferroni method which as-

sumes that all comparisons are independent, and sets the type I error rate per comparison

to be less than or equal to a given familywise error rate divided by the number of compar-

isons in the family (Hochberg and Tamhane, 1987). The Bonferroni adjustment is increas-

ingly conservative as the correlation between comparisons or the number of comparisons

becomes large (Proschan and Waclawiw, 2000). Less conservative and more powerful mul-

tiple comparison methods are available, such as the Tukey-Kramer method for all pairwise
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comparisons and the Dunnett method for many-to-one comparisons. These methods control

the familywise error rate while taking the correlations among comparisons into considera-

tion (Hochberg and Tamhane, 1987). Therefore, simultaneous intervals constructed using

an appropriate critical value based on these methods are narrower than those adjusted by

the Bonferroni method.

1.3 Statement of the problem

Confidence interval methods for risk ratios mentioned in Section 1.1 can be easily modified

to simultaneous interval estimation procedures by adjusting for multiplicity. The simplest

Bonferroni method may, however, be too conservative and yield less precise confidence in-

tervals in the many-to-one comparisons commonly involving the control group proportions

(Koch and Gansky, 1996; Schaarschmidt et al., 2009; Klingenberg, 2010). Therefore, Klin-

genberg (2010) proposed computing a lower (upper) confidence limit by inverting the max-

imum (minimum) score statistics with a Dunnett critical value obtained using the plug-in

estimates of correlation coefficients and demonstrated a simultaneous coverage probability

close to the nominal level. Nevertheless, a drawback of this method is that the confidence

limits must be obtained numerically by an iterative algorithm because no analytical solu-

tion exists. Therefore, computationally simpler alternatives are worth exploring, which was

remarked by Klingenberg (2010). Also, using the correlation coefficients estimated from a

sample to obtain Dunnett’s critical value may not be desirable because the variability of the

correlation estimates may have a greater impact on the computed critical value for small or

moderate sample sizes (Holford et al., 1989).

To address the issue of simplicity, we aim to develop an alternative, non-iterative

procedure based on the Method of Variance Estimates Recovery (MOVER) (Zou and Don-

ner, 2008; Zou, 2008). This method entails two steps for constructing simultaneous con-

fidence intervals for multiple risk ratios. First, confidence limits about individual sample
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proportions are obtained using a critical value from the multivariate normal distribution

accounting for correlations among comparisons. A multiplicity adjustment is made using

a Dunnett critical value computed assuming a common, constant correlation of 0.5 instead

of estimating correlation coefficients from a sample. Second, confidence limits for risk

ratios are computed using the variance estimates recovered from the confidence limits for

proportions. As the MOVER approach obtains the variance estimates near the confidence

limits, it shares the basic idea of the score method that obtains them at the confidence limits

(Wilks, 1938).

1.4 Thesis objectives

Specific objectives of this thesis include:

1. To review the existing methods for constructing confidence intervals for a single and

multiple risk ratios,

2. To present the MOVER approach in the construction of confidence intervals for one

or more risk ratios with Dunnett’s critical value that only depends on the number of

experimental groups by assuming a common, constant correlation coefficient of 0.5,

3. To evaluate the finite sample properties of the MOVER in comparison to the existing

test-inversion methods for constructing simultaneous intervals for risk ratios in many-

to-one comparisons,

4. To illustrate the construction of simultaneous confidence intervals applying the MOVER

in worked examples.
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1.5 Scope of the thesis

We focus our attention to the confidence interval methods applicable to data from com-

pletely randomized clinical trials with an equal allocation of individually randomized sub-

jects. However, unequal sample sizes are also considered to examine robustness of the com-

peting methods to unequal sample sizes due to different attrition rates common in practice.

We limit attention to two-sided, large sample confidence intervals for a single and multiple

risk ratios.

1.6 Organization of the thesis

This thesis consists of six chapters including this introductory chapter. Chapter 2 re-

views existing confidence interval procedures for a single and multiple risk ratios based

on the multivariate central limit theorem. Chapter 3 provides a general introduction to the

MOVER approach for ratios. Chapter 4 presents the design of a simulation study to as-

sess the performance of four competing methods for both single and multiple risk ratios in

the many-to-one comparisons. Chapter 5 illustrates the computation of simultaneous con-

fidence intervals for several risk ratios by the MOVER with worked examples. Chapter 6

discusses findings and limitations of the thesis and suggests further research venue.
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Chapter 2

LITERATURE REVIEW

This chapter consists of four sections and reviews large sample confidence interval

methods for a single and multiple risk ratios. Section 2.1 describes confidence interval

methods for a single risk ratio. Section 2.2 presents a methodological extension from sin-

gle to multiple inferences based on the multivariate central limit theorem. We review the

simultaneous confidence interval methods proposed by Klingenberg (2010), implementing

the general multiple comparison procedure for the many-to-one comparisons of proportions

in Section 2.3. This section also includes a brief review of the literature on the computa-

tion of an appropriate critical value in multiple comparisons of proportions. Along with

a brief chapter summary in Section 2.4, we propose an alternative, non-iterative method

to construct simultaneous confidence intervals based on the method of variance estimates

recovery (MOVER) for multiple risk ratios in the many-to-one comparisons of proportions.

2.1 Confidence interval for a risk ratio

Several asymptotic confidence interval methods have been proposed for a single ratio of

two independent binomial proportions and evaluated for their finite sample statistical per-

formance in the literature. Gart and Nam (1988) provided the first comprehensive review

and evaluation of the existing methods proposed prior to 1988, classifying them into three

groups based on the method of derivation. A similar review was subsequently provided by

Dann and Koch (2005), including other variants of the existing methods. This section de-
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scribes the three derivations of existing confidence interval methods for a single risk ratio.

2.1.1 Notation

Let Y0 and Y1 denote independent binomial variates with corresponding population propor-

tions of the event of interest π0 and π1 and samples sizes n0 and n1 for the control group and

the treatment group, respectively. We are interested in constructing a 100(1−α)% confi-

dence interval for the ratio of two independent proportions, RR = π1/π0. Let zα/2 denote

the α/2 upper quantile of the standard normal distribution. Given the observed number of

events y0 for the control group and y1 in the experimental group, the unrestricted maximum

likelihood estimates of π0 and π1 are π̂0 = y0/n0 and π̂1 = y1/n1. For the inference under

the null hypothesis H0 : RR = RR0, restricted maximum likelihood estimates, π̃1 and π̃0 are

obtained by maximizing the reparameterized log-likelihood function of the joint binomial

distribution by letting π̃1 = RR0
π̃0. π̃0 is the admissible solution to the quadratic equation

aπ̃2
0 +bπ̃0+c = 0, where a = (n0+n1)RR0, b =−(y0 +n1)RR0 + y1 +n0 and c = y0+y1,

resulting in both π̃0 and π̃1 in the parameter space [0,1] (Nam, 1995).

The Wald method

Assuming the asymptotic normality of the risk ratio estimator R̂R, Noether (1957) proposed

estimating its variance from the first-order Taylor’s series expansion. Subsequently, Katz

et al. (1978) proposed the analogous Wald method on the logarithmic scale and demon-

strated its reasonable finite sample performance. Assuming lnR̂R is normally distributed

with mean lnRR and variance

var(ln R̂R) =
(1−π1)

n1π1
+

(1−π0)

n0π0
,

we can construct a 100(1−α)% confidence interval by inverting the Wald test statistic

T 2
W =

(ln R̂R− lnRR)2

v̂ar(ln R̂R)
= z2

α/2. (2.1)
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The resulting symmetric confidence interval is given as

R̂Rexp
(
∓zα/2

√
v̂ar(ln R̂R)

)
.

This method fails when the confidence interval is not computable for y1 = 0 or y0 = 0.

The method also yields a degenerate interval of zero width when y1 = n1 and y0 = n0. Gart

and Nam (1988) evaluated the method by using modified number of events yi′ = yi + 0.5

and sample sizes ni′ = ni + 0.5 for i = 0,1 to avoid incomputable cases. The modified

method is always computable, however, it still yields a degenerate interval of zero width

when y1 = n1 and y0 = n0. An alternative modification to the method was considered by

Dann and Koch (2005) adapting Agresti and Coull (1998)’s approach of adding a number

of pseudo observations approximating z2
α/2 and distributing them to each group according

to the population risk ratio assumed under the null hypothesis. For example, 4 pseudo

observations are added, 2.67 to the experimental group and 1.33 to the control group for

RR = 2, in the estimation of the population risk ratio.

The Fieller method

Applying Fieller’s theorem for the ratio of two normal means (Fieller, 1944), Katz et al.

(1978) considered a method for the ratio of two proportions based on the asymptotic nor-

mality of the statistic T = (π̂1 −RRπ̂0) and its variance estimate given as

V̂ar(T ) =
π̂1(1− π̂1)

n1
+RR2 π̂0(1− π̂0)

n0
.

We obtain 100(1−α)% confidence limits, which are the two roots to the quadratic equation

in RR

T 2
F =

(π̂1 −RRπ̂0)
2

π̂1(1− π̂1)/n1 +RR2
π̂0(1− π̂0)/n0

= z2
α/2. (2.2)

Fieller’s theorem is developed for a ratio of independent normal means having symmetric

sampling distributions in unbounded parameter space. Consequently, when applied to the
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ratio of proportions, this method may yield nonsensical values such as complex, negative,

or exclusive limits, typically for small values of y0 or n0π0 (Katz et al., 1978; Gart and Nam,

1988). To minimize the skewness of the test statistics in (2.2), Bailey (1987) proposed a

power transformation of the risk ratio, using the statistic U = (π̂t
1−RRt

π̂t
0) and its variance

estimated by the delta method as

V̂ar(U) = t2
[

π̂
2t−1
1 (1− π̂1)

n1
+RR2t π̂

2t−1
0 (1− π̂0)

n0

]
,

for a known t. Assuming small population proportions in typical cohort studies, Bailey

(1987) suggested a cube-root transformation (i.e. t = 1/3) as the optimal power transfor-

mation to improve coverage probabilities by making the test statistic’s sampling distribution

more symmetric.

The Score method

Unlike the previous two methods, the score method constructs an interval with the statistic’s

variance estimated with restricted MLEs π̃1 and π̃0. Koopman (1984) heuristically derived

the following test statistic consistent with Pearson’s chi-square test for RR = 1

S2
K =

(y0 −n0π̃0)
2

n0π̃0(1− π̃0)

{n0(1−RRπ̃0)

n1RR(1− π̃0)
+1
}
= z2

α/2, (2.3)

while Miettinen and Nurminen (1985)’s derivation used the statistic of the Fieller’s method

with its variance estimated using the restricted MLEs as

S2
M =

(π̂1 −RRπ̂0)
2

π̃1(1− π̃1)/n1 +RR2
π̃0(1− π̃0)/n0

= z2
α/2. (2.4)

Using the general likelihood method of score statistics (Bartlett, 1953), Gart (1985)

derived the statistic in (2.3). Subsequently, Gart and Nam (1988) formally proved equiva-

lence of (2.3) and (2.4). Approximate confidence limits can be obtained by solving a cubic

equation iteratively (Koopman, 1984; Miettinen and Nurminen, 1985; Gart, 1985; Gart and

Nam, 1988) or non-iteratively by a series of substitutions (Nam, 1995). Compared to the



13

other two methods above, the score method has more desirable properties of confidence

intervals. It is computable in all possible outcomes except for the noninformative case and

does not yield any aberrant limits. Having the characteristics of efficient score, it is also

consistent with Pearson’s chi-square test for testing RR = 1. In comparison to the Wald

confidence interval, the score confidence interval typically shows closer to nominal cov-

erage and generally achieves greater balance in the tail error probabilities (Gart and Nam,

1988). The tail error balance can be further improved by applying Bartlett (1955)’s skew-

ness correction, particularly for a risk ratio far from unity, based on the general theory of

the score method. Although the score method results in confidence intervals with superior

properties, computing their limits requires an iterative procedure or series of substitutions

(Nam, 1995).

2.1.2 Summary

The superior performance of the score method to the other alternative methods have been

discussed in the literature (Gart and Nam, 1988; Dann and Koch, 2005; Price and Bonett,

2008). For the Wald method using a log risk ratio, studies have shown its general conser-

vativeness yet providing acceptable performance in terms of attaining the actual coverage

probabilities reasonably close to the nominal level for large samples (Katz et al., 1978;

Gart and Nam, 1988; Dann and Koch, 2005). Before discussing the extension of the Wald

method and the score method for multiple risk ratios, we summarize the construction of

simultaneous confidence intervals based on the asymptotic multivariate central limit theo-

rem. The discussion focuses on the multiplicity adjustment by computing an appropriate

critical value to maintain the joint coverage probability for several dependent statistics.
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2.2 Simultaneous confidence intervals for multiple parameters

We can construct a 100(1−α)% confidence interval for a single parameter of interest θ

by inverting the acceptance region of a level α test for the null hypothesis H0 : θ = θ0.

Therefore, a 100(1−α)% confidence interval consists of the plausible values of θ0 for

which the null hypothesis is not rejected at level α given an observed sample statistic.

Therefore, such an interval procedure should capture the true parameter θ with a 100(1−

α)% probability, preferably for every possible set of data.

When several parameters from a single experiment are of inferential interest, a prac-

tical, single-step, multiple comparison procedure constructs a test of the null hypothesis

H0 as an intersection of a family of K hypotheses (Hochberg and Tamhane, 1987, p.28-

30). When each H0k : θk = θ0k where H0 = ∩K
k=1H0k has a suitable test statistic Tk for

k = 1, . . . ,K, a single global test of H0 permits multiple inferences on the set of these pa-

rameters considered jointly as a family. Therefore, to construct simultaneous confidence

intervals, we must determine an appropriate critical value that maintains the joint coverage

probability at the nominal level 100(1−α)%. Such a critical value may be exactly com-

puted by evaluating the probabilities of the joint distribution of the test statistics. When

its distribution is unknown, it is often approximated assuming the multivariate central limit

theorem or simply applying various probability inequalities without distributional assump-

tions such as Bonferroni’s inequality. We describe the procedures more formally in the

remaining of this section.

Following the notation similar to Westfall et al. (1999), we denote estimates of the

unknown parameters of interest by θ̂ = (θ̂1, . . . , θ̂J)
T . Under the multivariate central limit

theorem, θ̂ asymptotically follows a multivariate normal distribution with mean θ and a di-

agonal variance-covariance matrix having the jth diagonal element equal to var(θ̂ j) where

j = 1, . . . ,J. The confidence limits for a collection of contrasts cT
k θ , having a covariance-
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variance var(cT
k θ̂) can be obtained using the general form(

Lk,Uk

)
=
(

cT
k θ̂ ∓h

√
var(cT

k θ̂)
)
,

where h is an appropriate critical value.

Substituting a sample variance estimate v̂ar(cT
k θ̂) for var(cT

k θ̂), simultaneous Wald confi-

dence intervals are constructed with a critical value zα , chosen to satisfy

Pr
(

cT
k θ̂ − zα

√
v̂ar(cT

k θ̂)< cT
k θ < cT

k θ̂ + zα

√
v̂ar(cT

k θ̂),∀k
)
∼= 1−α. (2.5)

Therefore, for a set of Wald test statistics Tk where k = 1,2, . . . ,K given as

Tk =
cT

k θ̂ − cT
k θ√

cT
k v̂ar(θ̂)ck

,

the joint distribution of Tk is asymptotically multivariate normal with mean 0 and correla-

tion matrix

RK×K = D−1/2(CTVC)D−1/2,

where C = (c1, . . . ,cK), V is a diagonal matrix with kth element given by var(θ̂k) and D is

a diagonal matrix with kth element equal to var(cT
k θ̂). The probability statement (2.5) can

be represented equivalently as

Pr
(

max|Tk| ≤ zα

∣∣RK×K

)
∼= 1−α. (2.6)

The familiar Bonferroni inequality approximates the probability (2.6), ignoring the corre-

lation RK×K , by its lower bound from the marginal, univariate normal distributions as

Pr
(

max|Tk| ≤ zα

∣∣RK×K

)
≥ 1−

K

∑
k=1

Pr
(
|Tk| ≤ zα

)
.

Although this simple method is applicable in general settings, its conservativeness results in

simultaneous confidence intervals with joint coverage probability typically greater than the

nominal level of 100(1−α)%. This is true particularly for highly correlated test statistics
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and for a large number of comparisons. An improved method, known as the Sidak pro-

cedure, utilizes the properties of the multivariate normal distribution and yields a critical

value sharper that of the Bonferroni method (Sidak, 1968). Assuming the correlation RK×K

is an identity matrix IK×K , the probability (2.6) is estimated as

Pr
(

max|Tk| ≤ zα

∣∣IK×K

)
≥ 1−

K

∏
k=1

Pr
(
|Tk| ≤ zα

)
.

Unlike these two methods assuming independence among Tk, a critical value may

be computed analytically by a complex multidimensional integration, incorporating the

correlation matrix for Tk. Genz (1992) proposed a method to obtain an approximate (1−α)

quantile of the distribution of max|Tk| using a consistent estimator for the correlation matrix

RK×K in the inversion algorithm of the multivariate normal distribution. Alternatively, when

a critical value cannot be computed analytically, it may be approximated by simulation

proposed by (Edwards and Berry, 1987). For common comparisons such as Tukey’s all

pairwise comparisons and Dunnett’s many-to-one comparisons, a critical value may be

readily obtained from the SAS IML function probmc or the function qmvnorm in R package

mvtnorm (Mi et al., 2009).

Despite these computational tools, obtaining an appropriate critical value for bino-

mial proportions may not be as simple as for normal means from a practical perspective.

Since the variance of a sample binomial proportion π̂ is a function of the unknown parame-

ter π itself, the correlation matrix required for the computation of the critical value based on

the multivariate normal distribution is also unknown and must be estimated from a sample.

Consequently, the coverage probability may be affected to a certain degree by the accuracy

of the estimated correlation matrix. It may be particularly more problematic for small sam-

ples and highly correlated comparisons (Holford et al., 1989). The next section provides

a review on the existing approaches to the computation of an appropriate critical value in

the multiple comparisons of proportions and the construction of simultaneous confidence

intervals for multiple risk ratios.
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2.3 Simultaneous confidence intervals for multiple risk ratios

Compared to a large literature for normally distributed data, relatively few multiple com-

parison procedures of interval estimation have been proposed for binomial proportions

(Piegorsch, 1991; Schaarschmidt et al., 2009; Agresti et al., 2008; McCann and Tebbs,

2009; Klingenberg, 2010, 2012) despite their common occurrences in clinical trials and

toxicological experiments (Schaarschmidt et al., 2009; Holford et al., 1989). Moreover,

a majority of these procedures are intended for inferences based on odds ratios (Holford

et al., 1989; McCann and Tebbs, 2009) or risk differences and their linear combinations

(Piegorsch, 1991; Agresti et al., 2008; Schaarschmidt et al., 2008, 2009; Donner and Zou,

2011; Klingenberg, 2012). The most useful approximate procedures for multiple risk ratios

were provided by Agresti et al. (2008) for all pairwise comparisons and Klingenberg (2010)

for many-to-one comparisons based on the multivariate central limit theorem. When the

critical value is computed based on the asymptotic multivariate normality for multiple risk

ratios, these procedures are less conservative than the simple Bonferroni or Sidak proce-

dures, yielding more precise confidence intervals while maintaining the nominal joint cov-

erage probability (Klingenberg, 2010). Klingenberg (2010) extended the Wald and Score

confidence interval methods in Section 2.1 by considering a variety of multiplicity adjust-

ments reflected in the computation of the critical value.

2.3.1 Determination of the critical value

A variety of multiplicity adjustments and their impact on coverage probabilities have been

discussed in the literature for multiple comparisons of proportions. For comparisons based

on log odds ratios, Holford et al. (1989) and McCann and Tebbs (2009) investigated how

different adjustment methods including the Bonferroni, Sidak, and Dunnett critical values

performed in terms of maintaining the correct joint confidence level. Similar investiga-

tions are available for the construction of simultaneous confidence intervals of multiple
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risk differences and contrasts of proportions (Piegorsch, 1991; Schaarschmidt et al., 2009;

Donner and Zou, 2011). For the multiplicity adjustment accounting for correlations among

comparisons, the critical value was computed using sample correlation estimates. More

recently, Klingenberg (2012) considered an alternative method of using a lower bound of

correlation under the null hypothesis, requiring only one parameter estimate, π̂0 instead of

K +1 plug-in proportion estimates in the computation of a Dunnett critical value.

For the many-to-one comparisons of proportions using risk ratios, Klingenberg (2010)

explored three different methods to approximate the correlation matrix, namely the Dunnett

method with plug-in sample estimates, the Sidak procedure, and the procedure proposed

by Berger and Boos (1994). As described in the Section 2.2, the Sidak procedure does not

estimate the correlation matrix from the sample but uses an identity matrix assuming inde-

pendence of many-to-one risk ratios in the computation of the critical value. The procedure

proposed by Berger and Boos (1994) uses the lower bound of the correlation matrix for the

plausible values of the nuisance parameter π0. As the Dunnett method with a sample cor-

relation matrix showed a negligible difference from the method by Berger and Boos (1994)

on the actual coverage probabilities, Klingenberg (2010) recommended using the Dunnett

method with plug-in sample estimates based on its computational simplicity over Berger

and Boos (1994)’s method.

The correlation matrix RK×K required in the computation of a Dunnett critical value

satisfying the probability in (2.6) depends on the unknown true proportions π =(π0, . . . ,πK).

When the sample sizes become large, the correlation estimate would be close to the true

correlation value, yielding negligible effect on the computation of the critical value and

confidence limits. On the other hand, the variability of the correlation estimates could have

a greater impact on the computed critical value for small or moderate samples sizes and for

highly correlated comparisons as observed in the case of odds ratios (Holford et al., 1989).

However, the findings from Piegorsch (1991) for risk differences confirm that the type of

test inversion and its variance estimator affect coverage probabilities more considerably
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than the type of multiplicity adjustment. Moreover, an evaluation of score confidence in-

tervals with different correlation estimates show a limited improvement on coverage proba-

bilities and precision by incorporating more accurate correlation information (Klingenberg,

2012).

2.3.2 Notation

Let Yk denote independent binomial variates with corresponding population probabilities

of the event of interest and sample sizes nk in the kth group where k = 0, . . . ,K. Given the

observed event counts (y0,y1, . . . ,yK), the maximum likelihood estimates for π0, πk’s and

RRk’s are π̂0 = y0/n0, π̂k = yk/nk and R̂Rk = π̂k/π̂0, respectively, in the comparison of each

of K experimental groups with the control group identified by k = 0. For inference under

the partial null hypothesis H0k : RRk = RR0
k , the likelihood function is maximized under

the restriction of the given null value RR0
k to obtain the restricted MLE of π0. π̃0|k is the

admissible solution to the quadratic equation aπ̃2
0 +bπ̃0 + c = 0, where a = (n0 +nk)RR0

k ,

b = −(y0 +nk)RR0
k + yk +n0 and c = y0 + yk, resulting in π̃0 and π̃k = π̃0|kRR0

k in the

parameter space [0,1] (Klingenberg, 2010). Simultaneous confidence intervals for RRk =

πk/π0 can be constructed by inverting the following test statistics.

Simultaneous Wald intervals

Let lnR̂Rk denote a log-transformed risk ratio estimate of the kth treatment group and the

control group for k = 1, . . . ,K. Based on the multivariate central limit theorem, lnR̂Rk fol-

lows a multivariate normal distribution with mean lnRR and a variance-covariance matrix

having the kth diagonal element (k = 1, . . . ,K) equal to

σk
2 = var(ln R̂Rk) = (1−π0RRk)/(nkπ0RRk)+(1−π0)/(n0π0)
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and off-diagonal elements for 1 ≤ i 6= j ≤ K

σi j = cov(ln R̂Ri, ln R̂R j) =
1−π0

n0π0
.

Under the null hypothesis H0 = ∩K
k=1{RRk = RR0

k},

T k =
ln R̂Rk − lnRR0

k√
(1− π̂k)/(nkπ̂k)+(1− π̂0)/(n0π̂0)

,

asymptotically follows a multivariate normal distribution with mean zero and correlation

matrix Λ(π0) with off-diagonal elements in product correlation form where 1 ≤ i 6= j ≤ K

λi j(π0) =
σi j

σiσ j
=
(

1+
n0

ni

1−RR0
i π0

RR0
i −RR0

i π0

)− 1
2
(

1+
n0

n j

1−RR0
jπ0

RR0
j −RR0

jπ0

)− 1
2
= λi(π0)λ j(π0).

(2.7)

Therefore, the critical value h is selected to satisfy

Pr
(

max|Tk| ≤ h
∣∣Λ(π0)

)
= 1−α. (2.8)

The SAS IML function probmc (SAS Institute, Inc 2009, p. 976) may be used to

compute the critical value h. The syntax using probmc is

probmc(distribution, q, prob, df, nparam<,parameters>)

where q is the quantile from the specified distribution, prob is the left probability from the

distribution, and df is the degrees of freedom. Thus, the critical value for the two-sided

Dunnett comparison is computed by

probmc("Dunnettt2",., confidence,.,K, parameters),

specifying the corresponding sample estimates λ̂k for parameters

λ̂k =

[
1+

n0

nk

π̂0(1− π̂k)

π̂k(1− π̂0)

]− 1
2

, for k = 1, . . . ,K.
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Simultaneous score intervals

The score test statistics can be derived based on the difference π̂k −RR0
k π̂0 with its stan-

dard error estimated under the kth partial hypothesis H0k : RRk = RR0
k . Klingenberg (2010)

outlined the steps to derive Sk based on the score method for testing the kth partial hypoth-

esis with π0 treated as a nuisance parameter. Under the null hypothesis H0 = ∩K
k=1{RRk =

RR0
k}, the joint distribution of the score test statistics is asymptotically multivariate nor-

mal with mean zero and correlation matrix Λ(π0) with off-diagonal elements in product

correlation form as given in (2.7). Therefore, simultaneous score confidence intervals are

constructed inverting

Sk =
(π̂k −RR0

k π̂0)√
π̃k(1− π̃k)/nk +(RR0

k)
2π̃0|k(1− π̃0|k)/n0

, (2.9)

using the same critical value h in (2.8) for simultaneous confidence intervals constructed

by inverting the Wald test statistics.

2.4 Summary

We have reviewed the Wald, Fieller and score methods to construct large sample confi-

dence intervals for a risk ratio. Among them, the Wald and score methods have reasonable

coverage properties and may be extended to simultaneous confidence intervals for multiple

risk ratios by adjusting for multiplicity. Klingenberg (2010) demonstrated that inverting

the absolute maximum of the score test statistics with Dunnett’s critical value yields confi-

dence intervals having good coverage probabilities for multiple risk ratios. Unfortunately,

the optimality of the score method comes at a price of computational complexity. Although

it is no longer as important an issue as in the past (Gart and Nam, 1988), the merit of com-

putationally simpler alternatives is apparent, especially for a large number of comparisons,

as remarked by Klingenberg (2010).

Therefore, we propose a simple, alternative approach based on the method of variance
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estimates recovery (MOVER) (Zou, 2008; Zou and Donner, 2008) to constructing simul-

taneous confidence intervals for risk ratios using the confidence limits of the correspond-

ing single proportions. The MOVER approach for a ratio of parameters is a generalized

procedure that extends Fieller’s theorem (Fieller, 1944) without the normality assumption

required for the components of the ratio (Li et al., 2010). The variance for each compo-

nent’s point estimator is obtained separately at its lower and upper confidence limits. As

the MOVER incorporates the skewness of the sampling distributions of the point estima-

tors, the confidence intervals obtained by the MOVER reduce to those by Fieller’s theorem

asymptotically under the assumption of symmetric sampling distributions (Zou, 2008). Us-

ing the variance estimates of individual sample proportions separately, the MOVER can be

readily applicable to constructing confidence intervals for risk ratios estimated from corre-

lated binary data or for more complicated functions such as ratios of linear combinations

of proportions.

To further simplify the simultaneous confidence interval procedures, we compute

the Dunnett critical value, assuming a common, constant correlation coefficient between

two comparisons to control under the assumption of the multivariate normal distribution

of proportions in balanced sample sizes for risk differences or risk ratios. Under com-

plete homogeneity of proportions, λi j(π0) in (2.7) reduces to 0.5, resulting in a critical

value that depends only on the desired confidence level α and the number of treatment

groups K instead of sample correlation estimates. Therefore, it not only obviates the need

for estimating correlation coefficients but also prevents potentially introducing additional

variability to the procedure by computing the critical value using sample estimates. This

approximation approach was considered by Agresti et al. (2008) analogously for construct-

ing simultaneous intervals by inverting a score test for a variety of effect measures in all

pairwise comparisons. An appropriate critical value was obtained assuming the asymptotic

studentized range distribution with an infinite number of degrees of freedom.
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Chapter 3

METHODS

The MOVER is a general approach for constructing confidence intervals for linear

functions of parameters and their ratios using the upper and lower confidence limits for

each parameter. Reflected in the name of the method, Method Of Variance Estimates Re-

covery, it recovers variance estimates of a simple function of parameters from the lower and

upper confidence limits for the component parameters. Contrary to the standard confidence

interval method assuming an approximate normal sampling distribution, the MOVER does

not require any specific assumptions on the sampling distributions. Following the exposi-

tion of the MOVER by Zou and Donner (2008); Zou (2008); Donner and Zou (2011), we

describe the method for the simplest case of constructing a confidence interval for a differ-

ence of two parameters in Section 3.1. The MOVER approach to confidence intervals for a

single and several risk ratios is presented in Sections 3.3 and 3.4, respectively. A summary

of this chapter is provided in Section 3.5.

3.1 Confidence interval for a difference between two parameters

Suppose we are interested in constructing a confidence interval for θ1 −θ2 based on inde-

pendently distributed point estimates θ̂i and confidence limits (li,ui), j = 1,2. An approx-

imate two-sided 100(1−α)% confidence interval (L,U) for θ1 − θ2 based on the central

limit theorem is given by
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(L,U) = θ̂1 − θ̂2 ∓ zα/2

√
var(θ̂1)+var(θ̂2), (3.1)

where zα/2 is the upper α/2 quantile of the standard normal distribution. The variances

var(θ̂i), i = 1,2 remain to be estimated. Asymptotically, the lower and upper confidence

limits of a two-sided 100(1−α)% interval for the component parameters θi, i = 1,2 are

also given as

(li,ui) = θ̂i ∓ zα/2

√
var(θ̂i).

In estimating var(θ̂i), the Wald method assumes that the sampling distributions of θ̂i

are close to normal, implying that var(θ̂i) is constant for all values of θi. Therefore, the

Wald method yields symmetric confidence intervals (li,ui) for the component parameters

θi (i = 1,2) and thus a symmetric confidence interval (L,U) for a difference θ1 −θ2. Nev-

ertheless, unless the assumption of approximate normality of θ̂i holds, the Wald method

may have poor coverage even with moderately large samples (Brown et al., 2001, 2002).

A good example is the case of proportions and the difference of two proportions where

the variance estimate depends on the true proportion and the sampling distribution may be

asymmetrical (Newcombe, 1998a,b; Brown et al., 2001, 2002).

The performance of interval methods for θ1 − θ2 can be improved by acknowledg-

ing the skewness of the sampling distributions of the parameter estimates. The MOVER

separately estimates var(θ̂1) and var(θ̂2) in the neighbourhood of the confidence limits, L

and U , obviating the approximate normality assumption of the Wald method. The variance

estimation for var(θ̂1 − θ̂2) by the MOVER is similar to the principle of the score method

estimating the variances at the confidence limits and L and U by an iterative procedure

(Zou and Donner, 2008). We may say 100(1−α)% confidence limits L and U for θ1 −θ2

correspond to the minimum and maximum values, respectively, of θ1 −θ2 satisfying

[(θ̂1 − θ̂2)− (θ1 −θ2)]
2

var(θ̂1)+var(θ̂2)
< z2

α/2.
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Among plausible parameter values of θ1 − θ2, l1 − u2 is near the lower limit L and

u1 − l2 near the upper limit U . Therefore, we estimate the lower margin of error of θ̂1 − θ̂2

with v̂ar(θ̂i) under the assumptions, θ1 = l1 for var(θ̂1) and θ2 = u2 for var(θ̂2). Similarly,

we estimate the upper margin of error of θ̂1 − θ̂2 with the variances estimated at θ1 = u1,

θ2 = l2. In fact, it can be shown that the distance between l1 −u2 and L given by

zα/2

∥∥∥∥√var(θ̂1)+var(θ̂2)−
[√

var(θ̂1)+

√
var(θ̂2)

]∥∥∥∥
is smaller than the distance between the point estimates θ̂1 − θ̂2 and L given by

zα/2

∥∥∥∥√var(θ̂1)+var(θ̂2)

∥∥∥∥
Likewise, the distance between u1 − l2 and U is smaller than that between θ̂1 − θ̂2 and U

(Li et al., 2010).

By the duality between confidence interval estimation and hypothesis testing (Casella

and Berger, 1990),

θ̂i − li√
var(θ̂i)

≈ zα/2 yields v̂ar(θ̂i)≈
(θ̂i − li)2

z2
α/2

at θi = li and
ui − θ̂i√
var(θ̂i)

≈ zα/2 yields v̂ar(θ̂i)≈
(ui − θ̂i)

2

z2
α/2

at θi = ui. Substituting these variance estimates in 3.1, the lower limit L for θ1−θ2 is given

by

L ≈ θ̂1 − θ̂2 − zα/2

√
v̂ar(θ̂1)+ v̂ar(θ̂2)

= θ̂1 − θ̂2 − zα/2

√
(θ̂1 − l1)2/z2

α/2 +(u2 − θ̂2)2/z2
α/2

= θ̂1 − θ̂2 −
√
(θ̂1 − l1)2 +(u2 − θ̂2)2.

(3.2)

Similarly, the upper limit U for θ1 −θ2 is given by

U ≈ θ̂1 − θ̂2 +

√
(u1 − θ̂1)2 +(θ̂2 − l2)2. (3.3)
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By mathematical induction, the MOVER approach can be generalized to the con-

struction of a confidence interval for a contrast of parameters
I
∑

i=1
ciθi (Zou, 2008; Zou et al.,

2009). The resulting limits for a contrast of independent parameter estimates are given by


Lc =

I
∑

i=1
ciθ̂i −

√
I
∑

i=1

[
ciθ̂i −min(cili,ciui)

]2

Uc =
K
∑

i=1
ciθ̂i +

√
I
∑

i=1

[
ciθ̂i −max(cili,ciui)

]2
. (3.4)

As Zou (2009) pointed out, a similar approach has been applied to constructing a

confidence interval for variance components, however, by assuming that the limits are of

a certain form and computing them under special conditions (Howe, 1974; Graybill and

Wang, 1980). Newcombe (1998b) also considered the MOVER approach to confidence in-

terval construction for a difference between two independent proportions, terming it as the

square-and-add approach, without providing a theoretical justification (Newcombe, 2001,

2011; Zou and Donner, 2008; Zou, 2009).

The MOVER is derived on two fundamental principles (Zou, 2009). First, a confi-

dence interval method using variance estimates obtained at or close to the limits has better

coverage properties than the standard Wald method using variance estimates obtained at the

point estimates (Efron, 1987). Second, the variance estimates for a linear combination of

parameter estimates are contained in and thus may be recovered from the confidence lim-

its about each parameter estimate. Therefore, the MOVER permits more accurate variance

estimation for the function of component parameters based on their variance estimates, pos-

sibly of different sizes, without any specific distributional assumptions. The performance

of the MOVER, therefore, crucially depends on the accuracy of the variance estimators for

the component parameters. We thus review various interval methods for a single proportion

before considering the MOVER approach for the ratio of independent proportions.
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3.2 Confidence interval for a single proportion

Assume that y is the observed number of events out of n trials following the binomial

distribution with a true proportion π and its maximum likelihood estimate π̂ = y/n. The

α/2 upper quantile of the standard normal distribution is denoted by zα/2.

3.2.1 The Clopper-Pearson (exact) method

Inverting the two one-tailed exact tests for binomial proportions, the Clopper-Pearson con-

fidence limits le and ue are obtained for y = 1,2, . . . ,n−1 to satisfy,

n

∑
k=y

(
n
k

)
lk
e(1− le)n−k ≤ α/2

and
y

∑
k=0

(
n
k

)
uk

e(1−ue)
n−k ≤ α/2,

where le is set to 0 when y = 0 and ue is set to 1 when y = n. These limits may be obtained

using either quantiles from the F or the beta distribution. The lower limit le is the α/2

quantile of a beta distribution with parameters y and n− y+1, and the upper limit ue is the

1−α/2 quantile of a beta distribution with parameters y+1 and n−y. This method yields

no aberrant limits and guarantees a coverage probability strictly at least 100(1−α)% for all

parameter values π with 0 < π < 1. Nevertheless, the resulting confidence interval tends

to be too conservative due to the discreteness of the binomial distribution (Newcombe,

1998a). The method’s conservativeness may be reduced by using a continuity correction

such as the mid-P enumeration of the tail areas (Brown et al., 2001).
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3.2.2 The Wald method

Assuming the asymptotic normality of π̂ =
y
n

, the simplest asymptotic method inverts the

Wald test statistic to yield confidence limits given as

(lW ,uW ) =
y
n
∓ zα/2

√
y(n− y)

n3 .

The Wald method applies the normal distribution approximation with a constant variance

estimate regardless of the value of the true population proportion π . It has been known

that ignoring the dependence of the variance on a proportion estimate may result in erratic

and poor coverage performance (Brown et al., 2001, 2002; Newcombe, 1998a) even for a

large sample size or a true proportion away from the boundary values. In finite samples, the

assumption of approximate normality of the Wald test is unreasonable due to the correlation

between the sample proportion estimator and its variance. Both the bias and skewness of

the pivotal result in less accurate coverage probabilities and highly unbalanced noncoverage

probabilities (Andersson, 2009).

Moreover, this method has an inherent problem of the violation of the boundaries,

also known as overshoot. Truncation to 0 or 1 is a quick remedy for such cases but it is

not recommendable as it obscures the nature of the problem. For example, when y = 1,

the lower limit lW is generally negative and may be truncated to 0. Nevertheless, the lower

limit lW cannot be zero because π = 0 is ruled out by the data (Newcombe, 1998a).

3.2.3 The Wilson method

A refinement of the Wald method is to use the true asymptotic variance of the sampling

distribution nπ(1− π) in the asymptotic test inversion by solving the resulting quadratic

equation for π . This method is also known as the score method, which is derived from

the efficient score approach and has its theoretical advantages (Wilks, 1938). The Wilson
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limits are given by

(ls,us) =
y+ z2

α/2/2

n+ z2
α/2

∓ zα/2

√
y(n− y)/n+ z2

α/2/4

n+ z2
α/2

.

The lower limit ls may be regarded as the mean of the normal distribution with variance

nls(1− ls) used to approximate the upper tail of the binomial distribution (n, ls) such that

Pr

(
y−nls√
nls(1− ls)

> zα/2

)
≈ α/2.

Similarly, the upper limit us may be regarded as the mean of the normal distribution with

variance nus(1− us) approximating the lower tail of the binomial distribution (n,us) such

that

Pr

(
nus − y√

nus(1−us)
< zα/2

)
≈ α/2.

Wilson (1927) has pointed out that this interval is narrower than (lw,uw) when the un-

derlying parameter is in the range of 0.5∓ 0.5
√

1− (2+ zα/2/n). A continuity-corrected

version of the Wilson method is also available but its performance is inferior to that without

a continuity correction (Brown et al., 2001, 2002).

3.2.4 The Agresti-Coull method

The Agresti-Coull method is an adjusted Wald method using an approximate midpoint of

the score interval (ls,us). The method yields confidence limits given by

(lA,uA) = π̃ ∓ zα/2

√
π̃(1− π̃)

n+ z2
α/2

where

π̃ =
y+ z2

α/2/2

n+ z2
α/2

.

As this method still uses the normal distribution with a constant variance estimate to ap-

proximate two binomial distributions of different shapes, it may yield limits out of the
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parameter space, inheriting the deficiency of the Wald method. As the score method is

asymptotically optimal (Wilks, 1938), this methods is asymptotically inefficient and the

resulting confidence intervals are never shorter than the Wilson intervals (Wilson, 1927;

Brown et al., 2001, 2002). The Agresti-Coull method is the shrinkage representation of the

score method (Agresti and Coull, 1998), which is essentially equivalent to Wilson (1927)’s

attempt of plugging in the midpoint of a score interval in the Wald method for computa-

tional simplicity. However, the Agresti-Coull method may also be considered as one of

similar proportion estimators adding pseudo observations to the number of successes and

the number of failures merely on intuitive grounds (Donner and Zou, 2011).

3.2.5 The Jeffreys method

As a convenient prior distribution for proportions to be assumed in the Bayesian frame-

work, the Jeffreys method uses a noninformative Beta (0.5, 0.5) distribution (Brown et al.,

2001, 2002). The Jeffreys limits can be numerically obtained from the α/2 and (1−α/2)

quantiles of the posterior distribution Beta or using its link to the F-distribution,

(lJ,uJ) =
(

B(α/2,x+0.5,n− x+0.5),B(1−α/2,x+0.5,n− x+0.5)
)
,

where B(α;a,b) denotes the α quantile of Beta(a,b). Taking the central 1−α posterior

probability interval results in a α/2 non-coverage probability in each tail except for the

boundary number of event, x = 0 or x = 1, in which case the limits are modified to avoid

undesirable coverage results. A closed-form expression for approximate confidence limits

obtained by the general approximation to a Beta quantile is also provided by Brown et al.

(2001).
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3.3 Confidence interval for a ratio of proportions

A confidence interval for the ratio of proportions can be constructed on the log scale, re-

lying on the invariance property of interval estimation to a transformation by a monotonic

function (Daly, 1998). Therefore, the MOVER approach described in Section 3.1 can be

applied to construct a confidence interval for the difference of two log proportions (Zou,

2008; Zou and Donner, 2008; Zou, 2009). However, the MOVER approach generalizing

Fieller’s theorem is a more direct procedure for a ratio of proportions (Li et al., 2010).

Denote the ratio of two proportions by

RR = π1/π0,

which is equivalent to

π1 −RRπ0 = 0. (3.5)

As π̂0 and π̂1 are independent and RR > 0, we can obtain a confidence interval (l,u) for

π1 −RRπ0 as, 
l = π̂1 −RRπ̂0 −

√
(π̂1 − l1)2 +RR2(u0 − π̂0)2

u = π̂1 −RRπ̂0 +
√

(u1 − π̂1)2 +RR2(π̂0 − l0)2,

where the confidence limits for the individual proportions are (l0,u0) and (l1,u1). To satisfy

(3.5), the resulting confidence limits for a constant are constrained to be zero (i.e. l = 0 and

u = 0). Solving the quadratic equations in RR, the smaller root of l = 0 and the larger root

of u = 0 correspond to the lower and upper confidence limits for RR, respectively, yielding

confidence limits (LRR,URR) given as


LRR =

π̂1π̂0 −
√

(π̂1π̂0)2 − l1u0(2π̂1 − l1)(2π̂0 −u0)

u0(2π̂0 −u0)

URR =
π̂1π̂0 +

√
(π̂1π̂0)2 −u1l0(2π̂1 −u1)(2π̂0 − l0)

l0(2π̂0 − l0)
.

(3.6)
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3.4 Simultaneous confidence intervals for multiple risk ratios

As discussed in Chapter 2, a confidence interval procedure for single inference can be

extended for multiple inferences by adjusting the critical value to control the joint coverage

probability. Suppose Yk are independently distributed binomial variates, Yk ∼ Bin(nk,πk).

We denote the numbers of events in treatment groups by yk and the corresponding sample

sizes of the treatment groups by nk (k = 0,1, . . . ,K). We describe the steps to apply the

MOVER generalizing Fieller’s Theorem to construct simultaneous confidence intervals for

multiple risk ratios in the many-to-one comparisons of proportions.

3.4.1 Computation of a critical value

In the many-to-one comparisons of binomial proportions, a critical value may be com-

puted incorporating the correlation information among test statistics using plug-in esti-

mates as described in Chapter 2 (Piegorsch, 1991; Donner and Zou, 2011; Schaarschmidt

et al., 2009; Klingenberg, 2010) or those estimated under the null hypotheses (Klingen-

berg, 2012). Alternatively, instead of estimating correlation coefficients from a sample, we

may assume a common correlation of 0.5 for all comparisons to control, giving out the

correlation matrix R∗
K×K as

R∗
K×K =



1 0.5 0.5 0.5 · · · 0.5

0.5 1 0.5 0.5 · · · 0.5

0.5 0.5 1 0.5 · · · 0.5

0.5 0.5 0.5 1 0.5
...

...
...

...
... . . . 0.5

0.5 · · · · · · · · · 0.5 1


.

The Dunnett critical value for constructing simultaneous confidence intervals with a spe-

cific level of confidence is obtained from the SAS procedure probmc without passing

the parameter estimates as probmc ("Dunnett2", . , confidence, . ,K), or the R
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function qmvnorm(confidence, corr, "both") in the package mvtnorm, specifying

corr = R∗
K×K as the arbitrary correlation matrix required for computation. Therefore, the

resulting critical value depends only on the level of confidence and the number of experi-

mental groups K compared with the control group.

Assuming a common correlation for all comparisons might seem too simple; how-

ever, it may be a pragmatic approach to determine an approximate critical value quite close

to the exact Dunnett critical value. In fact, for normal means with unequal sample sizes

and unequal variances, the mean of K(K − 1)/2 correlation coefficients results in quite a

close approximate value of the exact Dunnett critical value (Hochberg and Tamhane, 1987,

pp.144-146).

The chosen correlation value of 0.5 is justifiable under the assumption of the mul-

tivariate normal distribution with equal sample sizes and equal variances for many-to-one

comparisons of means, analogously under the complete homogeneity of proportions for

many-to-one comparisons of proportions with the large sample assumptions. If the control

group proportion is much greater than either of the two experimental group proportions in

comparison, the correlation between the two risk ratios is close to 0; it is close to 1 for the

converse (Holford et al., 1989). However, the true correlation between two risk ratios is

unknown and unobservable.

Therefore, the use of a common correlation value of 0.5 not only obviates estimating

sample correlation coefficients but also prevents introducing additional variability in the

confidence interval procedure due to the computation of the critical value. With correlation

being inherent in the trial design for many-to-one comparisons, the exchangeable corre-

lation matrix R∗
K×K must be a better choice than the identity matrix of the Sidak method.

Moreover, unless the mean correlation deviates substantially from 0.5, the assumed value

is reasonable and does not substantially affect the coverage probabilities of simultaneous

confidence intervals (Julious and McIntyre, 2012).
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3.4.2 Computation of simultaneous confidence limits

In any of the closed-form of expression of the MOVER, the critical value does not appear

because it is cancelled as shown in equation (3.2). It implies that the variance estimates for

a function of parameter estimates are contained in the confidence limits about each param-

eter estimate. Therefore, the multiplicity adjustment in the construction of simultaneous

confidence intervals based on the MOVER is made on the confidence limits for the com-

ponent parameters. We use a multiplicity-adjusted critical value to recover the variance

estimates for correlated risk ratios and obtain their confidence limits in two steps:

1. Obtain the upper and lower confidence limits for πi where k = 0,1, . . . ,K using a

critical value zα obtained from the multivariate normal distribution with mean 0 and

the exchangeable correlation matrix R∗
K×K .

2. Compute simultaneous confidence limits for the kth risk ratio using the MOVER

generalizing Fieller’s Theorem in Section 3.3.

3.5 Summary

The MOVER is applicable to constructing an approximate confidence interval for a ratio

of proportions, assuming no specific sampling distributions for individual proportions but

using their point estimates and confidence limits. When the sampling distributions of pro-

portion estimates are substantially skewed, the skewness can be incorporated in the variance

estimation for the ratio of proportions. The MOVER recovers variance estimates near the

confidence limits, adopting the idea of the score method, but requiring no iterative algo-

rithms. Therefore, the performance of the confidence interval constructed by the MOVER

for a ratio of proportions depends crucially on the confidence interval method for the two

individual proportions.
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The MOVER approach for a ratio of proportions may be extended to correlated mul-

tiple ratios of proportions by adjusting the critical value required to compute the confidence

limits for proportions. For the many-to-one comparisons, a Dunnett critical value may be

obtained from a multivariate normal distribution assuming a constant, common correlation

coefficient instead of the sample correlation coefficients. Compared to the latter, the former

multiplicity adjustment accounts for the correlations among comparisons without introduc-

ing additional variability. Therefore, approximate simultaneous confidence intervals for

multiple ratios of proportions constructed by the MOVER with such a critical value have

good coverage properties in finite samples, provided that the chosen confidence interval

method for single proportions performs well.

Among the confidence interval methods described in Section 3.2, it has been demon-

strated that approximate confidence intervals by Wilson, Jeffreys or Agresti-Coull perform

better than the Wald or the Clopper-Pearson intervals in terms of having coverage prob-

abilities close to the nominal level (Agresti and Coull, 1998; Newcombe, 1998a; Brown

et al., 2001, 2002). Specifically, score intervals or Jeffreys intervals are recommended for

small sample sizes and Agresti-Coull intervals for large sample sizes (Brown et al., 2001).

Nevertheless, the Agresti-Coull method produces unnecessarily wide intervals for single

proportions (Donner and Zou, 2011; Brown et al., 2002), thus we consider the MOVER

with score and Jeffreys limits for single proportions in our simulation study in Chapter 4.
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Chapter 4

SIMULATION STUDY

Both the test-inversion methods in Chapter 2 and the MOVER approach in Chapter

3 require the assumption of large samples, which may not be always satisfied in practice.

Therefore, we evaluate the performance of these methods with different sample sizes in a

simulation study. As discussed in the previous chapters, simultaneous confidence interval

procedures for several parameters are extended from the procedures for a single parameter

by adjusting for multiplicity. Consequently, simultaneous confidence interval procedures

presuppose the validity of the corresponding procedures for a single parameter. However,

no formal evaluations of the MOVER approach compared to the test-inversion methods

have been done specifically in the context of the ratio of binomial proportions. There-

fore, this chapter evaluates the four competing methods for a single risk ratio and multiple

risk ratios in a simulation study. For the confidence limits for proportions in the MOVER

approach, we consider those obtained by the Wilson method and the Jeffreys method as

recommended for their desirable coverage properties in small sample sizes (Newcombe,

1998a; Donner and Zou, 2011; Brown et al., 2001, 2002).

We evaluate the four competing confidence intervals by computing the performance

measures for accuracy and precision, addressing the important issues of coverage proba-

bility, conservatism and interval width for binomial proportions (Newcombe, 1998a). For

single risk ratios, the proximity of empirical percentages of coverage and left and right tail

errors to their nominal levels is the evaluation criterion for accuracy. For comparable con-

fidence intervals in terms of accuracy, the precision of intervals is evaluated by comparing
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their median interval widths. The analogous performance measures for multiple risk ratios

include joint coverage percentages and median total interval widths as the tail error balance

is irrelevant in case of multiple comparisons.

Due to the discreteness of the binomial distribution, the coverage probability for

binomial proportions oscillates with both sample sizes and unknown population proportions

(Newcombe, 1998a; Brown et al., 2001). Therefore, we evaluate the performance of the

interval methods in two parts. We compare the performance measures computed at selected

parameter settings to examine how the operating characteristics are affected by the changes

in the true proportions and sample sizes. We attempt to evaluate the overall performance

of the methods by considering different combinations of population risk ratios, formed by

proportions spanning the whole parameter space at a given set of sample sizes. By taking

a large number of different combinations of proportion values, we intend to cover a large

region of the entire parameter space for proportions. Therefore, the results from the second

part serve as the basis to determine a recommended method for use in practice.

Following the recommendations in Burton et al. (2006), the design and evaluation

criteria of the simulation study are described in Section 4.1. The simulation study results

are presented in Section 4.2 and followed by a discussion in Section 4.4. This chapter ends

with a summary of the results in Section 4.5.

4.1 Design of simulation studies

4.1.1 Data generation

For selected parameter settings, we consider three different control group proportions π0 =

0.10,0.20,0.30 and two risk ratios, RR = 1,3 for a single risk ratio. For multiple risk ratios

{RR1, . . . ,RRK} comparing K experimental groups to the control group, the experimen-

tal group proportions are determined by a vector of equally spaced population risk ratios



38

RR ∈ [1,3]. Therefore, the experimental group proportions are determined by the specific

choices of risk ratios and control group proportions, given as πk = RRkπ0, k = 1, . . . ,K.

We consider K = 2,3,4 comparisons to the control group. Table 4.1 shows population pro-

portions π = {π0,π1, . . . ,πK} for the control and K experimental groups. For unrestricted

parameter settings, 1000 sets of K + 1 group proportions will be independently sampled

from the uniform distribution U(0,1) such that πk ∼ U(0,1) for k = 0, . . . ,K. The popu-

lation proportions are randomly chosen and intended to cover a large region of the whole

parameter space π ∈ (0,1)K+1.

We consider equal sample sizes n = 10,20,30,50,100 and slightly unequal sample

sizes where two adjacent groups differ by 10 observations (i.e. nk = nk−1 + 10 for k =

1, . . . ,K). For each simulation scenario, we obtain a set of K + 1 independent binomial

variates Yk ∼ Bin(πk,nk) for k = 0,1, . . . ,K as the number of events in each group. All

simulations are performed using exact computations in SAS 9.2 PROC IML (SAS Institute,

NC).

4.1.2 Computation of confidence intervals

As discussed in Chapter 2, the Wald method yields incomputable or yield aberrant confi-

dence intervals for extreme outcomes yk = 0 or yk = nk. When both treatment and control

groups have zero events, none of the methods are computable. To avoid such incomputable

cases and prevent aberrant confidence limits, we replace all extreme counts yk = 0 and

yk = nk with yk′= 0.5 and yk′= nk −0.5 and compute confidence limits using these modi-

fied counts yk′ for all these four methods. Although it is not necessary for the score method

or the MOVER approach, it also avoids undefined point estimates of risk ratios and ensures

consistent comparison across all methods.

The existing methods of inverting the Wald and score test statistics are referred to as

the Wald method and the score method, respectively. We examine two additional intervals
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Table 4.1: Selected proportions considered in the simulation study

K (RR1, . . . ,RRK) (π0, . . . ,πK)

1 1.00 0.10, 0.10

0.20, 0.20

0.30, 0.30

3.00 0.10, 0.30

0.20, 0.60

0.30, 0.90

2 1.00, 3.00 0.10, 0.10, 0.30

0.20, 0.20, 0.60

0.30, 0.10, 0.90

3 1.00, 2.00, 3.00 0.10, 0.10, 0.20, 0.30

0.20, 0.20, 0.40, 0.60

0.30, 0.10, 0.60, 0.90

4 1.00, 1.67, 2.33, 3.00 0.10, 0.10, 0.17, 0.23, 0.30

0.20, 0.20, 0.34, 0.46, 0.60

0.30, 0.30, 0.51, 0.75, 0.90
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constructed by applying the MOVER for a ratio (Li et al., 2010) with the confidence limits

obtained by the Wilson method and the Jeffreys method for single proportions. These

methods will be referred to as the MOVER with score limits and the MOVER with Jeffreys

limits. Both the score method and the MOVER with score confidence limits are referred to

as a score-based method throughout the thesis.

4.1.3 Performance measures and evaluation criteria

Single risk ratio

Coverage For a selected parameter setting, an empirical coverage percentage is obtained

by computing the percentage of the confidence intervals containing the true risk ratio from

10,000 simulation runs. The number of simulation is chosen to yield a desired simulation

margin of error of 0.4%. Therefore, we consider the methods yielding empirical coverage

percentages between 94.6% and 95.4% appropriate for the 95% nominal confidence level.

Similarly, for unrestricted parameter settings, an empirical coverage probability for each

of 1000 parameter combinations is evaluated on 1000 simulation runs. The numbers of

parameter combinations and simulation runs are chosen for practical reasons, considering

the required computational time. We compare the methods in terms of the proximity of the

median coverage percentage to the nominal confidence level. In addition, we examine the

distribution of the 1000 empirical coverage percentages and prefer a method yielding more

coverage percentages within 0.2α , equivalently, between 94% and 96% (Schaarschmidt

et al., 2009). An empirical coverage percentage exceeding the nominal level indicates over-

coverage, implying a method’s conservativeness that may lead to a loss of precision. To the

contrary, undercoverage with an empirical coverage percentage lower than the appropriate

level implies that a method is too liberal.
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Tail error balance The left and right tail error percentages estimate the probability that

the true risk ratio is missed from the left (ML) and from the right (MR) of a confidence

interval. Related to the interval location, the criterion is also important for two-sided confi-

dence intervals as they are intended to provide accurate inference in both directions (Efron,

2003; Newcombe, 1998a). For the selected parameter settings, we examine whether the

left and right tail error percentages are close to the 2.5% nominal level. For unrestricted

parameter settings, the imbalance of tail errors is measured by the relative bias percentage

given as

100
|ML−MR|
ML+MR

(%).

Interval width For a selected parameter setting, we consider the median confidence

width among the 10,000 computed confidence interval widths to compare the precision

of competing confidence interval methods. For unrestricted parameter settings, we exam-

ine the distribution of 1000 computed median interval widths, each of which is obtained

from 1000 simulation runs. When methods perform well in terms of the first two criteria,

we prefer a method yielding shorter intervals.

Multiple risk ratios

Joint coverage For a selected parameter setting, an empirical joint coverage percentage

is obtained from 10,000 simulation runs by computing the percentage of the 10,000 sets of

confidence intervals simultaneously containing all K true risk ratios RRk for k = 1, . . . ,k.

For unrestricted parameter settings, we take 1000 sets of K +1 population proportions and

obtain empirical joint coverage percentages from 1,000 simulation runs. The evaluation cri-

teria for coverage percentages of the single confidence intervals are applicable analogously

to joint coverage percentages of the simultaneous confidence interval methods.
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Total interval width The widths of simultaneous confidence intervals for K risk ratios

are summed to yield a total confidence interval width. For a selected parameter setting, we

compare the median total interval width among the 10,000 sets of K simultaneous confi-

dence intervals. For unrestricted parameter settings, we examine the distribution of 1000

median total interval widths. A method yielding shorter total interval width is preferred

when two methods have comparable coverage properties.

4.2 Results for a single risk ratio

4.2.1 Selected parameters

For the selected values of a single risk ratio, the coverage and tail error percentages of the

confidence intervals constructed by each method are shown in Tables 4.2, 4.3, 4.5 and 4.6

and their corresponding median widths in Tables 4.4 and 4.7.

For the risk ratio RR = 1, the Wald method is generally quite conservative for most

of the values of π0 with small to moderate sample sizes. However, its coverage percentages

improve for RR = 3 with moderate to large sample sizes. The coverage properties improve

as proportions πk increase, yielding coverage percentages within the margin of error for

all sample sizes when π0 = 0.3 and RR = 3. However, the tail errors of Wald confidence

intervals are extremely disparate for small to moderate sample sizes, mostly missing the

true risk ratio RR = 3 from the right. The resulting coverage probabilities are substantially

greater than the nominal level.

For moderate to large sample sizes of n= 20 or more, the score method performs well

and yields coverage percentages close to the nominal confidence level for both RR = 1,3.

For a small π0, the nominal coverage probability is achieved with large sample sizes over

n = 50. The left and right tail error percentages are similar in most cases for RR = 1 but

some are disparate for RR = 3. Similar to the Wald method, the score method has typically
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greater right tail errors.

The MOVER with score limits performs similarly as the iterative score test-inversion

method in terms of the coverage and tail errors in most of parameter combinations and

sample sizes. However, when π0 = π1 = 0.1, the MOVER with score limits yields slightly

wider confidence intervals than the score method even for moderate to large samples. The

coverage percentages for a unity risk ratio seem too conservative for small proportions

unless the sample sizes are large.

Compared to the score-based methods, the MOVER with Jeffreys confidence limits

tends to be less conservative but yields wider confidence intervals, particularly more so for

a risk ratio RR = 3. However, their coverage percentages are much closer to the nominal

level even for small proportions and sample sizes.

4.2.2 Unrestricted parameters

Figures 4.1 and 4.2 display the boxplots of percentages of coverage and relative bias of tail

errors, and median interval widths of the confidence intervals for equal sample sizes and

unequal sample sizes, respectively.

Coverage percentages Having the lower quartiles around the nominal level, the Wald

intervals are uniformly conservative for all sample sizes although their conservativeness

reduces as sample sizes increase in both balanced and unbalanced cases. All the other con-

fidence intervals tend to be slightly conservative but attain a median coverage percentage

close to the nominal level with sample sizes as small as n = 20. Among them, the median

coverage percentage for the MOVER approach with Jeffreys limits is closest to the nominal

level even for small sample sizes n = 10. All four methods have good coverage properties,

yielding an approximate lower quartile of 94.5% and an upper quartile of coverage percent-

ages of 96.1% with moderate to large sample sizes of n = 50,100.
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Relative bias percentages Similar to the results for the selected parameters, the left and

right tail errors of Wald confidence intervals are quite disparate even with large sample

sizes in both balanced and unbalanced cases. For equal sample sizes n = 10, the left and

right tail error percentages are extremely disparate for all methods except the MOVER

approach with Jeffreys limits. The median relative bias percentage is above 80% for the

Wald and score-based methods. With smaller variability in relative bias percentages, the

MOVER approach with Jeffreys limits achieves the nominal, balanced tail errors in more

parameter settings than the other methods, even for small sample sizes such as n = 20, for

both balanced and unbalanced cases.

Interval width Unlike the discrepancies observed in coverage probabilities of the com-

peting methods, they have comparable median interval widths for moderate and large sam-

ple sizes. Nevertheless, the MOVER with Jeffreys limits may yield wider intervals than

the Wald method, which is the most conservative in terms of coverage percentages with

small sample sizes. The MOVER approach with score limits tends to yield shorter median

interval widths than the other methods.

4.3 Results for multiple risk ratios

4.3.1 Selected Parameters

The joint coverage percentage and median total width of the simultaneous confidence in-

tervals constructed for a selected set of multiple risk ratios are shown in Tables 4.8 - 4.13.

Similar to the results for single risk ratios, the Wald method is consistently more conser-

vative than the other methods for small to moderate values of πk for k = 0, . . . ,K. The

score-based methods have similar operating characteristics both in terms of joint cover-

age percentages and total interval widths. For many parameter combinations, the MOVER

with Jeffreys confidence limits on average tends to yield less conservative intervals than
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the score-based intervals with small sample sizes. The degree of overcoverage of the Wald

confidence intervals reduces quickly as πk’s for k = 0, . . . ,K increase. There is a direct

correspondence between the conservativeness and precision of the Wald and score-based

intervals. The more prominent overcoverage of the Wald intervals than the score-based in-

tervals corresponds to their wider median total interval widths in all parameter settings. The

MOVER approach with Jeffreys limits, demonstrating the best coverage properties among

all methods, often yields wider median total interval widths particularly with small to mod-

erate sample sizes. The four competing methods have similar performances both with equal

and unequal sample sizes.

4.3.2 Unrestricted Parameters

As the performance measures are distributed similarly for the multiple comparisons with

K = 2,3, the results are shown for K = 2,4 in Figures 4.3 and 4.4 for the equal sample sizes,

and in Figures 4.5 and 4.6 for the unequal sample sizes. The MOVER with Jeffreys confi-

dence limits outperforms, in terms of achieving the nominal joint coverage percentages, the

other methods typically showing conservativeness in more parameter settings. In general,

for all methods, the degree of conservativeness reduces more quickly for a small number of

comparisons with equal sample sizes than for a large number of comparisons with unequal

sample sizes. For example, with K = 4 and unbalanced sample sizes, coverage percentages

tend to be farther from the nominal level than with K = 2 and balanced sample sizes in the

conservative direction.

4.4 Discussion

The Wald method generally results in higher coverage percentages than the other methods

although the degree of conservativeness reduces as sample sizes increase or proportions

are farther from the boundary of (0,1). Therefore, overcoverage appears to be related to
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inadequate variance estimates of ln π̂k − ln π̂0 under the assumption of symmetric sampling

distributions of log proportion estimates, and particularly for proportions near the boundary

of the parameter space. Moreover, when a true risk ratio departures from the unity, the Wald

method yields more disparate tail error probabilities than the other methods.

To the contrary, the MOVER approach acknowledges asymmetric sampling distri-

butions of binomial proportions. Therefore, the variances for sample proportions are esti-

mated separately near the confidence limits, resulting in more accurate variance estimates

and consequently better coverage properties. Regarded as being in the spirit of the score

method, the MOVER approach has similar operating characteristics as the score method.

The score method yields more disparate tail errors for a risk ratio farther from unity, even

with moderate sample sizes, particularly for small proportions. Consequently, the MOVER

approach with score limits inherits the same disadvantages of the score method that may

yield highly skewed intervals for a large value of risk ratios (Gart and Nam, 1988). Nev-

ertheless, the MOVER approach with Jeffreys limits has superior performance, yielding

coverage percentages closest to the nominal level and maintaining the tail error balance.

Therefore, the performance the MOVER with two different confidence intervals for pro-

portion corroborates the fact that the validity of the MOVER for a ratio of proportions

crucially relies on the validity of confidence intervals for proportions.

For moderate or large sample sizes, the confidence interval widths tend to be similar

across all methods despite slight overcoverage of Wald intervals than the other intervals.

For small or moderate sample sizes, the score-based methods often yield shorter intervals

than the Wald method whereas the MOVER with Jeffreys limits yields some wider inter-

vals than the other methods. However, between the MOVER with Jeffreys limits and the

MOVER with score limits, the more frequent occurrences of wider intervals by the MOVER

with Jeffreys limits appear to be a direct consequence of the location of the confidence lim-

its for proportions and their range yielding shorter interval widths. For α = 5%, score

confidence intervals for proportions have shortest widths when 0.201 ≤ π ≤ 0.799 whereas
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Jeffreys confidence intervals are the shortest when 0.137≤ π ≤ 0.201 or 0.799≤ π ≤ 0.863

(Brown et al., 2002). As our simulation study considers the whole range of the set of pro-

portions randomly sampled from uniform distributions, the MOVER approach with Jeffreys

limits may yield wider interval widths more frequently compared to the score-based meth-

ods. Based on the simulation results for the MOVER approach and the score method, a

method yielding wider confidence intervals does not necessarily imply their general ten-

dency to overcoverage. Rather, there is a trade-off between the desirable coverage and

noncoverage properties and the interval widths.

For equal sample sizes, as the number of comparisons K increases, the variability of

the median coverage percentages increases (i.e. the interquartile range for K = 4 is greater

than that for K = 2) but their median coverage percentage remains unaffected by the change

in the number of comparisons. For unequal sample sizes, the distribution of the median

coverage percentages for each method shows a slight upward shift, suggesting a tendency

of modest overcoverage compared to the case of equal sample sizes.

4.5 Summary

Both score-based intervals, constructed by either inverting score test statistics or by apply-

ing the MOVER with score limits for single proportions, have similar coverage properties.

Therefore, the MOVER with score limits can construct confidence intervals similar to score

intervals without an iterative algorithm. The Wald method is generally more conservative,

resulting in joint coverage percentages above the nominal level more often than the other

methods, particularly with small and moderate sample sizes. The MOVER approach with

Jeffreys limits typically results in superior coverage properties than the two score-based

intervals, yielding coverage percentages closet to the nominal level even with small sam-

ple sizes for a wide range of parameter space. Nevertheless, there is a cost to the more

desirable small sample properties of the MOVER with Jeffreys limits because it may yield
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confidence intervals substantially greater than the other confidence intervals under some

parameter settings.
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Table 4.2: Estimated percentages of coverage, and left and right tail errors (ML, MR)
of two-sided 95% confidence intervals constructed for risk ratio RR = 1 with control
group proportion π0 and equal sample sizes of n0 = n1 = n by the four methods based
on 10,000 simulation runs.

Coverage (ML, MR)

π0 n Wald Score Msa Mjb

0.1 10 100.0 (0.0, 0.0) 100.0 (0.0, 0.0) 100.0 (0.0, 0.0) 99.0 (0.5, 0.5)

20 100.0 (0.0, 0.0) 98.4 (0.8, 0.8) 98.4 (0.8, 0.8) 96.2 (1.9, 1.9)

30 99.6 (0.2, 0.2) 96.1 (2.0, 1.9) 98.2 (1.0, 0.8) 94.8 (2.7, 2.5)

50 97.7 (1.1, 1.3) 95.0 (2.5, 2.5) 96.4 (1.8, 1.8) 93.9 (3.0, 3.1)

100 95.9 (2.1, 2.1) 94.9 (2.6, 2.5) 95.6 (2.2, 2.3) 94.8 (2.6, 2.6)

0.2 10 100.0 (0.0, 0.0) 99.0 (0.5, 0.5) 99.0 (0.5, 0.5) 95.8 (2.1, 2.2)

20 99.0 (0.5, 0.5) 95.1 (2.5, 2.4) 95.1 (2.5, 2.4) 94.5 (2.8, 2.7)

30 97.4 (1.3, 1.3) 95.3 (2.4, 2.2) 95.6 (2.3, 2.1) 95.3 (2.4, 2.2)

50 96.2 (1.9, 2.0) 95.1 (2.5, 2.5) 95.4 (2.3, 2.3) 95.1 (2.5, 2.5)

100 95.5 (2.3, 2.2) 94.8 (2.6, 2.6) 95.0 (2.5, 2.5) 94.7 (2.7, 2.6)

0.3 10 99.7 (0.1, 0.2) 97.3 (1.4, 1.3) 97.3 (1.4, 1.3) 93.7 (3.2, 3.1)

20 97.6 (1.3, 1.1) 94.6 (2.7, 2.8) 94.6 (2.7, 2.8) 94.5 (2.7, 2.8)

30 96.5 (2.0, 1.6) 95.5 (2.5, 2.1) 95.5 (2.5, 2.1) 95.5 (2.5, 2.1)

50 96.0 (2.1, 1.9) 95.4 (2.5, 2.2) 95.4 (2.5, 2.2) 95.4 (2.5, 2.2)

100 95.2 (2.6, 2.2) 94.9 (2.7, 2.4) 95.0 (2.7, 2.4) 94.9 (2.8, 2.4)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.3: Estimated percentages of coverage, and left and right tail errors (ML,
MR) of two-sided 95% confidence intervals constructed for risk ratio RR = 3
with control group proportion π0 and equal sample sizes of n0 = n1 = n by the
four methods based on 10,000 simulation runs.

Coverage (ML, MR)

π0 n Wald Score Msa Mjb

0.1 10 98.2 (0.0, 1.9) 96.2 (0.0, 3.8) 96.2 (0.0, 3.8) 96.1 (0.0, 3.8)

20 96.8 (0.0, 3.2) 96.8 (0.0, 3.2) 96.8 (0.0, 3.2) 95.5 (1.3, 3.2)

30 97.6 (0.0, 2.4) 96.0 (0.3, 3.7) 96.1 (0.2, 3.7) 94.8 (2.8, 2.4)

50 96.8 (0.1, 3.1) 95.4 (1.6, 3.1) 95.1 (1.5, 3.3) 94.3 (2.7, 3.0)

100 95.7 (1.4, 2.9) 95.0 (2.0, 3.1) 95.2 (1.8, 3.1) 94.8 (2.6, 2.6)

0.2 10 95.9 (0.0, 4.1) 96.2 (0.0, 3.8) 96.2 (0.0, 3.8) 94.3 (1.9, 3.8)

20 96.2 (0.0, 3.8) 95.4 (1.4, 3.2) 94.8 (1.4, 3.8) 94.0 (2.9, 3.2)

30 96.2 (0.2, 3.6) 94.7 (1.9, 3.4) 95.1 (1.5, 3.4) 94.5 (2.7, 2.9)

50 95.3 (1.2, 3.5) 94.7 (2.0, 3.3) 94.6 (2.0, 3.4) 94.4 (2.5, 3.0)

100 95.4 (1.5, 3.1) 95.0 (2.1, 2.9) 94.8 (2.0, 3.1) 94.9 (2.4, 2.7)

0.3 10 94.6 (0.0, 5.4) 96.4 (0.0, 3.6) 96.4 (0.0, 3.6) 93.7 (2.7, 3.6)

20 95.2 (0.0, 4.8) 95.4 (1.7, 3.0) 95.2 (1.7, 3.2) 94.7 (2.4, 3.0)

30 95.1 (0.6, 4.3) 95.6 (1.8, 2.6) 95.0 (1.8, 3.2) 95.2 (2.3, 2.5)

50 95.2 (1.1, 3.7) 95.0 (2.1, 2.9) 95.0 (2.1, 3.0) 94.8 (2.2, 2.9)

100 95.1 (1.6, 3.4) 94.8 (2.3, 2.9) 94.8 (2.3, 2.9) 94.7 (2.4, 2.9)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.4: Median width of two-sided 95% confidence intervals constructed
for risk ratio RR = 1 and risk ratio RR = 3 with control group proportion π0
and equal sample sizes of n0 = n1 = n by the four methods based on 10,000
simulation runs.

Median width for RR = 1 Median width for RR = 3

p0 n Wald Score Msa Mjb Wald Score Msa Mjb

0.1 10 13.8 8.7 8.9 12.2 23.8 18.8 17.9 28.4

20 6.3 5.1 5.2 6.1 14.0 12.8 12.5 16.2

30 5.1 3.8 4.0 4.3 9.9 9.4 9.2 11.0

50 3.0 2.7 2.8 2.9 6.6 6.4 6.3 7.1

100 1.9 1.8 1.8 1.9 4.4 4.3 4.3 4.5

0.2 10 5.6 4.7 4.5 5.5 10.7 10.4 9.9 13.1

20 3.2 3.0 2.9 3.2 7.0 7.0 6.8 7.9

30 2.4 2.3 2.3 2.4 5.1 5.2 5.1 5.6

50 1.7 1.7 1.7 1.7 3.8 3.8 3.8 4.0

100 1.2 1.2 1.2 1.2 2.6 2.6 2.6 2.7

0.3 10 3.6 3.3 3.1 3.6 6.8 7.1 7.1 8.4

20 2.2 2.1 2.1 2.2 4.4 4.6 4.6 5.0

30 1.7 1.7 1.6 1.7 3.5 3.6 3.6 3.8

50 1.3 1.3 1.2 1.3 2.7 2.7 2.7 2.8

100 0.9 0.9 0.9 0.9 1.9 1.9 1.9 1.9

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.5: Estimated percentages of coverage, and left and right tail errors (ML,
MR) of two-sided 95% confidence intervals constructed for risk ratio RR= 1 with
control group proportion π0 and sample sizes of n1 = n0+10 by the four methods
based on 10,000 simulation runs.

Coverage (ML, MR)

π0 n0 Wald Score Msa Mjb

0.1 10 99.5 (0.0, 0.5) 98.6 (0.0, 1.4) 98.6 (0.0, 1.4) 98.1 (0.5, 1.4)

20 99.6 (0.0, 0.4) 98.3 (0.3, 1.4) 98.5 (0.2, 1.4) 95.7 (2.1, 2.2)

30 98.9 (0.1, 1.0) 96.7 (1.1, 2.3) 96.9 (1.1, 2.0) 95.1 (2.3, 2.6)

50 97.9 (0.5, 1.6) 95.8 (1.9, 2.4) 96.3 (1.7, 1.9) 94.4 (3.2, 2.4)

100 96.0 (1.9, 2.2) 94.8 (2.5, 2.7) 95.0 (2.5, 2.5) 94.5 (2.8, 2.7)

0.2 10 98.6 (0.0, 1.4) 97.5 (0.4, 2.2) 97.5 (0.4, 2.2) 95.6 (2.3, 2.2)

20 97.6 (0.3, 2.2) 96.1 (1.5, 2.4) 96.3 (1.4, 2.4) 95.0 (2.6, 2.4)

30 96.4 (0.9, 2.7) 94.9 (2.4, 2.7) 94.9 (2.4, 2.7) 94.9 (2.4, 2.7)

50 96.1 (1.8, 2.1) 95.1 (2.5, 2.5) 95.4 (2.3, 2.3) 95.0 (2.5, 2.5)

100 95.1 (2.4, 2.5) 94.7 (2.7, 2.7) 94.7 (2.7, 2.7) 94.7 (2.7, 2.7)

0.3 10 98.0 (0.0, 2.0) 96.1 (1.2, 2.7) 96.1 (1.2, 2.7) 94.4 (3.0, 2.7)

20 96.6 (1.0, 2.5) 95.4 (2.1, 2.5) 95.5 (2.1, 2.5) 95.3 (2.3, 2.5)

30 95.9 (1.6, 2.6) 94.9 (2.5, 2.6) 94.9 (2.5, 2.6) 94.9 (2.5, 2.6)

50 95.9 (1.8, 2.3) 95.4 (2.3, 2.3) 95.4 (2.3, 2.3) 95.3 (2.4, 2.3)

100 95.7 (2.1, 2.1) 95.0 (2.3, 2.6) 95.0 (2.3, 2.6) 95.0 (2.3, 2.6)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.6: Estimated percentages of coverage, and left and right tail errors (ML,MR)
of two-sided 95% confidence intervals constructed for risk ratio RR = 3 with control
group proportion π0 and unequal sample sizes of n1 = n0 +10 by the four methods
based on 10,000 simulation runs.

Coverage (ML, MR)

p0 n0 Wald Score Msa Mjb

0.1 10 96.3 (0.0, 3.7) 95.7 (0.0, 4.3) 95.7 (0.0, 4.3) 97.5 (0.0, 2.5)

20 96.7 (0.0, 3.3) 96.8 (0.0, 3.2) 95.9 (0.0, 4.1) 95.0 (1.8, 3.2)

30 96.8 (0.0, 3.2) 96.7 (0.1, 3.2) 96.2 (0.1, 3.8) 94.1 (3.0, 2.9)

50 96.8 (0.1, 3.2) 95.2 (1.4, 3.5) 95.4 (1.2, 3.5) 94.3 (2.7, 3.0)

100 95.7 (1.3, 3.0) 95.0 (2.0, 3.1) 95.1 (1.8, 3.1) 94.9 (2.4, 2.7)

0.2 10 95.6 (0.0, 4.5) 96.1 (0.0, 3.9) 96.1 (0.0, 3.94) 94.1 (2.6, 3.3)

20 96.4 (0.0, 3.6) 95.7 (1.0, 3.3) 95.7 (0.7, 3.59) 94.3 (2.8, 2.9)

30 96.0 (0.1, 3.9) 95.2 (1.7, 3.1) 94.9 (1.6, 3.5) 94.3 (2.7, 2.9)

50 95.4 (1.0, 3.6) 95.2 (1.8, 3.0) 94.8 (1.6, 3.6) 94.9 (2.2, 2.9)

100 95.0 (1.7, 3.3) 95.1 (2.1, 2.9) 95.2 (2.0, 2.9) 95.0 (2.3, 2.7)

0.3 10 95.2 (0.0, 4.8) 97.0 (0.0, 3.0) 97.02 (0.0, 2.98) 94.2 (2.9, 3.0)

20 95.5 (0.0, 4.6) 95.4 (1.8, 2.8) 95.4 (1.8, 2.8) 94.8 (2.5, 2.8)

30 95.5 (0.6, 3.9) 94.9 (2.2, 2.9) 95.0 (1.8, 3.3) 95.0 (2.2, 2.7)

50 94.8 (1.1, 4.2) 94.9 (2.2, 2.9) 95.4 (1.7, 3.0) 95.1 (2.2, 2.7)

100 95.0 (1.4, 3.6) 95.0 (2.1, 2.9) 95.1 (2.0, 2.9) 95.1 (2.2, 2.7)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.7: Median width of two-sided 95% confidence intervals constructed
for risk ratio RR = 1 and risk ratio RR = 3 with control group proportion
π0 and unequal sample sizes of n1 = n0 +10 by the four methods based on
10,000 simulation runs.

Median width for RR = 1 Median width for RR = 3

p0 n0 Wald Score Msa Mjb Wald Score Msa Mjb

0.1 10 9.7 7.1 7.3 10.6 24.2 17.5 19.6 31.8

20 5.3 4.5 4.6 5.5 12.8 11.9 11.6 15.2

30 4.0 3.5 3.6 4.0 9.4 9.0 8.8 10.6

50 2.8 2.6 2.7 2.9 6.6 6.4 6.4 7.1

100 1.8 1.8 1.8 1.8 4.2 4.2 4.1 4.4

0.2 10 4.3 4.0 3.9 4.9 10.8 10.7 10.5 13.7

20 2.8 2.7 2.6 2.9 6.7 6.7 6.5 7.6

30 2.2 2.1 2.1 2.2 5.2 5.2 5.1 5.6

50 1.7 1.6 1.6 1.7 3.8 3.8 3.8 4.0

100 1.1 1.1 1.1 1.1 2.6 2.6 2.6 2.7

0.3 10 2.9 2.9 2.8 3.2 6.7 7.0 7.0 8.3

20 2.0 2.0 1.9 2.0 4.4 4.5 4.5 5.0

30 1.6 1.6 1.5 1.6 3.6 3.7 3.7 3.9

50 1.2 1.2 1.2 1.2 2.7 2.7 2.7 2.8

100 0.9 0.9 0.8 0.9 1.9 1.9 1.9 1.9

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.8: Estimated joint coverage (%) and median total interval width
for two-sided 95% simultaneous confidence intervals constructed by
the four methods for risk ratios comparing 2 experimental groups to a
control group. Each entry in the table is based on the 10,000 simulation
replicates of binomial variates given true proportions and equal sample
sizes.

Coverage Median total width

n Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2) = (0.1,0.1,0.3)

10 99.1 98.1 98.1 97.0 56.1 32.8 35.9 66.4

20 98.3 97.9 97.9 96.9 25.0 21.3 20.8 29.5

30 98.5 96.7 97.1 95.4 17.2 15.5 15.3 19.3

50 97.9 95.7 96.5 94.8 11.5 10.9 10.8 12.3

100 96.9 95.5 95.4 95.4 7.2 7.0 7.0 7.4

(π0,π1,π2) = (0.2,0.2,0.6)

10 97.6 97.4 96.9 95.2 21.4 18.0 17.3 24.8

20 97.7 96.4 95.8 94.6 12.0 11.6 11.3 13.5

30 97.9 95.9 96.0 94.9 9.0 8.8 8.7 9.7

50 96.5 95.3 95.2 95.0 6.5 6.4 6.4 6.8

100 96.0 95.6 95.6 95.5 4.4 4.4 4.3 4.5

(π0,π1,π2) = (0.3,0.3,0.9)

10 95.1 96.1 96.0 94.2 12.3 12.4 11.9 15.1

20 96.8 95.6 95.6 95.1 7.7 7.8 7.7 8.6

30 96.2 95.7 95.7 95.6 6.0 6.1 6.0 6.5

50 95.6 95.3 95.1 95.2 4.6 4.6 4.6 4.8

100 95.1 95.2 94.9 95.0 3.1 3.1 3.1 3.2

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.9: Estimated coverage (%) and median total interval width for
two-sided 95% simultaneous confidence intervals constructed by the
four methods for risk ratios comparing 3 experimental groups to a con-
trol group. Each entry in the table is based on the 10,000 simulation
replicates of binomial variates given true proportions and equal sample
sizes.

Coverage Median total width

n Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2,π3) = (0.1,0.1,0.2,0.3)

10 99.5 98.1 98.1 97.5 96.4 49.5 58.8 132.1

20 98.8 96.4 97.0 96.2 41.3 34.0 33.0 50.2

30 98.6 97.4 97.4 95.5 28.7 24.9 24.5 32.2

50 98.1 96.4 96.8 95.6 18.6 17.4 17.2 20.2

100 96.8 95.2 95.7 95.0 11.6 11.3 11.2 12.1

(π0,π1,π2,π3) = (0.2,0.2,0.4,0.6)

10 98.6 97.4 96.8 96.7 35.1 31.2 29.4 46.0

20 97.6 95.3 96.2 94.7 19.3 18.6 17.9 22.3

30 97.7 96.0 95.8 95.0 14.5 14.2 13.8 15.9

50 97.0 95.6 95.7 95.4 10.5 10.5 10.3 11.2

100 96.5 95.9 96.0 95.8 7.0 7.0 6.9 7.2

(π0,π1,π2,π3) = (0.3,0.3,0.6,0.9)

10 95.7 97.6 96.4 95.0 20.4 20.3 19.4 25.8

20 97.3 95.6 95.7 95.6 12.6 12.7 12.5 14.3

30 97.3 96.1 95.8 95.5 9.8 10.0 9.8 10.7

50 96.5 96.2 96.0 95.8 7.3 7.4 7.3 7.6

100 96.0 95.6 95.6 95.6 5.0 5.0 5.0 5.1

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.10: Estimated coverage (%) and median total interval width for
two-sided 95% simultaneous confidence intervals constructed by the four
methods for risk ratios comparing 4 experimental groups to a control
group. Each entry in the table is based on the 10,000 simulation repli-
cates of binomial variates given true proportions and equal sample sizes.

Coverage Median total width

n Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2,π3,π4) = (0.10,0.10,0.17,0.23,0.30)

10 99.9 97.9 97.6 97.8 142.3 68.9 81.7 201.5

20 99.1 97.4 97.0 96.2 60.0 47.4 46.3 73.8

30 98.7 96.7 97.4 95.5 40.3 34.7 34.1 46.3

50 98.5 96.1 97.0 95.7 26.2 24.3 24.0 28.6

100 97.2 95.7 96.0 95.3 16.3 15.8 15.7 17.1

(π0,π1,π2,π3,π4) = (0.20,0.20,0.34,0.46,0.60)

10 98.4 98.0 96.6 97.3 49.8 43.6 40.9 67.4

20 98.2 96.7 96.2 95.2 27.2 26.0 25.0 31.8

30 97.8 95.6 95.8 95.2 20.5 20.0 19.5 22.8

50 97.0 95.7 95.7 95.9 14.6 14.4 14.2 15.6

100 96.5 96.1 96.0 95.9 9.7 9.7 9.6 10.0

(π0,π1,π2,π3,π4) = (0.30,0.30,0.51,0.69,0.90)

10 96.1 97.1 96.9 95.3 28.9 28.8 27.5 38.0

20 97.3 96.3 95.7 95.8 17.5 17.8 17.3 20.1

30 97.1 96.0 96.1 95.8 13.7 13.9 13.6 15.1

50 96.5 95.7 95.7 95.6 10.1 10.2 10.1 10.7

100 96.5 96.1 95.9 95.9 7.0 7.0 7.0 7.2

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.11: Estimated coverage (%) and median total interval width
for two-sided 95% simultaneous confidence intervals constructed by
the four methods for risk ratios comparing 2 experimental groups to a
control group. Each entry in the table is based on the 10,000 simula-
tion replicates of binomial variates given true proportions and unequal
sample sizes nk = nk−1 +10, k = 1, . . . ,K.

Coverage Median total width

n0 Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2) = (0.1,0.1,0.3)

10 97.3 97.2 97.2 97.3 42.0 29.7 31.2 62.2

20 98.0 96.7 97.5 96.3 21.5 18.9 18.7 26.9

30 98.0 96.8 97.3 95.2 15.7 14.3 14.2 18.1

50 98.1 96.5 96.7 95.5 10.9 10.4 10.3 11.9

100 96.3 95.3 95.5 94.9 7.0 6.9 6.8 7.3

(π0,π1,π2) = (0.2,0.2,0.6)

10 96.4 96.6 96.6 95.9 17.8 16.9 16.5 24.3

20 97.1 96.5 96.8 95.8 11.0 10.8 10.6 12.8

30 96.6 95.2 96.0 95.1 8.5 8.4 8.3 9.4

50 96.1 95.3 95.4 95.1 6.3 6.2 6.2 6.6

100 96.2 95.7 95.7 95.7 4.3 4.3 4.2 4.4

(π0,π1,π2) = (0.3,0.3,0.9)

10 94.8 96.7 96.9 94.3 11.3 11.7 11.5 14.8

20 95.9 96.0 95.8 95.5 7.4 7.6 7.5 8.4

30 95.9 95.4 95.4 95.2 5.8 6.0 5.9 6.4

50 95.6 95.5 95.3 95.4 4.5 4.6 4.5 4.7

100 95.3 95.4 95.3 95.3 3.1 3.1 3.1 3.1

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.12: Estimated joint coverage (%) and median total interval width
for two-sided 95% simultaneous confidence intervals constructed by the
four methods for risk ratios comparing 3 experimental groups to a con-
trol group. Each entry in the table is based on the 10,000 simulation
replicates of binomial variates given true proportions and unequal sam-
ple sizes nk = nk−1 +10, k = 1, . . . ,K.

Coverage Median total width

n0 Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2,π3) = (0.1,0.1,0.2,0.3)

10 98.0 97.8 97.8 97.4 71.7 45.3 51.2 119.1

20 99.0 98.9 98.9 97.8 35.1 30.3 29.9 46.6

30 98.3 96.5 97.1 94.7 26.2 23.9 23.7 31.7

50 97.5 96.3 96.7 95.6 18.0 17.1 17.0 20.1

100 96.7 95.2 95.3 95.4 10.9 10.7 10.6 11.5

(π0,π1,π2,π3) = (0.2,0.2,0.4,0.6)

10 95.9 95.9 96.1 95.8 28.9 27.1 26.6 42.1

20 97.4 96.6 96.7 96.2 17.4 17.1 16.8 21.0

30 97.1 95.7 95.8 95.7 13.7 13.6 13.4 15.5

50 96.8 96.2 95.9 96.0 10.3 10.3 10.1 11.0

100 96.8 96.1 96.5 96.3 6.9 6.9 6.9 7.2

(π0,π1,π2,π3) = (0.3,0.3,0.6,0.9)

10 95.4 97.6 97.6 95.7 18.5 19.1 18.8 25.3

20 97.9 97.1 96.9 96.8 11.8 12.1 11.9 13.7

30 96.8 96.0 95.9 95.9 9.2 9.4 9.3 10.1

50 97.2 97.4 97.1 97.1 7.0 7.1 7.0 7.4

100 95.4 96.0 95.8 95.9 4.9 4.9 4.9 5.0

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Table 4.13: Estimated coverage (%) and median total interval width
for two-sided 95% simultaneous confidence intervals constructed by the
four methods for risk ratios comparing 4 experimental groups to a con-
trol group. Each entry in the table is based on the 10,000 simulation
replicates of binomial variates given true proportions and unequal sam-
ple sizes nk = nk−1 +10, k = 1, . . . ,K.

Coverage Median total width

n0 Wald Score Msa Mjb Wald Score Msa Mjb

(π0,π1,π2,π3,π4) = (0.10,0.10,0.17,0.23,0.30)

10 97.0 96.4 96.4 97.3 99.9 58.3 69.1 179.3

20 97.2 96.6 96.5 96.9 49.4 41.9 41.5 68.3

30 97.4 96.9 96.7 96.0 34.9 31.5 31.2 43.3

50 97.8 96.3 96.8 95.8 24.3 23.0 22.8 27.5

100 97.0 95.8 96.1 95.5 15.6 15.2 15.1 16.5

(π0,π1,π2,π3,π4) = (0.20,0.20,0.34,0.46,0.60)

10 96.3 96.9 96.9 97.4 40.6 37.9 37.2 62.2

20 97.2 96.8 96.7 96.0 24.4 23.9 23.5 30.2

30 97.2 96.1 96.3 95.8 18.5 18.4 18.1 21.2

50 97.1 96.1 96.2 95.9 13.9 13.9 13.7 15.1

100 96.3 95.6 95.7 95.6 9.4 9.4 9.4 9.8

(π0,π1,π2,π3,π4) = (0.30,0.30,0.51,0.69,0.90)

10 95.6 97.5 97.9 95.5 25.6 26.5 26.0 36.4

20 96.6 96.3 96.1 96.3 16.4 16.9 16.6 19.5

30 96.9 96.8 96.6 96.5 13.0 13.3 13.1 14.5

50 96.8 96.5 96.5 96.5 9.8 10.0 9.9 10.5

100 96.3 96.0 96.0 96.1 6.9 6.9 6.9 7.1

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits
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Figure 4.1: Comparative performance of the four methods for constructing a confidence
interval for a single risk ratio: percentages (%) of empirical coverage and relative bias in
tail errors and median width. Each boxplot displays the performance measures of 1000
population risk ratios for each of which is estimated by 1000 simulation runs.
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Figure 4.2: Comparative performance of the four methods for constructing a confidence
interval for a single risk ratio: percentages (%) of empirical coverage and relative bias in
tail errors and median width. Each boxplot displays the performance measures of 1000
population risk ratios for each of which is estimated by 1000 simulation runs. The sample
size for the experimental group is increased by 10 (i.e. n1 = n0 +10).
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Figure 4.3: Estimated joint coverage (%) of two-sided 95% simultaneous confidence in-
tervals constructed by the four methods for K risk ratios with equal sample sizes nk = n
(k = 0, . . . ,K). Each boxplot displays median joint coverage percentages of 1000 combina-
tions of K risk ratios, where each combination is estimated by 1000 simulation runs.
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Figure 4.4: Median total widths of two-sided 95% simultaneous confidence intervals con-
structed by the four methods for risk ratios comparing K experimental groups to a control
group of equal sample sizes nk = n, k = 0, . . . ,K. Each boxplot displays median total inter-
val widths of 1000 combinations of K risk ratios, where each combination is estimated by
1000 simulation runs.
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Figure 4.5: Estimated joint coverage (%) of two-sided 95% simultaneous confidence inter-
vals constructed by the four methods for risk ratios comparing K experimental groups to
a control group of unequal sample sizes nk = nk−1 + 10, k = 1, . . . ,K. Each boxplot dis-
plays median joint coverage percentages of 1000 combinations of K risk ratios, where each
combination is estimated by 1000 simulation runs.
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Figure 4.6: Median total widths of two-sided 95% simultaneous confidence intervals con-
structed by the four methods for risk ratios comparing K experimental groups to a control
group of unequal sample sizes nk = nk−1 + 10, k = 1, . . . ,K. Each boxplot displays me-
dian total interval widths of 1000 combinations of K risk ratios, where each combination is
estimated by 1000 simulation runs.
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Chapter 5

WORKED EXAMPLES

We illustrate how the MOVER approach can be applied to constructing simultaneous

confidence intervals for multiple risk ratios in the many-to-one comparisons of proportions

using the data from two randomized clinical trials. These data sets have also been chosen

to illustrate other simultaneous confidence interval methods proposed for multiple compar-

isons of proportions (Agresti et al., 2008; Donner and Zou, 2011; Schaarschmidt et al.,

2009).

5.1 A factorial trial of coenzyme Q10 and remacemide in Huntingtons disease

Kieburtz and Huntington Study Group (2001) investigated the efficacy of coenzyme Q10,

remacemide hydrochloride, and their combination in potentially slowing the functional de-

cline of early Huntington’s disease. Three hundred and forty-seven participants with early

Huntington’s disease were equally randomized to the four treatments and evaluated every

4 to 5 months for a total of 30 months. The primary measure of efficacy was the decline

in the total functional capacity score between the baseline and the end of the 30-month

study period. Safety of the treatments was measured by the frequency of common adverse

events, such as depression, headache, dizziness and nausea, experienced by the patients.

Assuming no statistical interaction between coenzyme Q10 and remacemide, the main ef-

fects of these two factors were of interest for all outcome and safety measures in Kieburtz

and Huntington Study Group (2001). However, to illustrate the MOVER method for ra-

tios, we construct simultaneous confidence intervals for the risk ratios comparing the three
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experimental groups to the placebo group. Table 5.1 provides the number of patients and

those reporting nausea in each treatment group.

Table 5.1: Occurrences of nausea in the treatment of early Huntington’s disease

Treatment Placebo Coenzyme Remacemide Combination

Cases with nausea 9 13 27 22

Sample size 87 87 86 87

To obtain the multiplicity-adjusted confidence limits for proportions required in the

MOVER approach, we compute the Dunnett critical value assuming a common correla-

tion of 0.5 as described in Chapter 3. We can use either the R function qmvnorm or the

SAS function probmc without specifying the degrees of freedom and correlation parameter

estimates, given as

zα = probmc(distribution,q,prob,df,nparam<,parameters>)

= probmc(“Dunnett2”, . ,0.95, . ,3)

= 2.349.

A confidence interval about an estimated proportion is obtained with the given critical value

to maintain the joint coverage probability of the resulting three risk ratios in the many-to-

one comparisons of proportions. The score limits are obtained as,

(ls0,us0) =
9+(2.349)2/2
87+(2.349)2 ∓2.349

√
9(87−9)/87+(2.349)2/4

87+(2.349)2

= (0.049,0.205),

for the placebo group, and

(ls1,us1) =
13+(2.349)2/2
87+(2.349)2 ∓2.349

√
13(87−13)/87+(2.349)2/4

87+(2.349)2

= (0.081,0.260),
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Table 5.2: Confidence intervals for the proportion of patients experiencing nausea

Treatment Placebo Coenzyme Remacemide Combination

Sample proportion 0.10 0.15 0.31 0.25

Score limits (0.05,0.21) (0.08,0.26) (0.21,0.44) (0.16,0.38)

Jeffreys limits (0.05,0.20) (0.08,0.25) (0.21,0.44) (0.16,0.37)

for the coenzyme group. Table 5.2 provides the estimated proportions and their confidence

limits for all four groups.

Using these confidence limits for the proportions, we can construct simultaneous con-

fidence intervals for the risk ratios comparing the three experimental groups to the placebo

by applying the MOVER equation generalizing Fieller’s theorem (3.7) in Chapter 3. For

example, the confidence interval for the risk ratio comparing the coenzyme group with the

placebo group is constructed with the estimated proportions of nausea and their confidence

limits. The values to two decimal places are shown for simplification but more precise

numbers were used in the actual calculation. The lower and upper confidence limits of the

risk ratio are computed as

LRR =
π̂1π̂0 −

√
(π̂1π̂0)2 − l1u0(2π̂1 − l1)(2π̂0 −u0)

u0(2π̂0 −u0)

=
(0.15)(0.10)−

√
((0.15)(0.10))2 − (0.08)(0.21)(2(0.15)−0.18)(2(0.10)−0.21)

0.21(2(0.10)−0.21)

= 0.58,

URR =
π̂1π̂0 +

√
(π̂1π̂0)2 −u1l0(2π̂1 −u1)(2π̂0 − l0)

l0(2π̂0 − l0)

=
(0.15)(0.10)+

√
((0.15)(0.10))2 − (0.25)(0.05)(2(0.15)−0.26)(2(0.10)−0.05)

0.05(2(0.10)−0.05)

= 3.65.
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Table 5.3: Simultaneous two-sided 95% confidence intervals for risk
ratios comparing the occurrences of nausea in patients treated with
coenzyme, remacemide and their combinations to placebo

Comparison Coenzyme Remacemide Combination

Sample RR 1.45 3.05 2.46

Wald (0.56, 3.75) (1.32, 7.00) (1.04, 5.77)

Score (0.58, 3.65) (1.38, 6.91) (1.08, 5.70)

Msa (0.57, 3.63) (1.36, 6.82) (1.07, 5.63)

Mjb (0.57, 3.86) (1.40, 7.42) (1.08, 6.09)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits

Table 5.3 summarizes the estimated risk ratios and corresponding confidence inter-

vals constructed by the four methods. As the sample sizes are moderately large, the con-

fidence limits obtained by the four methods are similar, particularly more so for the coen-

zyme group having a sample risk ratio close to unity. For the other groups having a greater

risk ratio estimate, the values of confidence limits are slightly different. As suggested in

the simulation study, the intervals constructed by the score-based methods are shorter than

those by the Wald method or the MOVER with Jeffreys limits. Moreover, the Wald in-

tervals are shifted slightly leftwards relative to the other intervals. We can conclude that

patients treated with either remacemide or the combination of remacemide and coenzyme

have a greater risk of nausea compared with the patients in the placebo group.

Applying the typical analysis for factorial trials, statistical significance of the effect of

each factor, coenzyme or remacemide, was investigated in Kieburtz and Huntington Study

Group (2001) using Fisher’s exact test. The effect of coenzyme was assessed by pooling

across all patients who received coenzyme and comparing them with all patients who did

not, regardless of whether or not they received remacemide. The same analysis for the
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effect of remacemide indicated that its observed adverse effect on nausea was statistically

significant (P < 0.0003). Although the results in the original study agreed with the results

of the simultaneous confidence intervals constructed by the four methods in Table 5.3, the

multiplicity issue was not addressed in Kieburtz and Huntington Study Group (2001).

5.2 A randomized, dose-ranging clinical trial of liarozole in psoriasis

Berth-Jones et al. (2000) reported a study investigating the lowest effective dose of liaro-

zole in the treatment of psoriasis in a dose-ranging clinical trial. The trial was conducted

with a total of 139 subjects equally randomized to receive placebo or liarozole at doses of

50 mg, 75 mg or 150 mg. Excluding two subjects who failed to attend a post-randomization

visit, response to treatment was assessed based on an eight-point global scale representing

the degree of improvement from 1 (cleared, 100% improvement except for residual dis-

colouration) to 8 (worse). The primary endpoint was the proportion of the subjects in each

treatment group having scores 3 or lower at the end of a 12-week treatment period. Table

5.4 summarizes the observed number of patients with marked improvement and sample

size of each treatment group.

Table 5.4: Number of patients with marked improvement of psoriasis

Treatment Placebo 50 mg 75 mg 150 mg

Cases of improvement 2 6 4 13

Sample size 34 33 36 34

As described in the previous example, the confidence limits for single proportions

are computed using the same critical value zα = 2.349 and provided in Table 5.5. Table 5.6

summarizes the sample estimates of the risk ratios and their simultaneous 95% confidence

intervals constructed by the four methods. Although the sample risk ratios of comparing all
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Table 5.5: Proportion estimates and confidence intervals for proportions of improvement

Treatment Placebo 50 mg 75 mg 150 mg

Sample proportion 0.06 0.18 0.11 0.38

Score limits (0.01, 0.23) (0.07, 0.38) (0.04, 0.29) (0.22, 0.58)

Jeffreys limits (0.01, 0.21) (0.07, 0.37) (0.03, 0.27) (0.21, 0.58)

Table 5.6: Simultaneous two-sided 95% confidence intervals for the
ratio of proportions of improvement in the treatment of psoriasis with
different doses of liarozole to placebo

Comparison 50 mg 75 mg 150 mg

Sample RR 3.00 1.83 6.33

Wald (0.50, 19.27) (0.27, 13.35) (1.20, 35.25)

Score (0.62, 16.23) (0.34, 10.81) (1.50, 30.96)

Msa (0.59, 15.94) (0.32, 10.85) (1.46, 30.34)

Mjb (0.60, 24.26) (0.31, 15.75) (1.58, 48.28)

a MOVER with the Score confidence limits
b MOVER with the Jeffreys confidence limits

three dose groups to the placebo group are greater than the null value of unity, the treatment

effect only at the highest dose level is statistically significant. Therefore, we can conclude

that 150 mg of liarozole is at least 1.6 times more effective than placebo in the treatment of

psoriasis based on the simultaneous confidence intervals constructed by the MOVER with

Jeffreys limits.

In Berth-Jones et al. (2000), multiple testing was performed with a Dunnett critical

value obtained by assuming the mean of sample correlation coefficients as the common

correlation coefficient (Piegorsch, 1991). It was also found that only the treatment effect at
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150 mg was statistically significant (P < 0.001) in Berth-Jones et al. (2000). As an illus-

trative example, Schaarschmidt et al. (2009) computed 95% simultaneous lower limits for

risk differences using a Dunnett critical value incorporating sample correlation coefficients.

Both results from the multiple testing in Berth-Jones et al. (2000) and the 95% simultane-

ous confidence intervals for risk differences in Schaarschmidt et al. (2009) suggest that the

treatment effect of 150 mg of liarozole is statistically significant, which are also consistent

with the results in Table 5.6. However, simultaneous confidence intervals for a chosen ef-

fect measure provide each group’s estimated effect size with its margin of error (Walter,

1995).
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Chapter 6

SUMMARY AND DISCUSSION

6.1 Summary

This thesis evaluated four approximate methods for constructing simultaneous confidence

intervals for multiple risk ratios in the many-to-one comparisons of binomial proportions.

For a single risk ratio, the score interval is superior to inverting the Wald interval in terms of

coverage probability, interval width and tail error balance (Gart and Nam, 1988). Extending

these methods to multiple risk ratios, Klingenberg (2010) recommends using a Dunnett

critical value incorporating their sample correlation coefficients with the score test statistics.

Despite its outstanding performance in terms of coverage and interval width, it has two

practical drawbacks. First, inverting score tests requires an iterative algorithm or a series of

substitutions, which may hinder widespread applications in practice. Second, using plug-

in estimates of correlation coefficients to compute a Dunnett critical value may introduce

additional variability for a limited improvement on the coverage properties. Especially, the

effect of using estimates rather than true values may not be negligible if sample sizes are

not large or correlations are greater than 0.5 (Holford et al., 1989).

The MOVER approach generalizing Fieller’s theorem for a ratio of parameters (Li

et al., 2010) may be an alternative, non-iterative procedure to construct confidence inter-

vals for risk ratios. Given accurate confidence limits for proportions and their point es-

timates, the MOVER approach allows the variances of sample risk ratios to be estimated

separately at points closer to the lower and upper limits of risk ratios. Acknowledging
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the potential skewness of the sampling distributions of proportion estimates, the MOVER

approach obtains variance estimates similar to the score method in principle but without

an iterative algorithm (Zou, 2008; Donner and Zou, 2011). As the variance estimates are

recovered from the confidence limits for single proportions, the confidence limits for com-

ponent proportions should be computed with an appropriate adjustment for multiplicity.

A reasonable Dunnett critical value may be approximately obtained assuming a common

correlation coefficient without substantially affecting the coverage probabilities of simulta-

neous confidence intervals.

The simulation results suggest that the MOVER approach with score or Jeffreys con-

fidence limits have desirable operating characteristics, comparable to those of the score

method with a Dunnett critical value computed using a constant correlation coefficient of

0.5 assumed under the complete homogeneity of proportions. Especially with small sam-

ples sizes, the MOVER approach with Jeffreys confidence limits for single proportions

have superior coverage properties than the score-based methods, either inverting score test

statistics or applying the MOVER approach with score limits. The Wald method tends to be

quite conservative for small to moderate sample sizes. All four competing confidence in-

tervals tend to have comparable median total confidence interval widths. Nevertheless, the

MOVER with Jeffreys limits may yield intervals somewhat wider than the other methods,

especially with small sample sizes.

6.2 Limitations

Confidence interval methods relying on the central limit theorem are known to be robust

against mild deviations from normality, yet substantial skewness of the underlying distribu-

tion may be problematic, yielding less accurate coverage probabilities even for large sam-

ples sizes (Pocock, 1982; Andersson, 2009). Acknowledging disparate tail errors for large

values of risk ratios, Gart and Nam (1988) proposed an improved score interval corrected
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for skewness (Bartlett, 1953, 1955). Therefore, a more comprehensive evaluation including

additional methods and simulation scenarios (e.g. a larger number of comparisons K) may

be beneficial.

Although the effect of unequal sample sizes on the performance of the methods was

considered, the evaluation did not include unequal sample sizes resulting from unequal

randomization. For example, unequal allocation adopting a popular recommendation n0 ≈

ni
√

K for normal means (Dunnett, 1955) may be demanded for financial reasons. The

evaluation of the methods under unequal allocation may be beneficial. If the total sample

size is kept equal as with the balanced design, the performance measures will be more

directly comparable.

The Dunnett critical value for binomial data is commonly computed using plug-in

sample estimates, relying on the assumption of large samples. Nevertheless, we speculate

that using plug-in sample proportion estimates may result in unstable critical values due

to the variability of the estimated correlation coefficients, and consequently less accurate

coverage probabilities. However, it would be interesting to directly compare the effect of

variability of estimated correlation coefficients and a common, constant correlation coeffi-

cient on coverage probabilities as the number of comparisons K, range of proportions πk,

and sample sizes nk vary. Furthermore, a sensitivity analysis using correlation coefficient

values other than 0.5 would be also useful.

6.3 Future Research

The MOVER approach for risk ratios for many-to-one comparisons of proportions can be

readily extended to all pairwise comparison by using a critical value from the studentized

range distribution. Moreover, we can consider the proposed approach in other contexts of

comparing several proportions. For instance, it would be useful to develop simultaneous

confidence intervals corresponding to the Williams trend test (Williams, 1971, 1972) as
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ratios, extending the method by Hothorn and Djira (2011) to binomial proportions. Com-

monly occurring in toxicological studies to determine the minimal effective dose, an anal-

ogous evaluation based on multiple differences of contrasts was also considered in Donner

and Zou (2011). The simultaneous confidence intervals for multiple ratios of contrasts

are constructed by applying the MOVER for ratios with the confidence limits for corre-

sponding contrasts, which are also obtained by applying the MOVER with an appropriate

multiplicity-adjusted confidence limits for single proportions.

The proposed method may be readily extended to the analysis of clustered binary data

commonly arising from teratological experiments involving multiple treatment groups. For

the simple comparison between two treatment groups, the MOVER approach is applied

with the confidence limits about each proportion estimate incorporating the variance infla-

tion factor. For the case of multiple comparisons to control, the proposed method of com-

puting a Dunnett critical value assuming a common correlation coefficient of 0.5 would be

more favourable than using sample correlation coefficients because of additional variabil-

ity to the estimated sample proportions in correlated binary data. Preliminary simulation

results indicate a satisfactory performance of the proposed MOVER approach with an ex-

changeable correlation matrix for the case of correlated binary data.
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