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I. INTRODUCTION

A great deal of attention has been devoted recently to the study of the
behavior of asset prices. One stylized fact produced from such work is the ex-
cessive volatility which asset prices, and in particular stock prices, tend to
exhibit. This observation seems paradoxical, especially when it is viewed within
the context of certain economic models.

Shiller [26] has studied what is known as the pPresent value relation:
w '3

P.= I YEd_, (0 <y<1). @)
=1

Here Pt represents the real price of a stock, dt is the dividend paid in period
(t) to the holder of the stock, Y represents the constant discount factor, and
Et is the expectational operator conditional on all information available at time
t. Starting from expression (1), Shiller derived bounds on the variance of stock
prices which were functions of the variance of dividends. However, these bounds
were dramatically violated by the data. Thus, actual stock prices appear to be
much too volatile to be consistent with (1). WwWith this in mind, the only way to
save the relation (1) would be to hypothesize that the real discount factor (v)
may vary over time. However, Shiller suggests that the movements in (v) needed to
make equation (1) hold identically seem implausibly high.

LeRoy and Porter [17] have also studied the relation (1). They show that
the variance of the stock price (Pt) should be bounded from above by the variance of
the perfect foresight version of equation (1) (i.e., the perfect foresight consists
of replacing Et(dt+k) with dt+k)' However, this bound is also violated when LeRoy
and Porter test it against various data sets.,

Therefore, it would seem that equations which relate stock prices to dividends,

which are discounted at a constant rate, have implications for the second moments
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of prices and dividends which are violated by the data. This in turn implies
that a certain class of models, namely those which give rise to an asset pricing
formula such as (1), seem to be contradicted by the data. However, the manner
in which assets are priced cannot be regarded as robust with respect to different
specifications of the physical environment. Equation (1) will hold only for an
economy in which agents discount ali future dividends at a constant rate. However,
in a model in which infinitely lived agents maximize discounted lifetime utility,
the rate at which future dividends are discounted is proportional to a ratio of
marginal rates of substitution. The discounting of dividends at a constant rate
would then imply that consumption should be constant or that utility is linear.
However, if agents are risk averse and consumption exhibits variability, asset
prices will not be governed by an equation of the form of (1). In an equilibrium
model, variability in the rate at which future dividends are discounted should be
related to consumption, which in turn is related to the dividends which are actu-
ally being discounted.

LeRoy and LaCivita [16] have recognized these points and have utilized a

framework in which agents maximize discounted lifetime utility:

@

t
 BUCe,) @)
t=0
where

ct-A -1

“1-% A>0,44#1
U(ct) =

zn(ct) A=1,

A is the measure of relative risk aversion. The consumers' budget constraint is
+Px =
o F R Sx B 1)
where

c, = consumption in period (t),

X, = quantity of assets purchase by the consumer in period (t).
In equilibrium we have X, =X g4 = 1 for all (t),

Pt = price of the asset in period (t),

r = dividend paid by the asset in period (t).
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They bave found that, for a given distribution of dividends, stock price
variability will be directly proportional to the degree of relative risk aversion
exhibited by agents. This would indicate that the observed stock price vari-
ability may be accounted for by high levels of risk aversion on the part of con-
sumers. Grossman and Shiller [5] attempted to explain the existence of high
stock price variability by hypothesizing that consumption patterns exhibit enough
variability to alter agents' marginal rates of substitution and thereby induce
changes in the value of assets which yield dividends. They found that the
observed behavior of stock prices can, to some extent, be explained by assuming a
level of relative risk aversion in equation (2) of A = 4. One may then conclude
that the observed patterns in asset prices, dividends and aggregate consumption can
be reconciled if we accept that agents possess a high degree of risk aversion.
However, it is not clear that this is the answer to the anomaly because a value
of 4 for the variable A would seem to be rather high in comparison with other esti-
mates of this parameter. Hansen and Singleton [8], using different data than that
used by Grossman and Shiller,l have recently made estimates of A in equation (2)
which were all between O and 1. It should be stressed, however, that they merely
undertook estimating the parameter A, and their objective was not to rationalize
the volatility exhibited by stock prices.

Thus, in summary, we seek to confront the stylized fact that stock prices
tend to be too volatile to be consistent with observed patterns in consumption, real
interest rates, dividends, and existing estimates of individual risk aversion.

Throughout the existing literature on asset pricing, one finds a class of
models in use that have not been entirely successful in explaining all observed
phenomena. An example of such a model would be that of Lucas [18]. 1In this paper
Iucas assumes that infinitely lived agents seek to maximize the discounted sum of
future utilities, as shown in equation (2), subject to the constraint that all asset

markets are cleared (i.e., all assets are held at the equilibrium prices). Thus,
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an agent who has the option to buy an asset will find it in his or her best
interest to forecast and valuate all future rentals or dividends yielded by the
security. In most of these setups the equilibrium is repetitive in the sense
that each period agents will choose to hold the same assets they held during the
last period, although the security prices and consumption patterns may change
over time. In short, agents will participate in the asset market the same way
each period.

It is exactly this type of model which Grossman and Shiller have used in their
attempt to explain this high stock price volatility. Therefore, in contrast to this,
we propose to use the overlapping generations framework with two-period lived agents.
This framework is useful in that it will permit heterogeneous participation in the
asset market. For example, an agent who possesses an endowment of the homogeneous
consumption good in the first period of his or her life may choose to exchange
part of his or her endowment for a title to an asset which may yield a dividend the
following period. Also, agents in the last period of their life are faced with a
trivial decision problem: They will sell all securities in order to maximize
utility. That is, these agents will supply their securities inelastically. There-
fore, two facts should be noted about the environment. First, in any period there
will be one group of individuals who are net purchasers of assets, while there will
be others who are net sellers of assets: mnot all agents participate in the asset
market in the same way. Second, individuals in the second period of their life will

supply all securities inelastically regardless of what forecasts of future dividends

may be. This will be very important because equations such as (1) fail to have any
relevance for the problem faced by any of these latter agents.

We also think it of interest to inquire as to whether this heterogeneous par-
ticipation in the asset market will enable us to produce high asset price variability
in the absence of high risk aversion on the part of consumers. The overlapping

generations construct seems even more appropriate when one considers that titles

-
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to durable capital goods usually last beyond the lifetime of any single agent.
Therefore, the decision regarding the acquisition or sale of assets, or the pro-
duction of new capital may best be answered within a framework of finite lived
agents.

We are also interested in developing a model in which new capital may be
produced. Agents may then trade titles to existing capital as well as invest in
the production of new capital. An essential feature of such a model would be that
investment be irreversible (i.e., capital must be putty-clay). This will allow
us to consider the fluctuations of the market price of capital relative to its
replacement cost on the one hand, and to aggregate investment on the other.

The remainder of this paper is organized as follows. In Section II we specify
the nature of an overlapping generations model in which agents trade the titles to
productive capital goods. Each period there is born a generation of individuals
who live for two periods. These agents are endowed with a positive amount of a
homogeneous consumption good in the first period of their life, and have no endowment
in the second period. In the first period of their life, agents may surrender a
portion of their endowment in return for a title to ownership of some of the existing
capital. This individual can then collect the dividend yielded by the capital in
the second period of his or her life., In addition, there exists a technology for
converting the consumption good into capital which then yields a dividend in the
subsequent period. Thus, agents may purchase existing capital and, at the same time,
invest in the production of new capital. It will then be shown that an equilibrium
exists for such an economy.

In Section III we show, by way of example, that price variability may result
from endowment shocks, changes in the cost of producing new capital, or changes in the
size of successive generations which are participating in the asset market. The model
has no trouble confronting the fact that asset prices appear to be quite variable

whilst dividends and consumption exhibit little variability.
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In Section IV we show that the price of capital will, in general, fail to
possess the Martingale property.

In Section V we show that if it takes more than one period to produce new
capital, then the price of existing capital may rise above the cost of producing
new capital--even in the steady state equilibrium. That is, the cost of producing
new capital is no longer an upper bound on the price of existing capital.

The conclusions are presented in Section VI.

II. AN OVERIAPPING GENERATION MODEL WITH CAPITAL ACCUMULATION

In this section we consider an overlapping generations model in which, at each
date (t), Nt identical two-period lived agents are born. Each agent born in period
(t) is endowed with LA units of the homogeneous consumption good when young and none
in the second period of their life. Members of generation (t) maximize a separable
utility function U(c;) + V(c;), which represents the utility derived from consumption
in the first and second period of the agent's lifetime. Henceforth > we shall assume
that U(-) and V(-) are strictly concave, twice continuously differentiable and

strictly increasing. Further, we assume

U’(cf)-'wasc -0

-0

Nt =t

V’(cg) - ®as ¢

c'z:v” (c;)
051 +—4—2

sSEa<l 3
Ve 3)

cf igh (cf)

01+ (%)

t
v (cl)
It should be noted that equations (3) and (4) impose a restriction on relative risk
aversion.

At the beginning of period (t) the members of generation (t-1), in aggregate,

hold Kt units of the available capital. All capital-is assumed to be putty-clay.
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That is, the capital good cannot be converted into the consumption good. However,
agents alive at time (t) can convert the consumption good into capital at the rate
Ot. Therefore, at time (t) an agent may convert Bt units of the consumption good
into one unit of capital. Capital also depreciates at the rate (8) per period where
0<&§<1. A unit of capital produced prior to period (t) will yield a dividend
or rental of r, in period (t).

Members of generation (t) can, with their endowment, consume, purchase
existing capital from the members of generation (t-1), or construct new capital of
their own. Such an individual will purchases (Kt/Nf) units of capital, per capita,
from the members of generation (t-1) at a price Pt per unit. They also devote tht
units of the consumption good to producing new capital in the amount X, o At time
(t+l), members of generation (t) receive an exogenous rental, in units of the con-
sumption good, of r, . per unit of capital held at the beginning of period (t+l).
These agents then sell all their undepreciated capital holdings to members of gener-
ation (t+l) at the price Pt+1 per unit.

The problem posed to the member of generation (t) is to maximize U(c;) + V(c;)

subject to the constraints

B (EE) -0 x (5)
1 t t Nt tt

ctsp ((—Kt) +x_)(1-6) + (—Kt +x) (6)
27 el U, Xe N, Xl

where Pt+1 and ¥, are unknown at time (t).

+1
Equations (5) and (6) will hold with equality in any equilibrium. The aggregate

capital stock in period (t+l) is defined to be
Key1

Because capital production is irreversible we constrain X, 2 0,

= (1-6) (K, + N.x,). (7)

The notation is as follows:
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Kt = aggregate capital stock sold from members of generation (t-1) to
members of generation (t).

X, = units of capital produced by a member of generation (t) for use
in period (t+1)

®_ = the quantity of the consumption good needed to produce a unit of

£ the capital good during period (t).

c: = first period consumption by a member of generation (t)
t .

c, = second period consumption by a member of generation (t).

P_ = price of a unit of capital in period (t).

cr

r, = rental received, per unit of capital by the agent who held capital
at the beginning of period (t). This rental will be received by
the members of generation (t-1).

N, = number of agents born at time (t).

Et(=) = the expectation operator conditional on information available at date (t)

We assume that the realization of (wt, Nt’ e, rt) occurs prior to, or simul-

t

taneously with, the appearance of the young of generation (t).3 We also assume that

the vector th, N> e, rt) is intertemporally i.i.d. with the joint cumlative dis-

t
tribution function I'(w, N, ©, r) over the interval [y_,&] X [N_,ﬁ] X [_Q,-B-] X [l:_,;:].
Further, we assume

0O<w fSw<o s

O<KN<N<w,

0<8<0<m=,

0<rx ST <o,

If we define kt (Kt/Nt) as the per capita purchases of capital by members of
generation (t) from generation (t-l), then the agent's optimization problem can be
- rewritten as:

maximize U(c;)-+ V(cg) subject to

kt’xt
ct =w -Pk -6 8
1 % fete T e (8)
t

0
|

5 = (Pt+1(1—6) +-rt+l)(kt‘+ xt). ) )
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The first order necessary conditions for the above optimization problem are:
(10)

PV (cf) = E [V (c;)(P (1-8) + ¢

e+l 4171
t t
2 -
8,V (cp) 2 B[V (c,) (B, (1-8) +x )], (11)
Equation (11) will hold with equality if X, > 0. Equations (10) and (11) together
imply that
x >0=>P =60
t t t} 2)
P_< 9t= x = 0] .
This says that the price of existing capital will never rise above the cost of pro-
duction of new capital, and it may fall below the latter if there is no investment in
new capital.

The market clearing condition is that kt = (Kt/Nt)° Equation (7) also implies

that Nt+lkt+l = (1-6)(Kt + Ntxt)’ or that
= (1-%)
kt+1 Nt-]nl(K:t + Ntxt)' (13)

The "state" of the economy at time (t) is defined to be the vector of variables
ont, Nt’ et, oo Kt)' We shall be seeking a stationary equilibrium for the economy.
That is, we shall study equilibria in which the price of capital and the optimal in-
vestment function can be written as functions of a subset of this state vector. Such
an equilibrium can be said to be stationary because agents who are members of different
generations, but who are faced with the same values for the state variables, are then
faced with the same optimization problem.

The individual agent then believes that the capital stock evolves according to:
K1 ='ﬁ(wt, N> 8.5 K., (14)
which implies that individual investment in new capital is described by the equation

. Y 8
X, = X (75N, ,0, K ) = (%;)(h(wﬁNE’sg’Kt-z - K. (15)

The individual further believes that the price of capital at (t), Pt’ is

related to the state as follows:
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8 ,K ), 16)

Po = Ao 50 K

and the vector of random variables th,Nt,et,rt) is intemporally i.i.d. with the
joint cumulative distribution functionlfow,N,G,r) over the interval

[wsw] X [N,N] x [8,8] x [z,T].

\a

A few words should be said concerning the role of r, as a state variable.
Members of generation (t) are not affected by the realization of r. because the rental
goes to members of generation (t-1). Agents of generation (t) are, however, affected

by the realization of r But r 1 is unknown at time (t). Since the vector

t+l’ t+
th,Nt,et,rt) is distributed i.i.d., we know that the realization of T, provides no
useful information to members of generation (t). Hence, although the realization of
T, is a characteristic of the state at time (t), its realization will not affect the
decision problem of members of generation (t). Therefore, equations (14), (15) and
(16) are written with r, deleted.

Now we assume that agents have expectations which are consistent with their
environment in that:

(1) the actual evolution of capital stock is that given by equation (14);

(2) the price of capital will actually follow the law of motion given
by equation (16); and

(3) the perceived cumulative distribution function.?@w,N,e,r) is the same as
the actual cumulative distribution function I'(w,N,0,r).

In Appendix A we present a proof of the existence of a stationary solution to
the system described by equations (8) through (13). In Appendix B we show sufficient
conditions for this equilibrium to be unique. The latter appendix also contains a
general comment regarding the uniqueness of such equilibria.

Several characteristics should now be noted concerning the pricing function,
The price of capital at time (t) has an upper bound of Bt and may fall below Gt only
if no new capital is produced. The variability of Pt will depend upon the structure
of the environment. However, we can see from equation (16) that the realization of r

t

has no effect upon the equilibrium price of capital.. The reason for this is obvious.
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The realization of r, does not affect the decisions made by members of generation
(t), and since the vector (wt,Nt,etgrt) is intertemporally independent, the reali-
zation of r. will provide no useful information concerning the environment which
members of generation (t) will face in the second period of their life. However,
we need not restrict ourselves to environments in which the vector th,Nt,et,rt)
is intertemporally in.dependent.4 By removing this restriction, the state vector
could be enlarged to include present and past realizations of these exogenous
variables. Then equation (16) would be a function of all these variables. Further,

it may be that r_would become an argument in equation (16) and hence the realization

t
of T, could affect Pt. For example, if the rt process is correlated in some manner,
then the realization of . would help to predict rt+1° In this case, the realization
of T, alone may influence Pto However, the occurrence of an r. which implies that
future rentals should be higher does not mean that the price of capital should also
rise. To illustrate this, consider the case developed in Appendix A where equation

(16) is non-decreasing in w, and ete Further assume that

t

Covariance (w ,rt) <0,

t+l

Covariance (© ,rt) < 0, and

t+l
Covariance (rt+l’rt) > 0.
Should there occur, in any period, an unusually low realization of r.> this could
cause future rentals to be lower at the same time as causing future endowments and
costs of production of capital to rise. Thus, if the latter effects dominated the
former, we could have that the price of capital, and the dividends yielded by the
capitaly would be negatively correlated! We think that this type of result would be
difficult to motivate using a relationship of the type shown in equation (1). Of
course, in general, the observed correlations would depend upon the probability
structure of the environment.

Lastly, we are reminded that this framework is not unrelated to the literature

on "Tobin's q" (see Sargent [24] and Tobin [30]). In this case
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price of existing capital  _ EE
=5 -
t

9 = cost of producing new capital
Then we have:
X, >0= q=1,
q<1l =x = 0.
Therefore, this statement implies that the model is consistent with the literature
that has found a positive association between the level of investment and a shadow

price of capital obtained from stock market data (see, for example, [19]).

ITI. SAMPLE ECONOMIES
In this section we study a particular environment of the type described in
the previous section. We assume that all agents have preferences of the form
t ty _ t t
U(cl) + V(c2) = £n(cl) + £n(c2)o

Equations (10) and (11) become

P

t 1
[ ] =E [——)
we o Bk - Ox, tik +x

4]

t 1
[t 25 | ] .
wt Ptkt txt t'k + xt

Because of (8) we have

1 1
E [ ] =1 1 .
t kt 4-xt kt<+ xt

If X, > 0, then Pt = Gt so that we have

Ve

et(kt + xt) = ('2—)
and so
Kt"l'l N (k + x )(1 §) = (Ze )(1 - 8).

We then have

e
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x = [S— - =5].
t Zet Nt

1f P, < et’ we have X, = 0 and we have

Kl: wt
Pt(Ft-) =)
and so we know
w N
= (<L) (=t
and, hence, in this case we have

For this example the functional forms (14), (15) and (16), respectively,

take the forms

N LA
K 4 = max{Ge— )(1-6), (1-8)K, ] (17)
x, = max{0, (—— - -—)} (18)
P, = min{® , ( )} 19)

Equation (17) reveals that the upper bound on capital stock is

( )(1 5)

and the lower bound on capital stock is
Nw
K =(—) @-%).
20

Two special cases must then be considered. These are illustrated in Figures 1
and 2. In Figure 1 we see a case where there is investment in capital (xt > 0) every
period and therefore Pt = et Vt. 1In this case, capital depreciates at such a high
rate that agents find it optimal to produce more capital every period. This situation

will occur if

W 2

N
(1-8) < (—
Nw
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Kt+l

1 -6) L

Rw
(1-8)(—)
29

Figure 1

Kt:+l

N w
(1"5)(7ﬁr)

(1-8)K,

Ny
A= === g~ - = = - -
29

Imp — —

Figure 2

e
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Figure 2 illustrates the case where there may or may not be investment

in new capital in any given period. If

t t
>
Kk~ G
t
then
X, = 0 and
P = (Lot
t ZKt
Conversely, if
N w
t t
K_< (—5-
t 2 ¢
then
w K
t t
X = (5 - ) and
t 2et Nt
=0
Pt t

For the particular case shown in Figure 2, whenever

Ny
1-8)Gg—) > A
t

we then have X, > 0 and P, = Qt with probability one.
The reduced forms (17)-(19) allow us to study how the price of capital, as

well as aggregate variables, behave within a stochastic environment. Table 1 contains
an example of an economy in which uncertainty is introduced through endowment shocks.
For different depreciation rates we have calculated the average price of capital as
well as standard deviation of the price of capital. We also show relative volatility
measures of the price of capital, aggregate consumption, investment and total income.
Table 2 contains similar statistics for an environment in which there are shocks to
the cost of production of capital. Lastly, Table 3 contains an example of an economy
in which there is uncertainty concerning the size of future generations. In all cases

we can see that the price of capital will have a positive variance while the returns

or dividends to the capital are constant.
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Table 1

N=1, 6 =0,5, r =2,0
Probability Distribution of w

W Probability

5 1/2

10 1/2
5 P o(P) p(P) p(e) p(x) o)
.02 .3854 .1198 .31095 .0948 1,529 . 0988
.05 .3936 L1121 .2848 .1051 1,341 .1110
.10 L4094 .1001 .2456 L1373 1,257 .1378
.25 .4536 . 06965 .1535 .2242 .9974 . 1967

Definition of Symbols

P = average price of capital,
o(P) = standard deviation of the price of capital,
p(P) = coefficient of variation of the price of capital.
p(e) = coefficient of variation of consumption,
p(x) = coefficient of variation of investment,
p(y) = coefficient of variation of total net income,

The coefficient of wvariation is defined to be the standard

deviation divided by the mean,

TIn the examples shown in Tables 1 through 5 the specified probability
distribution was used to generate values for the exogenous variables for each
time period. This would then result in numerical values for the asset price as
well as aggregate consumption, investment, and income for each period. We then
used a sample size of 8000 to calculate the relevant statistics mentioned in
these tables.

io
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.02
.05
.10
.25
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Table 2

N=1, w=10,0, r = 2,0
Probability Distribution of ©

6 Probability
2,0 1/2
0.5 1/2
P a(P) p(®) p(c) p(x) o(y)
.51156 01747 .03416 L0275 1,487 L0211
.53109 . 04978 .0937 .0639 1,409 . 0485
.57099 12517 ,2192 .1189 1,3411 .0877
.7346 .3676 . 5004 .2489 1.1888 .01641
Table 3
w = 10,0, 6 = 0.5, r = 2,0
Probability Distribution of N
N Probability
100 1/2
70 1/2
P a(P) o(P) ple) p(x) o(y)
L4342 .06807 .1568 .05598 1.533 .0316
L4458 .05908 .1325 .0728 1.3369 .0672
L4637 .04747 .10237 .10376 1.1329 .1099
L4919 . 01429 .0291 .15589 .6882 .1594
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Before we can compare statistics derived from such a model with documented
statisties or stylized facts, we must decide on the length of the "period" of
our model. Only after this decision is made can we determine that we should com-
pare the model to data which are monthly, quarterly or yearly. However, the model
does not lend itself to an easy answer to such a question. This problem is not
something which this model alone must face. Even if agents were infinitely lived,
there would still be a problem in how to "match the model with the data'". With
this caveat in mind we can, at least casually, compare these examples to statistics
in the liferature on this topic. Shiller [26] found coefficients of variation on
stock prices, for two different set of annual data, of 0.344 and 0.362., Grossman
and Shiller [5] found that some degree of this variability could be explained by
using data on consumption of nondurables and services. We have found the coefficient
of variation for consumption of nondurable goods plus services to be (000464)5 from
1929 to 1979 and that for consumption of goods and services from 1889 to 1953 to be
(0.0592).6 The first row of Table 1 is close to mimicking these statistics. The
use of lower depreciation rates would yield higher price volatility with lower con-
sumption variability when there are endowment shocks. In any case, these examples
are capable of yielding price variability which is greater than aggregate consumption
variability even when the rental paid to owners of capital is constant. These
examples are also consistent with the observation that investment is more volatile
than either aggregate income or consumption.

Of course, in these environments the price variability is induced by factors
other than changes in returns to capital. Table 4 presents an example of an economy
in which there exists variability in rentals but no variability in the price of
capital or investment.

Hall [6] has found that changes in stock prices in a given period help predict
aggregate consumption in the following period.7 Table 5 presents an example of an

economy in which this phenomenon exists. Here aggrégate consumption is regressed on
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Table 4

N=1,8 =0.5, w =100, § = .10

-

Probability distribution of r

. _r Probability
2.0 172
0.5 1/2
P = 0.5

o(P) =0

o(c) = 6.7476

o(x) =0

Iable 5

N=1,0=0.5,r =20, § =.10

Probability distribution of w

W Probability
10 1/2
5 1/2
| T e et sy et
R2 = ,3881
| AP_ . =P . - P

Numbers in parentheses are standard errors.
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lagged consumption and the lagged change in the price of capital. Coefficients
on both independent variables are significant at the 95 percent confidence level.
We feel the reason for this result is enlightening. It lies in the fact that .

aggregate consumption has two sources: endowments and capital returns. A higher

price of capital in a period may signal increased investment in capital, and
therefore higher total rentals in the future. This result could not be obtained
from the model used by Lucas [18]. In the latter framework knowledge of aggregate
consumption reveals all there is to know about the economy since the only source
of the consumption good is the rental yielded by the capital. The price of the

relevant asset gives no extra information with regard to future consumption,

IV. THE MARTINGALE PROPERTY
From equation (L0) we have
t
1-6
i E_[V () (B A-8) +x )]
t g (c;)

P

The price of capital, adjusted for depreciation and the rental payment, will in
general not follow a martingale for reasons similar to that given by Lucas [18]:
U(+) and V() are not generally constant functions of consumption.

It is also of interest to consider the situation illustrated in Figure 1.
In this environment, where there is investment in every period, we have that Pt =6
for all (t). If the {Bt} process closely resembles a martingale, then the {Pt}
process will also resemble a martingale. However, as noted by LeRoy [14], this is
not what is generally meant when we speak of the martingale property. Instead, it
is the stock price plus dividends which should follow a martingale. In any case,
as emphasized by Danthine [3], Lucas [18] and Sargent [23], the failure of Pt to

follow a martingale does not imply that markets are not in equilibrium,

"
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V. AN EXAMPLE IN WHICH CAPITAL TAKES TIME TO PRODUCE

In Section III we showed that several factors could cause the price of an
asset to exhibit variability. However, because capital could be "“produced today
for use tomorrow', it followed that the price of existing capital could not rise
above the cost of producing new capital. Thus, because this cost of producing
new capital acts as an upper bound on the price of existing capital, it may actu-
ally restrict the price of existing capital from exhibiting even more variability.
In this section we present an example of such an economy where there is no such
bound on the price of capital in equilibrium, Because the bound is no longer
present, it may then be that the price of existing capital can possess even more
variability in such a stochastic environment.

In this section we consider an overlapping generation model in which at
each date (t), N (> 0) identical two-period lived agents are born. Each agent born
in period (t) is endowed with W, units of the homogeneous consumption good when
young and none in the second period of their life. Each agent maximizes a separ-
able utility function of the type described in Section II.

At the beginning of period (t), members of generation (t-1) hold in aggregate
Kt units of the available productive capital. The capital may not be converted into
the consumption good but agents alive at time (t) can convert the consumption good
into capital at the rate O, However if © units of the consumption good are set aside
in period (t) for the production of capital, the capital will not be "productive"
until the beginning of period (t+m). In period (t), productive capital yields a
dividend or rental of (rt) per unit per period. Further, productive capital depreci-
ates at the rate (8) per period where 0 < 8§ < 1,

Members of generation (t) can, with their endowment, consume, purchase
existing productive capital from members of generation (t-1), devote some of their

consumption good to the production of new capital, or purchase ownership to units



22
of the consumption good which were devoted to capital production in the past
but which are not yet productive. We assume that it takes n periods for any
capital to become productive. Thus, agents of generation (t) who devote (Gxt)
units of the consumption good to producing new capital, will have produced X,
units of the consumption good which will be productive at the beginning of
period (t4n). The price, in period (t), of productive capital will be denoted
by Pt’ whilst the price of the homogeneous consumption good devoted to capital
production in period (t-i), which will be productive in period (t-i#n) will be
denoted by qi.

A feature of interest of this environment is that in period (t), members
of generation (t-1) will supply all stocks, of productive and soon-to-be-productive
capital, inelastically.

The problem posed to the members of generation (t) is to maximize

U(cf)-+ V(cz) subject to the constraints

t n-ly
= - - .
°p B Rli® on) D% Feent T e
t : n-l
s -
Cp B Ry A-8) +r ) Ceptxy g ) i-z-z Uil Feonril T Penn®eoni2

Of course, the terms in the summation will be zero if n = 2. Section II contains the
case where n = 1. We constrain xj 2 0 for all j. The market clearing conditions are

then

[l

k

t Kt /N

keyp = (kg 2 14)0-8)

The first order conditions for the agent's optimization problem are then

t
Et{et-l-l A-8) +% W (cy) }

]

t
PtU' (cl)

2 ty > t . .
Q.U (e)) 2 E {(2_,V (c;)} (with equality if x ., > 0)

(o

1)
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i t i-1 t
i > = ad
th'(cl) = Et{qt : V'(cz)} (with equality if X nd 0 for i=3,4,...,n-1)

W

n-1 t . R
Et{qt+1 V'(cz)} (with equality if X, > 0).

8v’ (1)
Our goal is to provide an example of an economy where the price of capital
will rise above its cost of production. We provide an example where we use the
utility function U(cf)-+ V(c;) = zn(c:) + zn(cz) and specify the following parameters

10 V¢

]

w
t

r, = 5 V¢t

6§ =0=1/2

We set n=2, so that consumption good which is set aside for capital production
in period (t) would be productive in period (t+2). 1In this economy, the steady

state equilibrium will have

P, =P vt
ke =k g Ve
. th = xt ¥Vt

The steady state value for the individual holdings of capital stock will be
k = 1.,9237 while the equilibrium price of capital will be P = 1,89948. Thus the
equilibrium price of capital, in units of the consumption good, will be higher than
the cost of production of capital.

Because the price of capital does not have an upper bound in such an environ-
ment, as opposed to the environment in Section II, the price of capital may exhibit

even more variability,

VI. CONCLUSION
We have developed an equilibrium model in which the price of capital may
exhibit variability which is not attributable to changes in rentals or dividends
. yielded by capital. 1In our environment, these factors could be endowment shocks,
changes in the cost of producing new capital, or changes in the number of asset market

participants. The method by which existing capital is priced does not imply any
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obvious correlation patterns between the price of capital and the rentals which
it yields. In fact, the two variables could exhibit negative correlation.
In a model in which it takes one period to produce new capital, the price

of existing capital will equal the cost of production if new capital is being

(

produced. However, if the price of existing capital is below the current cost
of production, investment must be zero. The technological rigidity in this
environment impedes rapid decreases in the capital stock and imposes an upper
bound on the price of capital. We then showed that if capital takes more than
one period to produce, this upper bound is removed. It remains to be seen as to
whether this would permit the equilibrium price of existing capital to possess

even greater volatility.

(L]



APPENDIX A

This is a variation of a proof devised by Aiyagari [1].

We rewrite equations (8) through (13) as

P.K

t _ t e+l

E T NEE) (A1)
ot = Pra1fen 4 fenfen (a2)
2 N (1-8)N

t t
[ 2K
eeHl | o, oe to,, t

L(——l_mt U e]) = B LV (eD)] (a3
Keyp > A-8K, =P, =6,

(a4)

Pt < et => Kt+l = (l-G)Kt.

Now we seek functions h(wt, Kt’ Nt’ et) and q(wt, Kt’ Nt’ et)

N

such that (Al) - (A4) hold identically in (Wt’ K et) when we set

A

K = h(wt, Kt, N, 6.)

t+l t’ 't

Pt = q(wt, Kt’ Nt’ Gt).

In the remainder of this appendix we seek to show that such
functions exist.

Define the function n(z, w) as the solution n in the following

equation:
nU'(w-n) =2z for w, z 2 0.
Since U(:) is strictly concave, and U'(ci) + ® as c; + 0, it is clear

25
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that for each w, z 2 0, there exists a unique n € [0, w] solving the
above equation. Since U(:) is twice continuously differentiable,
n(-, *) is once differentiable, and its elasticities are given by:

M U'(w - n)
n U'(w=-n) = nU"(w-n) "’

Consequently we have

0S—31. (A5)

Also,

wnZ —wU0"(w-n)

n U (w-n) - nU"(w-n)

and consequently

T2
n

1 (A6)

nAa
A

0

by equation (4).

Henceforth we assume that there exists a K such that:

K 8
t.., t > A7
T](CZV (Cz), y_) . r K = (l—G)N ( )
c, = —
2 q
Now define
T=1-8) [Nw

K

5 |&

We will see that K and K will serve as upper and lower bounds,
respectively, on the aggregate capital stock in the sense that if

Kt e [K, K], we must have Kt: 41 € K, K]. We assume that the economy
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begins with Kt e [K, K]. To show that K is an upper bound for the

aggregate capital stock, note that if K_ 2 K we have

t

Koy = (1= 8) (K +Nx) (1—6)(E+N—g‘i)

[ ek 7K

AGw., K, N): [w, w] x [K, K] x [N, N] » Eq-(;_‘é), NA-9)

t+l

Let

and let A(-, *, *) be continuous in all arguments and non-decreasing in

its first two arguments. Let

A{w_, K., N) K
oL A S S
Kt+l = [1-6)] max { 5 ) N } Nt (A8)
t t
ct=rt+th+1
2 (1-6)N
t
8 ..K N
. t+1 t+1 t+l
+“‘m{ N, N, c A Ko Nt+l)} (49)
B(w,, K_, N.) = n(E(coV'(c5)), w.) (A10)
t> Tt Tt 2 277 Tt

where the expectation in (AlQ) is taken with respect to the distribution

of (w ). The following proposition shows that the

t+l’ Nt+l’ et:-t-l’ T4l

function B(-, *, *) defined in equation (Al10) has similar properties to

that of the function A(*, -, *).

Proposition 1: For K=K <K, wSw 2w, NSN_ I, wehave

8K 6 K
B(w,, K., N e [ﬁ(l ~ %)’ N - G)J .
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Further, B(wt, Kt’ Nt) is continuous in all arguments and non-

decreasing in (wt, Kt)'

Proof: Since A(+, -, *) is a continuous function, Kt+l is also a

continuous function of (wt, Kt’ Nt)° Since

9K &%
A(Wt; Kt’ Nt) € [ﬁ(l ~ 6)’ H(l - 6)] ’
= t .
we then have Kt+1 ¢ [K, K]. Therefore, ¢, is a continuous function of

(wt, Kt’ Nt)' Thus, we have that B(+, ¢, *) is continuous. Since

- toe, £ . _
A(wt, Kt’ Nt) is non-decreasing in (wt, Kt)’ (c2V (cz)) is also non
decreasing in (wt, Kt) by equation (3). Since n(Et(c;V'(c;)), Wt) is
non-decreasing in (wt, Kt)’ we have that B(-, -, ) is non-decreasing

in its first two arguments.

Since'wt S, n(e, *)

- 86K 5 R
B K s s
(wt, . Nt) =W 0 -HF - T-0N "
Since
Nt(l - d)A(wt, Kt’ Nt) 5
8 =k,
t
>
we have Koy = Ko Also
Kr
ey 222,
N
so
t t > t t
Et(c2V(c2)) 2 (CZV(CZ)) . -
2"
Since w ;_g, and n(+, °) is non-decreasing in both arguments, we

t

[t



29

have
ty,,. t
B(Wt’ Kt’ Nt) = ﬂ(Et(czv (32))3 Wt)
K #o
> t.,,. t > =
= n(c,V'(ey), w) . rR =11 - OF
23(———)
by (A7).

If we can show that the functions A(-, +, *) and B(+, +, *) exist
such that B(wt, Kt’ Nt) E A(wt, Kt’ Nt) in equations (A8) - (AlQ0), then

the associated functions

A(Wt’ Kt’ Nt) Kt
h(wt, Kt’ Nt’ et) = Nt(l-s) max { 5 , ﬁ—} (All)
t t
A(wt, Kt’ Nt)
Q(Wta Kt, Nts et) = min {et, Kt } (A12)
Nt
Kt+1 = h(wt, Kt’ Nt’ St) (Al13)
P, = q(w,, K., N, 8) (Al4)

solve the system (Al) - (A4). To establish this note that (A4) is

easily verified. (A9) becomes

t _ rt+1Kt+1

2 Nt(l -3)

K N
t+1 { t+1
+ |——| *min 46 _ ., |z7| Alw__,s K__ ., N )}

[ Nt ] t+l Kt+l t+l t+1l t+l
r K K

t _ Ct+l el t+1

©2 N d-5) + N, CICHTRR PR )
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¢ Feferr | Peafent

c, = + .
2 Nt(l-G) Nt
Also, we have
PR _ Q. K., No» 6)) Chw . K, N, 6)
N (1-9) 1-9¥, Ver Bp0 B Y

n

A(wt . Kt , Nt)

B(wt s Kt’ Nt)

t.,, t
n(E (c,V'(cy)), W)
by (Al0). Now by the definition of n(+, -) we have

PR |, P Kis1
U'lw

_ tor, L
T- o, e E (e,V(ey)).

Hence, equations (Al) - (A4) hold.
The problem is then reduced to finding a fixed point of the

mapping A(Wt’ Kt’ Nt) - B(wt, K, Nt) defined in (A8) - (A10). Our

t

strategy will be as follows. We will define a class of functioms with
certain properties. Next we will define a mapping on this class of

» N

functions similar to the mapping of A(wt, Kt’ Nt) > B(wt, Kt N

defined in (A8) - (A1l0). We then show that such a mapping has a fixed
point. Lastly we show that this fixed point implies the existence of
functions A(*, *, *) and B(+, -, °*) such that equations (A8) - (Al0)

N. ). This in turn

hold i#entically with A(wt, Kt’ N) = B(Wt’ Kt’ ¢

t

implies that this is an equilibrium for the economy.

Let X = 2n K, X = ¢n K. Define

]
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g(es *s *): [Es ;]x[_)s’ E]X[_Il, -ﬁ]

8K ), BE
N(-8)|" T |INA-8)]||°
g(*, *, *) is continuous in all arguments and

= X, N
S { g(w, X, N) non-decreasing in its first two arguments.

lgCw, X, M) - g(w', X, M| S0 |w - w']

lg(w, X, N) - g(w, X', M| S |Xx - x"|

lgw, X, N) - g(w, X, N')| D, [N - N'[.

Define the metric on S to be
1 2 1 2
o(g", g7) = Sup g (w, X, N) - g (w, X, N) |

WE[E’W]
Xe [X,X]
Ne [N,N]

for gl, g2 € S.

Define

Y = 2n(l-8) + n(N) +max {g(w, X, N) - en(8), X - zn(N)}

(A15)

r'e ' ! N'
¢ T REoey TR Ty G e, ¥, ) (416)
g(w, X, N) = an{n(E(c,V'(c))), W} . (A17)

Proposition 2: The set S is compact and convex.

Proof: The set S is bounded because

< gu[ 2K _
lg(w, X, N)| Zn[N(l._a)] for all g € S,
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and (v, X, N) € [w, ¥]x[X, X] x [N, N].
To show that the set of functions S is equicontinuous, pick any

€ > 0, and choose p > 0, yu < e/(1+D +D2). Now if

1
v =w'| + [X=X'| + [N=-N"| <q
we have

lgw, X, N) - g(w', X", N")|

A

|lg(w, X, N) - g(w', X, N)| + |lg(w', X, N) - g(w', X', N|

+ [g(w', X', N) - gw', X', N')I

A

Dy fw - w'| + X = x'| + D, |N - N'|

A

(1+D +D2)(|w—w')| + |x-Xx"] + |[N=N"])

1

A

(1L+D +D2)u <eg.

1

Therefore, the functions of the set S are equicontinuous. It
then follows from the theorem of Arzela-Ascoli that the set § is

compact (see [l10], page 22).
Let g'(-, +, +) and g2(+, -» *) € S. Then for A e [0, 1],
Agl(-, vy *) + (l-A)gz(o, *, *) is continuous, non-decreasing in its

first two arguments and

6K B K
eEn(ﬁ(l-a))’ zn(klll-d))] )

We then have

34
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Delew, X, M) + (-0, X, M) - agtw, X, N)
- 1-ngw', x, W
salghoe, x, M) - gt x, M|+ @ -0 g, X, W)

2
- 8 (W', x’ N)I

[N

(D + @ - |[w-w'| =D, |w-w'|.

Also,
1 2 1 ,
[Ag (w, X, N) + (1L-N)g“(w, X, N) - Ag (w, X', N)

- a-ngiw, x, N) |

A

Algl(w, X, ) - g'(w, X', N |+ (1-A)|g2(w, X, N)

= gz(w9 X', N)l

A

A+@-)x-X"| = |x-X"].

And finally,
1 2 1 .
[xg" (w, X, N) + (1-g°(w, X, N) - Ag (w, X, N')
- (l‘k)gz(w’ X, N')I
S (WD) + (1=2)D,) [N-N"[ = D, |N-N"].
Therefore, Agl(-, vy +) + (l-—A)gz(-, +y *) € S, and so the set

S is convex.

Proposition 3: g(+, -, *) € S.

Proof: Making the transformations

K = ex, K = eY

A(Wt’ Kt’ Nt) exp(g(wt’ Zn(Kt), Nt))

B(wt, Kt’ Nt) exp(é(wt, ln(Kt), Nt))
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and so (A1l5) - (Al7) reduce to (A8) - (A10). Application of Proposition

1 shows that g(w, X, N) is continuous, non-decreasing in (w, X), and

6 K - 6 K
2 ey - é 9 [y é —_—— 3
n(N(l-G)) g(w, X, N) zn(y_(l-s))

Hence, we need only verify that

8w, X, M) - g(w', 2, M| S D |w - w'|
'é(w9 X, N) - é(w9 X', N)' ; ,X - X'l
lgCa, X, N) - (v, %, N) SD, [N -N'].

By virtue of the Lipshitz conditions imposed upon g(+, -, ), we
know that g(+, <, ¢) is differentiable almost everywhere. Hence, from
(Al5) we have that Y is differentiable a.e. with respect to (w, X, N),
and from (Al6) we have that c, is a.e. differentiable with respect to
(w', Y, N'). Hence, E(CZV'(cz)) is a.e. differentiable with respect
to (w, X, N). Finally, since n(-, -) is differentiable, we have that
g(w, X, N) is differentiable a.e.

Now (Al5) implies

< 9Y «
0-%w-D (AL8)
< 3Y < (419)
0= 3% - 1
(A20)
1 < Y ¢ ,1
- L (=) - —_— el
D s @ ~Dy-aw- @ * Dy
1.y '
Considering where = < (1) exp(g(w', ¥, N')), ve have
et r'
N [(l-G) + 6'] and consequently

(U]

[}
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1 ac
(- )(—) =1. (A21)
€2
Also,
ac
1y 2y =L 2%
(c)(aN) = Ay (A22)
e'eY N'
In the region where I (—ﬁ-) exp(g(w', Y, N')) we have
r'eY N'
) = TN + (Tl_) exp(g(w', Y, N')), and consequently,
— Y
r'e N' .
e, A=) * 8Oy e, TN »]
.— - <
ol ) = — - $1.
r'e N' ' '
m + (_ﬁ-) exp(g(w , Y, N )):l
(A23)
Also,
ESAIN &y explg(u’, ¥, N'))
1 Fo8) T 82§ exe (v, -
(—2')('5'N—) (-ﬁ") + = T - ' ' N -
m+ (TI_) exp(g(w', Y, N )):[
(A24)
Combining (A18), (A21), and (A23) we have
ac
1 oY
0= ( )[aY aw] L D1 . (A25)
Combining (A19), (A21), and (A23) we have
o<(1)ac2 A<y (A26)
- cy aY K| -

Combining (A20), (A22), and (A24) we have
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v

-

We can now write

2) T e, "N -T2t

=

(%

E(e,V'(c,))n
~ 2
gl(W: X, N) = { 2 n 1}
1]
E[eV' (c.)] —2 2(ep¥ () -Lic—zﬂ}
. 2 2 c2V'(c2) 3c2 c, Y ow
[]
E[cZV (c2)
wn
2(,1
From (A6), (A25), and equation (3) we have
023 (w, X, N) < (aD, +3)
- 81 y Ay - 1 w . .
By choosing Dl > ﬂ(l+a) we have that
< o <
0= gl(w, X, N) = D1 .
Similarly,
E(c,V'(c,))n
~ 2 27771
gz(w, X, N) = { n }
]
E{[czv'(cz)]{ v?% ) a(czva(cz))} 1 i;? %%}
Ca¥ ¢ €2 €2
[]
E(cZV (CZ))

By equations (3), (A5), and (A26) we have

{o

0= éz(w, X, N) $1.

Finally,
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E(e,V' (cy))n, )
n

g3(w, X, N) = {

: ¢, 8c2V'(c2)) 1 d<:2
E( [CZV (CZ)]{CZV'(CZ) acz } ?:; dN}

E(c2V' (cz))

From equations (3), (A5), and (A27) we have

-a{% + DZ} < §3(w, X, N) £ oD, -

By choosing D )] we have

<[ ]
27 'N(l-a
- £ 3

D2 £ g3(w, X, N) £ D2 .

Therefore, we conclude that

In

g, X, N) - gw', X, N)| D fw-w']

l5(w, X, N) - g(w, X', | S |x - x'|

1A

lgw, x, N) - &(w, X, N)| 2D, [N -n'] .

Therefore,'é(-, -y *) € S as was to be shown. Now equations

(A15) - (A17) define a mapping T: S - S.

Proposition 4: The mapping T:S - S is continuous.

Proof: Let gn(-, ey *) > g*(-, *, ) with gn(~, *, *) € S and let

(l-68) + ) + max{g"(w, X, N) - an(8), X~ a(¥)}

¥ (w, X, N)

gn(l - 8) + en(N)+max{g*(w, X, N) - ea(e), X - 2n(N)}

[}

Y*(w, X, N)
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_ r'exp(Y(w, X, N))
¢y (¥ X N) = =75

' n '
+ min {9 exp (¥ lgw’ X, N)), (%‘)exp(g*(w', Y (w, X, N),N'))}

_ r'exp(Y*(w, X, N))
cz*(w: X N) = N(L - )

+ min{e'exP(Y*éw’ L) A expg(u', Y4, X, ), N ))}

& (w, X, N) = n n(E(c, V'(c, )), W)
n n

g¥(w, X, N) = fn n(E(cz*V'(cz*)), w) .

Then since gn(-, *y *) > g*(+, -, ) it follows that
Y., -y 0) > Y*(+, -, +), and ¢, (¢5 =5 *) >¢c, (-, +5 *), and hence
*

n
§n(', *y *) > g%(+, *, *). Hence, the mapping is continuous.

Proposition 5: There exists a fixed point for the mapping T. That is,

there exists a function g*(+, -, *) €& S such that Tg* = g*.

Proof: Since the set S is compact and convex (Proposition 2) and the
mapping T is continuous (Proposition 4), the result follows (see [10]
page 640).

Let g*(w, x, N) be the fixed point of the mapping T. Define
A*(w., K., N) = exp(g*(w,, 2n(K), N.))

t t
» N et) = Nt(l-s) max{ R R N,

A*(wt, Kt’ N) K }

h(wt, Kt

N
t
I = %* —
q(wt, Kt’ Nt’ et) min{et, A (wt, Kt’ Nt)(KE)} .

[{]

(o,
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The latter two equations define the aforementioned functions

which solves the system (Al) - (A4).
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APPENDIX B

Throughout this appendix, we carry through all assumptions made
in Appendix A. In addition, we assume 0 < a < (1/2).

Next we rewrite the mapping of (Al5) - (Al7) as

Tg = Qn[n(E(cz(g)V'(cz(g))), w) ]

where
r'eY e'eY N'
cz(g) = ﬁ?i::37-+ min{—;r—, (TTQ exp(g(w', Y, N'))} ,
and
Y = 20(l-6) + ¢n(N) + max{g(w, X, N) - 2n(8), x = 2n(N)} .
Note that
oY
sg S1.,
If
eY r'
cp(8) = [:(1-6) * e'}
then
3c,(g)
(—) —2 1
cz(g) 3Y
and if
r'eY N'
c,(8) = m*’-ﬁ-eXP(g(W'. Y, N)) ,
then (&
dc, (g
1 2 <
(cz(g))( Y ) S 1.
Then
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de,(2) 9c,(2z) dc,(z)
1 2 1 2'2) gy 9%
(cz(z))( dz ) = (cz(Z))( 3 az)T oz )

A exp(2)

4
(I
N(L-8)

y S 2.

2@+
N'
+ (—N) exp (2))

Now we may write, for £, g € S
|Tg - Tf|

= [an(n(E(c,(8)V' (e, (8))), W) = 2m(n(E(c,(D)V' () (£))), w))].

(B1)
Also,
3zn[n(E(c2(Z)V'(c2(2))), w) ]
ow
) {E(CZ(Z)V'(CZ(Z)))nl}
n
' ¢, (2) 3(c,(2)V'(cy(2))) 1 dey(2)
E{(CZ(Z)V (CZ(Z))){CZ(Z)V'(CZ(Z))) acz(z) cz(z) dz }
: E(cz(z)V'(cz(z))) }

The first term in parentheses is between 0 and 1 by equaticn (A35) of
Appendix A. The second term in parentheses is positive and strictly

less than one. Hence, by the mean value theorem we may write (Bl) as
|Tg - Tf| < |g - £| .

Since S is compact, it can be shown that T has a unique fixed point
(see [LOJ, page 629, Theorem 2).
A comment is now due concerning the uniqueness of such

equilibria. Consider the class of utility functions of the form
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. 1-A ¢ 1-B
t t (cl) -1 (CZ) =
U(cl) + V(CZ) = 1 — & + 1% (B2)
where A, B 2 0. Note that
1-A
(ct) -1
lim AR — = {n (ct)
1 -A 1"

A and B are the Arrow-Pratt measures of relative risk aversion.
Equations (3) and (4) effectively assumed 0 S A <1 and 0 2B 2 1.
In this appendix we have shown that if 0 S B < (1/2), the equilibrium
would be unique. We conjecture that for utility functions which
exhibit higher levels of risk aversion, one is likely to find that
there will be a multiplicity of such stationary equilibria. One may
see this by using the utility function (B2) in equation (10). This
equation then becomes a polynomial in Pt’ and solving the system for
equilibrium values entails finding the zeroes of such a polynomial.
However, as the measure of relative risk aversion becomes greater,
that is, as B becomes larger, the degree of this polynomial becomes
higher and, hence, the more likely it will be that, for utility
functions of the form (B2) which exhibit a high degree of risk

aversion, there may exist more than one stationary equilibrium.
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FOOTNOTES

1Grossman and Shiller used annual data on nondurable and real consumption
and annual average deflated Standard and Poor's Composite Stock Price Index. Hansen
and Singleton used monthly real nondurable consumption expenditures and various de-
flated monthly composite indices of stock on the New York Stock Exchange. With these
data, Hansen and Singleton obtained estimates of A in equation (2), whereas Grossman
and Shiller undertook a parameter search of a value of A which would "closely" mimic

the time series of stock prices.

21t is not critical that the agents live only two periods. This assumption is
used to make the model analytically tractable and because it does not detract from
its interesting features.

3This will preclude the possibility of risk-sharing arrangements between the

young and old at time (t).

4The proofs of Appendices A and B can easily be modified to accommodate more
complicated distributions of these variables.

SAnnual data for these computations were taken from the National Income and

Product Accounts. The data were in real terms and were then converted to per-capita
terms and detrended. The above statistics were then computed from the resulting series.

6Da.ta for this statistic were obtained from the Kendrick-Kuznets series,

7H;all uses quarterly data.
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