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ABSTRACT

An expected value maximizing sequential search rule can be expressed
in terms of switchpoint values. In adaptive search problems these switch-
points are ex ante indeterminate. This paper shows, for a wide class of
learning procedures, that the adaptive sequential search rule can be re-
expressed in terms of ex ante determinate fixed points. This allows the
derivation of ex ante (and subsequent) probability functions for the duration
of search and the value of the offer eventually accepted by the searcher.
Some examples and comparative statics properties of these functions are

presented.
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1, Introduction

Recently, a number of models have been presented in which the responses
of agents to the search activities of other agents sustain a stationary
non-degenerate distribution of pri.ces.1 In a discussion of the usefulness
of these models Schwartz and Wilde [22, p. 18] noted that while the models
are a response to recognizing that "general equilibrium models yield
competitive equilibria only by making strong assumptions about the information
available to market participants", these models "make strong assumptions of
their own, in particular respecting the methods by which the consumers in
them become informed and the nature of consumer expectations'. Schwartz
and Wilde [22, p. 19] express particular concern over the strong assumption
common to the above models that agents "have rational expectations in that
they know the true distribution of prices in a market when they begin to
search, but do not know which firms charge these prices", and advise that
"2 useful task, from a theoretical viewpoint, is to see what equilibria
would occur in models that drop the rational expectations assumption, assume
real world methods of information acquisition and relatively plausible
consumer search strategies'. The current paper is directed towards this
goal.

Dropping the rational expectations assumption complicates the analysis
of equilibrium search models considerably. The complications arise because,

without this assumption, the search rules employed must include a description

of how searchers learn about the offer distribution they face as they
sample from it. This complicates efforts to deduce ex ante probability
distributions of search length and accepted offers since the quantities

(reservation values) commonly used to parameterize these distributions



are ex ante unknown when searchers learn about their offer distribution
as they search. This paper explains how these ex ante distributions can
be calculated for a sequential search model in which searchers learn
about their offer distribution. The model examines only the supply side of
a labour market and does not explain how the job offer distribution is
generated. The paper should be viewed as providing reéults useful for
the construction of an equilibrium sequential search model with learning
in which both sides of the labour market are modeled together.

The structure of the paper is as follows. The model is presented in
the next section. Section 3 builds on the work of Kohn and Shavell [9]
by establishing the existence of a sequence of ex ante determinate fixed points
and showing the best sequential search rule is completely defined by these
fixed points. Section & explains how the fixed points are used to derive
the ex ante probability functions of search length and the accepted-wage.
Section 5 examines some special cases. Section 6 provides some comparative
statics results and some concluding comments are offered in Section 7.

Most of the proofs are confined to an appendix.

2. The Model

The searcher discussed in this paper wishes to maximize the expected
present value (epv) of a job net of the costs of searching sequentially for
the job.2 The searcher enjoys full recall and may sample job offers from a
set N = {1,..,n} of firms.3 Firms' offers have values which, for brevity,
are called wages w ¢ [3,5], 0 sw< w < ». From the searcher's viewpoint,
firms' offers are i.i.d. with a c¢.d.f. F(w)., The implied p.d.f. is £(w).

At the outset the searcher has some initial estimate Fo(w) of F(w) and, as
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he gathers job offers wl,wz,...,wj, he can compute revisions Fj(wlwl,...,wj)
of his initial estimate of F(w). A variety of learning processes and
dependencies of Fj(°) upon wl,...,wj can be postulated. The specific

postulates of this model are that, for j 2 1,
Fj(wlwl’...‘,w;-’...’wj) > Fj(wlwl"‘.’w;’...’wj) Vw G(E,‘;) (2-1)

. ’ /4
if w, <w

i i’ for i=1,.oo’j, and that

Fj(wlwl,...,wj) is continuous w.r.t. VireeesWye (2-2)

Loosely speaking, (2-1) means that increasing the value of an observed
wage makes the searcher believe it is more likely that better wages will

be observed in the future.4 Notice that (2-1) is consistent with a.wide variety

of learning processes, some of which are very simple, There is no requirement that

these learning processes must cause Fj to converge in prql;gp«i'}{!:y to F.5

Let cj denote the marginal cost of sampling firm j, j=1,...,n. It
is assumed that Cyse--5c are independent of the order in which firms are
sampled.6 Without loss of generality, suppose the firms have been labelled
with the indices 1,...,n so that

C, €c, €+++<C_. (2-3)

1 2 n
Let § 2 0 be the searcher's rate of time preference and define B = 1/(1+§).

max
AL

The problem is to use the stopping rule which maximizes V?(w?ax,wl,...,wjaﬁ),

Denote the best of the offered wages WyseeesW = max {w1,...,wj}; j=1.
the searcher's e.p.v. of continuing to search after observing wl,...,wj,
to deduce the ex ante probability functions for his search length and the

wage he eventually accepts,



3. The Best Sequential Search Rule

IS

For any given order in which to sample firms, the results of Kohn
and Shavell [9] can be applied to express the best stopping rule in terms
of switchpoint wages. In search models with learning these switchpoints
are ex ante indeterminate and, consequently, are not of direct value in
deriving ex ante determinate expressions for the probability distributions
of the length of search and the accepted wage.7 However, the last part of
this section establishes the existence and some properties of a sequence of
fixed points which can be used to derive ex ante determinate expressions
for these.probability distributions.

Kohn and Shavell [9, Theorem 4] show that, for any given vector

wl,...,wj of wage observations,

> 2
w : V?(w,wl,..-,wj:ﬁ) as w2 Sj(wl""’w 32 G-1)

i

where sj(-), the "switchpoint" wage, is unique w.r.t. the given c.d.f.

Fj(wlwl,...,wj), i.e., sj(-) is the wage offer for which a searcher who has

8

observed wl,...,wj is indifferent between accepting sj(o) and observing wj+1.

sj(-) is the value of w solving

S «
w = Vj(w,wl,...,wj,ﬁ)

n
= -cj+1-+ﬁEfj[max{w,wj+1,Vj+1(max{w,wj+1},wl,...,wj+1,B)}lw1,...,wj].(3-2)

(3-1) shows that the stopping rule which maximizes the epv of sequential search
can be expressed in the form

max

stop and accept wj
{ ‘} as w?ax 2s,(w ,...,wj,B ). (3-3)

i1
observe wj+1

This result applies to both static search problems and problems with learning.
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Since (3-3) is the form of the best sequential stopping rule for
any ordering of CyoecesC, it is the form of the rule for the best ordering
of CpoeeesC o For a static problem in which firms make i.i.d. offers, the
epv maximizing order in which to sample firms is sample the least costly
firm first, the next least costly second, and so on (see Weitzman [24]).
This result carries over to the current search problem with learning,

A proof of the following proposition is given in the appendix.

Proposition 1: When marginal search costs are independent of the order of

search and firms' offers are i.i.d., the best sequential search rule requires
that firms be sampled in order of smallest marginal cost.
Proposition 1, (3-2) and (3-3) completely characterize the best

sequential search rule. However, the value of s Gw],...,wj,s) is unknown to

3

the searcher until he receives w,. Thus, although the ex ante probability

h|

that search is of length j can be expressed in terms of switchpoints as
j-1

Pr( N
i=1

se e 2 oo -
{Wi < si(w]’ ,Wisﬁ)} n {Wj sj(w-ls swj’ﬁ)]): (3 4)
this expression is ex ante indeterminate.
The following results provide information allowing the probabilities
(3-4) to be re-expressed in an ex ante determinate form. The first steps are
to establish some of the properties of V?(') W.r.t. w],...,wj. These are then

used to establish the properties of sj(-) w.r.t. wl,...,wj. We begin with

Lemma 1: V?(w?ax,wl,...,wj,ﬁ) is continuous w.r.t. wi, Vi=l,.e0,].

Proof: See the appendix.

V?(-), the epv of continuing to search after WiseeosW have been observed,

3

is an expectation computed w.r.t. the p.d.f. fj(w|w1,...,wj). The nature of

V?(-)'s dependence on w, thus partly depends upon the nature of the dependence

i



of £ (wlwl,...,wj) upon w,. Loosely speaking, an increase in any of wl,...,wj

j i
induces the searcher to believe it is more likely that better wages will

be observed in the future and raises his expectation of the present value of
continuing to search, This learning effect is reinforced if the»increased
wage observation also increases the value of his best observed wage. Overall,

therefore, the searcher's expectation of the value of continued search is

an increasing function of observed wages,

Proposition 2: Vg(w?ax,wl,...,wj,ﬁ) is a strictly increasing function of v,

for 1 i sj<sn-~-1,

Proof: See the appendix,

sj(wl,...,wj,B) is the wage offer needed to make the searcher indifferent
between accepting the offer and continuing to search, given he has observed job
offer values w],...,wj. The above proposition establishes that an increase in
any of w1,...,wj increases the epv of continuing to search which, in turn,
means that the wage offer needed to make the searcher indifferent between con-
tinuing to search and accepting the offer must also be larger; i.e.,
sj(w],...,wj,s) must be an increasing function of w1,...,wj. This is depicted
in Figure 1 for fixed values of wl""’wj-l' It is also apparent from Figure 1

that increasing wj from wg to w’ causes V?(-) to increase continuously from

k|
V?(w,w?,...,w?_l,wg,ﬂ) to V?(w,w{,...,wg_l,wg,ﬁ), requiring sj(o) to increase

* % *
continuously from sj(wl,...,wj_l,wg,ﬁ) to sj(wl,...,w§_1,w;,ﬁ). These

conclusions are depicted in Figure 2 and stated in the following proposition,

Proposition 3: For j = 1,...,n-1 the switchpoint sj(wl,...,wj,B) is a strictly
increasing and continuous function of wl,...,wj.
Proof: See the appendix,
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We are now in a position to establish the existence of the fixed
points w:,...,w:_1 which are used to derive the ex ante probability distri-
butions of the search length and the accepted wage. To illustrate the procedure
consider the searcher's stopping problem after receiving his first wage offer vy (a
visual depiction of this problem is obtained by setting j=1 in Figure 2). His

best action is to

max

max
stop and accept v, >
as w;" = w, < s](w],B)- (3-5)

observe v,

But Figure 2 suggests (3-5) is equivalent to the stopping rule

observe w

max

stop and accept v > % % %

as w, <w,, where w, = s_(w,,B). (3-6)

1 ] 1 11
2

The importance difference between (3-5) and (3-6) is that the fixed point w:
can be evaluated ex ante, whilst the switchpoint s](w1,B) can be evaluated only
once w, has been received. This allows us to write the probability that the
search length is unity in the ex ante determinate form Pr(w1 2 WT), rather

than in the ex ante indeterminate form Pr(w, 2 81(w1,B)); The ex ante proba-
bilities that search is of length j > 1 can all be written in terms of fixed
points similar to w?- This more complex task is postponed to the next section.

* -
The remainder of this section is devoted to establishing the existence of {wj}n !

3=

Definition: Sj(w],...,wj,B) = max{g,sj(w],...,wj,s)}for j=1,...,n-1. (3-7)

An immediate consequence of Proposition 3 is

Remark 1: For j=1,...,n-1, Sj(wl"°"wj’5) is a non-decreasing and

continuous function of WoseoesW o

J
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Notice that Sj(wl,...,wj,ﬁ) is not‘strictly increasing w,.r.t. WyseeesWy
even though sj(wl,...,wj,ﬁ) is strictly increasing. The reason is that
sufficiently high search costs or rates of time preference will lower

55 (*) below w.

Remark 2: S, is bounded below by w and bounded above by w.

3
Sj is bounded below by w by definition (3-7), Sj is bounded above by
w since sj(-) is the value of a wage offer which makes the searcher indifferent
between accepting s j(-) and continuing his search. Since search costs are
positive, a wage offer valued at w will always stop search; i.e.,

v.l>sj(') =>v-1>max{g,sj(')} =Sj(') (3-8)

*
Definition: v, is a value of Wy satisfying

* .
and, for j=2,...,n-1, wj is a value of wj satisfying

* *
Wj = Sj(w.l’coo’wj-l,wj’a)o (3-10)
Theorem 1: w?,...,wz_l exist.

*

Proof: The proof begins by establishing the existence of v, Forward induction
* *

is then used to establish the existence of WoseeosW o

For j=1: From Remarks 1 and-2,
S]:[Y_’V;] - [y"-’]c
*
We can apply Brouwer's Theorem to establish the existence of LA since S1 is

continuous (Remark 1) and since [g,é] is a compact, convex, non-empty set.

* *
For j=2,...,n=1: Given w1”"’wj-l’ Remarks 1 and 2 show

*
S (w.|’000,w

3

j-I’Wj?B); fw,w] - [w,w] and is continuocus w.r.t. Wy
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*
Applying Brouwer's Theorem proves the existence of w,, completes the

3

induction step and completes the proof. Figure 2 illustrates the result, Q.E.D.

It was noted earlier that w; is ex ante determinate., Setting J=2 in
(3-10) shows that, since w; is known ex ante, so is w; which, in turn, makes
wg ex ante determingte and so on,

In general there may be more than one fixed point solution to any of
(3-9) and (3-10). If each of wi,...,w:_l is unique then the searcher's
stopping rule possesses the reservation value property (see Rothschild (191,
Rosenfield and Shapiro [18]). If one or more of w?,...,wi_l are non-unique then
the ex ante probability functions for search length and the value of the
accepted job offer can still be derived in a manner similar to that described
in Section &, but these derivations become significantly more involved. A
condition sufficient for each of wT,...,w:_1 to be unique is that Sj(') always
increases w.r.t. Wj at a rate of less than unity in the neighborhood ofwgc when

%

*
(w1,...,wj_1) = 041,...,wj_1); i,e., for all j=1,,..,n-1,

* * " i %* * , v _
Sj(W.l,'-ost_.l’Wj’B) Sj(w'l"“’wj-'l’wj’ﬁ) <Wj Wj o 11)
for any w3<w’:’] in the neighborhood of w;‘.

(3-11) is not a severe restriction. Firstly, since w < Sj(-) < w the average
rate of increase of Sj w.r.t. wj is strictly less than unity across the interval
[g,&] even if some local rates of increase are greater than unity. Secondly,

(-) to always increase w.r.t. w, at a rate of less

]
and (ii) (3-1l) is a condition

(3-11) does not constrain s

3

than unity since (i) S, may not always equal s

3 3
*

*
concerning only the neighbourhoods of w],...,wj, 80 sj may increase w.r.t. wj
at rates in excess of unity for values of sj below w or for (w],...,wj) not

*

* *
).9 (3-11) quarantees uniqueness for wl""’wj

in the neighbourhood of (w:;...,wj

by miing out fixed points such as w?z in Figure 3 which violate (3-11) by
requiring for their existence that Sj(w:,...,w§_1,wj) increase W.r,.t. wj at a |
rate greater than unity in the neighborhood of w?z. A second important implication

of (3-11) is that, for j=1,...,n-1,
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* * *
(wll""’wj_.-l,wj’s) as wj <wj L4

IV

-
w, <8S
1%
We are now in a position to rewrite the searcher's best sequential
* *
search rule in terms of the ex ante determinate fixed points WyseeosW g and

to derive the ex ante probability functions of the search length and the

accepted wage.

Figure 3

g * *
Sj (Wl, .o .,Wj_l’wj)

45°

i€

(3-12)
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4. The Distributions of Search Lengths and Accepted Wages

Care must be taken to distinguish the ex ante probability functions
derived in this section from other probability functions of search length
or accepted wages which can be defined within the context of the present
search problem. Ex ante, the searcher will possess his own probability
functions of search lengths or accepted wages. These are calculated using his
ex ante estimate fo(w) of the true p.d.f. of wage offers from which he will
sample, £(v). Since typically f (w) # £(w), the searcher's own ex ante
probability functions will generallf'differ from those which state the
true ex ante probabilities of search lengths and accepted wages. It is the
latter true probability functions which are derived in this section. These
functions must also be distinguished from the sequence of conditional proba-
bility functions fo: search length and the accepted wage which can be com-
puted once one or more observations have been gathered. For example, the
p.m.f. of search lengths once vy has been observed will usually differ from
the ex ante p.m.f. of search lengths derived here.

The ex ante probability functions of search lengths and accepted
wages generated by using an epv maximizing sequential search rule must take
account of two complications not present in fixed-sample-size search models..]'0
The first of these is that the value of the best wage offered w?ax depends
upon the search length j, a random variable with a distribution partly dependent
upon the value of w?ax

not indifferent between the orders in which a given set of wage offers may

The second complication is that the searcher is

be gathered. For instance, suppose firms offer wages of either $10,000/year
or $20,000/year. A searcher who is at first offered $10,000 may well choose

to sample a second firm. Suppose the second firm's offer is $20,000. Then
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the searcher will stop and accept the $20,000 offer. This search resulted
in the set of offers {$10,000, $20,000} being obtained in the order
w, = $10,000, w, = $20,000. The reverse order of w, = $20,000, W, = $10,000
is inconsistent with epv maximization.

The searcher's initial decision is to search or not. The interesting'
problems are those in which at least one firm is sampled so it will be

assumed throughout this section that this occurs.
Theorem 2: The ex ante p.m.f. of search lengths is

(1 - F(w:); j=1

-1 * %* d * * ‘
g(j) = < 121 F(mlnlwi: -oo:wj_ll) - 151 F(min[wi,...,wj]); 2 < j < n-1
n-1

1 * * . ae
i:‘l F(min[wi’ oee ’wn-].]) > J_n

The full proof of this theorem is fatiguing and is given in the appendix. To
assist the reader in understanding the result, the cases for n=2,3 are now
described in some detail.

(3-12) with j = 1 quickly shows that for the duopoly case of n = 2

g(l) = 1’1:(w'i'"Slx 2 Sl(wl,B)) = 'r"r(w1 2 wi) =1 - F(w:)
and
g(2) = Pr(W';_'ax < SI(WI,B)) = Pr(w1 < w:) = F(w:) .

The case of n = 3 is a little more complex but offers an opportunity
to explain the structure of the full proof for all cases withn = 3 with a
minimum of fuss. The proof proceeds by deriving the cumulative probabilities

that more than j wage offers are observed for j = 1,2, Beginning with j=1

(4-1)

(4-2)
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we have from (3-12) that
= max = * - - * _
g(l) Pr(w1 P Sl(wl,B)) Pr(w1 p-3 wl) 1 F(wl) (4-3)

so the cumulative probability that more than one wage offer is observed is

g(2) +g(3) = 1 - g(I) = F(wy). (4-)

Moving to j = 2 we have that the cumulative probability that more than two

wage offers are observed is

ma

8(3) = Pr(w, <w"1‘,w2 % <8, 9,8)) (4-5)

The essence of the proof is to show that

* max
W, <w, and w

. % *] <* 4et
1 1 2 < mln[wl,w2 and w Wy . (4-6)

< Sz(wl,wz,B) iff w 9

1

The reader will find Figures 4 and 5 of visual assistance in understanding

the argument establishing (4-6). In these figures w; and w; are used to

denote values for w1 and iy for which the searcher will observe Vg First
of all, notice that the event Wgax < Sz(wl,wz,B) is possible iff Sz(wl,wz,ﬁ) ]

which, by definition (3-7), allows us to write

* max * max
< < -
w, <w, and w, < SZ(WI’WZ’B) ®w, <w; andw, < sz(wl,wésﬁ) (4-7)
*
®w; <w; and w; < sz(wl,wz,B) and w, < sz(wl,wz,ﬁ) . (4-8)

However, Proposition 3 tells us that sz(.) is strictly increasing w.r.t.

Wl’ 80
< ) < Wq W, P 4-9
Wl w1 SZ(WI’WZ’B) 82( 12¥92 ) . ( )

Combining (4-8) and (4-9) gives



% max
w,<w, and w

*
1% 2 <sz(w1,w2,6) and

*
<Sz(w1,wsz) °w1<w1 and v,

*
wz < 32 (Wl,w29B) .
But (3-12) tells us (remember SZ(-) = 82(')) that
* o < *
Wy < 8y (Wy5¥ysP) W, <w,

and, since Proposition 3 tells us that s2(~) is strictly increasing w.r.t. wl,

*

w2 <w2

* ® %
d sz(wl,wz,ﬁ) < 32("1’"2’5) .
Using (4-11) and (4-12) in (4-10) gives

max *

* * *
w, <w, and w < Sz(wl,wz,B) ®w, <w; and w; < 82(w1’w2’6) and

1% 2
* %
Wy <8, (Wp,W,58) .

* * 0k
However, by definition (3-10), W, = sz(wl,wz,ﬁ) so (4-13) is

* max * * *
vy <w1 and Wiy < Sz(wl,wz,ﬁ) @wl <w1 and wl <w2 and vy <w2
o < min( %* *] P <X
L n{w,,w,} and w, <w, .

(4-14) allows us to write (4-5) as
B % % % *
g(3) = Pr(wl < m:.n[wl,wzl,w2 <w,) = F(min[wl,wzl)F(wz) .
To complete the proof for n = 3 we use (4-4) and (4-15) to write

8(2) = F(uy) - F(min[w:’w;])F(w;) .

(4-3), (4-15) and (4-16) together describe g(j) for n = 3, The proof for cases

with n > 3 are higher dimensional extensions of the logic presented from

(4-6) to (4-16).

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)

(4-16)
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Obviously the c.d.f. of the wage eventually accepted by the searcher,
H(w), depends upon the p.m.f, of search lengths g(j) in some fashion, The
simplest case arises when n = 1 since then g(1) =1 and so H(w) = F(w). To

illustrate the idea further consider the case of n = 2, Then

]

H(w) = Pr(wo " <w and j=1) + Pr(wo>" <w and j=2)
1 2

*
<
g SW and ,wl <w1)

% .
Pr(w:l <w and w, 2 wl) + I’r:(w1 Sw and w

1

%* %*
= Pr(min[wl,w] Sw, Sw) + Pr(w1 Smin[wl,w] and w, Sw)

1 2

F(w) - F(min[w:,w]) + F(min[w’;,w])F(w)

F(w) - (1 - F(w))F(min[wi,w]) .

The proof for the general case is given in the appendix.
Theorem 3: The ex ante c.d.f. of the accepted wage is

F(w); n=1
HWw) =
n j-1 * *
FW) - (1-FG) = I Fminlv;,.eew; gowhsn22 .
j: i=

2 i=1

Earlier in this section it was noted that the probability functions
of search length and the accepted wage which are conditional upon some obser-
vations having been received will typically differ from the above ex ante
probability functions. However, the searcher's problem after gathering some
observations can be thought of as an ex ante problem commencing at the instant
these observations are received. Consequently these conditional probability
functions will have the same form and can be derived in the same way as the
ex ante probability functions. The fixed point values will, of course,

typically be different from their ex ante values.

(4-17)
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5. Some Examples

In this section the ex ante probability functions of search length
and the accepted wage are computed for a particular search problem with
learning. Then the results of the previous section are related to some
well-known static search problems.,

Suppose a searcher is aware that job offers are distributed with

the exponential p.d.f.

gw|w) = pe ™, forw >0 (5-1)
and that the searcher has a prior exponential p.d.f. over W of

Po(ﬂlﬁ) = Be-su, for p >0 , (5-2)
The searcher's initial estimate of (5-1) is

£,(0) = j': e ™ e P au=—-=B— | forw>o. (5-3)

The searcher can sample either of two firms and it is assumed that the
opportunity cost of search is low enough to induce him to sample at least

firm 1, which will offer him w When he uses w, to update P, in the Bayesian

1° 1
manner he will obtain the posterior gamma p.d.f, (see De Groot [5, Theorem 3,

p. 166]),
py(BlBwy) = (6+w1)2ue'(‘3”1)”' » for p >0, (5-4)

giving him a revised estimate for the true offer p.d.f., (5~-1) of

2
) i 2(p,)

£ lwp) = [The™ @ ru)lue” P Mapa—L—  sor w0 . (5-5)
(Bt )

e
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B+w
, A I
Notice that Fl(w]wl) 1 (B +w1 +w) is strictly decreasing and continuous

Wer.t, Wy >0, satisfying assumptions (2~1) and (2-2).
Using (5-5) the searcher can compute the epv of continuing to

search when he can rt'ecall wys This epv is Efllmax{wl,wz}!wl] - ¢, and,

by (3-1) and (3-2),

AV

>
W -cy +E, [max{wl,wz}lwll as w; 2 Sl(wl) , (5-6)

1 1

where

Sl(wl) = -c, + Efllmax{sl(wl) ,wz}]wll . (5-7)

Using (5-5),

2 2
sy 2(p+wy) o 2(pHr)%w
Eg [max{s,(ay),w,}|w;] = S1(')‘['01 — dw+ [ ‘;g dv,  (5-8)
1 (B4 tw,) 1 (B +ary)
(W) o) (5-9)
= s, (W) v+~ . S5~
171 7 phagtsy (W)
Using (5-7) and (5-9) to solve for Sl(wl) gives
sl(wl) = (B+w1) (;3+w1-c2)/c2 . (5-10)
The searcher will therefore
stop and accept wl
as w; z (B+w,) (B-i-wl- cz)/c2 . (5-11)

observe w2

*
Solving for vy from (5-11) as an equality allows (5-11) to be rewritten as
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stop and accept w
1 €

as w, [o::2 - BZ -ch(cz-ﬁz) > €, - ﬂz +Jc2(¢2-52) ] (5-12)
observe W, i .

w: is not unique in this case since sl(wl) is quadratic in Wys causing
asl(wl)/&vl >1 for‘sufficiently large w,.

Suppose that, in our example, Wb = 0,01, c, = 10 and B = 0,01, Then
(5-12) is

stop and accept w1 €
as w1 (-0.005, 19,985] (5-13)
observe iy t

The true ex ante p.m.f. of search lengths is therefore

J‘i9.985 O.OIe-O'OIde =1- e-0.19985

= 0.181; j=1

(5-14)

-0.01w, _ =0.19985 _ .
j°;9_985 0.0le dv = e = 0,819; j=2 .

The searcher's own ex ante estimate of g(j) will differ from (5-14) since

his estimate will be based upon fo(w) and fl(wlwl) » Which differ from £(w)

(c.£.(5-1), (5-3) and (5-5)). The true ex ante c.d.f. of the accepted

wage is

H(w) = F(min{w,19,985}) + F(w) (F(w) - F(min{w,19.985})) (5-15)

- i - - 2
= (1-e 0.01m1n{w,19.985})e 0.01w (;_ =0.01wy" (5-16)
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We now use the results of the previous section to derive the ex ante
probability functions of search length and the accepted offer for some
well-known static search problems., In static search problems the switchpoints
sj(°) are independent of past observations since the searcher is fully
informed, and thus does not learn, about the offer p.d.f. £(w). Hence,

from (3-8) and (3-9),

* _ _ . -
wj - Sj(wl,...,wj) b max{?_:sj(wl’...,wj)}, le’coo’wj, jzl L) (5 17)

Weitzman [24] examined a model in which all offers were independently
distributed with known p.d.f.'s and proved that the best order in which to
sequentially sample firms is in the order of non-increasing individual
reservation value. In the notation of the current model, Weitzman's rule

yields
sj(o) = zj, for j=l,...5n (5-18)

where z, is the individual reservation value of the jth firm, and that firms

3
will be sampled in the order 1,...,n satisfying

21 2 22 2 L. 2 zn . (5-19)

Substituting (5-17), (5~18) and (5-19) into Theorems 2 and 3 shows that

the ex ante p.m.,f. of search lengths is

1- F(zl); j=1
g(4) = F(zj_l)j'1 - F(zj)j; 2 5§ <nl (5-20)

F(zn-l) 3 3=n

and the c.d.f. of the accepted offer is
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F(w); n=1
H(w) = (5-21)

n
Fw) + (1-F(w)) £ F(uminlz 1,wl)j‘l; n>2 .
j=2 j- .

(5-20) has also been derived by Reinganum [17, appendix]. In the simplest case
of all where €] = ees = . the individual reservation values are all equal,
reducing (5-20) and (5-21) to
1-F(2); j=1
g(3) ={F)3 X1 - F(2)); 25§=n-1 (5-22)

F(z)*"1; j=
and

F(w); n=1
H(w) = (5-23)

n .
F(w) = (1=-Fw)) £ Fminlz,w)I™L; na2 .
5=2

Letting n*® shows the limit of (5-22) is the infinite sequence of Bernouilli

trials with parameter F(z) discussed by McCall {12], The accompanying limit

of (5-23) is
- F(w) = F(min(z,w]) .
B0 = T Feminlzow)) (5-24)
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6. Comparative Statics

This section examines the effects upon H(w) and g(j) of changes
to discount rates and marginal search costs. The common intuition on
these effects is that increases in the searcher's rate of time preference
or marginal search costs reduce the amount of search undertaken and,
thereby, reduce the average value of accepted job offers and increase
wage dispersion. The current model confirms the first two of these
predictions but shows the third is not always true.

Since the probability functions of gearch length and the accepted
offer are parameterized by wf,...,w:_l the first step in establishing the
comparative statics properties of these probability functions is to
determine how wf,...,w:_l depend upon CpaeeesCy and B. Changes in ¢,
do not affect wf,...,w:_l because it is assumed that at least firm 1
is always sampled, giving <, the character of a fixed cost. Sufficiently
large rates of time preference or marginal search costs will make the
epv of continued search so small as to generate a value for wf =w. In
these search problems only the first firm is sampled and it is a trivial
matter to show that small changes to any of CoseresCy or B have no effect
upon H(w) or g(j). While all of the comparative statics results of
this section are stated as weak inequalities in recognition of this possibility,
the remainder of this section is concerned with the more interesting class
of search problems in which P and CoaecesCy generate fixed point values
larger than w for at least wf. To simplify and abbreviate the presentation

of the comparative statics results it is assumed that the switchpoints

s, (+) are differentiable.

3
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Lemma 2 : wf i{s a non-increasing function of CoaeersCp and B, for j=l,...,n-l.

Proof: Let O be a general parameter used to denote any of CoseeesCy or B.

We begin with j=l. By definition (3-9),

awf asl/aa

o0 lﬁsllaw1

(3-11) requires
asl
0<1’—Sl.
awl

s1 is a non-increasing function of cz,...,cn, B so

4

%*
a_}"s 0, for a [ {cz’ooo’cn’ﬁ} .

We now proceed by forward induction. For any j=2,...,0-1, agsume

i
a-a—s o’ fOl.' i=1’ooo’j [ ]

By definition (3-10),

dS j os, ow*
i+l i+l i
+ z <o P
oWt _ i=1 5%1 o
oa L. asi+1
awj+1

(6-4) and Proposition 3 together imply
oS Jwk

% . —Fés O [ fOI‘ i=1’too’j.
i

(3-11) requires

* *
BS (W 3000 sW W )

j+l

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)

(6-6)

(6-7)

Sj+1(o) is a non-increasing function of cj+2,...,cn,ﬁ which, with (6-5),

(6-6) and (6-7), establishes
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*

o +1 } (6-8)
—%- s0, for o e{cj+2"'°’cn’s .

This completes the induction step and the proof.
Q.EOD.

The above result immediately yields the following comparative

statics results,

Proposition 4: For each k=1,,,.,n~-1, the ex ante probability that more

than k firms are sampled is a non-increasing function of ¢y,...5€ ) and B,

Proof: Appendix equation (A-28) is
k

n * *
E g(iH=1 F(min[wj,...,wk])s (A-28)
j=k+1 j=1
b * *
showing I g(j) is a non-decreasing function of WiseeosWpe The result
j=k+1

now follows immediately from Lemma 2, Q
.E.D,

Corollary 1: The expected search length is a non-increasing function of

02’...,cn md B.

n n =n n n n
Proof: E[jl= Z jg(i)=Z j(Zgx)~- £ gx))=2% I g . (6-9)
j=1 =1 =x=j x=j+1 j=1 %=}

The result follows immediately from Proposition 4.

Q.E.D.

Proposition 5: H(w) is a non-decreasing function of CpsreessCy and B.n

Proof: The result is trivially true for n=1 since then H(w) = F(w), which

is independent of CoseeesCy and B, For n=2, note from Theorem 3 that H(w)
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. * *
is non-increasing w.r.t, WyseeosW 4. The result now follows from
Lemma 2, ‘
Qa EO Dc

Corollary 2: The expected value of the accepted wage is a non-increasing

function of c2"°"cn and Bo
Proof: The result follows immediately from Proposition 5 and the fact that

Eh[w]=‘]§w%l2ﬁ)'dw=

|ihl

w - [ Hw)aw . (6-10)

Q.E.D.

The comparative statics results obtained so far are comforting
confirmations, in the context of a sequential search model with learning,
of results obtained from static sequential search models. However, the
intuition that changes in cz,...,cn or Bwhich lead to increases in the
probabilities of longer sequential search also lead to reduced wage
dispersion is not generally true. While formal arguments can be given
in support of this assertion, it is simpler to proceed by means of a
counter-example to the above intuition.

The commonly employed measures of wage dispersion are the variance
and the coefficient of variation of the p.d.f. of the accepted wage.
Suppose n=3 and that the probability function of firms' offers is

{0.2; w=$20000
fw) =
0.8; w=$10000 .

(6-11)
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* %
Also suppose that c,, c; and P are such that w; =w, = $10000, Then the

probability functions of search length and the accepted wage are

1.0; j=1 0.2; w=$20000
g(j) = and h(w) = (6=12)
0.0; j=2,3 0.8; w=5$10000 ,

The implied means, variances and coefficients of variation are

Eg[j] = 1,0 Eh[wl = $12000
varg(j) = 0,0 and varh(w) = 16x 106 (6-13)
cvg(j) = 0,0 cvh(w) = (0,222

Now suppose a reduction in ¢, results in w; = $12000, w; = $10000, Then

(6-12) alters to

0.8; 3= 0.36; w=$20000

g(j) =40.2; j= and h(w) = (6-14)

0.0; §=3 0.64; w=$10000

and (6-13) alters to

Eg[j] = 1,2 Eh[w] = $13600
var (j) = 0.1 and var, (w) = 23.04x 108 (6-15)
ev (§) = 0.33 ev, (w) = 0,353

Notice that reducing c, has increased both the variances and the coefficients
of variation of both g(j) and h(w). A factor important in determining the

directions of these changes is the direction of the skewness of the offer
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pP.d.f. £(w). It may be that the endogencusly determined equilibrium of fer
p.d.f.'s of sequential search equilibrium models with learning do not allow
some of the above results concerning changes to the extent of price
dispersion since they are obtained in a model with an exogencusly given offer
p.d.f. Until this question is resolved, however, some caution should be
exercised when arguing that reducing information costs necessarily reduces

variance or coefficient of variation measures of price dispersion.

7, Some Comments

This paper makes two contributions to the search literature. First,
it shows how an epv maximizing sequential search rule can be expressed in
terms of ex ante determinate fixed points, rather than in terms of ex ante
indeterminate switchpoint values. Secondly, it utilizes this advance to
derive ex ante probability functions, together with some of their properties,
for the duration of search and the wage which is eventually accepted. No
description is offered for the generation of the wage offer distribution F(w)
and, consequently, the derived c.d.f. of the accepted wage H(w) is conditional
upon F(w). Nevertheless, if an (equilibrium) pair of c.d.f.'s (F(w), H(w))
exists such that F(w) implies H(w), and H(w) induces firms to offer wvages
with a dispersion described by F(w), then the results given here describe
the extent of the dispersions in wages and search duration which will exist
in this equilibrium, The question of the existence of such a dispersed
price equilibrium has already been answered in the affirmative for three
particular static sequential search problems (see [4], [6] and [16]) and for various
static non-sequential search problems (see [2], [8], [20]). The results

presented here will be helpful in answering the existence question when
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searchers utilize their search experiences and any of the many learning
processes admitted in the current model to learn about the offer distribution
they face, F(w). In this way the current paper will also assist in
addressing questions about the existence and properties of rational
expectations equiliBria.

Naturally the form of H(w) depends partly upon the particular
search rule employed by searchers, The current paper presents the form of
H(w) generated by an epv maximizing sequential search rule, However, it
should be possible to extend the arguments of this paper to examine the
probability functions of search duration and the accepted wage generated

by the more general search rules examined in [3], [7], [14], and [15].
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FOOTNOTES

*I wish to thank Glenn MacDonald, Preston McAfee, John McMillan,
Richard Manning, Alan Slivinski and seminar audiences at New York University
and the University of Western Ontario for constructive comments, Any errors
are my responsibility alone, This article Qas written while on sabbatical
at the University of Western Ontario from the Flinders University of South

Australia,

1Examples of these models are Axell [1], Braverman [2], Carlson and
McAfee [4], Feigin and Landsberger [6], Hey [8], Reinganum [16], [17],

Sandanand and Wilde [20] and Varian [23].

2Sequential strategles are not necessarily the strategies which
yield the highest net epv of search, A class of search strategies
including sequential strategies as special cases is presented in Morgan

and Manning [14], Morgan [15], Gal, Landsberger and Levykson [7], and
Benhabib and Bull [3],

3The no recall case may be dealt with in a manner similar to the
analysis presented here for the full recall case, McAfee [11] has described
the probability functions for search length and acceptable price offers

for a static consumer search problem with no recall,

4More formally, (2-1) requires F (wlwl,...,wj) to be first-degree

J

stochastic dominant w.r.t, each of wl,...,wj.

SRothschild [19] and Rosenfield and Shapiro [18] have presented search
models with Bayesian learning. Kohn and Shavell (9] also examine Bayesian

learning.
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6Salop [21] formally introduced search paths into a sequential search
model where firms could be sampled without pecuniary cost. Weitzman [24]
completely describes the best search path when offer distributions are known
and when offers and marginal sampling costs are independent across alternatives.
In some search problems, marginal search costs depend on the order in
which firms are sampled, e.g., if firms are visited physically then marginal
costs will typically be smaller if firms within one locality are sampled
rather than firms in different localities. These problems will usually be
complex and difficult to solve. Nevertheless, the results presented in this
paper extend to these cases. This extension has been omitted because of
the additional notational and analytic complexities required and because

the gain in economic understanding yielded is slight.

7Static search models are models in which the searcher has complete
knowledge of the offer p.d.f. £(w). In these models the switchpoints
are ex ante determinate and can be used directly to derive the probability
distributions of search length and the accepted wage.

8It is important to distinguish the switchpoint sj(wi,...,wj,a)

from the best available wage offer w?ax. sj(-) is the wage offer for

which the searcher is indifferent between accepting sj(-) and continuing

to search with recall when his current estimate of f(w) is fj6w|w1,...,wj).
max

sj(') will usually not equal w, . For more details see [9].

j

e
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9(3-11) implicitly places an upper bound upon the marginal informa-

tion value of the jth wage offer when w, = w'f for i=l,...,j-1. For brevity,

suppose 8, () is differentiable. (3-11) is satisfied if

h|
bsj (w;,...,w;_l,wj,a)/bwj < 1, Since

Sj (Wi‘: o :W}‘_].:wj B) = Vl;(sj (W’fs oo ’W?-l’wj »B) aw.fa R ’wf-l’wj sB)

BV, (s, (+)5whse e oWk ;W oP) B

3, () /wy = —— 1
1 -9V, (y,w¥,.. . w¥ W, »,B) /oy
j 1 j-173 a (e
y sj( )
The numerator of asj (-)/Bwj is the marginal informational value of wj caused
by modifying fj (w ]wit,...,w?_l,wj) by a change in Wy The denominator of

st(-)/Bwj is 1 minus the marginal value of a current best wage offer
y = sj (wir,...,ws?_l,wj,ﬂ). (3-11) is satisfied if the denominator of bs:j(-)/awj
is a strict upper bound for the numerator.

1O'I‘he fixed-sample-size case 1s dealt with in detail in [13].

11
Propositions 4 and 5 can be stated as "1 -G(j) and 1 - H(w)
are both first-degree stochastic dominant W.r.t. C,;e..>c, and B."

121 am grateful to Preston McAfee for suggesting the structure of

this proof.
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APPENDIX

This appendix contains the proofs of Lemma 1, Propositions 1, 2 and 3

and Theorems 2 and 3,

Proof of Proposition 1: Recall from (2-3) that the indices 1,...,n are

allocated to firms so that cl < c2 € eee £ cn. let the index set

{1’,...,n’} = {1,...,n} so that we may use 1’,...,n’ to denote any
arbitrary sampling order of firms 1 to n. The problem is to assign
values 1 to n to the indices 1’ to n’ so as to maximize the ex ante epv

of search given the sampling order 1/,...,n’,

W w
n max max
Vb(Bll',...,n’) = £ max{wl = cyes £ max[w2 =Cyr= Cors

A-1l
W{Wr;ax-cl,‘cz,'cs,,...} * ( )

€€

fz(w3|w1,w2)dw3}f1Gwzlwl)dwz}fofwl)dwl

Since Y is common to all the maxima nested in (A-1) the searcher can do
no better than to set 1’=1, i.e., since 2 is incurred with certainty if

search occurs c,, should be the smallest possible marginal cost .-

1

Once w, is received the searcher's problem is to assign values 2

1
to n to the indices 2’ to n’ so as to maximize

w w
n max max
Vl(w1,6|2’,...,n') = £ max{w2 - Cors £max{w3 - c’2- cg,...}
£, (ws |w1 W, )dw3 }fl (w2 |w1 )dw2
Repeating the above argument shows the searcher should choose 2/ = 2.

Continuing on in this manner completes the result.
Q.E.D.
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12

Proof of lLemma 1: The proof is by backward induction.

max _ - - W max
v:-l(wn-l’wl’ coe ’Wn'.-lﬁs) cn + B.I:_jmx [wn-l’wn]fn-l(wnlwl’ ces ’wn-l) dwn

[t

= =% +Bw - BJ:lax Fn-l(wnlwl’ oo ’wn-l) dwn (A-2)
n-1

(]

BaX
n-1

WiseeesW 4 (see (2-2)) so Lesbesgue's Dominated Convergence Theorem can

and Fn_l(wnlwl,...,wn_l) are bounded and continuous functions of

be applied to (A-2) to prove V;:_l(wzf’{,wl,....wn_l,ﬁ) is continuous w.r.t.

wl’ ooo:wjo

Now assume
Vg+1("?f1:’w1""""j+1’f’) is continuous w,.r.t. WyseeesWyyg - (A-3)
Vg(w?ax,wl,...,wj,ﬁ) = -¢j+1+ﬁjgmax [w‘;ax,wjﬂ,vgﬂ(max[w‘;ax,wj_'_ll,wl,...,wj+1,ﬂ)1 .
fj(wj+1|w1,...,wj)dwj+1 (A-4) !
w';ax and (by (A-3)) V§+1(°) are continuous w,.r,.t. WyseessW, SO
max[w';ax,wj_._l,vg_'_l(')] is continuous w.r.t. wl,...,wj . (A=-5)

[_tg,ﬁ] is a compact interval. Let {Al 2___1 be a sequence of pairwise disjoint

n
sub-intervals such that | Ai = [g,ﬁ] . Denote the upper and lower bounds
i=1

i

of At by bi and ai respectively, i.e., A™ = [ai,bi] Vi=l,,..,n. Define

{xi(w 3 +1) }I;=1 as a sequence of simple functions such that

(»
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xH gy = maxti et v e et s ah 1 Yy, el
v i=1aooo:no (A"G)
Then (A-4) can be written as
max = i
v;(wj ,w1’ uoo’wj’B) '¢j+1+5 lnj;?g-t 121)( [F(bi lwl, e t:wj)
- F(ailwlaoooswj)] (A-7)

(A-5) ensures (A-6) is continuous w,r,t. wl,...,wj. (2-2) assumes

F(wlwl,...,wj) is continuous w.r.t. wl,...,wj. It follows from (A-7) that

n, max
Vil

,Wlso..,wjgﬁ) iS con.tinums W.r.t. wl’...’wj.

This completes the induction step and the proof.
Q.E.D.

Proof of Prngposition 2: The result is first established for j=n- 1. Backward

induction is then used to establish the result for j=1,.,..,n=2, For notational

? = ¥ 4 ) ” = ”
breVity’ let (”j (wl’...:wi"..’wj) and wj (wl’.."wi’..;’wj) Whet‘e

W SW;. <W; St;, let Wl;ax = max{wla...ﬂ;,....wj} and W?ax = max{wl,...,W;,..-,Wj},

and let

4
/
’

wy »B) . (A-8)

= max” ” - max
Aj th'(wj ,wj,B) V'j‘(wj
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N = - /
For jwn-1: A ;= -c_+B J'max{ 1 ,w }fn ](wn|wn_])dwn

w ’
max ’
tec -8B %l; tmal:r.{wn_1 ,wn]fn_1 (wnlwn-I)dwn

=5(J'[ma.x{ ],W}-max .l,w}]f (w

nl o .I)dw

7

w
max /7 - 4
' £ max{wn-] ’wn}[fn-I (wnlwn-'l) Fp-1 (wnlwn-l)]dwn)
v max’ max” A
w1 <w’ 2V SW o so, from (A-9),
v max”
/4
An-l =P 6[ max{wn_1 ’Wn}[fn-l (Wnl u"n-l) - (w | l)ldw

Integrating (A-10) by parts gives

IR [UNNCA AR L N T 1)]
v ’
+B£max" [Fn-'l (wn| wn-l) N Fn-1 (wn wn-'l)]dwn

n-1
The first term of (A-1l) is zero and the .second term is .strictly positive by
(2-1), so
An >0.
This establishes the result for j=n-1. For 1 < j < n-2: Assume the result is

true for j+1. Expressing Ay in the form of (A-9) gives

(A-9)

(A-10)

(A-11)

(]

(0
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w max”
Aj = B(“!;[MX{Wj ’wj'*']’v;""] (Wj_{-l ,wj_H ’B)}

max max

"

v max n lnax" U} ” -
+ I max{wj ’wj+]’vj+1 (wj"'" ,mj‘l'l’B)}[fj(wj'H h)j) j j+1 ‘w )]dwj'ﬂ) (A

wo<w =’wmax <Sw ?ax which, with the induction hypothesis, implies that

i i j

n max’ max’ 4
j+1(wj+1 ’wj+1’B) <V, +10wj+1 ’mj+1’B) The first term of (A-12) is therefore

non-negative, so

v

/”

w
max max” / 7 -13

Integrating (A-13) by parts shows

j
>0

by the induction hypothesis and (2-1). This completes the induction step and

the proof.
Q.E.D.

Proof of Proposition 3: For j = 1l,...,n-1 the switchpoint sj(wl,...,wj,ﬁ) is

a strictly increasing and continuous function of wl,...,wj.
i.0 i )
Proof: Let {wj}i=1 a {owl,...,wj)]i=1 be any sequence of vectors of wage obser-

vations such that

limit oF = .. (A-14
ot B

By the definition of sj(-),

8;@,8) = Vi(s,(0,,8),u::8) (A-15

3 3 -3

and
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limit s (wj,ﬂ) limit vj(s (w ,B).wj,B)

i 3 i

Vn(llmit 8 (0) »B) ,w :B) (A-16)

i

since V?(-) is continuous (Lemma 1). Kohn and Shavell [9, Corollary 2] prove

"

sj(wj,a) is unique w.r.t. w, so comparing (A-15) and (A-16) shows s, is continuous;

] 3

i.e.,

sj(wj,B) limit Sj(w sB) .

-
To show sj(-) is a strictly increasing function of w, for all i=1,...,]j

). Suppose w < w’.

v 1<%

let w3 = (w1,...,w;,...,wj) and W’ 0#1,.. oW

j i".. j
Then by the definition of sj(°) and by Proposition 2 we have

n ’ ? - 7 " A-17
CHORORYL sj(wj,B) < v“(s 3@} 50,8) (4-17)

and

8y (w},B) = ij w}sB).- (A-18)

j’

Kohn and Shavell [9, Theorem 4] show that, for given (w j,B),

v ivg(w,w;,ﬁ) as v 2 s, (u05,B) . (A-19)
(A-17), (A-18) and (A-19) together imply
4
S ( j’B) < Sj(wjpﬁ) L]
Q.E.D,

Proof of Theorem 2: The ex ante probability that the searcher takes more than

one observation is

Pr(3>1) = Pr@i*<s (4 ,8) = PGy

by (3-12) , Hence
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Pr(j=1) = Pr(j>0) - Pr(3>1) = 1 - F(up) . (A-20)

The ex ante probability that the searcher takes more than k=2,,..,n-1

observations is
k max
> =
Pr(j >k) rr(igl{wi <8, (WyseeesvysB) D)

However, the event {w';ax< si(wl,...,wi,ﬁ)} is possible iff Si(wl,...,wi,ﬁ) >w
(since w?ax <w is impossible) which, by definition (3-7), implies Si(wl,...,wi,ﬁ)

= si(wl,...,wi,ﬁ) so that

k
Pr(j>k) = pr(igl{w‘;ax< 8y (Wyseees¥ysB) 1)

k
= 1"1:({1,:1 <5,(4;,8) }ﬂ(igz{mx [y5Wysee .,wil

< Si(wl’wzsou’wiaﬁ) })) . (A-21)

Since si(') is a strictly increasing function of w; for i=l,...,n-1

(Proposition 3),
* %*
w]. <81(w1’B) “w1<w1 had si(wl’wz de0 .’wi’B) < si(wl’wz’ s e ’wi’a) ? v i=2’ ee OSn-l (A-zz)
From (A-21) and (A-22),

k
Pr(j >k) = Pr( {wl <wi}ﬂ( ﬂz {max [Wlswz, oo .’wi] < si(W:,Wz Sees ’Wi:B) }) ). (A'23)
i=

max [wy,w,] < sz(w.:,wz,s) o {w1 < 91(w:,w2,(3)} N {wz < az(w:,wz,ﬁ)] (A-24)

e {w] < 8, (w:,wz,s)} n {wz < w;} (A-25)

Since si(-) is a strictly increasing function of w, for i=2,...,n-1,

2
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Wy <Wy @ 8, (Wy5Wps
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* %
,..,WI’B) < Si(wl,wz,...,wi,ﬂ) v i=2,...,n-1.

Combining (A-23), (A-24), (A-25) and (A-26) shows

Pr(j*k) = Pr({w,l

Pr( {w.l

< WT} N {w'l < sl(wtsw;,ﬂ)} n {Wz < w;}

k

ndan {max[w],wz,...,wi] < Si(w.::w;s'“awioﬂ)}))'

i=3
k

< w’.';} n {max[w],wzl <w:] nan {max[w.',wz,...,wi]

i=3

< si(w:.w:, “eesW,0B) 1))

Continuing in this manner shows

k

Pr(jaC) = Pr( n {maX[w.l,'O"wi] < w:})c

i=1

i

) * *
Since maxfw ,...,w;] <w ® n {wz <wi},

Pr(j*%) = Pr(

i=1 2=1

Pr(

2=1

k i

n n{w <w:})

4

k k .
n n {wz <wi})

&=1 i=y

Pr(

k
n {wz < min[w*,. ..,w:]}).

=1

Since each observation v, is i.i.d. with c.d.f. F(w), (A-27) is

k

Pr(j*k) = I
£=1

Hence,

% *
F(min[wz, e s ,wk]).

n-l %

Pr(j=n) = Pr(j >n-1) = 1 F(min[W:aa..,wn_ll).

Finally, for 2 <k

£=1

sn - 2,

Pr(j=k) = Pr(j > k-1) - Pr(j>k)

k-1
= 1
21

- : k
* * * %
Finfw ,....w 1) - L‘I;Ill-‘(min[wz,...,wk]) .

Q.E.D.

(A-26)

(A-27)

(A-28)

.
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Proof of Theorem 3: H(w) is the cumlative probability that the searcher will

accept a wage no greater than w, irrespective of the number of firms sampled

by the searcher; i.e.,

n
Hw) = I Pr({wzax <w}n {3=k)
k=1 .
For k=1: Pr:({w‘;‘ax <sw}n {3=1}) = l’r({w1 sw} ﬂ{w1 2w:})

= Pr( min[w.:,w] s v, sw) = F(w) - F(min[w:,w]);

For k = n: Pr({v.'r':;ax sw} N {j=n}) = Pr({w:axSW} n {i>n-13)

n n-1 * *
= Pr:(i.:('.]1 {wi sw}n (i21 {wi < min[wi,...,wn_]]}))

n-1

= Pr({fw < w}n (121 fw, < min[w:,---,w:_rw]]))

n-l * *
=Fw) I F(min[wi,...,wn_l,w]).
i=1

For 2 <k < n-1; Pr({w:ax sw}n {j==k}) = Px:(j=k|w:'axSW)P:'(W:'S‘x svf)

Pr(jx-llw:ax £w)Pr (w:ax <w) - Pr(j*]w:ax SW)Pr(W;mx <w)

Pr({j>k-1} n {wx;:ax sw}) - Pr({j*}ﬂ{wzaXSW})

k-1 . k
= Pr(ig1{wi <min[wi,...,wk_1]} n (121 {wi <swl}))

(n 110 O
- Pr( N {w, <min[w, ,...,w nen < '
A i k i=1{wi wh)

(A-29)

(A-30)

(A-31)
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k-1 * *
=Pr(Nn{w s min[wi,...,wk_],w]} N fw, swl
i=1 .
k * *
- in[w oo yW W]])
Pr(iQI {Wi sm i) k’

k-1 * * k * *
= F(W) n F(min[.wi’o-o,wk_l,w]) - n F(min[wi’onc’wk’w]). (A‘32)
i=1 i=]

Combining (A-29), (A-30), (A-31) and (A-32) produces

n-1

%* * *
H(w) = F(w) -F(min[w]_,W])'l'F(W) 1 F(min[wi,...,wn__l,W])
i=1

n-1 k-1 % %
+ Z (Fw) 1 F(min[wi,...,wk_l,W])'
k=2 i=1

k
* %
- 1H1F(min [Wi’ e ’wk’w] ))

n k-1 * *
F(W) (1+ z n F(min[wi,...,wk_l,W]))
k=2 i=l

n k-1
%* *
- I | F(min[wi,-o-,wk_l,wl)
k=2 i=1

n k-1
F)- A-F@) 21 F@inld,...u )
=2 i= ) " '

Qc EaDu

1Y



	Western University
	Scholarship@Western
	1983

	Distributions of the Duration and Value of Job Search with Learning
	Peter Morgan
	Citation of this paper:


	tmp.1458077673.pdf.WzC1o

