Western University

Scholarship@Western

Department of Economics Research Reports Economics Working Papers Archive

1982

Efhciency of Estimators in Regression Model with
AR(1) Errors

Lonnie Magee
Aman Ullah

V. K. Srivastava

Follow this and additional works at: https://ir.lib.uwo.ca/economicsresrpt

b Part of the Economics Commons

Citation of this paper:

Magee, Lonnie, Aman Ullah, V. K. Srivastava. "Efficiency of Estimators in Regression Model with AR(1) Errors." Department of
Economics Research Reports, 8224. London, ON: Department of Economics, University of Western Ontario (1982).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages

0056

ISSN: 0318-725X
ISBN: 0-7714-0397-6

RESEARCH REPORT 8224

EFFICIENCY OF ESTIMATORS IN
REGRESSION MODEL WITH AR(1) ERRORS

by

L., Magee
A, Ullah*
V. K. Srivastava

e naitieg Witwery |
i

1

December, 1982 boedin, 6

wilN R 1383

i

1 critt et Piaciarg ool '
) e e r——— - .

#The research support from the SSHRC is gratefully
acknowledged, The authors are thankful to L. Bauwens,
B. Raj and members of the Econometrics Workshop at the
University of Western Ontario for useful comments and
suggestions,



1. Introduction

For a linear regression model with first-order autocorrelated
disturbances, a variety of estimators for the regression coefficients have
been proposed in the literature. One of the most commonly used estimators for
this situation has been the Cochrane-Orcutt (1949) estimator (CO) due to its
intuitive and computational simplicity. Since its introductionm, several alternative
estimators have also been proposed and their efficiency properties have been
investigated. For example, Kadiyala (1968) showed that OLS is a better estimator

than Cochran-Orcutt, for known autocorrelation coefficient p in 0 <p £1,

for the model containing only an intercept.l’2 Macshiro (1976), then showed ti:a:
the OLS is better than CO with known p for all p>0 in a similar model where
the matrix of explanatory variables contains an intercept and a strongly
trended variable, even for sample sizes of T =100, In addition, OLS is
vindicated by Harvey and McAvinchey (1978), who suggest that it performs
acceptably when the variable is trended; by Spitzer (1979), who recommends its
use when the absolute value of the autocorrelation coefficient is < 0.2; and
by Kramer (1980), who proves that the efficiency (when measured by the trace

of the variance-covariance matrix) of OLS with respect to generalized least
squares (GLS) approaches one as p approaches one when the model includes a
constant term, However, recently Taylor (1982) has pointed out that Maeshiro's
result only applies to a special case: very strong tends in the explanatory
variable, and where this variable is fixed, as opposed to the Monte Carlo
studies of Griliches and Rao (1968) and Spitzer (1979) in which the explanatory
variable is drawn from a prespecified stochastic process. 1In this latter case,
the first observation no longer remains as important for large T, hence the

improved performance of CO. In fact, Hoque (1980) has also shown that CO is



better than OLS when the matrix of explanatory variables contains a column
vector following a linear or geometric trend and o is known, thus contradicting
Maeshiro,

In addition to the above mentioned work there are studies which compare CO
with the Prais-Winsten (1954) estimator (PW). For example, Maeshiro (1979) and
Park and Mitchell (1980) found that CO was always worse than PW, Maeshiro
considered the known p case analytically, and both Maeshiro and Park and Mitchell
used Monte Carlo methods for the p unknown case. The only mention of CO ever
outperforming PW 1is made by Spitzer (1979) who finds CO slightly better than
PW when the absolute value of the autocorrelation coefficient is close to one.

It should be noted that all the previous efficiency studies have either
been analytical with the assumption that p is known a priori, or have used
Monte Carlo metheds, No expressions have been obtained specifically in the
context of two step CO and PW estimators which use an estimated autocorrelation
coefficient, This paper is an attempt in this direction, We consider classes
of two step CO and PW estimators which arise due to various choices of the
estimated autocorrelation coefficient, We have shown that these two step
estimators are unbiased if their mean vectors exist and disturbances are symmetrically
distributed., Further, taking the disturbances to be normal, we have presented in
Section 2 the expressions for the large sample asymptotic approximations of the
variance covariance matrices, Using these expressions, the efficiencies of the
estimators are then analyzed with the help of a numerical experiment in Section 3,
Some remarks are also placed in this Section, Finally, in Section 4 we have

provided the proofs of results in Section 2,

.
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2., The Estimators and Their Properties

Consider the linear regression model with first order autocorrelated

disturbances:

y X.B+u
(2.1) t ¢ t

u, =y, + ¢ (t=1,2,...,T)

t t

. th . . .
where y, is the t  observation on the variable to be explained, X, is a 1xk
vector of observations on k explanatory variables, p is the coefficient vector

associated with them, u_ is the disturbance term following a first order

t

autoregressive scheme with unknown autocorrelation coefficient p(hﬂ <1l) and

E(et) =0 for all t
(2.2)
E(etet+s) =¥ if s =0
=0 otherwise.
Defining
y' = (yl’y2""’yT)
(2.3) x = (x'l,x'z,...,X.'r)

u = (ul,uz,...,uT)

we can write

(2.4) y=Xg+u
with
E(u) =0
2.5) )
E(ue’) = o“Z

where 02 = y(l- p2) and £ is a kxk symmetric matrix with the (i,j)th element

equal to pli-j'.



The otdinary least squares (OLS) estimator of B is
ol gy~ Ly
(2,6) b=EX2ZX) Xy
which is unbiased with variance-covariance matrix:
’ 2 roy=Llos 2 or—1
2.7) E(b-B)(b-B) =0 X'X) X XX X) .

The estimator b ignores the autocorrelated nature of disturbances and
is therefore not efficient, This is accounted for in the generalized least
squares (GLS) estimator given by

2.8) p*= @i sl
which is unbiased with wvariance-covariance matrix:

2.9)  E@*-p)@r-p) =ol@zixl,

The estimator B* can be construed as the ordinary least squares

estimator in the transformed model
(2.10) Py = PXB + Pu

where P is a Tx T triangular matrix given by

— 2 1/2 -
1-0% 0 o ... O 0
-p 1 0o ...
0 -p
(2.11) P = . . . . .
0 0 oo 1 0
. ees =P ]

Since p is generally not known, we can replace p by its consistent
estimator in order to get the following operational estimator:

(2.12) p= @¥ex) ¥y

i



where P is the same as P except that p is replaced by its consistent estimator

~

p.

If ﬁt is the tth element of the ordinary least squares residual vector

u = (y - Xb), a simple choice of o is

T-1 .
ti Yl
D, = —————
1 T

T w

g=1 ©

(2.13)

Some alternative estimators for p have been suggested in the literature

(see Judge et al [1980, p. 183]). For example, Theil (1971) modifies 51 as

2.14) 5, ==K

T-1 PF1°

Next, an estimate derived from the Durbin-Watson statistic is given by

2.15) B, =1-§1d

where
T
~ hed 2
ti @, -u_q)
(2.16) d =
T a2
z ut
t=

is the Durbin-Watson statistic, Theil and Nagar (1961) suggested the following

estimator

_rta- a2+

P .
4 72 - k2

2.17)

Finally, the Durbin (1960) estimator, 55, is obtained by estimating p (the

coefficient of yt-l) in the following equation using OLS:

_ 0,0_ 0 0 =
(2018) yt = pyt_1+Bo(1- p)+xtB pxt"lB + et’ t z,ooc’T



)
where x: is the tth row of X with the constant term deleted, i.e., X, = [lxt]
in (2.1). 1If X, =x: then Bo(l- p) gets dropped out in (2.18),

Now denoting by %s the matrix P in (2.11) with p replaced by 58, s=1,...,5,

we can write a class of Prais-Winsten type two-step estimators from (2,12) as
- Y R ) SR o
(2.19) BS = X PSPsx) X PSPSY s s=ly...53 .

For s =1, the estimator él is often termed the Prais~-Winston (1954) estimator.
The Cochrane-Orcutt (1949) type two-step estimators are analytically

similar to the Prais-Winsten type two step estimators, and can be constructed

as the ordinary least squares estimator in the transformed model (corresponding

to (2.10)):
(2.20) CPy = CPXB3 + CPu
where

(2.21) ¢ =[0: I ]

is a T-1xT constant matrix such that CPu=¢ is a T-1x1 vector of disturbances
and CP is the same as P in (2,11) except that the first row is deleted; 0 in

(2,21) is a T-1x1 vector and I is a T-1xT-1 identity matrix, With o

T-1

~
replaced by Pg> s=1,...,5, these estimators can be written as

POTY. VISR ST Y SR 2 . A
(2.22) By = (X'P[C_PX) X P’scopsy 3 ¢, =cc.

For s =1, the estimator By is a well known Cochrane-Orcutt two step estimator.
We note that the Cochrane-Orcutt type estimators differ from the Prais-Winsten

type estimators in (2.19) with respect to Co matrix,

(s



L) ~
We shall now present the variance-covariance matrices of Bs and Bs‘

However, before doing this we introduce the following matrices for the sake of
simplicity in exposition,

Let D be a TxT diagonal matrix with first and last diagonal elements
equal to 1 and the remaining diagonal elements equal to 1- pz, let D° be a
diagonal matrix with a first element of 1 and the other diagonal elements equal
to zero, and let B be a Tx T symmetric matrix with (i,j)th element equal to

-p if i=j, %'if i=j+1, and O otherwise, Further, define

¢ = [Ty 4: 01, C, = C-0pC
PR W _ 1 on=1s 2. -1
(2.23) M =I-Xxx'Xx) %, M =I-2(2'2)"7, R=[(1-p7)E " -Dl/p
reml,-1 ’
N =2c'1MZcp, Q=(X'ZX) ", Q=ZI-XX
where C1 and Cp are T-1x T matrices, M is a Tx T matrix, and Mz is a T-1xT-1

. YR B 7. = (o] O = 0, .
matrix in which 2’ = [zz,...,zT], z [1 X1 xt] when X, (1 xt] in (2.1)

t

o 0 . .
and z, = [xt_1 xt] when there is no constant in X..
. .1 , .
It is assumed that the matrix EX'X tends to a finite matrix as T tends

to infinity. This assumption implies the absence of trend as an explanatory
variable, We can now state the main results., These are proved in the following
section,

Theorem 1: If the disturbances are symmetrically distributed the Prais-Winsten

type two-step estimators Bs’ s=l,...,5, are unbiased provided their mean vectors

exist, Further, if the distribution of disturbances is normal, the variance-

covariance matrices to order O(T'Z) of the asymptotic distribution of ﬁs are

given by



2
A . _ 2 20°(tr MBM I MBMZ)

T (1-p)

X' DQDXQ ,  s=l,...,4

= c?Q+ (02102 (1 - 02) %15y’ DI{ (tr M2 + (tr M%) + tr = £ 1N)Q

+ (tx N) (NE+ 2N ) + 2(NS+ 5N ) (< 'nz+ V) Ipxq, s=5

Theorem 2: If the disturbances are symmetrically distributed the Cochrane-

Orcutt two-step estimator BW is unbiased provided its mean vector exists.

Further, if the distribution of disturbances is normal, the variance-

-2 . . . . g
covariance matrix to order O0(T ~) of the asymptotic distribution of B, is

given by

tr X MBM

2.25) V(B = V() +o70x’ [D_+
T(1-p7)

{4D0+.G+G' 110
where
(2.26) G = R[X(X' - Q- (2/tr ZMBM)ZMBMZ]DO .

From (2.9) and (2.24), we see that the variance-covariance matrix, to

order O(T-z), of ET’ s=1,...,%4, exceeds the corresponding matrix of B* by

202 (tr MBM £ MBM &)

2 2 2.2
Tp (1-p")

(2.27) OX’ DQDXQ

which can be attributed to replacement of p by b in B*. Similarly, the wvariance-
covariance matrix of é} exceeds that of B* by (2,27) plus the second
term on the right-hand side of (2,25),

The result in Theorem 2 has been presented for the Cochrane-Orcutt two-
step estimator 61. For the case of Es, s = 2,3,4 the results can be developed
in the similar manner. These were not found to be the same as for 51- However,
it should be noted from Theorem 1 that V(és) is the same for s=1,2,3,4 in the

case of PW type two-step estimators,

s



3, Numerical Experiment

In this section we evaluate the results of Theorems 1 and 2 of Section 2
using a numerical experiment., These results are stated in Tables 1 to 3 for
both the trace and determinant of the variance-covariance matrix measures of
relative efficiency, In particular we have obtained numerical values for

the following measures:

3.1) e, = det (b) /det (B*); ey = tr(b)/tr (p*)

(3.2) e, =det(B)/det(p*); ef = tr(B)/tr(pr), s=l,...,4
(3.3) ey =det()/det(p¥); ef = tr(B)/tx(p%), s=5

(3.4) e, = det(B)/det(p¥); ef = tr(B)/tr(px), s=l

where det(b) and tr(b), for example, respectively represent the determinant
and trace of the variance-covariance matrix of b,

The following three models are used:

y =Xp +u,
where
(3.5) M1: X = [1x1x2]
(3.6) M2: X = [x2 x3]
(3.7) My X =[lx,]

B is the coefficient vector with appropriate dimension, and

xy = [1.723, .022, 1,157, .504, 2.832, .902, .853, 1.816, 2,898, 1.019],
xf = [.432, 1,376, 1,01, .005, 1,393, 1.787, .105, 1,339, 1,041, .279],
x) = [1.809, 2,309, 2.691, 3.191, 4,0, 5,191, 6.691, 8.309, 9.809, 11.0]

in the case T=10., The same models were used for T=40 by writing each element in

!

xz,

xg and xz four times, For example, for %, in the T =40 case:



10

xf = [1.723, 1,723, 1.723, 1.723, ,022, .022,...,1,019, 1,019] .

This method of increasing sample size preserves the features of the
trended variables while being consistent with the assumption of a finite
1im(X’'X)/T as T approaches infinity,

The results are invariant with respect to B's. The scale transformations of
exogenous column vectors, however, will affect the trace ratios while they

have no effect on the determinant ratios,

3.1 Main Results and Remarks

(i) The Prais-Winsten estimator ﬁl’ which uses the standard p estimate,
51, is almost always b;tZer than BS’ the Prais-Winsten estimator which uses
Durbin's p estimate, 65., This can be seen by comparing e, with eqs and e; with
eg in Tables 1 to 3. The §1 has lower mean square errors (MSE's) than 65 except for
some cases where p 20,8 and X has no constant term.5 This corresponds with the
Monte Carlo evidence of Spitzer (1979) , Kramer (1980, 1982) and Harvey and McAvinchey
(1978) while contradicting the recommendation of Griliches and Rao (1968). The
differences in MSE's between the two estimators is usually quite small,
(ii) b(OLS) is better than 61 (Prais-Winsten using 61) when 0<p<0.,2
for T=10 and 0<p<0.1 for T =40, roughly speaking, otherwise él is better
for positive p (seen by comparing eys e*if with €ys e’é' in Tables 1 to 3. This
agrees with Monte Carlo findings of Griliches and Rao (1968) and Spitzer (1979).
(iii) b(OLS) is better than El (Cochrane-Orcutt using 51) when a
constant is included usually for 0<p<0.5 when T=10 and 0<p<0.2 when T =40,
otherwise El is better (by comparing er» e’i‘ with s eZ). This result holds
for both trended and non-trended X, Without a constant, b is usually better

than E’l when 0<p<0.3 and T =10 with this zone shrinking towards zero as

T increases,

"

10
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(iv) 51 (Prais-Winsten using 61) is better than 51 (Cochrane-Orcutt
using ﬁ]) except when a constant is not included and p is large. This can be
seen by comparing e, e; with e,> ez. The superiority of 61 over E} corresponds
with all of the Monte Carlo evidence. The exception found here is similar to
Spitzer's (1979) finding that 65 outperforms BS for high p. It should be noted
that the expansion approximation for é% becomes suspect as p approaches one since
we also observe e, and ez less than one in some cases for large p. This is
impossible due to Aitken's theorem.

(v) When a constant is not included, b is very poor compared to 61 for
high p. This is clear by comparing e,, eT with e,, e: in Tables 1 to 3.

This is consistent with Kramer's (1980) proof that b is very poor compared
to B* (GLS) as p approaches one when there is no constant term and the data are

not centered.

(vi) A useful extension of this study would be the derivation of large-
sample approximations to the MSE matrices of iterative estimators such as
iterated Prais-Winsten and maximum likelihood, which perform well in the Monte
carlo studies of Beach and MacKinnon (1978), Harvey and McAvinchey (1978),
Spitzer (1979) and Park and Mitchell (1980). Such an extension would give
a more complete analytical picture to complement the Monte Carlo results,

The results of this paper can also be extended for the model with a higher

order autoregressive process, say AR(2) or to a model with a moving average

process,



.05
.10
.20
.30
.40

.60
.70

.80

.95

.70

12

TABLE 1

Alternative Efficiency Measures of Estimators

Sample Size:

el e2 e3 e“

1.005 1.097 1.123 1.299 1.
1.021 1.086 1.110 1.304 1.
1.084 1.064 1.084 1.317 1.
1.193 1.045 1.060 1.343 1.
1.360 1.030 1.041 1.392 1.
1.607 1.020 1.027 1.475 1.
1.971 1.014 1.017 1.604 1.
2.505 1.012 1.012 1.787 1.
3.269 1.012 1.008 2.021 1.
4.292 1.008 1.003 2.238 1.
4.874 1.002 1.001 2.250 1.

Sample Size:

) €3 €4

1.004 1.043 1.054 1.107 1.
1.019 1.049 1.062 1.119 1.
1.082 1.061 1.080 1.143 1.
1.209 1.071 1.09 1.168 1.
1.440 1.076 1.105 1.190 1.
1.857 1.072 1.103 1.209 1.
2.631 1.057 1.086 1.231 1.
4,162 1.036 1.060 1.278 1.
7.603 1.018 1.036 1.404 1.
17.807 1.008 1.026 1.775 1.
31.244 1.008 1.022 2.175 1.

10

*

€1

002
007
026
055
093
134
170
192
182
124
072

40

002
008
034
083
162
275
423
581
662
511
313

2

1.030
1.027
1.019
1.012
1.007
1.005
1.004
1.005
1.008
1.007
1.002

1.018
1.021
1.026
1.029
1.029
1.026
1.018
1.009
1.005
1.005
1.007

for Ml

3
1.038
1.033
1.024
1.016
1.010
1.006
1.005
1.006
1.006
1.003
1.000

1.023
1.027
1.033
1.039
1.041
1.037
1.027
1.015
1.010
1.018
1.019

4
1.076
1.075
1.074
1.082
1.109
1.170
1.289
1.496
1.806
2.144
2.214

1.033
1.037
1.044
1.049
1.053
1.057
1.067
1.104
1.231
1.648
2.111

(e

v

e
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TABLE 2

Alternative Efficiency Measures of Estimators for M2

Sample Size: 10

* * * *

P e1 e2 e3 e4 e1 e2 e3 e4

.05 1.007 1.145 1.187 1.281 1.003 1.068 1.093 1.107
.10 1.026 1.148 1.186 1.289 1.013 1.063 1.085 1.101
.20 1.113 1.154 1.183 1.29% 1.054 1.054 1.071 1.089
.30 1.284 1.159 1.178 1.283 1.125 1.048 1.060 1.078
.40 1.594 1.160 1.168 1.241 1.241 1.045 1.053 1.066
.50 2.170 1.155 1.151 1l.161 1.428 1.044 1.046 1.050
.60 3.322 1.152 1.127 1.042 1.745 1.045 1.039 1.025
.70 5.923 1.167 1.097 . 906 2.329 1.051 1.031 .993
.80 13.064 1.221 1.064 .800 3.582 1.069 1.020 .964
.90 42.226 1.362 1.037 .832 7.475 1.108 1.009 .967
.95 > 100.0 1.596¢ 1.018 1.058 15.309 1.170 1.005 1.023

Sample Size: 40
* * * *

€1 2 ©3 %4 ®1 €2 ©3 4

.05 1.003 1.029 1.032 1.074 1.002 1.020 1.022 1.037
.10 1.012 1.034 1.038 1.083 1.008 1.023 1.026 1.041
.20 1.053 1.046 1.052 1.101 1.036 1.029 1.033 1.048
.30 1.137 1.059 1.069 1.120 1.089 1.035 1.041 1.053
.40 1.292 1.074 1.089 1.138 1.180 1.039 1.047 1.055
.50 1.584 1.090 1.111 1.153 1.329 1.041 1.050 1.053
.60 2.180 1.104 1.135 1.158 1.576 1.039 1.051 1.049
.70 3.626 1.108 1.153 1.139 2.017 1.036 1.052 1.042
.80 8.519 1.084 1.140 1.069 2.978 1.027 1.047 1.024
.90 42.269 1.036 1.074 .952 6.381 1.012 1.025 .990
.95 >100.0 1.045 1.034 .921  14.026 1.014 1.011 .981
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TABLE 3

Alternative Efficiency Measures of Estimators for M3

€1
1,001
1.005
1.018
1.040
1,069
1,106
1.146
1,184
1.209
1,201
1.176

1,000
1,002
1,009
1,021
1,041
1,075
1,133
1.242
1,482
2.165
3.016

€2
1.028
1.028
1,028
1.026
1,024
1,021
1.017
1,014
1,010
1,004
1,001

1,005
1,006
1,007
1.010
1,013
1,019
1,027
1,038
1,045
1,028
1,013

Sample Size:

€3
1.056
1.058
1.063
1,066
1.068
1.066
1,058
1.044
1.026
1,010
1,003

Sample Size:

€3
1,006
1.006
1.008
1.011
1.016
1.024
1,038
1,065
1.114
1.152
1.095

€4
1.509
1.558
1,664
1.782
1.906
2,026
2,122
2,161
2,109
1.977
1.937

4
1,090
1.100
1.126
1.159
1.204
1.267
1.356
1.480
1.628
1,689
1.767

10

e*

1
1.001
1,002
1,009
1,019
1,032
1.046
1,057
1,063
1,058
1,039
1,023

40

1,000
1,001
1,005
1,012
1.025
1,045
1,080
1,142
1.267
1,512
1,584

1,015
1.014
1,014
1,012
1,010
1,008
1.005
1,003
1,001
1,000
1,000

1,003
1,003
1.004
1,006
1,008
1,012
1,018
1,025
1,028
1,015
1.006

1,032
1,033
1,036
1,037
1,037
1,034
1,027
1,017
1,007
1,001
1.000

1,003
1,004
1.005
1.007
1,010
1,016
1,026
1,043
1.073
1.086
1.044

1.463
1,507
1,604
1,709
1,820
1.926
2,013
2,056
2,032
1,951
1,931

1,084
1.094
1,117
1,148
1,189
1,256
1,323
1,427
1,539
1,607
1,772

(U

[
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4, Proof of Theorems in Section 2

Suppose B is a Tx T symmetric matris with (i,j)th element bij defined

in Section 2 as

b,, = «p if i=j

]

o Nl

if i=3j4l

otherwise .

From (2,13), we can express

h' -~
u (pIT + B)u

(4.1) 51 =
Ay~
uu

Al A

u Bu

A’A

uu

lu’ MBMu
p+ T
o + (%U'Mu—(rz)

(]

-1
o] +—1— u MBMu[1+-1'2-(-,]§u' Mu- 0'2)]
o

'I.‘cr2

Expanding the expression in square brackets and retaining terms to order

O(T-l) in probability, we find

where
1 )
e = —— u MBMu
-1/2 '1‘0'2
(4.3)
9_1 = - —-]-'z u'MBMu(% u Mu - 0'2)

To
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Here the suffixes of ® indicate the order in probability, Using (4.2)

we have

2. -1 ef1/2 28_; 2. -1
[D- Q-p7)Z "1 41 5 (IT-D)-T(D-(I-p)Z ]
0

0
4.4y ¥h=q@a-p5)rt- 'p”z

to order O(T-l) in probability, where D is a Tx T diagonal matrix (as defined

in Section 2) with first and last diagonal elements equal to 1 and the remaining

diagonal elements equal to 1 - pz.

4,1 Proof of Theorem 1

From (2.1) and (2.19), we have

o = YD g WPy
(4.5) (B,-8) = & f>’1P1X) S AN
Since (ﬁl- B) is an odd function of u, it follows that E(ﬁl-'ﬁ)= 0 when
the distribution of u is symmetrical and E(B1)exists. This proves the first

part of the theorem, For the second part, the distribution of u is assumed to be

multivariate normal,

/

Substituting (4,4) into (4.5), we have, to order O(T-3 2) in probability,

after a little algebraic simplification§

(61- B) = §_1/2+ §_1+ 5_3/2

so that, to order O(T-z),

+E(§_ 3798 172 +5.1/25 -372 + 51500)

where

-

io

»

3

1]
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0
S = ax ‘s §.q = - —=1/2 oy 5!
4.7 p(1-p")
32 T - o [931/2{1& - — - DXX'D} - pe_lleZ'lu .

p(l 07) a-0)

Utilizing normality of disturbances, it is easy to see that

4.8) E(g_]_/zg:l/z) =00
while the second, third, fourth and fifth terms on the right-hand side of
(46) are equal to a null matrix, For the last term, we employ the following

result which can be obtained from Srivastava and Tiwari (1976).
4.9)  E[@ cuy?uu’] = o®[{(tr c2%+2 tr CICT}T+ 4(tx CT)ZCZ+ 8 ECZCT]

where C is any symmetric matrix with nonstochastic elements,
Employing the above along with the results
QM = M

(4.10)

=lq=q

and observing that (tr MBMZIMBMZ) is of order 0(T), we have

@1l B =——igy axpas’t - Ele?) u’ 15 eoka
-1 2a-oh -1/2
== 21(1 . ax’ Doz~ L [E (o’ MBMu)Zun’ ] - £ TQDX
cTop -pP

Zp (tr MBMIMBML)
Z(1- o)

ox’ DQDXQ

to order O(T-z).
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Combining (4.8) and (4.11), we find the result (2,24) stated in
theorem 1 for s =1, The result (2.24) corresponding to the choice of Bs’
s =2,3,4, given in (2,14), (2.15) and (2,17), can be similarly verified to
be the same as that for s =1, For s =5 we proceed as below,

The 55 (Durbin's 8) is derived from OLS on the equation
oo o _o _
(4-12) Yt = pyt_1+Bo(1 - p)+xtB = pxt"].B + Gt’ t -2’-..,T-

It is given by

. YMy
(4.13) Ps = =170

LAY
= ’ = ’ =T 1 on=1lor
Wh'ere yo = (yzgoooayT) 9 y_l = (yl’c'o’y,r-l) ) Mz = I Z(Z Z) Z and
z = [1x°x1.
Now from (2,4) Y1 = [1 X?I]B-+u_1 and yo[l X°]B+uo and noting that

MZZ = (0 it can be verified that

7 1 Al
) u_leuo ) u ClMZCu

4 1
u_IMzu_1 u Cleclu

(4.14) Ps

where C and C1 are as defined in (2,21) and (2,23), respectively, Following
the steps similar to those for Bl in (4.1) we can obtain
where g% =u' C¢'M,C u/Tcr2 9%, = -u’'C/M C u(u'C/M,C 3/ -02)/Tcr4 and

*1/2 1Mz€0/T0 s 8% 1Mz Cou (v M0 Y

Cp =C- pCl, Further

(4.16)  Bg-B = By +E5 + By

* .
where gfl/Z’ §_1 and §f3/2 are the same as §_1/2, §_1 and §_3/2, respectively,

given in (4.7) with 9_1/2 and e_1 replaced by efl/Z and efl. In fact gfl/Z = 5_1/2.

[

«

(3
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It is easy to verify that
’ 2
E(S%p%y2) =00

E(6%,8*]) = W'mz-llmf% P 1= Looxa

where

4.18)  E(@*} uu’) = _T%‘a. E[ o/ c’lnchu)zuu']

.-._1_ 2 4 '
= 204 [{(crzc'lnch) +trZ'.C1MZCpZ‘.ClMZCp

4 4 Y4 4
+ tr >:cpMzc1>:cI Mch}2+2(tr zcluch)(zclnchz

+ zc’puzclm + 22(c'luch + c;Mch)Z(c'luch + c'p MZCI)Z]

has been obtained by modifying the result (4.9) for the nonsymmetric
matrix CiMsz. Using (4.18) in (4.17) we get the result in Theorem 1 for

s =5 (Durbin's case).

4,2 Proof of Theorem 2

From (2.1) and (2.22) we can write the sampling error of the Cochrane-

Orcutt estimator as
T oor = (PP -1,,4 5
By - B = (X'PiC P X) X' PIC Py

where C = ¢’ C and

Do is a Tx T diagonal matrix of zeros with a one in the upper left corner
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(defined in Section 2) and %1 is as used in Prais-Winsten estimator, Using

(4.4) we can write

Ly A 2 -1 2
P'ICOPI = (1l-p)(< -D°)+e_1/2(R+ 2pDo)+e_1(R+2pDo)+9_1/2(D1+D°)
2
where D, = (I-D)/p2 and R =1'—-p£— 2-1--2 is a Tx T matrix,

Proceeding as for the Prais-Winsten estimator in (4.1) we get

By =B =T g+ M1+ N3y

where, using (4.7)

T1/2 = E172> Mg = & - X'Du

- _x ‘ _ 2 , 1
Lsp = S3p* 7 (61,120 +RXQK"ID u+ (1- pT)DXOXK'Z "ul
Now writing (El - B)(El - B) and taking expectation we get the result stated

in Theorem 2 .

y

\s

"
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FOOTNOTES

1"Better" means smaller mean square error or, equivalently in this paper,

smaller variance, since the estimators of B considered here are unbiased.

2When using CO, the use of the correct p does not necessarily result in
the smallest mean square error (MSE). In fact, in the case of Kadiyala's model,
the smallest MSE of CO estimators is obtained by using P = -1 regardless of the

true value of p; see Magee (1982).

3Due to the equivalence of the expansions for MSE's of 61, 52, 63 and

54 to 0(1/T2), the results stated here for 61 also hold for 62, 63 and é4.

4Expansion of 61 and 65 to order 1/T was used to estimate E(Bl) and
E(BS). It was found that the negative bias is almost always smaller for 65,
as was noted by Rao and Griliches,

5Results are presented here for three models only, although there were

many other models considered, as well as results for T=20 and T =30,

A

6Expansions for the class of estimators (X'S-1X)-1X'§'1y where S~ is

]/2) for some fixed S can be shown to be suitable

such that X'(g-l-S-I)X has O(T
for asymptotic expansion procedures using conditions described by Sargan (1974,

p. 172),
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