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ABSTRACT

The Hopkinson rate is the most common of all rate structures
used for pricing electricity for industrial use. It consists of an
venergy charge" for total kilowatt hour consumption plus an additional
"demand charge' based on the maximum usage by the plant during any
quarter -hour period during the month. Despite its apparent drawbacks,
it is shown that it can have optimal properties in the pricing of demand
variance. The analysis is greatly simplified by the use of the extreme
value probability distribution for peak demand. This device is also
used to comment on optimal generation capacity calculations and as the
basis for some econometric analysis of the effect of the Hopkinson rate
on the peak demands of a sample of eight Ontario pulp and paper mills

between 1970 and 1977.



(B

(>

I. Introduction

Electricity for industrial use comprises roughly 40 per cent of
total North American electricity consumption.1 As industrial electricity
rates may therefore substantially affect total electricity demand, an
understanding of the impact of various rate structures is very important
in utility pianning. The nature of the rate structure will influence the
desired amount of generation capacity, the probability and effects of a
shortage and the consumption patterns of users as well as other aspects of
the economic efficiency of the electricity system.

There has been considerable economic research in the electricity
area. Much of the theoretical work has focused on optimal pricing when
generation capacity is sometimes (but not always) a binding constraint,
Early contributions towards solving this "peak load pricing" problem
were made by Boiteux (1949) and Steiner (1957), Subsequent research by
Brown and Johnson (1969), Meyer (1975), Sherman and Visscher (1976), Crew
and Kleindorfer (1978), Dansby (1979) and Koenker (1979) (to cite just a
small fraction of a very large literature) has extended the original
Boiteux-Steiner analysis, including taking it from a deterministic to
a stochastic context,

A second branch of the research has concentrated on the empirical
analysis of experiments with residential time-of-use (TOU) rates., These
experiment s have been conducted in several U,S. states with subsequent
econometric studies (e.g., Aigner and Hausman (1980), Atkinson (1979),
Hausman, Kinnucan and McFadden (1979), Hendricks, Koenker and Poirier (1979)

and Lawrence and Braithwait (1979)). These studies have been notable not

only because of the potential importance of their results but also for their



econometric innovation in dealing with such problems as the self-selection
bias present in voluntary experiments or the non-linear budget constraints
of declining block rates. |

However as noted by Taylor (1975), there has been much less work
specific to the industrial demand for electricity, Moreover the research
that has been done in this area is mostly on TOU rates (see Denton (1979),
Panzar and Willig (1979) and Chung and Aigner (1980)). While these rates
represent an important pricing innovation, they are not nearly so common
as the Hopkinson rate which has received little attention in modern
research, This latter rate structure will be the focus of this paper.

The Hopkinson rate consists of an 'energy charge" for every kilowatt
hour a customer uses plus an additional '"demand charge", a peak demand
charge on the maximum usage by the plant for any 15 minute period during the
month.2 Kahn (1970, p. 95) writes that the Hopkinson rate is "almost universally
used by electric and gas utilities for large-volume sales at wholesale
and to industrial users'. More recently, Mitchell, Manning and Acton
(1978, p. 13) indicate that the Hopkinson rate is employed by nearly all
North American utilities and note (Chapter 4) that it has much in common
with pricing methods used in several European natioms.

Why is this rate system used so widely? The most likely answer is
that it seemed to be a simple method of dividing the capacity cogts according
to one view of each customer's capacity requirgment.3 The problem is that
the maximum demand charge is based on individual peak demand which may not
be related to system peak. For example, consider a user whose peak demand
is normally at 7:00 a.m. when system peak is at 7:00 p.m. This user faces
an incorrect incentive to use less electricity when there is idle generation

capacity but has no special incentive to reduce usage during the peak period
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when capacity may be strained. (The rate méy even cause the user to shift
consumption into the system peak period.)4 Because of this, most economists
advocate TOU rates of some form.5

However, instead of viewing a firm's peak demand and its ‘coincident
demand" (consumption at the time of system peak) as substitutes, suppose they
are both outcomes of the same stochastic process and that the firm's choice
variables are in effect the parameters of that process. Then as the optimal
level of capacity is a function of each user 's demand variance (as in Boiteux
(1951) and Dréze (1964)) and each individual peak is also a function of
that user's demand variance, the Hopkinson rate's individual maximum demand
charge can be used to price each user's contribution to system variance and

hence its marginal effect on the costs of capacity provision. While this

argument does not provide much support for the Hopkinson rate as commonly

applied, it may justify its use in combination with TOU rates when the demand

charge is for maximum quarter-hour usage during the 'on-peak" period. This
kind of Hopkinson rate was part of the TOU rate structure introduced in 1978
for large users by two large California utilities, Pacific Gas and Electric
and Southern California Edison.

The formal analysis of the above argument is contained in Section II.
Each peak demand is modelled as the maximal order statistic drawn from a
large number of 'peak-eligible" 15 minute demands, suggesting the use of
the extreme value probability distribution for peak demand. This approach
is employed to study the Hopkinson rate as well as to comment on some
general problems of forecasting peak demand. It should be emphasized that
the intention here is not to provide exact solutions to real-world peak
load pricing problems,which will generally require detailed utility-specific

empirical analysis. Instead this work explains one reason why individual



peak demand charges may be efficient and suggests ways in which their
application may be improved.

Section III estimates the effect of the Hopkinson rate on the peak
demands of several Ontario pulp and paper mills, The estimation procedure
maximizes a likelihood function which is based on the extreme value
distribution discussed above. The results indicate that the Hopkinson
rate has a small but significant dampening effect on individual peak demand.

Section IV presents the summary and conclusions of this research.

11, The Hopkinson Rate

Outline

The purpose of this Section is to illustrate a case in which an
individual peak demand charge may be desirable, even though individual
maximum usage is not coincident with system peak, The basic argument is
outlined by Figure 1. Firms A and B have the same overall consumption
over the peak period but firm B has a demand which varies stochastically
(but not systematically with time of use), If all J firms in the economy
were identical to A then their demands could all be met with capacity
equal to Juf. But if some of the plants were like B, a higher capacity
would be required to meet the peak of the fluctuating demand, Note that
if the only charge were the straight kWeh tariff, both A and B would have
the same electricity bill, But with an additional peak demand charge,
B would pay a higher bill as would seem to be appropriate.

The reasoning behind this is that the expected system peak over
some period is a function of the variance of system demand and hence of
each user's demand variance., As individual peak is also a function of each

user's demand variance, the individual maximum demand charge can be used
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Figure 1
Hypothetical Demand Patterns During Peak Period

Firm A
kW demand
He
time
Firm B
kW demand

time



to price each user's contribution to systemvvariance and hence its marginal
effect on the capacity cost of meeting expected system peak.

A charge based on coincident demand (the usage by the individual firm
at the time system peak occurs) could also be used to price correctly the
impact of the firm's actions on expected system peak, as system peak is
just the sum of all the coincident demands., However an individual peak
demand charge can be more efficient, This is because the utility will
generally provide some reserve over expected peak and the optimal size
of this reserve will clearly vary with the variance of system demand.

The individual maximum demand charge can therefore be used to price the
effect of the user's variance on the costs of providing optimal reserve
capacity as well as on the costs of the capacity to meet expected system
peak,

Clearly if there are many users with small consumption variance
and uncorrelated demands, the effects of an individual user's variation
on total system variation will be small. (This is analogous to "risk-
pooling" in insurance markets,) However if users are large or their
demands are correlated, variance charges may be important.

A simplifying assumption used in this paper is that the firm's
only choice variables are the parameters of one stochastic process which
generates both individual peak demand and coincident demand. In this sense
individual peak and coincident demand will be "perfect complements'" and the
Hopkinson rate can be a first best measure, If peak demand and coincident demand
were generated by related but not identical stochastic processes then
the Hopkinson rate could still be more efficient than a flat kilowatt hour
charge but could generally only be a second best solution.

The idea of variance charges has a long history, originating with
the French marginalists of the 1950's. In his summary of this work,

Dregze (1964) builds on results he attributes to Boiteux and calculates
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optimal rates for user variance in a simple one-period electricity
demand model, Marchand (1974) extends Dreze's work to a situation
where users buy "interruptible" electricity and can choose among several
types of sufply, each differentiated by the probability with which delivery
is guaranteed, Marchand calculates the optimal prices associated with
these different kinds of contracts,

The main innovation here is that these concepts are related to
the most common existing rate structure, the Hopkinson rate, There are
no real-world examples of Dreze's pure variance charges and while the
contracts modelled by Marchand are provided by many utilities, they
generally cover a much smaller fraction of electricity sales than the
Hopkinson rate. Also, unlike this study, Dreze and Marchand assume
that each user's demand is uncorrelated with every other user's and that
all demand occurs during one periocd, which therefore must provide peak
demand. Marchand assumes that each user's demand is uniformly distributed;
in this paper the normal distribution will usually be assumed, although
in some cases this can be relaxed to allow any distribution with finite

mean and variance.

The Model
The formal model will aim at providing an example of the calculation
of an optimal capacity charge., It is assumed that the utility has three

choice variables: total generation capacity C, the price of electricity

per kilowatt hour Pkw‘h

demand Pkw. There is no treatment of the problems of transmission or

and the price per kilowatt of the maximum 15 minute

6
the optimal mix of peaking, baseload and intermediate capacity. Variable



costs (e.g. fuel costs) are assumed to be billed as separate kilowatt hour

charges so that Pkw°h Pkw

and are therefore pure capacity charges.

There are T quarter-hour periods in a month which are "peak-eligible"
(i.e, periods when a system peak can occur) and the stochastic system
demands x; during these periods have identical probability distributions
f(xi) with mean p and variance 02. The uncertainty associated with
capacity unreliability could be accommodated by incorporating stochastic
generation failure as a component of system demand, However for simplicity
it is assumed that the marginal capacity is completely reliable so that
incremental changes in C do not affect the parameters of f.

It is possible that demand will exceed available capacity. 1It can be
shown that under the sufficient assumption that the costs of a shortage are
proportional to the size of the shortage, the optimal rule for the utility .
is to build capacity to ensure some probability q that demand will not exceed
capacity for the entire month. (Probability q will in general be a function
of the costs of shortage and of generation capacity and in what follows it
is assumed that q is close to one.) The analysis then continues using the
extreme value distribution.

Suppose a researcher recorded the heights of all the boys in a
number of similar sixth grade classes. It might be expected that the
distributions for each of the classes would be approximately the same and
would likely be normal. However, if the researcher now examined only the
distribution of the heights of the tallest boy in each class, the normal
distribution would no longer be appropriate. In fact, if each class were s

large enough the appropriate distribution would almost always have one

particular form: that of the extreme value distribution.
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Similarly, consider the peak monthly demand 2% 25 the maximal
order statistic from the quarter-hour demands X;,..esXpe Gnedenko (1943)
has shown that if £2* has a limiting distribution as T increases, it
must take one of three forms. If for example the xi's have the normal

distribution, the probability distribution function of xmax is:
G(x ) = exp(-exp-~ (xmax-LT)/sT) (¢))

where &T is the mode (the location parameter) and Sp is a scale parameter
called the intensity. The distribution is called the extreme value,
double exponential or Gumbel distribution7 and has had many engineering
applications to such natural peak problems as flood probabilities (see
Gumbel (1958)).

Its parameters ZT and sp can be characterized in terms of p and o

8
of the parent normal as in Berman (1964):

£T =W+ bTU
ST = OTO
where ap = (210gT)-(1/2)
by = 210gT) 2~ 1/2(21087) "/ (1og logl +loghm)  (2)

It might be thought that the existence of the asymptotic distribution
(1) requires that the xi's be independent, which would be unlikely in this
case, However (1) will hold without such independence, provided the
dependency tends to vanish as the separation between underlying events
increases. More formally, Loynes (1965) shows that an extreme value
distribution above is applicable provided the following 'strong

9
mixing" condition holds for the parents:
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where g(j) » 0 as j » ®, Such a "decay of dependence" condition is
satisfied for example by all ARMA processes, However it should be noted
that such dependence can slow convergence to the asymptotic distributionm,
particularly in the tails.10

The calculation of C* as a function of T and q is straightforward.

As G(C*) =q, (1) can be inverted to yield:

(c* -LT)/ST = -log (-log q) %)

or using (2):

C*=p,+k0'

where k = b_- aTlog(-log q) @)

T
Note that the expectation of a random variable with the extreme value
distribution (Hastings and Peacock (1978, p. 60) is £T+ Ysp where vy is
Euler's constant (approximately .57721) so that using (2):

E (xmax

)

e
where k = bT+ Ya, )

e

The difference between C* and E(x ) (equal to aT(-log(-log q)- y)o) might
be called the "optimal reserve margin". As an example if T =160 and q =.99,
aT= .31 and bT= 2.53 so C* is , +3.990 and E(xmax) is p +2.710.

Now consider an individual industrial electricity user firm £,
Suppose that the charges considered here are only applied to individual
demands during the T system peak eligible perieds and that all these
individual demands xf,]""’xf,T are identically distributed with mean
kg and variance G%, both choice variables for the firm.11 In addition

assume that the probability of shortage will be small enough that the

firm ignores it in its cost minimization,
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Suppose that the firms pay a charge for both the mean ke and the
standard deviation Og of its electricity usage and it takes these prices
as given, Changes in ke and e will affect pu and 5 and hence C*¥, Equating
the marginal costs of B and Of to the utility to the marginal effects

on user f's electricity bill yields optimal prices (see Appendix 1) for

user f of:

v
pf=c

Uf . cf + pcs (6)
P =Ck(—_cr——)

where C' is the marginal cost of one unit of capacity, Gi is the variance
of demand for the rest of the system and p is the correlation between the
demand of user f and demand of the rest of the system during system peak

eligible periods.
As a one unit increase in mean demand will increase C* by one unit,

B o
P £ is as expected, P £ is more complicated and depends on the contribution

of user £'s variance to system variance,

Prices (6) are analogous to those in Dréze (1964) for the case of
independent demands. To find corresponding Hopkinson rates, assume the
xf’i's are strong mixing and normally distributed, so that individual peak
demand therefore has the extreme value distribution. Following (5), E(x?ax)

is wet keof and the expected value of the firm's electricity bill12 is

therefore

kW.h kW e
P T+ P (e +k o) N

M T
Assuming the firm minimizes expected costs, P £ and P £ of (6) may therefore

be replaced by
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P =C ( )
g
k ®)
PkWQh = ( C ' - Pkw) /T
h s

where Pkw' could be negative. 1t is shown in Appendix 1 that price sets

(6) and (8) will each be '"break-even' in the sense that expected returns

cover costs if electricity generation capacity has constant marginal cost.
Consider first the case when user and system demand are perfectly

correlated. In this case system peak and individual peak are exactly

coincident. For this example, a one unit increase in individual peak

increases utilized capacity by one unit so it might be thought that PkW

kW

should be exactly c’. However, optimal P is c’ . lt which will generally

k

be greater than C'.13 This is because an increase in individual peak may

reflect an increase in user variance which will increase system variance.

With a loss of load probability rule such an increase in system variance

will raise the optimal reserve margin, -

Now consider (8) when user and system demands are perfectly un-

correlated so that p = 0, In this case if a user's variance is very

small relative to system variance then Pkw will be very small, This

reflects the "risk pooling" associated with uncorrelated events, However

k

if p is non-zero, even if g is small P W of (8) becomes ¢! . l% p which

k

could be substantial.14
This sort of analysis might be applicable to a situation where a
common set of electricity prices is applied to a large group of similar
customers. However if prices like (6) or (8) were applied to individual .
customers who realized how the prices were determined, the result would be
inefficient, as Dreze (1964) points out in a similar context, This is
because the user will perceive that its electricity prices are functions

of Og> 8 parameter under its control. In this situation, these prices

violate the MRS = MRT condition (see Appendix 1).
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This complicates matters, but only slightly. If one assumes (as
Dreze does and as is implicit above) that user f does not consider the
second order effect of its actions on system variance or on the probability

kw
of shortage, then it is shown in Appendix 1 that the optimal P and

pkW-h are:
PkW ot X (GE + ZDUS)
k& 20 9)
ST LV
where Pkw'h could be negative., Note that Pkw will generally be smaller

than in (8).

The prices in (8) covered expected costs if electricity generation
capacity has constant marginal cost. 1In contrast, price set (9) will
generate an expected loss. This is because even with constant per unit
capacity costs, electricity generation with uncertainty will still have
decreasing costs because of the risk pooling effect of adding random demands
together (see Dréze (1964), p. 22). This fundamental non-convexity could
make efficient pricing difficult for a utility with a "no-deficit" constraint
although in reality, this effect may be offset as unit capacity costs may
be increasing.

Two further points about prices (9) are shown in the Appendix. First
these prices are also efficient if p is one of the firm's choice parameters

as well as Mg and 0_. Second, in the reasonable case where O¢ is small

f

relative to o then (9) is equivalent to
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X, - X
Mo kb
ko X - Xg (10)

PR s Py

where X; is coincident demand and Xf

(10) could be the basis for a Hopkinson rate schedule where the prices

is the firm's average demand. Presumably

would be based on X; and x?ax and would be efficient. Turvey and Anderson
(1977, Chapter 16) indicate that some utilities do use coincident demands
to calculate Pkw.

This section has shown that individual peak demand charges can be

efficient in some circumst:ances.15 The following uses the same methods

to discuss optimal capacity.

Optimal Capacity

Again assume that the utility sets capacity so that the loss of load
probability is q . Assume also that the utility knows the exact mean and
variance of peak demand but uses the normal distribution when the extreme
value distribution would be more appropriate, Under these conditions the

utility will construct too little capacity because it has not allowed for

skewness in the distribution of peak demand (see Figure 2). With a loss

of load probability of .0l and a mean-variance ratio of 10:1, the optimal
capacity under the extreme value distribution assumption exceeds the capacity
that will be built by 7%. In terms of the reserve margin over expected peak,
this means that the optimal reserve is 35% larger than that actually built.

1f the loss of load probability is only .00l with the same mean-variance ratio,
optimal capacity will be 14% greater than the actual capacity or the optimal

reserve will be 60% greater than the actual reserve.16 However, it can also
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Figure 2

Optimal Capacity when Peak

has Extreme Value Distribution

probability
dgnsity

1 per cent tail, Normal

Distribution

1 per cent tail, Extreme
Value Distribution

1.00 1.123 1.23 1.31
Expected Peak

Reserve Margin for Normal Distribution

l |

Reserve Margin for Extreme Value Distribution

For this diagram, the mean variance ratio is 10:1 and the loss of load
probability is .0l. 1.123 is the boundary of the 11 per cent tail for
each distribution.
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be seen in Figure 2 that for higher loss of load probabilities, it is

possible that the optimal reserve will be smaller than the actual reserve.
There are also implications for forecasting future peak load

capacities. Standard utility practice is now to spend considerable effort

in forecasting average demand for some time in the future and then obtain

a forecast of peak demand by multiplying by some constant factor. This

technique ignores that there may be a change in demand variance which

will lead to a divergence in the trend of average demand and peak demand.

Such a change could be due, for example, to the increase in air conditioning

usage which will make demand fluctuate more with the weather.

As a simple numerical example, suppose that consumption consists
of two normally distributed components: one with mean 60 and a standard
deviation of 12 and the other with mean 40 and a standard deviation of
16, Assuming the demands are independent, their sum has mean 100 and
standard deviation 20, Assuming the remaining conditions to be as in the
previous numerical example (T =160 and q =.99), expected peak demand is
100 + (2.716) (20) = 154.32 and the ratio of expected peak demand to expected
demand will be 1.5432. Now suppose the first component's mean grows to 80 and
the second's mean grows more rapidly and becomes 75. The same mean/standard
deviation ratios are kept so that the standard deviations become 16 and 30
respectively. Total demand now has mean 155 and standard deviation 34. Expected
peak demand is now 247.34 and the ratio of expected peak demand to expected
demand has grown to 247,34/155 = 1,5958, The more rapid growth in the high-
variance usage has led to an increase in the ratio of expected peak to
expected demand of about 3.4 per cent., (The expected value of the ratio of
peak to total demand, which is not exactly the same, will have grown

slightly faster,)
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Do the data suggest that this kind of effect has any importance? By
summing up the peak demands of all utilities in the United States and
dividing by mean U.S, hourly demand, a weighted average of the utilities'

peak demand/mean hourly demand ratios can be calculated (where the weights

are in proportion to each utility's mean hourly demand). Using data from

the Edison Institute (1980), this figure averaged 1.556 between 1966 and 1970.
For 1971 to 1975 it was 1.611 and for 1976 to 1980 it was 1.619)7 While

these changes do not seem large, the 4.0 per cent difference between 1.619
and 1,556 given 1980 total consumption would imply a difference in expected
peak of over 16,000 megawatts}jsData from Baughman, Joskow and Kamat (1979,

p. 242) indicate that the construction costs of 16,000 megawatts of
relatively cheap natural gas turbine peaking capacity would have been close

19
to 3 billion dollars in 1980.

I1I. Estimation of the Effect of Peak Demand Charges

The application of the extreme value distribution was very useful
in the preceding analysis. This section uses it to compute maximum likelihood
(ML) estimates of the response of individual peak demand to maximum demand
charges. This will help determine whether the peak dampening effects studied
in the previous section are important and may also be of use in other aspects
of system planning, such as the response of revenues to changes in rates.
The work reported here will be from a sample of individual data on eight
Ontario pulp and paper mills between 1970 and 1977.

The "standard" method of estimating peak charge effects over a
time series would be linear regression, with peak demand as the dependent
variable and the peak charge and other variables on the right-hand side.
Least squares estimates have the least variance of all linear

and unbiased estimators and if the dependent variable is normally
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distributed, OLS will also be ML and hence asymptotically the most efficient
of all consistent estimators. However if the dependent variable has the
extreme value distribution, OLS will not be ML, but ML estimates can be

calculated which will have the property of asymptotic efficiency.

In the theoretical exposition of the previous section, some strong
assumptions were made, for example that the parent distributions were
normal., In order to relax these assumptions, assume that there are T
"peak-eligible" quarter-hour periods in a month.20 Assume also that
the natural logarithm of a plant's electricity demand for quarter-hour

period i of month m is X o0 and that all the X, m's have an identical
b ]

probability distribution F:

) an

X. ~ F(xi

L2 /
i,m m,1

> m,J

where zm,1,...,zm’J are monthly observations on the underlying explanatory
variables., As mentioned before, if the distribution of x:ax has a limiting
distribution as T increases, Gnedenko (1943) has shown that it must take
one of three forms: If x is not bounded above and

lim LEER) v for all x > 0 (12)

to 1-F(t) and some Yy > 0

then xzéx must have extreme value distribution21 of form (1), Assumption (12)
is appropriate for many parent distributions, including the Normal, Gamma,
Poisson, Logistic, Exponential and Lognormal. As also mentioned, the

parents need not be independent provided strong-mixing condition (3) holds,
Note also that the successful applications discussed in Gumbel (1958)

suggest that (1) may be reasonably robust to small violations of these

basic assumptions.
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To determine whether the distribution of X responds to events such
as changes in the peak price, the location parameter zm is in turn re-
parameterized in terms of the explanatory variables. The log likelihood

function associated with (1) then becomes:

mx - - - - -
L(xm ) = log(sm) en exp( em) 13)
where e = (x°2%-4)/s
m m m m

4 = ay + a, log(Zm’]) + ... + aJlog(Zm’J)

and s =8
m (o]

As x:éx is already a logarithm, @12000585 will be elasticities, Maximum
likelihood estimation consists of maximizing L in (13) over a ,...,QJ and go'
The remaining formulation of the model essentially consists of
choosing the variables Z1,...,ZJ. The key constraint on model building

is that the only available customer-specific data are the "standard billing
data" on their electricity purchases and in particular there are no data
on the output of individual plants. The very simple model used here is
similar to that used by Corio and Trimmell (1978) which employed some of
these same data (although their empirical methods were very different).
While the model is described in more detail in Veall (1981), the
basic idea is that it would be very difficult with the available data
to model the entire electricity purchase decision, as it depends on all
input and output prices, market conditions, inventories etc., most of
which are not observed., Instead it is assumed that the firm considers
all this information in determining monthly output and that there are
no short-run substitutes for electricity23 so that output determines the
number of kilowatt hours (kW.h) that will be purchased during the month,
The work here focusses on the determination of peak demand conditional on

the kW.h decision, and therefore kW.,h is one right-hand side variable.24
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Given kW.h, the plant's electricity Sill is minimized by keeping
its consumption over the month as smooth as possible. 1In particular, if
the peak demand price rises, plants will attempt to reduce peak demand
and make up lost output by increasing the level of production at other
times. This will result in extra wage costs, for example in the form of

overtime or shift differentials.25

Therefore peak demand will be a decreasing
function of the peak demand price relative to the wage26 as well as an
increasing function of total monthly electricity usage.

The original data set consisted of 768 monthly observations on
eight Ontario pulp and paper mills between 1970 and 1977.27 Some observations
were excluded because of strikes or because normal charges and procedures
were suspended under the "force majeure" provision of the standard contract.

This left 706 observations for estimation. A description of the data is

provided in Appendix 2,

The first step in the estimation procedurezswas to pool the data
for all the mills (in a time series cross-section panel) and maximize
the likelihood function (13) with the mode re-parameterized in terms of
kW.h, the ratio of the peak demand price to the wage and intercept
dummies for mill and month of the year. The intensity was re-parameterized
in terms of the mill dummies only. The resulting estimates were reasonable
(for example the coefficient of the peak demand price/wage ratio was estimated
as -.06 with a standard error of .02). However when compared to individual
mill-by-mill estimation over the time series, the null hypothesis that the
coefficients of kW-.h, the peak demand price/wage ratio and the monthly dummy
coefficients do not vary across firms is rejected decisively at the 99 per cent
level using a likelihood ratio test. It was therefore decided to shift to a

mill-by-mill investigation.
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As a first pass with this new‘approach, likelihood function (13)
was maximized for each mill with the monthly dummies retained and the
assumption of a constant scale parameter, S,- As a preliminary test, the
residuals were then pooled and graphed as a histogram along with the
theoretical density (see Figure 3).

While this provides striking visual evidence in support of the
extreme value distribution, the ordinary chi-square critical level for the
goodness-of-fit test is not strictly applicable to residuals from ML
parameter estimation, as discussed in Kendall and Stuart (1961, pp. 425-430).
The correct test, as described by Chernoff and Lehman (1954), is extremely
complicated. However, it is known that the "rrue" critical level is
between the chi-square value with G-1 degrees of freedom (where G is
the number of groups for the test) and the chi-square level with G-K-1
degrees of freedom (where K is the total number of parameters estimated).
However in this research K will generally exceed (or be very close to)
reasonable values for G. (For example, in the pooled residual case, K is
120.) Therefore the goodness-of-fit statistics will be generally compared
to a chi-square with G-1 degrees of freedom (although that test 1is admittedly
less powerful).

The results for the individual mill-by-mill estimation are in Table 1.
(The monthly dummy coefficients are not reported to reduce clutter.) The
key results are the goodness-of-fit tests on the residuals. For one of
the eight mills, the null hypothesis of the extreme value distribution is
rejected. For the OLS residuals, the null hypothesis of normality can be
rejected three times (and for seven of the eight cases this goodness-of-fit

statistic is greater than for the ML case).
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Figure 3
Theoretical and Empirical Densities of Residuals:
Pooled Sample for All Eight Firms

h(em), Number of ém as fraction

of total

Theoretical density:
«—

h(em)=exp(-em)exp(—exp(-em))

~

Histogram of empirical

residuals (Number of ém
as a fraction of total)

& =(x"3X_1 y/8

Goodness-of-fit x2 = 4.3 n m m m

(95 per cent critical level = 14.1)

Number of residuals = 706
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Looking at the ML coefficient estimﬁtes, the estimated peak demand
price/wage mode elasticity is negative for seven of the eight mills, ranging
in those cases from -,0030 to -,1898. The negative sign was expected as an
increase in the peak demand price relative to the wage should tend to
dampen peak. For five of these seven cases the coefficient is significantly
different from zero (using a one-tailed test at the 95 per cent level),

For mill 6, the estimated coefficient is positive and statistically
significant. (It may be recalled from footnote 23 that mill 6 is the

only mill capable of electricity generation by steam,) It would be expected

that the kW-h coefficient would be between zero and one and the ML estimates

confirm this. However these coefficients do range considerably, from .0992

to .8874.

The OLS coefficients are not very different from the ML estimates.
The ML coefficients of the peak demand price/wage ratio coefficient tend
to be slightly closer to zero (except for the mill 3 estimates). The kW.h
coefficients are reasonably close except for mill 1, As the OLS estimates
should be consistent in this case,29 this similarity of estimates is
reassuring,

Another issue is whether the peak demand price/wage ratio should
be a single variable or whether the peak demand price and the wage should be
included as separate variables., The t-tests on this restriction indicated
that the null hypothesis of using only one variable could not be rejected
for seven of the eight cases. In the case that it could reject, the peak
demand price coefficient had the expected negative sign while the wage
coefficient had the expected positive sign,

However *there is one disturbing aspect to these results, The Durbin-
Watson statistics for both ML and OLS residuals tend to indicate serial

dependence. In attempts to correct this problem, such additional explanatory
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variables as a time trend, fossil fuel priées, industry shipments and
lagged independent variables were tried, all without success. The usual
procedure in this case is an ad hoc first-order autocorrelation transform
(i.e., "quasi first-differencing"). However this approach is inappropriate
in this case as the set of variates with the extreme value distribution
is not closed under addition, unlike the set of norqally distributed variables.
This makes the problem very difficult.30

Veall (1981) attempts a complicated approach to deal with the auto-
correlation problem in the extreme value distribution context and is
partially successful. It is a problem which requires further research
both for this particular case and for cases with other kinds of non-
normal variates. Appendix 3 presents the results of a simple first-order
autocorrelation transform (i.e., Cochrane-Orcutt technique). While the
standard errors are slightly larger, the inferences from above remain
intact (namely that the peak demand charge appears to have a peak
dampening effect for all the mills except number 6). However the important
point here is that the extreme value distribution can potentially be used
when the dependent variable is peak demand and some support has been
provided for this approach in the data. It may be a feasible approach
for other kinds of peak demand estimation problems (e.g. system electricity

demand, public transit) or any time when the data are reported as maxima

or minima,

1v, Summary and Conclusions

The most prevalent method of charging for electricity sold to
industrial customers is the Hopkinson rate. This consists of an energy
charge per kilowatt hour plus a demand change for the maximum usage
during any quarter-hour of the month. This paper studies the effects of

this charge, both in a theoretical and empirical context.
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The primary motivation for the former was the observation that
recent time-of-use rates in California still had a maximum demand
charge for maximum quarter-hourly usage during the on-peak period. The
theoretical example studied provides a potential justification, The
basic argument is that a user's demand variance is positively related
to both its own-peak demand and to system variance. System demand

variance is in turn positively related to both the expected system peak

and the size of the optimal reserve margin over expected peak. The
individual maximum demand charge can therefore be used to price the
effect of a firm's actions on the costs of providing the optimal level
of capacity.

The analysis was greatly simplified by the use of the extreme value
distribution, This device was also used to comment on the calculation
of optimal capacity, If the utility is building capacity to maintain

some low loss of load probability, the use of the extreme value distribution

L]

will suggest a larger optimal capacity than if peak demand is treated

as a normal variate, In addition, it is illustrated that the practice of
predicting peak demand by multiplying the average demand by an exogenous
factor may be inaccurate if demand variance changes. An example of a
possible reason for an increase in system demand variance is the increased
use of air conditioners which make electricity consumption fluctuate more
with the weather,

Section III attempted to estimate the effect on individual peak
demand of the Hopkinson rate's maximum demand charge. The sample was the
monthly standard billing'data (total and maximum demand) of eight Ontario
pulp and paper mills from 1970 to 1977. The estimation technique .
treated individual peak demand as the maximal order statistic from many

draws and hence used the extreme value distribution., The parameters of the
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extreme value distribution were again re-parameterized in terms of
"explanatory" variables to yield a likelihood function. The results from
maximizing this likelihood function tended to support the use of the extreme
value distribution and also suggested that for most of the mills, a one

per cent increase in the peak demand price per kilowatt relative to the
wage would lead to a reduction in peak demand of up to two-tenths of a

percentage point.
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Appendix 1

Optimal Prices

Note the relationship of the mean and variance of the usage of firm £

to the system mean and variance:

=
i}

He + 1

(Ué + 2p0 (1/2)
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+
fds 0's)
where b and Gi are the mean and variance of the rest of the system's
usage and p is the correlation of firm f's usage with the rest of the
system's usage,
g ¢

Then the optimal prices P = and P ~ will reflect the marginal cost
of Mg and Oge Letting PC be the average unit cost of capacity and
recalling C* = p + ko
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defining ¢’ as the marginal cost of capacity at C = C¥,

Expected proceeds of this pricing plan if all users face these
prices would be

4

z(c’-uf+c ek o+ (

Uf + po
£ o)

——o) =¢'* (b +ko)

Expected costs under the assumption of constant returns to scale are
also

c’ o (b + ko)

so the plan breaks even.

Now examining the MRS/MRT conditions, using (Al:l),

BPCC*
£ oFf + pcs
MRT = C = k( )
dp°Ckx g
oM
£

The user's electricity bill is

o. + po

B=C\.._+Ck%k( £

S
£ o )Uf

ko, + po ) s

= -k _ f s’ °f

MRS = —5— = 0_(2crf + pos) 3
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which does not equal the MRT even if it is assumed that the second term can

be neglected.

then

If prices are instead

i
pi=c’
a
f_eotk
P C % (Uf + 2pos)

B

o, + po
£ S
kG———gf-—-a

(Al:2)

k(cf-+2pa§i?f(cf4-pa§l

k ’
oy (2crf + 2pcs) -C

203

If the second term is neglected under the assumption that the firm does not

consider the effect of ¢, on o (which will be small unless user f's variance

f

is a substantial portion of the system variance), then MRS = MRT.

If p is a choice parameter

ko Uf
MRS = —=
’IJ'f g
oo
ws = —2f

D,Gf cf + pcs

again ignoring the effect the user has on system variance, The corresponding

MRT's are identical.
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Prices (Al:2) yield an expected bill of

k
c +C — :

e +C o5 (Ot 200,)0, (a1:3)
Hopkinson rate (9) also yields this expected bill and therefore is equivalent

kW PkW.h

for expected cost minimizers. Moreover if P and are as in (10),

the expected bill will be

kW, - kW max
E(C'-P J)x_ +P x_ )
f f
c -
- k xf- xf max -
_ ’ P X LT -
Xg £
A P ko ci. _ max, _
=Clpgt C e E(E(xf[x-x ) = g)

o
k £ ma
¢’ et C’E‘ gt P o EET) - ) - pg)

C/ gt c’% (o ofke) as EG ) = 4 +k%0
K

c’ ¢
g.f-l' c'kp O'f
If op is small relative to a, (Al:3) also becomes Clpf+ C'kp)of.

Therefore price sets (Al:2), (9) and (10) are equivalent.

I}
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Appendix 2
The Data

Because of Ontario Hydro confidentiality requirements, the mills

were referred to only by number and the only information on individual mills

was their standard billing data. There were no mill data on output or on

capital acquisitions, although there were no sustained jumps or falls in

consumption which a major change in plant utilization might cause. The

data are described as:

1)

(ii)

(iii)

(iv)

)

(vi)

(vii)

(viii)

the

ax

m R . .
L3 , the log of the maximum kilowatt consumption in any 15 minute

period during month m

the peak charge, or price per kilowatt at peak as set by Ontario Hydro

KWHm, or the log of the total consumption of kilowatt hours during month m

the kilowatt hour charge, which is the Ontario Hydro price per kilowatt

hour and which is the same for all mills studied

the price of natural gas, defined as the upper limit of the band which

gas companies negotiate with their largest customers. The price is
that of the relevant regional supplier

the price of oil, which is the wholesale price of No. 6, 3% fuel. The

price is that of the relevant regional supplier

the wage, which is the average hourly wage for the 3-digit S.I.C. division
Pulp and Paper mills in Ontario. This is the only non-mill-specific
variable used in the basic model

shipments, based on Statistics Canada data for Ontario shipments of the

2-digit S.1.C. classification Paper and Allied Industries.

The term 'real" applied to a variable implies it has been divided by

Statistics Canada Industry Selling Price Index for Ontario for the 2-digit

S.I.C. classification Paper and Allied Industries. Variables (iv), (v), (vi)

and (viii) are not used in reported results but only in attempts to deal

with the autocorrelation discussed on pp. 26-27.
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Coefficient Estimates from GLS Estimation

Mill Constant pkW/W kW.h
1 7.8518 -.1516 .2526
(.4932) (.0536) (.0473)

2 6.2358 -.2165 .2887
€.2494) (.1268) (.0299)

3 9.1559 -.0160 1147
(.2052) (.0571) (.0202)

4 7.4733 -.0040 .2510
(.3173) (.0600) (.0336)

5 9.6444 -.1054 .0420
(.1737) (.0441) (.0177)

6 7.2941 2347 .3690
(.7078) (.0891) (.0627)

7 3.4294 -.1787 .6786
(.5664) (.0962) (.0544)

8 4.7038 -.2107 .5073
(.4026) (.0809) (.0425)

(®

First order serial correlation adjustment using Cochrane-
Orcutt method. Standard errors are in parentheses.

(o
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Footnotes

1Morgan and Talukdat (1979), p. 293.

2Alternatively these periods can be 20 minutes or 30 minutes (and

are even six hours in Sweden). The billing period of one month does not

seem to vary.

3Baner and Gold (1939) suggest the original justification was that
"each additional customer could be regarded roughly as adding to plant re-
quirements in proportion to maximum demand... .The special charge was thus
conceived as paying return on plant investment, while the kW.h rate con-

veyed costs due to production and delivery of emergy used" (p. 88).

4A less important defect is that the intervals are usually measured
consecutively (12:00 to 12:15, 12:15 to 12:30, etc.) which could induce
unusually low usage near the end of each period. One solution is overlapping

periods (12:00 to 12:15, 12:01 to 12:16, etc.).

5One new suggestion is "ex post" peak pricing with an "after-the-fact"
charge on user's demand at time system peak occurred. Another is what
Vickrey (1971) called "responsive" pricing and is sometimes known as
"homeostatic" or "spot" pricing. Under this system, the price of elec-
tricity would be adjusted very frequently (perhaps every five minutes) so
as to keep demand approximately equal to production capacity with the re-
striction that price would always exceed marginal operating cost.

6See Ellis (1980) for analysis of this latter issue.

7The original derivation is due to Fisher and Tippett (1928).
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8
As the system demands x; are the sum of many individual demands, the

Central Limit Theorem suggests the normal to be most appropriate. However the

!

normal parent assumption is not necessary to obtain (1) as will be discussed in
Section III. A different assumption for the parents would lead to different

formulae (2).

9
A somewhat more general condition has been derived by Leadbetter (1974).

Berman (1964) discusses the case with normal parent distributions.

10
Even with independence, convergence is not rapid in the tails with

normal parent distributions. See Gumbel (1958), pp. 221-223,

11
Billing is actually done on a plant rather than a firm basis. Note
also that the firm demand is the amount of electricity which would be pur-
chased if it were available, although this distinction will not be important

as the probability of shortage has been assumed small.

1
2Assuming the probability of shortage is ignored.

1
3Provided q is greater than .57. For example, if as before q=.99

and T=160, k®= 2.71 and k =3.98, = 1.47.

X
K&
14
Using a conservative estimate of the marginal cost of peaking generation
capacity of $2.50 per month and the example's l%-of 1.47 and p of only .1,
k
the peak demand charge would be at least $.37 per kilowatt per month, or

over $1800 per month for a moderately large 5000 kW user.

15
Many of the simplifying assumptions made above are not required for

individual peak demand charges to be efficient. For example, the identical

probability distribution assumption is not necessary for either the xi's

or the Xe i's. However in Veall (1981), it is suggested that a reasonably
9

accurate and tractable approach would be to retain the identical distribution

assumption for the demands of each individual firm, as most firms will be

0]
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in continuous operation for at least the few hours likely to contain system
peak. Due to the residential component of system demand, the identical
distribution assumption may not be realistic for the system as a whole,
In that case, it is probably feasible to allow each x, to have its own
mean and‘variance and calculate C* as a function of u],...,uT and Opseees0pe

kW.h

This will affect the formulae above for P by replacing ¢’ with

T T

o . For Pkw, C %k would be replaced by X ai-c- .
._71 OK. ._, 90,
i=1 i i=1 1

16These figures may be somewhat overstated as in the right-hand tail,
the true density of the maximum draw approaches the extreme value density
from the left. The accuracy of the approximation depends on the number
of draws, the true parent density and the degree of dependence between

parent densities.

17
As an example for an individual utility, the peak demand /mean hourly

demand ratio of Southern California Edison averaged 1.518 between 1966
and 1970, This figure rose to 1.596 for 1971 to 1975 and was 1.697 for
1976 to 1980. 1In addition, the difficulty cannot be solved by merely
applying the fixed factor approach to data for peak months., Southern
California Edison's peak comes most frequently during August. The
August ratio of peak demand to mean hourly demand averaged 1.365 for

1966 to 1970, 1.419 for 1971 to 1975 and 1.505 for 1976 to 1980, The

figures for July and September display a similar pattern.

18Furthermore, the confidence intervals for predictions of peak demand

may be much larger than those for mean hourly demand (see Veall (1981), p. 88).

19These effects may be offset by the point of Telson (1975) that most

utilities already provide too high a level of reliability.
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20It is allowable if there are some other periods with a probability

of providing the peak, as long as that probability approaches zero for large T.

21This condition essentially rules out parent distributions which are

Cauchy, Note that it is also being assumed that electricity utilization

(L4

capacity is not an important constraint, If it were, the appropriate limiting
distribution of xﬁax (if non-degenerate) would be the three parameter Weibull.

This more complicated distribution would be used instead of (1).

22
Suppose a firm which experiences an unusually high peak early in the

month realizes that for the remainder of the month there is no longer an in-
centive to smooth demand as long as the initial peak is not exceeded. If the firm
reacts by shifting the parent distribution for the rest of the month, the result-

ing dependence is not strong-mixing.

3Ontario Hydro research indicates 97 percent of electricity is used
for machine operation and it is probable (although not known) that these
machines are not steam-compatible. Customers 1, 2 and 7 have hydroelectric
generation but as that is likely "run-of-the-river"™ (i.e., no dam) this gives
no particular advantage in terms of reducing peak, as it is likely the
generators work more or less constantly. Customer 6 can generate electricity
with steam (possibly by burning wastes) and as will be seen, its

results do not match theoretical expectations.

24
No special methods are used for treating kW.h as an endogenous vari-

able. The reader can either regard the eétimation as conditional on kW.h or
be willing to assume that randomness in peak demand is of sufficiently small
importance in plant operation that it does not feed back to the output/kW.h

decision. Electricity charges constitute less than 5 percent of total value

added by pulp and paper mills, according to Statistics Canada industry data.
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25The marginal cost of all these alternatives is assumed proportional

to the wage, which is what the model requires. Another method of reducing
peak would be appropriate scheduling of maintenance activities. Note also that
while these mills are 24 hour-a-day operations, they generally shut down for

a few shifts every month, often around a holiday.

26The argument is essentially that the wage is the appropriate deflator

for the nominal peak demand price.

7
2 Thanks are due to D. Fretz and F. Trimmell of Ontario Hydro for pro-

viding and interpreting the data set.

28Maximization of likelihood functions used the algorithm proposed

by Berndt, Hall, Hall and Hausman (1974). Because the likelihood function
is not globally concave in the parameters, different sets of starting values

were used as a check against finding maxima which were local but not global.

29With a constant intensity, both ML and OLS are estimating shifts in

the location of the density. However the constants need not be similar
as the OLS estimates correspond to the expected value (which exceeds the mode for
the extreme value distribution). It would be therefore expected that the OLS

constants would exceed the ML constants, which is true in all eight cases.

30, . , .
This problem is present in other cases where the dependent variable

is non-normal, such as in the limited dependent variable literature. For
this latter case, labour supply studies based on panel data seldom present

test results for serial correlation along the time series.
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