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1. Introduction

For, the estimation of coefficients in a classical linear regression
model, several families of improved estimators crafting the Stein-rule
technology have been developed and conditions for their dominance over
least squares estimator according to risk criterion under a general
quadratic loss function have been obtained; see, e.g., Alam and Hawkes [11],
Casella [3] and Strawderman [8] for a few recent ones. In some cases,
the exact expressions for bias vector and mean squared error matrix have
been worked out; see, e.g., Srivastava and Chaturvedi [6] and Ullah and
Ullah [9]. No efforts have been made to evaluate the sampling dis-
tributions of improved estimators probably because they will be intricate
enough and meaningful conclusions will be difficult to deduce. However,
such is not the case with their asymptotic expansions which may be fruit-
ful for studying the performance of estimators. This paper is an
attempt in this direction. We have considered a simple family of Stein-
rule estimators and have derived Edgeworth-type asymptotic expansion,
assuming disturbances to be small, in order to approximate the exact
sampling distribution. An interesting feature of our result is that
the approximate distribution function can be easily evaluated on a desk
calculator, We have also examined the performance of improved estimators
with respect to least squares estimator according to the concentration of
the distribution around the true value, Similar results can be obtained

for other families of shrinkage estimators without much difficulty.



2, The Main Results:

Consider a classical linear regression model:
(2 o]) Yy = XB+u

where y is a Tx1 vector of T observations on the variable to be explained,
X is a Txp full column rank matrix of T observations on p explanatory
variables, B is a px1 vector of regression coefficients and u is a Tx 1

vector of disturbances assumed to follow a multivariate normal distribution
N(O,O'ZIT) .

The least squares estimator of B is
(2.2) b= &% XYy
which is unbiased and has a multivariate normal distribution N(B,O‘ZQ) with
e=a&n.

A simple family of Stein-rule estimators for B is: given by

" ’
(2.3) B=-x =B (y-Xb)y,

b X Xb

where k is any positive scalar characterizing the estimator,
The estimator P dominates b, for instance, according to total mean:

squared error criterion when

2
<k < -2]1: >
(2.4) 0 <k m+2) [a-2]; a>2
where
n = (T-p)
(2.5) P,
d=Xd = T
i=1 i

7\1 2 )\2 2 400 2 ?\p being the characteristic roots of Q-1 = (X 'X),



Theorem: Defining the estimation error of the standardized estimator of

Bi’ the ;EE component of B, as

=le -
g =2 (8 -B,)

rt

he small-disturbance asymptotic expansion of the density function of §i

is given by
6)

B, 3
2, =[1- o 1
( 8(§i) [1-0kn Ejiﬁa; T
2 _Joy_ ql(ui2) +4 2 & 1 5
TExm eyt Gy ==

ii ii

where f(*) denotes the univariate standard normal density function and 9y
is the 4 th diagonal element of Q = (X'X) .,

Using the approximate density function to order 0(02), we can

evaluate moments of Ei. For instance, the first mogent is

2.7 E(5) = TE@, -8)

g

= =0 kn E;gf%a;

whence the bias vector, to order 0(02), is

2 kn

(2.8)  E(@-P) = -0" 3R7ED

which tallies with Srivastava and Upadhyaya [7, (2.1) on page 8] to the order

of our approximation., Further, it matches with the large concentration parameter
approximation of Ullah and Ullah [9, (3.15) on page 712] remembering that

large concentration parameter approximations with sample size fixed are

equivalent to small-disturbance approximations; see Anderson 21,



Similarly, the second moment is

2.9 K& = —E(s -8’

=q,, +0° '-7-7—- [-J¥¥32:t—

ii B X'XB i
which agrees with the expression for the i th diagonal element obtained by
Srivastava and Upadhyaya [7, (2.12) on page 8] and Ullah and Ullah [9, (3.16)
on page 713] to the order of our approximation.

From (2.,9), it is observed that

(2.10) G E®B-8)‘(b-P) - 5 EB-B) ‘B-B)

a g
= o? E—:‘&‘%—— [2trQ - (k(n+2) +4) —%%1
which is positive if
(2.11) 0 <k (+2) [g_x_rx_g trQ-21; w@trqn

The above inequality holds as long as (2.4) is true,

2.1 Comparison of Distribution Functions
A further comparison of b and 6 can be made with respect to the con-
centration of probability around B. For this purpose, we consider the

distribution functions of bi and Bi. It is easy to see that

(2.12) E(m) = P[‘}; (bi- Bi) < m]

- FQq—%;)

where F(°+) denotes the distribution function of a standard normal variate.



From (2.6), we can obtain the distribution function of §i to order

0(c?):

(2.13) G(m) P[§i < ml]

'l A~

/ By

=F (—m- + okn =7 ]; ° 1 f( ...@...)
o BXXB o "\Vq. .
1 13 W44

BXXp 2BXXB

2
2 % [gn+22‘+ _i_ - m_ o m
T q3/2 /q_>
ii ii

R _
Now consider the difference between bi and B:i. in terms of concentration

in an interval symmetric around the true value ﬁi. From (2.12) and (2,13),

we have
@.4)  2lllw, -8 | <ml - UG, -8) ] s nl

= [&Cm) - &(-m) ] - [6(m) - G(-m)]

= n+2) + R I SRy 1
2 o gl (SERES q.i Rls7p f(q )
ii ii

BXXB ‘2 B X XB

which is positive if

q;
(2.15) 0 <k (+2)[ axxs 2];—-5-r3xxr3>2.
i

B B,

i

If h is a px1 vector with all elements 0 except 1 at the it

we have from Rao [4, page 74]

h component,



o, 1, A A
(2.06) BEXXB_BXIB .,
2 p hh B
B:i.
so that (2,15) is satisfied so long as

2
< [ Qe S - . >
(2,17 0 <k (nl2)[qii>\p 2] ; 94 )\p 2,

If q denotes the smallest diagonal element of Q, it follows from (2.17)
that the estimator B dominates b according to concentration around B at least

as long as

(2.18) 0 <k < [qhp-2] ; qfp > 2,

2
(n+2)
Yi s
It may be pointed out that the quantity - B X XB assumes values

larger than 1 which essentially follows from a reisult in Rao [4, page 60].

3. Proof of Theorem
In order to derive the small-disturbance approximation for the exact

sampling distribution of the estimator B, we write the model (2.1) as

(3.1) y = XB + ov [u=ov]

so that v follows a multivariate normal distribution N(O,IT) .
Using (2.2) and (3.1), we can express
-1
) v'[IT-x(x'X) XIv

(3.2) B-B) =cx® 'xVv-0% 2. .
BXXB+208 X v+ oPv X&) kv

e B +cx%)Tx4Y]
1

. chZ crki—l[l+2crﬂ-é—z-+o Z"e"'é]].

o—d

-—d

* [B+0Q%z]



where ' 1
 z=@'®m *xv,e=8%% =878,
(3:3)
w = v/l - X(X %1% Iv -n.

Notice that Z follows a multivariate normal distribution N(O,Ip) and
(w+n) has a Xz-d:i.stribution with n degrees of freedom. Further, they are
stochastically independent.

Expanding the expression in first square brackets on the right-hand

side of (3.2), we can express the estimation error as

(3.8) (B-P) = oo, +c*(e, = R B) + oey + e, + 0(c)) j=s
where 1
e =QZZ
 kw
e, ===
2. 87 11
 kGem) 2. 2002072
ey = - K o’ x -3 ‘el %)z
1 1 1 1
e, =EEM) (i 4o 2p3% 2)z - p 4287 22z ¢ Q%z]
Writing

(3.5) e(Z,w) = oe, + 0'2e2 + cr3e3 + o!'e4

we observe that e(0,0) = O whence it follows from approximation theorem of
Sargan [5] that g_- e(Z,w) has a valid Edgeworth expansion,

For h to be any px 1 fixed vector, let us define



C =

Y h'e(Z,w)

al=

1
3.6 a’=n’r -o? K o - Zq Zgplg ?))
1 1 L
o =K ' r, - Fa e Py + 20 Zpne’)

so that Qh contains terms up to order 0(0'3) and

z
3.7 G, = a‘z - o* kWThﬁ +0° z'cz.

Now the characteristic function of Gn is

itGh
(3.8) ¥(t) =Ele M
7
it(a'z - o BBL 4 53 0z
= EwEZ (e ) w1
—oit O 1t(d 2 +0°2 ‘c2)
= Ew[e Ez{e lw}]
It is easy to see that
1t(d’z + oz ‘c2)
(3.9  E,fe b}
® ® W 3.1 k2t
_ 1 ! Jt@z+o°zcz) "2° “az
(2.”) 2 ‘o seoe Yo
3 -‘5 --t?d'(l - 2031t €)' q
= |1, -20%1ec| e P

But

N]—=

(3.10) IIP-ZO'BitCl- =1 + 0(c) j23

a'a, - 201t C)d = d ‘@ + 204t Cuvurn)d

= n'eh - 207 ECE. {rf0n - 2 p)?} + 0(ot)

j=3



2 2

t- 2 3 -1 t L

-=—d(I_-207itC) 'd -=—h Qh .

Balye 2 P =e 2 n+o%? KER L n - 20 By} 400D ]

j=3

Thus putting (3.10) and (3.11) in (3.9), and then substituting (3.9) in (3.8)

along with .

-git '—5—@ I
(3.12) e qogpe B 28 (—-g-ﬁ) + 0(cd) j=23

we find t2 ,
-==hQh ’ 22 2
(a3 Wo) =e 2 B [1-cig BEE . 2 LkW BB
29%

2
2 £k (non-2 0 + 00H] 323

2
t 7
-2 h'on 2
=e 2 -0 EEDHm B -nan}] + o) 323

whence taking ¥(t) to order 0(0'2) and using Inversion Theorem, the density

function of Gh to order 0(0'2) is

o il
(3.14) g(Gh = o :L e ¥(t)dt
k+2 8y G’tzl 1 Gy
= [14o? B (D BRL ) - ] (=)
vi'eah vh'oh
where we have utilized the following results:
t2 ’
@ -==h'Qh - itC G
= e 2 )
o vhQh lh’Qh
(3.15) 2
® G.

1

--'-h Qh itG
2 2
-— (it)" e dt = ——ﬁ— f( —=



10

Applying the transformation

4

(3.6) o =G - oML

and observing that

knh B
+0
Gan gl )
Vi Qh
4
P St )*
- J_;_e'z h'Qh
™
2
1.5
_ 1 "2°nm kb8, Th_
“Vom © -0~ " %am
2
2 o
__gL(h B) j
( -1y l+o0@) j=23
T Qh th

we get the density function of 0 to order 0(0‘2):

‘ - %h o b B %
(3.18) g<%>-F_ /17'6') - * TR

—k;l—ehqh .JB"'_Z)L.)(hﬁ) th}(%—%-l).

Setting h equal to a vector with all elements 0 except 1 at the jth

place so that h'B =B j and h'Qh = q:j j° we get the result stated in the Theorem,
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