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Variance components models are now commonplace in the -econometric
analysis of pooled time series and cross section data. As usual, the
dependent variable is hypothesized to depend on exogenous variables and
an error term. But in the variance components model, the error term is
assumed to be comprised of two"effects". One is simply a random error,
taken to be independent across both time and units of observation (the
latter referred to as "individuals"). The other is an individual effect,
independent across individuals but constant over time. The variances

associated with these two effects are termed the variance components, and

are parameters to be estimated along with the slope coefficients. The
variance of the individual effect is usually called the individual component.

The variance components model has proved especially useful for
the econometric analysis of wage and income data (see Hause, 1977;

Lillard and Weiss, 1979; Smith, 1979). The estimated variance compoments play
a particularly important role in studies of income distribution and
poverty (for example, see Lillard and Willis, 1978).

Estimation of individual components by classical variance components
methods is particularly sensitive to "outliers" if as is typically the case,
the length of time over which individuals are observed (panel length) is small
relative to the number of individuals in the sample (panel size). The large
panel size is typically sufficient to estimate the slope coefficients accu-
rately, but the small panel length creates difficulties in distinguishing
between the individual effects and the random disturbances in the relationship.

The problem of outliers is often dealt with by arbitrary elimination
of "obviously impossible" values. Indeed, some truncation will often have
taken place before the econometrician even receives the data. This occurs

through the deletion of "out of range" values by the agency providing the
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data. Additional truncation may follow if particularly extreme values

are generated for a variable which is not directly available and which

must therefore be constructed. For example, many outliers are created

in wage data when they are obtained by dividing annual earnings by

annual hours of work, where both are subject to error. Fstimates of the

Population (conditional) mean wage rate (regression coefficient vector) will

often be insensitive to elimination of such outliers provided this takes

the form of cutting off both tails of the distribution, Thus applied

researchers may devote little attention to potential problems resulting from

truncation, However, eliminating the tails of the distribution will in

general have a marked effect on its variance and hence the estimated variance

of the individual effects is potentially very sensitive to such truncation.

The implications for analyses of income distribution, which often focus on

behavior of the tail of the distribution, are potentially very serious,
Truncation may be viewed as imposing particularly extreme prior

beliefs on the distribution of individual effects, For example, an in-

vestigator may truncate the value of a wage observation because of his

belief that the individual effect cannot possibly be so extreme, and

hence that the extreme value is due to measurement error. Lazear (1976,

p. 551) who is particularly explicit about his "pre-analysis" incorporation

of prior information, provides a good example: "The original sample has

records of 5,225 individuals. This had to be reduced to 1,996 observations

to meet the following criteria. First, it was necessary that individuals

in the sample have wage rates reported in both 1966 and 1969. Second, indi-

viduals who reported that their wage rate was either less than 50¢ per hour

or greater than $10 were dropped on the grounds that reported wages in

these cases were unlikely to be correct. Finally, observations were dropped

for which there was incomplete information on the variables used in the

analysis." Similarly, Olson, White and Shefrin (1979) explicitly exclude

individuals from their sample if they have "obviously miscoded values"™.

Some form of "pre analysis" selection is very commom in this area.
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Bayesian analysis provides a general framework for incorporating prior
information in a statistical analysis, This analysis usually takes the form
of the derivation of a '"Bayesian" estimator whosefproperties are then compared
with those of a "classical" estimator. 1In the following sections we follow this
pattern in deriving a Bayesian estimator that incorporates flexibly the kind
of prior information imposed by truncation in the above examples and comparing
its properties with a classical estimator., However, in addition to providing
estimators that may improve on classical estimators by some criteria, Bayesian
analysis may play the equally important role of clarifying the effects of prior
beliefs often imposed implicitly--of necessity in a rigid form--in "classical”
analysis. In the present paper we emphasize this role, using the Bayesian
framework to provide a method for assessing the "reasonableness" of the prior
beliefs implied by any proposed pre-analysis truncation or exclusion of obser-
vations. It is shown that in many cases, especially in large samples,
truncation implies extremely dogmatic prior beliefs whose imposition substan-
tially affects the resulting estimates.

An almost universal practice in the analysis of large individual data
sets is some form of sample censoring. Most investigators follow Lazear
in requiring complete observations on all the relevant variables. Keifer
(1979), for example, using 6 quarters of data from a longitudinal survey
from the Office of Economic Opportunity, restricts his sample to "those who
reported wage rates in each of these 6 quarters". Only one-third of the
available sample meets this restriction, but as Kiefer notes this is a problem
common to most longitudinal data sets used in labour economics, e.g.,
Michigan Panel Study of Income Dynamics. In general, investigators applying
variance components models eliminate an individual with data missing for

any single period of the multi-period panel. The effects of such censoring
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on the properties of OLS regression coefficients have received a great deal
of attention in the recent literature dealing with sample selection bias

or attrition bias in panels (see for example, Heckman (1979), Hausman and
Wise (1979)). However, the effect of truncation and censoring on the

estimation of individual components, or more generally on the validity of

conventional inference, has been relatively neglected. An example given
below dramatically illustrates the sensitivity of estimated variance
components to sample censoring relative to that of regression coefficient
estimates, Even when the form of sample censoring does not result

in inconsistency of the regression ceofficients, the estimated variance
components, and more generally the variance-covariance matrix on which
inferences are based, may be inconsistent.

In Section I, a Bayesian approach to incorporating and assessing
prior information is presented. Bayesian estimators for the variance com-
ponents model are proposed. They can incorporate a wide variety of prior beliefs
and are very simple to compute, An illustrative computation is presented
in Section II. It.is based on some typical situations faced by an
empirical investigator in possession of prior information such as a survey
article on previous estimates of the parameters of interest. These present
some evidence that the proposed estimators are well behaved.

In Sections III and IV, an empirical example is provided. The data are
from the National Longitudinal Surveys. The classical variance components
estimates, under several truncation criteria, are presented along with
the Bayesian estimates. The Bayesian estimators are also used to infer the
Prior information corresponding to several truncation criteria, The

implied prior beliefs equivalent to elimination of even a small number
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of "outliers" are shown to be dogmatic in the extreme. Then, in Section IV,
variance component estimation is examined for cases wherein the data are

censored, or when some missing data are constructed. Section V contains a

summary and suggestions for further work.

I. PRIOR INFORMATION IN VARIANCE COMPONENTS MODELS

Variance components models permit an investigator to distinguish
between alternative sources of stochastic disturbance in a relationship.
For example, in a wage equation the wage observation on a given individual
may include both measurement error and some omitted variables specific
to the individual. The investigator may be interested in measuring the
individual effects--i,e,, isolating them from the neasurement error,
Moreover, there may be some prior information on the relative magnitudes
of these two forms of disturbance. Thus, knowledge of the labour markets
generating the wage data may yield some prior information on the vari-
ability in returns that may be paid for various kinds of individual char-
acteristics not included in the data set at hand. Typically there is
little prior knowledge on the source of the measurement error. Investigators,
therefore, when faced with a particularly large disturbance (i.e., an
unusual wage rate) have tended to attribute this all to measurement error
and have eliminated the observation from the data set so as to prevent it
having any influence on the estimated individual effects, Incorporation
of prior information in this way, however, is very crude. A more flexible
method of incorporating the notion that most of an extreme disturbance is
more likely to be due to measurement error than to variability in the
individual effect is the use of an appropriate Bayesian prior distribution
on the parameters governing measurement error and individual effects., An

appropriate prior distribution is proposed below.



Suppose that observations on individual i in period t, Y;¢» 3re gener-
ated as follows:

@) Vo =0 4. +¢, i=l,....N
t E 2
1 1 1t t=l,...,T

This is the classic variance components version of the location model where
8 is the location parameter, - < § < ®; u; are the individual effects,

assumed to be independent N(0,C ) random variables; and g, . are independent

it
N(O,G ) random variables representing measurement error, The location model
has no independent variables, contrary to the standard regression models used
by economists, It is adopted here since estimating regression coefficients

is not of primary interest in the present context, The location model permits
us to focus on the structure of the disturbance in the model, The parameter of
primary interest is the individual component ai--the variance of the individual
effects, That is, how much, given "location" (say, schooling, experience,
etc,) can one individual's observation (say, wage) differ from another's apart
from measurement error? A classical estimator for Ui may be obtained by
choosing the value of oﬁ (as well as Gi and @) that is "most likely" to have
generated the data. This involves maximizing the likelihood function, which

in this case is given by (see Box and Tiao, 1973, pp. 250-1):

'V1/2 -(V2+l)/2
. a2 2 2 2 2
@) 4,00 )=o)y (o + T o)

2
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and % indicates "proportional to",
Of course, if some of the data are eliminated by truncation and (2) is maximized
over the remaining data, the result is no longer a maximum likelihood estimate.

The Bayesian approach combines the information in the sample with

prior information via Bayes‘s Theorem:

2 2 2 2 2 2
3)  p(®,05,0|y) = py|e,0,,0 Ip(®,0,,0,)

p(yle,ci,ci) is the probability density function (p.d.f.,) for the observations,
and is algebraically equivalent to the likelihood function, The maximum
likelihood estimator follows from choosing 6, Gi and aﬁ that makes this
density largest. p(e,ci,GﬁIY) is called the posterior density for (e,ci,oi).

It characterizes an investigator's posterior beliefs regarding the parameters
given the data, y, and his prior beliefs regarding (e,ai,ci) as represented
by the prior distribution p(e,ci,oi). The likelihood function was presented
above, It remains to examine the prior p.d.f.
The parameters (e,ci,ai) are fixed, but unknown numbers, However, before

the current data is observed the investigator may believe that some values

are "more likely" to be the true unknown values than others (perhaps from



knowledge of other data sets, or more generally from well corroborated theories
relevant to the current problem). One way of viewing this is to consider that
there is a "super-population" from which the parameters are drawn, The parameters
are then simply realizations of the super-population. Within the Bayesian
framework an investigators prior beliefs may be associated with this super-
population, This notion of a super-population is used below in comparing
alternative estimators,

The location parameter § is not of primary interest. Thus, we assume
that the investigator has "no information" on @, i.e.,, cannot consider any
one value more or less likely than any other, This notion of no information
1s captured by a generalization of the uniform distribution by the so-called

non-informative prior.1

4) p®)=c - <8< ®
Since the remaining parameters, of and oﬁ are both variances, their

prior p.d.f's should ensure positive values. A simple p.d.f. that meets this

criterion is the inverted x> or x-z distribution? If Z is a in) random

variable, r being the degrees of freedom, the p.d.f. of Z is:
- 1 1
(5) p(z)ez (x /2% )exp(- Ez) z>0

However, since this is a one parameter p.d.f. it cannot be used directly to
represent prior beliefs regarding of or oﬁ since independent statements con-
cerning central tendency and dispersion are ruled out. This is remedied

by the transformation X = aZ, a > 0. Then the p.d.f, for X is:

-(r/241)

(6) px)=x exp(-a/2x) x>0
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Given the properties of the inverted x? distribution it is easy to

show that the mean and variance of X take the simple forms:

) EQ) ===
2
@) vx) = —2
(x=2)" (r-4)

Suppose an investigator®s examination of previous research typically
finds estimates of oﬁ around 1, but also finds considerable variability.
This, coupled with any other prior information could be represented by set-
ting E(oﬁ) =1 and V(cﬁ) = 2, and hence, from (7)-(8), au = 3 and ru =53
This yields the prior p.d.f. p(aﬁ) shown in Figure 1 below. The same form
of p.d.f. may be chosen for of with appropriate values of a and T- 1f
there is little prior information about measurement error, a and r, may be
chosen so as to yield a flat or uninformative prior distribution.

Combining the prior p.d.f.'s with the likelihood function yields the
posterior p.d.f. for the parameters 8, oi and Ui. Since 8 is not of interest
we remove it from the posterior p.d,.f. by integrating it out and obtain:

2 2 2 T 2 E 2 2 s
@) e ly) = ) @) (o +10)

S S +a a
expj-%l_z 2 7 + 126+—§ 1 ;o§>0,oz>o.
[ o + To a o B
e P e wl
In (9),
r + v
1
T === s+ 1,
r
nz=3£"-+1,
\Y)
= 2
and ﬂ3 == -
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This posterior p.d.f. combines both sample and prior information. It

represents a compromise between the sample information as represented by

the likelihood and the prior information as represented by the prior

p.d.f. As the sample size increases, this posterior p.d.f. will be domi-

nated by the likelihood. Almost irrespective of the beliefs the investigator has
to begin with, a large enough sample will result in them being changed to
conform to the data. Conversely, however, a few "unusual" or

"unrepresentative" data points (small sample) will not cause the investigator

to modify greatly any informative prior beliefs.

The natural candidates for point estimators of Gi and oi are expected
values or modes of Gi and cﬁ from (9), i.e., the posterior means or modes,
Computation of the means require a bivariate numerical integration, Since
this is a strong deterrent to most applied researchers we prefer the posterior
modal values of Ui and ci. These are analogous to maximum likelihood except
that the values chosen are those that are "most likely" with respect to both
the sample points and the prior information, They are obtained by solving

the first order conditions for a maximum of 9):

- 1l S S.4+a
ay 4.5, z +-1-
22 g 2 272 2 2
¢ Y T M 2(0] +10)) 2(e?)
and
- NT TS a
. - 3 2 -8
(1) 2" 7, 2t T, , 27 T 270
s Ve b 2(0g +T00) 2(0,)

where care must be taken to ensure that the solutions in fact represent a
maximum of the posterior. Though (10) and (l1) are nonlinear, they are easily
solved numerically. Indeed any computer software that will perform nonlinear
least squares (e.g., TSP) will solve (10) and (11) easily.5 Consistency of

the resulting estimators, denoted Gi and 35, is shown in the appendix.
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II. ILLUSTRATIVE COMPUTATION

The estimator-ai is used in a specific example in Section III in a
comparison of alternative classical estimators modified by the incor-
poration of prior information by truncation of observations. Before
making these comparisons, however, this section presents illustrative
results for Gﬁ for some typical cases of prior information formation.
The results suggest that Gi behaves well and can be used as a benchmark
estimator that incorporates prior information in a sensible manmer.

In order to evaluate the estimators a criterion is required. A

commonly used qgiggpiqpmigwghe unconditional mean squared error (m.s.e.).
The estimator ﬁﬁ is a function of the data as summarized by S1 and S, (see
(10)-(11))., Thus Gi takes on different values with probabilities dependent on
the sampling distributions of S1 and 32' These sampling distributions have
as parameters the unknown values of Gi and Ui. Conditional on values for
Uﬁ and ai, the expected values of say, Gi may be computed, Similarly we may
compute the conditional m.s.e. for 3ﬁ which is the expected squared deviation
of 32 from Gi conditional on the chosen values of oﬁ and ci. This would give
us an indication of what our typical (squared) errors would be using 3ﬁ'as
our estimator, provided cﬁ was in fact the true parameter value, Howevex,
we do not know the true value of oﬁ. One estimator may have a smaller m.s,e.
than another for one value of the unknown parameter Oi; but for a different
value of oﬁ the ranking may be reversed, In order to avoid this problem
we consider the m,s.e, of all possible values of the unknown parameter oﬁ.
Using the prior p.d.f, on oﬁ to weight the conditional m.s.e.'s at each

possible value of oi‘and summing yields the unconditional m.s.e, This

provides a measure of the typical (squared) error we would make using our

— —

ll
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estimator, whatever the true value of the parameter happened to be,

but taking into account where we think the true value is most likely to be.

The estimators used for comparison with Gi and Gi are the unbiased

estimators (see Klotz, Milton and Zacks (1969)):

72 =l[i"---s-]-'-]
p T vz vi
!

M

Table 1 reports the mean squared errors for the alternative estimators,
based on the following parameter values: N =50, T =5, 6 =0, a = 12,
r, = 8, a“ = 24, ru = 8. This results in priors for oﬁ and oﬁ with means
E(oﬁ) =2, E(oi) = 4 and variances V(oi) = 2 and V(oﬁ) = 8. Row (1) reports
the results for the unbiased estimators using the above parameters,
The remaining rows report the results for the proposed Bayesian
estimators, based on three alternative types of prior information.® The
first set of prior information (Prior 1) gives the investigator prior
beliefs that correspond exactly to the true "super populations' from which
the realized oi and oi relevant to any given sample were drawn. The results
for this case are given in row (2a). The relative efficiency gains for
the ﬁ;y;sian estimaﬁors aréL;;Eéét (colﬁmns (3), (6))--approximately 1,7%
for 32 and 4,1% for 32.

€ ]

Prior 1, howéver, gives the Bayesian investigator the important

advantage of priors that are coincident with the super population. One
way to relax this is to suppose the investigator to believe that ai and

02 came from a population of the form (6), but to be uncertain about the

precise values of ag T

e? au and ru. This hierarchical approach, though



14

100°1 61T1°1 £€68°¢€ SH0°1 LSO’ 286°1 ¢ 20118 (O
016" 0ee’t £€TL'E 00°1 090° 686°1 Z 20113 (q
GL0°T h0°1 %66°€ TI1°1 %60° G86°1 1 01ad (e
TEPOR Po1eds ¢
118° 18€°1 ¥€9°€ %86 ° 190° 096°1 € r01ad (o
[4:7 CER°1 LIS°€E L10°T 6S0° Sh6°1 ¢ 1011d (q
I70°1 9/0°T YTL'e L10°1 6S0° L96°1 T 10tad (e
TePON paTedsun  °g
000°1 (XA RN 0’y 000°T 090° 0°¢ peserqul ‘|
Awnvoma " n muuvmms ® 9
- ( #)osum ( 93 5 ( #)asu @ aojewy3sy
Aubvwwa Awbvwma
9 () ) (® () (1

L ®19elL




(-

15
formally appropriate, rapidly becomes very complicated, It is somewhat
outside the spirit of the exercise in that the whole point is to find
a simple way to incorporate relevant prior information. Instead our approach
was to generate some data sets from which the investigator can form his
priors. We then ask how the estimators perform if the investigator acts
as if his priors are the true super-populations, but they are in fact not.
Five values each of 02 and 02 were drawn from the true super-population:

€
a =12, r =8, a =.24, r =8, Their values are listed in column 1

€ € "
of Table 2, Five data sets on Y;¢ Were then randomly generated using these
values of ci and Ui, each with N=25 and T=5, The investigator is assumed
to have access to (at least reports of) these data sets, and forms his

priors based on them., "Prior 2" was obtained by letting the investigator

"eyeball" the unbiased estimates available for the data sets (columns

'3 and 4, Table 2). In practice for this simulation this was accomplished by

one author constructing the data sets and the co-author eyeballing the results
without knowledge of the actual values of Gi and Ui' This is to represent

the situation where prior information is a recollection of other empirical
studies similar to the one the investigator is working on, The figures thus
obtained were E(crze) =1, V(trze) =.75=V(0‘i), E(cri) =3, Finally, "Prior 3" is
obtained by a slightly more sophisticated approach: the average values of

72 and 72 were used as E(Ui) and E(oﬁ) and the sample variances of Ti and

Ti were employed as V(Gi) and V(aﬁ). The situation envisioned here is that

the investigator might have access to published studies on other data sets

similar to his in which Ti and Ti were reported,



Data Set

M

.883
546
1.463
2.837
1.540

16

Table 2

(2)

6.234
4,188
2,993
2,697

2,239

(3)

424
1.142
2,634
2,098

1,226

(4)

5.230
3.522
3.025
2,110
3.584

-
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Returning to Table 1, the simulation results using "Prior 2" and "Prior 3"
are reported in rows (2b) and (2c). In this case the Bayesian estimator's
performance is worse than that of the unbiased estimators., Since modal estimators
often perform badly if the posterior is skewed, particularly under convex
loss functions (i,e,, criteria like m.,s.e.), we also computed Bayesian estimators
scaled towards the posterior mean.7 The results for these estimators are .
presented in Table 1, columns (3a)-(3c) for the three forms of prior information.
The scaled estimator outperformed the unbiased estimator, but the gains are
small, Thus, in common with Bayesian estimators presented for other problems,
the estimator presented here converges rapidly to the classical unbiased
estimator as the sample size increases given relatively vague prior information.
Conversely, however, even with relatively short panel lengths, dogmatic priors are
required before the estimator differs from the unbiased estimator. At this
point therefore we reverse the procedure and use the Bayesian estimator to
clarify the nature of the prior information that is imposed by truncation or
elimination of "outliers" in classical procedures, The importance of this

kind of assessment is dramatically illustrated in the following section.

There the results of incorporating prior information via deleting "outliers"
are compared with the Bayesian approach, It is demonstrated that deleting
"outliers'" is an extremely crude way of incorporating prior information and

implies unreasonably dogmatic prior beliefs.

II1, APPLICATION TO INDIVIDUAL WAGE COMPONENTS

In this section we compute individual wage components using classical
and Bayesian methods. We compare the incorporation of prior information
via a prior distribution of ai with truncation of outliers., We estimate

what has become a "standard" wage equation of the form:

(12) 4n wit = XitB +u +E

it
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LA is individual i's wage rate in period t; Xit is a vector of (assumed)
exogenous characteristics--schooling, experience and experience squared--
and a time trend; B is a vector of parameters. The error structure is as
follows. by represents an individual effect on the wage rate, invariant
across time, and not captured by the characteristics Xit‘ Typically, Wy is
taken to represent omitted ability or productivity characteristics of the
individual. € is a disturbance arising from teméorary market phenomena,

measurement error, etc. My and ¢ are assumed to have the properties

it
specificd in Section I above.8 Typical estimates of oi obtained in studies
using this kind of framework have clustered around 0.15.9 As a result this
has now become a "stylized fact" for this kind of data. In the remainder
of this section we examine how the imposition of this stylized fact affects
the estimates of oi on a "new" set of data.

The data used were six observations on a panel of the husbands of
women in the National Longitudinal Survey of Women 30-44, between 1967 and
1976. The number of husbands in the sample was 1187].'0 Thus while the panel
length is relatively "small", the panel size is "large". Given the large
panel size and the fact that the parameters B are not of primary interest,

(12) was estimated by ordinary least squares. The consistent residuals,

£r1wit- xitB’ were then treated as yit above.

The estimated individual components, given by yi are plotted in
Chart 1 below. The wage measure obtained from these data, as is typically
the case, are not available directly. Direct measures on annual earnings,
Ei, annual weeks worked, Li’ and ''usual" hours per weck, Hi are used to
compute the hourly wage rate as wi= Ei/LiHi' Measurement error in wi

thus depends on the error specification for the components, Ei’ Li’ Hi.

]

"
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The assumed normality of the measurement error in the log wage equation
may be induced by assuming multiplicative log-normal disturbances for Ei’
Li and Hi' As usual with this procedure, despite prior removal of out

of range values of the variables before the data are made available, some

(L]

very implausible wage rates are obtained. For example, the residuals
for some individuals indicate that given average characteristics, they
would be receiving a wage rate less than 10€; others have wage rates
in excess of $40, Prior knowledge of the operation of labour markets
for labour of given education and experience level, may suggest that
the extreme wage rate observations are the result of an extreme measurement
error (eit) rather than an extreme individual component (ui). We
examine the sensitivity of estimates of individual wage variability, Ui,
to alternative ways of dealing with this prior information. A wage rate
cannot be computed without information on three variables: earnings,
weeks and hours, Typically, however, there will be individuals in the .
sample for whom "complete data'' are lacking, We postpone consideration of
the sensitivity of estimates of Gi to alternative ways of dealing with this
problem to Section V,
Table 3 presents estimates of cﬁ using the sample of individuals
with complete data for all years under various prior specifications. This
sample inclusion criterion is standard in the analysis of variance components
in labour economics, For example, Lillard and Willis (1978) required that
for sample inclusion an individual must have reported positive annual

hours and earnings each year. This and other criteria reduced the sample

1N

size from approximately 3000 to approximately 1000, The benchmark case

2
is to ignore all prior information and compute the classical estimate Tu.
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Table 3

Estimation of oi Under Alternative Methods

o

of Incorporating Prior Information

. (¢9) (2) 3) %) (5)
Truncation Panel Length Panel Size Ti Gi
None 6 1187 0.129 0.129
None 3 1187 0.137 0.137
1% 6 1018 0.074 -
1% 3 1018 0.072 -
5% 6 883 0.050 -
5% 3 883 0.050 -
Extreme 6 1161 0.113 -

Outliers 3 1173 0.118 -

13

(6)

82

"
0.129

0.137
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This is reported in column 4, In rows 1 and 2 the full sample of individuals
with complete data is used for panel lengths of 6 and 3 years, respectively,
The remaining rows present values of T; under alternative rules for deleting
"outliers", Thus, given the stylized fact of oﬁ =,15, all observations with
less than a 17 (5%) probability of occurring due to individual effect variability
are deleted in rows 3 and 4 (5 and 6).1'1 The effect on the estimate Ti is
dramatic, The 1% truncation cuts the estimate of Ui almost in half, The

5% truncation results in an estimate only about one third of its original
size, Finally even if only a handful of "very extreme" outliers are
eliminated Tﬁ is reduced by 12-15%, The "very extreme" outliers were
determined by inspection; in the event they turned out to be much more

extreme than Lazear's criterion since only observations outside of the

30¢ to $24 range were excluded, Indeed, Lazear's criterion is in practice

(]

close to our 1% criterion. These changes are in marked contrast to the
effects on the estimated vector of regression coefficients presented in
Table 4, Despite the large variation in sample inclusion criteria and
sample size, the estimated coefficients in Table 4 exhibit a high degree
of stability. This stability may have led investigators to devote little
attention to other problems created by sample inclusion criteria.

In colums 5 and 6 of Table 3, Bayesian estimates of cﬁ are presented
based on the following prior specification. The labour market we are dealing
with is assumed to be stable and hence is assumed to result in approximately
the same variance of individual components. The chosen prior means for 02

of 0.15 (column 5) and 0.10 (column 6) bracket the estimates quoted earlier.

i

The prior variance was chosen to reflect a moderate degree of confidence based
on the tendency of previous estimates to cluster. This is expressed by a

coefficient of variation of 0,47 which translates into a prior variance of 0,005,
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Table 4
Pooled OLS Estimates of the Regression Coefficients in the
Log-Wage Equation for Alternative Samples
Complete Data
Samples
Truncation Panel Length CON EDHCO TCO EXSO CO EXCO
None 6 -.770863 .0674796 .0150637 =-.00039155 .017977
(.145335) (.002119) (.002168) (.000078) (.004186)
1% 6 -.637076 .066352 .012986 -.000446 .022129
(.111560) (.001684) (.001667) (.000060) (.003206)
5% 6 -.609521 .0641515 .013748 -.000404 .0192895
(.101827) (.001599) (.001530) (.000055) (.002961)
None 3 -1.794824 .070637 .028864 -,000522 .023393
(.330801) (.002899) (.004956) (.000122) (.005884)
1% 3 -1.337310 .070501 .021892 -.000493 .025262
(.256021) (.002322) (.007838) (.000095) (.004538)
5% 3 -1.154719 .067119 .020826 -.000421 .020884
(.234658) (.002211) (.003525) (.000087) (.004207)
Extreme 6 -+716552 .069821 .013828 -+000367 .017878
Oucliers (.134791) (.001977) (.002011) (.000073) (.003889)
Extreme 3 -1.659728 .074982 .025782 -.000464 .023361
Outliers (.305978) (.002696) (.004587) (.000112) (.005432)
Missing Data
Samples
Alternative
(a) 6 -.200299 .072.,99 .005357 -.000437 . 018961
(.145654) (.002104) (.002187) (.000074) (,004053)
(b) 6 -1.09968 .072720 .018442  ~,000374 .017737
(.120509) (.001741) (.001810) (.000061) (.003353)
(a) 3 -1.149956 .077038 .017257  -.,000656 .027954
(.336265) (.002902) (.005050) (.000115) (.005681)
(b) 3 -2.005902 .007735 .030525 -,000446 .020776
(.287044) (.002477) (.004310) (.000098) (.004849)

Notes:

parentheses.

N

7122

6108

5298

3561

3054

2649

6966

3519

13302

13302

6651

6651

Standard errors are reported in

.2017

.3017

.3530

.2223

.3148

3571

.2321

.2560

1384
.1867
.1591

.1954

CON is the constant; EDHCO is the coefficient on years of schooling, TCO is the
coefficient on time, EXCO is the coefficient on experience and EXSQCO is the
coefficient on the square of experience.
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(It should be noted that a small increase in the prior variance of oﬁ implies
a large increase in the potential variability of the Wy themselves, )

We have much less information on potential measurement error. In
particular, we have no economic theory in this area to aid us in forming
priors. Thus the assumed prior mean of 0.20 is held with very little
confidence reflected in the prior variance of 1.0.12 Based on this prior
information, the Bayesian scaled modal estimate is presented in columns
5 and 6 of Table 3.13 As expected from the simulation results, the estimates
are the same as the unbiased estimates to several decimal places because of
the very large sample size,

This result implies that the incorporation of "reasonable" prior
information results in no change in the full sample estimate and hence that
truncation probably imposes '"unreasonable" prior information, Table 5 shows just
how unreasonable or dogmatic the implied prior specification must be in
order to produce the same estimate of oi as that resulting from truncation.
For example, the one percent truncation on a panel length of 6 years yields
an estimate of oi much lower than the sample estimate (0.074 vs 0.129). Even

if the prior beliefl regarding individual variability centres on a very low value--

0.010--the classical estimate cannot be approached unless the prior is dogmatic
in the extreme--i.e., V(oi) = 0.00000015. 1Indeed, even if only extremec outliers
are deleted, the low prior mean of 0.0l has to be held with a very high
degrece of confidence (V(oi) = .,00000075) in order to gencratc the same
result as the truncation.14

The foregoing results suggest that while the coefficient vector B is

2
relatively insensitive to the treatment of ocutliers, estimates of cﬁ are

extremely sensitive, Truncation 1s an extremely crude procedure for incorporating

1 ]

.

[y
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prior information and may unintentionally impose totally unreasonable prior
beliefs, The prior distributions suggested in Section II above may be used
by the investigator to clarify the nature of his prior beliefs revealed by

a willingness to truncate data points and to assess whether or not any proposed

truncation accurately reflects those beliefs,

1V, SAMPLE CONSTRUCTION AND VARIANCE COMPONENTS

In this section we broaden the analysis of the sensitivity of variance
components estimators to the effects of general sample inclusion criteria or
sample construction procedures, Choosing alternative methods of sample construction
is not viewed as an attempt to impose prior beliefs, hence this section involves
no Bayesian analysis, Thus far individuals have been included in the sample
provided they have complete information on hours of work, This potentially
involves a problem of sample selection bias or missing data bias., This has
received a great deal of attention recently (see for example, Heckman (1979),
Hausman and Wise (1979)) and several solutions have been proposed to correct
the bias, 1In practice, however, the censoring involved in this case may have
little effect on 6. Frequently, therefore, investigators may ignore the
problem, However, the effect on the estimate of cﬁ may be substantial, even
if there is no effect on é. Thus, when Gﬁ is the parameter of interest,
great care must be taken in the data preparation or "cleaning" procedure, dealing
with missing values, etc. This is dramatically illustrated in the case of
the missing data on hours of work.

For the analysis of this problem the sample is increased by retaining
individuals with missing data on either hours per week or weeks per
year in the sample provided they meet the following criteria: (i) they

must have at least one observation on at least one of the three
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Iable 5

Prior Specifications Approximately Equivalent to

17 and 5% Outlier Truncation

®

Truncation Panel 72 Equivalent Bayesian Prior Specification
Length b
8 ~2
Op Prior Mean Prior Variance

1% 6 .074 .074 .01 .00000015
1% 3 .072 .072 .01 .00000016
5% 6 .050 .050 .01 .00000008
5% 3 .050 .050 .01 .00000011
Extreme 6 .113 .113 .01 .00000075
Outliers

.10 .0000085
Extreme 3 .118 .118 .01 00000073
OQutlicrs

.10 .000012

(L]

[{]
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components of the wage rate (E,L,H) in every year of the panel; (ii) they must
have at least one observation on cach of the components of the wage rate at
some time in the panel., Using this criterion rather than the "positive values
in all years" criterion approximately doubles the sample size from 1187 to 2217,
The missing values on E, L and H for a given individual are supplied under two
alternative procedures, Alternative (a) uses the average of the individual's
own values in other years to fill in the missing years, Alternative (b)
uses a least squares prediction obtained from an ordinary least squares regression
of E, L and H for each year on the exogenous variables, schooling, experience,
and experience squared, Alternative (a) retains information specific to the
individual; alternative (b) substitutes in c¢ffect an average value of all
individuals in the sample and contains no individual specific element other
than the particular values of the exogenous variables. These procedures
are not offered as optimal procedures for supplying missing data, They are
presented to illustrate the sensitivity of Ti to different "reasonable"
methods of sample construction that an applied researcher might use,

Table 6 reports the value of the unbiased estimator Ti for the various
sample inclusion criteria for pancl lengths of 6 and 3 years. The first
two rows report the previously obtained value of Tj for the sample with
complete data in all years. When individuals with missing data in some years
are retained by giving them sample averages across the other individual's Ti
falls somewhat over the 6 year panel and increases marginally for the 3 year panel.
Neither change is very marked. On the other hand, when alternative (a) is
used to supply the missing values Ti more than doubles for both panel lengths,
By contrast, thc estimated regression coefficient vector, ﬁ, reported in the
last 4 rows of Table 4 exhibit little change except the coefficients on the time

trend and the constants which are common to all the individuals.15



Criterion for
Sample Inclusion

Complete data in
all years

Alternative

(a)

Alternative

(b)
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Table 6

Sensitivity of 72

to Alternative

Criteria for Sample Inclusion

Panel
Length

6
3

w o

[=)}

0.129
0.137

0.302
0.297

0.122
0.139

Sample
Size

1187
1187

2217
2217

2217
2217

XJ
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It is interesting to note that the high value of 75 obtained in this
case (.30) relative to the "stylized fact" of approximately .15 is close

to the estimate (.25) obtained by Kiefer and Neumann (1981). These authors
consider explicitly the relation between individual components and sample
inclusion from the perspective of the¢ sample selection bias literature,

The different results for alternatives (a) and (b) are as expected.
The individuals for whom some data is missing do not tend to be '"average"
individuals, Leaving them out altogether would therefore reduce individual
variability in the sample., When the individuals are retained in the sample
their cffectcani depends on whether their non-average individual components
are retained in the procedure for replacing missing values. Clearly in the
case of alternative (a) the individual component is retained, On the other
hand, with alternative (b) the procedurc tends to make the individual
more "average'. If this averaging tendency is strong enough to outweigh
the inherent non-average characteristics of the individuals with missing

data, overall individual variability may be reduced,
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V. CONCLUSIONS AND FUTURE WORK
A frequent practice in empirical work is to "pre~analyze'" the data
via various sample inclusion rules, For example, truncation of "outliers"

or "impossible values" is common. A requirement of "complete data" for
16

«

all observations is almost universal, Estimates of regression coefficients
are relatively insensitive to these practices, However, estimates of variance-
components are markedly affected. Truncation of "outliers" may be viewed as
a crude way of incorporating prior information about variance components, We
presented a Bayesian estimator that is simple to compute and incorporates
prior information in a more flexible manner, 1In addition we reversed the usual
Bayesian procedure and used our Bayesian estimator to assess the prior beliefs
that an investigator imposes by any proposed truncation of outliers, We
showed that especially in large sample, extremely dogmatic prior beliefs
may, inadvertantly, be imposed when outliers are eliminated. We also showed
that variance components are sensitive to general sample inclusion criteria.
Thus, if assessing individual effects is the focus of analysis much greater
attention than is usually the case must be paid to how the final sample is arrived
at,

An obvious extension of our analysis is to the effect of crudely
imposed prior beliefs, e.g., truncation, on inference. 1In many cases, for
example, regression coefficients may be insensitive to sample construction.
The estimated standard errors may, however, be sensitive. Thus while an

investigator may encounter little risk of losing consistency of {* when

alternative methods of sample construction are used, the risk of invalid

inference may be large.

(L]

0
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Footnotes

1
See Box and Tiao (1973) for a discussion of non-informative priors.

2See Box and Taio (1973) for a description of this distribution,
31n general the natural form of prior information will be in terms of
the mean and variance. These may be turned into the parameters a and r by solving

(7)-(8) as follows:

E2
a=2E(—V-+1)

2

= 2 (&
r 2(V + 2),

4For the procedure of integrating out so-called nuisance parameters or

parameters not of interest see Box and Tiao (1973).

5
This is accomplished via estimating the nonlinear model (in the

standard notation)

x X X4t X5¢ X6t

7 Y2 vt3 2t 3 + +—53

2 2.2
(0] o g +To o~ +To 2(o 2(o
u . L (e u) (e) (p‘)

+ error.

The data are entered as

&

X = (xlt"°"x6t)

<
i

The regression has zero degrees of freedom. Accordingly, the sum of squared

A L]
errors is zero and the regression provides precise values for oi and cu.
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6The m.s.e. for the unbiased estimators are derived analytically
in the appendix. The m.s.e. for the Bayesian estimators involves a four-

fold integral. Because of computational considerations m.s.e. was obtained via
sampling rather than (4-dimensional) numerical integration. M values of 02

and ci were drawn from p(ci) and p(ci). For each pair, Yy, Was generated
according to (1), yielding 8, and 8, and hence gi and Gﬁ. Therxpected value
and mean squared error were then calculated, e.g., Eﬁgi) = %-.21 eii. The large
sample size (M = 150,000) ensures a very small error. "

)
The scaling factors for ci and 33 respectively:

+
=1]1+T]3+2=re+NT 1
e 'l]l+'|]3-2 r€+NT-3

F

- r -
] le 113 m

F

8Some writers use a more elaborate error structure, e.g., allowing
for serial correlation in € (Lillard and Willis, 1978). This is referred

to as the "autocorrelated individual component model',

9For example, Carliner's (1980) estimate is 0.150; Lillard and Willis
(1978) report 0.124 for whites s> 0.146 for blacks and 0.125 for the pooled
sample.

10'l‘his is a sub-sample obtained from the full sample by imposing sample
inclusion criteria of the type usually employed in this area. This sample
censoring itself has important consequences for the estimation of variance

components which are discussed in Section IV,

[(]
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11
Deletion of one observation on an individual results in the individual

being dropped from the sample.

12'Ihe results were insensitive to the prior specification on cz as

long as it was not dogmatic.

13Because of the large sample size Fe’ Fu- 1 hence the scaled and

unscaled estimators become equivalent.

W
Of course, an estimate equivalent to a truncation between 1-5% could

be obtained with a prior distribution which is uniform on [0,.06]. 1In this
case the prior mean is ,03 and the variance.0003, which appears less dogmatic,

However, in assigning a zero probability to a variance of the individual

component greater than ,06 is very extreme since it ensures that the investigator

always ignores the data entirely when it falls outside a limited range he is
willing to accept.

15Si.nce the constant captures the part of individual components common
to all individuals this will be affected when the sample changes to reflect

the different average individual component. Similarl remarks apply to the

time trend.

6
An exception to this is the literature on sample selection bias.

A good example that addresses the problem of missing data is Hausman and

Wise (1979).
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Appendix
1. Consistency of the Bayesian Estimators
To see that 32 and oﬁ are consistent estimators of oi and oi, first

recall that the unbiased estimators of 02 and oi are

T = 5_1

€ vy

and

2.1(% _5%

Tu. T Vo Y ’

72 and .,.2 converge in mean squared error to oi and oi as N - « for any T.
V)

Dividing (10) by T]l yields

1 5 1 5, 518,
(Al) - - + + = 0.
2 M &+t a2, 22 a2.2
€ € m 21]1 (oe+ Top‘) 2111 (oe)
Now, since T]3/T] = (N-1)/[r + N(T-1) + 2], lim -1-1-3- = 0. Also
1 € 1
Noxo 1
T=xo
S S v
i —2 w2 g Sl Rl p ot a0
Neao 2 (62_‘_ TAZ) N-o 2 o /T +o 'ﬂ]_ oe/T+°
T-x0 nl oe Gp, T-xo0 € ] L
A2 2 a2 1
Further lim ae/2‘n1 (ce) = 0. Finally, since f(oe) = 3 is continuous at
Neo A2
T-xo @)
1 42,2
each point in the parameter space it follows that plim ( 2) = 1/(plim Ue)
(02)
(see Dhrymes, 1974, p. 110), hence
S ] Y
1 1 2
plim——-l—-—z-.-:plim;]-'-'limm'plim ) =o‘ex ;
52 1 e 1 o lim 5
2m, 6% 6% (lim 62)
Thus for large N and T, (41) becomes
1 02
(A2) ( 2 " 1) =0,

a2 A
plim ce plim Oe
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2

or plim 33

= ci o Division of (11) by TB yields plim 35‘ = oi in a similar
fashion,.
Finally, as both Fe and FIJ» converge to unity, the scaled estimators

oe and Ei are also consistent at each point in the sample space.

2. Mean Squared Errors for the Bayesian and Unbiased Estimators

Let ¢u(Sl,82) be an estimator of oi. The unconditional mean of
g («) is
V)

2 2 2,2 2 2, 2
#,(8125)P (5 o P (szlce,ou)p @ IP(0 )ds ds,dodo -

(a3) E (¢u)

|

ot 8
oc— g
o3
o8

Similarly, the uncondition mean squared error is

2 2
J
(o]
2

2 2
P (ce )P (su)dsldszdoedo

=

2

2 2 2
(a4) = P(sy [oe)p (s, lce,ou)

ce g
0t g

K 2
I [ (84558,)0]
0 V3 1 2 €
2
"
Analogous formulae apply to an estimator of 02, ¢€(Sl,82).

For the unbiased estimators, Ti and Tﬁ, since 31/0'26 ~ xz(vl) and

2 2 2
SZ/ (o't Tcrp') ~ (vz), where S, and S, are independent, it can be shown that

2 2( i)z
2 2.2, =0
E[(Te- o'e:) er] T N(T-1) °
and 9

2
2 2 2
2 2 (0‘e+ Tcru) 2(o°

2 2°,2 2, 1
E[(Tu Gu) U’Gu] TZI N1 *¥@-D

l.

€

Integrating under the priors p(o‘ze) and p(oi) yields the unconditional means

and variances

-]
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el o) 1 =
(Te™ T¢ N(T-1) (r - 2)(x - 4)

and 2
2 2a ¢ 1 1 1 f;a.u‘ae

E[(r2- 0®) ] = — & () +
T %u (x ~2) (r %) ;2 'N-1 " N(T-1) T(N-l)(re-Z)(ru-Z)

2

28 L

(r -2) (r -4) *N-1°

For the Bayesian estimators (A4) has to be integrated numerically.

)
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