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Abstract

In this paper we propose a class of Lindley and Smith-type
operational estimators for the coefficients of linear regression.
This class of estimators contains Shiller and Bayes Almon estimators,
and also various Stein-type and operational Ridge-type estimators.
The sampling properties of Lindley and Smith-type estimators are
studied under the weighted mean squared error and matrix mean squared
error criteria. The iterative version of these estimators is also
analyzed.
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Lindley and Smith Type Improved Estimators

of Regression Coefficients

1.  INTRODUCTION

In this paper we consider the general Bayesian linear regression model
using a hierarchical form of prior structure due to Lindley (1971) and
Lindley and Smith (1972). A two-stage hierarchy of priors is considered
in which the first stage prior describes the relationship between parameters
in the linear regression and the second stage prior describes the knowledge
about this form of relationsbip.) In applied econcmetrics, this type of
rodel has recently been used in a multi-regression context by Trivedi (1980)
2nd in a single equation case by Ullah and Raj (1980) [also see Maddala
(1977, Chapter 16)].

The plan of this paper is as follows. 1In Section 2 we propcse a class
of Lindley and Smith (L&§S)-type biased cstimators for the coefficients of
linear regression. This clzss of estimators does not shrink the ordimary
least squares estimator tcuzrds the arbitrary point zerc.” The Zellner
znd Vandaele (1975) estimztor, and the much used Shiller (1973) and Eayes-

A1

Almon estimztors, are shown to be its special czses. The class of 1.5S-type

estimators also contains various Stein-type #nd adaptive Ridge-type estimztors.
In Section 3, we analyze the sawpling properties of the L&S-type estimators s

vider the weizhied rean sqgie-red error 2nd matrix mesn squared errvor criteria.



The iterative version of the L&S-type estimators is analyzed in Section 4.

Finally, Section 5 gives the proofs of the results in Sections 3 and &4 .

2. THE MODEL AND ESTIMATORS
Consider a linear regression model :
2.1 y =XB+u

where y is a T x 1 vector of observations on the variable to be explained,
Xis a T x p matrix of observations on the explanatory variables, B is
a p x 1 vector of unknown parameters and u is a T x 1 vector of dis-
turbances. Let the disturbance vector u be distributed as multivariate

. . . 2 .
normal with mean vector zero and covariance matrix ¢ I, z.e.

2
u v N(0,Z27T).

The ordinary least squares (OLS) estimator of B im (2.1) is given by :
(2.2) b= ') X'y

which is urhizsed. JTts matrix mean sguared error Mix MSE and the weighted

AR : : 3
MSE (WMSE) are given, respectively, as

(2.3) Mix MSE (b) = E(b=5)(b-5)" = o (x'x)”!
and
(2.4) CEE(D) = E(b - 8)'Q(b - 2) = 2Le(x')

"

vhere Q is 2 known positive definite r:=trix, and "tr" represants the

trece of the ranrix.



We note from (2.1) that, given B ,
2
(2.5) y v N(XB,0°I).
Now we assume the prior about B , given Bo , as
(2.6) B N(RB ,0°A™))
o’ o

where A 1is a known p X p non-singular matrix, R is a p X r known
matrix and Bo is an r x ) hyperparameters vector. Further, let us sup-

pose a diffuse prior distribution for Bo , or alternatively,

-1
(2-7) BO i N(R]B]:A] ), A] -0

r Xr known.

where B is an r, x 1 hyperparameters vector with R 1°

] 1 1°?

Then the equations (2.5) to (2.7) represent the linear model with a hier-
archical form of prior structure [for details see Lindley and Smith (1972)].
Tt has been shown by Lindley and Smith (1972, p. 7) that the posterior

distribution of the regression parameter B , givem y , X, R, R A,

] bl
B] and A] -+ 0, is multivariate normal with the posterior mecan (Bayes

estimator),
(2.8) E=[x'x+ ‘xA(I-R(R'AR)']R'A)]']x'y; ko= 2.
o

Further the posterior mean (Bayes estiwaior) of the hyperpsrameters B
' - o

N

given y , X, R, R, , A, 61 and A] -0, Iis

= B PO

Fk@'x) HRT

R'(A

[see Smith (1973, p. 69)]). Notice that bhoth 2 and So are free from the

parameters in the prior of Bo given in (2.7).



Using (2.9),'an alternative form of (2.8) can be written as :

(2.10) B = (X'X + kA")(x'Xb + kAREO)

- ' -] _] _ -
RBO + [IT+x(X'X) Al "(b RBO)

where the first equality on the right is from Smith (1973, p. 69). The
second line of (2.10) shows that B can be viewed as a shrinkage estimator
which shrinks the OLS estimator b towards REO, the Bayes estimator of
RSO. Similarly, an alternative form of éo can be written as

R'AB .

E o tonT
Bo (R"AR)
Notice that when R =0 , B in (2.10) reduces to the ridge estimator
(for A=1I) which shrinks the OLS towards zero. Thus, even though there is an
apparent similarity between the Bayes estimator B in (2.8) and the ridge

estimator, it is clear from (2.10) that they differ with respect to the

point of shrinkage. °

2.1. A Class of Lindley and Smith (L&S)-type Bicsed Estimstors.

‘Regarding k in (2.8) L &S suggested an iterative procedure which
essentially consists of starting with the OLS estimate of B (k = 0) and

. . 2 ' 2 .
then taking the estimates of o and 00 » respectively, as

1

(y=¥b)'(y-Xb)/n, and (b-Rb )'A(b-Rb_)/n, vhere b_ = (R'AR) 'R'AD = Eo

for k = 0, and n, and n, are scalar numhers. Using these estimates
of © and 02 we can formulate k as®

hsz 2
(2.11) R = 5 Ep s = (y~Xb)'(y -Xb)

vhere h 1is an arbitrary scalar and



-1
(2.12) B=AJ =J'AJ =JA; J =J =1-R(R'AR) R'A.

Substituting k = k in (2.8) we can write the following class of

L&S-type estimators
-1
[1+RDJ] ®

2 4=l
[1 ¢ DS DJ] b

1]

(2.13) ‘§

b'Bb
where k , B and J are as given in (2.11) and (2.12), and ’

(2.14) D= X'%) 'A.

An iterative version of this estimator is considered in Section 4. -

An alternative form of B , corresponding to (2.10), can be written as .

(2.15) B = (x'x + ®a) ' (x'xb + Rar8 )

i

~ -~ _’ -~

RBO + [T + kD] (b - RSO)

where from (2.9)

2.16)  B_= R+ ko TRITR T kanTH T,

~

. 3 -1 2 .
We can also write (2.16) as Bo = (R'AR) 'R'AB. The L&S~-type estimators B ,
in the form (2.15), are weighted matrix combinations of the estimators b
and RBO and they shrink the OLS estimator towards RBE .

It is interesting to note the fcllowing members of the L&S estimators

g in (2.13) or (2.15). "

Tey~Snith Fetimator Under Excicugeable Prior : Considering R =1 .

' -1 s -1 .
and A =1 in (2.6) wve get B=J =1 -1(1"1) ' =and D = (X'x) from



(2.12) and (2.14), where 1 is a p X 1 vector of unit elements. Sub-

stituting these values of B , J and D in (2.13) we can write :

(2.17) b -[I hs? X'X J]-lb
: 1 be( ) :

This is the first stage in the Lindley-Smith iterative estimator (1972, p.17)

under an exchangeable prior.

Zellner~Vandszle Estimator : Choosing R =1 and A =X'X =Q in (2.6)

we get B=QJ; J =1 —I(I'QI)_ll'Q and D =1 from (2.12) and (2.14).

Substituting these choices of B , J and D in (2.13) and (2.15) we get :

(2.18) b, =1+ k31 =1b+ (+0) ' (®-1D)

"I X'Xb and K = hs’/b'QIb. This is the Zellner and

where b = (1' X'X1)
Vandaele (1975, pp. 329-30) type estimator, which they obtained by a non-

Bayesian method.

Eqyes 4lmow Estimator : Taking R to bea p *x r Alnon transformation

(o

i

. =) -1
matrix of rank r and A =1 we get B=J=1-R(R'R) R' and D = (X'X)
Substituting these in (2.13) we can write the Bayes-Almon-type estimator

for the distributed lag model [see Maddala (1977) &nd Ullzh and Raj (1980)1.°

Stein and Ridgc-type Estimctors : When R =0 and A =1 in (2.6) we have

1

J=B=1 from (2.12) and D = (X'X)_ from (2.14). In this case B
in (2.13) becowme the adaptive Ridge-type estimators [sce Alam and Hawkes
(1978) 2nd the references therein] which shrink the OLS estimator towards

-~

zero. Further, for J =1 and D =1I, B 1is Stein-ty\pe estimators, see



James and Stein (1961), Judge and Bock (1978) and Ullah and Ullah (1978)

among others.

3. SAMPLING PROPERTIES OF THE ESTIMATOR é

Assuming disturbances to be small, we present the small-disturbances

~

approximations for the bias, MtxMSE and WMSE of the estimator B .
These are derived in Section 5. The properties of B compared to the OLS
estimator b are then analyzed under the criteria of WMSE and MtxMSE.

The bias and MtxMSE , respectively, are

5 hozn
(3.1) E(B-B) = E'Bp DIB
and
- 2, ol ‘*hn(n+2) , 2 f L
(3.2) MexMSE(B) = 0 (X'X) = + ~B'BB [B "BE DJRR'J'D' - e IK_B'_BB }]

where B and D are as given in (2.12) and (2.14), respectively, and

) g oy

2 b

(3.3) n=T-p, K

pIB3'B (x'x) "} + (x'x)"'BBR'I'D"-.

()
il

Furtler, since E(B-8)'Q(B-8) = trE(E-8)(B-B)'Q we get ®

(3.4) WSE(B) = o° tr (X'X)” Q + c4nn(~n+2) BJ°D QDJB
(3 B%)
-2 388 £'B'(X'X)QpJB
[h P ;Wjiﬁ?QbJ { tr DJ(X' X) Q 2 s .
When J =1 =D , the result in (3.4) (ompares with Ullah and Ullah (1978,



~

We now compare B with b under (i) the WMSE and (ii) the MtxMSE

criteria.

(2) WMSE Criterion

Before obtaining the main result we note that J = J2 in (2.12) 1is
an idempotent matrix of rank & = p-r. Thus it can be written as J = GG’
where G is a p x & matrix of 2% orthonormal vectors such that G'G = I.
Next, irom Rao (1973, p. 74) we observe that if E 1is any p X p symmetric

matrix and F is any p X p positive difinite matrix, then

A; = mén ( %;%%-) and XT = mgx (.g;%g )‘ where X; and AT are the

. . . . . -1 .
minimum znd maximum eigenvalves, respectively, of EF '. From this it

. B'J'EIB \ _ B'J'EIB \ _
follows that mén ( BTIFIR ) = AR and mgx ( ETITFIR ) = k] where

Al >=A7 cee >=A£ are the eigenvalues of (G'EG)(G'FG)—] and we use

J = GG'. Notice that A is the minimum and A is the maximum eigenvalue.
) L 1 ©

Using this result and recalling (2.4) it can easily be verified that B

has smaller WMSE than b , 7Z.e.

(3.5) w.sz(é) - wMSE(b) < 0O
when
< 2Ag1y ] -1 ] , 1o >
g________ - e A =1 y 8 - i vy .
(3.6) 0<h vy (d-2); 4 y tr DI(X'X) Q U tr G'(X'X) QDG 2

l 1

where RQ and Al are the mini:um and maxiwum eigenvalues of

1

(G'AG) (G'D'QDG) ~  and (G'AG)~](G'A(X'X)—]QDG), respectively.



The result in (3.6) has been obtained for any p X p matrix D . For

the choice of D = (X'X)—]A in (2.14), the condition (3.6) reduces to

(3.6)a 0<h<n—32—(d-2); d=;’- ere' (X' lo'x) Tag > 2.
1

~

The following observations about the dominance condition of B over

b , given in (3.6) and (3.6)a, can now be made :

~

(i) It was noted earlier that for J =1 , B is a subclass of esti-
mators which shrink the OLS esfimator towards zero. Since J =1 implies
G=1,a p>p identity matrix, the dominance condition of these esti-
mators, for zny D , is

2\ M,

P . = xy !
0 <h <“;{Ii_— (d*—Z)’ d* = u]‘trD(X X) Q > 2’

where Xp and u, are the minimum and maximum eigenvalues of A(D'QD)_]
and (X'X)—!QD, respectively.” When D = (X'X)_]A we get 0<h S!E%E(d*-Z).
Since trJD(X'X)-IQ < trD(X'X)-lQ , the range of h will be smaller for

J# 1 compared to J = I,

~

(ii) The dominance condition for the special cases of B , viz.
Zellner-Venizele estimator, Bayes—Almon estimator and others given in
Secticn 2.1, can be obtained by direct substitutions of the respective
choices of A znd R in (3.6) or (3.6)a. Note that the matrix G will

be different for different choices of A and R . .ot

(iii) 1Tt is clear from (3.6) that the v:oze of h will, in general, . ®

depend vpon tie eigenvalues. However, if we ¢(hocse D, A and Q such that



_]0_

(3.7) D'QD = A and (X'X) 'QD =1,

then we get estimators é from (2.13) whose dominance condition from (3.6)

will be
2
< L -y = . :
(3.8) 0<nh - (p-r-2); p>r+2,

when D = (X'X)—IA as in (2.14), then the above condition follows from
(3.6)a for the choice of Q and A for which (X'X) ' Q(x'x) 'a = 1.
Notice that the condition (3.8) is free from the eigenvalues and this con-

dition can easily be verified in practice. The condition (3.8) implies

]A)

that the estimators with D , A and Q or with A and Q (for D=(X'X)
satisfying (3.7) dominate the OLS estimator if the number of regressors are
more than r+2 , where r is the number of columns in the matrix R .

To see the estimators which satisfy (3.7) and (3.8), we consider the
case of D = (X'X)-]A. For this D and any arbitrary choice of Q in the

WMSE, (3.7) gives A = X'XQ-]X'X. Substituting these in (2.13), we get

the following estimators :

hs? -1 -1
(3.9) by = [1 + = Q X'XJ] b
b'X"XQ X'XJb

whese dominance condition is given by (3.8). Similarly, for a given choice

1 ]

of A in (2.6), (3.7) gives Q = X'XD = X'XA~ X'X. Thus the estimators

B in (2.13), for a given A , dominate the OLS estimator b under the

1

range (3.8) when we consider the WMSE = E [(B-B8)'X'XA X'X(é"ﬁ)].

Y

(iv) In the case when we consider Q = (X'X)q in (3.9) we can write

it as



- 11 -

P2 g 1]
(3.10) b, = [1 + e (X'X) qJ] b
b'(x'x)" b

where J =1 - R[R'()('}'()Z—qR]--lR'()('}()2—q 'and q is any arbitrary number.

This set of estimators dominates over b under the condition (3.8).

(21) _MtxMSE Criterion

~

According to the MtxMSE criterion, the estimator B 1is better than

or superior to b if

3.11) MtxMSE(b) - MtxMSE(é) =A20

where A >0 implies that A 1is a non-negative definite matrix.!

From (3.2) we note that

4
: _ohn(nt2) | _h viipr - 2 - L
(3.12) A = —%gg [B'BB DIBR'J'D' - == {K B'BB}]

where B and J are given in (2.12), D in (2.14), and n , K and L
are in (3.3). Thus to see whether A is non-negative definite or not we

need to show that the scalar

(3.13)  n'4n = -o'hn(as2) LRIEETI o [h - (o- 2)]

(8'B8)> +2

for all p x 1 vector n # 0 , where using (2.12) and (2.14)

T I e
(3.14) Q= .rl..-(_)f_é-z___i__n n 6'BR = (8'B3) (B BD)
R ) (C BD)

. -1
; 6 = (X'X) n.
Tt is clear from (3.13) that 71'an = &'X'X2X'X¢ 2 0 for all § #0 if

(3.15) o<h<£~§(m—z) and  © > 2,

3

(X3



- 12 -

Now using Cauchy-Schwarz inequality [Rao (1973), p. 54)] we note that ©=1.
This implies that for some parameter space of B the condition @ > 2 can
be satisfied. Thus the estimator é is a better estimator that b , under

the MtxMSE criterion, for the range of h in (3.15) and in the parameter

space of B which satisfies © > 2 .

4. ITERATIVE ESTIMATOR AND ITS PROPERTIES

Let us call the estimator B in (2.13) as the first step estimator

and rewrite it as
(4.1) 8=8M -1+ @p N

where from (2.11)

©  hiy-x By -x8®y  p@ -
“ ‘ ) 7(0),,z(0) EORIONE
BT BB 588

and B(o) =b is the initial estimator B in (2.8) for k = 0. The es-

timator é(]) can then be employed to provide another estimator of k

and the process can be continued.

E(mﬂ)

Suppose denotes the estimator of B at the (mt+l)-th itera-

tion. Then we have :

=(m+1) (

(4.3) & =11 + k™pn7 b, Rm b

where for m = 0,1,...

2@ | 200) | (b-é(m)YX'X(b-E(m))

(4.4) - = = g
E(m)'Be(m) = b'Bb + (b“é(m))'B(b"B(m)) _ Qb'B(b _B(m)).



...]3_

When A =1 so that D = (X'X)—l, and R =1 such that B =J =
I- 1(1'1)-11' then (4.3) is essentially the Lindley and Smith (1972, p.17)
iterative modal estimation under the diffuse prior about 02 and indepen-
dent, inverse "X2 prior about 02 (also see footnote 6).

It has been hsown in the following section that upto the order of

approximation considered

—(m+]))

WMSE (B - WMSE(B) = O

MexMSE (B 1)y

(4.5) -
- MtxMSE(B) = O.

This result shows that the efficiency of the iterative estimator is the

~ -

same as that of the first stage estimator B = B(]) in (4.1) and analysed

é(m+l)

in Section 2.1. Further the estimator dominates the OLS estimator
b under the range of h as given in (3.6).

An alternative iterative estimator can be considered as
4.6)  F=8"D o ™py7EM

where k(m) is as given in (4.3). This amounts to substituting b = é(o)

on the right of (4.1) and then changing it in each iteration. In a special

case where D=1 and J =1, B becomes the Vinod(1976)-type iterative

estimator.

It has been shown in Section 5 that, upto the order of approximation
considered, the bias, MtxMSE and WMSE of the iterative estimator % is
the same as in (3.1), (3.2) and (3.4), respectively, with h replaced by
(m+1)h. Replacing h by (m+l1)h in (3.4), it can then easily be verified

that, for any choice of D ,

a

[t

[



_]4_

(4.7) wMSE(B(m”)) - WMSE(b) < 0 for 0 <h <~E&1~(d -2)

' or (m+1) (n+2)

and

.8y  wisE(E™) - wse ™y =0 for 0 <h Qﬂl-——(d ~2)
: ) = or (2o+1) (n+2)

where E(m+]) = ? as in (4.6), and Az > W aﬁd d are as appearing

in (3.6). When D = (X'X)_]A . Alul in (4.7) and (4.8) will become unity.
The result in (4.7) gives the condition under which the iterative es-

timator % = E(m+]) dominates the OLS estimator, wherecas (4;8) provides

the condition under which the (m+1)th iteration will reduce the WMSE. These

é(m‘*l)

conditions suggest that the estimator B = with

2AgM)
)(d-2) dominates the OLS estimator as well as

1 8 (m)
(2n+1) (nt+2 )

0<h<

Thus, for this range of h it is worth going for iteration. This result

is different than one obtained above for the iterative estimator in (4.3).

5. PROOF OF RESULTS IN SECTIONS 3 AND 4.
Let us write the model (2.1) as

(5.1) y = XB + v

where © 1is a scalar assumed to tend to zero [see Kadane (1971)] and v

isa T x 1 random vector follwoing a multivariate normal distribution
. . 2

N(O,¥I) with Y wunknown. Notice that 02 = 0VY.

It is easy to see that :



b-8-=
(5.2) Jb = JB + 0Je
y-Xb = OMv

where J 1is as given in (2.12)

_]5_

G(X'X)-]X'v = fe (say)

-1
and M =1 - X(X'X) X'.

Now using (5.2), we get from (2.13)

2 -1
2 ho v'My _
(5.3) B-B = (1 YT DJ) b-1R
h82v'Mv
=b - B~ —5vpr-- DIb +
2 ] ] 2 '
=b - - h8 v'Mv [] . 28e'BR + 67e'Be
B'BR B'BR
2
—p-pg-h&vMy |, _ 20e’'BE
b~ BT [‘ 558
_ 2 3 4
= 6&1 + B 52 + 6 53 + 0(8)
where
] _ _hv'wy
El = e , g.pz = B'BS DJB
(5.4) :
_ hv'Mv [2e'BB _
£3 = B’BB [B:BB DJB DJE].

-1
] (DJB + 6DJe) + oo

+ 0(92)}(938 + BDJe) + s

Thus, the bias upto order 0(62) and the MtxMSE upto order 0(64)

~

of the estimator B are

(5.5) 5(5-8) = ‘&E(El) + ezs(gz)

and

(5.6)  E(B-8)(E-8)' = 0°E(E,E]) + OOE(EE! +£,E3) + 8°K(

Now using normality of v

it is easy to verify that :

Tt

+E8 +E,83).

w o

]

1



(5.7  E(§) =0 E(E,) = - W_é?B%y DJIB
(5.8) E(E,&)) =‘P(X'X)—), EE,E] = EEIE;- =0

h2¥2(T - p)(T-p+2)

(5.9) E(E;zé;é) = DJ_BB'J'D'

(8'88)°
'R? ' =1 1 ' . ' ' -1
(5.10)  E(£gE}) = B'T;B[ZDJBB B' (X'X) XB:?;\B’ Mveww DX(X'X) "
- DJ(X'X)—lX'E(v'Mv'vv')X(X'x)_]]

h‘Pz(T-p) [ 2DJEB'B"
B'BR B'BB

2
hY (T -p) BE'B' _ I
~grgg > DJ [2—,——8 73 1] (X'X)

- DJ ] (X'x)”

where we have used the results E(v'Mvevv') = Wz [trM + 2M] and X'M = 0.
Further note that E(Elgé) is the transpose of E(EBEJ).

The results for the iterative estimator B = é(m+]) in (4.6) can be
derived in the same way as done in the case of é . In this context we
first note from (5.3) that b - é =b - é(]) is at least of order 62.
Thus from (4.4)

s2(m) - 32(0) . 0(64)
(5.11)

—_ L
553 bmb + 0(8%)

2 4 2 4
where 0(6") and O0(®') represent terms of at least orders © and 6
respectively.

Using (5.11), it can then be verified that

(5.12) -8B = e§§m+]) + 62£§m+]) + e3£§m+l)
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can g™ =g 1) = - n(m1) Fray DIB

and

(5.14) ggm“) = h(m+1) ‘é:gg [EBE‘%@ DJB - DJe].

Notice that €§m+l) = 51 , and E§m+l> and §§m+l) are the same as ﬁz

and 53 in (3.4) with h replaced by h(m+!). Thus using the expectations

~t

in (5.7) to (5.10), the results for the bias, MtxMSE and WMSE of B can

be found to be the same as those for B 1in Section 3, with h replaced by
(m+1)h.
For the iterative estimator in (4.3), it can be similarly shown by

using (5.11) that E(m+])-6 = 651 + ezgz + 6353 =8 -8, upto the order

of approximation considered. Therefore, the result in (4.5) is obvious.

«
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FOOTNOTES

'When only the first stage prior is used, one gets the Bayesian regression
model as considered by Raiffa and Schlaifer (1961), Zellner (1971) and
Box and Tiao (1973), among others.

?See Lindley (1962) for the problem of arbitrary origin in Stein's estimator.

-~

>The MtxMSE of an estimator B of B is the second order moment matrix
around B, Z.e., MtxMSE(é) = E(é-—B)(é-—B)'. The sum of its diagonal
elements is the total mean squared error which is MSE(R) = E(é"B)(é"B) =
trMexMSE(B). The WMSE(B) = E(B-6)'Q(B-8) = tr M:MSE(E)Q.

“From (2.5) and (2.6) y v N(XRBO, 02 + 0§XA~IX'). Thus Eo is the gen-

eralised least squared estimator of Bo in this model. The equivalence

. . e s . 2
with (2.9) follows by u51ng the matrix inversion of 02 + O XA ]X'

If we consider only the first stage prlor in (2.6) tben, for given B s
the posterior mean of B is By = RB_ + [T+ k(X'X)" "1 o - RB)) , see
e.¢g. Zellner (1971) and Giles and Rayner (1979). Thus, in general B

and B, are different.

®0ne can consider ﬁ = hszlb'Bb + h] where hl is a scalar constant. This

would require replacing B'BB by RB'BR + h
in Section 3. However, the dominance condition on h remains the same for

any h1 = 0.

~

in the WMSE expression of B

~

"The estimator B represents a general class of biased estimators for the
arbitrary choices of D , J and B which are not constrained by (2.12)
and (2.14). The results of this paper can be used for such arbitrary

choices.

®The Shiller estimator can also be considered as a special case of é for
A= I and J =H'H where H is a (p-r) x p matrix of rank p-r de-
fined in Shiller (1973, p. 777) which is orthogonal to the Almon transfor-
mation matrix R . However, Shiller's estimator may not be written in the

form of (2.15) because J =H'H #=J2.



(ii)

°The results (3.1), (3.2) and (3.4) can be used for various choices of Q,

D, J and B.

Y1n the special cases of Stein-type (A = X'X, Q = I) and Ridge-type
A=1,Q=1) estimatoré the conditions on h reduce to those given
in Judge and Bock (1978) and Ullah and Ullah (1978) for the Stein case, -
and in Alam and Hawkes (1978) and Ullah et ql. (1981), among others, for
the Ridge case.

B1f we take Q=nn', where n isa p x 1 vector, then the criterion
(3.11) is equivalent to WMSE(B) - WMSE(b) <0 for all n # 0. Also see
Wallace (1972) and Giles and Rayner (1979).
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