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ABSTRACT

For effective capacity planning, an electric utility requires
an estimate of the probability distributionAof future maximum demand,
rather than simpky:apoint prediction of expected peak, This paper proposes
a method of obtaining this using the bootstrapping technique of Efron
(1979) to forecast the peak demand of an actual utility, Ontario Hydro.
While the technique is constructed from the standard procedure of
forecasting a future variable using regression coefficients and known
values for the right-hand side variables, it is modified to allow . ... __

for uncertainty in these independent variable forecasts as well.
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I, Introduction

Most electric utilities make their capacity decisions based on a
forecast of expected peak demand plus some relatively arbitrary allowance
for a reserve margin. However, given the large costs of either too much
or too little capacity and the high degree of uncertainty with respect to
future usage, it would seem worthwhile to calculate formally an optimal
probability of shortage (e.g. Telson, 1975) and to set target capacity
accordingly. This appears to be seldom done, perhaps because of the lack
of reliable estimates of the required probabilities. This paper attempts
to solve this difficulty by estimating the entire probability distribution
of peak demand, conditional on current information,

The standard method of estimating such a probability distribution.would
be to esfimate a least-squares regression for some forecasting model and to
calculate a forecast for peak as the product of the estimated coefficient
vector with the predicted values for the right-hand side variables. The
probability distribution of this forecast could then be calculated by
repeated application of the standard formula for forecast confidence intervals
(e.g. Johnston, 1972, pp, 154-155),

There are serious difficulties with this procedure, As Feldstein (1970)
discusses, the conventional confidence interval formula does not allow for
uncertainty in the predicted values of the exogenous variables, which may be
extremely important, While Feldstein shows how to calculate correct standard
errors in this situation, confidence intervals are much more difficult, as he
notes, Even if the estimated coefficient vector and the exogenous variables are
each normally distributed, their product the forecast will not be, as is assumed
in the standard approach, Moreover, not only does the conventional method require

normality of the forecast estimate, it requires normality of the variable to be
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forecast, In this case, the variable to be forecast is peak demand, which
typically will have a complicated distribution as it is a maximal order statistic,
There is also an added distributional complication in that the forecasts are
based on an equation expressed in logarithms and the predicted values are
obtained by taking exponentials, These issues are discussed in more detail below,
with the conclusion favouring a nonparametric approach which can handle uncertainty
in the exogenous variable forecasts.

Such a nonparametric technique is "bootstrapping, as proposed by
Efron (1979) and also described in Efron and Gong (1983). It can be simply
explained using the example of estimating the median of a sample of independent
observations drawn from the same, parhaps unknown, underlying distribution. The
probability distribution of the estimate is in general a complicated calculation
except for a few éases, for example, if the observations are normally distributed.
The bootstrap however, replaces this calculation simply by employing a large
number of artificial samples that have been created by drawing randomly and with
replacement from the original sample. The probability distribution of the sample
median can then be approximated by the histogram of the medians of the artificial
samples.

The bootstrap of regression forecasts is straight forward and is
summarized in Section II. The artificial samples are now based on
random draws from the residuals and the technique is directed toward the
distribution of the forecast error, This extension has been applied elsewhere,
for example in Freedman and Peters (1984a, 1984b), although their applications
differ from that here in that they focus on the standard errors and not on
the probability distribution, and they assume that the forecasts of the

exogenous variables are certain,
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Section III describes the actual application, starting with the estimation
of the underlying model and a discussion of diagnostics, Initially the
predicted values for the right-hand side variables are assumed to be certain
and the standard forecast and confidence intervals are calculated, These results
are then compared with those of the bootstrapping procedure, Then the basic
bootstrap is extended to allow for uncertainty in the right-hand-side variables,
both by formulating a two-equation recursive model and by allowing some future
values to be generated randomly, Section IV presents the conclusions of the

research and suggests areas for future study,

II, Boot gtrapping

Boot strapping is a technique which replaces theoretical assumptions
and complex algebraic calculations with a large number of stochastic simulations.
The heart of the idea is touse a computerized pseudo-random number generator
in artificial resampling, and then touse these artificial samples to calculate
an empirical probability distribution for the target variable, In the

case of forecasting, begin by considering a standard regression model

Y=XB + & (1)

where Y is a TX1 vector of observations on the dependent variable to be
forecast, X is a TXk matrix of observations on the exogenous variables,

B is a kX1 vector and € is a TX! vector of independent disturbances. The

B can be estimated by OLS on observations 1,...,T provided the rank of Xis k.
Denoting this estimate by é’ the standard method of forecasting Ypse s the

dependent variable in period T*, is:

Tk = Xpab 2)
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where x%* is a row vector of exogenously given values for x at time T*,
To bootstrap, draw T times randomly with replacement from the
elements of the least-square residuals @ to create an artificial
residual set 2?. Repeat this N times to construct %}, i=1,...,N, Then

each of N artificial samples can be constructed as

Yl = xﬁ + %i’ i=1,ooa,N (3)

that is, by adding the sets of artificial residuals to the fitted values of
the original regression., The distribution of é can then be estimated using
the empirical distribution of éi's, that is, the histogram of the coefficient
estimates from the artificial samples.

An alternative in this case is to assemble T row vectors (yt,xt) and
then draw randomly from these T times with replacement to create the N
artificial samples (as discussed in Efron and Gong, 1983), It can be seen
that this differs from the above in that there is no attempt to hold the design
matrix X constant (which is shown most dramatically if one of the bootstrapped
samples (Yi,Xi) has by chance an X matrix of rank less than k so that xx
is singular and the OLS éi cannot be calculated). Therefore, while there is
little formal reason to prefer either of the two bootstrap methods, the first
is used exclusively here because it seems desirable that each bootstrap
sample have the same time-series history except for the randam disturbance €.
In addition, in the theoretical limit as N->® under the i,i.d. assumption, it is
the first method which will yield the conventional OLS estimate of the

variance-covariance matrix of é and not the second (Efron and Gong, 1983).



To bootstrap the forecast errors, randomly sample N more residuals from
€, call these a;* and then calculate N "simulated actuals' by adding these
to the original forecast:

i /A S |
YT* = xT*B + GT*, i=1’. .. ,N (4)

For this step to be valid, it must be assumed that the distribution of the dis-
turbances has not changed over time, implying they must be homoskedastic. The
simulated forecast error is then the difference between (4) and the bootstrap
prediction:

Forecast error: = y;* - x;*éi )

and therefore the distribution of Yy conditional on the regression forecast

can be estimated as the empirical distribution of these forecast errors centred
around'fT*, the actua; forecast. This method can be further modified, to deal
with random 35* and other problems, as will be discussed in the context of

the application in Section III,

The technical justification of the bootstrap is that the bootstrap dis-
tribution converges to the true distribution asymptotically as both N, the
number of bootstraps,and T, the number of observations, grow large (Bickel
and Freedman, 1981). In the case here, this occurs.essentially because the
empirical distribution of the residuals converges asymptotically (with T) to
the distribution of the true disturbance vector.

In finite samples the case for the bootstrap is less clea:r:..l One
reason to use it in the context examined here is the lack of alternatives:
conventional analytic approaches to estimating the probability distribution of
a forecast variable all require normality assumptions or at least some
known probability distribution for the disturbances. But there are several
reasons in the current example that suggest such a parametric approach will

be inappropriate.



First, the estimated model will be in logs. If the true model is:

B, €
w,_ =Bz 1e t

t ot (6)

then

Y = %B + e, N

where y, = Inw_,%x_ = [1;1nzt1, and B = [lnﬁosﬁ1].

In general,'an unbiased forecast of Ye cannot be translated into an unbiased
forecast of W, by simple exponentiation (see Goldberger, 1968)., However,
percentiles such as the median or the 95 per cent confidence intervals of Y%

can be 80 transformed in.order.to.compute,counterparts.for.wT*..~Bootstrapping will
essentially do this for the entire estimated distribution of s and hence

an unbiased forecast can be calculated directly and the bias of the simple

exponentiation procedure estimated,

The problem is further complicated as Ve and hence €, may not have
the normal distribution. In Veall (1983), it is pointed out that peak demand
is the maximal order statistic of all the momentary demands, so that even if
the momentary demands are normal, the peak will not be. If there are many
"peak-eligible" momentary demands and all of these 'parents" are identically
distributed, it is shown further that maximum demand will have the extreme
value distribution. But because these assumptions seem unrealistic, it is
possible that the peak probability distribution will be some unknown mixture,
perhaps of the normal and the extreme value.2

Even if the distribution of Ye is known, there may be further problems.

Note that:
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Y A
Forecast error = Ypx xT*'B

Xp4B + Gpu - "f* (x 'x)'lx’Y

p - Ty XD R (8)

Initially assume that both Xy and X are nonstochastic, In that
case the true forecast error is the difference between the disturbance in
period T* and a linear combination of past disturbances. In the conventional
case, all disturbances are assumed to be normal so, as the set of normal
variates is closed under addition, the forecast is normally distributed
and confidence intervals are straightforward to compute., But if the distribution
of the disturbances is non-normal as has been suggested is possible, the
calculation of the distribution of (8) as a sum of random variates may be
extremely complex and lead to no convenient distribution,

The final reason is that 1f x;* is also random, the second term of
(8) becomes a product of random variables. Even if the strong assumptions are
made that both € and xé* are normal, their product would not be. When this
point is considered along with the other points made above, it is clear that
a nonparameteric approach may be desirable. Bootstrapping has the advantage
both of being nonparametric and of allowing x;* to be random.

There is also considerable evidence suggesting that the bootstrap may
perform well in finite samples. In terms of the estimation of the distribution
of a statistic, Beran (1982) shows that, under regularity conditions, the
bootstrap estimate will in general converge more quickly than the normal
approximation, because the latter makes no allowance for bias. (The bootstrap
will do exactly as well as the estimated first-order Edgeworth expansion.) Also
with as few as 15 observations, the bootstrap has performed well in test
situations when compared to an exact distribution which is either known or

inferred from a much larger sample (Efron, 1979, 1982). 1In terms of forecasts



specifically, Fréedman and Peters (198%4a) used Monte Carlo techniques to
study the estimation of forecast standard errors and found that while
bootstrapped standard errors were slight underestimates, they were far closer

to the true standard errors than their analytic rivals.

III, Application to Ontario Hydro Peak

Most utilities forecast peak demand by simply dividing a forecast of
average demand by an assumed "load factor', Here a slightly more general
relationship is explored using a regression in 1ogarithms3. The OLS results,
using data for the period 1963-19824 for the East System of Ontario Hydro

(which typically comprises about 90 per cent of the total provincial demand) are:

log(PEAKt) = ,8953 + ,9482 1og(AMWt) + %t 9)
(.1257) (,0141)

2

R™ = ,9960 Durbin-Watson statistic = 1,7709

where standard errors are in parentheses, PEAKt is peak demand in megawatts
(mW) and AMWt is average demand over the year, also in mW, The constant load factor
assumption would imply that the log (AMWt) coefficient be one, a hypothesis
that can easily be rejected at the 5 per cent significance level,

The first step was to test the normality of the residuals of ).
Monte Carlo research by Huang and Bolch (1974) suggests that the preferred test
is that of Shapiro and Wilk (1965) applied to the OLS residuals. This test
statistic is ,951, while a value below ,905 would be required to reject the null
hypothesis of normality at the 5 per cent level, The test based on moments
proposed by Kiefer and Salmon (1983) yields a similar resulé. Although the
normality hypothesis cannot be rejected, the power of these tests in a sample of
only 20 observations is questionable, In this sense a nonparametric approach
is conservative, guarding against potential non-normality at this stage while

also treating the other possible distributional problems discussed above, nanmely



the prediction bias due to taking exponentials of a log forecast and the difficulty
'
if Xy is also random,

It is also necessary to test for serial correlation and heteroskedasticity,
either of which alone would invalidate the confidence intervals calculated both
by standard methods and by bootstrapping, Five different diagnostic tests were
employed, each using the 5 per cent level, As noted, the Durbin-Watson statistic
is 1,77 (critical value: 1,41) and hense cannot reject the null hypothesis of no
first-order autocorrelation. This result is also supported by a Godfrey (1978)
t-statistic of -.28 (critical value: =2,11) for which the alternative hypothesis
is either an AR(1) of MA(1) process. The chi-square test of White (1980) gives a
value of 2,11 (critical value: 5,99) while that of Breusch and Pagan (1979) yields
a statistic6 of 3.37 (critical value: 3,84), so both cannot reject the null
hypothesis of homoskedasticity, The Engle (1982) test against an alternative

of autoregressive heteroskedasticity (ARCH) effects gives a chi-square statistic

7
of .97 (eritical value: 3.84) and hence cannot reject the null hypothesis .

Now that the necessary assumptions for bootstrapping have been tested,
its application to forecasting can be discussed. A medium-term prediction
for 1990 has been selected for illustrative purposes, and initially it is assumed
that with certainty, 1990 average demand will be 14500,0 megawatt-hours,
consistent with a 3 per cent growth rate from the 1982 1eve1.8 Using the
coefficient estimates above, this implies a forecast of exp(9.9807) or
21605 mW for 1990 annual peak. Calculating the confidence intervals of this
forecast using the method of Salkever (1976), the Student's t distribution
90 per cent confidence interval in logs is (9.9406, 10.02080) or (20756, 22490)
in mW. In other words, there is an estimated 95 per cent probability that
a capasity of 22490 would be sufficient in 1990,

When this estimate is bootstrapped the results are similar, This might

be expected, given that there was little evidence of non-normality in the
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residuals and there has as yet been no allowance for a random x;*. As can be

seen in Figure 1, with the number of bootstraPs set at 1000,9 the 95 percent

probability point is now 22332mW, only slightly lower than that from the
standard method. The other probability points listed in the bootstrap :-

figure are related similarly to those generated by the Salkever procedure, .

The other interesting point is that the estimated bias (i.e., the
difference between the exponential of the log forecast and the empirical
mean of theibootstrap distribution) is small, only 24mW or about .l per
cent of the forecast. This is still a little larger than the 6mW predicted
by the Goldberger (1968, p. 469) adjustment.

The forecast method so far has assumed knowledge of xf;, the average
demand for 1990, To allow random ﬁé;, a model for average demand is specified

and estimated using OLS over 1963-1982 as

log(AMH) = 1.2331 - ,3887 log(B,) + .4336 log(¥,) + .0293 TIMEt4-ﬁt
(1.7291)  (.0495) (.1038) (.0046)

R% = ,9985 D-W statistic = 1.7526 (10)

where standard errors are in parentheses, P, is the real average price of

t
electricity,l'o'Yt is total real income for the province of Ontario, and TIME is
a linear time trend.]1 If weather var*ables (the log of cooling degree days
or the log of heating degree days]z) are added to (10) as well as the. log of
the real price of natural gas, all three coefficients are neither individually

nor jointly significant at the 5 per cent level. Also, when the diagnostic

tests previously applied to (9) are applied to (10), the null hypothesis of

normality, homoskedasticity and no serial correlation cammot be rejected at

the 5 per cent level. .
Regressions (9) and (10) can be bootstrapped recursively. This is done :

by randomly drawing year numbers uniformly and with replacement from 1963-

1982 and taking the residuals from each of (9) and (10) for that year as a
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matched pair (éi,ﬁi). Then for each observation of artificial sample i,

AMWi is calculated using the coefficient estimates from (9), values of Pt’

Yt and TIMEt plus a bootstrapped residual ﬁi. PEAKi is then generated

recursgively using AMW& in @0) plus the matching bootstrapped residual, 3:.
To forecast average usage using the standard method, it is now

necessary to obtain a forecast of 1990 real income. To use the trend annual

rate of growth in our sample of 4.9 percent seems wildly optimistic; on

the other hand, to assume the virtual zero growth of the last four years

seems too pessimistic., In the end, it was decided to weight the recent

experience more heavily and assume 2 per cent per year, which is about one

per cent lower than suggested by the Economic Council of Canada (1983). This

yields a 1990 forecast of approximately 41.8 billion 1971 dollars. Assuming

a constant real price of electricity, the point prediction from (10) is 14848

megawatt-hours, about 350 mW,h higher than assumed above, This leads to a

higher peak forecast of 22096 mW, an increase of about 500 megawatts, But more

striking 1is that when the peak distribution is estimated by the described

recursive bootstrapping, the 95 per cent point is 23399 mW, or more than

900 megawatts higher than with the basic nonrecursive bootstrap. The

additional uncertainty modeled by the recursive bootstrap apparently makes

a substantial difference in the tail. In contrast, the estimated bias of

the forecast due to exponentiation is virtually zero (see Figures 2 and 3).

An alternative method of estimating the distribution of the forecast
error is to employ the Feldstein estimate of the variance-covariance matrix.
If the distribution of both the forecast from (10) and coefficient estimates
from (9) are both normally distributed, then the forecast error cannot also
be normally distributed but this nonetheless could be a valuable approximation.
Under this Feldstein estimate based on normality, the 95 percent point can be

calculated as 23622 mW, slightly higher than but reasonably close to the

bootstrap estimate.



13

The final experiment was to allow for subjective uncertainty in the
forecasts of the stochastic variables, price and income. The actual
observations on these variables were not altered (so that all results are
conditional on the same "history" of the right-hand side) but in calculating
the simulated actuals as in (4), it was recognized that the future X would
not be known but would be random. Accordingly, Xy Was assumed to be normally
distributed and an x;* was calculated for each bootstrap run by adding a
normal pseudo-random deviate to each of the price and income forecasts in
log form. This new x;* was then used to replace Ky in (4) for the price
forecast. For the price element, a standard deviation of 10 per cent was assumed
while for the income forecast, a standard deviation of 7.1 per cent was assumed
for one run, and 10 per cent for another.

As might be expected, neither modification shifts the estimated
probability distribution of peak very much but both flatten it. In each
case, the estimated bias due to taking exponentials is about ,1 per cent, But
using the 7.1 per cent standard deviation on income, the 95 per cent point
for peak climbs another 900 m¥ to 24287 mW, With a 10 per cent standard
deviation, the 95 per cent point becomes 24608 mW (see Figure 4). Clearly.

14

this addition of uncertainty using subjective priors is somewhat ad hoc,”" but
it does illustrate the importance of relaxing the assumption that the
forecasts of the independent variables are ¢:ert:a:'.n.1

Again the Feldstein method may be used as an approximation to yield
alternative estimates. Using the 7.1 per cent standard deviation as the
subjective forecast of income, the 95 per cent point is estimated as 24499 mW;
with a 10 per cent standard deviation this estimate becomes 24782 mW.

While in both of these latter situations the Feldstein method again

predicts a slightly higher 95 per cent point than the bootstrap, in all

cases the results are similar (a similarity which extends to the entire
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probability distribution). This evidence helps substantiate the validity

of the bootstrap conclusions and suggests for these cases, that the normality
assumption using the Feldstein variance-covariance matrix may lead to

slight overestimates of capacity requirements. However, another possibility
has not yet been considered, and that is if the priors on the forecasts of
the exogenous variables are also non-normal. In the electricity planning
process for example, there might be the possibility of a large change in

the pricing‘regime, such as using marginal cost as the basis for pricing
rather than the lower average cost.

To give an example of this, assume (rather artificially) that there
are two equally likely plans for electricity pricing in the future. Under
the first plan prices would fall 14 per cent by 1990; under the other they
would rise by the same percentage. These prices have been calculated to
correspond to the assumptions of Figure 4--namely that the prior on percentage
price change has a meaﬁ of zero and a standard deviation of 10. The bootstrap-
estimated distribution is presented in Figure 5. Using the rest of the assump-
tions of Figure &4, the 95 per cent point is now 25054 mW, which is greater
rather than less than the 24782 mW result of the Feldstein method. This
difference apparently occurs because the empirical distribution is no
longer approximately normal, with a Kiefer-Salmon statistic of 17.11
rejecting the nuli hypothesis of normality at the 5 per cent level (critical
value: 5-99). The Kiefer-Salmon statistic for Figure 4 with the normal
priors is only 2.15.

To conclude this section, it seems worthwhile to discuss possible
qualifications. First, is 1000 sufficiently large for N, the number of
bootstraps? To test this, examine Table 1, which gives various upper-tail
probability points for n =100, 1000 and 10000 for probably the most complex

example, that of Figure 5, with the recursive bootstrap with subjective
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uncertainty on both incomes and prices, with the price forecast assumed to

be a discrete binomial. The agreement is reasonably close, except for the

99 per.cent point for N =100, which is somewhat smaller than its counterparts.
The conclusion is that N=1000 appears to be adequate.

Second, a more refined bootstrapping approach would include bias-
corrected confidence intervals (Efron, 1981, p. 146), which allow for the
possibility that the empirical distribution of estimated forecast errors
might be biagsed and not have mean zero. However, as all such biases are
in the order of .1 per cent of the forecast, there seems to be no need to

pursue the bias corrected technique.

1v, Summary and Conclugiong

In summary, there are two main points, First, while these results
are only illustrative, they suggest estimation of the probability distribution
of peak will be valuable. A 95 per cent probability of capacity being
sufficient in 1990 does not seem excessive, but that requires under some assump-
tions 2500 mW or more additional capacity than would be indicated by the regression
forecast., This is a substantially greater margin than standard confidence
intervals would indicate, yet it still should be regarded as a conservative
estimate because it does not take into account possible shifts in model
structure.

Second, as might be expected, it appears to be very important in
estimating the probability distribution of peak demand to allow for uncertainty
in the forecasts of the independent variables. This is illustrated by the
recursive bootstrap results and also by the results of a bootstrapping
procedure which allows for subjective uncertainty in these forecasts.

Finally, the work suggests a possible goal for future research.
Ultimately, it would be desirable to be able to estimate the probability
distribution not only of peak demand but of the entire load duration

curve (which is drawn by taking any number y and mapping it againsf the length
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of time that demand exceeds y). As this is the principal tool for the

optimal planning of capacity mix (see for example Crew and Kleindorfer,

1979 and Rowse, 1980), it would then enable these calculations to be done

in a stochastic as opposed to a deterministic context. The result would
permit empirical calculation of the effect of uncertainty on the choice

of different types of capacity with different fixed and marginal costs

(as in Ellis, 1980) and hence potentially contribute to a framework that would

improve the entire range of capacity decisions.
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Footnotes

1The probability distribution estimated by the bootstrap does turn out
to be closely related to the Bayesian posterior associated with an uninformative
symmetric Dirichlet prior (Efrom, 1981). This similarity has led Rubin (1981)
to suggest that other, more reagonable priors be used to construct a
Bayesian bootstrap.

2As mentioned in the application, peak demand is measured in terms of
its logarithm, which in no way invalidates this discussion. Note also that
the assumption of a large number of identically distributed parent densities
is probably more realistic for a factory with distinct shifts (as in
Veall, 1983) than for aggregate data as here. If the parents are identically
distributed but there are few peak-eligible periods, the standard order
statistic approach could be used, but this requires knowing both the form
of the parent density and the exact number of peak-eligible demands.
Galambos (1978) discusses the difficulties non-identical parents may cause.
Gumbel (1958, pp. 184-187) describes Barricelli's generalization. This treats
a particular departure from the identical parent population which states
formally how the resulting peak distribution may be between the normal
distribution and the extreme value distributionm.

3., . .
While a serious attempt has been made to produce reasonable forecasts,

the following analysis tends to use somewhat simplified models. This is
to minimize the institutional detail so that the bootstrap results are
jllustrated as clearly as possible and also to ensure that only publicly

available data are required, All data used in the following are available

upon redquest,
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4When this equation was estimated using either 1941, 1946 or 1950 as
starting points, stability testing using the Chow F-test (Johnston, 1972, p,199)
suggested a break in 1963, Further Chow testing uncovered no further break
in the 1963-1982 period, The sample ends in 1982 because provincial income
estimates, which prove to be important in subsequent analysis, are only
available to 1982 at the time of writing,

éAs might be expected, the residuals between the actual values and
exponents of the corresponding fitted values appear to have a positively
skewed distribution and tests reject normality, This suggests that there will
be at least some bias in the point prediction calculated by taking the

exponential of the prediction in logs,

6The Breusch and Pagan test is conducted against an alternative that
the variance is a linear combination of the right-hand side variables of

(9), plus a random component,

ZNonparametric analogues to the serial correlation and heteroskedasticity
tests were also performed. The Geary (1970) residual sign change test could
not reject the no autocorrelation hypothesis nor could an obvious modification
of it using the absolute value of residuals reject the hypothesis of no
ARCH effects., Homoskedasticity could not be rejected by a nonparametric
test based on the Spearman rank coefficient and described by Johnston (1972,

p. 219), All these tests were also at the 5 per cent level.

&This is consistent with published forecasts conditional on 1982
information but is slightly high compared to more recent ones (Ontario

Hydro, 1983).
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9The uniform pseudo-random number generator used in this research is
that of Wichmann and Hill (1982), Applied Statistics algorithm 183, When
later in the paper a normal random generator is needed, this is combined

with Applied Statistics algorithm 111 (Beasley and Springer, 1977) .

10This is calculated as average revenue, which is clearly a major
simplification given the variety of Hydro rates. However these rates tend
to move together closely and Berndt (1978) has pointed out for a single rate
system, the difference between the marginal rate and the average rate does
not usually affect estimates greatly. The price is deflated using the annual
Gross Provincial Product deflator for Ontario.

11The formulation of an equation for log(AMW£) naturally suggests

re-estimating equation (9) with Two-Stage Least Squares to test whether in
that equation log(AMW£) is correlated with the disturbance. Using the

instruments implied by (10), the 25LS results are:

/N
log(PEAK ) = 8953 + .9482 log(AMW,) 9%
(.1258)  (.0141)

virtually identical to estimates (9) . Following Hausman (1978), a specifica-
Vel

tion test consists of taking 10g(AMW£) from (10) and adding it as an

additional variable in (9). When this is done the coefficient is .0086 with a

t-gtatistic of .0023, which is clearly unable to reject the null hypothesis
that 10g(AMW£) is uncorrelated with the disturbance in (9).

12Cooling degree days are a well-known measure of the need for air

365

conditioning and are defined as % (TEMP, - 18°C), TEME, = 18°C, where TEMP,
i=1
is the average daily temperature in degrees Celsius for day i. Heating degree
365
days are a measure of heating requirements and are defined as I 18% - TEMPi),
i=l
TEMP, < 18%,
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]31t was felt that some idea of the uncertainty could be obtained
from the forecast uncertainty using the Salkever method on a regression
of income on trend. Even though the 4.9 per cent growth rate was rejected
as too high a forecast, the estimate of 7.1 per cent as the standard error
of the forecast was used here. The 10 per cent estimate is completely

arbitrary.

14The uncertainty of forecasts of independent variables can be
treated less arbitrarily if the distribution of the independent variable
can be agsumed constant over time, as in the case of weather variables.
For example, in related work, models were estimated to forecast monthly
peaks, particularly for July which usually contains maximum summer usage.
In the July model, temperature variables proved to be important and these
were bootstrapped by drawing randomly from past observations. In principle,
there is no reason to restrict this draw to the sample but the entire

historical record could be used.

15The 90 per cent confidence intervals for Figure 4 correspond to an
average growth rate confidence interval of [1.2,4.1] over the 1982-1990

period, This corresponds to a range of about 5000 mW, Capacity of that

amount would be currently valued at more than T billion Canadian dollars, based

on the average accounting value of currently operating Hydro facilities.

The estimates from Baughman, Joskow and Kamat (1979, pp. 242-243) suggest this
cost estimate is conservative, as the 1985 estimate of capital costs for the
cheapest type of peaking component, gas turbines, is 250 U,S, dollars per kW
or about 1,6 billion Canadian dollars for 5000 mW, Any other type of capacity

has a capital cost of at least twice that amount,
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Table 1

A Comparison of Probability Points for Different Numbers of Bootstraps
Usging the Recursive Bootstrap Model with Uncertain Forecasts

of Independent Variables1

‘Probability Point N =100 N = 1000 N = 10000

(in megawatts)

.5 21934 22006 22030
.75 23431 23446 23358
.90 264564 24514 24360
.95 25100 25054 24936
.99 25645 25779 25994

1A11 runs are based on (9) and (10) and are for the year 1990,
The forecasts of the real electricity price and of the level of real income
in 1990 are consistent with O and 2 per cent growth respectively. However
in each bootstrapping run, a pseudo-random normal deviate with standard
deviation .1 has been added to the 1990 log levels of real income. Real
price is forecast as a binomial with .5 probability of a price decline of
14 per cent and .5 probability of a price increase of 14 per cent. The
results for N=1000 correspond to Figure 5.
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Figure 2

Basic Bootstrap of Annual Average Demand, 19901
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Figure 3

Recursive Bootstrap of Annual Peak Demand, 19901

199C
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Figure 5

Recursive Bootstrap of Annual Peak Demand with Uncertain Binomial Forecasts
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1Based on (9) and (10). The forecasts of the real electricity price and of the level of real income in

However, in each bootstrapping run, a

1990 are consistent with O and 2 per cent annual growth respectively.

For price, this

variate has .5 probability of being =-.14 and .5 probability of being .14, implying a standard deviation of .1.

pseudo random variate has been added to the 1990 log levels of real price and real income.

1.

the variate is normal with standard deviation

income,

For
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