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AB STRACT

In this paper we show that both the restricted and unrestricted
likelihood estimators of the error variance, obtained under normality,
are not in general robust against the spherical distribution of errors.
Thus, care should be taken in interpreting the residual variances in
the applied work., The robustness of Rao's score, Wald's and the

likelihood ratio tests, are also analyzed.
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ESTIMATION AND TESTING IN A REGRESSION MODEL

WITH SPHERICALLY SYMMETRIC ERRORS

by

Aman Ullah and Victoria Zinde-Walsh
1. INTRODUCTION

In this paper we consider the problem of estimation and testing
in the context of a regression model in which errors follow a spherically
symmetric distribution. It has been shown that the maximum likelihood
(ML) estimator of the regression coefficients under normal errors is
the same as derived under spherically symmetric errors. However, the
ML estimator of the error variance unde? normal distribution is not
the same as obtained under the spherical distribution of errors.
Finally, it has been shown that the exact likelihood ratio. (IR)
test, Rao's Score (RS) test and Wald's (W) test for testing restrictioms
are robust against the spherical distribution of errors. In the special
case of multivariate-t errors, the results compare with those in Ullah

and Zinde-Walsh (1983).

2, THE MAIN RESULIS

Let us consider the regression model

(2.1) y=XB+u

where y is an nX1 vector of the dependent variable, X is an nXp matrix of
non-stochastic exogenous variables, B is a pXl vector of unknown parameters

and u is an nX! error vector.



It is known that if u is distributed as multivariate normal with
. 2
mean vector zero and variance-covariance matrix o I, then the maximum

likelihood (ML) estimators for B and 02, respectively, are given by

2

22 b=&n ¥y and & =Ly -xb) (y-xb).

=

Also, for testing H : RB=r against H,: RB#r, where R is an mXp constant
matrix of rank m, and r is an mX1 vector of constants, the LR test criterion

turns out to be

~ L 2 2, 2,.2.M2
(2.3) IR=-2log 4, with £ = max L(B,o) / max L(B,a)=(s/c") .

RB=r,02 B,crz

s . . . 2 , .
in which we have used the restricted ML estimators of ¢~ and P given, respectively,

as
2 _ 1 A " N -1, ton=1_r -1
(2.4) & =—(y-X8)'(y-%8) and B=b-XXN KFREH K] ®-1).
Likewise, the RS and W test statistics are, respectively, given by
, 1 -1 2 2
(2.5) RS = (Rb-1)’ RGX'X)"'R']7 (Rb-1)/6° and W =5 RS,
s
We now consider the class of spherically symmetric distributions
- u’u - u'u
(2.6) £ =0 85D =0 PMW), w= 5
o o

where #(w) is a decreasing function on [0,%)., Note that both the multivariate
normal and the student-t are members of the class of distributions in (2.6).
We introduce b¢, ngb; and B &’ 3'2 to represent the unrestricted and

restricted ML estimators, respectively, of B and 0'2 under the spherically



symmetric distributions in (2.6). Similarly, LR¢, W¢ and RS ¢ will represent

LR, W and RS test statistics under (2.6).

Next, we consider w¢ as the unique solution for w in the equation

4
n @ (w)
. > tw =0
@D 2V )
where ¢ (w) is the first derivative of #(w). A sufficient condition for

. : ' ’2
the eéxistence of a unique solution g would be ¢ (w)¢(w) - & “(w) <0, that

is the concavity of log #(w).

The main results of the paper can then be stated in the following

Theorems:

THEOREM 1: Under (2.6), the unrestricted and restricted ML estimators

regpectively, of the parameters P and 0'2 are given by

2 1 7
(2.8) b, =b R s, = —(y - Xb) (y - Xb)
@ @ vy
and
@9  By=f . E=le-w® G-
0]

where b and P are as given in (2.2) and (2.4), respectively, and w¢ ig the

unique solution of w in (2.7).

PROOF: Using (2.6), write the log of the likelihood function for the

parameters of the model y = XB+u as
2, _ n 2 _
(2.10) logL (B;0") = - 3 logo™ +1log ¢(w) = £(y)

where w = (y - X8)’ (y - XB) /0'2 = u/0'2. The first-order conditions for the



maximization of loglL (Bsc?) are

S 2 28 w) X (y-XB) _
2.11) 35 logL(B,o™) = - =3 % 0
d 2 n w ¢ ()
(2.12) = logL(B,o ) = - —% - —& = Q,
3> 262 o P(w)

It is clear from (2.11) that the unrestricted ML estimator of B is

l::¢ = b as given in (2.2) and (2.8). Further, from (2.12) we get

o(w) + % wd (w) =0
as given in (2.7). Let Vg = (y- XB)' (y - XB) /0‘2 be the only solution of this
equation for which the log L(B,O'z) is at maximum, Then the ML estimator of cr2
is

2 _ 1 , el (5
@D 5= - oK) = G- X

@
as given in (2.8).
2 2
For the restricted ML estimators of B and ¢ we maximize H= logL(B,o")

+ A(r -RB) where A ig the vector of Lagrangian coefficients. The first-order

conditions are

H _  2d ) X (v-%B) -
(2014) aﬁ = = -69-(%51 0.2 - )\R =0

JH n W Q’gm OH _ =
(2.15) & - _-B =0, =r-R8 =0,
80'2 267 (:r2 8w o

The solutions for B and 0‘2 from (2.,14) and (2.15) can then be verified to be

as given in (2.9).



THEOREM 2: Upder (2.6), the IR, RS and W test statistics for testing

H: Rf = r against H,: RB # r are given by

= :’-‘-1 1
(2.16) IR, =IR, RS =c 8RS and W =ec SN

where IR, RS and W are as given in (2.3) and (2.5), respectively, s ig a

constant whoge value depends on ¢, and 5¢ = W¢/n.

PROOF: Note that the likelihood function for B and 02 is
2 - - Sx-}_(ﬁl’gx-XQQ
217 LB.0) =0 g = o Bl 5 1.
o
Thus, using the results in (2.8) and (2.9)
(2.18)  max L(B.o") = 57" BGwy
]

2
B,o

(2.19) max  L(B,0) = &3 9wy .
RB=r,02
It is then obvious that L’R¢ = IR as given in (2.16).

Next, we derive the RS test statistic, For this, we first obtain

2
the second-order derivatives of logL(B,o ) in (2.,10) . These are

v 2 ’
(2.20) aaag 2= 1ogL(B,a") —f—‘wﬂ XX, 4[9—-(-1 @y K uu X

(w) P(w) -
2 ) .2 ¢ () L(_)_

where ¢”(w) is the second derivative of &(w) .
Now notice that the right-hand side of (2.21) is an odd function of

= y~-XB. Therefore



(2.22) E - 5 1ogL(8,07) = 0.
OBoc

Further, we observe that

g _p L@ n o Bp o =
E 30 -Iu o) #(w)du = o fu¢ (w)du )

2 2 7
(2.23) Ec%}!}) =0T RHON owau = ¢, I
o o)

P w’ e e wl
g 2 T Tt s ey d

where c

and 54 3TE constants whose values depend on ¢,

18° “2¢ ¢
Thus, using (2.23)

2

d 2 x'x _
(2.24) E[- o5 logL(B,c )] = <y ';5' = I(B)

where
(2,25) c¢= 4(c2¢-c3¢) - Zc]¢

whose values depend on ¢ (see (2.23)) and I(B) represents the information
matrix of B. Further, because of (2.22), the information matrix of P and 02,
I(ﬁ,crz) will be a block diagonal matrix. Therefore, the RS test statistic

can be written as

(2.26) RS, = 11 @)a

where I(B) and d are I(B) and O log L(B,crz)/ dB, respectively, evaluated at the
restricted estimators B = §¢ = 6 and 0‘2 = 3‘2. These are 3 = x’(;;-xé‘)/&é and
I(é) = c¢§;2X'X. The result in (2.16) for RS¢ is then obvious, by noting that

(v - %)’ X&)% (y-%8) = ®Rb-z)’ RD) TR 177 D - r).



Finally, consider the W statistic

@.27) W= @ -z) R ()R 17 Rb-D);

¢

where I(b) = I(b¢) = c¢X'X/s;. Substituting this in (2,27) the result in (2.16)

for W¢ follows.

2.1 Remarksg on the Regults

The following remarks are based on the results in the Theorems.

1. The results in Theorm 1 show that b¢ = b and §¢ = 5. Thus both

the unrestricted and restricted ML estimators of B are numerically robust

against the spherically symmetric distribution of errors. However,

)

estimators of 02 are not in general robust. For example, if u follows

a multivariate student-t distribution with mean zero and variance 021,

then it can easily be verified that s:; = y(y=2) -1 82 # 32 and 0"; = y(y-2) -16‘\2 B

Further, if

':E ' /
(2.27)  £u) =c(0?) 2 explt 52 for 1L < o
) 5
o 0" .
=0 for EEE' >w,
g

3 s 2 2 1
where ¢ is a constant and w <n, then the ML estimator of o is s¢=a a’'a # s

Similarly, if we consider a distribution

bt 1§
u'u) -k

(2.28) £ =c(c® * 0+ , 2k >n,
g

then s§= (i_lc__ 1)6'6, which will coincide with s2 only in the case where

k=nt+1/2.

2. The result in Theorem 2 shows that although the LR test is

numerically robust (LR¢=LR) the RS and W tests are not numerically robust

2 # 32 and 6% # 3‘2 which imply that the restricted as well as unrestricted

Q.EOD.

(RS¢ # RS and w¢ # W) against the spherically symmetric distribution of errors.



8
This result is similar to one in Ullah and Zinde-Walsh (1983) in the
multivariate-t case.
Next, we observe that, under Ho’ all the LR¢, RS¢ and W¢ tests are

monotonic functions of central F = q(RRSS - URSS)/mURSS ~ £(m,q) where

RRSS=(y-xé)'(y-xé), URSS=(y-xb)'(y-xb) and q =n-p. That the F-
statistic is distributed as a central F under Ho whatever ¢g(w) may be
follows from the result of David (1977). The implication of this result
is that the test criterion for the normal distribution of errors remains
the same under the spherically symmetric distribution of errors. That

is we reject H° if

LR¢>LR(; or LR>LRa

-1 -1 a (04
= ) > 6 RS > RS
RS¢ c¢ ¢RS c¢ ﬁRS or
(04 o
W.=c 8W >c bW W >
6= Cpbd T g oW W
a (0 (04 . .
where LR, RS~ and W are the of critical points of LR, RS and W, respectively.

From the above findings it is clear that although RS ,6 and W ,6 are

g #
not numerically robust they are robust for testing purposes. This latter

robustness we call inference robustness. Note that the IR test achieves
both inference and numerical robustness. These distinct ideas of robustness
were not explicitly stated in Ullah and Zinde-Walsh (1983).

, RS, and W, can be developed for a

@ g g
given ¢ as in Ullah and Zinde-Walsh. Also, as in the multivariate-t case

The inequality results for LR

of Ullah and Zinde-Walsh if the large sample critical value based on chi-

e RS¢ and W¢ will differ with respect

to their sizes and powers in small samples and there may be conflict

square is used, then the tests LR

between their conclusions.
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