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1. INTRODUCTION
The question of entry is of great importance to both positive and

normative economics. In fact, the central motivation behind the market

contestability theory (see Baumol, Panzar and Willig (1982)), is the issue
of entry. This theory argues forcefully that the mere existence of
potential frictionless entry would discipline the behaviour of incumbents,
and depending on the industry cost structures, produce a particular form
of market structure which is at the same time efficient. Entry conditions
therefore become a crucial factor in determining the mode and efficiency
of market structures.

In most of the literaturé‘dealing with entry, the existence of
incumbent (s) is taken as a historical fact, so that the potential, or
actual entrants they refer to, are basically late entrants into a market
which is already served by incumbents. The static and non-stochastic
nature of the existing models preclude the possibility of explaining both
early and late entries.

In any market one cares to observe, it is a fact that firms do not
arrive simultaneously; some enter early and others late. Early entrants
may have the advantage of reaping temporary economic profits which are
competed away only after late entrants arrive. In a model of complete
certainty, this suggests of course that all agents should wish to enter
early. The 'endowment' of the advantage of early entry to some agents
and do not to others is, therefore, restrictive and arbitrary.

It is clear that the entry decision itself should be examined

within a choice model of rational behaviour. But at the same time,



the choice between early and late entry into a market is meaningful only
if there is some trade-off between the advantages and disadvantages of
early and late entrance. Such a trade-off does not exist in a full
information static model, where as we have noted above, early entrance

is always preferred. In a world of imperfect information, however, it

is not so clear that early entry will always be preferred. There will
now exist a trade-off between the possible higher profit associated with
early arrival and the informational (or 'flexibility) advantage of post-
poning entry till at least some uncertainty is resolved. Thus, incumbency
has its advantages and disadvantages.

In this paper, we present a model that exploits this trade-off.
Demand 1is uncertain, and in such an @nvironment, producing agents may
choose between entering early (before the state of demand is revealed)
or late (after the state of demand is known). The market is assumed to be
fully contestable in the sense that agents may contest in the early
and late production stages. This is in contrast to existing contestable
market models which assume but do not explain the nature and modes of
contestability.

In our model, firms making entry decisions have rational expectations
regarding the stochastic price distribution, in the sense that agents'
expectations are mutually consistent with the equilibrium price distrib-
ution. The model will explain the equilibrium modes of entry (number
of early and late entrants), their levels of production and the price

distribution. 1In addition, although both early and late production




processes are fully contestable, the model will also determine the "degree
of contestability" (or probability of entry) by late entrants. Such a market
will also be shown to be stable and efficient.
Furthermore, we will show how the various equilibruim variables
are affected by the parameters of the cost and stochastic demand distrib-

ution functions.

II, CHOICE OF ENTIRY

(1) Demand Condition

We consider a market in which demand conditions are uncertain so

that the industry demand function is characterized by

Q=Q(p,8) with Qp<0, Qe >0 1)

where Q is aggregate demand, p is price, and @ e[g,i] is continuous random
variable with cumulative density 3(8;k) where k is a distribution shifting

| parameter.2

i The firms who choose to participate in this market are assumed to be
small relative to the size of the market, The equilibrium price facing them

is a random variable p(8), whose probability distribution depends on 3(8;k)

and the various exogenous variable determining the industry equilibrium. Facing
the equilibrium price diétribution and cost conditions, firms choose the mode of
i their participation in the market, i.e., whether to enter early (before prices
are revealed) or late (after prices are revealed) and how much to produce given

each entry mode, .

(ii) Cost Conditions

Let the technology of producing output level q be given by the (Austrian)
T

production possibility3 set [A:' x(t) | ,9(T))} where x(t) is the input vector
t=o




. used at time t necessary to produce output level q(T) at time T, Suppose the

firm faces input price vector w(t), then its cost function is given by

T T
Min { Zw(t) » x(t): {x(t) | ,q} eA} = g°(q)
{x(t),T} t=o t=o
where in deriving the cost function go(q), both the distribution of inputs over
time, and the production period T itself are chosen optimally to minimize the

cost of producing q. Consider next a program where the firm faces a time

constraint T:sTl. Then its cost function is given by
T T | 1, _ .1
Min  { Zw(t) - x(t): {x(t) | ,q} A, T<T } =g (q)
{x(t),T} t=o t=o

and clearly we must have

°(q) s 8l (@)

because of the tighter time constraint faced by the latter program,

Alternatively, it is often assumed that the input prices themselves
depend on the time constraint, In particular, it seems reasonable that input
prices will be higher, for a tighter time constraint, due to, for example,
overtime rates, faster input delivery costs etc, In cases like this the
inequality above again holds, since for early and late input price vectors
w° and w' respectively, which satisfy woswl, we must have g(q;w°) Sg(q;wl).

The choice of production techniques becomes even more important when,
in addition, the firm faces some form of uncertainty, In the face of uncertainty
there is an informatiomal advantage in postponing commitments, This informational
advantage will, however, have to be balanced against cost-efficiency considerations
since postponement may require a tighter time constraint and hence higher costs
later on.

To simplify matters, suppose the firm can start its production process

early (before prices are known) or late (after prices are revealed), According



to the above discussion, early pr

oduction processes will be more efficient
but will involve greater uncertainty.

Late production, on the other hand, will
be less efficient, but will be carried out after uncertainty is resolved,

Let the cost functions corresponding to the two processes be given
by

g°(@q) = s? + ¢°(@q) and gl(q) = s1 + cl(q) 2)

where s°, g' are the fixed costs of the early and later processes, and

i

M OR cl(-) are the respective variable costs, We assume that c_ >0,
“qq

50, i.e,, variable costs are increasing and convex and ci(0)==0, i=0,1,

In line with the above discussion we assume that the late process has either

higher fixed costs (due to speedier organization and

coordination), or
higher variable costs (or both),

The higher variable costs may occur if
either w zwo, i.e., when late input prices are higher, or if, for the
same input prices, the late production, because of a tighter time constraint,
is less efficient,

Thus, in (2) we assume that either slzso or ¢ 2¢°
(or both), We paramet

erize the two variable cost functions by the parameters
|+
a a

Ry
1y ve e
45 aass =

XN

nd o where, for the sake of simplicity (but without great loss of
generality) we write

¢®(q) = a%c(q) and cl(q) = alc(q)

(2a)
with a 2c? >0 capturing the cost advantage of early production (due to

possible lower input prices on a more efficient production process).

We can interpret the two processes as two types of plants and the cost

functions are, thus, plant cost functioms.

.

(i1i) Entry Decisions

In the following discussion we will identify "firms" with production
processes, i.,e,, with plant types, Each "firm" may choose whether to use the
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early or late production processes. Of course, there is no reason why ''real"
firms, i.e., the entrepreneurial unit, should be restricted to one process only.
In our formulation, however, since firms are identifieéfwith production processes,
an organizational unit using both processes will be considered as two "firms".
A firm who chooses to employ the early process is said to enter the market
early, whereas a firm who chooses the late process is saild to enter late.
In view of our terminology it is of course possible for a "real firm" to
enter both early and late, i.e., choose both processes.

We assume that firms are risk neutral so that when considering the

two processes they are concerned with the expected profits corresponding to

these processes,

Consider first the option of late entry, i.e,, the choice of the late
process, Given an observed price p(8) a late entrant will (if he in fact

chooses to enter) choose an output level z which solves,

max p(8)z - alc(z) - s(z) (3)
zZ20
where
s1 ifz>0
s(z) = (4)
0 ifz=0

Let the maximum in (3) be written as J(p(e),a})"s(z),where J(-) is the usual ®
variable profit function and is, thus, increasing and convex in p(8) and
decreasing in.a}. If.Izsl, the firm will, in fact, choose, ex-post, to use
the late production process and produces a positive z, otherwise it will choose

not to use this process, Thus, defining pl(a},sl) by

1 1 u}cgzz+sl (s)

J(Pl,al) =g or p =min .
we get the optimal z by Hotelling's Lemma as

1 {aJ(p(O),al)/ap T p(d) 2 p1
z = (6)

0 if p(®) = Pl

-



For the sake of notational convenience we suppress the parameters

in J and write J(p(e),a,l) EJl[p(e)]. Denoting actual profits by nl we then

get
ol = max[3L(2(e)) - s1,0] ™

and the corresponding expected profit is

]
Elrl] =E(35(2(8)) - 57 [p (@) 2 p'] =J‘1[J1<p<e>) - 5143 (0) )
0

where 61 (vhich will be defined more precisely later) is the lowest § state

1,1 1

where a late firm will begin producing; formally, 01 staisfies p(el) =p (a,s ).

Clearly, for late entry to be desirable ex-ante, it must yield non-negative
expected profits,

Consider now the option of early entry, i.e,, of choosing the early
process. An early entrant has to choose whether or not to enter and how much
output y to produce, before he knows the state of demand, The expected profits

from this option are obtained from the solution to the problem

max {E[p(8)]y-a’c(y)-s(y)} 9)
y2o
where
s ify>0
s(y) = 4 (10)
0 ify=0

The maximum in (9) is written as J(p,a’) - s where p=E[p(8)]) is the expected

price, and J(p,a®) is the variable profit evaluated at the mean price p for

the early process parameterized by a.o,
If the expected profit in (9), E[n°] =J(p,a°) - §°=3°(p) - s° <0, early

entry will not be chosen, For a firm to enter early, we require that

E[r°] =3°@)-s° =20 (11)
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If (11) is satisfied, the optimal output of an early entrant, y°, is given

by (Hotelling's Lemma)
y° = 33°()/3p or p = ade(y®)/dy 12)
Both conditions (11) and (12) require that

- aochoz-l-so o, 0 O
p 2 Min S =p (@,s) (13)
y

Whether or not the early or the late process or both are chosen depends
on the profitability of the alternative options (Clearly, both processes would
be chosen as long as E[nO] »0 and E[nll >0, But the preference between the early
and late processes depends on the various parameters and is in general not

unambiguous:

- )
Elr°] - Elrt] = [3%5) - | 31 (p(8))da(@)] + [(1 - 3(a"))s - s°1 (13)
e1
Equation (13) highlights the advantages and disadvantages &f early and

late entry. On the one hand, late entry has an informational advantage on two
counts: (i) the fixed costs, sl, are only incurred if late entry actually

occurs and that occurs only with probability (1 - Q(el)); in contrast the fixed
costs of an early entrant, so, is incurred with certainty or probability 1.

(ii) Holding the variable costs the same (cr,°=cf.1), we have, from the convexity

of the profit function, that I°() =J(p,a°) <E[J(p(8),a’] =E[J(p(3),u.1)]

= E;[Jl (p(8))] where the inequality indicates the flexibility advantage that late
production has over early production, Against these two informational advantages,
late entry, compared to early entry, is relatively cost inefficient since

s]' >3° and a,lzcr.o. There is therefore a trade-off between informational and cost

advantages between the two processes, and whichever is preferred depends on the

cost and stochastic demand parameters.
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In allowing the firm the options of choosing the early process,
the late process, or both, our model provides a generalization of all

previous models on the subject of the competitive firm under price

uncertainty. For instance, the well-known models of Sandmo (1971), Baron

(1970) and Tisdell (1963) limit the firm to the early process only. On

the other extreme, the models of 0i (1961), Dreze and Gabszewicz (1967),
Sheshinski and Dreze (1976), Lippman and McCall (1981), limit the firm
to the late process only. Turnovsky's (1973) model does allow the firm

the option of engaging in both processes but the analysis was limited to
examine decisions at the firm level and was never directed at studying the
properties of equilibrium. Our ensuing equilibrium analysis can be seen,
among other things, as filling a void in this literature.

Our task is to analyze how the modes of entry, the price distribution
and the degree of contestability of the early and late processes are
determined in equilibrium and how these equilibrium variables are affected

by the various cost and stochastic demand parameters.

Before we begin the formal analysis in the remaining sections, two

important features of the model should be noted. First, the mode of entry

and production are governed not only by cost conditions but also by the
firms' subjective evaluation of the stochastic price distribution. Firms
are rational in the model, including their expectations so that their
expectations of the price distribution are mutually consistent with the
actual equilibrium price distribution. In other words, all agents are
assumed to have rational expectations.

Finally, the market that we consider is perfectly contestable in the
sense that subject to the production cost structures, there is no artificial

barriers to entry in both the early and late processes; they are both
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contestable. 1In a typical equilibrium, some will choose to enter and
produce early while others would wait and enter only if the "good states"
of demand occur; and all early and late entrants earn only zero expected
profit. Since late entries will depend on the states of demand, the model
therefore will distinguish between (actual) early entrants, potential

(or expected number of) late entrants and the state-dependent number of

late entrants.

II1, EQUILIBRIWM ENIRY
(1) Equilibrium Conditions
For the sake of exposition, we shall reduce the complexity of the

problem by linearizing the random demand condition (1) as:

Q(p,8) =8 - Bp, B>0 (1a)
Now, let m and n(@) be the number of early and late entrants, Then
equilibrium is defined by the vector (m,yo,n(e),zl(e),p(e)) where y° and z1
are the optimal production values previously defined, and where the following

conditions are satisfied:

(1) Qp,8) =my° + n(@z'(e)  alle
(1i) El°l so0
1 (14)
(ii1) E[n] <0

(iv) E[n) ?E[ﬂl] =0 77

Condition (i) requires that the market clears in every state of the world,
conditions (ii) and (iii) state that (because of free entry) neither early
nor late processes will yield positive expected profits and the ‘last condition
(iv) is simply to ensure that the market does not close in every state of

the world,
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There are therefore three possible equilibrium configurations depending
on demand and cost conditions: either {m>0, n(g) =0 for all 8} or
{m=0, n(8) >0 for some 8} or {m>0, n(g) >0 for some 8}. In other words,
either all enter early with absolutely no late entrants; or none enter early
so that the market, depending on state 8, 1s served by late entrants; or early
entry may coexist with late entry, Formally, the last case is the more
general one (or the interior solution), with the two preceding cases being
the corner solutions depicting two extremes,

We shall focus our analysis on the general case (the interior solution),
Our task will be to describe the factors that determine such an equilibrium and

then to examine, how the equilibrium is affected by changing cost, and the

stochastic demand parameters,

Consider first the zero expected profit condition for late entry. From
the solution for z in (6) to (8) we know that every late entry state requires
non-negative profit. But then the market equilibrium condition (14) (iii)
requires non-positive profit for every state. Hence, it follows that every
state must yield zero profit; in other words we must have ﬂ1==0 for all 6.

This, in turn implies that the equilibrium price distribution must satisfy

p@ = pral,s!) for o ¢ [ol,8) (15)

In other words, the equilibrium price is bounded from above by pl; the

minimum average cost of late entrants,
 Using the demand function (1) we can define el more precisely by

Q(pl,el) =nwp which after using the linearization (la) gives
1
01 = Bp (o.l,sl)"-mryo = Bl(yo,m;al,sl,ﬁ) (16)

Thus, we can now write the equilibrium price distribution as
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1

{(a-myo)/ﬁ g <8
plg) = (17)
pl(cnl,sl) e = 01
Taking its expectations we get the expected price as
1 —
- _1 é 0 ° 1
p=p [ (0-my )dg(e) + [ p da(e)
8 1
8
which after integration by part_gyields5
°1
- - 1
b= pllash) - 2 [ a(dde = pG°mict,sT,0) (18)
2

The full set of equilibrium conditions can now be summarized by

o,

Sl () y° =0 = 6(y°,m) (19)
op

°G) - s° =0=HE%m (20)
1 aJ 1 a} 1

2" (a) =-—L°—'—lap 0 >8 (21)
n(e) = [8-my°- Bplial,s)1/2 (o) 6 > o (22)

where p(@) is defined in (17), p in (18) and el in (16), The system of

equations (16) - (22) is a complete characterization of the equilibrium in the
industry; it determines all of the endogenous variables {m,yo,n(e),zl(ﬂ),p(e)
for all ® which satisfy the equilibrium conditions in (14). Note also that f
expectations are based on the equilibrium‘p(e) defined (17) so that firms ind

have rational expectatioms.

(ii) Number of Late Entrants and Late Plant Size

If we examine the system of market equilibrium equations we notice from

(21) that the optimal "size of late plant" (the amount zl) is immediately

determined for all @ 2 51 as a function of pl, al and sl, i,e., we get
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o ) (23)
if 0 <8

1 {—Q—‘—MJ Lad) | dal,sh) >0 if ezol

z (g =
It should be noticed, however, that zl(e) is a random variable depending on
@ and is, therefore, also dependent on the distribution of §. Consequently,
parameter changes which shift the distribution of 8, _Qr_ﬂi, will also shift the
probability distribution of zl(a). To emphasize this we can write the

distribution of zl(a) as

1 z]'(a.1,s1) p(ezel)
z (8) = 1 - (24)
ple<e’)

Furthermore, from the convexity of J in p and the fact that Bpl/as1 >0,
3p/3al >0, 33/3a! <0 we get®

1 1
-d—z-i<0,§z—->0 forezal

da asl

(25)

In other words, an increase in variable costs will decrease the optimal plant
' gize whereas an increase in fixed costs will increase it, This simply
corresponds to the fact that while both increases in a,l and s1 will increase the

minimum average costs, the first will shift the minimum to the left whereas

the latter will shift it to the right.

From (24) we can write the expected size of the late plant as:

Elz} ()] = 21’ 61~ 3(aD)] (26)

which depends on both the distribution of 8 and el.

Another variable of interest is the total amount produced by late entrants.

Pefining this amount to be Z =n(6)zl(9), we have from (22)

[e-my°-Bpll 'a-el 0201
Z(g) = _ 1 27)
0 8 <o
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’ and the expected total amount of late-plant output is given by
[ 1 1 °
E[z(9)] = [ (8- 87)da(a) = (§-9) -I1@<e)de (28)
1
8 e

after integration by parts.

In addition we can use (27) to get the number of late

entrants as

(o- Glllzl(a},sl) 92 91
n(g) = 1 (29)
e <89
and expected number of late entrants,
_ D
Eln@)] = [(@- oY) - | #(e)del/z al,s™) (30)
1

)
The number of late entrants, is a random variable whose probability distribution

(and obviously also its expected value) is determined, among other things, by
the distribution of @ and by 91. Finally, the probability of late entry (or
the "degree of contestability" by late entrants) 1is given by (1 - 0(91)) .

Before we conclude this section, notice that the late plant operates
at capacity, i.e., at the minimum average cost level and furthermore, from
(20) it follows that early plants also operate at capacity. This efficiency
result which arises from our more general model contradicts the excess
capacity result of Dreze and Gabcszewicz (1967) and Sheshinski and Dreze
(1976) . The reason for their excess capacity result is their

specialized model which does not permit early production.
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Iv, COMPARATIVE STATICS

It should be noted that in what follows we assume firms are small
relative to the market size so that they can be treated as a continuum
of agents. This removes the awkward integer problems and discontinuities
that would otherwise arise. Secondly, firms are price takers so that in the
calculus that follows, a firm's output choice, whether y or z, does not
affect prices but changes in equilibrium prices do affect each firm's output
choices.

From (19) and (20) we can (using (18) for p and (16) for 91)
determine yo and m., Then, 21(9), n(8) and p(®) are given by (21), (22)
and (17) respectively. Further, given yo and m, we can also calculate
expected total late productionm, E(Z(8)] (using (28)), expected number of
late entrants, E(n) (using (30)) and the probability of late entry, or the degree o

contestability by late entrants (1 -@(91) (given 81 and the probability distributio

of 8).
Totally differentiating equations (19) and (20) we get (the superscripts

for yo and 21 will now be dropped for notational simplicity):
: o 1 o 1
G Gm dy -G Ods -G 14s -G oda -G da - dek
J = s CR a o (31)

H H dm -H dso - H ]ds - H dao- H dd1- dek
o o] 1
s -] o4 04

The effects on the other variables of interest such as the total early
output Y = my, the state-dependent number of late entrants n(®), a late
entrant's output z(8), late entrants' total output Z(8) = n(8) * 2(8), the
expected number of late entrants E[n(®) ], the expected total amount of

late production E[Z(8)] = E[n(8) * 2z(8)], the probability of late entry
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[1-@(91)], the critical state 81 where late entry appears, and the
equilibrium expected price 5 = E[p(8)] will be derived from the other

auxiliary equilibrium equations.

For the equilibrium to be stable it is required that the Routh-

i

Hurwicz conditions are satisfied, namely

G +H <0
yvon (32)
- >
(Gy+Hm)A 0
where A==GyHm- Hme is the determinant of the LHS matrix in (31).
Theorem 1: The equilibrium defined above satisfies the Routh-Hurwicz
stability conditions (32).
Proof: It can be easily verified that
G ==-1<0 (33
, )
c=1° 22 .5° sy <0 (34)
m “pp Om PP
(since JPP > 0 from the convexity of I)
H=0 (35)
y
o dp o S
H=J"L=3" = <0 (36)
m “p om
PP
Thus we have G_+ H_ < 0 and
y m
(37

o 1
A=GH =J §® >0
= Tp (8)y/p .

3

The signs in (33)=(37) have a simple intuitive interpretation. The

&
3
3
o

negativity of Gy implies that the firms' stability conditions (second-order
condition) are satisfied. The fact that Hy= 0 follows from the assumption
that individual firms cannot effect the price distribution (and the mean

price). The negativity of both Gm and Hm implies that an increase in m

i £
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will reduce the expected price and thus will decrease both expected profits
and output of each firm. Hm < 0 will, therefore, guarantee that when

’ expected profits are positive, entry of new firms will push down the
expected price and hence reduce expected profits back to zero.7
To get the comparative statics results we require, in addition

to (33)-(37), the signs of all the other partial derivatives on the RHS

of (31). These partial derivatives are as follows:

= o Q?L- o . - o ™ 1

Gao JPp > + JPQP( ) JpoP( ) <0 (38) (1)
5 % _ o Tos S5

G ,=J_ () =3 (H[1-23e)] L_ >0 (ii)
a1 PP aa1 PP aal

since 3(8') €1, 3p /3 >0

0 R .
G =J (- =0
SO PP( ) aso (lll)
o aé o 1 521
G, =J () =J _(-)[1-8(8)] >0 (iv)
A YL B
0 » igz o
G, = Jpp(.) el ‘g 8, (8)d8 (v)
_ © dp o _ {© 0 i
Hao JP > + Jao Jao < (vi)
o Sp 0,.0
B.=23%)Lr=g,3 /3 >0 (vii)
S P X d pp :
I TR L
Hso Jp 320 1 1 <0 (viii)
) Sp 0,.0
H, =J () B T Y. 20 (ix)
91 851 s1 P PP
-p 3p _ 0,.0
H Jp( ) 3k Gkal.Ip o (x)
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It is useful to notice that, with the exception of G |, H | and H - all
the partial effects of parameter changes are completgly dgtermine; by the
partial effect on the expected price, p.

To determine the signs of Gk and Hk we have to specify the type
of shift in distribution that is being considered. We consider two types

of shifts in distribution: (1) A shift in the mean of @, (ii) a mean-

£
=
3
=
=
B

preserving increase in risk as characterized by Rothschild and Stiglitz
(1970). Let us denote the first type of shift parameter by k.I and the second

by kz. Consider a change in k1. I1f the mean of & increases (when k1

increases) we must have for any 9

8
¢ (8) = 3l ar(® 1/ 50 (39)
k ]

Thus, in (38) (v) and (x) we get that the partial effect of an increase in
the mean of 8 is to increase the expected price and hence G 1 >0, H 1> 0.
k k

Consider now a mean-preserving increase in risk. Let an increase in

2 .
k~ represent a mean-preserving increase in risk. Then we have, as shown

by Rothschild and Stiglitz [1970] and Diamond and Rothschild [1974], that

*

e

@ ,(9)de 20 all 8 s & <38 (40)
k

jot—o®

]
with [ @ 2(9)d9 = 0 to preserve the mean. Thus, in (38) (v) and (x) we get

8«

that the partial effect of a mean-preserving (preserving the mean of 8)

increase in risk is to reduce the expected price. Hence, G 2 <0, H 2 < 0.
k k

Using (33)-(40) we obtain the following results (where the proofs are

given in the appendix).

-
=
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Theorem 2: An increase in late production variable costs (a1) will have

1
the following effects: dy/da1= 0; dm/da1 > 0; dY/dOJ > 0; dG]/da >0;
42(8)/da’ < 0; dz(8)/da’ < 0, dn(8)/da'= 7 for © 2 o', 4E(z)/dd < 0;

a[1-2(8") 1/da’ < 0; dE(n)/da’ =25 dp/da'= 0 dp(8)/dd <0 for 8 <9,

dp(e)/da1 >0 for 8 2 91.

To interpret these results, notice that as a1 increases the upper
bound of the price distribution increases and tends to increase the mean
(for giveh y and m). In other words, the partial effect of a] on p is
positive. This however cannot be an equilibrium situation since the
profitability of early entry increases which will attract a greater number
of early entrants. This in turn will push the expected price down until
it reaches its original level, with a larger number (m) of early
entrants but with the same plant size (y) at minimum average costs.
Consequently the total amount (Y =my) produced by early entrant's increases.

As for late entrants, since 31 is higher, their optimal plant size,

z(2), is reduced (to the new minimum average cost level) for all actual

late entry states 8 2 91. Furthermore, since both total output supplied

by early entrants, Y, and minimum average costs of late entrants, p ,

1 i
have increased, the "cutoff state', 8', must increase, so that the probability

1
of late entry (or the degree of contestability by late entrants), 1-%(8"),

{s lower. For the same reason, the total amount produced by all late firms,

1
Z(8), must be lower for any late entry state € 2 8 and hence also expected

total late production, E(Z), decreases (z(®) is lower and 91 higher). Since

z(8) and Z(8) are both lower for 8 2 91, we cannot tell whether the number

of late entrants, n(9), given an entry state, will be higher or lower and

hence it is also impossible to determine the effect on the expected number
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Theorem 3:

of late entrants, E[n(®)].

Finally looking at the effect on the price distribution itself we note

1
that the cutoff price p] increases as does the cutoff state & . Thus,

for all 8 2 61 (which is now a smaller set of states) p(9)==p1 is higher;
but for all © < 91 (a larger set of states) p(8) is lower. The mean of

p(®), however, remains the same.

An increase in early production variable costs (OP) will have

the following effects: dy/daP < 03 dm/daP < 0; dY/d09 <0; dellda° < 0;

dz(8)/da° = 0, dz(®)/da’ >0, dn(8)/da’ >0 all @ 2 ol. ae(z1/ad® > 0;
- - 1

dE(n)/do® > 0; d[1 -8ty 170 > 0; dp/ad’® > 0; ap(8) /40”3 g gié”'

»

The effects of an increase in o® are "almost" the opposite of the

effects of an increase in Q}. As 2° increases the optimal size of the early .

plant is reduced and there is a tendency for expected profits to decrease

(become negative) leading to exit of some early firms. But as the number of

early firms decreases the expected price increases, increasing expected profit

-

back to zero. Thus, we have a smaller number of early firms (m), each producing

a smaller amount (y) at the new and higher minimum average cost.

The optimal size of the late plant, 2z(€), does not change since late

production conditions have not changed. However, since the share of early

production is now lower in every state, the probability of late eatry, 1 -@(91),

increases and so does the number (a(8)) and total production of late entrants,

Z(9), in every entry state 8 2 61. Obviously, the corresponding expected values

E [n(®)] and E[2(8) ), must also increase. )
Finally, because the new price distribution has the same upper bound p ,

we have the same price as before for late entry states, 02 81; but the set

of entry states is larger (since 61 decreases). In contrast, for every
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now higher since early production, Y=m'y, is lowe
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-late-entry state 8 < 01 (which is a smaller set of states) p(®) is

r in every state. Thus,

the mean of the price distribution, E, is higher.
Theorem 4: An increase in late-plant fixed costs (sl) will have the following
effects: dy/ds1 = 0; dm/ds1 >0; dY/ds1 > 0; del/ds1 >0; dz(e)/ds1 >0,

az(8)/ds® < 0, dn(8)/ds* < 0 for 8 = 6%; dE(2) Jast < 0; af1 - #(eh 1/ast <o;

5 1
dE(my /ast < 0; ap/ast = 05 ap(®y/as’ (301§ 2 1) -

As s1 increases, the upper bound of the distribution of p increases

which will have a tendency to increase the expected price (for a given y and m).

Therefore, the number of early entrants, m, will increase, reducing their

expected profits back to zero, at the previous expected price. The optimal size o!

the early plant, y, is thus, unchanged (at minimum average cost level) but the

number of early entrants is higher. Hence, the total amount produced by early

entrants, Y=m'y, increases.

As for late entrants, the increase in s1 will increase the optimal size of
their plant, z(8), for every late entry state 8 2 91, since by doing so fixed
costs are further spread to reduce (the higher) average costs. The increase in
both p1 and Y =m+y will increase the "cutoff state" 91 and hence reduce the probab

of late entry, 1 -@(61). Furthermore, since the cut-off state increases, the

total amount produced by late entrants, z(9), given any late-entry state, will be

lower and since 2z(8) is higher, so algso the number of late entrants, n(g), will be
lower. This, of course, implies that the expected values, E{Z} and.E{a}, must

be lower.

Finally, for any entry state, e 2 91 (which is now a smaller set of states)
the price pl (the upper-bound) is now higher, but for every non-late-entry state
8 < 91 (which is now a larger set of states), p(8) is lower since total early

production, Y, is higher in every state. The mean price ﬁ, however, remains

unchanged.
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Theorem 5: An increase in early-plant fixed costs (s°) will have the
following effects:
dy/ds® > 0; dm/ds® < 0; dy/ds® < 0; a8 /ds® < 0;

dz(8)/ds® = 0, dz(8)/ds®> 0, dn(8)/ds®> 0  al1 8 = 8°;

dE(2)/ds®> 0; dE(n)/ds® > 0; d[1 - 8(8%)1/ds® > 0;

1
- = 0 N
d p/ds® > 0; dp(°)/ds°{>0: § : 31]

As 8° increases, the optimal size of early plants, y, will increase,
but since an increase in s° reduces expected profits, the number of early
entrants, m, will decrease. Since y increases and m decreases, it may seem
that it is not clear what happens to total cutput, Y = mey, produced by early
entrants. But note that an increase in s° must be accompanied by a corresponding
increase in expected price, 5, to maintain the zero expected profit condition.
And alsc note that an increase in s° does not affect—the upper bound, p‘, of
the price distribution. Consequently, Y=my must be smaller in order to
support a higher expected price, E. Thus, the increase in s° increases early
plant size, but decreases the number of early plant firms and their total
output.

As a coﬂsequence, the probability of late entry, 1 -@(91), increases
v(sinée a lower Y reduces the cut-off state, 91) and hence increases the set
of late entry states. Furthermore, for any late entry state, & 2 91, the
number of late entraunts, n(9) increases and so does total late production Z(8).
Since both Z(9) and n(8) and the probability of late entry, 1-8(8'), increase,
we also have that the expected values E[Z(8)] and E[n(®)] increase. Furthermore,

since the cost conditions of late production ﬁave not changed neither does the

optimal size, z(®), of the late plant.
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Finally, because Y is now smaller, price p(8) for @ < 91 must rise,
In addition to this, we have noted previously that 91 is smaller so that the

get of non-late entry states, 9<91 is now smaller. Hence the expected equili-

brium price, 5, increases.
Theorem 6: An increase in the mean of the distribution of 8: (increasing kl),

will have the following effects:

dy/dk; a 0; dm/dk1> 0; dY/dk1> 0; del/dk; > 0;

dz(8)/dkt = 0, dZ(8)/dk: < 0, dn(8)/dk! < 0 for © = Bl;

dE(z]/dkt = 7; dE()/dKt = 2; d[L - 8@Y)]/aKt = 2;

20,026l
-1 1
dp/dk” = 0; dp(8)/dk {_ , , e<31].

An increase in the mean of O tends to increase the expected price, thus
increasing expected profits and consequently attracting a larger number, m, of
early entrants. This, in turn, will reduce the expected price, 5, back to its
original level,reducing expected profits to zero, and the optimal size of the
early plant, y, to its previous level. Total early production, Y, is thus
higher.

Since late production conditions are unchanged, so is the optimal size,

z(8), of the late plant. But because total early production is higher, we

have lower total late production, Z(®), for any late entry state 8 2 91 and
hence also a lower number, n(8), of late entrants. The increase in total
early production increases the cut-off state 31, but, since the distribution
of @ has also "shifted to the right" we do not know what happens to the
probability of late entry, 1- 9(31). Consequently, we also do not know what

happens to the expected number, E[n], of late entrants and expected total

late production E[Z].
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Finally, for any late entry state 8 2 91 we have the same price,
pl, as before but for anynon-late entry state 8 < 61, we have a lower price,
p(®), since total early output is higher. The expected price, i;, as

described before, remains unchanged.

Theorem 7: A mean-preserving increase in risk (increasing kz) will have the
following effects

dy/clk2 = 0; dm/dk2 < 0; s:lY/dk2 <0; dB'I/dk2 < 0;

dz(8)/dk® = 0, dz(8)dk? > 0, dn(8)/dk? > 0 for all 8 > 8%

dE(@)/dkE > 0; dE(n)/dk? > 0; a[l - #(81)1/aK® > o;

. =0, 02 ol
dp/dk™ = 0; dp(®)/dk {> 0, 8 < 91}0

Since all firms are risk neutral, an increase in risk will clearly not
affect the output level, y, of an early entrant if the expected price remains
unchanged. A mean-preserving increase in the risk of 8 will initially, however,
not necessarily preserve the mean of p(8). In fact, since p(®) in (17) has
an upper horizontal bound for high 8, a mean-preserving spread in ® which shifts
probability weights from, say, the center to the upper and lower ranges of

e [3,3] will result in an initial decrease in the mean of p(®). Thus, an

increase in risk will tend to decrease the mean of p and hence reduce expected

profits of early entry. This will lead to a reduction of the mumber, m, of
early entrants, which in turn restores the expected price, ; , and the

expected profit to their original equilibrium levels. Thus, although a mean-
preserving spread of #(8) will initially reduce p, the final restoration of E
to its original level is a result of equi'librium adjustments. With equilibrium
p unaltered so would the early plant size y since the minimum average cost 1is
not affected. But with y unchanged and m being reduced, we have total early

output Y becoming smaller.

[}

te

(U
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Turning to late entrants, it is clear that since z(8) is chosen

after uncertainty is resolved, an increase in risk will not affect z(9).

It will, however, affect the probability of late entry. Since weight has

been shifted away from the center of the distribution $(®) and, in addition,
total early production is lower, the probability of late eantry, 1l - Q(el),

is higher; and at every late entry state & 2 91, actual total late production,
Z(9), is also higher. Thus, at every late entry state the number of late
entrants, n(8), will be higher, since late plant size remains at the same level
as before. This, of course, implies that the expected total late output,

E(Z) and expected number of entrants, E(n), will also be higher.

Hence, even though both early and late firms are risk neutral, their
numbers are affected in an opposite manner by an increase in risk; whereas
the number of early entrants, m, decreases the expected number, E[n]

’ (and actual number, n(f), for 8 2 91) of late entrants increases.
The new price distribution will have the same upper bound, pl, which
now occurs in a larger set of late entry states. But the price p(8) for all

non-late entry states 8 < 81 (which is now a smaller set of states) is higher,

since early production share is lower for all states. The mean price, Ps

however, remains unchanged.

A summary of all the above results are given in Table I below.

1

826

y m Y ol je_)_ZieT?ge; E{2] E(n) 1 - @(91) E(p) p(®) |e <9’ p(®) Eeze'
Ll- - - - 0 + + o+ o+ + + + 0
; l+ - - - 0 + + + + + + + 0
,. Hlo+ + + - - 1 - 2 - 0 - +
stfo+ + + + - - - - - 0 - *
o+ + + 0 - - ? ? ? 0 - 0
2o - - - 0 + + + + + 0 + 0

Table 1
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v. SUMMARY AND CONCLUSION

Table I demonstrates the cost efficiency and informational trade-

offs facing the firm in this market. Greater relative efficiency in the

early production process (lower levels of (so,QP) and/or higher values of

(31,03)) will tend to result in a larger number (m) of early entries
and a larger total market share (Y =my) of early entrants corresponding

to a lower expected number (E[n]), lower expected market share (E[2]),

and a smaller degree of contestability Q -@(91)) by late entrants. On
the other hand, greater uncertainty (increasing kz) will tend to give
the opposite result.

Other results of interest is that more favorable expected demand

conditions (increasing k1 or E[8]) will tend to cause more early entries (m)

and total early output (Y), although the predictions on the late entry

Yariables are not unambiguous.

It is also usele to notice how this model generalizes earlier literature
on the theory of the firm under uncertainty. On one end of the spectrum, the
model of Baron (1970), Sandmo (1971), and Tisdell (1963) which assume only early
production is a special case of this model when all late entrants' variables
(such as n(8) and z(8)) vanish. In this model, this tends to occur the greater
the relative efficiency of early production over late production (i.e., smaller
(s®,a®) and/or larger (s!,al)); and the smaller the demand uncertainty
(i.e., smaller kz) since a smaller uncertainty decreases the informational
advantage of entering late. On the other end of the spectrum, the models of
Dreze and Gabcszewicz (1967), Sheshinski and Dreze (1976) and Lippman and
McCall (1981), which assume only late entry, are also special cases of this
model whenever the early entrants' variables (such as m and y) vanish. In

this model, this tends to occur whenever early production is relatively

[

1e
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less cost efficient (i.e., higher (s°,a°) and/or smaller (s!,al));

and whenever there is greater uncertainty (i.e., large kz).

Another implication is that although we have not explicitly discussed
the question of forward markets, this issue is implicit and is easily
pursued within the model. The early entrants in this model produce Yy
which are sold in the spot market after demand is revealed. Arbitrage by
forward market agents implies that in equilibrium, the forward market
price pf must be equal to the equilibrium expected price p so that
Consequently, the

arbitraging agents earn only zero expected profits.

equilibrium expected price 5 in this model can be interpreted as the

equilibrium forward price. 1In Table I, it is interesting to note that

the equilibrium expected price 5 is invariant to k.1 (the mean of demand

distribution), kz (the fluctuations in the demand distribution) and also
to s1 and a‘ (the late production cost parameters). The equilibrium value
of p, is only affected by. and varies positively with, the early

o 0
production cost parameters, S and @ .

Finally, the model could be extended in several directions. One

interesting extension is to model equilibrium entry decisions in a multi-

product economy; this would provide a natural extension of the work of

Baumol, Panzar and Willig (1982) . Another direction which could be pursued

is to introduce risk aversioﬁ.
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FOOTNOTES

lAn exception is a recent paper by Harris and Lewis (1983) which

provides a model in which incumbency is related to informational advantages.

E
3
]
3
;E
&
:

2For the sake of notational brevity, we will in most cases suppress k

and write ®(6,k) as ¢(8) whenever k is not used in discussions.

3See for example Hicks (1973) and Appelbaum and Harris (1977).

aSee for example Diewert (1974).

(e-ay®)ds(e) + [1-8(8") Ip’
1

el |
L}
|-
@ C—py Dy

(8-my®-8p )d2(8) +p’
1

W=

@ <o

1

$(8)d8 after integration by parts and using the fact that

g
P~pB

|ot— @

1
9] =pp + myo .

6431 = Jpp 32; i Jpal, but since J(pl, a) = sl
da 3a
3P1/3 ol = Plal = -Jal/Jp. Thus,

dz/dal = {Jp Jpa! - Jal Jpp}/Jp = -JppJ/Jp ,

1

using the homogeneity of J in a*,p.

7See Derez and Sheshinshi (1983)




Appendix

Theorem 2:

- + = { - =
g11 - =618y Halsm}/a { G,16y + ycalcm}/a 0

da

d = -G_G > 0

2, " o

Thus, dY/dal > 0 and since dP!/dal! > 0
we also have del/da! > 0  and

d{1-¢ (81)}/dal < 0.

It was shown above that dz/da! < 0.
Now,
dz = d(e-8l) <0
datl da
dE(Z) = -8 36! {1-¢(81)} < O
daI Bal
dn = d(8-61)/dal? since 381 > 0 but 3z < 0
dal z 3ol Bal
dE(n) ?
da _
{
ip“l = dEB—my}/E]/ dal <0 8181
da ,
dpl > 0 g>p!
da

Theorem 3:

dy = {GHo-Goll }/o = {ycl-c}ap 1 <0
da® me oo m afc*® odm A

dm = 3% /8 <0
da®

dY =dmy <0
dao da®

dol = dy < 0
da® da®

thus d{1-¢(81)}/da0 > 0
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II

Theorem 3 cont'd

dz =0 dz = -ds! > 0
do© da© da®
dn = d(8-6')/da® > 0 g>8!
da® z
dE(z) = -de! {1-¢(81)} > 0
"~ da da®
Thus also dE(n) > 0
da®

Finally,

4
dp = \)-d(my)/da®>0 8<p!
da® i g

dp!/da® = 0 626!

Theorem 4:

%§1 = {-Gslﬂm - Gmﬂsl}la = %ﬁ-cslcmy + Gmcsly} =0
dm = -G Gsly/ﬁ > 0

ds! Y

Thus dY/ds! > 0 and de! = dy + 8 ap! >

ds? ds? 3s!

and hence d{l_ﬁ(al)} >0

dsI
dz/ds! > 0
-

& 1 !
dz = -ds! <0 f
ds? dsT
dn = {-dal z - (8-8l) 3z }/zz <0
ds! ds? 3st

dE(Z) = -Bde! {1-#(sl)} < 0
dsI EET

1 dE(Z) - E() dz_ < O

s z ds! zZ  ast

[=7 [P
=1
L~
'15
[}

6>8!
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Theorem 5:

dy = -G /o >0

& = —6@H dp = —4@eH 1 0

ds® g8 ds° g J°
‘ P

gl = H«0 a(1-4 (1)) > 0

ds® ds® ds®

dz =0

ds©

dz = -d8! >0 0>61

ds® ds® |

dn = d(z/z) > 0 \

ds® ds® i

dE(Z) = -{1-¢(8)} d¥ > O

ds® ds®

and thus also

dE(n) > O

ds®

Theorem 6:

% = DA - mele}/A =0

dm = -yG /a > 0

3 7y

&y = d(my) >0
k! dk¥

gl = 4dy >0
dc T & !

d{1-6 (e1)}/dxt = {61 (1) + ¢' (81)del} ?
a
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- Theorem 6 cont'd:

a = -del < 0 i
dk dk! eie1

dn = dz/z < 0

! K’ _
®

dE(z) = {¢(e)-1}de! -/ ¢,1(8)d8 7
dk ak? el

and therefore also

dE (n) ?
dk?
Theorem 7:

dy {'ka2cm + Gmszy]/A =0

dk?
dm = -yG G <0
dz =0
dk?
day = dmv < 0
dk? dk2
ds! = dmy < O
dx? dk
d(1-¢ (1)) > 0
dk
12.2 = ‘del > 0 A
dk dk2 B>81
dn = d(z/z) > O
dk? dk?
51

dE(z) = ~{1-¢(e!)}del+ s ¢, (8)d6 > 0
dk dx?> 8

dE(n) = dE(Z) 1> 0
dk*® dk? z

e
S e

’,
.
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