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ABSTRACT

In this paper we propose a nonparametric test for autoregressive conditional
heteraskedasticity (ARCH) based upon finite state Markov chains. A simple Monte Carlo
experiment suggests that in finite samples it performs comparably to the LM test under condi-
tional normality and is superior for the t-, lognormal, and exponential distributions. As an

illustration, we apply both tests to Canadian/United States forward foreign exchange data.

Conditional Heteroskedascity; Markov Chain; Moate Carlo.



1. INTRODUCTION

Traditionally, applied researchers have approached the problem of estimating and testing
economic time-series models under the assumption of constant conditional variances. Indeed |
interest for time-series models appeared to be confined solely to questions of conditional
means. However, with the high volatility of both micro and macro time-series data over the
1970’s and 1980’s, attention has recently been focussed upon developing and testing various
forms of heteroskedasticity (see Pagan and Hall, 1983 and references therein). One popular
form of the heteroskedasticity that seems to capture many important features of actual time-
series data is the autoregressive conditional heteroskedasticity (ARCH) models first introduced
by Engle (1982). Since the appearance of that paper there has been an impressive amount of
work investigating ARCH models in a variety of circumstances (for a survey of some useful
applications of ARCH models see Engle and Bollerslev, 1986). In the applied literature, the
principal tool for determining whether an ARCH effect is present is the Lagrange Multiplier
(LM) test (also suggested by Engle, 1982). The test is simple to calculate and appears to work
we;ll under conditional normality in finite samples (see Engle, Hendr-y, and Trﬁmble:’i.985;$:
Moreover, as Weiss (1986) (see also, Koenker, 1982) has discussed, the LM test is also
appropriate (subject to some moment conditions) for non-normal distributions.

The purpose of this paper is to propose a nonparametric test for autoregressive condi-
tional heteroskedasticity models based upon finite state stationary Markov processes. The
proposed test is as simple to calculate as the LM test, does not require any moment restrictions
and appears to have better finite sample properties over a wider class of probability distrib-
1;tions. In a simple set of Monte Carlo experiments, we show that for quite small samples the
Markov chain test based on a two-state definition performs comparably to the LM tests for
conditional normal distributions and outperforms it for conditional student t-, lognormal'and
exponential distributions.

In Section 2 we outline the ARCH model and the LM test. In Section 3 we develop a fi-

nite state Markov chain test for the ARCH effect, and in Section 4 we conduct a simple Monte



Carlo experiment investigating the finite sample properties of the Markov chain test as well as
the LM test. Also in this section we illustrate both tests using Canadian/United States foreign

forward exchange data. A brief conclusion follows in Section 5.

2. THE ARCH MODEL AND A LAGRANGE MULTIPLIER (LM) TEST

Consider the p-order conditionally normal ARCH regression model (see Engle, 1982):

e l V1 ~ NX8, k)
he=h1, €30 vt pa) t=1..N (1)

&=y, — X3,

where y, is the dependent variable, ¥,_, is information set available at time r -1, X,8 isa
linear combination of lagged endogenous and exogenous variables included in ¥,_;, 3 isa
(kX 1) column vector of unknown parameters, ¢ ¢ is a conditionally normal disturbance term,
and £ is a variance function with arguments &y, .., e,Z_P which are associated with the un-
known (p X 1) vector of coefficients «. The error term has a mean of zero and a (non- - -
constant) variance which depends upon P lagged values of the squared disturbances (hence the
name - autoregressive conditional heteroskedasticity). Often the variance function is linearized

as in Engle (1982):
b 2 2 2
=Gt o+ a6 o+ by €, : 2)

where suitable restrictions are imposed upon « to ensure both the stationarity of the un-
conditional process and non-negative variances.

We mention two generalizations of the ARCH model which have recently been con-
sidered in the literature. The first by Bollerslev (1985 and 1986) is the GARCH model in which
lagged dependent variables (i.e., k,_,) are introduced into equation (2). A point noted by
Bollerslev (1986) is that the LM test for a GARCH effect is appropriate for other different,

but locally equivalent hypotheses (this property of LM tests has been noted in other appli-
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cations, see for example Godrey, 1978). The second extension to the ARCH model in equation
(1) is to have the variance function (2) directly in the regression equation (called ARCH-M
models) as in Domowitz and Hakkio (1985) and Engle, Lilien and Robins (1987) or GARCH-M
models as in Bollerslev, Engle and Wooldridge (1985) and McCurdy and Morgan (1987). The
intention of placing a time-varying variance in the regression mean is to capture the risk
premium frequently modelled in future and forward markets.

Notice that under the assumptions of equation (1), ordinary least squares (OLS) esti-
mation of 3 that does not take account of the ARCH effect still produces consistent param-
eter estimates. This might suggest that we may estimate § by either: (i) OLS and then use a
heteroskedastic-consistent estimator of the covariance-matrix along the lines of White (1980)
or; (ii) maximum likelihood estimation (MLE) as in Englé (1982). Engle, Hendry and Trumble
(1985) discuss a pretest estimator where either OLS or MLE is employed depending upon an
outcome of some diagnostic test such as the one proposed here. For that matter, since
condmonal normality i is not essential in (1) (see Weiss, 1986), we mxght also estimate the
ARCH model by quasi-maximum likelihood methods as suggested in Weiss ( 1986) or even
semi-nonparametric MLE devloped in Gallant and Nychka (1987) and Gallant and Tauchen
(1987) which permit conditional dependence of the entire probability distribution and not just
the second moment. While such topics are extremely interesting they are well beyond the scope
of the present study.

As long as h in equation (1) is a differentiable function, and ¢ has finite second and
fourth moments, a Lagrange multiplier (LM) test for the ARCH effect may be calculated
without actually specifying the exact form of h (see Engle, 1982 and Pagan and Hall, 1983).
Specifically, we test the null hypothesis that o) =a; = -+ = a, =0 by: (i) estimating equation
(1) by OLS and saviné the residuals; (ii) regressing the squared residuals upon a constant and
p lags; and (iii) calculating N times the R? (coefficient of determination) from this auxiliary
regression. Under the null hypothesis of homoskedasticity (no ARCH effect), NR? is

asymptotically distributed as X? with p degrees of freedom. For linear ARCH models of



order 1 and conditional normality, Monte Carlo results in Engle, Hendry and Trumble (1985)
suggest that this LM test has reasonable finite sample properties. However, the performance
of the LM test in the absence of conditional normality is unknown. Strictly speaking, we
should also note that this test is not exactly the score form of the LM test unless conditional
normality is assumed (see Koenker, 1982)

Both the LM and Markov tests proposed below share the advantage that only the simpler
restricted (non-ARCH) model need be estimated. On the other hand, Wald tests are compu-
tationally more difficult to calculate, requiring explicit formulation of the alternative hypoth-
esis. Monte Carlo evidence in Engle, Hendry and Trumble (1985) indicate that for linear
ARCH errors of order one under conditional normality, the Wald test is likely to have seriously

reduced test sizes.

3. A MARKOV CHAIN TEST OF THE ARCH EFFECT

The ARCH test that we advance also requires that we estimate equation (1) by OLS and
obtam the squared residuals denoted by e¢?. However we no longer ;ssume the existence of
moments for ¢ . Instead we assume that the squared residuals follow a discrete stationary
Markov process. Excellent introductions to the theory of Markov chains may be found in Cox
and Miller (1965), Feller (1950), and Kemeny and Snell (1960).

Let ¢? be a random variable with 1,2, ... ,s possible finite states or outcomes. If we let
N and s grow arbitrarily large, then the fact that we are using the discrete least squares resi-
dual (rather than ¢, ) is unimportant. Hence we may frame the test according to e¢,. Never-
theless, from a practical point of view we must convert continuous random variables into
discrete ones. Since N is finite (and usually fairly small for macroeconomic data) the number
of states will necessarily be quite small. In the Monte Carlo exercise to follow we choose a
number of different states. The simplest and as we shall see the one that yields the best test

results is a two state definition obtained according to whether the squared residual at time ¢

N
is below (state 1) or above (state 2) the sample mean (32 = 21 N-1e?). Notice that the sample
==
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mean here is the MLE of the variance under the null hypothesis of no ARCH effect and thus
provides a very natural definition for the two states. However, this is obviously not the only
definition possible and we discuss the choice more fully below.

We first analyze the simple first-order Markov process and then extend the argument to
estimating and testing for higher order processes. The variable e? is said to be a Markov chain

if:
2 .12 . 2 2 2 .12 .
Prle; =jle  =i.€_p, ¢ 3, -..]=Prle; =] leiy=i] = Pije- 3

Thus the probability distribution of ¢ conditional upon its entire past is identical to that
conditional upon e?, alone (referred to as the Markov property). We define

pi = Prlet=jl, p, = lpy}, j=1,....,5 2 (1x5) vector and t=[1] a (sx1) véctor. We also
define the (sxs) transition matrix Q, =[p;] with i,j=1,...,s. Clearly

prt=1 and Q,¢=1. The unconditional probability distribution p, changes according to:

123 =p:—1Q¢- ' - . L (4)

We assume that the transition matrix O, is independent of time so that e? has stationary
transition probabilities (e? is called a homogeneous Markov chain). Equation (4) for this case

may be written as:
Pr=pPi-1 Qs %)

where Q =[p;] and p; is the probability of going to state j from state { with i,j=1,...,s.

By iteration of equation (5) and given p,, the starting distribution of 7, it follows that:
pe=poQ". (6)

Notice that given the initial probabilities p, and the matrix of transition probabilities Q, we

can determine the state occupation probabilities at any time using equation (6). Assuming that



Q is irreducible and primitive, the limits of p, and Q' are (see Cox and Miller, 1965, pp.
118-125):

lim p=p (pe=1) and
t—>00 (7)

tl—lglo Q'=p,
where p is the unique left-hand eigenvector of Q associated with the eigenvalue 1 and is called
the equilibrium distribution.

To estimate the Markov chain we consider the likelihood function in terms of the transi-
tion probabilities p;. Assume that there are N + 1 available observations: e}, ef, ..., €.
Define a(f) =1 if e =i and o) =0 if ¢} # i. Then according to equation (3), the proba-

bility distribution of e}, ..., e} conditional upon the first observation is:

Prie?, ... 5 | ed]
=Priel | ) Prie? | €2, €l) ... Pried 1el_; ... €2, €2
=% {zapgit-Ve0) - e ®
t=1 i j !

=rxpji,
t

where 3= ‘g a(t — 1)a(r) and is equal to the total number of transitions from i to j over
the sample.

Neftci (1984) has suggested parameterizing the first observation by using its limiting value
and thus maximizing the likelihood over all N + 1 observations. Since under this strategy the
optimizing problem is non-linear, we have a tradeoff between efficiency and computational
simplicity. Of course, for large N, dropping the first observation is unimportant. While there
are undoubtedly situations it which retaining the first observation is important, in the present
case of developing a test statistic, we believe it is useful to keep the calculations as simple as
possible and therefore do not investigate its effect. The log likelihood, conditional upon the

first observation, is (see Anderson and Goodman, 1957):
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$ S
L= i}:l 151 ﬁ'l In p‘l . (9)
Letting C; =X 8;, which is the number of times the system started in state i, it follows that
]

the maximum likelihood estimate of p; is:
P =3;/Cis (10)
and the associated value of the log likelihood at this estimate is:

L,= 2}33,, In [8;/G]. (11)

There are three likelihood ratio tests which provide some information regarding the na-
ture of the heteroskedasticity. The first test is a test of the independence of the observations
against a first order. The second is a test of a first order process against a second order
(extensions to higher order§ follow directly). The third is a test of the stationarity of the-process
generating the e? and investigates the stability of the Markov chain. The validity of standard
likelihood theory for statistical inference in Markov chains is shown in Billingsley (1961). A
presentation and discussion of the tests applied here appears in Anderson and Goodman (1957)

and Chatfield (1975).
(i) Testing Independence of e and e,

The question we address here is whether there is independence between observations.
Under homoskedasticity, the lagged squared residual e?, should provide no information in
predicting current squared residuai e? . We test the hypothesis that e¢? and e}, are in-
dependently distributed (H,: p;=p;, the conditional probability of being in state j given that

state i has occurred is equal to the unconditional probability of being in state j). If the re-



striction p; = p; is imposed, the maximum likelihood estimate of p; is p;=C; /N and the

corresponding value of the log likelihood is:
. §
LI= »21 C" In [Cl /N] . (12)
=

Under the null hypothesis of temporal independence:
-2(L; — L) L X2, where r=(s—1)2.

(ii) Testing a First-Order Versus a Second-Order Markov Chain

Although higher order chains could be considered, in practice we have found that with
stationary economic time series, higher orders are generally unﬁecessary. For a stationary
(homogeneous) second-order Markov chain, we denote the probability of being in state &k at
time ¢ given that e?, =i and e?, = by p; (i,j,k=1, ...,s) for =2, ..., N. Thus the first-
order Markov chain is a special case of the second-order chain, since p;, does not depend on
i." As Anderson and Goodman (1957) discuss, the second-order chain may be represented by
a more complicated first-order chain. That is, we represent the pair of successive states i and
J as a composite state (i,j). Therefore the probability of the composite state (j,k) at time ¢
given the composite state (i,j) at time ¢ —1 is p;, (We continue to assume a homogeneous
Markov process). Alternatively, the probability of state (k,k) h #]j, given (i,j) has occurred
is zero. Hence defining composite states gives rise to a chain with s? states and a transition
matrix in which some entries are zero. The equilibrium distribution p then pertains to the un-
conditional (long-run) probability of the composite state (i,j).

If we let gy = ‘giz o; (¢ —2) oj (t — 1) oy () be the total number of transitions from
i to j to k over the sample, then the log likelihood, conditional upon the first two obser-

vations (ef and ef) is:

5

L==%

S 5
-i-1j§1k§1 Fiic 10 (Pije)- (13)
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If we let C;;= {.ﬂ,-ik be the number of times the system started in state i and j then the
maximum likelihood estimate of py is: pj = Biu / C;j . Substitute py; into (13) and denote
this maximized value of the log likelihood as L,. Therefore, if we also maximize the log of the
likelihood for the first-order Markov chain (9) over (N — 1) observations, then a test of the
null hypothesis that the chain is first order against a second order is:

-2(L,-L,) ~ X2, where r=s(s—1)> . Analogous to the LM test for ARCH of order
two, we may test the independence hypothesis against a second order Markov process

(Hy: pye =pi)- This testis: —2(L; — L) < X2, where r=(s+1) (s - 1)~
(iii) Stability Tests of the Markov Chain

To test the hypothesis that the Markov is stable over time we carry out a simple Chow-
type test (see Anderson and Goodman, 1957). For the first-order process, we maximize the log
likelihood (9) over the entire sample (N observations). Then we divide the sample into as
many parts as desired (say; m divisions) and maximize the likelihoo.d for each subs;x;pl;e .
which we denote by L,, L,, ..., L,. All N observations must be used in subsample esti-
mation and this requires some care when defining subsample intervals. Under the null hypoth-

esis that each of the subsample processes is from the same first-order Markov chain:
2L, - Ly~ Ly - o - Ly 20X, (14)

where r = (m — 1)s(s — 1). The stability test for a second order Markov process uses L, in-
stead of L, and there are (m — 1)s%(s — 1) degrees of freedom.

Once we have the discrete squared OLS residuals, a natural way to proceed is: (i) to
estimate and to test the stability of the second order Markov process; (ii) then if the second
order process is deemed stable (at some appropriate significance level) test a first-order against
a second; and (iii) if the data supports the restriction to a first order process, stability tests

could then be applied, followed by a test of independence against the first order process. Of



course there are many other potential testing avenues which could lead to possibly different
conclusions. As a word of caution, we note that since the tests are not always independent,
adherence to strict rejection regions should probably be avoided.

As discussed earlier, to operationalize this procedure, we must decide upon a rule to turn
the continuous variable e? into a discrete one. That is, we must define the number of states
and the cell width for each state. Although some ‘reasonable’ guidelines may often be suggested
from the problem itself (say, on the basis of sign change of the variable as in Gregory and
Sampson, 1987 or unconditional variances as in Tauchen, 1986) the decision is nevertheless
arbitrary.

From a viewpoint of gaining a complete characterization of how the current squared
residual depends upon its past, it would be desirable to have many states deﬁned for narrow
cell widths for each state. In this way, we could fully investigate whether magnitudes of lagged
squared residuals are important in determining the probability of what state will likely occur.
Unfortunately, a large number of states substantially increases the dimensions of the transition
métrix Q and necessitates:estimating a large parameter space relati‘;e to the numbe.r' 6f |
observations. A further problem with a large number of state definitions is that many of the
transitions would never actually be observed over the time period. In this case the corre-
sponding estimate of the transition probability would be zero which would create the (false)
impression that such transitions could never occur. Hence there is some virtue in defining a
fairly wide cell width and consequently limiting the number of possible states. This certainly
raises some worry about the ability of the tests of independence to detect influences that are
very sensitive to the magnitudes of the squared residual.

For the present application of testfng for ARCH errors, a natural dividing point is the
sample mean of e? . This is a consistent estimate of the variance under the null hypothesis of
no ARCH effect. Using the sample mean as_‘the boundary condition gives rise to a simple two
state classification: above and below the mean. Our Monte Carlo results below clearly

demonstrate that this provides quite reasonable test results (both in terms of test size and

10



(v

power). However, if finer partitioning is desired then the choice of state definitions should re-
flect the compactness of the squared residuals around the sample mean. Without any further
inforniation it is probably best to opt for symmetric definitions on the basis of some volatility
measure like sample standard deviation. We illustrate these kinds of state definitions in the
Monte Carlo experiment.

In this paper we present three possible rules for choosing the states. In total, we consider
two, three, and four state definitions. The simplest and as it turns out the best in the Monte
Carlo experiment is to define state occupancy according to whether the observation e? is below
or above the sample mean &2 = 'g N-1le? . This yields two states: low variance (L) and high
variance (H). For three states we use the sample mean plus and minus one quarter of the un-
conditional standard deviation of the squared residuals as boundary conditions. This gives rise
to three states: low variance (L), average or medium variance (M), and high variance (H).
Lastly a four state Markov chain can be obtained from the three state definition by including
thé sample mean as another cell boundary. While other state deﬁnitic;ns could alway.s- Be r;ho—
sen, these are sufficiently broad to illustrate the effects of increasing the number of states.
Finally we note that these rules for state definitions are symmetric about the mean. Although
this is not required, some limited Monte Carlo experiments indicated that non-symmetric de-
finitions yield poor test results. However, for some probability distribution it is possible that

non-symmetric definition would dominate.

4. A SIMPLE MONTE CARLO EXPERIMENT AND AN ILLUSTRSTION
To assess the finite sample performance of the Markov chain test for ARCH errors
compared to the LM test, we conduct a simple Monte Carlo experiment. We follow essentia_lly
the same experimental design as Engle, Hendry and Trumble (1985). The ARCH model with

p =1 used to generate the data and calculate the two tests is:
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=08+ ¢ t=1,...,N

X=\y_y1 + v, v, ~ IN(0, o2) (15)

2 1/2
€;=’7:('7 + 0'6‘_1) / ’

where y, is the dependent variable, x, is an exogenous forcing process with normal disturb-
ance term v, and 7, is the error term drawn from some independent and identical distribution.
In this Monte Carlo experiment we maintain the normality assumption and the independence
of n, for the exogenous process. For non-zero values of o, the error term ¢, in the regression
equation will be ARCH of order 1. To guage the sensitivity of the tests to different
distributional assumptions we iet n, follow a (i) standard normal distribution; (ii) t-distribution
with 5 degrees of freedom; (iii) lognormal distribution with a mean and variance of 0 and 1
respectively and (iv) an exponential distribution with a mean of 1/2. While other distributions
and other parameters of the distribution could have been chosen, we feel that these four
accurately characterize the relative performance of the two tests. For all experiments.we set
B=1 ,02=4 and the scalé parameter y=1—«a (as in Engle, Hendry and Trumble, 1985).

We also study the effect of varying the autoregressive parameters a and X\ and the
number of observations N. Following Engle, Hendry and Trumble (1985) we set a = 0.0, 0.4,
and 0.8, A=0.0,0.8and N=(4 + j)2 j=1,...,5. The x are held fixed in repeated samples
within experiments but are generated sepaLrately between experiments. A full factorial design
implies 120 experiments.

The data are generated from a pseudo-random generator (GO0S) in the NAG subroutines.
In Table I - Table ITI we record the number of rejections of the null hypothesis of no ARCH
errors in 1000 replications of the two tests at the 10 and 5 percent level of significance. As
explained above we choose three different rules for defining states for the Markov chains
(labelled 2 state, 3 state, and 4 state in the tables). Both tests use the knowledge that there is

no intercept in (15) and that p=1.

12
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First we turn to the results in Table I for a =0.0 (no ARCH errors). The 95 percent
confidence intervals for the expected number of rejections in 1000 replications when the null
hypothesis is true at the 10 and 5 percent level are [81,119] and [36,64] respectively. We see for
all distributions and sample sizes considered, the actual size of the two state Markov chain test
is closer to the expected asymptotic value than the corresponding LM test. The LM test appears
to be biased towards the null hypothesis of no ARCH effect (this is especially true for the
lognormal distribution). While there are occasions for which the two state Markov chain test
over-rejects relative to expected (see N =36, \ =0 and the exponential distribution), tests are
typically close to the correct size by N = 81. Reasonable test sizes for the LM test occurs for
only the normal distribution. The apparent effect of a finer state definitions for the Markov
test is first to cause the test to be biased away from the null hypothesis (3 state chain) and then
toward the null (4 state chain). The biases do not appear to diminish that rapidly with sample
size. On balance the the four state Markov chain test (with the sample mean as the center
boundary condition) appears to have better test sizes than the three state chain; however both
éré dominated by the two state test. The amount of serial correlatiox-x in the forcing '[')r‘ocess
has no appreciable systematic effect on any of the test statistics over the various distributions.

With o = 0.4 and 0.8 (Table II and III), the number of rejections for all tests increases
in a« . However, the two state Markov chain test is much better able to detect a false null
hypothesis than the LM test for the lognormal and exponential distributions. This suggests that
the LM test is especially sensitive to departures from symmetry. The tables show that the LM
test is superior to the Markov chain tests under conditional normality and about the same as
the two state under the conditional t-distribution. We conducted a limited set of experiments
using a t- distribution with 2 degrees of freedom and found that the number of rejections for
the LM test with o not equal to zero fell dramatically. On the other hand, for a t- distribution
with 2 degrees of freedom, the two state Markov chain test results were quite similar to those
in Table II and III (results are available upon request). As might be expected given their test

sizes, the three state Markov chain test has more rejections than the four state test . However,
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the number of rejections for three states is generally quite similar to the two state and LM tests.
Also with o = 0.4 and 0.8 for the lognormal and exponential distributions, we encountered
singularity problems in running the artificial regression for the LM test and some runs had to
be repeated.

In sum the LM test works best with ARCH errors under conditional normality. For other
distributions, our limited set of Monte Carlo experiments suggest that the simple two state
Markov chain test is preferred.

Finally we wish to illustrate the two tests using an empirical example from Gregory and
McCurdy (1984) and investigate whether the forward foreign forecast errors are independent
of a subset of current information. Without going into a great deal of detail (see Gregory and

McCurdy, 1984), the test relation regression is:

St — Je = f =8y + B4 [ 5: rf‘—l' ] + .32[ ft—s‘ ] + €415 (16)

T
S S ¢

where f, and sT are the Tuesday closing rates of the thirty-day forward and spot rate respec-
tively and s,,, is the Thursday closing spot rate four weeks and two business days into the fu-
ture and ¢,,, is an error term. Thus there are thirty days between f, and s,,,.

To motivate this regression consider the following ogthogonaI decomposition of the future
spot rate:

S =E s + (S0 — ErSpa1)
where E, is the mathematical expectation operator conditional upon information available at
time r and ¢,y =5, — E; S, - Under the rational expectations hypothesis (REH)
E s,y =f, sothat 5., — f, is the forecast error. Normalizing the forecast error by s yields
the dependent variable in equation (16) which under the market efficiency hypothesis (MEH)
should be orthogonal to information available at time ¢. In (16) we choose a subset of the

information set namely the normalized lagged forecast errors and forward premium.
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The question of whether the (normalized) forecast error is independent of current infor-
mation may be addressed by testing the hypotheses that the estimated column vector 8 is not
significantly different from zero. However, for our purposes, the most relevant issue is the
properties of the error term ¢,,,. Under the rational expectations hypothesis (REH), «,,,
should be serially uncorrelated but need not be homoskedastic (see, for example, Cumby and
Obstfeld, 1983, Domowitz and Hakkio, 1985; Hodrick and Srivastava, 1984; and Hsieh, 1984).
In fact, Baillie and Bollerslev (1987), Domowitz and Hakkio (1985) and McCurdy and Morgan
(1987 and 1985) have tested and estimated a similar equation to (16) in which the disturbance
term follows an ARCH process.

Using the same data as Gregory and McCurdy (1984), we estimate equation (16) by ordi-
nary least squares using four-weekly data for Canada/United States over the period 1973-1981
which gives a sample size of one hundred and seventeen four-weekly observations. The results
are identical to those in Table 2 of Gregory and McCurdy (1984). The OLS estimates of

equation (16) are:

f‘*‘s——f’ =0.00212 — 0.210 [ ik =Y } — 2.143 [ fm s ] R*=0.1
t (0.0012) (0.091) 5 (0.64) S{T
where standard errors are given in parentheses.

We test for a first and second order ARCH effect using the LM test. The right side (one
tail) prob-values for first and second order are 0.832 and 0.531 respectively, both indicating an
absence of an ARCH effect. In view of the Monte Carlo results, we consider the two state
Markov chain (above and below sample mean) in detail. Using this state definition we estimate
a second order Markov chain for the squared residuals. The estimated transition probabilities,
equilibrium distribution and various hypothesis tests are recorded in Table 4. The horizontal
column is the conditioning composite state, the vertical is the outcome composite state. Thus,
the probability of going from (L,L) - low variances for last period and the period before, to a

high variance next period (L,H) is 0.235. Notice that the first letter for the outcome composite
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state must match the second letter in the conditioning composite state, otherwise the event is
not possible and is labelled by an ‘-’ (e.g., (L,H) to (L,H)).

From the transition probabilities in Table 4 we see (casual) evidence that there is a ‘gain’
in conditioning the forecast of the squared residuals on the current state. For example the un-
conditional probability of composite state (H,L) occuring is 0.165 (as given by the equilibrium
distribution) but conditional on (H,H) occuring it is 0.900. Thus there is some informal sup-
port for an autoregressive structure to the squared residuals.

The first hypothesis test in Table 4, tests the independence hypothesis against a second
order process (Hp : p, = p;i ). At the 10 percent level of significance this hypothesis is rejected
and suggests that there may be ARCH errors present (of course, without knowing the actual
data genereting process we cannot be certain). Testing independence against a first order yields
a fairly high prob-value, suggesting no ARCH effect. Such differences highlight the need to
consider more than just a first order processes. This point is reinforced in the test of a first
order Markov chain against a second with a prob-value of 0.083. Lastly, we arbitrarily split the
sahple in two and find that the first and second order Markov proceéses appear to be stable
(prob-value of 0.194 and 0.124 respectively). We also estimated the three state and four state
Markov chains using the rules given above; the prob-value for the test of a second order chain
against independence are 0.086 and 0.401 respectively. Again these two results are consistent
with the Monte Carlo evidence; that is there is a greater tendency to reject the null hypothesis

using the three state definition than the four.

5. CONCLUSION
In this paper we have developed a test for autoregressive conditional heteroskedasticity
(ARCH) in regression errors based upon finite state Markov chains. The principal advantage
of the test over the Lagrange multiplier (LM) test is that no moment conditions are assumed
and using a simple two state definition, Monte Carlo evidence from a limited set of experiments

indicates good finite sample properties over a wide class of probability distributions. Finally
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in a practical example we showed that the Markov chain test provides some useful information

in describing the movements of the variances over time.
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Table 1. Testing for First Order ARCH Errors: Number of Rejections at the 10 and 5 percent levels in 1000 replications {a30.0)

Normal t5
Markov LM Markov LM
AN 2 State 3 State 4 State 2 State 3 State 4 State
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
25 119 72 146 61 68 42 54 18 101 63 137 61 73 43 48 20
36 108 57 164 71 73 A 61 28 123 77 152 68 83 32 41 17
0.0 49 120 69 132 66 85 32 66 28 111 57 153 78 102 44 40 16
64 109 55 142 78 116 57 61 26 112 59 136 69 114 56 49 30
81 99 55 153 76 120 59 67 35 128 77 133 7 124 59 61 35
25 114 77 148 73 71 43 53 17- 99 66 133 59 50 22 46 18
36 114 70 136 72 81 39 62 26 123 54 129 57 61 36 57 24
0.8 49 123 74 157 80 9% 46 67 33 19 70 152 71 100 46 52 22
64 97 41 121 72 103 50 76 34 102 42 149 92 125 59 57 29
81 112 46 122 63 117 50 8 39 107 44 122 56 123 52 41 26
Lognormal Exponential
Markov LM Markov LM
2 State 3 State 4 State 2 State 3 State 4 State
104 5% 10% 5% 104 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
25 88 44 120 60 79 48 34 13 108 67 115 54 71 51 47 24
36 69 36 103 47 64 33 27 16 150 71 137 66 54 20 46 29
0.0 49 94 44 112 50 81 44 31 23 131 79 152 72 88 42 52 33
64 87 37 83 44 73 39 34 28 128 61 147 70 88 42 62 38
81 85 44 77 37 73 32 42 32 126 66 138 65 125 55 45 3
25 66 30 120 66 72 43 33 13 98 60 106 61 58 35 39 20
36 74 32 108 53 78 42 29 15 116 60 125 64 89 37 40 25
0.8 49 84 29 116 59 92 46 30 25 110 49 148 76 90 45 46 33
64 92 31 114 53 81 44 32 26 137 67 142 83 93 49 45 34
81 102. 52 93 51° 84 44 24 18 103 54 153 79 115 52 53 26

Note: The Markov chain tests for ARCH errors are defined using boundary conditions of the squared residuals obtained
from: (i) sample mean (2 state); (ii) plus/minus one quarter standard deviations from mean (3 state) and
(iii) mean, plus/minus one quarter standard deviation from mean (4 state). 10% and 5% refer to the number of
rejections at the 10 percent and 5 percent level of significance respectively.
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Table 2. Testing for First Order ARCH Errors: Number of Rejections at the 10 and 5 percent levels in 1000 replications (a=0.4)

Normal ts
Markov LM . Markov LM

p N 2 State 3 State 4 State 2 State 3 State 4 State
0% 5% 10% 5% 10% 5% 104 5% 104 5% 10% 5% 108 5% 10% 5%
25 171 1N 224 118 95 46 214 151 253 182 277 176 143 83 236 166
36 257- 188 270 159 157 84 347 252 362 290 348 252 241 150 375 295
0.0 49 283 205 299 190 213 125 452 358 431 345 434 315 336 242 485 420
64 331 219 354 244 283 190 554 466 526 415 485 370 440 320 575 343
81 418 323 404 298 346 237 673 585 . 628 537 600 488 541 441 660 603
25 175 117 217 121 106 46 216 136 252 178 277 163 145 77 253 182
36 241 173 260 164 159 98 349 265 507 405 419 317 328 218 335 258
0.8 49 272 190 279 181 208 111 439 358 424 344 445 338 379 263 502 420
64 374 267 364 273 311 207 555 484 535 439 496 380 441 334 602 517
81 422 314 392 294 359 245 617 531 637 535 576 457 537 410 670 599

Lognormal Exponential
Markov LM Markov LM

2 State 3 State 4 State 2 State 3 State 4 State
10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
25 446 339 438 312 239 162 359 281 427 317 414 285 205 130 282 205
36 593 527 581 465 451 329 500 424 544 451 477 386 393 311 367 300
0.0 49 762 688 684 593 635 540 617 552 669 601 541 438 475 389 471 397
64 858 791 729 656 711 609 666 611 772 718 620 547 591 490 545 481
81 919 874 763 700 780 713 723 678 : 868 811 633 569 666 550 608 551
25 440 321 437 327 234 154 326 229 365 286 346 248 184 117 237 185
36 614 527 558 477 453 344 480 401 510 425 429 335 344 228 365 296
0.8 49 747 693 686 589 614 526 578 523 619 551 508 389 439 337 449 383
64 875 812 741 678 713 622 688 629 783 11 558 486 559 446 516 453

81 933 897 800 761 828 760 733 676 831 783 614 542 642 540 601 539



Table 3. Testing for First Order ARCH Errors: Number of Rejections at the 10 and 5 percent levels in 1000 replications

0.0

0.8

0.0

0.8

25
36
49
64
81

25
36
49
64
81

Normal
Markov LM

2 State 3 State 4 State

104 5% 10% 5% 10% 5% 10% 5%
327 254 358 261 201 134 368 271
484 406 506 388 384 257 512 423
617 524 625 521 536 427 679 601
784 627 694 601 639 526 778 712
777 709 785 707 747 654 848 792
374 286 376 260 225 130 403 297
485 400 489 385 381 274 532 441
572 468 565 451 491 390 660 579
717 618 715 613 646 537 780 708
777 695 770 687 730 633 864 807

Lognormal
Markov LM

2 State 3 State 4 State

10% 5% 10% 5% 104 5% 10% 5%
630 532 614 504 338 264 528 439
828 772 800 730 711 606 704 652
919 889 858 812 831 770 771 737
958 937 872 841 855 826 820 790
986 974 868 847 901 859 850 811
622 533 626 529 404 286 540 452
809 742 761 685 657 559 658 595
905 846 842 778 808 756 746 694
965 936 855 817 871 831 821 7N
986 979 871 850 916 871 856 828

Lo 3

5
Markov LM

2 State 3 State 4 State

10% 5% 104 5% 10% 5% 10% 5%
446 345 443 335 247 157 400 318
560 505 588 494 466 348 520 439
725 646 697 579 615 500 661 574
818 737 776 705 736 651 742 695
915 857 848 793 838 766 815 749
451 349 474 369 276 182 381 303
576 508 581 473 473 356 545 470
717 647 686 582 605 500 638 556
828 763 786 714 735 653 758 692
892 849 845 784 840 757 827 781

Exponential
Markov LM

2 State 3 State 4 State

10% 5% 10% 5% 10% 5% 10% 5%
501 343 482 385 271 168 297 299
645 548 542 484 472 372 381 323
774 701 568 483 520 451 439 371
877 829 582 523 594 505 522 450
938 903 556 518 645 529 593 526
478 341 427 326 222 132 296 232
615 501 511 426 387 293 355 295
774 711 555 455 484 405 453 395
867 829 569 508 551 452 504 439
928 895 589 542 637 537 604 533

(6=0.8)
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Table 4. Second Order Two State Markov Chain: Transition Matrix,
Equilibrium Distribution and Hypothesis Tests

composite
state (L,L) (L,H) (H,L) (H,H)
Transition Matrix (L,L) 0.765 0.235 - -
Q= (L,H) - - 0.526 0.474
(H,L) 0.833 0.167 - -
(H,H) - - 0.900 0.100
Equilibrium )
Distribution -
p 0.584 0.165 0.165 0.086
Hypothesis Tests Prob
Value
Independence against second order 0.083
Independence against first order 0.190
First order against second order 0.083

'

Stability (split sample): first order 0.194

second order 0.124

Note: State transitions that are not possible (i.e., (L,L) (H,L)) are
denoted by '-'. The division point for the stability tests was
arbitrarily chosen at one half of the sample.
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