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ABSTRACT

The use of ordinary least squares(OLS) estimator in the presence

of measurement errors (fuzziness) in many variables can lead to logi-

cal difficulties and inconsistencies (e.g. "second best"™ problem). We

illustrate

likelihood

regressors

s observable

sufficient

properties

the feasibility of the well known, but rarely used maximum
(ML) estimator. From the ML estimates of unobservable

we suggest a fuzzy symmetric range of their values near the
counterparts. A simple estimator called AV from certain
statistics based on the fuzzy range is suggested, and its

are investigated. It is shown to yield as good as, or

better estimator than one based on randomization within the fuzzy

range. A textbook example is used for illustration and simulation.
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1. INTRODUCTION

Social scientists have long recognized that their problems when
the data are measured with errors can be different from those of
natural scientists in following respects. (i) National Bureau of
Standards or a similar institution maintains standard reference
measurements against which length, weight, pressure, temperature, etc.
are measured. Such precise and fixed reference measurements are often
absent in social sciences. (ii) The activity of measurement has an
effect on the measured values ( Hawthorn effect). (iii) The reaction
of economic or social agents is sensitive to the measured values even
if they may be incorrect. For example, the reported cost of living
index affects some wages and rents automatically. (iv) There is
greater reliance on sampling and aggregation leading to unknown
imprecision. The decision makers who use the socioeconomic data have
a healty skepticism about the data and generally assume that there is
a fuzziness range near the estimated relations. The traditional
confidence intervals do not allow for measurement errors, but are
informally used by some practitioners to express their skepticism
about the estimated relationships. We explicitly recoénize that when
measurement errors are important, the relations between economic
v;riables are not properly represented by "thin" regression lines
(surfaces) as in natural sciences, but should be "thick" ,i.e., having

a loss function with a flat bottom. The conventional errors in

variables model (EVM) does not seem to properly allow for the special

situation faced by the social sciences, even though Kendall and

Stuart(1979, sec 29.15) do plot confidence ellipsoids around each
measured values, and seem to come heuristically close.

The theory of maximum likelihood(ML) estimation for the EVM is
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Wwell developed and appears in textbooks including Dhrymes(1978, pp
242-260), usually without numerical examples, possibly because
computer software is not readily available. An important limitation
of the ML estimator for the EVM is that it is necessary to specify the
covariance matrix of measurement errors. Hence the practitioners end
up using OLS. The logical difficulties with OLS in this case are
illustrated by the following two "second best"™ results due to Garber
and Klepper(1980) when a model contains some correctly and some
incorrectly (mis) measured variables: (a) The bias of the regression
coefficients associated with the correctly measured variables may not
decrease even though the measurement error decreases. (b) The above
bias may not increase if a proxy variable is omitted. Klepper and
Leamer(1984) propose potentially useful diagnostics for this problem,
but do not provide ML estimates. Our discussion is based on a general'
model where only some variables are mismeasured, and we allow for more
general l1o0ss functions.

Varian(1985, pli56) has proposed a nonparametric approach to test-
ing the null hypothesis of cost minimization by economic¢c agents,
despite measurement errors. He suggests that specification of the
"likely magnitude of measurement errors" éhould be much "less
difficult"™ than specifying functional forms. He suggests that a
certain small (e.g. 0.5) percent of the standard deviation of the

observed variable may be used to approximate the standard deviation of

its measurement errors in appropriate units. Accordingly we specify a

diagonal matrix of measurement error variances, making the ML esti-

mator consistent. We propose an ML estimator (See Result 2 below.) of

the unobservables, using the symmetry of measurement errors to justify

reversing the sign of the difference between the observed counterpart



and its ML estimate. The resulting fuzzy range of regressor values
arises from measurement errors, and is used to estimate likelihoods
that provide equivalent "statistical evidence", Birnbaum(1972).

The plan of the paper is as follows. In Section 2 we present the
model, the ML and our AV estimators and indicate their properties. In
Section 3 we use Chow's(1983,p.34) example to illustrate the
feasibility of ML estimation, and also include a simulation to
evaluate potential gains from our proposal. Section 4y gives our
conclusions.

2. THE PROPERTIES OF ML ESTIMATOR AND EXTENSIONS.

Consider the usual regression model for errors in variables:
y = 72§ + u, Z’(xgw)p § “'(a'o 8')' (2o1)

where y is a Txl vector of the dependent variable, X is a Txs matrix

of s well measured regressors'whose t-th row will be denoted by Xp o0 W
is a Txr matrix of unobservable variables measured with errors

(mismeasured) with t-th row denoted by w 6§ is a (s+r)xl vector of

t.’

unknown regression coefficients partitioned into column vectors a and
B of dimension s and r respectively, and u is a Txl vector of
disturbances.

Instead of W we observe W* with measurement error U¥* whose t-th

rows are denoted by w¥ and u*t respectively.

t.

W*¥ = W + U* (2.2)

We assume that the 1 x (r+1) vector u n(ut, u*¥_ ) is normally

t. t
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distributed with mean zero and a diégonal covariance matrix:
]
cov(ut.l X) = Diag( 0i44 Op5se-es Opp) = ))

writteéen as

* .
1= diagogg, Iop) = 950 diag(l, Ig) = 054 I (2.3)

which defines the notation, and where the r diagonal elements of Zzé
are measurement error variances, which are assumed to be known up to a
scalar multiple (i.e. Z; is known). It is well known that without
such an assumption the ML estimator is inconsistent, Kiefer and
Wolfowitz(1956).

The log likelihood function in terms of the observables Y and

*
w

£.? the parameters and the unobservables is:

L =(-T/2)(r+1) 1n(2%)-(T/2) 1n |I|-(1/2) } (K ] "k (2.1
t=1
where
K = (K1, Kz) = (yt - xt.a - wt.

which defines K as a 1 x (r+l) row vector with two components: K1 a

scalar; and K2 al x r vector representing unobservable errors from

(2.1) and (2.2) respectively. Differentiating L with respect to the

unobservable w setting the result equal to zero, and considerable

t.’
manipulation following Dhrymes (1978 p. 252) we have:
*
Ky = we = we = (-1/u)(K*8'155) (2.6)
where
W= ogg * 3'2228 - (2.7)

and where

iy



s

and

K= (1/u) K¥, (o5 » = 8'222) (2.8)

for substitution in (2.4) so as to yield a "concentrated" likelihood
function. This eliminates the unobservable nuisance (incidental)
parameters W by a direct method, listed as the 9-th method by
Basu(1977).

Further maximizing with respect to a, B and 1 one obtains the

" maximum likelihood (ML) estimators. The next step in ML estimation is

to compute
A= (1/T) (y, WE)' (I-X(X'X) 1x') (y, we),

and the diagonal matrix Z; from (2.7) with known 20’ Now we can
compute the eigenvalues Ai and the corresponding eigenvectors Yi based
on the following determinantal polynomial equation:
| Z; -a| =0 (2.9)

If x1 is the smallest eigenvalue, a normalization of Y1 such that its
first element is unity yields Y1 = (1, - ;)', hence the ML estimate of
the B vector. This manipulation is similar to the limited information
maximum likelihood (LIML) estimation in econometrics.

Next we estimate the coefficients of well measured regressors as:

a= x0T (v-w'e) (2.10)

and the scale factor is estimated by the consistent estimator:

%50 = A1 (2.11)
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A

1/72
To find standard errors note that T (6-8) is asymptotically
normal N(O,uy) where

-1 jo 0| -1 -1
vo= g o ot o+ a (2.12)

-

where we estimate R and Q by R and Q defined as follows

~

g

&)
]

-~ 6* AN
00 ¢ Lo * (2ogo7u) Iy 88'15),

0
L}

T X'X X'W*
(‘/T)[ WX WATWE - T

°oozo

W om gy (1 875 8), and Ig = (1/oggdlp,  (2.13)
This completes our review of the ML estimator 3 for (2.1). For the
case when all regressors are subject to measurement error, the follow-
ing Result has been given by Brown(1982), and provides an alternative
representation of the ML estimation of ; and ; obtained from (2.9) and
(2.10). More generally we have:

Result 1

The maximum likelihood estimator of 6 is also given by

i

o g
NS

"[ (y - ZE)'(y-QE)oog‘ v (H-W*) zggcw-w*> ] (2.14)

where the symbol to the left of the bracket means that value of § for
which the bracketed function of 3 and E is a minimum for
- ® <3 < w and - » < Z ¢ « , The maximum likelihood estimates of

W are obtained by o [ ]/oW = 0 where [ ] is the bracketed quantity in
(2.1). Upon substituting aldnd setting o [ ]/08 = 0 we have:



§= (2'2)° " zvy (2.15)

where Z = [X,W] contains the maximum likelihood estimates W obtained

as follows. 1Its t—-th row is given by:

-~ * oA
Wt. = wt. - K2 (2.16)

where the maximum likelihood estimate of the r x 1 vector of measure-

ment errors K2 is obtained by substituting the ML estimates a, B and

%90 in (2.6). Equation (2.15) bears a convenient formal analogy with
the OLS, which will be exploited below. Since the ML estimator for §
is consistent under our assumptions, Result 1 shows that in our
context, eliminating the unobservable nuisance parameter W by
nestimating it away" ( Basu's(1977) 3-rd method) is equivalent to the
"direct" method (Basu's 9-th) mentioned above. When we evaluate the

process of estimating W by (2.16) we have:

Observation 1:

Note that the sign of K, used in estimating W from (2.16) is

2
arbitrary, and there is no reason to think that the unobservable w t >

* *
W any more than w < w due to measurement errors.

.t .t t

This assumes symmetry of measurement errors, which has been made
by many authors including Zellner(1970) and Vinod(1982 a,b). Let Kg
denote a T x r matrix such that it contains the absolute values of K,

along the t-th row for each row of data. The superscript p reminds us
that positive (absolute) values are involved. Now using Observation 1
and (2.14) we state:

Result 2

A Maximum Likelihood estimate of the symmetric fuzzy range in the
mismeasured data is given by:

W, = w*—xg S W s wW* +k2 = w (2.17)

L 2 U



where the subscripts L and U represent the lower and upper values
respectively.

The result is true because each row of Kg is based on the ML
estimate of the measurement error in the corresponding row of the T X
r matrix W. The "statistical evidence," defined by Birnbaum(1972),
and contained in any values inside the fuzzy range above, may be
regarded as being equivalent or indistinguishable, from a practical
viewpoint of the data user or (market) agent. Asssuming that the
likelihood does not vanish for all values of the parameter space,

Joshi(1976) shows that in a (fuzzy) range of values based on

"accuracy" with which a randog variable can be measured, the likeli-

hood functions within the ranée are equal to each other, up to an
"undetermined" positive constant. Thus Birnbaum's likelihood axiom of
statistical evidence 1s satisfied and implies the conditionality
axiom, according to Birnbaum's theorem 2. Hence there is an
"ancillary" statistic having a specified probability distribution.
Choosing the uniform distribution we note:

Observation 2

Once the fuzzy range (2.17) is determined, we may reasonably
assume that the true values are uniformly distributed inside the
range. Hence from a well known property of the uniform distribution,

the limiting order statistics W, and wU are jointly sufficient and

L

complete for estimating W.

In the following discussion we use the fuzzy range (2.17) to

suggest a "thick" line (surface) connecting the variables, which seems
to yield a realistic representation of the underlying relationship.

Furthermore each point can yield ML estimation of 6§ with reference to
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other evidentially equivalent (Birnbaum-Joshi) likelihood functions
within the fuzzy range (2.17). Our ML estimator is implemented by
OLS-1ike computations thanks to the Result 1 above, which is numeri-
cally verified in an example of Section 3.

Among modifications of the ML estimator based on the fuzzy range,
an attractive possibility is to randomize within the uniformly
distributed range according to standard statistical methods. The main
disadvantage of randomization methods appears to be the unfortunate
fact that each randomized run yields a different estimate, If the
assumptions implying "sufficiency" of WL and WU (Observation 2 above)
are accepted, we may use the Rao-Blackwell theorem to justify the use

of the following simple estimator, which avoids randomization. Thus

we have:
Result 3

Define EU = (X, WU) and EL = (X, WL) as the two limiting
estimates of Z using (2.15). They yield 3 and g respectively with

U L
appropriate substitutions in (2.15). Now the smoothed estimator:

~

s = (1/72)[ §y *+ 6

AV (2.18)

L]
is a uniformly better estimator than a randomized estimator, provided
the underlying loss function is strictly convex. If the loss function
is (only) convex, (2.18) is no worse than a randomized estimator.

Lehmann's(1983, p51) proof of a corollary to the Rao-Blackwell

theorem is directly applicable here, since the estimator of & may be

regarded as a transformation of W and X matrices through (2.15), using

the sufficient statistics WL and WU' Detailed arguments justifying
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the averaging of the estimators based on two sufficient statistics of
the uniform distribution may bé omitted, since they are similar to
those in a textbook, Ferguson(1967, p125).

The estimate (2.18) remains a "point estimate" of the regression
coefficients, fepresenting a thin line or a surface. In light of the

discussion in the introduction to this paper, there ma& be an interest
in a more fuzzy (thick) description of the estimated (surface) rela-
tionship for application in social sciences, where the agents are
aware of the fuzziness of the data. For the purpose of discussion it
is convenient to assume that the percent fuzziness of the regression
coefficients, is the same as the percent fuzziness in the regressor,
namely one percent. Of course, any known percentages (including zero)
can be used in a particular application, making our treatment more
general than what is found in the literature. The perceived loss

function associated with a point estimate B1 may be represented as

N

(29978, 8, (1.0178,

follows.

Loss

The illustration suggests that the loss function has a flat bottom,
representing the idea that the agents are skeptical about small

departures from reported point estimates.

3. A NUMERICAL EXAMPLE AND SIMULATION

Chow (1983 p. 34) gives 1954-1965 time series data on demand for
computers. The dependent variable is V¢ *° 1n (qt/qt—l)’ natural log

of the ratio of the quantity index of computers at time t to the index

at t-I. The well measured regressor is the column vector of ones (the

1.
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*
t.
= [1n pt, In qt—l] where Py is a price index appropriately deflated by

intercept). The two mismeasured regressors are the two columns of w

the GNP deflator, and qt_1 is the quantity index mentioned above.
Thelr respective measurement error standard deviations are assumed to
be one percent of their own standard deviations in the observed data.
This defines the 2x2 diagonal ZO matrix with elements which are
squares of 0.0081621 and 0.0190597. Table 1 reports the estimated
coefficients by three methods: (i) OLS similar to Chow's. (There are
minor discrepancies in the last decimal). (ii) Maximum Likelihood
(ML) estimator from (2.9) and (2.10), and finally (iii) Our AV esti-
mator defined by (2.18) and Jjustified by the Result 3 above.

For the Chow data the numerical estimates for the OLS, ML, and AV
estimator are reported in Table 1, and are all very close to each

~

other. For the proposed AV estimator of (2.18) Table 1 reports a =

2.948, B8, = -0.363, and 82 = =-0.252, along with the one percent fuzzy

1
range for the slope coefficients associated with the mismeasured
regressors. Table 1 also reports the estimates of standard errors
(SEs) based on the asymptotic variance covariance matrix of ML
regression coefficients given in (2.16) and (2.19), suggesting
improved asymptotic efficiency of ML estimators. The SE of the OLS
coefficients is seen to be larger than the asymptotic SE of the ML

coefficients. The asymptotic SE for ML may serve as an approximation

to the asymptotic SE of the AV estimator, because it is based on

"equivalent" likelihoods in terms of their statistical evidence

(Birnbaum-Joshi) in the fuzzy range.

3.2..A Simulation

The purpose of our simulation is to evaluate the mean squared
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error (MSE) and assess the properties of the ML, and especially the AV
estimator having a fuzzy range. Also, a simulation often reveals any
unexpected undesirable properties of the estimators. We use the same
data on the right hand side regressors as in the numerical example
above, and assign the following positive known regression coefficients
a = 4 and B = (1,2). A 1% measurement error is assumed in the two

mismeasured regressors. The t-th element of y given by

Y, = 4 + w:'(1, 2)' + 0.1 N(O,1) (3.1)
where N(0,1) is a unit normal realization having zero mean and unit
variance, and where the true coefficients are 1 and 2. Repeating
(3.1) T times we obtain the T observations for an artificial dependent
variable. Thus we have k=1,2,...,S (S=225) regression problems having
S sets of simulated y vectors.

A crucial feature of measurement errors is that some columns of
the regressor matrix may be observed subject to error (perturbation).
Hence for an appropriate simulation we perturb the W* matrix by adding
aTx r matrix of N(0,1) random numbers, scaled by post multiplying by
an r x r diagonal matrix with elements (0.0081621, 0.0190597), used
earlier in difining the matrix 20 . For our k-th regression problem,
(ka?,é,...,225) we create a separate 11 x 2 matrix of random perturba-

tions to be added to the observed W* matrix.

The regression coefficients of the k-th regression problem are

estimated by each of the three methods of the previous section (OLS,

ML, and AV). Thegse are compared to the assigned true values (4,1,2),
which are themselves subject to one percent fuzziness, In light of

the special loss function illustrated above, we need to modify the

e

"

i»
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conventional definition of squared errors as follows. Consider the
following interval in which the estimated value of B, may lie (say).

Let one such estimate be at 1.03.

(.99)81 B, 1.0181 B,

Wwhere the fuzziness range 1s between 0.99 to 1.01 times 81 (=1).
Since we assume that the true value is 1, what is the absolute error
in estimating it as 1.03, when the'assumed loss function has a flat
bottom with a one percent spread around the true value? Recall that
we are allowing for the fact that in social science applications it
- may be realistic to assume that the true value itself is fuzzyAby a
"small" percent. If the estimate is 1.01 the (economic) agent will
presumably regard it to have a negligible or zero error. Thus, all
absolute errors need to be adjusted downward in absolute terms by

(0.01|Bl|), replacing the negative adjustments by zeros. For 81 =
1.03 alluding to the above illustration, the absolute error is only
0.02 and not 0.03. In general, a computer algorithm can reduce all
absolute errors by the formula:

AE,_ = max[0, (|§1 - 8;| - o0.018;[)], (i=1,..,r) (3.2)
for the mismeasured regressors, where k=1,...,S refers to the S
regression problems. For the well-measured regressors we use AEJ =

~

IG - ajl for j = 1,..,8; on the grounds that the coefficients for

J

Wwell-measured regressors are not subject to the same fuzziness.
To simulate the proposed AV estimator of (2.18) we need to make

the following adjustment to the squared errors due to our special loss

function.



where the estimator 31(AV) is also surrounded by a fuzzy range from
1.02 to 1.04 (say) to represent their interpretation by appropriate
agents. Clearly, the error AE1 for this fuzzy estimator is given by
the distance between 1.01 and 1.02 which equals 0.01 in the above
illustration, since the lower bound of 81 (=1.02) is higher than the
upper bound (=1.01) of the true value by 0.0l1l. 1In general, we use
the following formula to compute the absolute errors for the AV esti-

mator

AE, = max [0, (0.99)8,| - 1.01|8;|)], ifr [B;] > [8;], (3.3)

and

AE = max [0, (0.99]8,| - 1.01 [, )], 1fr |8 ] < [By] (3.4)

The S(=2225) regression problems give rise to S estimates of AE's
for each coefficient by each of the three estimation methods. Mean
3quared error (MSE) 1is simply the average over the 8 squared errors
(AEi). Table 2 also reports relative MSE's as ratios with respect to
the MSE for OLS. The standard error (SE) of our simulation's estimate
of the MSE is the standard deviation over the S squared errors,
divided by the square root of S; and is reported in Table 2. Of
course, this SE can be reduced by choosing a larger S than 225. We

also report the median of squared errors, since it is well known that

their mean (=MSE) may not be a sufficiently robust indicator of the
central tendency of the distribution of squared errors. The simula-

tion suggests that the ML estimator does not reduce the MSE of OLS,

tr

»
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especially when one considers the medians and extreme values of
squared errors reported in Table 2. We conclude that ML may avoid the
logical (e.g. second best) problems of OLS, but may not reduce the MSE
of OLS. The simulation is encouraging for our AV estimator, even
though the MSE for the intercept is no smaller than that of OLS. The
median (the maximum value) of squared errors for the OLS intercept 1is
0.240896 (6.483036), which is slightly smaller (larger) than the
corresponding median (the maximum) of the AV estimator 0.240897
(6.483034). We may conclude that the regression cdefficients of well
measured regressors are neither improved, nor worsened by our AV esti-
mator. For the slope coefficients associated with the two mismeasured
regressors AV estimator offers a statistically significant (see the SE
of MSE) reduction in the MSE of OLS, which is confirmed by the maximum
value of squared errors and medians. Reporting a fuzzy range of point
estimates seems to be worthwhile, and perhaps less misleading to the
user in the presence of measurement errors.

( Our computations were made on an IBM-PC-AT computer equipped
with a 80287 math coprocessor using GAUSS language developed by
Applied Technical Systems, Kent, Washington. A listing of the program
is available upon request. Simultaneous reduction of two matrices of
the eigenvalue problem was made after first computing a square root
matrix by the Cholesky decomposition. The eigenvectors were adjusted
by pre and post multiplying by the appropriate transform of the square
root matrix. The simulation does not reveal any undesirable

properties, and is not intended to confirm all the theoretical

developments of section 2 above.)



17
4, FINAL REMARKS

We have discussed some special features of the measurement error
problem in social sciences, since their measured values can have a
reality of their own, and do influence actions of agents. The N
"statistical evidence" in Birnbaum's (1972) sense, contained in
mismeasured observations should reflect the fact that they are treated
as equivalent by skeptical agents. This leads to a recognition that
the measured regression surfaces should be "thick" with one peﬁcent
(say,) fuzzy range around the point estimates. This is characterized
by allowing the relevant loss function for social sciences to have a
flat bottom, representing an explicit fuzzy range in the parameter
space.

Our first result is a minor generalization of Brown's(1982)
characterization of the ML estimator as an application of OLS to

corrected data. Our second result provides a maximum likelihood

[

estimate of the fuzzy range based on measurement errors. Our third
result develops the AV estimator (2.18) based on smoothing by a simple
average of the upper and lower estimates of regression coefficlients
over the fuzzy range. Although the AV estimator is based only on
evaluations at the two limits, rather than randomization over the
entire fuzzy range, we show (using Rao-Blackwell theorem) that it will
not be inferior to the latter, under appropriate assumptions.

The paper also indicates the practical feasibility of ML esti-

mators along with asymptotic standard errors in a general setting,

1.e. when only some of the regressors are subject to measurement

errors, illustrated by a textbook example. A simulation suggests the
potential advantages of ML and AV estimators over OLS, especially for

coefficients of regressors subject to measurement errors. The sugges-
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tions in this paper seem to deserve further study.
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Table 1
Regression of log change in Demand for Computers on log price deflated

by GNP deflator and lagged quantity index

[ ]

o 8 8 SD(resid)
oLS 2.948232 -0.363298 -0.252442 10192.417439
SE OLS 0.701803 0.172499 0.073871
ML 2.948292 -0.363313 -0.252448 10192.417444
SE ML 0.598499 0.147107 0.062997
upper 2.948215 -0.363294 -0.25244 10192.417443
lower 2.948248 -0.363303 -0.252444 10192.363073
av 2.948232 -0.363298 -0.252442 10192.417439
0.99avV 2.918749 -0.359665 ~0.249917
1.01AV 2.977714 -0.366931 -0.254966
ML check 2.948292 -0.363313 -0.252448 10192.417444

Note: Last column contains 100,000 times the residual standard deviation.
First column contains the intercept. The Standard Error(SE) of the ML is
asymptotic. The 1% fuzzy range of the AV estimator is indicated. The

last row agrees with ML and numerically verifies Result 1 in the text.



Table 2

Relative

relative
MSE
standard
relative
MSE
standard
relative
MSE

standard

Minimum, median and the maximum from 225

alpha 1

betal

beta?2

Mean Squared

MSE alpha

error MSE

MSE betat

error MSE

MSE beta?2

error MSE

Min:
Median:

Max:

Min:
Median:

Max:

Min:
Median:

Max:

OLS

1

0.518401

0.053362

1

0.028376

0.002977

1

0.003676

0.000471

0.240896

6.483036

0

0.011275

0.315224

0

0.001018

0.059884

Errors and Medians for Simulation

ML

1.000152

0.51848

0.053384

1.00017

0.028381

0.002978

1.000219

0.003677

0.000472

AV

1
0.518401
0.053362
07906138
0.025713
0.002818
0.617461

0.00227

0.000366

squared errors

2.099109E-005 2.843512E-005

0.240655

6.488812

0

0.011309

0.315532

0

0.001016

0.059942

2.098808E-005

0.240897

6.483034

0
0.009108

0.297825

0
0.000138

0.049313
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