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DON'T ROCK THE BOAT: REGULATORY ECONOMICS UNDER MULTIPLE OBJECTIVES
H.D. Vinod
ABSTRACT

This paper proposes a new theoretical model for a stochastic
regulation mechanism to set prices charged by publie utilities. The
objective function for the regulator has triple goals of keeping
profits close to a regulated level, low variance of prices and low
level of prices. An explicit price setting rule is obtained by using
w1ener-ﬂopf arguments due to Whittle. Actual profits, regulated
profits, and the price of output are allowed to have stochastic
components. An empirical implementation based on Bell System time
series data suggests no reward for productivity improvements, and a

strong desire for low and stable rates.
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1.Introduction

Market failure theory of regulation states that the governmentmay
intervene to help attain optimum welfare by providing "public goods",
by exploiting economies of scale, externalites, and similiar areas
where market solution may fall to attain the optimum. A simple
version of the theory states that the regulation is for the benefit of
the consumers, The "capture" theory states that once the regulatory
mechanism is established, it can be manipulated by the producers to
their advantage, and its simple version states that regulation is
aimed at "producer protection". Empirical tests .of these two types of
theories have generally found little suppoﬁﬁ. Schwert(1977) calls the
consumer protection or producer.protection dichotomy to be "too
simplistic", and suggests that a more sophisticated model of the
regulatory process must be developed. This paper 1is an attempt to
develop an eclectic. model of the behavior of the regulators operating
in a stochastic setting and having multiple objectives. The objective
function of the regulators proposed here has one component for
consumer protection modeled as the desire to keep the price level to
be low, the péoducer proteétion component is modeled in terms of
deviations from a "fair" or "allowed" rate of return, which defines
the minimum earnings of the producer. A desire on the part of regula-
tors to keep the status quo, or."Don't rock the boat" by not allowing
the prices to fluctuate too much, was noted by Peltzman(1976, p227)
and Owen and Braeutigam(1978, p25). It is modeled here by including
the variance of prices as an additional component in the objective
function. ’

When the inflationary pressures hit the regulated industries in
the 1970's the producer protection was often thought to be needed,
because it was feared that the delays of the regulatory process may
cause some producers to go bankrupt, or unable to raise capital,
ultimately resulting in a loss of service to the consumers. It was
recognized that both producers and consumers had to be protected, and
specific suggestions to improve the process of regulation were made.
For example, Isaac(1982), Lindsey(1977), Ram Mohan, et.al(1977) have
studied the fuel adjustmentclauses, whereas Sudit(1979) is concerned
with providing incentives for improving the total factor productivity.
The idea is to exploit the self interest of the producers 1in such a
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way that they are encouraged to provide consumer protection. The
eclectic model of regulation proposed here considers these incentive
schemes by appropriately adjusting the computation of "fair" rates of
return., We will show that our theoretical model of regulation can be
readily extended to include the incentive schemes.

In the literature dealing with Averch and Johnson(1962) the focus
of attention is on the behavior of the firm, not of the regulators.
Section 2 describes our model of the firm behavior, where we are
unable to evaluate the choice of inputs by the firm, but it involves
dynamic optimization over an infinite horizon following Sargent(1979,
ch.15). The regulators are confronted with the problem of satisfying
the consumer interests, producer interests, and achieving stability of
prices. These are formulated as triple objectives and described in
Section 2. An analytical solution to the regulator's problem is given
in Section 3. The main work horses for obtaining solution to our
eclectic model of regulatory behavior are certain results from Wiener
and Hopf described in Whittle's 1963 monograph, recently reissued as
whitple(l983), and results in Sargent(1979). Some modifications to
these resulté are needed tb make them applicable to the regulatory
behavior, and are discussed in an Appendix. The solution to the
regulator's optimization problem may be viewed as a normative result
for certain purposes, if the relative weights on the three components
of the objective function are known.

Section 4 discusses empirical implications of our eclectic theory
of regulatory behavior, where the relative weights on the three
components of the objective function are inferred from the historical
behavior of the regulator and the business firm. Thelir respective
decision rules based on analytical results give rise to two behavioral
equatiohs, which are simultaneously estimated. If we can assume that
the relative weights remain constant throughout the historical period
covered,'we can immediately estimate the relative weights on the three
components. -Since the makeup of the regulatory entity changes over
time, the assumption of fixed relative weights may not be realistic.
Section 4.1 proposes a Kalman filter technique to estimate the chang-
ing welghts. Section 5 discusses an empirical application to Bell
System daté, and reports the changing relative weights over 1951 to
1980 time period. Since we have drastically simplified'the firm's

(o
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behavior, it is useful to check whether the fit is good. In our case,
the multiple correlation (R2 =0.8966) is reasonable, and the results
regarding the interpretation of the relative weights at various times
are also sensible in light of generally known changing circumstances
of the Bell System. We conclude in Section 6 that the results are
encouraging for the more realistic eclectic theory of regulatory
behavior, which avoids the dichotomy of consumer or producer protec-
tion.

2. Profit Maximization in a dynamic model of the regulated Firm

Since this paper is concerned with the optimization by the
regulator we drastically simplify the stochastic optimization by the
firm. For example, we do not seek to determine the input levels of
capital, labor, etc. We indicate, but not derive, the decision rule
under a quadratic objective (see Sargent (1979) p. 333). The
(discounted present) value of the firm is maximized
by maximizing:

R S, .:) (2.1)

ve =B I ) g t+3’ Tt

J=0

.Rt,+J-1 '

over the stochastic process for the rate of return (net revenues per

unit of relevant capital stock) denoted by R for j = 0 to =

t+j
subject to given value of Rt-I' Here g is a concave (quadratic) func-
tion in R, which contains a term in (Rt - Rt_l)z, and S, is a vector

of random variables exogenous to the firm, b < 1 is a discount factor,
Et is the expectation operator based on information available at time
t. The firm can devise a recursive strategy for future values R

Rt+2’
regulation). 1Its simplified problem at time t is to maximize the rate

t+1?
etc. depending on future information, (e.g., future course of

of return Rt by reducing costs, by properly allocating theiinputs and
outputs, etc.
Sargent's (1979) solution is recursive, involving stochastic

Euler equations and transversality conditions. We exploit the fact
that - Sargent's decision rule for the firm is linear:

§ a2t E s (2.2)
10

involving conditional expectations of exogenous variables and coeffi-
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cients in g, Sargent (1979, p. 336). This is a generaliz;tion of a
perfect foresight model to allow for random variables.

We assume that the firm is a price taker, making Py the price of
the output at time t as belonging to the set St of exogenous variables
in (2.2). The gross revenues will obviously be affected by demand
shocks, and the performance of the firm is Jjudged by its costs,
efficiency, quality of service, etc. We assume that if Rt' the actual
rate of return earned (scaled net revenue), is inappropriate the
regulator can order a change in prices pt. Recent regulatory
economics literature suggests that there are other variables often
, (total factor
productivity, Kendrick(1961), which is a ratio of sales to cost of all
inputs evaluated at base year prices), FUEL, (fuel cost adjustment),

considered by the regulator, including TFP

u*t (the "fair" or "allqwed rate of return" previously announced by
the regulator). Direct inclusion of all such variables in St of (2.2)
is conceptually straightforward, but mathematically tedious. We
simplify matters by incorporating the effect of u*t indirectly via
Rt~1 and Py and redefine the firm's decision variable to be LI

Rt - f(TFPt, FUELt). where a function f is made "deductible" by the
regulator as explained below. Note that the inclusion of f(TFPt,
FUELt) is a refinement to inject realism, and is by no means essential
for the logic of our model. From the regulator's viewpoint, the
weights in the firm's quadratic objective function (X1 and xz) and the
conditional expectations (Et) are unknown. However, the regulator can
estimate an empirical relation similar to (2.2) by adding an error
term.

3. A Solution to Regulator's Problem

From the viewpoint of the regulator, the threefold objective is
to obtain optimal improvements in productivity so that; (i) the rates
of return (scaled profits) of the regulated firm are "close" to the
pre-specified regulated values, (ii) output prices do not fluctuate
too much, and (iii) output prices are not too high on an average.

The producer protection version of the "capture" theory of regulation
is only partially included by the presence of the first term. The
regulator's own desire for "calm waters" is approximated by the second

term. It is an implication of at least two recent studies: (a)

-
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Peltzman's(1976) theory of regulation based on an elegant model of the
regulator as a rational politician who wishes to maximize his votes
through income redistribution, and (b) Owen and Braeutigam(1978) argu-
ment that voters favor "procedural fairness" of a Judicial process,
which reduces the risks faced by individuals by delaying change in
existing prices of existing services. The consumer protection version
of public interest hypothesis is included in the third term. It is
the presence of all three terms in the objective function that makes
our model eclectic and more general than what is available in the
economics literature. Since Whittle's solution used here does not
permit arbitrary specification of the terms in either the objective
function or the behavioral equation of the firm, equation (3.1) is not
claimed to be the most general.

Now the regulator's objective function L based on (i), (1i) and
(1ii) above, may be written in terms of minimization of a mathematical
expectation(E) defined as follows:

2 - 2 - - ’
a - ¥ - -
L E[(ut o t) + u1(pt p)- + 2u,p ] Ve * u1Vp+ 2u,p (3.1)

which defines average squared deviations V and Vp, and where [1, ¥y >
0 and P 2 0] are coefficients representing known relative weights on
the three terms. We assume that regulators have the power to change
them and to keep their future values secret. This power can be used
to counter some types of strategic (evasive) behavior by the.firm.
Note that "*t depends on macroeconomic environment, (interest rates,
rates of return earned by other firms with equivalent risk character-
istics, etc. exogenous to our model), and cannot .be conveniently
determined in terms of the regulator's decision rule. However, its
importance (weight) can be changed by paying more or less attention to

the discrepancy Int-n* The mutually comparable relative contribu-

|.
tions of the three ter;s to the loss L, even with unknown My and Mo
are measured by the three partial derivatives of L with respect to the
natural logs of VR' Vp and E respectively. We have the relative
weights:

Vg, V€ uy), and pC 2p,)1, (3.1a)

measuring the effect of a one (say) percent change in the three terms
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on the loss L of the regulator defined in (3.1). The three weights in
(3.1a) are free from units of measurement, and obviously represent
relative importance of (i) some aspects of producer protection (ii)
"pon't rock the boat"™ motive, and (i11) consumer protection motive.
This assumes that uy and P in (3.1a) minimize L, with L providing a
complete specification of what is important to the regulator. We will
see that it is possible to measure (3. 1a) empirically.

For simplicity of exposition we write (2.2) as

m, = b+ b,p *+ Dby * e, (3.2)
where .
. ¢ 4 TFPt - b5 FUEL, (3.3)

That is, we have netted out the effect of TFPt and FUELt. This
amounts to designating a certain proportion of "productivity" and cost
increases "deductible" before the rate of return is compared with the
"allowed" rate of return. Wasted FUEL input is discouraged by the
regulator by making bg < 1.

The idea behind‘automatic deductibility of TFPt and FUELt is
exactly the same as with many of the income tax laws. It can
encourage increases in TFP, and achieve fairness by not penalizing the
utility company for cost increases outside its control. This device
allows for a richer behavioral model of the firm without complicating
the mathematics. Of course, if the main interest is to numerically
minimize multiple objectives similar to (3.1) subject to (3.2) one may
use Linear Quadratic Gaussian (LQG) Regulation developed by Kalman and
others. Sargent's foreword to Whittle's second edition notes the
advantage of Whittle's methods for "deducing closed form solutions for
decision rules". Chow (1983) illustrates some special cases where LQG
methods can yield "explicit" solutions.

The technical derivation is given in an Appendix. If one wishes
to use LQG methods for our problem the stationary problem solved in
Section A.l1 of the Appendix will be replaced. However, it is unlikely
that the numerical solution will be much different. The presence of
the third term in (3.1) means that appropriate modifications to the
LQG solution will be needed, similar to those of Section A.2 of the
Appendix. The solution from equation (42) of the Appendix is:

3

(]



-7 ) + C, (u¥,_ - 7% ) (3.4)
where

2 -
C, = (¢ - b3)/b2 and C, = (K b2) (3.5)
and where

£ =(A/2) + (1/2) (a2 - 3172 (3.6)
’ 2
A = b3 + (l/b3) + (b2 / u1b3 ) (3.7)
2 2
K* = by /(g b3) (3.8)

and wheré the bars indicate mean values. A derivation of this solu-
tion is claimed to be one of the contributions of this-—-paper.

A regulator can use this solution to determine the appropriate
price levels for the regulated products or services if relative

weights My and are known. As a practical matter, the regulator

u
may wish to know hfstorical values of M4 and Mo and may wish to
change them. 'An interesting possibility is to use this solution for
ex post policy evaluation,.by the regulator or by any researcher.
Assuming that the regulators are minimizing (3.1) we can estimate the
relative weights (3.1a) as derived in the following Section.

y, Derivation of Empirically Estimable Weights

Econometricians often use normative optimizing solutions 1like
(2.2) and (3.4) as behavioral equations, even though the agents cannot
be expected to succeed in optimizing at all times. We assume that
agents do not deviate from optimizing solutions in a systematic way,
and use random normal errors to approximate all errors in optimizing
equations.

For empirical work then, we can estimate b, to b C, and C, in

1 5' 71 2
the following set of three equations:

Ty = b1 + b2 Py + b3 Teoq ¥ Ugpo (4.1)

(Py=p) = C; (my_; =m) + C, (w* =7%) + u,, (4.2)

where the prespecified w*t is exogenous, (not emanating from
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regulator's decision rule, but subject to macroeconomic environment),
u1t and u2t are the error terms, and where we also have a definitional
identity:

T, = R, - by TFP, - bg FUEL,. : (4.3) )
These equations represent the empirical counterpart of the optimizing
behavior of firms and regulators.

Using equations (3.4) to (3.8) and (37) of the Appendix it can be
verified by eliminating &, KZ, and other manipulations that the
weights of (3.1a) can be written in terms of b1 to b5, C1 and C2. A
main result of this paper is our specification of (4.1) to (4.3) which
facilitates the following connection between theory and estimables.
We have;

v My = Vb, (C,b

pP2 (Cyby + D3)/C,b (h.4)

3 ]

»

2p My = 2p(n* -E)/c1 . (4.5)

The~§conometric identifiability of these weights'is obvious thanks to
the nonlinearity of (4.4) and (4.5). However, usual standard errors
of nonlinear functions (involving reciprocals) of normal variables are
known to be unreliable in small samples, and it may be necessary to
use sophisticated bootstrap or jacknife resampling methods. The
choice between them remains controversial, and left for future
research. If the units of measurement of prices pt are changed to
c*pt it can be verified that  (4.4) and (4.5) remain unchanged. For
example, C1 becomes c*C1 and p becomes c¥*p keeping (4.5) unchanged.
Similarly, when ("t' n*t) are both multiplied bg an arbitrary constant
d¥, all elements of (3.1a) get multiplied by d*~, keeping the relative
magnitudes unchanged. We claim that the estimated (3.1a) weights
vyield uséful information about regulatory behavior, if the loss funcs
.tion 1is reasonable.

A maximum likelihood estimation of these relative weights 1is
clearly feasible. For example, under normality and independence of
u1t and u2t wé may simply minimize:

T

tzl (“ft *'“gt)
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to estimate b1 to bS’ C1 and C2' eliminating (4.3) as a separate equa-
tion. The starting values for the non-linear maximum likelihood
estimator may be based on ordinary least squares estimates of (4.2)

and a non-linear least squares estimate of:

(TFPt - b3 TFP

* by (FUEL, - by FUEL,_,) (4.6)

based on (4.1) and (4.3). 1In some specifications b,4 and/or b_ may be

zero, and will simplify initial estimation. 1In any case, onescan use
standard econometric tools to estimate all the parameters of the
proposed theory. Thus, it is possible to measure the relative Wwelghts
in (3.1a) associated with "Don't rock the boat" and other objectives.
A comparative study of such welights across industries would be
interesting. In the following subsection we propose a comparative
study of these weights over time.

4.1 Time Varying Estimates of Relative Weights by Kalman Filter

This subsection discusses the special case when the overall

estimates of My and M, obtained above are found to be inadequate in a
particular regulatory situation. For example, if the members of
regulatory panels often change or the views of the panelists change
due to political or other influences, then we may need "time varying
parameter"” or "random coefficient" models surveyed in Vinod and Ullah
(1981, sec. 10.4) or Chow (1983, Ch. 10).

We suggest using the standard Kalman filtering method, elegantly
expounded in Whittle (1983, p.147), to find the time varying estimates
of all parameters b1 to bS’ C1 and CZ, provided enough data points are
avallable. These estimates can then be used in conjunction with b1 to
b5 to substitute in (4.4) and (4.5) to obtain the relative weights of
"Don't rock the boat" and other components as it changes over time.

It is convenient to assume that the basic motivations and behavior of
the firm does not change over time, and concentrate on the varying
pParameter estimation of C1 and 02 only to conserve the degrees of
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freedom and to keep the computational burden manageable. We will now
briefly describe the Kalman filter used here, since its application in
regulatory context appears to be new. For this subsection we use
Chow's notation appropriately simplified for our application, because
he has also outlined the general case where all parameters are varying
with time; and the reader may be interested in pursuing the general
case. For each t we have:

- 2 :
Yo = xtBt * ey €4 N(O,0") (4.7)
and
By .= Byoq * Mg n, ~ N(O, V) (4.8)

model describing the changes in B over time. In our case Bt is a 2x1

vector with elements C1 and 02 both at time t, xt is a 1x2 vector of

regressors in (4.2) and Y is the dependent variable (pt - S), and Uy

has been renamed €, in this subsection.

t
The first step is to find initial estimates of 02 and the covari-

ance matrix V of C., and C2. These are conveniently obtained from

1 .
overall estimates (i.e. not varying with t) in the previous Section by
any one of the econometric estimation methods. The covariance matrix
of Bt conditional on all past values of Ye is denoted by tht—1 and

obtained by

Loft-1 = Lemqpe-1 * Vo - (9

which are (2x2) matrices in.our case. To start using (4.9) we need
ZOIO which could be the null matrix. The next step i{s to get

2.-1

Lje = Loje=1 ~ Lojg-1 X'g [xg Lgpgaq X' * 0] Xele|gmgs (4.10)

where xt is a row vector of two elements in our case.

The next step is to get Kalman weights on residuals

-1

2
K = Dgpgay %'y 0 %g Lejg-1 X'g * 0" ] (4.11)

to substithte in the second term on the right side of:
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Peje = Bepe-1 * Kg (Vg = Xg Bypgoq O (4.12)

where we can use 8 based on the fact that we have a

ele=1 " B-q |-
simple model for (4.8). Starting with initial estimates of C1 and C

as elements of our 80

2
|° vector (4.12) can yield the values of C1 and

C, at t=1, 2,...,T for substitution in (4.4) and (4.5) to assess the
relative weight on "Don't Rock the boat" and other objectives.

Our inequality constrainté are u,. > 0 and Moy 2 0. The negative
values for Moy Mmay be replaced by zeroes. The negative or zero values
for ult may require further study and a possible use of the negative
root in g of (26a) of the Appendix. Thus one can find the relative
weights in (3.la), given by the regulators as functions of Hygr Moy
defined here for each t. These can be studied (plotted) for assess-
mentof the changing regulatory climate. Any one of the several vary-
ing parameter models from the literature may be used. The Kalman
filter recursive model described here is illustrated in the following
Section.

5. Empirical Implementation

The purpose of this éection is to demonstrate the practical
feasibility of our proposal, and instill life into our formulas with
the help of a numerical illustration. We use certain pre—-divestiture
Bell System data for 1950 to 1980. Aggregative prices (pt) are based
on an implicit price deflator for the total operating revenues of the
Bell System. Return on ﬂaverage) total capital Rt actually earned is
obtained from the Bell Syatem statistical summaries. The "allowed"
(or "fair") rate of return m*t'series is constructed from information
about dates on which new interstate rates of return became effective
in accordance with a formal action by the Federal Communications
Commission (FCC), or the U.S. Congress. The rate of return allowed by
the State Public Service Commissions (PSC's) is usually 1 or 2 points
smaller.. An aggregative weighted index from information about dates
and returns allowed by PSC's 1s not feasible, especially for years
before 1970. The data on total factor productivity (TFP) were kindly
made available by the Economic Analysis Section of AT&T. The FUELt
variable was not judged to be important for this application.

Nonlinear two stage least squares estimates of the parameters of

the model in (4.6) with b5 = 0 are:
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'ﬂ't = -10963 + 6.301 pt"" 0-55” T
(-1..48) (2.73) (3.32)

t-1

-0.0275 [TFP_ - 0.554 TFP, _, ] (5.1)
(-1.06) (3.32)
with R2 = 0.8966 adjusted for degrees of freedom and where the numbers

in parentheses are Student's t values. An interesting point to note
is the negative coefficient bu with a low t value. This tends to
suggest that the regulators did not give any incentive to the
telephone companies for any increase in TFP, and may even“have
penalized them for it. Hence we choose an alternative specification
having bu a 0 = b5 in (4.3), which simplifies the model to a system of
two linear equations (4.1) and (4.2) with Ty = Re.
A full information maximum likelihood (FIML) estimation of (4.1)
and (4.2) for Bell System data is as follows. Using the SORITEC
computer package the convergence was achieved after eleven iterations
and twenty one evaluations of the likelihood function. We have the
following coefficient estimates and t values: b, = -0.330 (-.994), b

= 3.644 (6.420), by = 0.544 (6.373), C, = 0.0268 (1.239) and c, =
0.0893 (5.263). Using these estimates in (4.4), and (4.5) we have p =
48 and 2p, = 7. Also, we have w* =7.73, w=7.62, p=1.06, v, =0.0214,
VR~0.1810. Further empirical details and data are available upon

request.

2

The relative weights (0.18, 1.03 and 8.35) based on (3.7a) and
t)2. (pt - 5)2 and p in the loss
function (3.1) represent an ex post view of the empirical data for the

given to the terms involving (1rt - n*

Bell System companies, as they were regulated during the 1951 to 1980
pre-divestiture period. The regulators seem to Bive greatest import-
ance to the price level (consumer protection), lesser importance to
price stability (don't rock the boat), and the least importance to
keeping close to the "allowed" rate of return. This conelusion
persists for alternative specifications (non-linear case) and estima-
tion methods (two or three stage least squares, ete.). The low weight
on the first term seems to support Kahn's(1970, p42) view that "There
is no single scientifically correct rate of return, but a 'zone of
reasonableness" within which judgmentmust be exercised".

Averch and Johnson (AJ, 1962) prove their famous distortion

[
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effects arising from rate of return regulation analytically, not
empirically. Static Bell data production function studies such as
Vinod(1972) found no evidence of distortion in favor of the capital
input. The present study casts doubt on the realism of AJ's implicit
assumption -- that the regulators try to make ", very close to_Tr*t ==
to the Bell data, because the first weight in (3.1a) is empirically
estimated to be low. Of course, our model cannot rule out input
choice distortions.

Table 1 reports changing annual values of relative weights from
(3.1a), which in turn are functions of M1t and Moy based on Kalman
filtering described in Section 4.1. Since Mot and 2"2t are relative
quantities it is obvious that the welight of the first term does not
change with time. Note that the weights in the last column remain
high, except for the zeroes in 1955 and 1963 to 1970. The zero in
1955 follows large values for 1952 to 1954 attributed to the Korean
war boom and inflation. The zero values for 25 “Zt appear in years
when telephone prices were not 1nflationary, and even falling in some
t for 1970 was 8.25 which was a
major jump from the 1969 value of 7.41. This may help explain the
jJump in 1971 from 0 to 32.10 in the last column of Table 1.

The relative weights for "Don't rock the boat" are somewhat high
during 1957 to 1960 and in 1972 to 1975. Note that 1972-75 was the

time whén'there were telephone "service" problems, and many areas were

cases. The allowed rate of return u¥*

suffering from unacceptable dial tone delays. 1In response tb these
problems New York Telephone alone invested over a billion dollars per
yeah, and asked for rate increases to pay for the increased
investment. Similar changes occurfed in other parts of the Bell
System, and may have resulted in greater attention to the variance of
prices by the telephone regulatoﬁs. Although the constraint M1t >0
is not violated, and the results seem to make sense, their interpreta-
tion is not claimed to be definitive.

6. Conclusions

Multiple regulatory objectives include ensuring that the (1) rate
of return earned equals the "fair" rate (2) prices are stable (3)
prices are low (4) productivity is high (5) there is no unfair penalty
for input (FUEL) price inflation, and no incentive to waste such
inputs. The realization that they are relevant is not new in the
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regulatory economics literature, although a unified framework for
simultaneously including them in an empirically manageable loss func-
tion seems to be missing. This paper provides a unified framework by
using Wiener-Hopf-Whittle stochastic optimization to provide a new
pricing rule (3.4), whose derivation may be of interest in other
fields. Our regulators can accomplish all objectives above,
simultaneously and with varying weights, within the framework of our
simplified model.

The first objective above is viewed in terms of some aspects of
the "capture" theory of regulation, if it is assumed that the fair
rate protects the producer from potential bankruptcy, and keeps
competition out. The second objective is viewed in terms of "Don't
rock the boat" motive on the part of regulators. Peltzman(1976), Owen
and Braeutigam(1978) discuss models supporting the notion that regula-
tors avoid price fluctuations. The third objective of keeping prices
low is obviously for consumer protection, and its failure protects the
producer. We are not locked into accepting only one objective, such
as ghe produqer protectioq hypothesis of the capture theory. Our
theory of regulation is potentially useful because it can include all
five objectives in an empirically manageable loss_function.' We
propose replacing the current theorles of regulation, which are
already regarded in the literature as being "too simplistic", by a
more general model based on our eclectic theory. Some of the existing
theories can be shown to be special cases, and the empiricaily
estimaped relative weights can help decide which theory is (heuristi-
cally) more relevant in which industry.

An important limitation of the proposed model is that we have
drastically simplified the firm's behavior. Our linear recursive
representation, based on Sargent's (1979) model proposed in a
different context, may not adequately include strategic (evasive)
behavior; Another limitation is that our "varying parameter" estima-
tion based on Kalman filtering does not allow varying parameters in
the behavior of the firm. However, we do not necessarily recommend
generalizing this aspect if the number of data points is small.
Finally our reliance on a quadratic objective function may be
unrealistic in some cases. More research is needed to devise

appropriate small sample confidence intervals by comparing normal
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theory, bootstrap and jacknife for the empirical weights which are
nonlinear functions of parameters estimated by complicated (e.g.
Kalman filter) methods.

Empirical checking of the model for the first four objectives
. listed above is made with the help of Bell System data. Generally
largest weight on the third objective (consumer protection) suggests
that the regulators consider a one (say) percent change in average
price level most seriously. Relatively low weight on the first
objective (in conjunction with the large weight on the third) provides
little support for the allegation that telephone regulators are
"captives® of'the industry, and suggests that the Averch-Johnson
assumption of strict adherence to an exogenously fixed rate of return
may not be realistic for telecommunications. A desire to keep
telephone rates stable is indicated by a generally larger weight on
the second objective than on the first. Hence our results suggest
support for the "Don't rock the boat" motivation hypothesis implicit
in Peltzman, Owen, Braeutigam and others. We find no evidence of any
direct productivity incentives having been granted to the telephone
comp;nies during the pre-divestiture.period. The numerical {llustra-
tion shows the practical feasibility of the model, despite somewhat
complicated derivation of the implications of the loss functions.
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TABLE 1 Relative Weights on Price Variance and Price

Approximate Annual Values

Level:
Vp u1t
T 1951 1.00
1952 0.97
1953 0.89
1954 0.84
1955 0.81
1956 1.13
1957 1.57
1958 1.54
1959 1.78
1960 1.4
T '.09
1962 1.01
1963 0.68
1964 0.63
1965 0.51
S e 0 ko
1967 - 0.38
1968 0.38
1969 0.36
1970 0.71
_ P TI 113
1972 1.25
1973 1.35
1974 1.37
1975 1.52
vl o 88
1977 0.84
1978 0.98
1979 1.04
1980 1.03

e — g rea 80 R @ e o 3 o e —— s i i 5 F104 0 ¢

15.39
12.39
6.20
5.32
5.40

Note: See equation (3.1a). Column vp"1t gives the relative weight on

“"Don't Rock the Boat" motive and column ZBth gives the weight on

consumer protection motive.

Relative weight on producer protection

(capture theory) is maintained at 0.18=VR by our (Whittle) model.
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We derive the solution to the optimization problem in the text using
Wiener Hopf methods based on Whittle's (1963, Ch. 10) derivations énd retain

many of his notations. The regulated firm follows the decision rule:

nt = f(pt-j’ “t-l—j where j = o0, 1, ...)
as seen by the regulator. The regulator's objective function is

*, 2 - 2 —
L = - -
E [('nt Tt (py P+, p]

A simplified (1) is

“t = b1 + b2 pt + b3 "t—l

First we consider the non-stationary character of “t’ n: and P,

by defining their stochastic stationary parts by

y, =m “.Fo

* %
ut = “t -,
xt = pt - P

Since the optimization is over the entire trajectory, we need the specialized

mathematical tools used here.

(1)

(2)

(3)

(4)

(5)

(6)
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The expectations satisfy

E(yt) = E(ut) = E(xt) = E (et) =0

Taking expectation of both sides of (3) gives

'n"=b1+b2p+b31r

We rewrite the objective function (2) as

" —%* =2 2 -
L= l:".|£yt - ut_.)2 + (v -w)" + Uy X + szp.:,

where the omitted cross product term will vanish upon taking its expectation.
The regulator's problem is to minimize (9) and determine an optimal decision

rule for rates (prices) defined by

_ 0, oD @) * . (3)=*
P g+ 8 1rt+B 'nt-!-B T .

where 30 is a cons#ant, and for k=1,2,3

) © '
B(k)= r ng)zj.
j=0 J.
(1) (1).
0 F
as a feedback of past profits on current prices. For a discrete time series in the

defines the three operators. Note that 8 may be specified with B

time domain recall that we have used z as the a back-shift operator. In the

frequency domain, 2z e-iw with 1 = (-‘-l)';5 is readily used.

From (10) we write the expectation of both sides as

(1)

5 =8+ 87 + 6@ + Py T,

Subtract (12) from (10) to give

ED (2)
X, B Ye + 8 u, .
Subtract (8) from (3) to give

ay, = X + €.+

(7)

(e

(8)

9

(10)

(11)

(12)

(13) .

(14)
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where a = (1-b3z)/b2 is also a polynomial in =.

These derivations will be useful in obtaining explicit solutioms to the optimization

of (9) in the following subsections.

A-1.Solution to the Stationary Problem

First we consider only two terms from the objectiﬁe function (9) denoted by
' 2

2
V=E Byt ut) + HiX, J (15)
representing a ''stationary" portion of our problem. Let the spectral density

function of the stochastic process u_, fuu(w) be written as

t
£L.00 =g () = ¥, () v =) = |y | (16)

where 8uu is the .autocovariance generating function. For example, if u, is a white

noise proce
proc ss.lwulz = 02 is a constant,

Substituting (13) in (14) we have

(2)

(a - B(l)) Ye = 8 u, + € - a7n

t

This may be written as

yt = 0(z) ut + ¢(z) Et, ) (18)

where the transfer function between y- and u 1s defined by
(2)
B

e(Z) = -20 sz = Tl—-—BTJT-—-— - (19)

J

Similarly, the transfer function between y and € is defined by

® 3 1
#(z) = I 4,z = ———gy— . (20)
i= -8
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Using Cauchy integrals and the residue theorem one can write the expectation
in (15) as the absolute term (denoted by Abs) in a Laurent expansion on the unit
circle |z| = 1. These methods are described in Nerlove et al. (1979) and Whittle

(1963, pp. 118-126).

Using the factorizationm (16) we write the objective function as

V = Abs Dl - elzlwu|2 +uy| a0 uI?‘J. (21)

whefe the notation |B|2 = B(z) B(z-l) is used for btevity.

This V is minimized with respect to the coefficients ej, j=l,..., = by

differentiating (21) with respect to aj. We have the first order conditions

abs[z JH(z) + 2dHzH] =0, (22)
where IS
. 2 )
- N -1 (23)
H(z) = L(1+p.|a| )8 1] ¥ (2) ¥ (2 7). .
From (22) we know that coefficients of zj in the Laurent expansion of
H(z) on lz |=1 are zero for all j=1, 2 ... . Hence powers szJ for j = -« to
0 alone will remain non-zero in the expansion of H(2).
We assume that our stationary series are convergent in some ring (annulus)
containing the unit circle. Now we use the Wiener-Hopf method which involves
retaining only the relevant powers of 2zJ from two equivalent expressions for
H(z). The solution is
| 1 v, |T
8 = -1 . (24)
P(2)Y P(z ) 0

where the numbers outside the brackets indicate the range of powers of 2z

retained, and where

1|12 =1+ ul(l-sz)(l—b3z-1)b;2. (25)
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The P(z) and P(z_l) for (25) are found by choosing a root (e.g. positive) of

the quadratic function in z. The root is denoted by £, and we write
2 -
2|2 = K*(1-t2) (127D, (26)

It can be verified that

£ = (a/2) £ 3 (a2u)? | (263)

N[

where A = b3 + (1/b3) + (b;/ﬂ1b3), and then we can find the remaining unknown in
(26):
1
-1 -2 |
K= [E’ u1”3"2] : (26b)
Our next task is to determine the transfer function ¢ . Let the autocovariance

generating function §x:(z) of errors be canonically decomposed as follows

8, (2) = v () ¥ (). (27)

Aésuming bzv# 0 Wiener-Hopf'technique yields the following solution,
Whittle (1963, p. 121 eq. 27). Let superscript 0(*) denote the first term of a
Taylor expansion obtained by setting # = 0°

— —_ 1 P . ]
* -
PIPE 0(*) l—‘l alz Dy,

1 .
¢ = Pq’e T * P(z)’«pe P(—G-l) {1 ) (28)

.

If we assume that et and u, are white noise processes with we = oe and

wu = ou (where oe and ou are constants) we have simplification. The first

term of (28) becomes

KL (1.5_5)"1[1< b, (1-Ee) (Ltbye + b‘; 22 + ...)](0)* (29)
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The second term vanishes because terms ﬂ~‘1 for j=1,...» alone are

retained. Hence we have,similar to Whittle's Eq. (10.7.8)

¢ = bzl(l’ Ee). (30)
and from (24) 0o ‘
6 = ———1— -ou_. = _1.__ . 31 -
K (L2)g, K15 )|, KEQ-£ 2) |

It should be noted from (26:3d and (26 B that the root £ and the constant X

depend on bz, b3 and M-

Thus we have determined the transfer functions ¢ and 6 which are involved

in the stationary problem. The non-stationary problem is considered in the

following subsection. '

A-2. Final Solution *

In this section we derive an explicit formula forpt defined in terms of

(s

the optimal pricing rule (10) to be chosen by the regulator. Thus we need to

(l). 3(2) and 8(3). We will first note that the solution (30) and

1) and 8(2). We use (20)

determine Bo, B

(31) to the stationary problem has indirectly given us B

and (30) to write
' (1)

e -8 =47 = 1) b
Substituting for a we have
8D = vy e (32)
Now use (19) and (31) to get
8P = 1%, (33)
Substituting (32) and (33) in (10) we have
P, = 8% + (- b,) bEl Tt K-zbgl n: + 83 m 36y °

(3)

where 80 and B remain unknown. These have to be determined so as to minimize
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the remaining terms from (9).

-k — -
v w7 -T2 B 0%
where Vk = L - V jwhere V is from (15).

We may replace p by the right hand side of (12) and write (35) as

- - —%
Vk = ('1?* - n)z + 21_12 [BO + B(l)n + (8(2) + 3(3))‘" } (36)
* -
Now we minimize V with respect to @

W gao2Gt -+, 8D

o

Hence using (32) we have

— % -1
T =T - uz(i-b3)bzz (37)

—%
where 1 may be assumed to be a known number representing the officially

announced average "fair rate of return" level permitted by the regulator. From
—%

(37) sufficient.conditions  for "above normal" average rates of return: > are

b. >0, U >0, £ <b_. In practice, when the regulation is politically semsitive,

2 2 3
: =+ = (1)
the average returns satisfy m > w, which holds true when Hy > 0 and B > 0.

Now we determine the average price ; by using (8)

P = -(by /by) + (?/bz) (1-by). (38)

The remaining unknowns, Bo and 8(3) , can be obtained by using (38) and
(12). This gives

0

1

8(3)= —l—--L‘lL_—
b2 bz_j -ﬂ—* K2bz . (40)
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Next, our normative regulatory rule will be obtained by substituting (39)
and (40) 1in (34) as follows:

' -5 &0 1 x % T
P, = +  J+—=— (@ -7T)+ — (1-E) (41) \
t b, b, St-1 biz t b, d

which ig (3.4) in the text after the following manipulations.
Using (38) we can write (41) as
- "
(=P =Cy (M _, =M +C, (v, -T) (“2)
where

C, = (€ - b)/b, and C, = 1/ (biz) : :

(43)
Equation (4.2) of the text uses (42) after adding an error term.

2

i



	Western University
	Scholarship@Western
	1987

	Don't Rock the Boat: Regulatory Economics Under Multiple Objectives
	H D. Vinod
	Citation of this paper:


	tmp.1457644573.pdf.NHx0a

