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1. INTRODUCTION

In 1970, Akerlof [1] convincingly argucd that the presence of ésymmetric information can
profoundly affect equilibrium trading patterns. In the context of financial markets with an informed trader
possessing “inside information”, Akerlof’s ideas are pursued by the consideration of so-called rational
expectations equilibria. As we are now well aware, under rational expectations the presence of an
informed trader on one side of a market can preclude the possibility of any trade taking place simply
because those on the other side know that they will be taken advantage of.

Holding to the rational expectations hypothesis, and within the context of a multi-security model
of financial markets, the present paper provides conditions under which a given collection of securities
cannot simultancously trade due to the presence of insider trading. In particular, if the insider’s trading
activity is due largely to his possession of private information on future security values, then no trade
occurs. The analysis provides a complete characterization of precisely when the insider’s risk and
information characteristics render trade impossible. Moreover, this characterization provides results on
the effect of attempting to introduce new securities into the market.

There are by now several papers examining the question of market breakdowns in a single security
setting, including Glosten [12], Leach and Madhavan [20], Bhattacharya and Spiegel [6], and Hellwig [15].
However, the present setting allows for any number of securities, and so it is capable of addressing issues
that cannot even be formulated in a single security environment. For instance, suppose the market is in
cquilibrium and a new security is introduced. What impact might this have? In particular, can an
equilibrium be sustained in which this larger collection of securities simultaneously trade? Altematively,
suppose that a given collection of securities cannot simultaneously trade in equilibrium. (The single-
sccurity literature has already demonstrated that this can be the case.) Can an equilibrium with trade be
restored by adding an appropriately designed new security?

Our results provide a negative answer to the second question (Theorem 5.2). There is no security



which, when added to the market, can restore equilibrium. Regarding the first question, we find that
adding a security to a market that is in equilibrium may lead to a collection of securities that is
incompatible with equilibrium. Consequenﬁy, the only way to restore equilibrium after such an addition
is to close the market in the new security or to close some other security market(s) (remember, opening
new security markets cannot help). Since our model does not include any dynamics, we cannot formally
address which of these closures will take place, only that some closure must take place. Generally,
whenever a set of security markets cannot open simultaneously, we’ll say that they destructively interfere
with one another.

Loosely, destructive interference occurs whenever payoffs from the set of currently trading
securities are highly correlated. This leads to a number of practical implications. For instance, our results
suggest that the underlying correlation among the unknown factors influencing the returns of an individual
project may determine whether an owner-manager must ultimately issue one security for a conglomerate
or whether he can issue individual securities for the different units. Similarly, derivative securities, whose
payoffs are typically highly correlated with the payoff of the primitive assets, may well eliminate the
market for the primitive asset if the initial amount of insider trading in the primitive asset is sufficiently
large. Stretching the model somewhat, this may explain why deep in the money options do not trade.
Deep in the money options have payoffs that are almost perfectly correlated with the underlying stock.
Although our assumptions do not precisely fit this case (our security payoffs are linear) our results suggest
that in equilibrium either the option or the stock can trade but not both.

As in Admati [2], where the model of Hellwig [14] is generalized to include multiple securities,
we find that Giffen securities can arise.! This contrasts with the results of Caballe and Krishnan (7] in
their generalization of Kyle [19]. However, our model differs significantly from Kyle's [19] and Caballe
and Krishnan's [7] in an important respect. Like the papers of Bray [5], Ausubel [3], Gale and Hellwig

[11], Glosten [12], Laffont and Maskin [21], and Bhattacharya and Spiegel [6], noise traders are absent



from our model. However, prices remain only partially revealing because our insider has both a hedging
and an infbxmational motive for trade. The absence of noise traders is crucial and it is precisely why we
do obtain Akerlof-like market failures in the presence of asymmetric information. Because all of our
agents are rational, those agents without inside information will rationally choose not to trade when the
insider’s willingness to trade is largely due to his private information. In models involving noise traders
howevef, the market can never collapse to a no trade equilibrium regardless of the insider’s informational
advantage simply because noise traders are assumed to trade in spite of any losses that they might incur
as a result.

To date, most of the literature on rational expectations equilibria in financial markets with
asymmetric information has restricted attention to the linear equilibrium. This has largely been for reasons
of tractability. Since our results often focus on the absence of equilibria involving trade in all (or some)
securities, we are compelled to broaden the search for equilibria beyond those that are linear. Like the
analyses of Glosten [12), Ausubel [3], Laffont and Maskin [21), and Bhattacharya and Spiegel [6] we do
this. In fact, we go much further. We impose no restrictions on the equilibrium price schedule. Our only
requirement is that in equilibrium the outsider’s beliefs about the insider’s trading motives satisfy Cho and
Krep’s (8] D1 criterion.? To our knowledge this is the first attempt in the normal-exponential noisy
rational expectations literature to do away with continuity restrictions on the equilibrium price schedule.

Remarkably, the analysis shows that the linear equilibria are, in a sense, focal. Fixing a collection
of securities to be traded, the existence of a linear equilibrium involving trade in these securities is both
necessary and sufficient for the existence of any equilibrium at all involving trade in these securities.

The paper proceeds as follows. The model is described in section 2. In section 3 we define an
cquilibrium in which all potentially tradable securities are in fact tradable. Section 4 is devoted to the
existence of such an equilibrium. Subsection 4.1 provides a characterization for the existence of a linear

such equilibrium, and 4.2 shows that an equilibrium in which all potentially tradable securities are tradable



exists if and only if such a linear equilibrium exists. Section 5 considers the more general question of
the existence of equilibria in which only some subset of the potentially tradable securities is tradable.

Section 6 concludes.

2. THE MODEL

The basic setting is an n security version of the single security model found in Bhattacharya and
Spiegel [6]. Traders are divided into two groups, each having negative exponential utility. The first
consists of a single large trader (the "insider") who has private information about the securities within the
economy. His strictly positive risk aversion parameter is denoted by 6. A continuum of small traders
("outsiders"), indexed by o (0,1], make up the second group. Their distribution over the interval [0,1]
is given. by the atomless measure v, which we normalize so that v([0,1])=1. Each outsider has a strictly
positive risk aversion parameter, ¢.

There are n potentially tradable securities and one (always tradable) risk-free bond. Among the
collection of potentially tradable securities only some subset, to be determined in equilibrium, can actually
trade. ‘Those that remain untraded may, for instance, be interpreted as securities not presently in the
market since they have not yet been "designed”, or simply as securities that are not yet publicly traded.
Here we clo not concem ourselves with the incentives involved in either designing new securities or in
some other way introducing new securities into the market. Rather, we concentrate primarily on whether
a given collection of securities, whatever their origin, can remain tradable as a group in equilibrium.

Quantities of the n potentially tradable securities are denoted by S,,...S, and quantities of the

riskless bond (or debt) by D. The endowment of outsider 0 [0,1] is (D(@),8)(0),...5,(00) and it is

assumed that l-):[O,I]—)R is Borel measurable as is §i:[0,l]—)R for each i=0,1,...,n.3 Moreover, we

normalize the supply of every security and the bond to unity so that the insider’s endowment of the it



1 1
security is S;, where S;=1-|S (a)dv, and his bond endowment is D=1- D(a)dv. In addition, the insider
] 0

is randomly endowed with a set of n untradable assets. These n random quantities are denoted by
W,,...,W,. This collection, which is always untradable, may include items such as human capital, and real
estate. Note that it is not necessary to think of the insider as holding n one-dimensional untradable assets.
He may instead hold a smaller number of untraded multi-dimensional ones. The realized quantities of the
insider’s untraded assets form part of his private information. In the model, outsiders know only that W
= (Wy,..,W,) is normally distributed with mean zero and covariance matrix Z,,.

Let us fix, for the moment, a subset of the set of potentially tradable securities. Suppose these
securities’ indices are {1,2,...,k}, and that they constitute the set of tradable securities. All agents must
therefore retain their endowed amounts of the untradable securities k+1 through n. When an agent wishes
to trade a (tradable) sccurity, he must d(; so through a "Walrasian market-maker" who, in equilibrium,
quotes market-clearing prices.4

Formally, the market-maker is simply a mapping from demands made by the insider to security
prices. That is, for every vector of security demands, s', submitted by the insider, the market-maker (price
schedule) provides prices P(SI) = (Pl(SI),....Pk(SI)), for the k tradable securities. The price and payoff
of the bond is normalized to unity. It is common knowledge that the future value of the i security is
given by g+n; for i = 1,2,...n, where (g;,...,§,) and (n,,....n,,) are independent random vectors normally
distributed with means zero and covariance matrices I, and Zn respectively. The mean zero assumptions
serve only to reduce the notational burden. To simplify the analysis, we assume that the future value of
the insider’s i untraded asset W;,, is also g+m; fori = 1,2,..,n.

Note that the insider receives private information on all n securities, even if not all are tradable.

This allows us to investigate the effect of introducing new securities into the market about which the



insider has private information, without discussing incentives to acquire private information which might
well be related to those securities that are actually tradable. The insider’s private information is purely
exogenous, and does not change with the number or make-up of tradable securities.

Given the set of tradable securities {1,2,....k} and the market-maker’s price schedule P:RKSRK,
both of which are common knowledge among all traders, the order of events is as follows: First, nature
chooses the values of the random vectors €=(€;...&)» N=(My.-..N,) and W=(W,...Wy) independently
according to their distributions. Second, the insider is informed of both W and &, but not 1. The insider
then submits a demand for securities 1 through k to the market-maker. Third, the market-maker consults
the price schedule and fixes the price at which all tradable securities trade (and hence determines the
insider’s bond demand through his budget constraint). Fourth, and finally, outsiders are informed of these
prices (but not of W, €, or n) and thereafter submit their demands for tradable securities (their bond
demands again being determined by their budget constraints).

Notice that one can interpret the random vectors 1| and € as economy-wide uncertainty and
outsider-specific uncertainty about the future value of securities 1,2,..n. We assume throughout that the
variance-covariance matrices Z,, Z, and Z,, are of full rank and therefore positive definite.

The description of an equilibrium shall provide both the collection of tradable securities and the
market-maker’s price-schedule. If it were not for the insider’s private information about the security
payoffs, any subset of the securities could trade in some equilibrium. As we shall see however, the
insider’s presence profoundly affects the possible equilibrium market structures. Under certain conditions
some securities simply caﬁnot simultaneously trade.’

Since we do not rule it out, there is always a trivial equilibrium in which none of the potentially
tradable securities are actually tradable. In this equilibrium all traders simply consume their endowments,
which is optimal since there is no possibility of trade. Hence, the existence of an equilibrium, since the

set of tradable securities is part of its description, never presents a difficulty. Our main objective is to



determine, for any subset of the set of potentially tradable securities, precisely when the insider’s
information allows these to be tradable in some equilibrium. Thus, the analysis below proceeds by fixing
a collection of securities, deeming precisely these to be tradable, and then determines whether or not the
market-maker can set prices for these securities so that markets clear. We begin by supposing that all

potentially tradable securities are tradable.

3. EQUILIBRIUM

Throughout this section, as well as Section 4, we shall suppose that all securities are tradable. The
analysis when a strict subset of the set of potentially tradable securities is tradable is virtually identical
and is presented in Section 5. So, for the time being, the market structure is constrained so that all n
securities are tradable. We wish to know when this market structure is compatible with equilibrium.

Given any market-maker price schedule P:R"—R", the insider will, for every realization, W, of
W and ¢ of €, demand a vector of securities S;,S,,...,S, and an amount of the bond which maximizes his
expected utility subject to his budget constraint. That is (making use of the exponential utility

assumption), the insider chooses (DL,S)e R™! to maximize

V(D" |W.e)=(S"+W)Te+Dl-56(ST+W)TZ, (S+W) €Y
subject to
(s' - SI"psY + D - D = 0. ¢

Substituting (2) into (1) renders this equivalent to choosing Se R" to maximize
V(S [9=(shTe-(s'-5)TP(s)-50(8H Tz, 8, &)

wheret =€ - O}ZnW.
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As exhibited by (3), the insider’s preferences depend only on € and W in so far as T is affected.
Consequently, for each € and W, the variable T completely determines the insider’s preferences and we
shall therefore refer to T as the insider’s "type". The random variable generating the insider’s type will
be denoted by T and is defined by T =& - 6Z, W. It now becomes natural to model the entire scenario
as a signalling game. Each insider (sender) type demands some quantity of each security. Given the price
schedule, this determines each security’s price and these prices are the signals which ultimately reach the
outsiders (receivers). The outsiders use the prices (signals) to make inferences about the insider’s type
which leads to inferences about €, and the future value of the securities’ payoffs. The outsiders then place
their demands for each security. In equilibrium, all security markets must clear.

Consequently, a strategy for the insider is a mapping S:R"—R" taking values of his type, 7, into
a demand for each of the n securities, while a strategy for each outsider ae [0,1] is a mapping S*:R"—R"
taking the observed prices into a demand for each security. Note that the present model is not a game
in the strict sense because the price schedule, which in equilibrium must equate demand and supply in
cach security market, although endogenous, is not chosen by any maximizing agent within the model.
Thus, we continue to employ the standard general equilibrium view of prices, while attempting to exploit
as much as possible the insights available from the signalling-game literature.

In many signalling models the need arises to discipline the inferences made by the receiver upon
the receipt of a signal that is unsent in equilibrium.6 The present model is no exception. Indeed, we
shall discipline the outsiders’ inferences in a by now rather standard fashion. They must satisfy Cho and
Kreps’ [8] D1 criterion.

We proceed informally to outline the effect of the D1 criterion in our context. First, note that in
equilibrium, the price schedule must be one to one. Otherwise, for two distinct security demands of the
insider, the security demands of the outsiders will be the same (the latter can depend only on the observed

price vector). But then for one of these demands, the securities market will not clear.
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Suppose now that the outsiders observe the vector of security prices, Py, but that P, can never
arise if the insider follows his equilibrium strategy. Because the equilibrium price schedule is one to one,
the outsiders can invert it to determine the out-of-equilibrium demand submitted by the insider. Call this
demand S, Since no insider-type demands Sy in equilibrium, the outsiders cannot employ Bayes’ rule
to form an inference about which insider-type(s) might have submitted such a demand. The D1 criterion
éuggests a procedure for disciplining the outsiders’ inferences. The idea is to insist that the outsiders
provide a "reasonable" explanation for the deviation. Indeed, the outsiders are asked to take the view that
the insider is, by deviating, attempting to raise his payoff above what he would obtain in equilibrium.

Now if the insider submits the out-of-equilibrium demand, Sg» in order to raise his payoff above
what he could obtain in equilibrium, then he must believe that the market-maker will respond with a more
favorable price than that dictated by the equilibrium price schedule for So. Let this then serve as the
outsiders’ explanation for the insider’s deviation.

But this explanation allows the outsiders to isolate those insider-types who are most likely to have
deviated. Indeed, this is the strength of the D1 criterion and it works as follows. Suppose a subset, T,
of insider-types possesses the following property:

Whenever a potential price response to Sy provides some insider-type not in T with an

incentive (perhaps only weak) to deviate to S, the same price response provides every

member of T with a strict incentive to deviate to So.7
Under these circumstances we will call T a prime suspect subset of insider types for S, (in the sense that
the types in T are deemed most likely to have deviated). The D1 criterion restricts the outsiders’ beliefs
to be concentrated on the set T2 We now formally describe an equilibrium,

An equilibrium in securities {1,2,...,n} is a tuple (P(-),SI(-),(S"‘(~))0‘e [0,1)» Where P:R"-R",

SLR"SR", S%R"R", satisfy for every insider type © = &-6Z,W, every outsider ae[0,1], and every
§8=8 ):

12



@ § maximizes the insider’s expected utility given his type T and the price schedule P(?),

(ii) S°(P(8)) maximizes outsider o’s expected utility given the price schedule P(*), the insider’s
strategy Y9, and o’s Bayes rule induced beliefs about the insider’s type T, and therefore &,

(iii)  The outsider’s beliefs satisfy Cho and Kreps’ D1 criterion. That is, if S#SI('t') forallv,and T
is a prime suspect subset of insider types for S, then S(P(S))cT, where S(P) denotes the support
of the outsiders’ beliefs about the insider’s type, conditional upon observing the price vector p?

Giv) S is Borel measurable as is S*(P(S)) in o, for every S,

1
W) fS"‘(P(S))dv=l -S, for every S, where 1 is an nx1 vector of 1’s.
]

Conditions (i) and (ii) ensure that in equilibrium the insider and the outsiders are making utility
maximizing decisiohs and that the outsiders, when possible, employ Bayes’ rule to make inferences about
the insider’s private information. Condition (iii) disciplines the outsider’s beliefs to conform to the D1
criterion. Condition (iv) is simply a regularity requirement. Finally, condition (v) asks that for any

security demand made by the insider, the equilibrium prices set by the market-maker clear all markets.

4. EXISTENCE OF AN EQUILIBRIUM
4.1. THE LINEAR EQUILIBRIUM
As we shall later see, the existence of any equilibrium in securities {1,2,...,n} rests on the existence of an
equilibrium involving a linear price schedule or simply, a linear equilibrium. We therefore consider the
conditions leading to an equilibrium in which P(SY = AS'+b for some nxn matrix A and nx1 vector b.
Recall from the discussion in the previous section that P(?) must be one to one. Consequently, A must

be nonsingular. We begin by deriving the insider’s optimal strategy. Since the maximization of (3) is

13



unconstrained, we obtain the following first-order condition for insider-type T by differentiating with

respect 10 st

t—As'-b-AT(s‘-§)-ez,|sl=o. 4)

In light of this, consider the information about € that can be obtained in equilibrium by an outsider
upon observing the equilibrium price vector. Since A is invertible, the observed price vector can be used
to determine the insider’s demand, SL The outsiders can then solve (4) for the insider’s type 7, so that
the realized values of € and W must satisfy T =€ - OZnW. Since the insider’s strategy depends only upon
his type 7, the outsiders cannot refine their information about € any further. Consequently, because € and
W are independently and normally distributed with zero means and covariance matrices X, and Zy,
respectively, a standard application of Bayesian updating yields that the outsiders’ resulting conditional
distribution of € is normal with mean Ut and covariance matrix ) =[Z;'+(67%, Ty %), where
U= [6°%, Ty % +E,] .

Consider now an outsider o [0,1] who has observed the equilibrium prices and deduced the
insider’s type 7. Since his utility is exponential, he chooses a vector of securities S* and an amount of

the bond D® to maximize (after updating his beliefs about € as described above):
(SHTUT+D *-5¢(S )5S *

subject to the budget constraint

(S*-5 T(AS!+b)«(D *-D %) =0,

where Ut is the conditional mean of the future value of the risky securities, and X=X+, is the

corresponding conditional covariance matrix. But this is equivalent to choosing S* to maximize:

V(S H=(S HTUT(S*-SHT (ASI+b)-50(5 %)= S %

14



The relevant first-order condition is:

Ut-AS!-b—4Z S* = 0. (5

Therefore, if (P(), Sl(°), S“‘(‘)me [0_1]) constitutes a linear equilibrium, we must have, using (4), (5) and the

market-clearing condition (v), for every T.

1-ASYz) -b-AT(s'(1)-5)-6Z, S (=0, ©6)
Ut-ASY(1)-b-¢= S%S'x) =0, @)
1

fs aslopdv = 1-8), ®
0

where we've written the outsider’s strategy S* R™ — R" as a function of the insider’s demand rather than
the observed price vector. This is without loss since any equilibrium price schedule must be one to one.
Egs. (6), (7), and (8) are the insider’s first-order conditions, the outsiders’ ﬁlst-order'conditions. and the
market-clearing constraint respectively. Integrating (7) over o, using v, and combining the result with (6)
and (8) yields

-AS'(®)-b-AT(S()-5)-0Z,8'0)
®

= U [-AS )-b-9Z¢1-S @),

for every 1.
At this point it is helpful to simplify the notation by dropping the superscript "I" on the insider’s
strategy and denote it simply as S(t) = (8;(),....8,(1)). This should cause no confusion as we no longer

require an explicit reference to the outsiders’ strategies. Thus, rewrite (9) as:

-AS-b-AT(S-5)-0%,S = U [-AS-b-4Z,(1-S)], (10)

15



for every T and S=S(1).
From the insider’s first-order condition (6), for every 7 the insider’s optimal demand vector, S(t),

must satisfy:

(A+AT+0Z)S(1)=t+ATS b, (11)
Since by varying 7, the range of the right-hand side of (11) is R", the same must be true of the left-hand

side. We conclude that in a linear equilibrium A+AT+92‘.,‘ is nonsingular and that for every 1:

S(7) = (A+AT+0%,) (1+ATS-b). 4 (12)

Thus, by (12), every S is chosen in a linear equilibrium by some insider type, and so (10) must
hold for every S. But now note that the lefi-hand side of (10) differs only by 1 from the derivative of the
insider’s objective with respect to ST. We therefore obtain the necessary second-order condition by

differentiating (10) with respect to S (which is valid since (10) holds for every S). By doing so we obtain:

PVS@|v)

= {A+AT
asasT (A+A7+0%,] (13)

= Ul[¢Z,-Al

where the first equality follows from the definition of V(*) and the second follows from (10).

A necessary condition for P() and S() to form part of an equilibrium is that
82V1(S(1:) [©)/SaST be negative semidefinite for every T. Indeed, since A+AT+02,' must be nonsingular,
A+AT+92‘,.| must then be positive definite. Moreover, this condition, in addition to A being nonsingular
and satisfying (13), is also sufficient to guarantee the existence of an appropriate b so that the resulting

P() and S() form part of a linear equilibrium.!® Indeed, under these conditions the insider’s

16



optimization problem is strictly concave. Since the outsiders’ problems are always strictly concave,
solutions are characterized by their respective first-order conditions which (10) ensures are satisfied. In
addition, (10) guarantees that markets clear. Lastly, because every S is chosen in a linear equilibrium by
some insider-type, the D1 criterion is vacuously satisfied.

Thus, a necessary and sufficient condition for the existence of an equilibrium in securities

(1,2,..,n} having a linear price schedule P(S) = AS + b is that the solution, A, to the equation

A+AT+0Z, = U {A-¢Zy) (14)

be nonsingular, and that the matrix defined by both sides of (14) be positive definite. Under what
conditions on the parameters 6, ;1, T, Z,, and ¢ will these requirements be met? The answer lies in the

induced eigenvalues of U and it is expressed in the following lemma.!!

Lemma 4.1: Except possibly for a closed set of parameter values having Lebesgue measure zero, there
is a solution, A, to (14) which is nonsingular and which renders both sides of (14) positive definite, if and
only if every eigenvalue of U is less than 1/2.

Proof: See Appendix A.

Consequently, we have proven the following theorem which characterizes the existence of a linear

equilibrium in securities {1,...,n}.

17



Theorem 4.2: Except possibly for a closed set of parameter values (0, ¢, Zn, 2. X¢) having Lebesgue
measure zero, there is a linear equilibrium in securities {1,2,...,n} if and only if every eigenvalue of the

outsider’s update matrix U is less than 1/2.

Remark: Theorem 4.2 has content since the set of parameter values for which the eigenvalues of U are
all less than one-half is open and nonempty.

The intuition behind Theorem 4.2 is best captured by constructing appropriate measures of the
insider’s motives for trade. An equilibrium will fail to exist when the insider’s motive for trade is based
largely on his desire to exploit his private information rather than his desire to hedge against the
uncertainty associated with the future value of his untradable assets W;,...,W, . - Let us consider first the
case in which there is but a single potentially tradable security in the economy which is, in fact, tradable.
Its future price is then  + & Let cg, 012‘ and 03, denote the variances of €, 1, and w, respectively. In
equilibrium, the insider chooses his demand for the single security based on the value of T = e—Gc,zlw.
Moreover, it is the relative sizes of € and eo,zlw that determine whether the insider’s motive for trade is
an informational or a hedging one. Now, from an outsider’s point of view, both & and Bo%w are
unknown. However, outsiders can deduce the value of T = € - eo,zlw, in equilibrium. Now, givent=1
the expected values of € and ec,zlw. are [02/(0? + Gzo:oﬁ)h and [920;“0‘2,/(0% + 6201‘:03,)]': respectively.
Thus, from an outsider’s point of view the insider’s motive for trade is relatively informational when the
absolute value of the former exceeds that of the latter. But this is equivalent to the condition
oz > 6%opa’.

Suppose now that instead of their being but one security, there is a single mutual fund, consisting
of fixed proportions of securities S;.,....S, given by the nx1 vector x, and that this mutual fund is the only
potentially tradable “security” and is in fact actually tradable. The insider chooses his demand for this

mutual fund based on the value of x'T = x'& - xTOZnW. Carrying out precisely the same analysis as
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above yields that from an outsider’s point of view, the insider’s motive for trade in this mutual fund will
be relatively informational when the absolute value of the conditional expectation of x'g exceeds that of
xTOZ, W. But this is equivalent to the condition xTZex > XT62E, g T x.

Finally, consider the multi-security case. If there is any mutual fund, x, such that the insider’s
motive for trade in that mutual fund is relatively informational (i.e. X"Zgx > xT02E, Zy %, x) then an
equilibriura will fail to exist since the insider and outsiders will wish to take the same side of any trade
in this fund. Hence, there is no equilibrium when some mutual fund, x, satisfies xTZex > xTezanwan,
or equivalently when the maximum value, choosing x not zero, of xTzlexT(Ee + ezznzwzn)x exceeds
one-half. But this is, by Rayleigh’s principle (see Strang [25] pp. 253-254 and the proof of Theorem 5.2
below), equivalent to U = EE(ZE+92):“2“,I,1)‘1 having an eigenvalue greater than one-half, which is the
relevant condition expressed in Theorem 4.2.

Under what conditions will U have an eigenvalue exceeding one-half? The first is when I, is
nearly singular. In this case, there is a mutual fund consisting of the insider’s untraded securities whose
distribution is nearly degenerate. The outsiders can then obtain a very reliable estimate of the insider’s
private information about the future value of the same mutual fund of tradable securities. But if all agents
have the samé information about the fund’s future value, then all will wish to take the same side of any
trade. Thus, o0 obtaiq an equilibrium in securities {1,...,n}, Z, must be some distance from a singular
matrix.

There are two other occasions when U has an eigenvalue exceeding one-half. First, when the
insider is nearly risk neutral, and second when there is relatively little cconomy-wide uncertainty about
the future value of the securities. When the insider is nearly risk neutral, he has little incentive to consider
hedging tactics. Consequently, his motive for trade is almost entirely informational. Altematively, when
there is eriough correlation between the future value of securities in that component representing economy-

wide uncertainty (i.e. when Z.q is nearly singular), the insider can put together a mutual fund of tradable
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securities whose future value is almost certain. Thus, his demand for this mutual fund will be largely
bascd on his private information, since the same mutual fund consisting of his untradable securities,

Wi.....W,, then also has an almost certain future value.

4.2  EXISTENCE OF NONLINEAR EQUILIBRIA

This section establishes that precisely the same condition characterizing the existence of a linear
equilibrium characterizes the existence of any equilibrium at all in securities {1,2,....,n}. Those readers
primarily interested in applications of the eigenvalue condition for destructive interference may wish to
skip this section and proceed immediately to Theorem 4.5 below.

Throughout this section, we maintain the hypothesis that the price schedule P(*) is part of an

equilibrium in securities {1,2,....,n}. We begin with some notation. Given the equilibrium price schedule,
P("), define F(S) = (S-S)TP(S) + 50STZ, S for every S. Consequently, insider-type < has an equilibrium
utility of

V@) =max STt - FS).1?
SeR?

In this form, V() is recognized as the conjugate of l'-‘(-).13 As will be seen, the fact that one
can express the insider’s utility in this form, allows a good deal of convex analysis to be fruitfully applied.

Indeed, it is helpful to introduce as well the conjugate of V(-), namely

fS) = max STt - V(v),
7R’

for all S.
Thus, f(?) is the conjugate of the conjugate of F(-). Geometrically, f(*) is the greatest, in terms
of pointwise values, convex function below F(°) (see fact (b) in Appendix B).14 Consequently, one can

equivalently define V(<) by replacing F(<) in its original definition above by f(-) (see fact (c) in
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Appendix B). That is,

V1) = max S™t - FS) = max S™t - £(S)
5 S

for every T. However, the maximizers of the two problems need not be the same. With this in mind, let
M) = {S |ST1:-F(S) =V()} and m(1) = {S IST -f(S) = V(7)}, and note that both sets of maximizers are
nonempty for every T, since P(*) is an equilibrium price schedule.

For g:R">R, a convex function, let dg(x) denote the nonempty, compact, and convex set of

subgradients of g at x. That is

30 = laelg) 2 gx)+q "yx), for all ye R}

When dg(x)={q} is a singleton, we will sometimes simply write ag(x)=q. If g is differentiable at x we
will denote its derivative there by wg(x). Of course dg(x) is a singleton if and only if dg(x)=vg(x) (see
Rockafellar [24], Theorem 25.1). Finally, for any convex subset A of R", denote by riA, the relative
interior of A.

Recall that 3(P) denotes the support of the outsiders’ beliefs about the insider’s type conditional
on having observed the price vector P. Since the equilibrium price schedule P(-) must be one to one,
observing the price is equivalent to observing the insider’s demand S. For simplicity only, we shall
proceed from now on as if the outsiders actually observe the insider’s demand S, rather than only the
resulting price P. Again, in any equilibrium, this is without any loss. Consequently, 3(S) shall denote
the support of the outsiders’ beliefs about the insider’s type conditional upon having observed the insider’s
demand S.

The strength of the D1 criterion lies in the restrictions it places upon the outsiders’ beliefs about
the insider’s type subsequent to an out-of-equilibrium demand. Of course, Bayes’ rule is employed

subsequent to equilibrium demands. The following theorem establishes that in equilibrium Bayes’ rule
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correctly restricts the outsiders’ beliefs about the insider’s type to the subgradient of f(*) evaluated at that
insider-type’s equilibrium demand. Moreover, it establishes that the D1 criterion leads to the same
restriction on beliefs subsequent to out-of-equilibrium demands. It should be noted that this is the 6nly

use that we shall make of the criterion.

Proposition 4.3: In any equilibrium, 3(S)<df(S) for all S.

Proof: Fix an equilibrium. Insider-type T chooses S to maximize ST'E-F(S). Consequently, if S is an
cquilibrium demand made by insider-type 7y, then Sye M(ty). But together, facts (c)(i) and (d)(ii) in
Appendix B then imply that T, df(Sp). Thus, the only insider-types who in equilibrium demand S, are
members of 9f(Sy).

Next, consider a demand S, that is not made by any insider-type in equilibrium. In addition,
suppose that there is a potential price response making soxﬁe insider-type 1 0f(S;) at least as well off as
his equilibrium demand would have. We claim then that the same price response makes every insider-type
in of(Sy) strictly better off. If this is true, then of(Sy) constitutes a prime suspect subset for Sy, and
therefore the D1 criterion implies that the outsiders’ beliefs about the type of insider who demanded S,
must have support in 0f(Sy).

To prove the claim, we need show that if for some te df(Sy) and some price vector Py we have
Sg'c—(So-§)TPo - .SGS?;ZSO 2 V(1), then we also have S'g'to-(So—g)TPo - .SOS?;Z Sy > V(zp) forevery
To€ 0f(Sy). But this is equivalent to showing that for any te of(Sy), if S'g'c-yZV('t) then S'g'to-y>V(10) for
all 7y af(So). To see that this is indeed the case, note that by fact (d)(ii) of Appendix B, V(1)>S'gt-f(so)
for 1€ 9f(Sg) and V(1)=SJt,-f(Sy) for 1o IMf(Sy). Consequently, if STt-y2V(r), then y<f(Sy) so that

S3ty-y>V(1,). QED
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Remark: Since f()) is, by fact (b) of Appendix B, convex, it is differentiable almost everywhere
(Rockafellar [24] Theorem 25.5). Consequently, Proposition 4.3 implies that conditional on almost every
demand, 8, of the insider, the outsiders’ beliefs are a point mass on vf(S).

Despite Proposition 4.3, we still may know very little about the outsiders’ beliefs conditional on
equilibrium demands made by the insider. For instance, in the one security case, if f(*) fails to be
differentiable at S, then S is chosen by an open set of insider-types. Indeed, if f(S) is piecewise linear
yet everywhere above the function g(S):Sz. say, then f has infinitely many kinks and almost every insider-
type maximizes uniquely by choosing an amount of the single security at which f is kinked.
Consequently, almost all of the equilibrium action might involve points at which f fails to be differentiable
whereas Proposition 4.3 provides detailed information only when f is differentiable.

It is therefore necessary to further investigate the nature of the insider’s equilibrium demands,
especially those that might be associated with kinks (non-differentiabilities) in f(-). With this in mind,
call a demand S by the insider a peak if for some insider-type, T, m(t)={S}. Consequently, if S is a peak,
then S is the unique maximizing demand for some insider-type.ls

As it turns out, in any equilibrium, every S is a peak.16 Consequently, every S is demanded by
some insider-type; there are no out-of-equilibrium demands. This is stated as part of the following

theorem.

Proposition 4.4: In any equilibrium every S is a peak, and F(?) is convex and equal to f().
Consequently, for almost every S, (i) the outsiders’ beliefs are a point mass on “F(S), and (ii) F(°)

satisfies the following differential equation:

F(S) = WF(S)TUS-S) - GISTZS+1)-STZ 1] + ST($Z,+50Z, ]S, (15)

Proof: See Appendix A.
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To understand Proposition 4.4, it is enough to consider the single secutity case. First, to see that

F() must be convex, suppose, as depicted in Figure 1, that it is not. Before continuing, note the

geometry of the figure: If insider-type £ chooses S to maximize S<T - F(S), then at the maximizing

demand, 8, it must be the case that 2 dF(S). Le., the line with slope % through the point ($,F(S)) must
be tangent to F(¢) at $ (see the figure). With this in mind, insider-type T = 0 will, according to Figure
1, choose either Sy or S;. Moreover, no insider-type chooses Se(S,S)).

[FIGURES 1 AND 2 HERE.]

Thus, every demand in (S,,S,) is an out-of-equilibrium demand and the D1-criterion restricts the
outsiders’ beliefs subsequent to any such demand. Indeed, according to Proposition 4.3, if Se Se:Sp)
then the support of the outsiders’ beliefs about the insider’s type must be contained in 9f(S). But Figure
2 shows that of(S)={0}. le., f() is differentiable on (Sg:S;) with derivative zero there. Consequently
if any demand S e (S,S;) is made, the outsiders will believe with certainty that the insider is type T =
0. Hence, each outsider’s first-order condition (they choose S*) subsequent to such a demand is

1
U-0-P®S)-¢Z S* = 0, which implies, since fS %dv = 1-8 in equilibrium, that P(S)=pZ(S-1) for all
Se(Sy.5)). 0

But this leads to a contradiction. For if P(S)=0X,(S-1) on (SpS;), then

F(S) = (S-S)TP(S) + 50STZ, S is strictly convex on (S,,S,) which, according to Figure 1, it is not.

Note that we’ve actually established that F(:) must be strictly convex, so that every S is a peak.

It also follows that F() = f(°) since the greatest convex function below F(-) (now known to be convex)
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is F(*) itself.

Finally, that F(-) satisfies the stated differential equation can be derived from equilibrium
considerations as follows. Together, Proposition 4.3; f() = F(); and the almost cverywhere
differentiability of convex functions, imply that for almost every S, the outsiders’ beliefs must be a point
mass on VE(S). Each outsider’s first-order condition is then UVF(S) - P(S) - ¢ZOS°‘ = 0, for almost every
S, the insider's demand, and where S% is outsider a’s subsequent demand. Since, in equilibrium,
1

fS %dv = 1-S this implies P(S) = UVF(S) - ¢X(1-S), for almost every S. The differential equation
0

results by substitution into F(S) = (S-S)T P(S) + .56STZ,S, the definition of F().
In order to show that the eigenvalue condition characterizes the existence of an equilibrium in
securities {1,2,...,n}, a final step remains. Recall that because we are in equilibrium,

V(1) = max STt - F(S)
S

must be well-defined for every insider-type 1. Clearly, a necessary condition for this is that:
F(S)>+o0 as [[SE—>+eo. (16)

For if {S"}3-, violates (16) then the insider’s maximization problem has no solution for insider-type T,
an appropriate limit point of {S"/IS"}}5;- The final step shows that if an equilibrium exists, so that in

particular (16) must be satisfied, then in order to satisfy (16), every eigenvalue of U must be less than onc-

half.
So suppose that there is an equilibrium in securities {1,2,....,n}. By Proposition 4.4,
F(S) = WF(S)TUS-S) - 9ISTZ,(S+1)-8TE 1] + STIOZ,+50%, IS, an



for almost every S.

By Lemmas A.1 and A.2 of Appendix A, U can be written as U=I"!AT,, where A is a diagonal

matrix, whose diagonal elements consist of the eigenvalues, l.ie 0,1), of U. Let x=l"(S-§),
A=(THT(9Z, + SOZ T, b= T[$Z,(S-1) + 6%, S), and d = 50STE, S. Also, define HR"-R by

H(x) = FT'x+S). Hence, (17) becomes:

H(x) = vH(x)TAx + bTx + xTAx + d (18)

for almost every x. Note that H inherits, from F, convexity.

Next define for each x, g:(0,%2)—>R by g(t) = Hix,t x‘,..,xnt k"). Because H is convex, it is also

differentiable for almost every x. Therefore, for almost every x with [x=1 (n-1 dimensional Lebesgue

measure), g is differentiable for almost every t>0. Fix then x* such that [x*[=1, no component of x" is

zero, and g(t) = h xl't )",....xn' t l") is differentiable for almost every 0. Consequently, by (18)

n +A
O = 80 - Lot - Yox;layxt ™ - d )
ij

i=1

for almost every t>0. Now since H is convex, it is Lipshitz. Therefore, for every 00, g is Lipshitz on
[0,0) and it can therefore be recovered from its derivative (where defined). Hence we may solve the

differential equation (19), to conclude that g must be of the form
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n
gt) =ct - Z}bixi’o\‘i_l)-ltai - E xi‘aijxj‘(xi-bxj-l)“ltli A - E X; aux] tint - d, (20)
= l.i-:i,fl li:ilfl

for 0, and some constant C.

Now let A, denote the largest eigenvalue of U. If Ap=1/2, then from (20) the leading term of g(t)
is
- Yy xi'aijxj' tint

iA;=5

j: lj=.5
whereas if A;,>1/2 the leading term is

-1 Y xi‘aijxj' (22,m-1)‘1t”"".
i:li‘:lm
iMAy

In either case because the terms in curly brackets are strictly positive (recall that A is positive definite and

tll

no component of x" is zero), we have g(t)—-c as t—30, But this means that F(l"'l(xl t ,....xn' t )‘“)T+§)—>

-00 3§ t—»o, contradicting (16).
Consequently, a necessary condition for the existence of an equilibrium (linear or otherwise) in
securities {1,2,...,n} is that every eigenvalue of U must be less than one-half. Combined with Theorem

4.2 we obtain the following characterization theorem.
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Theorem 4.5: The following statements hold except possibly for a closed subset of parameter values
having Lebesgue measure zero: There is an equilibrium in securities (12,...,n} if and only if every
eigenvalue of the outsiders’ update matrix, U, is less than one-half. Furthermore, this is precisely when

a linear equilibrium in these securities exists as well.

S. THE GENERAL CASE

Now that most of the work is done, we remind the reader that our broader notion of an
equilibrium includes not only the agents’ equilibrium demands, and the equilibrium price schedule, but
also the collection of tradable securities. As we are now aware, under certain conditions there can be no
equilibrium in which all n securities are tradable. So, viewing the collection of tradable securities as
something that is determined in equilibrium, which has been our point of view from the beginning, it is
natural to now fix the market structure so that only a strict subset, say {1,....k}, of the set of n potentially
tradable securities is tradable. Note that one cannot simply replace the n in the previous section with k,
because there are now additional untradable securities (namely, securities k+1,...,n) that must simply be
held by all agents endowed with them. Moreover, the ‘insider has private information about the future
values of these untradable securities, values which might be correlated with those of the tradable securities.
Despite these differences, the analysis of this case proceeds along lines that are very similar to those in
the previous two sections. Consequently, we provide only the results.

Let Uy =JiE (6%, 2, %, +T)J, 1" where J] (the transpose of J,) is the kxn matrix (I Opyn.i):
Iy is the kxk identity matrix, and Oy,  is a kx(n-k) matrix of zeros. An equilibrium in securities
{1,2,...k} is defined analogously to an equilibrium in securities {1,2,....,n} except that, in addition, each

agent must retain his endowed amounts of securities k+1 through n.

Theorem $.1: The following statements hold except possibly for a closed set of parameter values having
Lebesgue measure zero. There is an equilibrium in securities (1,2,...,k} if and only if every eigenvalue
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Arhi Of Uy is less than 1/2. Furthermore, this is precisely when a linear equilibrium in securities
{1.2,...k} exists as well.

Note that by simply renumbering the securities, Theorem 5.1 provides a necessary and sufficient
condition for the existence of an equilibrium in any subset of the n potentially tradable securities.
Consequently, we are now able to determine which security markets can open together in equilibrium.
We shall say that a subset of the set of securities constitutes an equilibrium market structure (or is
consistent with equilibrium) if there is an equilibrium in the given subset of securities.

The theorem to follow indicates that if destructive interference occurs, then adding still more
securities to the market cannot result in an equilibrium market structure either. For the remainder of this
section we will assume that the vector of parameter values (¢, 6, Eq, I,» Zp) is not a member of the

exceptional set described in Theorem S.1.

Theorem 5.2: If securities 1 through k do not constitute an equilibrium market structure, then neither

do securities 1 through k+1.

Proof: In view of Theorem 5.1, it suffices to show that the largest eigenvalue of U, , is at least as large
as the largest eigenvalue of U,. We recall Rayleigh’s principle (see Strang [25], pp. 253-254) which states

that if A is a symmetric nxn matrix, then the largest eigenvalue of A is given by:

T
max X AX

xe® x'x
xz 0
Now, if A and B are symmetric nxn positive definite matrices, then the eigenvalues of A(A+B)! coincide

with those of QTAQ, where the positive definite matrix A+B is written as (Q'I)T(Q'l) for some

nonsingular matrix Q. Thus, the largest eigenvalue of A(A+B)’], being also the largest eigenvalue of

29



QTAQ is, by Rayleigh’s principle:

max x"QTAQx = max __ YT_AY
xeR  X'x ye® y' W HTew Dy,
x# 0 y= 0

where the equality follows from the change of variable y = Wx. Hence, the largest eigenvalue of

A(A+B) ! is given by

max ﬂ_.
yeR Y (A+B)y
yz 0

So, letting &, denote the largest eigenvalue of Uy yields:

T, T
Xk - max X Jk EEka
xeB X1 (54075, Ty )] xT
x# 0

T
. X el Y e Zdiny
ye R T
20 YV aCe oS Zw Iy
Y10
T T
< max Y YenZelcary
- T
yi%(ﬂ yTJkH(zs"'ezznzW“:‘n)Jkdy
y
- Xk*l‘

That is, the largest eigenvalue of U, is nondecreasing in k. Q.E.D.

Theorem 5.2 conforms nicely with our earlier intuition for the existence of an equilibrium. For
suppose there is no equilibrium in securities 1 through k. Then there must be a mutual fund made up of

these securities for which the insider’s trading motive is relatively informational. Since adding a security
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does not preclude one from constructing this same mutual fund, adding a security can not create an
equilibrium where there was none before.

We now provide a condition under which no nonempty subset of the set of securities is consistent
with equilibrium. Thus, the only equilibrium is the trivial no trade equilibrium in which no securities are

tradable. ‘The following is immediate from Theorem 5.2:

Corollary 5.3: If no single security is consistent with equilibrium, then no nonempty collection of security

4 2
markets is consistent with equilibrium. Moreover, this is the case precisely when oé/[e%n .ow_mé]z .;_
1 1

for everyi=12,..,n.

Corollary 5.3 provides a generalization of the market breakdown condition in Bhattacharya and
Spiegel [6]. Roughly speaking, when at least half of the insider’s trading activity in every security can
be attributed to his private information, no market nor any subset of markets can open. Next, we provide
a condition under which new securities can be added to the market so that the resulting market structure
is consistent with an equilibrium.

For any subset M of {1,2,...,n}, any vector x, and any nxn matrix A, let xy=(x;);sp, and let AM
be the |[M| x |M| matrix with i element a;; for ijeM. Also, denote by Uy, the analogue of Uy

where the labels {1,2,...k} are replaced by those in M.

Corollary 5.4: Let M and N be two disjoint subsets of the set of securities {1,2,...,n}, and suppose that
&y and €y; as well as Wy, and Ny, and Wy and Wy, are independent. If both subsets of securities M and
N are corsistent with equilibrium, then so is MUN.

Proof: Given the above independence assumptions,
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and so the eigenvalues of Uy are simply the union of the eigenvalues of Uy, and Uy. Therefore each

of these eigenvalues is less than 1/2. The result now follows from Theorem 5.1. Q.E.D.

Thus, introducing new securities into the market whose future values are independent of those of
the current collection of tradable securities does not result in destructive interference. The next corollary
tumns to the opposite extreme and shows that sufficient correlation between a collection of securities’ future

values precludes the existence of an equilibrium in this collection. Indeed, it shows somewhat more.

Corollary 5.5: If J{(ezg}:wznu,‘ is close enough to a singular matrix, then securities {1,2,...,k} do not

constitute an equilibrium market structure.

Proof: Let {A,,} be a sequence of nxn symmeltric, positive definite matrices converging to A, where
J{AJ, is singular. Let A, denote the kxk diagonal matrix of eigenvalues of JTZJ[(JT(A, + Z)IDI,
a kxk diagonalizable matrix (seec Lemma A.1 of Appendix A). Since the eigenvalues of a matrix are
continuous in its entries (see, for instance, Horn and Johnson (16}, p. 539), A, converges to A the kxk
diagonal matrix of eigenvalues of JIZEJ,‘[(J'{(A + Ee)Jk)]‘l, which has an eigenvalue greater than 1/2 since
its inverse [JEAJk][JIZSJk]'%Ik has an eigenvalue of 1. Hence, for m large enough,
JIEJK[(JI(A,“ + )" has an eigenvalue larger than 1/2. Therefore, if JE(Ozznsz“)Jk is close enough

to a singular matrix, then Uy has an eigenvalue exceeding 1/2. Now, apply Theorem 5.1. Q.E.D.

One interpretation of the above result is that futures or options markets can potentially eliminate
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the markets in the underlying securities. To see this, allow € to represent near term events about which
the insider has private information. To the extent that there are some near term events that have a
differential impact upon the future and the stock return (for example, a large eamings announcement that
results in z one time dividend bonus) the matrix Z; will likely be well conditioned. Allow 1 to represent
long term events about which no one knows a great deal. Now, long term events that are realized after
trade may well affect both the stock price and its corresponding futures price about equally.
Consequently, 21 may be nearly singular. If ).‘.n is near enough to a singular matrix, Corollary 5.5 implies
that there can be no equilibrium in which the futures market is also present. Thus, introducing the futures
market may induce a persistent inability of the market-maker in the underlying securities to clear the
market. Consequently, the present model provides a mechanism through which the introduction of a
futures market may cause the market in the underlying securities to break down. In our terminology,
futures markets can destructively interfere with markets in the underlying securities.

Numerical examples of destructive interference abound. We now provide one. Consider an

economy with only two potentially tradeable securities (n=2) and covariance matrices:
1.0 .6 Ty 1600 O 20 0
&‘ 6 1.0 0 100 Ze 0 20

If either security is the only one that is tradeable, the largest (and only) eigenvalue of the insider’s update
matrix is .128. Since this is less than one-half, there is an equilibrium in which security 1 trades alone
and an equilibrium in which security 2 trades alone. However, if both securities are tradable, the largest
eigenvalue of the insider’s update matrix is .556. Hence, by Theorem 4.5, there is no equilibrium in
which both securities 1 and 2 are tradable. In particular then, if security 1 is currently trading, the
introduction of security 2 may result in the elimination of security 1.

A question that arises in any multi-security economy is whether Giffen securities (that is, a
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security whose demand increases with its price) can arise. As in Admati [2], we find that they can. In
the context of our model a security is Giffen if the outsiders’ aggregate demand for it is increasing in its
price. This is the natural definition since the outsiders are price-takers. But since, in equilibrium, the
outsiders’ aggregate excess demands must equz;l the insider’s excess supply, it suffices to find a sccurity
such that the insider’s demand for it is negatively related to its price. The following example illustrates

this possibility.

Giffen Security Example: Suppose that there are only two securities and that they both trade. Let

T = 40 19 = 122 = 6 20 0 =2 and ¢ =.0001. Consequentl theoutsiders’update
e =119 10} 2 ~|22 70/ ™ |20 100[°= =T TOmSeAtenty,

matrix, U, has a largest eigenvalue slightly less than .2, so that a linear equilibrium exists. Solving (13)

for the linear equilibrium produces,
opY! | =05 174
oS =754 161.74

Thus, security one is Giffen.

6. CONCLUSION
The model presented in this paper facilitates the study of a phenomenon particular to imperfectly
competitive multi-security markets: destructive interference. In contrast to competitive settings, adding
securities to a system here does not always foster additional trade. A new security may destructively
interfere with one or more securities already present. It is therefore possible, for instance, that the birth
of a futures market might eliminate the market in the underlying securities. Or, a firm may ultimately be
unable to issue a new security if it has already issued a similar security in the past; it may be able to issue

one combined security for all its divisions, but not separate securities for its different divisions.
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The possibility of destructive interference suggests that equilibrium in the presence of insider
trading is a delicate matter. The nature of the equilibrium collection of trading securities can be
dramatically altered by the addition of a single new security. The extent to which these issues arise when

there are many insiders, rather than just one, is a question which awaits future work.
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APPENDIX A

Lemma A.l: If A and B are real, symmetric nxn matrices and B is positive definite, then AB is
diagonalizable, its eigenvalues and eigenvectors are real, and it has a real diagonalizing matrix.
Proof: Let A be an eigenvalue of AB and x a corresponding eigenvector. Then ABx = Ax. Since B is
real, symmetric and positive definite, B = WTW for some real nxn nonsingular matrix W (see Strang [25],
Theorem 6¢, p. 241). So, letting y = Wx we have WAWTy =Ay. But WTAW is then real and symmetric.
Hence, WTAW has n linearly independent (indeed, mutually orthogonal) real eigenvectors yy,....y, |
corresponding to its n (not necessarily distinct) real eigenvalues A,,...,A;. ButAy,...,A; are then the n (real)
cigenvalues of AB, and x; = W'lyl,...,xn = W'lyn are corresponding (real) eigenvectors. Since wlis of
full rank, x,,...,x;, are lincarly independent. Hence, the real nxn nonsingular matrix whose i" column is

X; diagonalizes AB. Q.E.D.

Lemma A.2: If A and B are nxn symmetric positive definite matrices, then the eigenvalues of A(A+B)!
lie strictly between 0 and 1.

Proof: Let A be an eigenvalue of A(A+B)"! and x be a corresponding eigenvector. Then AA+B) Ix=Ax,
SO letting y = (A+B)x yields Ay = A(A+B)y. But this means that A = yTAy / yT(A+B)y which is well

defined (since y#0 and A and B are positive definite) and lies strictly between zero and one. Q.E.D.
Given two mxn matrices A and B, the Hadamard product of A and B, denoted A*B is the mxn

matrix whose i-j‘h entry is aijbij (that is, matrices are *-multiplied by multiplying corresponding entries.
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Lemma A.3: Suppose that A and B are nxn, symmetric matrices and that A is positive definite and B
is positive semidefinite. Then A*B is positive definite if and only if B has no diagonal entry equal to zero.

Proof: See Homn and Johnson [16], Theorem 5.2.1.

Lemma 4.1: Except possibly for a closed set of parameter values having Lebesgue measure zero, there
is a solution, A, to (14) which is nonsingular and which renders both sides of (14) positive definite, if and
only if every eigenvalue of U is less than 1/2.
Proof: We first show that (14) possesses a solution, A, satisfying the positive definiteness requirement
if and only if every eigenvalue of U is less than one-half. We then inquire as to when this solution is,
in addition, nonsingular.

We begin by diagonalizing U. That U can be diagonalized follows from its definition and Lemma
A.l. Write U as I"IAT, where A is an nxn diagonal matrix whose real diagonal entries are the
eigenvalues A;,...,A, of U. By Lemma A.2, each A, lies strictly between zero and one. Now let B=[AT",

E=I'ZI" and F=6I'Z T'". Premultiplying (14) by T and postmultiplying by T yields:

B+BT+F=A"}(B-E). (A.D)
Let H denote the matrix B+BT+F and hij its i-jlh element. Since T is of full rank it suffices to show that
(Ail) has a solution, B, such that H=B + BT + F is rendered positive definite, if and only if each
diagonal entry A; of A is less than one-half.

So, suppose that a solution, B, to (A.1) exists and that H is positive definite. We wish to show
that each A; < 1/2. Letting lower case letters represent elements of the corresponding matrices in (A.1)

yields for every i,j = 1,....,n

1
bij "'bji "‘I'ij =x(bu ‘eu) (A2)

But then also, recalling that E and F are symmetric:
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1
bji +bij +fl] = : (bll -eij). (A3)

Now, putting i = j yields (2; - 1) b; = -(Af; + e) < 0, since E and F are positive definite, and

A; € (0,1). Therefore A;#1/2, and so

by=(1-24) T(Af; vey). | - (Ad)

Recalling that H = B+BT+F, we then have:

hy=(1-2) "1Q2e;;+f;). (A3)
Since the diagonal elements of H, given by (A.5), must be positive if H is to be positive definite, each
A; must be less than 1/2.
We now show the converse, namely, that if each A, is less than 1/2, then (A.1) possesses a
solution, B, and it renders H positive definite. Note first that when Ki < 1/2 for each i, (A.2) and (A.3)

together determine B. Indeed

by =(1-A;=A) T [(1+A;-Aey+Asf. (A.6)

Since H = B + BT + F, we then have
hy=(1-M-A) ™ e+ (A7)
In view of Lemma A.3, equation (A.7), and noting that E and F are positive definite, H will be

positive definite if the matrix whose i-jth entry is (l-ki-lj)'l, is positive semidefinite. (Note that no

diagonal entry is zero.) That this is indeed the case when each A; € (0, 1/2) is established by noting that:
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A-4-2)7 = [(A-AA-X) - A7

_ [(1-xi)(1-lj)1'l[‘{T)-‘i};][_l%ﬂ-l

RNEIEVES A

where the infinite series converges since A;e (0, 1/2) implies that AJ/(1-A)e(0,1). Hence, (l-?»i-lj)'l is the

(convergent) sum of terms of the form 0404, But every nxn matrix having i-j‘h entry 4oy is positive
semidefinite. Consequently, the matrix ((l-ki-kj)'l) is the (convergent) sum of positive semidefinite
matrices and is therefore positive semidefinite.

We have therefore proven the following. If equation (14) possesses a solution, A, which renders
both sides of (14) positive definite, then every eigenvalue of U must be less than 1/2. Hence, the same
conclusion holds a fortiori if, in addition, the solution, A, is nonsingular. Conversely, if every eigenvalue
of U is less than 1/2, then (14) possesses a solution, A (indeed, the solution is uniqué) and this solution
renders both sides of (14) positive definite.

To complete the proof of the Lemma, it suffices to show that among the open and nonempty set
of parameter values for which the eigenvalues of U are all less than 1/2, the solution, A, to (14) is
nonsingular for all but a closed subset having Lebesgue measure zero. Indeed, since the solution, B, to

(A.1) satisfies B = TAI'T where T is nonsingular, it suffices to establish the following claim.

Claim: Restrict attention to the open and nonempty set of parameter values 6, ¢, 2',,.', 2 Zg Such that
all eigenvalues of U are less than 1/2. Then except possibly for a closed subset of parameter valucs
having Lebesgue measure zero, the solution, B, to (A.1) (which exists and is unique because the
eigenvalues of U are less than 1/2) is nonsingular.

Proof of the Claim: The closedness result follows immediately from the fact that the solution, B, to
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(A.1) is continuous in the parameters when each eigenvalue is less than one-half. The measure zero result
follows because, as is evident from (A.6) B can be written as V+¢W, where V and W depend only upon
0, Eq. Z,and Z_but not ¢. Consequently, for each choice of 6, Zﬂ, Z,» and I, B is singular for at most
finitely many values of ¢, namely those that are zeros of the nondegenerate polynomial (in ¢) det(V+oW).
To see that it is nondegenerate (ie. not identically equal to zero), it suffices to show that V is nonsingular.
But this follows because the ij’th entry of V is, from (A.6), ki(l-li-lj)’lfij. Letting f;j=(l-7.,i-23-)‘1fij implies
Fis positive definite. (Recall F is positive definite, and the matrix [( l-hi-kj)‘l] is positive semi-definite
with no row or column of zeros. Then apply Lemma A.3.) Consequently, V=AF" so that V'1=F"1A"L,

This completes the proof of the claim and the Lemma. Q.E.D.

The remainder of this appendix is dedicated to the proof of Proposition 4.4. It relies on a number

of Lemmas and we begin with these.

Lemma A.d4: If S, is a peak, then Sy is the unique utility maximizing demand for every insider-type in

l'laf(So).

Proof: Because S, is a peak, m(t )={S,} for some insider type ©". Hence,
Set’ - f(Sp) > STt" - £(S), V S5,

Furthermore, by fact (d)(ii) of Appendix B, T'€df(Sy). Now since T, ridf(Sy) one may write it as
0

To = a1’ + (1-0))t, for some ae (0,1] and some tedf(Sy). Consequently,
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Sty - F(Sp P - f(S)

= ofSTt" - £(Sp)] + (1-0)[STT - f(Sp)]
> ofSTz" - K(S)] + (1-0)[STt - f(S)] V S#Sy,

= STq,- £(5) 28Ty - F(S),

where the first equality follows from fact (c)(ii) of Appendix B, from which one concludes that:
m(‘t‘):{Sc,} implies F(Sp)=f(Sy). The inequality then derives from fact (d)(ii) of Appendix B, and

m(‘c'):{S(,}. Finally, the last equality follows since by fact (b) of Appendix B, f(s)SF(S). Q.E.D.

Define h(S) = U‘l[P(S) + $X(1-S)] for every S. Consequently, Uh(S) - P(S) - ¢ (1-S) = 0 for
every S, and h(S) has the following interpretation. The vector h(S) is the point belief about the insider’s
type that would render 1-S a utility maximizing demand by each outsider subsequent to observing the
insider demand S. Note that h() is simply a convenient technical device. We do not require the
outsiders to form point beliefs.

In what follows, B(S) denotes the outsiders’ beliefs (probability measure) about the insider’s type

conditional on the insider’s demand, S. To simplify the notation, we write only P rather than B(S).

Lemma A.5: The vector h(S) is an element of the convex hull of 3(S). Indeed,

f Ty(1-8,S,7)B(dt)
ns) = 36 (A8)

| wa-ssmpan
3(S)

where W(z.S/%) = exp(-0[zTUT - P(S)'z - S - .5¢2"Zz]).

Proof: From the well known properties of the exponential utility function and the normal distribution,

conditional on any 7, and any demands, z, by the outsider, and S by the insider, one can write the
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outsider’s utility as y(z,S,t) = exp{-d)[zTU'l: - P(S)Tz -S- .5¢zTZ°z]}. The outsider’s demand must

therefore maximize, over z, the function IS(S) Y(z,5,7)B(d7). The resulting first-order condition is,

f [Ut-P(8)-E 21 -5,50B(d) = .
3(S)

Using the definition of h(S) to substitute out P(S) and rearranging proves (A.8). That h(S) is in the

convex hull of 3(S) then follows from the Corollary to Thebmm 3 of Hildenbrand ([17], page 62). Q.E.D.

Lemma A.6: If S, is a peak, then h(Sy)eridfiS,).
Proof: If S is a peak, then by Lemma A.4, and Bayes’ rule 3(Sp)=2riof(Sy). But, since 3(Sy) is closed
and by virtue of Proposition 4.3, one then has 3(Sq)=0f(Sp).

Together with the previous Lemma this yields

[ w18, 86,080
3f{Sy

f W(1-S4,S4,0B(dT)
3f(Sy)

h(Sy) =

Since of(Sy) is convex, and the outsiders’ prior belief (ie. before observing Sy) is normal, the measure p

defined by

wf W(1-54,S,DB(dD)
£(So)

HA) =
[ wa1-soso0B)
of(Sy)
for every measurable subset A, gives full measure to ridf(Sy). Hence,

h(Sg) = f (dr) = f Tp(d) so that by the Corollary to Theorem 3 of Hildenbrand ([17], page
3fiSy ri RSy
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62), h(Spe 1idf(Sy). QED.

Lemma A.7: If g:R*—>Ris convex, and ¢’ is an extreme point of 9g(x,), then there is a sequence X,,—Xp
such that g(X,,)=q,—q".

Proof: In the course of proving Theorem 25.6 Rockafellar ([24], page 246) shows that every exposed
point of ag(xy) is the limit of derivatives, Qr=8(Xp)s With X, converging to X, Combined with
Straszewicz’s Theorem (Rockafellar ([24], page 167)), which says that the set of exposed points of a
closed convex set C is dense in the set of extreme points of C, the proof is complete. Q.E.D.

Lemma A.8: If S, is a peak, then

TTU(Sy-S) = h(SYTUS,-S), V 1edif(Sy).

Proof: Choose any Ty erndf(Sp. By Lemma A4 V(ip = s’;xo -FSy = s},‘«:o - (Sq -

S$)TP(Sy) - .50STZ,8y. So, by definition of h(Sy),
V@t = St - (So=S)[UR(SQ-$E(1-S9)]-56S5%,So By Lemma A.7, for any ©° extreme in 3f(So),

there is a sequence S_,—S,, such that vf(Sm)='tm—)t°. Therefore, by Proposition 4.3 and Lemma A.5,

h(S,,)=T,, for all m. Consequently, since V(Tg) = Skto - Sy~ S)TIU(sy,) - $Zo(1-Sp)] - 5SSy, We
obtain upon taking the limit as m—seo, that h(S)TU(S¢-S) < (®)TU(S,-S), for all 1° extreme in 3f(So).

But, by Lemma A.6 h(Speridf(Sy). Hence, h(Sp)TU(Sy-S) = T'U(Sy-S) for all tedf(Sp). QED.

Proposition 4.4: In any equilibrium, every S is a peak, and F() is convex and equal to f{).

Consequently, for almost every S, (i) the outsiders’ beliefs are a point mass on VF(S), and (ii) F()

satisfies the following differential equation:
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F(S) = W(S)TU(S-S) - QISTZ S+1)-STZ, 1] + ST(9Z,+.50%,IS, | (A9)

Proof: We first show that for every T, dV(zy) is a singleton. So suppose by way of contradiction, that
dV(ty) contains two distinct points S% and S°. Let $*° = 0S*+(1-0)S?, 1°=h(S®), and choose o (0,1)
so that S®%#S. By Proposition 4.3 and Lemma A.5, T°<9f(S®®). Since by fact (d) of Appendix B both
S* and S maximize ST’to-f(S), f must be linear on the line segment joining them. Fact (d)(ii) of Appendix
B implies that S*® maximizes STt"-f(S). Consequently, the linearity of f on the line segment joining S®
and S® implies that both S* and S® maximize STt"-£(S). Hence S® and S® are contained in 3V(z"), by facts
(d)() and (d)(ii) of Appendix B.

Since aV('t‘) is compact and convex, the point S"b, which is not extreme in Z)V('c*), can be written
as a strict convex combination of distinct extreme points of dV(t'), say sl,....sk. By Lemma A.7, there

. m , . m
exist sequences {1} for every i=1,...k such that T — t*and wV(t,) =S_ — S foralli. So by

fact (d) of Appendix B, S is nice and 1}e af(S,;) for all i, and m.
Let Q(S) = ¢(S-S)TZ(1-S) - .sestns for every S. Since $=, and 6%, are positive definite, Q

is strictly concave. So for every i=1,.k we then have, by fact (d)(ii) of Appendix B, that
Vit)=S)Ttl-f(S1). But because Si is a peak, fact (c) of Appendix B then implies that

V(t)=(S)Tti.-F(S}). Using now both the definition of F() and h(?) to solve for P(") yields
v = SHT - nshHTust - S)+ Q.
By Lemma A.8 one can rewrite the right-hand side to obtain

v = ShHTl - ahTust - 5) + Qs



> Y- @YU - S) + QshH.
However, ‘V(t,i')—w('c*) since V() is continuous. Hence,
va) = (Y- @HTUEES) + QY. V i=1,...k, and

< ST @)TUE™-S) + Q™)

= (M-S,
where the inequality follows since S is a strict convex combination of the distinct S"s, and Q(") is
strictly concave; and where the second equality follows by virtue of h(S?*) =" and the definitions of F(*)
and h(?). Consequently, this implies that insider-type T strictly prefers to demand S2b rather than demand
his equilibrium quantity and obtain utility V(t"). But this is a contradiction. Therefore, dV(7) is a
singleton for every 7.

We now show that F(S)=f(S), so that by fact (b) of Appendix B, F(?) is convex. Choose any S,
and 1edf(S). Then by fact (d) of Appendix B, SedV(t)=m(t). But dV(1) is a singleton, so that
{S}=m(t). Consequently, by fact (c) of Appendix B, {S}=m(1)=M(7) and F(S)=1(S).

Next we show that every S is a peak. Choose any Sy, and any Ty € f(Sy). Then by (d)(i) of
Appendix B, Sy € m(ty). But this then implies that M(tg) = m(tg) = {Sy}. Hence, S is a peak.

Being convex, f (and hence F) is differentiable almost everywhere (Rockafellar [24], Theorem
25.5) so that by Proposition 4.3, the outsiders’ beliefs conditional on S are a point mass on vF(S) for
almost every S.

Finally, we must derive the differential equation. But this has already been explained in the main

text in the discussion following the statement of Proposition 4.4. Q.E.D.
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Appendix B
The following is a list of facts that are referred to in the text, all of which are taken from Rockafellar [24],

denoted [R].

Facts:

(a) V() is convex. [R] Corollary 12.1.1, page 103.

b f(*) is well defined, convex and f(S)<F(S) for all S. [R] Theorem 12.2, page 104.

© If Se M(7), then (i) Sem(t) and (ii) f(s)=F(S). [R] Theorem 12.2, page 104. Consequently, for
allt

V() = max S Tt-F(S) = max S Tt-f(s).
S S

d) (i) m(t)=0V(7) for every 1.

(ii) Sem(7) if and only if 1€ of(S). [R] Theorem 23.5 page 218.
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Footnotes
1.0ur analysis also relates to that of Chowdhry and Nanda [9]. They present a Kyle type modcl in which
a single security trades within different exchanges. The key feature of their model is that market makers
do not observe prices on competing exchanges. Here there are several different securities which trade in
a single market and their prices are common knowledge.
2.Since stability (Kohlberg and Mertens [18]), universal divinity (Banks and Sobel [4]) and Cho-Krep’s
never a weak best response criteria (Cho and Kreps [8]) all imply the D1 criterion, any of these
refinements are compatible with our results.
3.Throughout the paper we maintain the following convention when the possibility of confusion might
arise. Boldface refers to a function (or random variable) while normal face refers to the value taken on
by the function (or random variable).
4.The status of our Walrasian market-maker is identical to that in traditional models of general competitive
equilibrium. She is not an agent within the model, but merely a convenient expository device. Both
Glosten and Milgrom (13] and Kyle [19] also employ a market-maker in this same spirit. Indeed, the
market-efficiency condition they impose on their equilibrium price schedule can be derived from our
market-clearing condition by setting ¢ = 0.
5.This is in rather sharp contrast to the purely competitive case in which (fully revealing) equilibria
generically do exist (see, for instance Duffie and Shafer [10]). Indeed, when nominal assets are present
in a competitive setting there are a plethora of non fully revealing equilibria as well (see Mischel,
Polemarchakis and Siconolfi [22] and Rahi [23]).
6.Inferences resulting from equilibrium signals are 'disciplined by Bayes’ rule.
7.Strictly speaking, this is not precisely the property which is associated with the D1 criterion. The
difference lies in our use of every rather than some particular. Consequently, the difference renders our

ultimate restriction even more compelling. In addition, our restriction is then formally weaker than the
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standard D1 criterion. Although this formal distinction is present, we’ve nonetheless chosen to use the
same terminology. Of course, all our results hold a fortiori if one employs the standard D1 criterion.
8.The D1 criterion also requires that every member of T can, in fact, by deviating to S, be made at lcast

as well off by some price response of the market-maker as they would have been in equilibrium. But in

our model this is almost always trivially the case since for any Sy # S, any insider-type can be made

arbitrarily well off by an appropriately chosen price. And the case in which S, = S does not need to be

considered for our purposes.

9.The support of a probability measure is the smallest closed subset assigned probability one.
10.The appropriate value of b is (I-U™)™! (ATS + ¢U™'Z,1). Since, by Lemmas A.1 and A.2 of Appendix,

A, U is diagonalizable with eigenvalues between zero and one, and nonsingular, (I-U")'l is well-defined.
11.Given any nxn, symmetric, positive definite matrix, one can perturb the n(n+1)/2 elements along the
diagonal and above in an arbitrary fashion while adjusting the elements below the diagonal to retain
symmetry. If such a perturbation is slight enough, then the resulting symmetric matrix will also be
positive definite. Consequently, the set of nxn, symmetric positive definite matrices is an open, nonempty,
convex cone in R™™*1/2, Likewise, the set of parameter values ¢, 6, Z,» Zy» and Z, that are feasible in
our model constitutes an open, nonempty, convex cone in R? * 381D/22  Accordingly, statements about
openness, closedness, or Lebesgue measure are all with reference to the usual topology in [2 + 3n(n+1)/2]-
dimensional Euclidean space.

12.Note that because P(-) is an equilibrium price schedule, this maximization problem is well defined for

every T.

13.See, for instance, Rockafellar ([24], pages 102-104). But note that F() need not, at this point, be

convex.
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14.Appendix B contains several facts from convex analysis that we refer to throughout this part of the text.

These facts are labeled (a) through (d).
15.Note that the converse need not be true since M(t) being a singleton does not imply that m(7) is.

16.Note that this does not imply that f(*) is differentiable. For instance, consider the one variable

function £(S) = S2 for S 2 0 and £(S) = 252 for S < 0 and note that every S is a peak for f().
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