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Abstract

This paper constructs a simple overlapping generations model with money and
production in an environment of monopolistically competitive firms and an increasing
returns to scale production technology. Within this framework symmetric stationary
sunspot equilibria are generated without requiring the assumption of gross complemen-
tarity between future consumption and current leisure. Output fluctuations may also
be highly persistent in this model. Journal of Economic Literature Classifica-
tion Number: E32.
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1 Introduction

There has been a recent interest in the notion that extraneous uncertainty could be a factor
in generating economic fluctuations. Equilibria in which this occurs are often referred to as
sunspot equilibria. Some of the early research in this area included Shell [15], Azariadis
(2!, Cass and Shell [5], Spear 18], and Azariadis and Guesnerie [3]. Much of this research
concentrated on finding conditions for the existence of sunspot equilibria in an overlapping
generations (OG) economy.

A particularly notable contribution to this literature was Azariadis [2]. Azariadis con-
structed an OG model with money and production and found that a necessary condition for
the existence of sunspot equilibria is that future consumption and current leisure be gross
complements, i.e. the supply of labour schedule must be backward bending. Azariadis also
concluded that in a model where the price level follows a simple two state markov process,
the existence of sunspot equilibria implies the stationary transition probabilities associated
with the markov process sum to less than 1. This would suggest a low level of persistence
in aggregate output.

Although Azariadis demonstrated the existence of sunspot equilibria, the afore mentioned
conditions raise some doubt as to the importance of such equilibria. The main concern is
that the conditions of gross complementarity and a low level of persistence in output are not
well supported em;;irically. For instance, to achieve a backward bending supply schedule,
the income effect of a wage increase must dominate the substitution effect. However, in most
empirical studies on labour supply, this is shown not to be the case.! Furthermore, researchers
such as Campbell and Mankiw [6] and Phillips [14] suggest that aggregate output contains
a unit root which would imply output fluctuations are highly persistent.

For these reasons, a number of authors have tried to find a more satisfactory environment

for which sunspot equilibria could exist.” This analysis generally relies on the presence of



market frictions to prove existence. For instance, Howitt and McAfee {10] derive sunspot
equilibria in a model with transactions externalities, Woodford [21] creates sunspot equilibria
by using borrowing constraints in an infinitely lived agents model, Chatterjee, Cooper and
Ravikumar. {7] develop an economy with strategic complementarity in entry decisions to
derive sunspot equilibria, Weil [20] demonstrates the possible existence of sunspot equilibria
in a model with an increasing returns to scale storage technology. None of these works
require the above mentioned assumptions.

The purpose of the present paper is to show that stationary sunspot equilibria can exist
in an OG model without requiring the assumptions of gross complementarities and a low
level of persistence in output. The usual simple OG model with money and production is
presented with the exception of there being monopolistic competition in the product market
and increasing returns to scale in the production technology.

That a model with monopolistic competition in the product market and increasing returns
to scale in the production technology can give risé to sunspot equilibria should not be
surprising. Such a result is consistent with what Shell [16] refers to as the Philadelphia folk
theorem; models that incorporate market friction through which the existence of non-optimal
equilibria is made possible, also admit the existence of sunspot equilibria. As mentioned, the
works by Howitt and McAfee; Chatterjee, Cooper and Ravikumar; Woodford and Weil, all
rely on market frictions to demonstrate the exi'stence of sunspot equilibria. This is consistent
with Shell’s conjecture. Other recent works for which the presence of market frictions leads
to the existence of sunspot equilibria are Shell and Wright [17] Which examines an economy
with nonconvex consumption sets and Aumann, Peck and Shell 1, who give examples of
sunspot equilibria in a model with asymmetric information.

Models with market frictions similar to those used in the present paper can be found
in Kehoe, Levine and Romer {12], and Spear (19}, which introduce a production externality

in a dynamic capital accumulation model as well as Peck and Shell [13], which examine an
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imperfectly competitive economy. These articles show that as a result of introducing such
market frictions, previously determinate equilibria become indeterminate; sunspot equilibria
can exist.

For the present model, the presence of monopolistic competition and increasing returns
to scale leads to the possible existence of multiple steady state equilibria. These steady
state equilibria can be Pareto ranked. The existence of multiple steady state equilibria
allows for the generation of sunspot equilibria as randomizations between allocations in the
neighborhood of these steady states. Such sunspot equilibria do not rely on the assumption
of gross complementarities, nor do they lead to a low level of persistence in output.

The remainder of the paper will proceed as follows. Section 2 presents the model and
discuses the agent’s problem as well as defines a perfect foresight equilibrium. Section 3
examines the possible existence of multiple equilibria. Section 4 defines and constructs
sunspot equilibria as randomizations between allocations in the neighborhood of steady state

equilibria. Section 5 gives some summary remarks.

2 The Model

Consider an overlapping generations economy populated by a continuum of two period lived
agents born in each period. Normalize the size of the population to 1. Time is discrete
in this economy with t=0,1,...00. Each agent j is endowed with one unit of leisure and
possesses a technology from which output can be produced. Agent j can only produce a type
j consumption good, but is free to consume the goods of all other agents. The technology
at date t is given by yl = f(n{ ) where y! denotes agent j’s output at date t, n! denotes the
level of labour used by agent j in time t production, and f(-) is an increasing returns to scale
production function; i.e. f/(-) > 0, f/(-) > 0. There are also a continuum of initial old, each
endowed with 1 unit of fiat money.

To introduce monopolistic competition to the model, we follow Blanchard and Kiyotaki (4]
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by adopting constant elasticity of substitution (CES) specifications in utility. It is assumed
that utility is additively separable in consumption and leisure, with agents producing when

young and consuming when old. The preferences of each agent are thus given by:
V(C{H: n;') = "’(C{H) - g(ni)

where ¢, = [fol(cfﬂ(i))g;—ldi]?%? is a CES consumption bundle, ¢, (i) is the consumption
of good i by agent j at date t+1, and the parameter § is the elasticity of substitution between
goods in utility.? For notational convenience, define k(y) = g(f~'(y)) with f~'(y) > 0 and
f""Yy) < 0. The standard concavity, differentiability and continuity conditions are imposed
on u(+) and —g(-) with g/(y) — 0 as y — 0; g/(y) — o0 as y — f(1); g(y) > 0; w/(y)y < o0
as y — 0; There is also the following assumption imposed on the production function.

Assumption 1: fr}(y)y<ooasy—0; f71(0) =03

Finally, define P, = [jol(pg(i))""di]l'!-'v as the nominal price index at date t. Since there
is a continuum of agents, each agent taking the actions of others as given is equivalent to

taking P, as given.

2.1 The Agent’s Problem

Agent j’s problem is then to choose levels of c{H;yf : n{ ; p‘{ , S0 as to maximize his utility
subject to a budget constraint and the constraints on technology. The agent takes the
nominal price index as given and faces a downward-sloping demand schedule for his product
that is derived from the optimization problems of the other agents. The budget constraint

is given by;
i 1 e
pivd = [ pea(ideiidi = 0,
where p{ is the price of agent j’s product at time t. The technology constraints are

¥ = f(n])



and
0<ni<l.

Finally, the demand curve for agent j’s product is,

()~
yi = Bl
t P‘I ]

It should be noted that the CES specification in utility implies each agent will face a
constant elasticity of demand for his product and sell his product at a constant markup of
price over marginal cost. This result can be derived directly from the demand curve for agent
j’s product. Clearly the elasticity of demand is %.5:— = —8 which is constant. Furthermore,
marginal revenue is given by %:‘;—:y, +p = pg[ﬂg—l]. Equating marginal revenue and marginal

cost and rearranging terms implies p; = [EZ—I]M C. The term [&] represents the constant

markup coefficient.

2.2 A Perfect Foresight Equilibrium

The solution to the agents problem is derived in appendix A. From the necessary first order

conditions for an optimum we have;
; ; [ 1 A\1-8 gyt J 0 -1
WD) = wl(da) [ (o) i Tp= ) 1)

To simplify the analysis, we can focus on symmetric equilibria. In a symmetric monetary

equilibrium it must be that p,y, = 1 (i.e. the money market clears). Thus ( 1) implies;

ki(ye)ye = [0;1:"’(3/:4-1)2‘/&1- (2)

Equation ( 2) simply suggests that each agent will maximize his welfare by equating his
marginal benefit from production to his marginal cost from work. This is similar to the first
order necessary condition derived by Azariadis. In Azariadis, agents maximizing welfare

implied the equation u/(ye+1)ye+1 = ¥:9/(ye) must be satisfied for all t. However, in the
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case of the present model, the addition of the markup coefficient reflects the fact that the
monopolistically competitive firm is able to sell his product at a higher price. Furthermore,
the marginal cost of labour function now includes the effects of the increasing returns to scale
production technology. It is this difference that allows for the possible existence of multiple
steady states. This issue shall be examined at further length in the ensuing section.

It should be noted that for equation ( 2) to represent a maximum solution, the second
order necessary conditions must be satisfied. The second order necessary condition for an
optimum is:

ult()(—)*[—— —[—] - kMy)<0 3
()(PH-I) L 0 ] 9P¢+1y¢2 [ ] ( ‘) ( )
For notational purposes we will refer to this condition as (S.0.C)< 0.

Since our interest is in steady state equilibria, we can evaluate ( 3) at the steady state

optimum. It can be shown that the second order necessary condition evaluated at a steady

state optimum is satisfied! iff:
Ole, — e — [eu + 150 (4)

where ¢, is the elasticity of the marginal utility of consumption and ¢, is the elasticity of
the inverse of the marginal product of leisure plus the elasticity of the disutility of leisure.
By assumption e, <0and ¢, $0. For what follows, it will also be assumed that e, > —1.
This is the assumption that consumption and leisure be gross substitutes.’
With this we are now able to define a perfect foresight symmetric monetary equilibrium
(PFSME). A PFSME is a pair of sequences (p:)s2q,(¥e)i2o such that;
i) equation ( 2) and ( 3) are satisfied for all ¢ > 1
i) pye = lforallt
iii)  yo €0, f(1)]; i.e. the initial level of output is feasible.
In the following section, our focus will be in finding the conditions for which multiple

steady state equilibria exist. It is necessary that our candidate equilibria satisfy equation
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4 above. However, satisfying equation 4 (along with equation 2) will only guarantee the
existence of a local maxima. To assure the existence of a global maxima, we will assume
that the objective function of an agent, given the actions of the other agents, is concave. That
is, the second order derivative of the function V(y; P) = u{y‘+l P%l] — k(y) is nonpositive,
where P is the steady state price index representing the actions of all other agents. More
explicitly,

Assumption 2: ull(-)["%l]zy;a?‘ P - %Q[Q-;l]P:olyﬂ%:u — kn(y) < 0 for all ye[0, £(1)].

It is now possible to characterize the conditions under which multiple equilibria may

exist.

3 The Existence of Multiple Steady State Equilibria

As was mentioned, the presence of monopolistic competition and increasing returns to scale
in an OG model creates the possibility of the existence of multiple steady state equilibria. To
illustrate this possibility for the present model, define the function z(y) = [%‘-l]ul(y)y—kl(y)y.
Then if y is a steady state equilibrium, it must satisfy z(y) = 0.

Furthermore, by assumption 1 and the assumptions on preferences we have, z(y) 2> 0 as
y — 0 and z(y) < 0 as y — f(1). Therefore z/(y) must be nonpositive for at least some
values of ye[0, f(1)]. However, since 2/(y) = [ |ur(y)[1 + €u] — K(y)[1 + €)$0, 2(y) may
also be upward sloping for some ye[0, f(1). Note, at a steady state equilibrium, z/(y) > 0 if
and only if €, > €, and 2/(y) < 0 if and only if £, < €. With this information, it is possible
to graph various potential configurations of the function z(y). This is done in figure 1.

In figure la, z(y) is constructed so that there exists three values of y with 2(y) = 0. These
three values; y*,y™", and y*~ represent possible steady state equilibria.® In figure 1b, z(y) is
constructed so that y~ is the only equilibrium. What makes multiple steady state equilibria
possible in figure la and not in figure 1b, is the fact that at y™", 2(y) is positively sloped.

Since z(0) > 0 and 2(f(1)) < 0, it then must be that z(y) = 0 for at least one value of y
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less than y** (in figure la y*) and at least one value of y greater than y™~ (in figure la y™).
Furthermore, at y~ and y"™", the second order condition for an optimum is satisfied, hence
y~ and y"*" represent steady state equilibria. To state more formally a sufficient condition
for the existence of multiple steady state equilibria we offer the following proposition.
Proposition 1: Multiple steady state equilibria exist if” there exists a §e 0, f(1)' such

that;
i) () =0
1) eu(¥) > exl(¥)

Proof: Let §¢[0, f(1)] satisfy i) and ii). Let § > 0 be an arbitrarily small real number.
Condition ii) implies z/(§) > 0. But then i) implies z(§ — §) < 0 and 2(§ + ) > 0. Further-
more, we have z(0) > 0 and 2(f(1)) < 0. Therefore, there must exist a y* < § such that
z(y") =0 and €,(y") < €x(y") and a y™~ > § such that z(y*"") = 0 and €,(y™"") < ex(y™").
Hence y* and y™" both represent steady state equilibria. Q.E.D.

At this point, it is interesting to examine the significance of increasing returns and mo-
nopolistic competition for the existence of multiple steady state equilibria. First, if instead
of exhibiting increasing returns to scale, the production technology exhibited constant re-
turns to scale, the function z(y) would be written as z(y) = [ u/(y)y — g/(y)y, so that
2(y) = [ (y)[L+e.] - g/(y)[1 +€4) < 0. In this case z(y) could only be negatively sloping
since, by the assumption on preferences, €,(y) < €4(y) for all y. But then an equilibrium
such as y™* in figure la could never exist in the constant returns to scale economy.Therefore,
in the present model, the assumption of increasing returns to scale is crucial for the existence
of multiple steady state equilibria.

Secondly, if the market structure was perfectly competitive, the second order condition

for an optimum evaluated at a steady state y, would be satisfied if and only if £,(y) < =i(y).

(o

w
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This would then tend to rule out points such as y™ in figure la as equilibria since the second
order condition for an optimum would be violated at y=.2

It is also possible to comment on the local stability of the steady state equilibria y*, 3™, y™"".

. . . dyy wiye-1) 2t 1 +eu(yes )]
For this economy, the law of motion can be written as ——Ldym = odram For

steady state optima such as y" and y™** we have -ﬁﬁ—‘ < 1 since € > €, at y" and y™*". Thus
equilibria such as y* and y**" will be locally unstable.

For equilibria such as y™°, if 1 + €& > 0, then d—:ﬁ_x > 1 and hence y= will be locally
stable. This follows from the fact that e, < €, at y*". If 1 + &, < 0, then y™ will be locally
stable if e, + &, > —2. However, if €, + €, < —2, ¥~ will be locally unstable.?

As a further note, in relation to Azariadis and Guesnerie (1986), periodic equilibria of
order two (2 cycles) may exist in this model, depending on the particular stability properties
of the equilibrium law of motion. For instance, if 1 + €x(y™) > 0, then the equilibrium
law of motion would be positively sloped for all feasible values of yo and in particular, it
would be locally stable at y™*. In this instance, 2 cycles could not exist as a positively
sloped law of motion would rule out the possibility of any oscillation in an equilibrium
output path (i.e. either yo > 31 2.2 Joryo < y1 <..< %5 where § represents a steady
state equilibrium.) If on the other hand 1 + €4(y™*) < 0 a 2 cycle would exist only when
x(y=") + €u(y™) < =2 (i.e.y™ is locally unstable). In this case the law of motion would be
sufficiently backward bending so as to generate the possibility of oscillation in the equilibrium
output path. Further comment regarding 2 cycles and their relation to sunspot equilibria
will be given in the following section.

In this economy, increasing returns to scale and monopolistic competition are also sig-
nificant features for the existence of sunspot equilibria. As shall be seen in the following
section, the existence of steady state equilibria such as y™ are required for the existence of
sunspot equilibria in which leisure and consumption are gross substitutes. As was stated

above steady state equilibria such as y** exist in this economy because of increasing returns
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to scale and monopolistic competition.

3.1 Numerical Example

The following is a numerical example of an OG model in which consumption and leisure are
gross substitutes and multiple steady state equilibria exist. Consider the following economy:

u(y) = ”ll—_.;’,g(y) = .25y% - .25y* + .65y% f ' (y) = 5&2 with ¥ = .06 and a = .5 Note,

a

f(n) =n? and f(An)? = A%n? = A*f(n) for A > 1. Hence f(-) exhibits increasing returns to
scale. All agents are identical for all t.

The problem at date t is thus;

[T’%y‘].u 4 2
max A= 91 25y, + .25y; — .65y..

The first order condition is thus;

_oe8 -1
[PI:I] 08 . |-y + 5y — .65=0.

Letting § = 2 it is easy to verify that there exists multiple equilibria. Solving the first
order condition for the steady state relative optima yields the solutions, y=.0154; y=.2355;
y=.4872. The second order condition is given by —.265y~'% — 3y% + .5 < 0. It is easy
to show that all three candidate equilibria satisfy this condition. Furthermore, we have

0-1)(1-+ ¥=1

V(iy; ;) = & P-i'¥ _ k(y). Since P = 1/Y; we have P, = .0154; P, = .2355; P; =

1-v

.4872. Therefore, after the proper substitution of parameter values we have,
Vir(y; P,) = 2491 4,975 - 3y* + 5foralli = 1,2,3

where A; = .1496, A, = .5391, A; = .7587. It can be shown that V1/(.;.) < 0 for all i and for
all feasible y so that assumption 2 is satisfied. It is also easy to show that the optima can

be Pareto ranked with A(.4872) > A(.2355) > A(.0154). '°

11
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4 Sunspot Equilibria

To show the existence of a sunspot equilibrium (SE), we must first introduce extraneous
uncertainty into the model. Let /, be the information set available to all agents at date t;
I, contains all historical elements in the economy up until and including date t. Let s, be a
particular element of I,. Therefore, following the equilibrium concept of section 1; a pair of
sequences of random variables (p)s2o (¥:)i2 1s a SE if:

1) Eluw(yert )yers [B5H12e] = kr(yelse))we(se)

i) Efun(-)(2)2(g5L)2 - (811 — ki(y(s,)) < O

112)  pe(8e)ye(se) = 1 for all s,.

w)  yoel0, £(1)]

Because our interest is in finding SE that do not rely on the assumption of gross comple-
mentarity, we follow Azariadis by limiting ourselves to solutions with the markov property.
That is ones for which [, = y,. In particular let ¢;=Pr(y,y1 = % | v =w) fori € (1,2)
so that output follows a two state markov process. Also define W(y,+1)=[’4;—l]ul(y¢+1)yt+1
and K(y:) = k/(y.)y.. Focusing on symmetric equilibria, a symmetric stationary sunspot
equilibrium (SSSE) can then be defined as a (g1, g2, ¥1,y2) such that;

i) aW(n)+(1-q)W(y) = K(n)

i) (1-@)W(n)+ @W(y) = K(v)

i) Tt Wiy [wb — 1) - 0W (3:)! + (1 — @)y Wi(y;)ly,0 - 1] - OW(y;)]] - K1(yi) <0

,7=1,2 1#£j

w) ¢€0,1] and y €0,f(1)]; i€ (1,2)

Conditions (1), (i1) and (iii) assure the local maximization of expected utility where (iii)
represents the second order condition. Condition (iv) assures that ¢; and y; are feasible.
Note, conditions (i) and (ii) are equivalent to;

_ Wiy2) - K(y)
T W) - W)’

12



g = Klya) = W(y)
2T Wi(y) - Wwm)

Furthermore, W/(y) > 0 so that consumption and leisure are gross substitutes.!!

To illustrate the possible existence of SSSE we follow Howitt |9} and Howitt and Mcafee
[10] and generate SSSE as randomizations between multiple steady state equilibria. The
benefit of constructing SSSE as randomizations between multiple steady state equilibria is
that both the stationary transition probabilities ¢; and ¢, can be shown to be close to one
in value. This contradicts the required assumption made in Azariadis that ¢, + ¢, < 1. As
stated, this assumption implies a low level of persistence in output. However, in the present
model, because q; and g; can be close to one, SSSE can be generated in an economy in which
output fluctuations are highly persistent. -

With this in mind, the objective of the following exercise is to show that given a (y1,q:)
and a (y2,¢2), there will be solutions § and y to the agent’s maximization problem such that
§ = y; and § = y,. Since the model may posses steady state equilibria such as y~ and y™*~
from figure 1a, we know there are solutions § = y* and y = y*™" with ¢ = ¢, = 1. The
implicit function theorem, if satisfied, can then be applied to find solutions for which ¢; < 1
and ¢; < 1. This solution will represent a SSSE. Therefore, to achieve this objective, define;
3y, ¥2r 1) = argmazeys qu(yTyl) + (1- 0)uy Ty 1) - k(y)

. o1 4 o=y 132
¥(¥1,¥2,q) = argmazeys qu(y @ y3)+(1—@)u(y® .° n) - k(y)

We want to look for a solution to the following two equations:

Fi(ly,92:90,¢9) =% - §(y1,92,01) =0
() _
F(y,v2,01,9) =¥ — 931,92, ¢2) = 0

Let y* and ¥y~ be two equilibrium values (such as those in figure la). Clearly at ¢, =

g2 = 1, y" andy™" solve (*).

13



We want to show that the conditions of the IFT are satisfied for y* and y*=". If the
conditions are satisfied, then for some neighbourhood around y* and y~** there will exist
other values of y that satisfy (*).

Thus , we are required to show that;

(1) Fy and F; have continuous partial derivatives with respect to y;,¥2,q1,¢2 at

("3, L1).
(i1) at (y~,y""",1,1) the jacobian of (*) does not vanish.

Condition (i) is satisfied by the assumptions on preferences. To show that condition (ii)
is satisfied, note that §(-) by definition solves;

-1 -1

Iy ot + (1= g)w(—= 19— k(o) = 0 (5)

qlu’[

Evaluating ( 5) at (y",y™"", 1,1), we have;

oF, _ (S.0.C] - %[Q;—‘]“—'Sf—'lWr(y-)
oy SO.C]

which is strictly positive, since [S.0.C.] £ 0 and Wr(y") > 0 by assumption.

Furthermore, y by definition solves;

awl——= ¥ v + (1= @)l |17 5 - b(y) = 0 (6)

Evaluating ( 6) at (y~,y""",1,1) implies;
0F, {5.0.C] - {5 e wi(y )
8y, (5.0.C]

which is also strictly positive.

Moreover, g—y: = %'f = 0 when evaluated at (y*,y""", 1, 1). Hence the jacobian of (*) is;
oF, 8F,
Jij=—.—>0
M Oy Oy,

14



so that condition (ii) is satisfied.

Therefore, by the IFT, there exists a neighbourhood N around (y~,y"™",1,1) determined
by | §;—1|< 6| 9i—wel<e (6>06>0) i=1,25=1,2k=x,%=*xsuch that
for each (g, §,) where | §; — 1 |[< §; there exists a unique solution (g, 2) of (*) such that
| % — ye |< €&. It is (§1, 2, @1, G2) that represents an SSSE of the model.

At this stage , the existence of SSSE as randomizations between allocations in the neigh-
borhood of two steady states has been demonstrated. However, as previously claimed, for
SSSE to exist in this economy, a y such as y™~ in figure 1a must exist. That is, SSSE only exist
as perturbations around points such as y** This claim can be argued as follows. If a quadruple
(¥1,%2,41,92) is to represent a SSSE, both ¢, and g, must be less than one.!? From the defi-
nition of ¢, and g, this would require W(y,) < K(v,) and W(y,) > K(y.), or equivalently,
(& u(y1) < k/(y1) and [&52]ul(y2) > kf(y:). Suppose y° < y; < y2 < ™" as is illustrated
in figure 2. From figure 2 and the definition of 2(y), we see that at y,, W(y1) < K(1) as
required. However, W(y,) < K(y.), which implies g, > 1. Hence,(y1,¥2,41,¢2) could not
represent a SSSE. In fact, any y, such that y* < y2 < y™ or y, > y™"~ could not be a part of
a SSSE since for such a y,, g2 > 1. Therefore for y, to be a part of a SSSE, it must be that
¥~ <y, < y*"". By a similar argument, only y; such that y~ < y; < ¥*" could be a part of a
SSSE. These restrictions imply SSSE exist only as perturbations around a point such as y™".

As was noted in the previous section, the presence of increasing returns to scale is required
for points such as y*~ to exist. Therefore, in this economy, the assumption of increasing
returns to scale is necessary for the existence of SSSE.

Furthermore, monopolistic competition makes it more likely that y= will be a steady
state equilibrium. Since SSSE are constructed as randomizations between multiple steady
state equilibria, if y™" is a steady state equilibrium, then in a neighborhood around y** SSSE
equilibria will exist. If y™ was not an equilibrium, the set of SSSE in the model would be

confined to points in the neighborhood of y~ and y**=. Therefore, the presence of monopolistic
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(3]

competition expands the set of SSSE in the economy.

As a final note, it was argued in section 3 that 2 cycles would exist only if the equilibrium
y~" was locally unstable. Since our construction of SSSE did not require any conditions on
the stability of the equilibrium law of motion, it is possible for SSSE to exist in an economy
for which 2 cycles do not exist. Therefore, in this model, the existence of SSSE does not
depend on the existence of 2 cycles as was the case in Azariadis and Guesnerie [2].

Example: Continuing with the example of 3.1, first note that W(y) = .5y so that
Wi(y) > 0; i.e. consumption and leisure are gross substitutes. To show the existence of a
SSSE, let y; = .0154 + € and y, = .4872 — ¢, with e = 0.01. Then from the definitions of ¢,
and g, we have g, = .998473 and g, = .994634. This then represents a SSSE. Furthermore,

since both ¢, and ¢, are very close to 1, output fluctuations will be persistent.

5 Summary Remarks

Within a simple overlapping generations model with money and production, it is possible
to experience sunspot equilibria without requiring the assumption of gross complementarity
between future consumption and present leisure. This is accomplished by introducing a mo-
nopolistically competitive product market and increasing returns to scale in the production
technology to the model. The presence of monopolistic competition and increasing returns
to scale allow for the possible existence of multiple steady state equilibria. Sunspot equilib-
ria can then be constructed as randomizations around the multiple steady states. This is
done without the gross complementarity requirement. It is also the case that the stationary
transition probabilities may be close to one so that output fluctuations are highly persistent.

Finally, the existence of 2 cycles is not necessary for the existence of SSSE in this model.
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6 Appendix A

This appendix derives the solution to the individual agents problem as was represented by
condition ( 1) in the text.

The problem faced by agent j at date t is:

max V=uld,,)-gn
<c{“y' N (¢+1) g( t)

subject to
i) ¥l = f(ni)
.. y y l . y . .
i) Ppiyi — /0 Per1(i)ciyi (3)di = 0
i) 0<ni<l
. i L P P
) dp = ([ ()T i

0
The lagrangian for this problem is then,

o :‘233)1 o> A= 'U-([/ (‘-Ja-l ]’ ] - k(yJ) + ’\J’tyt /0 Pt+l(i)‘3{+1(i)di]

The N+2 first order conditions, assuming an interior solution, are thus;

w(ed) [ (@) TR = peali) i, 1 (41)
k(yl) = ’\[jp;yc"'l’u (A42)
p{yf—‘/:p,ﬂ(i)cfﬂ(i)di =0 (A3)

Equations (Al) and (A3) imply:
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duth) = PERel) ()

for any good k. Noting that in a monetary equilibrium
[ruitiei = 1
the supply of output by agent j is thus,

~ g o @) -
o= [did = T (43)
From (A5) we have -:—;; = -g,i. Substituting this into (A2) and solving for A from (A1)

gives, equation ( 1) as outlined in the text.
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7 Appendix B

Appendix B supplies proofs to statements given in the text.
Proposition 2: Equation ( 3) evaluated at a steady state is satisfied iff 6iew — Ek) —
[ew+1] L0.

Proof: At a steady state ( 3) can be written as;

w5+ E%(yl)[l%f] - ki(y) <0 (B1)

Furthermore, at a steady state u/(y)[%5*] = k/(y) so that (B1) can be rewritten as;

—ki(y) wi(y)y
SO g) 41y - ity < (B2)
But (B2) can be written as;
k'(y) 1 oun(y)y ki(y)y
3 gy 41 - L <o (B)

By definition we have e, = “74¥ and €, = —,:',%’l)! Thus, (B3) is true iff
1
—-B'[Eu,(l - 0) + l] — €, < 0.

which when rearranged implies 8[e., — €] — [€w + 1] < 0 as required. Q.E.D.
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Footnotes

1. See Killingsworth [11] for a2 summary of such studies.

2. As in Blanchard and Kiyotaki [4], 8 > 1 is required to generate an equilibrium.

3. It is basically assumed that f~!(y) has the same properties as u(y). This assumption
is satisfied fora general class of functions. For instance f~!(y) = y°; 0 < a <1 satisfies
assumption 1.

4. The proof of this statement is given in appendix B.

5. In this model, future consumption and current leisure are gross substitutes if _T:?:T >

0. But—gdm = 4ol 5 g iff 1 ¢, > 0.

6. Fory~,y™", and y"*" to be equilibria, their respective second order conditions must also
be satisfied. For y~ and y™*" this is trivially true. This follows from the fact that z/(y) < 0
at y* and y**" so that ¢, < &, and hence equation 4 is satisfied. For y.. €, > €, so that
equation 4 may not be satisfied for all y.

7. While proposition 1 gives a sufficient condition for multiple equilibria, it also represents
a necessary condition if ii) is rewritten with a weak inequality. This distinction must be made
so as to rule out the possibility of z2(y) = 0 and €, = €, with y being a point of inflection.
This case is illustrated in figure 1b.

8. It is possible that €,(y) = ex(y) at y™" so that the second order condition is satisfied
and y** is an equilibrium.

9. Note, g4 = €5 +€4-1. If f~}(y) is of the form y* with0 < @ < 1, then €41 = (a—1) >
—1. But since ¢, > 0, & > —1 implying equilibria such as y * = would always be locally
stable.

10. The fact that the steady state equilibria can be Pareto ranked is consistent of all
models with strategic complementarities and spillovers. For a more detailed discussion see
Cooper and John [8].

11. This is equivalent to the assumption that e, > —1 as was stated previously.
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12. This is excluding the trivial SSSE for which ¢, = ¢, =1 and y; and y, are steady

state equilibria.
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