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Maximum Likelihood Estimation in Empirical Models of Auctions

Stephen G. Donald
University of Florida, Gainesville, Florida, USA 32611

Harry J. Paarsch
University of Western Ontario, London, Ontario, Canada N6A 5C2

In applications of game theory to auctions, researchers assume that players
choose strategies based upon a commonly known distribution of the latent
characteristics. Rational behaviour, within an assumed class of distributions
for the latent process, imposes testable restrictions upon the data generating
process of the equilibrium strategies. Unfortunately, the support of the distri-
bution of equilibrium strategies often depends upon all of the parameters of
the distribution of the latent characteristics, making the standard application
of maximum likelihood estimation procedures inappropriate. We present the
maximum likelihood estimator as well as the conditions for its consistency and
its asymptotic distribution.

1. Introduction

In empirical applications of game theory to auctions, researchers assume that the
distribution of latent (or unobserved) characteristics is common knowledge to the
players of the game. For example, in the independent private values model of an
auction, the distribution of valuations is known to all bidders. Moreover, each bidder
knows that his opponents know the distribution of valuations, and his opponents
know that he knows, etc.. Based upon their knowledge of the distribution of latent
characteristics, and given their realization from that valuation distribution, players
are assumed to choose bids which maximize their expected pay-offs from winning
the auction. Given this informational structure, the equilibrium of the game can
be characterized by appealing to a particular concept of equilibrium (e.g., Bayesian-
Nash).

The goal of some recent empirical research has been to determine if the predic-
tions of game theory are consistent with observed data. For example, Paarsch (1989,
1991, 1992) has proposed the following research strategy. He has noted that the equi-
librium strategies of players depend upon the distribution of latent characteristics,
and that the equilibrium stategies of players are random variables. If the distribution
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of latent characteristics comes from a particular class of distributions, then rational
behaviour within that class of distributions will impose testable restrictions upon
the data generating process of the equilibrium strategies. Within such a framework,
however, the support of the distribution of the equilibrium strategies often depends
upon all of the parameters of the distribution of latent characteristics, even when the
support of the latent characteristic distribution depends upon no parameters. The
implication of this result is that the standard application of maximum likelihood es-
timation procedures is inappropriate. In Donald and Paarsch (1993), we developed
and evaluated a piecewise pseudo-maximum likelihood estimator which is useful in
such situations. In this paper, we derive the maximum likelihood estimator, demon-
strate its consistency, and derive its asymptotic distribution which in many cases
is non-standard falling within the exponential family. Using Monte Carlo methods,
we compare the small sample properties of the proposed estimator with those of the
piecewise pseudo-maximum likelihood and non-linear least squares estimators.

2. Empirical Framework

To illustrate the particular class of estimation problems in which we are interested,
we model a sealed-bid auction as a non-codperative game.l We consider auctions at
which a known number of bidders n compete to perform a single task for a government
agency, with the lowest bidder winning the auction. We assume that the heterogeneity
across agents in the cost of performing the task can be described by a continuous
random variable ¢ which has the probability density function g(c) and the cumulative
distribution function G(c). Each player is assumed to know his own cost, but not
those of his opponents. The costs of players are assumed to be independent draws
from G(c), and G(c) is assumed to be common knowledge. We assume that bidders
are risk neutral with respect to winning the auction, and that the :*! bidder chooses
a bid b; to maximize his expected profit. Finally, we focus upon symmetric Bayesian-
Nash equilibria.

2.1. Deriving the Equilibrium Bid Function

To construct the equilibrium, suppose that the m = n — 1 opponents of player ¢ are

1 A reader who is unfamiliar with the auction literature will find the surveys by Milgrom (1985,
1987) as well as McAfee and McMillan (1987) helpful.
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using a common bidding rule f(c) which is increasing and differentiable in c. Since
costs are modelled as independent draws from a common distribution, the probability
of player ¢ winning with bid b; equals the probability that each of his opponents bids
higher because each has a higher cost

[1 - G(~ (&)™

Here ~1(b;) denotes the inverse of the bid function. Given that his cost ¢; is
determined before the bidding, player i’s choice of b; has only two effects upon his
expected profit

(b — &) - [1 = G(B~ (B))]™

The lower is b;, the higher is his probability of winning the auction [1—G(871(&))]™,
but the lower is his pay-off when he wins (b; — ¢;). Maximizing behaviour implies
that the optimal bid solves the first-order condition

[1— G~ G™ - s —eo(878) 11 — (8~ - L2 B —o. (2
Symmetry among bidders implies
= B(ci). (2.2)

Substituting (2.2) into (2.1), recalling that d3~1(b;)/db; = 1/8'(ci), and requiring
(2.1) to hold for all feasible ¢;’s, yields the following differential equation for 3:

Bl = GI™ - mB(Ag(e)[1 - G(A)™ " = —meg(c)[1 - G, (23)

Integrating (2.3), and imposing the boundary condition 3(c0) = oo, yields?

Jo [ = G)]™ du
= ()]m : (2.4)

Denoting c(;.n) as the ith smallest order statistic for a sample of size n from the
distribution of ¢, the winner of the auction will be the player with the lowest cost ¢(y.5)-
Because the winning bid function is monotonic in ¢(y.y,), its distribution is related to
that of the smallest order statistic for a sample of size n from the distribution of c.

Ble)=c+

2 In fact, simply imposing 8(c0) = oo is insufficient to guarantee a unique solution since adding
any constant a to that solution is also a solution. In this case, a = 0 is the appropriate
constant.



2.2. Strategy for Interpreting Data

One strategy for interpreting field data (see Paarsch 1989, 1991, and 1992) involves
exploiting the fact that (2.4) is a monotonic function of c; the lower is a player’s cost,
the less he will bid. Because the bidding rules are functions of the random variable
¢, the bids are also random variables and their densities are related to g(c). For
example, the density of 8(c) is

9(B~1(b)
w0 = gy

where 8'(c) is the Jacobian of the transformation of ¢ to (c).

The wihning bid is a simple function of the {¢;}% ;; thus, its density is related
to g(c). The density of the winning bid w = 8(c(1.n)), denoted h(w), is

(8 (w)
hw) = 5E(w)’

where
§(z) = n[l — G(2)]"g(2)
is the density of z = ¢(1.q).

Consider a family of distributions for ¢ which depend upon the parameter vector
8 = (61,02,...,0,). Without any loss of generality, let g(c) have support upon
the interval [0,00). Evaluating (2.4) at 0, the lower bound for c, implies that the
distribution of the winning bid, assuming that it exists, has support upon

[/:o[l - G(u;0))™ du, oo) = [$(6; m), 00).

(8, m) is the expectation of ¢(1.), the lowest order statistic from a sample of size
m; (0, m) is the equilibrium amount a player who had a cost draw of zero would bid
when playing against m opponents. Because the support of h(w;8, m) depends upon
the parameters of interest, the standard regularity conditions of Wald (1949) used to
demonstrate the consistency and asymptotic normality of the maximum likelihood
estimator no longer apply.

]
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An alternative strategy could be to abandon estimation by a method like maxi-
mum likelihood and to use some other procedure. For example, suppose that the jth
raw moment of w,

E[wj]=yj(0,m)=/ u)jh(w;O,m) dw j=1,2,...,
3(8,m)

has a closed-form solution, then the observed data w* can be decomposed as follows:
u)j=pj(0,m)+uj j=12,...,

where the expectation of u; is zero, while its variance depends upon m. The parameter
vector @ can then be estimated by non-linear least squares, for example.

A drawback of the non-linear least squares estimator of the parameter vector 8 is
that it may not be very efficient. Also, one would ideally like to have two estimators
defined in different metrics, with different probability limits under alternative dis-
tributional assumptions, to provide a basis for specification testing. Thus, knowing
how to implement the maximum likelihood estimator when the support depends upon
all of the parameters of the distribution appears to be an important and interesting
problem.3

2.3. Piecewise Pseudo-Maximum Likelihood Estimation

In Donald and Paarsch (1993), we developed a piecewise pseudo-maximum likelihood
estimator. The basic idea behind that method of estimation is as follows: Consider
a random sample of size T indexed by ¢t = 1,...,T. For any particular m¢ = m, the
lower bound function w(m) = $(#, m) can be consistently estimated by the smallest
w; over all of those observations with m; = m, denoted 1(m). Consider a partition
of the vector # into a scalar §; and the remaining (p — 1) parameters, denoted 6.
Suppose that the function (8;,802,m:) is monotonic and invertible, so we can write
61 = 01(02,w(m¢), m:). Treat (m;) as if it were the lower bound, and substitute it for
w(my) in 61 = 01(02,w(m;), my). 6 is now a function of §; and the data. Substitute
this function into the logarithm of the likelihood function and then maximize over 6.

3 Christensen and Kiefer (1991) have researched a similar class of problems which arise in the
estimation of structural models of job search. We believe that our work is complementary to
theirs.



The method is called “piecewise pseudo-maximum likelihood estimation” because the
logarithm of the likelihood function is bioken up into pieces depending upon the value
of the covariate m, and because we do not use a first-order condition to concentrate
the likelihood function.

In Donald and Paarsch (1993), we demonstrated that under fairly general con-
ditions the piecewise pseudo-maximum likelihood estimator is consistent. We were
also able to demonstrate conditions under which that estimator is distributed asymp-
totically normal. Aun interesting feature of the estimator is that its asymptotic dis-
tribution does not depend upon that of the preliminary estimator 1(m) because the
latter converges at rate T instead of the usual rate /7. In small samples, however,
some bias can be introduced by the pre-estimation errot in @(m). This problem is
most acute when Ty,, the number of observations with m; = m, is small, a situation
commonly encountered in practice.

Despite the computational attractiveness of the piecewise pseudo-maximum like-
lihood method of estimation, estimating 6, remained an issue. In general, several
different ways of estimating 6, exist. For example, for any m one could use

0p = 0,627, 1b(m), m),

where 62P'® is the piecewise pseudo-maximum likelihood estimator of . Alterna-
tively, one could use a linear combination of the é{”’s, or some order statistic of the
éf"s. None of these estimators appeared preferable to the others, and many factors
could influence ones choice; e.g., the nature of the lower bound function, the number
of auctions with n bidders, etc.. Also, a degree of arbitrariness existed in partitioning
the parameter space into (81, 82). Several different ways of doing this could exist, and
each would lead to different estimates depending upon the partition chosen. In Don-
ald and Paarsch (1993), we attempted to shed some light on these issues by examining
the performance of the different estimators using Monte Carlo methods.

Another drawback of the method is that it relies upon the presence of a partition
of 0 so that §(61,02,m) can be inverted. But when auctions have reserve prices,
(8, m) is often only defined numerically because it involves the truncated moments
of the latent cost (or valuation) distribution, see Paarsch (1991).

Yet another drawback of the method is that introducing continuous covariates
into the empirical framework often relied upon special structure in the problem at
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hand, and was sometimes impossible. To see this, suppose that, in addition to
the covariate my, a vector of other covariates Z; is also considered important in
determining bids. One way this might happen is if the distribution of ¢ depends upon
Zy; ie., G(¢;0) = G(c;0,Z;). The lower bound will then be a function of the Z;’s
too. That is,

S(0,4;m,Zs) Swy t=1,...,T,

where the ¢ is an unknown parameter vector of dimension ¢ which relates to the Z;.
When the elements of the Z; are indicator variables, one can apply the methods of
Donald and Paarsch (1993) with only trivial modifications to estimate the parameter
vector a = (8, ¢). If, however, the elements of the Z; are continuous covariates, such
as prices and quantities, then the methods of Donald and Paarsch (1993) cannot
be applied directly. One could consider partitioning the covariate space into cells,
and then concentrate the likelihood function using the smallest w; for a particular
cell, but if the elements of Z; are diffusely distributed and if the dimension of Z; is
only moderately large (e.g., three or four), then the number of cells will be huge, so
the sample sizes required to get reasonably accurate estimates of $(a, m, Z) will be
prohibitively large.

In this paper, we derive the maximum likelihood estimator of the parameter
vector a using non-linear programming. Within this framework, we can admit
S(a,m, Z)’s which need only be defined numerically, and the presence of continu-
ous covariates. Subsequently, we demonstrate the consistency of this estimator in the
case of continuous covariates, and derive its asymptotic distribution when the covari-
ates take on discrete values. The latter problem is interesting in its own right, since
the asymptotic theory must be approached in a different way. Using Monte Carlo
methods, we compare the small sample properties of the maximum likelihood esti-
mator with those of the piecewise pseudo-maximum likelihood and non-linear least
squares estimators.

3. Maximum Likelihood Estimator

We motivate the solution to our problem by presenting the solution to a simpler
problem. Consider a random sample of size T for a random variable w; that is
distributed uniformly on the interval [0, o], where a is an unknown parameter which
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the investigator seeks to estimate. The density of w is

h(w; ) = { a~! forallw € [0,0]
0 otherwise.

The conventional method of deriving the maximum likelihood estimator of a would
involve maximizing the following likelihood function with respect to a:

T
L(a; W1, W2y ..., 'lDT) = H h(a; wt) = a_Ta
t=1

or equivalently maximizing the logarithm of the above likelihood function with respect
to a

log L(e; w1, ws,...,wr) = —Tlog c.

Of course, as a tends to zero the functions L(a) and log L(a) tend to infinity. An
a of zero, however, implies that none of the data should have been observed in the
first place. Thus, the optimization problem must be re-written. The simplest way
to do this is as a constrained optimization problem. In particular, maximize L(a) or
log L(a) subject to the constraint that all of the observed data be consistent with the
resulting estimate. That is,

w <«
. w <«
max —T'loga subject to 2
<a> :
wr < a.

The maximum likelihood estimator is then
& = max[wy, wy,...,wy).

Abstracting from ties in the data, T — 1 of the constraints do not bind. Also, the
conventional methods used to determine the asymptotic distribution of & do not apply.
In particular, only the largest w is important in determining the distribution of &. We
shall discuss the problems which arise in performing the asymptotic analysis in detail
below. Suffice to say here that we shall define the maximum likelihood estimator of
the vector a in similar fashion.
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3.1. Optimization Problem

We denote the density of the t*t (t = 1,...,T) observation w; conditional upon m;
and Z; by
h(wy; a,my, Z4) 0 < Xa,mi, Zt) < wy

and introduce the following assumption:

Assumption 1.

The true lower bound of the support of the distribution of w satisfies

0 < inf (e, z) < sup ¥’ z) <

where z = (m, Z) and o® denotes the true value of @, and where the inf and sup
are taken over all values of z € X.

Lemma 1:
Given assumption 1,

n 1

lim  Ah(w;a®,z) = 0

w—S(ad,2) m S(a?, z) >

This result (the proof of which, like all of our results, is in an appendix) shows
that the distribution of the winning bid has a strictly positive density at its lower
bound. This fact will be important to the proof of Lemma 2 below. There we show
that the smallest order statistic for each possible value of z consistently estimates
the lower bound for each possible value of . Moreover, these order statistics are
consistent at rate T. This result is useful since later we show that the maximum
likelihood estimator in these models depends upon order statistics. In some cases,
the maximum likelihood estimator is obtained by solving for the parameters purely
as functions of the order statistics. In such cases, the maximum likelihood estimator
will also be consistent a rate T'. The particular limiting distribution that results will,
however, depend upon the number of possible values of z as well as the number of
parameters. '

In defining the maximum likelihood estimator, we introduce the following two
assumptions:



Assumption 2.

The logarithm of the likelihood function is twice continuously differentiable in
a.

Assumption 3.

The wy = (e, z¢) functions are quasi-convex and twice continuously differen-
tiable in a.

We define the maximum likelihood estimator & as being the solution to the following
optimization problem:

s:(aa m1) <w

d S\f(a’ 2:2) Lwe

max Zlogh(wg;a, z¢) subject to :
t=1

g(aa :IJT) < wr.

One can solve for the maximum likelihood estimator by maximizing the following

Lagrangean:

T

L(a,)) = z (IOg h(we; o, z4) + M (we — (a, mt)))
t=1

with respect to the vector a, where A = (A1,...,A7) is the vector of T' Lagrange
multipliers. The maximum likelihood estimator & satisfies the following conditions:?

T
Z (Va log h(wy; &, 21) — AVaS(&, .’Bt)) =0

=1
/\1 (w1 - 9‘(&,:):])) =0

A2 ('lD2 - S(a, a:z)) =0

)\T(wT - 3(&a .‘DT)) =0,

4 Under the stated conditions, these Kuhn-Tucker conditions are necessary, but insufficient for
a global maximum. If the logarithm of the likelihood function is pseudo-concave, then it is
well-known (see Mangasarian [1969]) that the Kuhn-Tucker conditions are both necessary and
sufficient.

10
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where V, denotes the gradient vector of the function to follow with respect to the

vector a. At most, r = p+q of the T constraints will ever bind at one time; i.e., T —r

of the Lagrange multipliers will be zero at the optimum. For the binding constraints,

the Lagrange multipliers will be non-negative.

Assumption 4.
Given any sequence of r w;’s
r times

e e,
(wia Wyyeo ,le)

which have different covariates, the Jacobian of

w; = Na, z;)
wj = ¥(a, z;)
Wi = S‘(a’ $k)

is non-singular.

3.2. Consistency of the Estimator

(3.1)

Define the true feasible set of o to satisfy the lower bound constraint for all possible

values of z € X by

A* ={a| S(a,z) £ S(’,z) V z € X}.

Note that this set is convex (given Assumption 3), and non-empty since a® € A*. In

addition to assumptions 1 to 4, we make the following assumptions:

Assumption 5.

z; contains discrete variables denoted by the vector z1; which have finite support

on X; and continuous variables denoted by the vector z3; which have compact

support on Xs. Assume that the z; are independent and identically distributed
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random variables with probability measure P such that for every nonempty
subset A; of X; and every nonempty open subset of Az of X3, P(A; X Az) > 0.

Denote the true conditional density of w given z as

h(w; a®, z) on [¥(a?, ), o).

Assumption 6.
For any ¢ > 0
(a®z)+e

inf h(w; a®, z) dw = 6(¢) > 0.
B e, P@002) do=50)

This assumption simply requires that some lower bound exist upon the probability
of w being within ¢ of the lower bound of its support.

Introduce

T
1
St(a) = T ; log h(wy; @, z¢)
and denote the set of feasible values of a by
Ar={a|S(e,zt) Sw Vt=1,...,T}.

It will be convenient to write the maximum likelihood estimation procedure as solving

. A *

max ST(a) subject to a € AN AT,

where A is some convex compact set containing a®. Note also that o? € A% for all
T and that A* C A}. The proof of consistency of the maximum likelihood estimator
@& will rely on the set A} becoming closer and closer to A* as T becomes large. The
sense in which we say that these two sets are close is given below in Definition 1.
Definition 1.
Define a measure of the difference between A* and A% where A* C AT as
d(A*,AT)= sup inf |la! —o?,
al€Ar\A* a?eAr

12



where || - || denotes the Euclidean norm. Also, we say that A% == A* if
d(A*, A%) =5 0.

The probability measure referred to in the second part of the definition relates to
that of the (wy, z¢) data which determines the set A%, so the interpretation is related
to the probability that a sequence of such data generate a sequence of sets A} that
become close to the set A* in the metric defined above. The following theorem shows
that this is true.

Theorem 1.

Given assumptions 1 to 6, AN A 25 A* N A.

One should note that the proof is by construction. In the model considered in Donald
and Paarsch (1993), the result is easy to show since in that case the covariate is the
number of opponents m, and we have that for each value of m, (m) = $(6°,m).
Hence, given that () satisfies the conditions of the implicit function theorem, in
the limit, the only #’s that satisfy the lower bound constraint are those that satsify
(8, m) < 3(8°,m) for each m. When we allow for continuous covariates, things
become more complicated, although the proof is quite similar using order statistics
defined over subsets of the X set.

The following result gives the general consistency result for the maximum like-
lihood estimator. Note that one of the assumptions is the result proven in Theorem
1.

Theorem 2.
Given assumptions 1 to 6, and
a) A is compact;
b) A% NA 25 A*N 4
¢) St(a) = S(a) uniformly over A, where S(e) is continuous in «;
d) if S(a) > S(a®) for any @ € AN A*, then o = of;

A 8.
a— .

The main difference between this proof and others in the literature is that the
parameter set is data dependent. Results presented by White and Wooldridge (1991),

13



concerning sieve estimation, are similar in that the parameter set changes, and may
be data dependent. The analogue of b) in their case is the requirement that the
parameter set become dense in the true parameter set as T — oo. In that case, the
number of terms in the sieve is increasing with the sample size. Here, constraints upon
the parameter set become increasingly strong as T becomes large; more constraints
are being added with each data point until the set is reduced to the parameters that
satisfy the lower bound of the support restriction for all possible values of z.

3.3. Asymptotic Distribution of the Estimator

A natural way to calculate the variance-covariance matrix of & would be to consider
the behaviour of the Hessian matrix of the Lagrangean

T
Vaa ﬁ(&) = z (Vaa log h(wt; &, zt) - :\tvau%(&, .’Bt))

i=1
This is useful when the solution to the optimization problem occurs along a smooth
and differentiable part of the contraint set, but typically the solution obtains at the
intersection of the constraints. In this case, the Hessian is ill-defined. Moreover, the
properties of the perturbed optimum are determined solely by the constraints. To see
this, consider the simple problem introduced in the first part of this section. There,
the properties of the maximum likelihood estimator & were solely determined by the
behaviour of the largest w in a sample of size T'. In this case, the properties will often
be determined by the solution to (3.1) for some set of the smallest r order statistics
of w; given z;.

As may be expected from the previous discussion, the distribution theory for the
estimator can be quite complicated. Because of technical difficulties, we have only
analyzed the case of discrete covariates. Hence,

Assumption 7.

 is a discrete random vector with probability mass function 7(z), with k£ being
the number of points that have =(z) > 0.

Denote each possible point in the set by z(z), and let m; = w(z(?)) for i =1, ..., k.

Despite the assumption of discrete covariates, the results are of considerable
interest. Indeed, as the following discussion will show, the limiting distributions of

14
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the estimators will only fall into the usual normal limiting family in a special case.
Allowing for only a slightly more general case will change the nature of the limiting
distributions, and introduce the exponential as a limiting distribution.

= With discrete covariates, at least three possibilities exist depending upon the
relationship betweeen k the number of points with positive support for (z) and r
the number of parameters to be estimated. This complication arises because the
optimization problem in the discrete case, which we shall call (S), may be written as

k
. : . N < o2 i=1.... k
max Z;mST(a, z(3)) subject to N(e,z(4)) < B(z(3)) i=1,...,
where 1(z(i)) = min{w; : z; = z(i)} is the smallest order statistic of w; over all
observations that have z; = z(i), #; = T;/T is the proportion of the sample with

z; = z(i), and

T
Sr(a, o(3)) = 5,1- 3" log h{a; wi, 2(5))I[z: = 2(7)
V=1
is the average of the contributions to the logarithm of the likelihood function con-
tribution of observations with z; = z(z). The fact that the problem involves order
statistics will lead to the unusual limiting distributions that appear in the results. The
following result, which is proven in Donald and Paarsch (1993), will be used through-
out this section and concerns the limiting behaviour of the order statistics. Let T}
denote the number of observations that have z; = z(z), and note that assumption 7
guarantees that T; = O, (T') by the law of large numbers.

Lemma 2.
Under assumptions 1 to 7 and assuming that k is finite
(i) @(z(2)) — S(a®,z(i)) almost surely;
(ii) T*"(db(z(:)) — (e, 2(3))) — 0 for any 5 > 0.
That is, the smallest order statistics converge to the lower bound at rate T in this
case. The next result, which is contained in Galambos (1978) and discussed in Reiss

(1989), gives the limiting distribution of these order statistics, which is related to the
Weibull distribution.
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Lemma 3.

Suppose that the {w,},T=1 are drawn randomly from a population with probability
density function f and and cumulative distribution function F, on [, 00) such

that for all z < 0, F(6 )
. +2t)
Am Fa—y — (2

and 6 > —oo, then )
—(min{w} — 0) - W(1,7)
dy 't

where W(1,v) denotes a random variable that is distributed Weibull with pa-
rameters 1 and v, and df = F~1(4) — 6.

This Lemma provides conditions under which the limiting distribution of the smallest
order statistic is

[1 — exp(—2")].

Note that it is only defined for positive values of z. This gives the well-known fact that
extreme order statistics are biased estimators of the lower bound of the distribution,
although they generally converge very quickly as shown in the previous result. Note
also that if we can find alternative constants dpr such that dy/dr — 1, then the
result will still hold. The v parameter will depend upon the behaviour of the density
function near the lower bound of the support. There may be other types of limiting
distributions of smallest order statistics (depending upon the nature of the parent
population), but this result is sufficient to characterize the limiting distributions
of order statistics in the auction case, because, as the following result shows, the
distributions for auctions will satisfy the condition in Lemma 3 with 4 = 1. That is,
the limiting distribution of the smallest winning bid for each possible covariate value
will be exponential with intensity parameter equal to one. In addition, a convenient
form for the normalizing constant can always be found.

Corollary 1.
Under Assumptions 1 to 7,
1,.,.,. . d
g(&(z(z)) - S‘('7:(7'% aO)) - W(l, 1)
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where W(1, 1) is an exponential random variable with parameter 1, denoted £(1),

and
_ mS(a?, z(7))

dr T

= 0,(T™).

The limiting exponential result arises because, as shown in Lemma 1, in the auction
models under consideration, the density function is strictly positive at its lower
bound. In other situations, where the density does not converge to a strictly positive
bounded number at the lower bound of the support, the 4 parameter and the rate
of convergence will depend upon the behaviour at the lower bound. If the density
function converges to zero at the lower bound, then typically the rate of convergence
may be slower than rate T, and if the density is unbounded at the lower bound of
the support (as occurs with certain Weibull populations with declining hazard rates),
then the convergence rate may be even faster than rate T

To make these notions concrete, consider the following example which has no
covariates. Suppose that w is distributed Pareto with parameters a; and a3, so
azoy?

h(w; a1,a2) = 0<a; <wand 0 < az,

then for a sample of size T

gaz_Z(min wi — al) —i-) 8(1)
1

is distributed exponentially in the limit with parameter 1 because the Pareto density

function is strictly positive at the lower bound of the distribution.?

Letting the subscript 0 on the function denote population values, introduce the

following notation
So(a, 2(i)) = Eo[log h(w; o, 2(7))]

where Eg denotes that the expectation is taken at the true parameter values o®. Also,
define the following population optimization problem (F;):

max So(e, z(i)) subject to  (a,z(:)) < I(a?, z())

5 The reader will remark that the normalization employed in this example is not the one implied
by Lemma 3. We use it because it is equivalent in the limit and has a convenient form, as do
the constants dp in Corollary 1 for the auction case.
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as well as the aggregate problem (P)

k
max zmso(a,x(i)) subject to  S(a,z(4)) < e’,z(1)) i=1,...,k.

=1

We shall assume throughout that we can interchange integration and differentiation.
We also introduce the following assumption regarding the problem F;.

Assumption 8.

The solution to P; is (@, A?) with A} > 0, so that the constraint binds.

Typically, we find that the expectation of the gradient vector V4Sp has at least

one strictly positive element, with remainder being 0 when evaluated at the true

parameters al.

Continuing with the Pareto example considered above, one can demonstrate
easily that assumption 8 is satisfied with A = a3/ad > 0.

In the remainder of this section we analyze two different cases.
Case 1: k<r

Partition the vector a into (a1, a2) of dimensions k and (r — k) respectively, in
such a way that the k x k matrix whose i*! column is

Vo, S(a, 2(2))

is non-singular over a neighbourhood of a®. Of course, when k = r the a; component
is non-existent. The next result shows that & the solution to the sample maximization
problem defined above, with probability one, will satisfy the Kuhn-Tucker conditions,
with all k constraints binding as T tends to oo.

Theorem 3.

Given assumptions 1 to 8, and assuming that
VaST(O!,-T(i)) = VaSo(O!,m(i))

uniformly over a neighbourhood of a® for each i, then for large enough T all k
constraints bind at the solution & with probability 1.

18
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The fact that all ¥ constraints bind make it possible to invert out a subset of
parameters o) as a function of the remaining parameters by Assumption 4 and
the implicit function theorem. The resulting solution will be twice continuously
differentiable in both a; and the remaining arguments in a neighbourhood of of.
Here, the implicit function will be denoted as

a) = 1/’(“2:@;‘”)’
the solution to the set of equations
B(z(2)) =S(a,2(3)) i=1,...,k

where we introduce the shorthand 1 to denote the k vector of w(z(i))’s and z to
denote the vector of z(i). Also, note that

ag = ¢(ag, 301 x)

where ¥ denotes the k vector of values of the lower bounds. When k = r, one can
solve for a; just using the constraints, so that it can be written as a function of only
the 1(z(2))’s, and its distribution will depend on the distributions of the 1 (z(¢))’s.
In this case, this condition will give rise to limiting distributions related to those in
Corollary 1.

We next introduce the following notation which will be useful in characterizing
the results when k& < r. Define
S (e e
V[Vqlog h(w; o, 2(3)] =
i
21 2

for each 7 where the partition is conformable with that of a. In the case where k < r,
standard mean value expansions will be used to find the limiting distribution. The
terms involved will be of the form

dy = Vi, ¥(02) Vo, log h(we, @, z¢) + Vo, log h(w, a, z2).
Note that assumption 8 implies that E[d;] = 0 for each t. Define for z; = z(3),

Vidi] = Vi, %(a2) 0 Vayh(az) + Q + Vi, (a2) iz + 0 Vay¥(az)
19



Theorem 4.

Under assumptions 1 to 8, and assuming that k < r

VT{(& - o?) -5 N (0, 1)

and
VT(&z — al) - N(0, V)
where .
Vi=) mV[d]
=1
and

V2 = Vo, ¥(e2)V1 Vay9(a2).

The proof of this result is somewhat similar to that in Donald and Paarsch (1993).
Note that the estimation errors in 1 do not influence the limiting distribution since
those errors disappear at rate T'.

When k& = r, things are very different. Since, by Theorem 3, the parameters
are determined by the constraints, no averages are involved and the distribution is
related to that of b, which are extreme order statistics. The limiting distributions
in this case are related to the £(1) family, and the estimators will converge at rate
T. This unusual result is contained in Theorem 5. To state this theorem succinctly,
we first develop some notation. Note that in this case for large enough T', & is the
solution to

(z(3)) = (&, (i),
so that, as noted above, we can write

&= ¢(1:Qa 3:)

where 9(-) is a smooth function of 1 near the limiting values 3°. To characterize the
limiting distribution we expand the function about 9.

20
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Theorem 5.

Under assumptions 1 to 8 and assuming that k =r

Dl r(a - a®) -4 (&(1),...,E(1)
a vector of independent £(1) random variables where
Dr = diag{dr(i)}
of dimension k, where dr(2) is given in Corollary 1, and

Jr = VoS(&)

with V,S(a) being the matrix formed by the vectors V,S(a,z(z)) for i =
1...,k

Note that the standardization in Theorem 5 will be proportional to T, so that the
estimators converge at the rate T, and the limiting distribution is that of a vector
of independent exponential £(1) random variables. This result does not imply that
the estimators themselves have one-sided distributions, only that there is a linear
transformation of the estimators which has a one-sided distribution. One may be
concerned about the fact that the limiting distribution is not normal, since this could
make inference difficult. There is no need for this concern since the exponential dis-
tribution has a particularly convenient closed-form cumulative distribution function,
which should make it even easier to form confidence intervals than would be the case
with a normal limiting distribution.

These results can easily be adjusted to the case where only a subset of the
parameters influence the lower bound of the distribution. Another case that can
easily be examined is where k < r and one can solve for a subset of a; as functions of
only @ and z. The result of Theorem 5 would imply that these parameter estimators
have £(1) limiting distributions whereas the remaining parameter estimators will have
distributions which fall in the normal limiting family of distributions.

Corollary 2.

Suppose the conditions of Theorem 4 hold, and that a subset of &; can be written
as functions of only 1 and z, then this subset will have limiting £(1) distributions,
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and the remaining parameters will have limiting normal distributions. Moreover,
the first subset will converge at rate T and the remainder converge at /7.

Note that this corollary can be used to show that the simple Pareto example consid-
ered previously in the examples behaves like this.

Case 2: k>r

When k > r, with finite k, there will generally be more than one way of deter-
mining the parameters from the constraints. Moreover, in the population problem
(P), the objective function may be tangent to one of the constraints. These facts
make it possible for the solution to the sample problem to be such that r constraints
bind, or less than r constraints bind, and this will be random from sample to sample.
This introduces potential difficulties in the asymptotic analysis. To proceed, we shall
make the following assumption which will guarantee that for large T the solution to
(P) has at least r constraints binding.

Assumption 9.

In problem (P), the matrix
(VaSo(@), {VaS(@)}r-1)
has full rank over a neighbourhood of a® where

{VaS(a)}r-1

is a collection of derivatives of any r — 1 distinct lower bounds.

The type of situation that this assumption rules out is illustrated in Figure 1 which
applies to the Pareto auction example when k = 3 and r = 2. The following Lemma
then shows that given this assumption the solution to the sample problem for large
T will occur where r constraints are binding. The advantage of this is that the
asymptotics for the case with r binding constraints and the case with less than r
binding constraints are quite different; with the first convergence is at rate T' and
with the latter convergence is at rate v/T.

22
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Lemma 4.

In the sample problem (5), assuming that
VaSr(a, 2(i)) == VaSo(e, (i)

uniformly over a neighbourhood of o, then the optimal solution occurs at a
point such that for large T at least r constraints bind with probability 1.

Suppose there are k constraints and r parameters, then there will be L = (f)
possible combinations of constraints at which the solution may occur. Denote the
set of possibilities by =. (Note that Assumption 4 guarantees that each possible
combination will possess a solution.) We shall let £ index each solution and let &(¢)
be the solution to the £ set of constraints. Also, let E(£) be the event that the
solution to (S) is at &(£). The Lemma shows that for large enough T the solution to
problem (.5), denoted &, is such that

&= &(O)IE®)]
Le=
almost surely, where I[E] denotes the indicator function for the event E. Note that
with probability 1 only one of the I[E(£)] will be 1.

Using arguments similar to those used previously, one can rule out some of the
combinations as being likely to occur with probability 0. For example, consider
Figure 2 representing the population problem with £ = 3 and r = 2, and satisfying
Assumption 9. In this case, we can rule out an optimum at the solution of Cj
and Cj3 as being likely. The reason is that if we maximized the objective function
subject to these two constraints then the optimum is actually at B rather than at A.
Alternatively, at A it is impossible to find a positive Lagrange multiplier Ay to satisfy
the first Kuhn-Tucker condition using these two constraints alone. Also note that at
the actual optimum B, (] is not satisfied. Noting this, we are able to narrow down
the set of possible solutions. In the example in Figure 2, there will in fact be two
possible solutions. Maximizing the objective subject to either (Cy,C?) or (C1,C3)
we are able to satisfy the Kuhn-Tucker conditions; i.e., find positive A;’s and satisfy
all remaining constraints. The following Lemma makes this more precise in general.
First, define the solution to the linear equation,

VaSo(a) = {VaS(a)}red =0
23



to be A§, where the notation {-},¢ is the 28 possible combination of r elements of the
argument.

Lemma 5.

In the sample probletﬁ (S), assuming that

VaS7(a, 2(1)) == VaSo(a, z(2))

uniformly over a neighbourhood of a°, then for large enough T' P[E(£)] = 0 if
any element of A§ is negative.

Note that Assumption 9 rules out the possibility of any of the A§ being 0. Also,
note that in the example in Figure 2, the combination that has (C2,C3) will have
one of the Lagrange multipliers being negative. Denote the remaining set of possible
combinations, not ruled out by Lemma 5, by Zp. Also, define =;, the £*! element of
ZR, to be the collection of the indices of constraints used to obtain this solution. For
'exa.mple, in the case considered in Figure 2, there are two possible solutions, so Zp
has two elements, and we could define =; = {1,2} and =3 = {1,3}.

One potential problem that is raised by this representation is that the events E(¢)
are random. Although Theorem 5 gives a nice characterization of the distribution for
any given solution (unconditionally), the normalizing matrix D;lj'p will, in general,
be different for each possible solution. This problem can be avoided, however, by
using the following normalizing random variable,

Br =" IE(¢) D7) Jre
te=R

where f);el Jre is the required normalization for the £t} possible solution as in Theorem
5. Since almost surely only one of the I[E(€)] will be 1, and I[E(Z)}JI[E(F)] = O for
t # j, then we have that

Br(a-a®) = ) IE(0)D7; Jre(a(6) - o).
LeSRp

In order to characterize the limiting distribution of this quantity, we must determine
for each value of £, the limiting distribution of

Dig Jre(a(8) — a®) = Dy ((2(0)) ~ Se)
24
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conditional on the event E(f). This requires more precise information upon what
actually determines E(£) and its relationship to the above random variables. The
following Lemma shows precisely how this is done.

Lemma 6.

In the sample problem (S), assuming that
VaST(a,2(1)) =2 VaSo(e, z(3))

uniformly over a neighbourhood of ®, then for large enough T' I[E(£)] = 1, and
hence & = &(¢), if and only if, for every constraint 3

(a(0), 2(4)) < B(e()).

In other words, after restricting attention to solutions that are not ruled out
by Lemma 5, a particular solution will be the optimum when all of the constraints
are satisfied at that particular solution. In the case where the logarithm of the
likelihood function is pseudo-concave over a neighbourhood of o, then this result
would be obvious due to the fact noted in footnote 3. Clearly, the constraints used to
determine the £** solution will all be satisfied, so it remains to check any constraint
not included in the £t solution. This fact makes characterizing the conditional

k't order statistics is

distribution possible. This is because the joint distribution of all
simply the product of each marginal distribution due to the independence assumption,
and the conditional distribution is just the conditional distribution of » components of
this conditional upon the fact that certain linear combinations of these » components
exceed each of the remaining (k —r) components. This is proved in Theorem 6, which

contains the limiting distribution result for the quantity Br(& — a®).

Theorem 6.

Under the assumptions made above

A

Br(é - % 4, .= (214 00y 2¢)

which has a joint density function given by
T
I17G) 3 10 - Pkye)]
=1 LeSR i¢gs,
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where the constants ky; are given by
PR DI S F PR
ky; = ’I}Lngo dT1 (‘)'az:'JTtl Dry.
Here, f(-) is the probability density function of an £(1) random variable, while

P(kyz) = I[kyz > 0] F (ky;2)

and F(-) is the cumulative distribution function for an £(1) random variable.

The limiting distribution in Theorem 6 is non-standard, and to our knowledge
has not appeared in any other problems. The distribution does, however, bear some
resemblance to the density function for the smallest order statistic from a finite
number of draws from some population.® As it stands, the distribution depends
upon various unknowns, but these unknowns are all estimable. One may determine
consistently the set =g by using the result of Lemma 6 to see if Lagrange multipliers
at the solutions in the sample problem are all positive. Given that this is possible,
one may then determine the constants ky; using sample estimates.

A simple corollary that follows from this is that the estimator is consistent at
the rate T rather than the usual v/T.

Corollary 3.
Under the conditions of Theorem 6, for any 6 > 0

T'7%(& - a®) = 0,(1)

4. Some Monte Carlo Evidence

In this section, we use Monte Carlo methods to compare the small sample properties
of the maximum likelihood estimator with those of the piecewise pseudo-maximum

8 For example, if w = min{w;, w,} where w; and w; are draws from some population with
probability density function f(-) and cumulative distribution function F(.), then the density

of wis
2f(w)[1 - F(w)].
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likelihood and non-linear least squares estimators. For direct comparability, we have
adopted the experimental design used in Donald and Paarsch (1993). Thus, in all of
our simulation experiments we assumed that the latent distribution of costs ¢ follows

the Pareto law, so
agay?
coz2tl

g(c) = 0<a;<ec 0<an.

The density of w is then

az(m+1)
az(m + 1) (agm—l) ajam
h(w; aj, a2, m) = wag(m-l-l)-{-l asm — 1 ’

while the j** raw moment of w is

J

; ajazm an . .

E[w’] = - j<aon, j=12,...,
aym—1) asn—

implying the following empirical specification for the first raw moment:

ajoam asn
w= + uy,

aom—1)an—1

where u; has a mean of zero and a variance which depends upon m.

We fixed the values of (a),a3) at (1,2). This implies that the expected value
of ¢ is two, while the variance of ¢ does not exist. This latter implication has no
effect upon our work since it is the second raw moment of z = min|cy, ..., cs] which
is important. Allowing c to have a very diffuse distribution also mimics some of the
empirical evidence encountered in field data, see Paarsch (1992). In any case, the
second raw moment of z depends upon n and exists in all of our experiments.

We considered three different sample sizes T': 50, 100, and 200. In each of these
samples, the number of bidders n could take on four different values: 3, 6, 9, and 12.
This implies that the number of opponents m could take on the values 2, 5, 8, and
11. These values of n reflect the amount of competition that is often encountered in

field data. Thus, in this model k=4 >2=r.

We investigated three different patterns for the design matrix of the m’s, the
probability distribution of the m’s, the {m(m)}¥_,’. In the first, each m was equally

m=1
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Sample Size

Table 0

Design Matrices of the Ty,’s

50 100

200

m 2 5 8§ 11 2 5 8§ 11 2 5 8 11
Design A T, 13 12 12 13 25 25 25 25 50 50 50 50
m(m) 0.26 0.24 0.24 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Design B T, 5 10 15 20 10 20 30 40 20 40 60 80

m(m) 0.10 0.20 0.30 0.40 0.10 0.20 0.30

Tm 20 15 10 5 40 30 20
w(m) 0.40 0.30 0.20 0.10 0.40 0.30 0.20

Design C

0.40 0.10 0.20 0.30 0.40

10 8 60 40 20
0.10 0.40 0.30 0.20 0.10

likely (Design A), while in the second, large m’s were more likely than small ones
(Design B), and in the third, small m’s were more likely than large ones (Design C).
In Table 0, we present the T,’s and their corresponding 7(m)’s for the three different

designs.

For the piecewise pseudo-maximum likelihood estimator, we partitioned the

parameter vector a = (a1,a2) in two different ways, concentrating out first oy
and then a3. Below, we refer to these partitions as Partition 1 and Partition 2,

respectively.

For Partition 1, the piecewise pseudo-maximum likelihood estimator of a3 is

Y pple - T

Sl tme+ 1)log (gis)

but an estimator of a; can be defined in at least four different ways. First, consider

5]

any of

&{":y}(m)(az—m—_l-> m=1,...

Alternative estimators are

~ pple

s pple
dy m

M.

»

(1]



and o
=3 Ingp
T
where Np = Ef_‘__l ng. For Partition 2, the piecewise pseudo-maximum likelihood

estimator of a is defined implicitly (see Donald and Paarsch [1993]), and an estimator
of a2 can also be defined in at least four different ways. First, consider any of

AT
02 = = 1, .y M .
(w(m) &P )m
Alternative estimators are
&'Z“i“ = mm[&z, a%, &é” s
M
&;_ Z Tm x(m+1) ,;n
- b
m=1 NT
and
M T
~b m .m
Q = Z T %2
m=1

The random numbers for the experiments were generated using the multiplicative
congruential method with modulus (23! — 1), multiplier 397204094, and initial seed
2420375. This method generates uniform pseudo-random numbers on the interval
(0,1). (For more details, see Hall et al. 1988, pp. 232-235.) Using the property that
the distribution function is distributed uniformly on the interval (0,1), we applied
the inverse distribution function to obtain the pseudo-random w’s.

We maximized the logarithm of the likelihood function subject to the T' con-
straints using a slight modification of Schittkowski’s (1981a,b) implementation of the
(recursive) quadratic approximation method of Wilson (1963), Han (1976, 1977), and
Powell (1978), see Vaesson (1984, pp. 57-66).

For Partition 2, we maximized the logarithm of the concentrated likelihood
functions using the Newton-Raphson algorithm. We minimized the sum of squared
residuals using the Gauss-Newton method. The true parameter values were used as

starting values.

The results of the nine experiments are presented in Tables 1 to 9. The abbre-
viations St.Dev., L.Q., and U.Q. denote respectively the standard deviation, lower
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quartile, and upper quartile of the estimator’s distribution. Also, in these tables the
superscript upon an estimator denotes its type. For example, the 5 on &3 implies that
this is an estimator based upon Partition 1, for the case when m = 5. The “min”
superscript denotes the minimum of all estimators with numeric superscripts and the
same subscript. The superscripts “a” and “b” denote the type of averaging of the
&™'s, where the “a” denotes the weights (I'm X (m + 1)/N1) and where the “b” de-
notes the weights (Tr,/T'). An estimator with the superscript “pple” is the piecewise
pseudo-maximum likelihood estimator (e.g., &ll’ple is the piecewise pseudo-maximum
likelihood estimator based upon Partition 2), while one with the superscript “mle”
is the maximum likelihood estimator, and one with the superscript “nls” is the non-

linear least squares estimator.

As one case see, the rates of bias (when measured using either the mean or
the median) for the maximum likelihood estimator are typically less that those of
the other estimation methods. What is most stark about the performance of the
maximum likelihood estimator is its quick convergence which is suggested by the rate
T convergence since 4 = k > r = 2. Notice in Table 1 that for a sample size of fifty
the standard deviation of &'l‘l“ is 0.0236, while that of o‘z’{“le is 0.0042. In Table 3,

anls

where the sample size is two hundred, the standard deviation of &}'® is 0.0113, while
that of &I is 0.0005. These results are common across the the nine tables.

5. Summary

We have derived a maximum likelihood estimator which is useful in estimating em-
pirical models of auctions where the support of the distribution often depends upon
all of the parameters of interest. Under fairly general conditions, the estimator has
been shown to be consistent, and in the case of discrete data we have derived its
asymptotic distribution. In addition, we have compared the small sample properties
of this estimator with those of the piecewise pseudo-maximum likelihood and non-
linear least squares estimators. We find, in the examples considered here, that the
maximum likelihood estimator performs extremely well. Essentially, a researcher can
obtain the same level of precision with 50 observations using maximum likelihood as
would require 2500 observations using non-linear least squares. .
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A. Appendix

In this appendix, we present the proofs of the theorems and lemmata contained in
the paper.

Proof of Lemma 1. Note that

where we have written it in terms of z, (noting that 8~!(w) = z = ¢(.,)), and where
§(z) = n[l — G(2)]"g(2).
The result follows by noting that

iy - me(e) [ - GE)I™ de
FO=""nZe@r

and that w — $(a,z) as z — 0.

Proof of Theorem 1. Let X* (i = 1,...,r) denote compact subsets of X each with
a non-empty interior such that no common boundaries exit; i.e., a strictly positive
distance exists between each of them. By assumption 4, P(X*) > 0 for each 7. Let

T

T =) I(z: € X*),
t=1

and note that T% = O,5.(T) since -77:- 2% P(X ‘) by Kolmogorov’s strong law of large
numbers.

For each T and each set X* let
t; = argmin {wy — ¥(a®, ) | z: € X'},

where it is understood that ¢; depends on the sample size T'. For sufficiently large T,
at least one z; € X* exists for all ¢. Let

AT = {a € /i | 8‘(0{,3}1‘-) S‘wti 1= 1,...,])}.
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Note that A7 C Ar, so that
d(Ay, A*) < d(Ar, AY).

If we can show that d(/'iT, A*) =5 0, then the result will follow. The following result

that
a.s8.
max 7 — 0
3

is useful. To show it let
% = wy; — ¥(a®, zy,).

Fixe > 0. 0
Pr(yi > €) = Pr(wy — S(a’,z4;) > €| z¢;)

= H Pr(w; — (e, 1) > € | z2)
reXi

< I (-6

€X'’ .
= (1-48@)T =0,

since T* — 00, 50 7¥; -2, 0 for each i. Also,
& T
Y (1-6@))" <o,
T=1

so that +; 22, 0 for each ¢ and the result follows since r is finite.

Let w®(z) = S(a’, z). Also, let
w(x) = (w1 (z1),- .. 2, (2r)) €RT
x=(z1,...,8) € X X' =X
_S‘.(aa )_() = (S‘(a, :B]), cevy g(aa xr))'

Let x(T') and w(T') denote the particular values of these variables chosen above; i.e.,
the ith element of w(T) is wy,.

Note that X is a compact set. For any x € X there is an open ball B(w°(x),z)
such that (by the implicit function theorem and assumption 4) there is a continuous
and differentiable solution to

w(’.f) = .S:.(a'r 7-()
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Note that by the compactness of X and the fact that the individual z; are not allowed
to get close to one another, we have that

é =inf {6z | x € X},
and 5
inf {|%S(a,>_c)| |xeX}>0.

Pick T sufficiently large so almost surely
max ¥ <§,
|}

for all T > T. For such T values, by the above argument, a solution for « to the

equations
w(T) = ¥(a, x(T)),

denoted by & = a(w(T'),x(T)). Note that by definition o® = a(w'(T),x(T)). The
implicit function is continuous and differentiable and the determinant of the Jacobian
is bounded away from zero, the derivative of a with respect to w(T') is bounded, then
it is easy to show (via a mean value expansion) that

& - || < Bllw(T) - w'(T)l| < rBmax % == 0,
H

o oy . ~ @.8.
where B is some positive finite constant. Thus, & —= o®.

Next, note that we may write A for large T as
Ar={a € A|¥a,zy;) < XN&,zy;) i=1,...,7}.

Since & is consistent and & is twice continuously differentiable in all its arguments

(on a compact set), we have that

sup (&, z) — (e, z) = 0.
zeX

Now fix an € > 0. Define the compact set

A:{aefila‘igfm"a*—a" > e}
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Let

= mi - 0
§= Lnelﬁ max (Xa,z) — S(a’,z)) > 0.

For large enough T
sup S(&,z) — S(a’,z) < 6.
zeX

Note that if a € A, then for some z
XNe,z) — K, z) > §,
so that o ¢ A7. But A includes all points in A that have

ot Jla" —afl 2,

so that if « € Ar then

inf |o*—¢q| <e.
a*cA*

Since A7 is compact, it must be that
d(Ar,A*) <e,

almost surely for large enough 7. Since ¢ is arbitrary and since A} C Ar then
d(/iT, A*) <,

and the result follows.

Proof of Theorem 2. This proof is very similar to others in the literature; e.g., a
slight modification upon Gallant and Nychka (1987). Note that @ € A for all T, so a
subsequence that converges to some o* € A exists; i.e., & — o*. Note that o* € A*
since

d(A%;, A*) =0,

and &; € A}j for all j. All we need show then is that o* = o, which follows from
the uniform convergence assumption, the identification assumption, and the fact that
&; is the maximizer of the logarithm of the likelihood function over A}j. This part
of the result is standard.
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Proof of Corollary 1. Using Lemma 1 we can show that for all z < 0

lim F(S(z(3),a®) + zt) -,
t=0- F(X(z(:),a0) —t)

using L'Hépital’s rule, and also $(z(t),a®) > —oo by Assumption 1, so the result
follows by Lemma 3. It is also easy to show by L’Hépital’s rule that dr is such that

almost surely where d} is given in Lemma 3.

Proof of Theorem 3. Note that for the corresponding population problem the
Kuhn-Tucker conditions are satisfied at

(o, m(z(1)A], 7(2(2)2, ..., 7 (=(k)MR)

and by Assumptions 7 and 8 each of the Lagrange multipliers are positive, so each of
the k constraints binds. Also, note that by Assumption 4, the matrix formed by the &
vectors Vg4, S(a, z(3)) has full rank in a neighbourhood of a® which implies that the
Kuhn-Tucker conditions are sufficient over this neighbourhood for a solution. Since
& is consistent, and since we have uniform convergence of the gradient vector, then
the solution to the sample problem must also be such that all k£ constraints bind with
Lagrange multipliers converging almost surely to the population values.

Proof of Theorem 4. The proof is very similar to that in Donald and Paarsch
(1993), Propositions 2 and 3. The result follows from standard mean value expansions,
noting that since k constraints bind

One can then expand the first-order condition
‘/Tvaz ST("/)(&Z’ _t&,(t, &2)) =0

about o), and ignore the pre-estimation error in 1 since by Lemma 2 this is 0p(T71).
The result for oy follows from the § method applied to the function ¥ (a2, 1, z), which
is twice continuously differentiable in a neighbourhood of the true values.

35



Proof of Theorem 5. By Theorem 3, the solution is such that all £ constraints
bind, so that & can be determined by

&= "p(l”:a x)

for some twice continuously differentiable function . Note that a® = $(S?, z), so an
expansion of ¥(ib, z) about 30 yields

&—a®=Jp"1w -0

where J3 = V,S(a*) for some a* lying between & and o°. Since & — o®, then
a* — o and J3 is almost surely invertible by Assumption 3. Therefore,

D7lap(a - o) = D' (@ - 9°)

which is distributed jointly asymptotically as a vector of independent £(1) random
variables by Corollary 1. The result then follows by showing that Jr — JT = 0p(1)
which follows since both Jp and J} converge to V(e®, z) because & —— o° and
ot 2 al.

Proof of Lemma 4. Due to the uniform convergence of the gradient V.S over a
neighbourhood of @® and the fact that & — o almost surely the result follows by
Assumption 9 using a similar argument to that used in the proof of Theorem 3.

Proof of Lemma 5. Given the uniform convergence of the gradient VS over a
neighbourhood of o® and consistency of & it must be the case that the solution to

VS(&) = {VaS(@)}re Al =0

which exists for large T by Assumption 4, is such that A — X6 almost surely. For
those combinations that have an element of A§ that is negative, this implies that
for large enough T the corresponding element of A must be negative and hence the
Kuhn-Tucker conditions can not be satisfied at such a solution for large enough T'.
Hence, for large enough T for such combinations P[E(¢)] = 0.

Proof of Lemma 6. For large enough T, all of the &(¢) are within a neighbourhood
of a® using the result in Theorem 5 which applies to any of the &(£). The uniform
convergence and continuity of the derivatives over this neighbourhood and the fact
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that the constraint set is convex by Assumption 3, imply that if more than one &(#)
satisfy all of the Kuhn-Tucker conditions, and these two values differ, then there will
be a violation of Assumption 9. The event that the two &(£) solutions are identical
occurs with probability 0, so the result holds.

Proof of Theorem 6. It is easy to see that
Br(a —a®) — Bi(a—-a®) -5 0

where
By =Y I[E(&))Dy; It

{eSp

with D;el being the true normalization given in Corollary 1, and J7, being given in
the mean value expansions in Theorem 5. Thus, it suffices to find the asymptotic
distribution of B}(& — a®). Using the mean value expansions as in Theorem 5,

Bi(a—a®) = ) I[E(O)Dg; ((¢) - 3°(0))

LeER

where 1%(£) and 9%(£) are the vectors formed using the £'® combination of smallest
order statistics and true lower bounds. Using similar expansions the event E(£) occurs
when

ky; D7} ((£) — S°()) < d7 (5)(dy — 8F)

for each ¢ ¢ =; where
ks = d7l(i)VaS(a®, (i) Jpe Dre

for some a* between & and o® . Note that ky; P, ky; since & -2 a°. The vector
consisting of

dr (5)(dh; — 99)

is distributed as a k vector of independent £(1) random variables. Thus, the asymp-
totic distribution reduces to finding the asymptotic distribution of

zZ=Y z(¢)
{39
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where Z(£) is the £* combination of the £(1) random variables and the event E(¢)

occurs when
kuz(8) < %

for all i ¢ =. The probability that Z < z then can be computed as

Y PE@)]P[2(¢) < =|E(8)]

LeZR
2] Zr o0 k k
= cen Z; dE y
= [ I / IR EE 1 B
= B e N fz) 1] 1 - Pkyz)] || 2z
eeZE:n‘/" /‘; i]E:E[4 jgz l .-g, J

where the notation L

H dz; = dzdzy .. .d7%

i=1
is used. This result implies that the density is as given in the Theorem. Note that the
function P arises since kj,;Z(¢) may be negative and the density for the £(1) variable
is only defined over positive values.
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Table 1
Experiment 1: Design A, Sample Size = 50

Estimator  Mean  St.Dev. = L.Q.  Median  U.Q.
a3 1.0394 0.0469 1.0098 1.0390 1.0733
&3 1.0156 0.0165 1.0054 1.0160 1.0267
a8 1.0098 0.0100 1.0034 1.0098 1.0164
aq! 1.0070 0.0072 1.0024 1.0069 1.0118
Gipin 1.0012 0.0191 1.0009 1.0060 1.0109
a3 1.0181 0.0195 1.0059 1.0187 1.0318
&b 1.0128 0.0131 1.0045 1.0132 1.0219
abple 1.0083 0.0098 1.0017 - 1.0086 1.0155
Gl 1.0008 0.0236 0.9854 1.0007 1.0172
ol 1.0009 0.0042 0.9991 1.0004 1.0018
&2 1.9764 0.0897 1.9215 1.9849 2.0395
63 2.0474 0.2114 1.8980 2.0397 2.1917
&8 2.1752 0.3646 1.9165 2.1338 2.3973
é3! 2.3552 0.5608 1.9497 2.2648 2.6537
pin 1.8941 0.1669 1.8033 1.9305 2.0160
3 2.1397 0.2796 1.9332 2.1113 2.3122
ab 2.2049 0.3636 1.9348 2.1590 2.4215
apple 2.2141 0.3256 1.9875 2.1806 2.4124
Al 2.0477 0.2738 1.8591 2.0362 2.2169
Gl 1.9815 0.0925 1.9461 1.9817 2.0063
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Table 2
Experiment 2: Design A, Sample Size = 100

Estimator  Mean  StDev. = L.Q.  Median  U.Q.
a2 1.0189 0.0343 0.9969 1.0196 1.0413
ad 1.0076 0.0113 1.0002 1.0074 1.0150
a8 1.0047 0.0068 1.0003 1.0045 1.0093
éf! 1.0034 0.0050 1.0002 1.0033 1.0069
nin 0.9975 0.0165 0.9960 1.0030 1.0064
a3 1.0086 0.0140 0.9998 1.0088 1.0181
&b 1.0062 0.0095 1.0001 1.0063 1.0124
abvle 1.0042 0.0072 0.9997 1.0045 1.0091
aals 1.0015 0.0172 0.9902 1.0024 1.0130
aiple 1.0003 0.0013 0.9997 1.0001 1.0008
63 1.9866 0.0560 1.9535 1.9908 2.0232
é3 2.0219 0.1427 1.9237 2.0209 2.1063
a8 2.0861 0.2431 1.9245 2.0640 2.2284
a3t 2.1634 0.3587 1.9163 2.1151 2.3584
opin 1.9247 0.1311 1.8692 1.9602 2.0190
63 2.0645 0.1899 1.9352 2.0449 2.1790
62 2.0943 0.2421 1.9313 2.0680 2.2321
apple 2.0969 0.2163 1.9470 2.0772 2.2299
als 2.0342 0.2017 1.9011 2.0312 2.1689
agple 1.9908 0.0294 1.9774 1.9926 2.0008
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Table 3
Experiment 3: Design A, Sample Size = 200

Estimator =~ Mean  St.Dev. L.Q. Median ——_-U_Q
a2 1.0109 0.0226 0.9956 1.0110 1.0274
& 1.0042 0.0076 0.9988 1.0040 1.0096
a8 1.0026 0.0045 0.9994 1.0029 1.0056
al 1.0019 0.0033 0.9998 1.0020 1.0041
i 0.9976 0.0111 0.9956 1.0016 1.0040
a3 1.0049 0.0094 0.9987 1.0051 1.0117
&b 1.0035 0.0064 0.9992 1.0036 1.0080
abrle 1.0024 0.0047 0.9991 1.0027 1.0056
s 1.0001 0.0113 0.9927 1.0004 1.0077
aple 1.0001 0.0005 1.0000 1.0001 1.0003
a3 1.9955 0.0349 1.9710 1.9983 2.0206
a3 2.0177 0.0892 1.9555 2.0179 2.0794
a8 2.0521 0.1517 1.9429 2.0466 2.1503
alt 2.0910 0.2165 1.9356 2.0780 2.2286
i 1.9538 0.0908 1.9134 1.9829 2.0187
a3 2.0391 0.1193 1.9531 2.0335 2.1158
ab 2.0551 0.1505 1.9451 2.0467 2.1512
agple 2.0563 0.1422 1.9545 2.0434 2.1513
aale 2.0137 0.1381 1.9239 2.0162 2.1062
aiple 1.9946 0.0107 1.9927 1.9949 1.9998
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Table 4

Experiment 4: Design B, Sample Size = 50

Estimator Mean St.Dev. L.Q. Median U.Q.
a2 1.0616 0.0601 1.0215 1.0596 1.0982
a3 1.0172 0.0173 1.0059 1.0168 1.0285
a8 1.0088 0.0098 1.0026 1.0090 1.0152
all 1.0058 0.0067 1.0016 1.0059 1.0104
Gin 1.0019 0.0167 1.0008 1.0055 1.0101
a2 1.0146 0.0138 1.0060 1.0146 1.0245
ab 1.0101 0.0100 1.0038 1.0104 1.0173
akele 1.0060 0.0085 1.0007 1.0063 1.0118
s 1.0021 0.0263 0.9857 1.0047 1.0203
G/nle 0.9996 0.0044 0.9978 0.9999 1.0014
a3 1.8644 0.1497 1.7817 1.8951 1.9749
a5 1.9779 0.1995 1.8441 1.9775 2.1178
a5 2.1130 0.2934 1.9100 2.0869 2.2881
a3l 2.2613 0.4595 1.9453 2.1970 2.5141
amin 1.8038 0.1676 1.6971 1.8148 1.9309
a3 2.1205 0.2983 1.9154 2.0911 2.2969
ab 2.1658 0.3456 1.9283 2.1256 2.3668
apple 2.2148 0.3264 1.9993 2.1841 2.4113
ayls 2.1013 0.3812 1.8265 2.0774 2.3681
aple 1.9575 0.1354 1.9028 1.9682 2.0038

44



Table 5
Experiment 5: Design B, Sample Size = 100

Estimator Mean StDev.  LQ.  Median  U.Q.
A3 1.0284 0.0368 1.0048 1.0274 1.0533
&3 1.0082 0.0118 1.0005 1.0082 1.0161
a3 1.0043 0.0067 1.0000 1.0042 1.0086
&l 1.0028 0.0048 0.9998 1.0028 1.0061
aipin 0.9985 0.0142 0.9983 1.0026 1.0060
63 1.0069 0.0095 1.0009 1.0069 1.0135
ab 4 1.0048 0.0071 1.0003 1.0049 1.0096
abple 1.0030 0.0061 0.9991 1.0031 1.0072
aals 1.0006 0.0200 0.9885 1.0020 1.0156
aple 0.9997 0.0020 0.9989 0.9998 1.0006
Y 1.9296 0.0870 1.8836 1.9466 1.9905
&3 1.9850 0.1237 1.9015 1.9878 2.0651
a5 2.0521 0.2007 1.9191 2.0354 2.1708
all 2.1210 0.2915 1.9291 2.0881 2.2858
Gin 1.8834 0.1158 1.8187 1.9002 1.9702
a3 2.0540 0.1984 1.9188 2.0371 2.1704
ab 2.0758 0.2277 1.9234 2.0563 2.2063
agple 2.0953 0.2149 1.9479 2.0756 2.2277
a3l 2.0470 0.2836 1.8565 2.0343 2.2359
Gl 1.9769 0.0596 1.9473 1.9834 2.0027
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Table 6

Experiment 6: Design B, Sample Size = 200

Estimator Mean St.Dev. L.Q. Median U.Q.
&3 1.0161 0.0246 1.0005 1.0160 1.0315
65 1.0046 0.0077 0.9993 1.0047 1.0102
&8 1.0025 0.0046 0.9994 1.0025 1.0056
&t 1.0016 0.0032 0.9995 1.0017 1.0038
Gin 0.9982 0.0102 0.9977 1.0015 1.0038
&3 1.0039 0.0065 0.9996 1.0038 1.0084
&b 1.0027 0.0048 0.9996 1.0027 1.0061
abrle 1.0018 0.0040 0.9991 1.0019 1.0046
aals 1.0005 0.0135 0.9921 1.0021 1.0102
Gl 0.9998 0.0008 0.9997 1.0000 1.0001
&2 1.9634 0.0530 1.9377 1.9718 2.0003
&3 1.9982 0.0810 1.9386 1.9964 2.0558
a5 2.0327 0.1262 1.9423 2.0313 2.1188
a3l 2.0700 0.1840 1.9386 2.0595 2.1859
Gin 1.9322 0.0793 1.8855 1.9487 1.9938
a3 2.0338 0.1274 1.9430 2.0302 2.1176
> 2.0457 0.1454 1.9401 2.0412 2.1395
agele 2.0566 0.1430 1.9561 2.0437 2.1509
ool 2.0301 0.1955 1.9002 2.0326 2.1579
aple 1.9871 0.0247 1.9785 1.9932 1.9970
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Table 7
Experiment 7: Design C, Sample Size = 50

Estimator =~ Mean  St.Dev.  L.Q. Median U.Q.
a2 1.0343 0.0456 1.0060 1.0357 1.0648
51 1.0140 0.0159 1.0041 1.0141 1.0248
A% 1.0106 0.0104 1.0036 1.0105 1.0174
Al 1.0122 0.0107 1.0052 1.0109 1.0172
apin 1.0017 0.0207 1.0010 1.0075 1.0125
a2 1.0213 0.0252 1.0057 1.0222 1.0381
A% 1.0167 0.0177 1.0057 1.0174 1.0286
aPPle 1.0127 0.0127 1.0046 1.0134 1.0220
a5l 1.0018 0.0264 0.9846 0.9999 1.0183
aple 0.9997 0.0050 0.9983 1.0002 1.0016
&3 2.0300 0.0914 1.9698 2.0312 2.0938
a3 2.1743 0.2733 1.9719 2.1631 2.3652
é3 2.3539 0.5242 1.9655 2.2761 2.6606
a3 2.4680 0.9338 1.8133 2.2506 2.8571
apin 1.9032 0.2472 1.7656 1.9929 2.0781
63 2.1819 0.2846 1.9674 2.1511 2.3521
&l 2.2580 0.4019 1.9551 2.2088 2.4817
apple 2.2126 0.3285 1.9901 2.1799 2.3982
agle 2.0457 0.2430 1.8817 2.0291 2.1965
aple 1.9618 0.0773 1.9419 1.9761 2.0003
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Table 8
Experiment 8: Design C, Sample Size = 100

Estimator Mean St.Dev. L.Q. Median U.Q.
&3 1.0161 0.0333 0.9949 1.0162 1.0384
&3 1.0067 0.0111 0.9996 1.0064 1.0141
&3 1.0052 0.0072 1.0005 1.0050 1.0102
411 1.0058 0.0063 1.0017 1.0055 1.0094
aipin 0.9976 0.0175 0.9948 1.0034 1.0076
a2 1.0101 0.0183 0.9981 1.0101 1.0223
ab 1.0079 0.0129 0.9996 1.0078 1.0167
abrle 1.0068 0.0094 1.0004 1.0071 1.0131
Gyl 1.0012 0.0187 0.9885 1.0011 1.0137
aple 0.9999 0.0014 0.9991 0.9999 1.0006
o2 2.0170 0.0608 1.9788 2.0163 2.0566
é3 2.0919 0.1896 1.9603 2.0810 2.2167
é3 2.1733 0.3346 1.9343 2.1193 2.3882
adl 2.2257 0.5366 1.8691 2.1311 2.4596
apin 1.9296 0.1816 1.8512 1.9957 2.0524
a3 2.0916 0.1920 1.9586 2.0697 2.2059
> 2.1281 0.2640 1.9401 2.0925 2.2746
afPle 2.0948 0.2146 1.9474 2.0716 2.2321
a3l 2.0225 0.1747 1.8981 2.0142 2.1431
e 1.9842 0.0204 1.9736 1.9906 1.9979
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Table 9
Experiment 9: Design C, Sample Size = 200

Estimator Mean  St.Dev. L=Q Media;l—__m
A3 1.0096 0.0225 0.9940 1.0091 1.0253
A3 1.0039 0.0076 0.9985 1.0040 1.0093
A8 1.0029 0.0046 0.9998 1.0030 1.0060
Al 1.0031 0.0038 1.0004 1.0032 1.0056
min 0.9976 0.0116 0.9940 1.0021 1.0046
A% 1.0059 0.0124 0.9971 1.0059 1.0147
ab 1.0046 0.0087 0.9986 1.0047 1.0106
aPPle 1.0038 0.0062 0.9997 1.0040 1.0080
als 1.0000 0.0122 0.9915 1.0007 1.0081
Gl 1.0000 0.0005 0.9997 1.0000 1.0002
&3 2.0117 0.0398 1.9831 2.0129 2.0380
a3 2.0513 0.1190 1.9638 2.0454 2.1299
é3 2.0961 0.2090 1.9441 2.0855 2.2285
éa! 2.1184 0.3012 1.9034 2.0803 2.3001
apin 1.9526 0.1237 1.8900 2.0070 2.0374
63 2.0511 0.1201 1.9610 2.0440 2.1273
ab 2.0703 0.1624 1.9499 2.0585 2.1733
agPle 2.0560 0.1425 1.9549 2.0450 2.1501
aals 2.0101 0.1160 1.9312 2.0133 2.0919
aiple 1.9926 0.0080 1.9893 1.9949 1.9970
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Figure 1a: Empirical Distributions of the alpha_1 Estimators, Experiment 1, Design A, Sample Size = 50
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Figure 1b: Empirical Distributions of the alpha_2 Estimators, Experiment 1, Design A, Sample Size = 50
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Figure 2a: Empirical Distributions of the alpha_1 Estimators, Experiment 2, Design A, Sample Size = 100
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Figure 2b: Empirical Distributions of the alpha_2 Estimators, Experiment 2, Design A, Sample Size = 100
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Figure 3a: Empirical Distributions of the alpha_1 Estimators, Experiment 3, Design A, Sample Size = 200
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Figure 3b: Empirical Distributions of the alpha_2 Estimators, Experiment 3, Design A, Sample Size = 200
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Figure 4a: Empirical Distributions of the alpha_1 Estimators, Experiment 4, Design B, Sample Size = 50
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Figure 4b: Empirical Distributions of the alpha_2 Estiniators; Experiment 4, Design B, Sample Size = 50
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Figure 5a: Empirical Distributions of the alpha_1 Estimators, Experiment 5, Design B, Sample Size = 100
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Figure 5b: Empirical Distributions of the alpha_2 Estimators, Experiment 5, Design B, Sample Sizé =100
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Figure 6a: Empirical Distributions of the alpha_1 Estimators, Experiment 6, Design B, Sample Size = 200
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Figure 6b: Empirical Distributions of the alpha_2 Estimators, Experiment 6, Design B, Sample Size = 200
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Figure 7a: Empirical Distributions of the alpha_1 Estimators, Experiment 7, Design C, Sample Size = 50
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Figure 7b: Empirical Distributions of the alpha_2 Estimators, Experiment 7, Design C, Sample Size = 50
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Figure 8a: Empirical Distributions of the alpha_1 Estimators, Experiment 8, Design C, Sample Size = 100
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Figure 8b: Empirical Distributions of the alpha_2 Estimators, Experiment 8, Design C, Sample Size = 100
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Figure 9a: Empirical Distributions of the alpha_1 Estimators, Experiment 9, Design C, Sample Size = 200
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Figure 9b: Empirical Distributions of the alpha_2 Estimators, Experiment 9, Design C, Sample Size = 200
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