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A Comparison of Estimators for Empirical Models of Auctions

Harry J. Paarsch
University of Western Ontario, London, Ontario, Canada N6A 5C2

Using structural econometric models of equilibrium behaviour in games with
incomplete information to intrepret field data from auctions has become in-
creasingly widespread. Several different estimation strategies now exist. In
this paper, I compare the performance of these different estimators using a
stylized empirical model of a procurement auction within the independent
private values paradigm.

1. Introduction

Using structural econometric models of equilibrium behaviour in games with in-
complete information to interpret field data from auctions has become increasingly
widespread. A goal of some recent empirical research has been to determine if the
predictions of game theory are consistent with observed data. One proposed research
strategy (see, for example, Paarsch [1989, 1992a]) involves noting that the equilib-
rium strategies of players depend upon the distribution of latent characteristics. This
implies that the equilibrium stategies of players are random variables. If the distri-
bution of latent characteristics comes from a particular class of distributions, then
rational behaviour within that class of distributions will impose certain testable re-
strictions upon the data generating process of the equilibrium strategies. Paarsch
(1989, 1991, 1992a) as well as Laffont, Ossard, and Vuong (1991) have employed this
structural econometric framework to interpret field data from actual auctions using
the econometric methods proposed in Paarsch (1989,1992a) and developed in Donald
and Paarsch (1991, 1993) as well as Laffont, Ossard, and Vuong (1991). Some of the
empirical strategies discussed by Paarsch (1989, 1992a), Donald and Paarsch (1991,
1993) as well as Laffont, Ossard, and Vuong (1991) are quite different. In this paper,
I employ a stylized empirical model of a procurement auction within the independent
private values paradigm in conjunction with Monte Carlo methods to compare the
performance of these different estimators for empirical models of auctions.



This paper is in four more parts. In section 2, I outline a simple model of a pro-
curement auction that contains all of the elements required to construct a structural
econometric model of equilibrium behaviour. In section 3, the main methods for es-
timating this model are described, while a comparison of the estimators is presented
in section 4. A summary of the paper’s main findings is presented in section 5.

2. Theoretical Model and Empirical Framework

To illustrate the particular class of estimation problems which have been investigated,
I consider a sealed-bid auction as a non-codperative game.l I examine auctions at
which a known number of bidders N compete to perform a single task for a government
agency, with the lowest bidder winning the auction. Each player is assumed to know
his own cost of performing the task, but not those of his opponents. I assume that
the heterogeneity across agents in the cost of performing the task can be described
by a continuous random variable ¢ which has the probability density function f(c)
and the cumulative distribution function F(c). The costs of players are assumed to
be independent draws from F(c), and F(c) is assumed to be common knowledge. I
assume that bidders are risk neutral with respect to winning the auction, and that
the i*h bidder chooses a bid b; to maximize his expected profit. Finally, I focus upon
symmetric Bayesian-Nash equilibria.

2.1. Deriving the Equilibrium Bid Function

To construct the equilibrium, suppose that the M = N — 1 opponents of player ¢ are
using a common bidding rule §(c) which is increasing and differentiable in c. Since
costs are modelled as independent draws from a common distribution, the probability
of player ¢ winning with bid ; equals the probability that each of his opponents bids
higher because each has a higher cost:

[1- F(B~ (B:))]M.

Here $~1(b;) denotes the inverse of the bid function. Given that his cost c; is
determined before the bidding, player i’s choice of b; has only two effects upon his

1 A reader who is unfamiliar with the auction literature will find the surveys by Milgrom (1985,
1987) as well as McAfee and McMillan (1987) helpful.
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expected profit
(b —ai) - [1 = FB Ba)I™.

The lower is b;, the higher is his probability of winning the auction [1 — F(8~1(5:))]¥,
but the lower is his pay-off when he wins (b; — ¢;). Maximizing behaviour implies
that the optimal bid solves the first-order condition

11— P ) ~ M- (8- - P - ) <o 2y

Symmetry among bidders implies
b" = ﬁ(c;). (22)

Substituting (2.2) into (2.1), recalling that d8~1(b;)/db; = 1/8'(ci), and requiring
(2.1) to hold for all feasible ¢;’s, yields the following differential equation for 3:

Mf(e) _ —Mcf(e)

Gy ) 23)
Integrating (2.3), and imposing the boundary condition #(c0) = oo, yields?
g 0= PO dt

Denoting c(;.n) as the it smallest order statistic for a sample of size N from
the distribution of ¢, the winner of the auction will be the player with the lowest
cost ¢(1.). Because the winning bid function is monotonic in ¢(y.y), its distribution
is related to that of the smallest order statistic for a sample of size N from the
distribution of c.

2.2. Strategy for Interpreting Data

Exploiting the fact that (2.4) is a monotonic function of ¢ (the lower is a player’s
cost, the less he will bid) provides one strategy for interpreting field data; see, for

2m fact, simply imposing $(c0) = oo is insufficient to guarantee a unique solution since adding
any constant x to that solution is also a solution. In this case, x = 0 is the appropriate
constant.



example, Paarsch (1989,1992a). Because the bidding rules are functions of the random
variable c, the bids are also random variables and their densities are related to f(c).
For example, the density of 3(c), denoted g(b), is

f(B())
O}

where f'(c) is the Jacobian of the transformation of ¢ to §(c).

N

The winning bid is a simple function of the {c;};_,. Hence, its density is related

to f(c). The density of the winning bid w = B(c(1.n)), denoted h(w), is

_ N[ = F(B~ )M £(6~ w)
) = B () (29)

where

N[1 - F(2)]" £(2)
is the density of z = ¢(;.), the lowest cost draw for a sample of size N.

Consider a family of distributions for ¢ which depend upon the parameter vector
0 = (01,02,...,0,). Clearly, the parameter vector § will embed itself in (2.5). Without
any loss of generality, let f(c) have support upon the interval [0,00). Note that
evaluating (2.4) at 0, the lower bound for ¢, implies that the distribution of the
winning bid, assuming that it exists, has support upon

[ /ooo“ - F& oM d, oo) = [(6, M), o). (2.6)

3(0, M) is the expectation of c(1.pr), the lowest order statistic from a sample of size
M; (6, M) is the equilibrium amount a player who had a cost draw of zero would bid
when playing against M opponents. Because the support of A(w; 6, M) depends upon
the parameters of interest, the standard regularity conditions used to demonstrate the
consistency and asymptotic normality of the maximum likelihocod estimator of 8 no
longer apply, and alternative estimation methods must be pursued.

One alternative could be to abandon estimation by a method like maximum
likelihood and to use some other procedure. For example, suppose that the k' raw
moment of w

o0
E[w®] = u(0, M) = / wh(w;0,M) dw  k=1,2,... (2.7)
3(0,M)
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has a closed-form solution, then the observed data w* can be decomposed as follows:
v = (O, M)+ k=1,2,..., (2.8)

where the expectation of up is zero, while its variance depends upon M. The
parameter vector & can then be estimated by non-linear least squares, for example.
Often, however, especially in the presence of reservation prices, (2.7) will not have a
closed-form solution, and will only be defined numerically.

Donald and Paarsch (1991, 1993) as well as Laffont, Ossard, and Vuong (1991)
have developed methods for estimating structural econometric models derived within
the above framework. Below, I summarize these estimators.

3. Alternative Estimators

In what follows, I focus upon the winning bid w at an auction with N potential
bidders. For the t*® (¢ = 1,...,T) auction, I assume that the pair (w¢, Ny) is observed.
Often, additional covariates will be considered important, and typically, institutional
rules such as reservation prices will be introduced. For the purposes of this paper,
however, I ignore these issues as they do not alter the substance of the main points I

make.
3.1. Non-Linear Least Squares

The method of non-linear least squares can be applied directly to estimate the
parameters of the empirical specification (2.8), provided (2.7) has a closed-form
solution. When f(c) is within the Pareto or Weibull families of distributions, then
(2.7) will have closed-form solutions; see, for example, Paarsch (1992a). In such cases,
the non-linear least squares estimator minimizes the following objective function:

T
V() =3 (wr - (6, My))".

t=1

The introduction of covariates or the presence of reservation prices can complicate
this model. While there are examples of f(c)’s which admit regressor and closed-form
solutions to (2.7) in the presence of reservation prices, as Laffont, Ossard, and Vuong
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(1991) point out, these solutions are not general. Because the statistical properties of
the non-linear least squares estimator are well understood and documented (see, for
example, Jennrich [1969]), I omit the details here and proceed to describe the new
and alternative estimators proposed by Donald and Paarsch (1991, 1993) as well as
Laffont, Ossard, and Vuong (1991).

3.2. Piecewise Pseudo-Maximum Likelihood

Donald and Paarsch (1993) develop an alternative approach to estimating the pa-
rameter vector 6 by non-linear least squares, piecewise pseudo-maximum likelihood
estimator. The basic idea behind that method of estimation is as follows: For any
particular M; = M, the lower bound function w(M) = (8, M) can be consistently
estimated by the smallest w; over all of those observations with M; = M, denoted
w(M). Consider a partition of the vector 6 into a scalar 6; and the remaining (p — 1)
parameters, denoted ;. Suppose that the function 3(6;, 62, M) is monotonic and
invertible, so that one can write 6, = 0;(02,w(M;), M;). Treat w(M;) as if it were
the lower bound, and substitute it for w(M;) in 8; = 6,(02,w(M:), My). 6; is now a
function of #7 and the data. Substitute this function into the logarithm of the likeli-
hood function and then maximize over 6;. The method is called “piecewise pseudo-
maximum likelihood estimation” because the logarithm of the likelihood function is
broken up into pieces depending upon the value of the covariate M, and because no
first-order condition is used to concentrate the likelihood function.

Donald and Paarsch have demonstrated the consistency of the piecewise pseudo-
maximum likelihood estimator. They have also given conditions under which that
estimator is distributed asymptotically normal. An interesting feature of the estima-
tor is that its asymptotic distribution does not depend upon that of the preliminary
estimator (M) because the latter converges at rate T instead of the usual rate v/T.
In small samples, however, some bias can be introduced by the pre-estimation error
in @W(M). This problem is most acute when T), the number of observations with
M = M, is small, a situation commonly encountered in practice.

A drawback of the method is that it relies upon the presence of a partition of
0 so that (61,02, M) can be inverted. When auctions have reserve prices, (8, M)
is often only defined numerically because it involves the truncated moments of the
latent cost distribution; see Paarsch (1991).

6
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_ Another drawback of the method is that introducing continuous covariates into
the empirical framework is often impossible. To see this, suppose that, in addition
to the covariate My, a vector of other covariates Z; is also considered important in
determining bids. One way this might happen is if the distribution of ¢ depends upon
Zy; i.e., F(c) = F(c;0,¢,2Z;). The lower bound will then be a function of the Z;’s
too. That is,

(0, 0; My, Zy) Swy t=1,...,T,

where the ¢ is an unknown parameter vector of dimension ¢ which relates to the Z;.
When the elements of the Z; are indicator variables, one can apply the methods of
Donald and Paarsch with only trivial modifications to estimate the parameter vector
a = (6,¢) On the other hand, if the elements of the Z; are continuous covariates,
such as prices and quantities, then the methods of Donald and Paarsch cannot be
applied directly.

3.3. Maximum Likelihood

To circumvent the problems associated with continuous covariates and (6, M)’s
which are only defined numerically, Donald and Paarsch (1991) derived the maximum
likelihood estimator of the parameter vector using non-linear programming.

The solution to the maximum likelihood estimation problem can be motivated
by presenting the solution to a simpler problem. Consider a random sample of size T
for a random variable w; that is distributed uniformly on the interval [0, 4], where §
is an unknown parameter which the investigator seeks to estimate. The density of w
is
h(w; 6) = {0-1 for all w € [0, 6]
0 otherwise.

The conventional method of deriving the maximum likelihood estimator of § would
involve maximizing the following likelihood function with respect to 6:

T
L(ai w1, W2,... ,wi) = Hh(07 wt) = 0-Ta
t=1

or equivalently maximizing the logarithm of the above likelihood function with respect
to 6
log L(0; w1, wz,...,w) = —Tlogé.
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Of course, as 0 tends to zero the functions L(0) and log L(#) tend to infinity. But a
6 of zero implies that none of the data should have been observed in the first place.
A simple solution to this problem is to re-write this as a constrained optimization
problem. In particular, maximize L(#) or log L(#) subject to the constraint that all
of the observed data be consistent with the resulting estimate. That is,

w <0
<6
max —T'logé subject to vz =
<6> :
wr <40.

The maximum likelihood estimator is then

A

0 = max[wy, wy,...,w)|.

In the model considered above, Donald and Paarsch (1991) define the maximum
likelihood estimator as the solution to the following optimization problem:
T (0, My) < wy
max ;log h(we; 0, M) subject to S, Mz) s v
(0, Mr) < wr.
Given the assumptions maintained by Donald and Paarsch, one can solve for the
maximum likelihood estimator by maximizing the following Lagrangean:
T

T
£, =3 a@r=Y ( log h(wi; 8, My) + M (wy — (6, Mt)))
t=1 t=1

with respect to 6, where A = (A,...,Ar) is the vector of T' Lagrange multipliers.
The maximum likelihood estimator §, which Donald and Paarsch demonstrate to be
consistent, satisfies the following conditions:

T
Z (Va log h(wy; é, M) - /\tVog‘(é, Mt)) =0

t=1
A (w1 — S8, M1)) =0

Ao (w2 — (4, M2)) =0

AT (wT - ‘3‘(9, MT)) =0.

8
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At most, p of the T constraints will ever bind at one time; i.e., T — p of the Lagrange
multipliers will be zero at the optimum. For the binding constraints, the A¢’s will be
non-negative.

A natural way to examine the asymptotic behaviour of the maximum likelihood
estimator would be to consider the Hessian matrix of the Lagrangean

T
Voo £(8) =D Voo (6, M)
t=1
T
(Vag log h(wt; 9, Mg) - /\1V003‘(0, Mt)) .
=1

t
This is useful when the solution to an optimization problem occurs along a smooth
and differentiable part of the contraint set, but as Donald and Paarsch point out
the solution typically obtains at the intersection of the constraints. In this case,
the Hessian is ill-defined. Moreover, the properties of the perturbed optimum are
determined solely by the constraints. As may be expected, the distribution theory for
the estimator is quite complicated. Indeed, the limiting distributions of the estimators
will fall into the usual normal limiting family only in a special case. Allowing for only
a slightly more general case will change the nature of the limiting distributions. In
particular, the distribution of the estimator often falls within the Weibull limiting
family. One attractive feature of this estimator is that it often converges at rate T as
opposed to rate v/T which is typically the case in statistics, a fact arising from the
use of extreme value statistics instead of averages to define the estimator. This quick
rate of convergence can be very important in applications to auctions where sample
sizes of 50 are common, and those of 200 would be considered large.

3.4. Simulated Non-Linear Least Squares

As mentioned above, the solution to (2.7) is often only defined numerically. In such
cases, employing the method of non-linear least squares to estimate § is impossible.
Laffont, Ossard, and Vuong (1991) propose a general method for estimating empirical
models of auctions which they call, “simulated non-linear least squares.” This method
is closely related to that of simulated moments developed by McFadden (1989) and
Pakes and Pollard (1989), and appears to represent a major step forward in the
structural econometric analysis of auctions.

9



Laffont, Ossard, and Vuong note that within the independent private values
paradigm, the equilibrium bid function for the t*! auction can be written as the
following conditional expectation:

Bu(c) = E[C(Z:Nz) | C(1:Ny) = <)

which implies that
Efwi] = p1(6, My)

= E[c(Z:Nt)] (3.1)
= /0 .. ./(; c@:Ny) fi(c150) ... filen,;0) der ... den,.

Here, the t subscript on fi(-) is used to signify that the density f(-) can vary from
observation to observation depending upon, for example, covariates. Equation (3.1)
is used as the basis of the proposed simulated non-linear least squares estimator. The
idea is that for each of ¢t = 1,...,T observations, S independent samples of size N;
are drawn; (3.1) is then approximated by the sample mean of this function for each of
the simulated samples. Following Gourieroux and Monfort (1990), Laffont, Ossard,
and Vuong use the concept of the “importance function” (common in Bayesian
Monte Carlo integration) to get around the problem that the parameter vector to
be estimated 6 is part of the function to be simulated y1(8, M). Letting 14(-) denote
the importance function — which the researcher must specify ez ante — Laffont,
Ossard, and Vuong estimate

00 o0
p1(9, My) =/0 /0 c@:ny)fi(e1;0) . .. filen,;0) der ... dey,

LS8
m(6, Mi) = < > ma(8, My)

g=1

= ¢ fi(ciy;0) ... filey,.: 0)
ms(o,Mt) —0(2:N¢)t ¢t(cit)"°¢t(c}v‘t) .

10
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Here, each of the c,’s represents an independent draw for a random variable having
the probability density function ¥:(-),¢ =1,...,N; s=1,...,S;and t =1,...,T.

The principal advantage of this method is that it eliminates the numerical eval-
uation of integrals that arise when calculating

e fP =SS fw0) dulM de] Ly
E[w]—/‘“ [z+ [1-f}f(u;0) du)M ]N[I /;f(“,a) du]” f(2) dz.

The method developed by Laffont, Ossard, and Vuong appears to be quite general.
In particular, it appears useful for applications within other paradigms where the

equilibrium bid function can also be expressed as an expectation; e.g., the affiliated
private values model of Milgrom and Weber (1982).3

Laffont, Ossard, and Vuong note that using m(6, M;) as p1(0, M;) when mini-
mizing the objective function

T
3 (e — (6, My))°
t=1

with respect to § will produce an inconsistent estimator for any finite number of
simulations S because (0, M;) estimates py(f8, M) with error. They derive the
simulated non-linear least squares estimator of 8, which is consistent for a finite fixed
S simulations, by minimizing the following objective function:

T S
Q) = 3 | (we — (6, My)" - -Sﬁ > (ma(6, M) - m(6,M0)° | (32)
t=1 s=1
with respect to §. The bias introduced by the pre-estimation error in (0, M) is
corrected by introducing the second term of Q(8), which represents an estimate of the
sample variance of m(, M;). Laffont, Ossard, and Vuong show that the simulated
non-linear least squares estimator is distributed asymptotically normal, and they
derive an estimator of the variance-covariance matrix of this estimator.

The work of Laffont, Ossard, and Vuong appears to be a major contribution. At
this point it would appear useful to evaluate the relative merits of the approaches
considered by Paarsch (1989,1991,1992a), Donald and Paarsch (1991, 1993) as well
as Laffont, Ossard, and Vuong (1991).

3 Elsewhere, I am attempting this sort of an analysis; see Paarsch (1992b).
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4. Comparison of the Estimators

The main difference between the methods of Paarsch (1989,1991,1992a) and Donald
and Paarsch (1991, 1993), and those of Laffont, Ossard, and Vuong (1991) is the
use of distributions. For computational parsimony, Paarsch and Donald and Paarsch
typically choose distributions for which the winning bid has a closed-form regression
function or a density function which is easy to evaluate. In some models, structure
is exploited to introduce covariates, but as Laffont, Ossard, and Vuong point out,
these solutions are not general. In addition, introducing institutional rules such as
reservation prices is often quite difficult. Laffont, Ossard, and Vuong develop a frame-
work within which only the density f(-) need have a closed-form representation on
a computer, while the importance function (:) must have a cumulative distribution
function whose inverse can be calculated efficiently. Additional covariates and insti-
tutional rules can be admitted in a straightforward way. Thus, the method of Laffont,
Ossard, and Vuong appears to be quite general. Because this generality obtains at
the cost of approximating the exact solution by simulation on a computer, it is inter-
esting to examine the costs incurred in terms of inefficiency as well as small sample
bias when simulated approximations are used. I shall address these issues using as a
benchmark a stylized empirical model for which the winning bid’s regression function
has a closed-form solution, and for which the winning bid’s density is easy to calculate.
I am then able to investigate the effects that simulation has upon the performance
of the simulated non-linear least square estimator vis-a-vis the maximum likelihood
and non-linear least squares estimators.

In the benchmark model, I model ¢ as an exponentially distributed random
variable. Thus,

f(c; 0) =%exp(—c/0) 0<e¢ 0<6.

In this case, p
Ble)=c+ 57
and p
w=p(z)=z+737

where z = ¢(;.) has probability density function

 exp(~2N/6),

12
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so the #*® observed w has the following probability density function:

N —wyNy N, 0
h(wt;ﬂ, Mt) = Ttexp ( uz t + :[TJ!:) — < wy. (4.1)

Now

6 . 0 2N, — 1
E['wt]=[l1(0,Mg)=Nt-+E=o( N:Mt >,

so an empirical specification like (2.8) is

2N; -1
we = 0( N M, ) + ui. (4.2)

Note that (4.2) is a linear model, and the small sample behaviour of the estimator
for @ can be investigated easily. Also, departures in the behaviour of the simulated

non-linear least squares estimator from the behaviour of benchmark estimators can
be attributed solely to simulation error.

There are least two issues of concern when implementing optimization estimators
based upon simulation. First, how much simulation should be done; i.e., how big
should S be? And second, how large must the sample size T' be for the estimator’s
asymptotic behaviour to settle down? To address these issues, I consider simulation
sample sizes of 25, 50, and 100, and samples sizes of 50, 100, and 200. The choice
of sample sizes was determined by the amount of data that is typically available
concerning auctions. In particular, samples size of 50 are relatively common, whereas
those of 200 would be considered large. The choice of simulation sample sizes, on
the other hand, was determined by computational costs. In particular, since the
researcher must solve the estimation problem repeatedly when simulation methods
are used, it is useful to know how little simulation he can get away with, and still
preserve a tolerable degree of precision. Note that Laffont, Ossard, and Vuong (1991)
use S = 20 in their application of the simulated non-linear least squares estimator.

To reduce any uncertainty which might be introduced by the choice of importance
function, I chose to consider as the importance function the true density at the true
value of the parameter. For the experiments considered here, I set 8 equal to one.

To reduce uncertainty which might be introduced by sample covariate design,
I chose to consider a paradigm within which the number of bidders did not vary. I

13



chose N = 5 (or M = 4) because this corresponded to situations often encountered in
practice. Under these assumptions, the piecewise pseudo-maximum likelihood and the
maximum likelihood estimator are identical. Moreover, the small sample distributions
of the maximum likelihood and non-linear least squares estimators can be calculated
exactly. In particular, the maximum likelihood estimator of 8 is

n 0
™ = Mwy.py = M [2(1:7*) +37

where z(,.7) is distributed exponentially with hazard rate parameter NT'/6. The
non-linear least squares estimator of 0 is

juis _NMY L w _ _ NM i( 0‘)+0_T]

“T@N-1)T (@N-1T M) M

L t=1

- T

NM T
SeN-T _;z‘ + IZ]

where 2; is distributed exponentially with hazard rate parameter N/@ implying that

Z,T=, 2¢ is distributed gamma with parameters T and N/#§.

The random numbers for the experiments were generated using the multiplicative
congruential method with modulus (23! — 1), multiplier 397204094.4 This method
generates uniform pseudo-random numbers on the interval (0,1). Using the property
that the distribution function is distributed uniformly on the interval (0,1), I applied
the inverse distribution function to obtain the pseudo-random w’s. The initial seed
used to generate the {w:}]_, was 2420375, while the initial seed to generate the
simulation samples was 123457.

In calculating the empirical distributions of the simulated non-linear least squares
estimator, I encountered several numerical problems. First, the objective function
@(0) admits local optima. This property is illustrated in Figure 1 where S = 5 and
T = 10. Thus, using a Newton-Raphson type search was ruled out. Instead, I grid-
searched the parameter space from zero to six. In doing this, I encountered another

4 This is by no means the only random number generator available as Marsaglia (1972) and
others have demonstrated; see Knuth (1969) for a survey. I have chosen to use this random
number generator because most researchers use random number generators like it. Also,
among the class of linear congruential generators available, this one has relatively attractive
properties; see Fishman and Moore (1982) for details.
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property of the objective function @(6): the global optimum is often not near one
(the true value of the parameter generating the data), but rather somewhere near
four. This property is illustrated in Figure 2 where S = 25 and T = 50. In Figures
3 and 4, the expected value of the non-linear and simulated non-linear least squares
objective functions are presented. In both figures, S = 25, S = 50, and S = 100,
while T = 50 in Figure 3 and T = 200 in Figure 4. For both figures, I used 1000
replications to calculate the average values of the objective functions at each value
of 8 from one to ten using intervals of 0.1. Notice that although a local minimum
to the function exists at one in Figures 3 and 4 when S = 25, the global minimum
is somewhere near four; the local and global minima are reversed when S = 50 and

S = 100.

In Table 1, I present the exact small sample results for the maximum likelihood
and non-linear least squares estimators as well as the results of the Monte Carlo sim-
ulations for the simulated non-linear squares estimator. The estimators are denoted
respectively “mle”, “nls”, and “snls”. Also, the subscripts “25”, “50”, and “100” on
the simulated non-linear least squares estimators denote the simulation sample sizes
25, 50, and 100 respectively. The abbreviations St.Dev., L.Q., and U.Q. denote re-
spectively the standard deviation, lower quartile, and upper quartile of the estimator’s
distribution. In parentheses beside each of the simulated non-linear least squares es-
timators, I present the proportion of the 1000 observations which were less than two.
In Figure 5, I present the population density functions and empirical distributions for
the estimators.

Notice that both the maximum likelihood and the non-linear least squares esti-
mators do well at estimating 6 which is in marked contrast to the performance of the
simulated non-linear least squares estimator. As both S and T increase, the simu-
lated non-linear least squares estimator’s performance improves. This result obtains
because although the function 7m(-) may approximate the function p1(:) quite well,
the function Q(8) does not approximate the function V() well. Thus, using e,
the minimum of @(), to approximate g™, the minimum of V(#), does not provide
an accurate estimate of 6, although the behaviour of the simulated non-linear least
squares estimator appears to improve for large S. In this case, the term

T S

SET) 2o 2 (mal0 M) — (o, M)’

t-l s=1
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become relatively small, and in the limit disappears, so the term

T

Z ('wg - ‘ﬁ'l.(o, Mt))z

t=1

approximates the function V() well.
5. Summary

The distressing fact which emerges from the above tables and figures is that the
simulated non-linear least squares estimator only finds a neighbourhood of the true
parameter value some of the time. Also, the amount of simulation required to get
accurate estimates is quite high, and in some problems it could be prohibitive. In any
case, S should be much larger than 20, the value which was used in the application
presented by Laffont, Ossard, and Vuong.

Notice that none of the consistency problems which plague the simulated non-
linear least squares estimator arise when either the maximum likelihood or the non-
linear least squares estimators are used. Of course, this comparison is a little unfair. In
all cases where one would want to use the simulated non-linear least squares estimator,
the non-linear least squares estimator would be infeasible, and in some cases the
maximum likelihood estimator would also be infeasible. Although the maximum
likelihood estimator requires much more structure than the simulated non-linear least
squares estimator, it has one redeeming feature: the maximum likelihood estimator
often coverges at rate T, while the simulated non-linear least squares estimator only
converges at rate v/T. In practical terms, this means that an empirical researcher can
obtain as much accuracy with a sample size of 50 when using the method of maximum
likelihood as he could with a sample size of 2500 when using the method of simulated
non-linear least squares. This is of particular relevance when investigating field data
from actual auctions because sample sizes of 50 are common, and those of 200 would
be considered large.
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A. Appendix

In this appendix, I present the first and second derivatives of the simulated non-linear
least squares objective function. Recall that the simulated non-linear least squares
objective function is

T S
Q) =" [(wi - — i)
t=1 s=1
where
Myt = C fileiy) - - ft(cN,t)
s (2:Ne)t AR (cNgt)
and
1 S
me= 7 ) Mast
S s=1
Let
Fi = filety) .- file) = N, €XP < Zcu/o)
=1
and

Gi = i(cly) - - - Ye(cy,e)s

a constant. The first derivative of Q(6) with respect to 8 is

T
dQ(9) _ _ dmy (dm,t dmg)
20 —2—2 (we — ) B T3 g(mst mt)
where
dmg _ S2:N)t dFY
 ~ G df
and
% — l dmst E C(Z:Ng)t ﬂ
do S — “d9 S ;  df
with

N,
dFs _ }_t[N, 'j% :,]
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The second derivative of Q(6) with respect to 8 is

£Q(0) Py (dm\?
sz)()

s
_ d? mgt dzﬁlg dmg; dmy 2
S(S E{(m"‘m‘)( PTIRAPT )+ (’Eb“ ”Zé') }]

=1

where s
dzmst _ C(Z:Ng)t d2]:'ts
67 T G:  de?
and
d*my dma Ny & F;
do? S z ez ~ S Z g} dg?
with N N
dzf.ts — _ﬂ _I_Y_f. _ 2:—31 cit + F? Nf 22:’:‘1 ch
ez~ do| 6 62 tlez ~ — ¢

2
=fs{[_&_2£glcft] +[£{_2Eg='lcft]}
116 62 62 63 ‘
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Table 1.
Comparison of ML, NLS, and SNLS Estimators.
N = 5; S = 25, 50, 100; T = 50, 100, 200.

Estimator = Mean  St.Dev. = L.Q.  Median  U.Q.
Sample Size = 50
gmie 1.004 0.004 1.005 1.011 1.022
gnle 1.000 0.047 0.956 0.997 1.041
é551s (0.200) 2.924 1.055 2.888 3.291 3.469
S“ls (0.303) 2.901 1.301 1.082 3.387 3.849
é5ks (0.537) 2.435 1.548 1.016 1.139 3.896
Sample Size = 100
gmile 1.002 0.002 1.002 1.006 1.011
grls 1.000 0.033 0.969 0.999 1.029
453'= (0.197) 3.054 1.100 3.175 3.366 3.474
6115 (0.301) 2.967 1.310 1.076 3.624 3.861
65885 (0.595) 2.360 1.631 1.009 1.075 4.214
Sample Size = 200
gmle 1.001 0.001 1.001 1.003 1.006
gnls 1.000 0.024 0.978 0.999 1.021
4535 (0.123) 3.427 0.983 3.350 3.455 4.097
65"15 (0.414) 2.765 1.498 1.027 3.697 3.877
g5nts (0.681) 2.082 1.554 1.005 1.046 4.158
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Figure 1: Non-Linear Least Squares and Simulated Non-Linear Least Squares Objective Functions, S =5, T = 10.
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Figure 2: Non-Linear Least Squares and Simulated Non-Linear Least Squares Objective Functions, S = 25, T = 50.
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Figure 3: Non-Linear Least Squares and Simulated Non-Linear Least Squares Objective Functions, S = 200, T = 200.
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Figure 4: Density Functions and Histograms of the Estimators: S = 25, 50, 100, 200; T = 50, 100, 200.
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Figure 5:

Histograms of the Estimators: S = 25, 50, 100, 200; T = 50, 100, 200.
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