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Generalized Gross Substitutes

1. INTRODUCTION

In the study of the uniqueness and stability of competitive equilibrium
the assumption of gross substitutability plays a key role [1]. Although it
has little intuitive appeal it is one of the few assumptions known to imply
both uniqueness and stability. However, the assumption has, up to now, been
restricted to economies with single-valued excess demand functions.

The present paper defines a generalized concept of gross éubstitutability,
applicable also to the case where excess demands must be expressed as multi-valuéd
functions or correspondences, and demonstrates the uniqueness and stability of
the competitive equilibrium under this generalized assﬁmption. It makes use
of the results feported in [2] on existence and stability of solutions to
differential equations whose right hand sides are not single-valued. The paper
also gives an example satisfying the assumption--namely, the case of a pure
exchange economy in which all traders have linear utility functionms.

Thus the paper represents not only an application of the resuits in
[2] but also an extension of our understandf;g of the role of substitutability
in rendering stable the t;tonnement adjustment process. It is well-known
that stability is guaranteed if income-effects are absent from demand functions
or if all goods:are gross substitutes. It was also shoym in [3] that local
stability would'obtain under certain conditions if one trader's indifference
surfaces are flat enough. The present paper supplements the results of [3]
by showing that global stability obtains if every trader's indifference surfaces

are perfectly flat, the extreme case of perfect substitutability.



2. THE ASSUMPTION

First, some notation. The vector inequality x’ Z x means x’ = X, Vi,

i
’ ’ ’ ’ ? fﬁn
X 2xmeans X =Zx and X' # x, and X > X means x, > x5 Vi. The set , is
defined as {x € W': x > 0}. We use the Euclidean norm: |x| = (& xi 1/2.

Let §: mﬁ -»> 5 be the excess-demand correspondence. Assume that:

(©) Vp € mﬁ, € is upper hemi-continuous at p, and the set §(p) is non-empty,

compact, and convex,

) prx=0 ¥ €E@), p€X, and

) EQ(p) = E(p) W €K, 1 € R,.

An equilibrium is defined as a price vector, P € mi such that

0 € E(B). We shall assume that:

(E) an equilibrium exists.
Consider the tatonnement process, defined as the system of (possibly

multi-valued) differential equations:
T Leep).
dt

We say that the function p: [O,E] - mﬁ is a solution to (T) on [O,E]

starting at po € mi, iff

(8.1) p(0) =py
(8.2) p is absolutely conti.nuousl on [0,t], and

(5.3) g%-exists and satisfies (T) a.e. on [0,t].

Likewise, we say that the function p: [0,®) - mi is a solution to (T) on

[0,*) starting at pOE R

2 iff (S.1) holds, and if for every £t>0 (S.2) and

(8.3) hold; any such solution is referred to as a trajectory of (T).



Let D be a closed, convex subset of mi. The system (T) is said to
be quasi-stable on D iff (a) for every po € D a solution exists to (T) on
[0,®) starting at p°, (b) every trajectory of (T) starting in D is bounded,
and (c) every limit point of every such trajectory is an equilibrium. Likewise
the system (T) is said to be asymptotically stable on D iff it is quasi~-stable
on D and every trajectory starting in D has only one limit point. Clearly if
for every pO € mi there is a closed convex set D containing p° such that (T)
is quasi-stable (resp. asymptotically stable) on D then (T) is quasi-stable (resp.
asymptotically stable) on mﬂ.

Let I = {1,...,n} be the index set for commodities. In the case where
€ is describable as a single-valued function, x: Ri e:mP, the assumpéion of
gross substitutability is [1l,pp. 227-9]:

n ? _
(1) Ifp,p €, jETI, Py > py» and p; = p,

V, €T- {3}, thenx, (') 2x,(p) V, € T - {J].
(Gs) (i1) there is no partition {Il,Iz} of I and p’, P € mi

such that p{ =P, Vi € Il’ p{ > Py Vi € 12, and

xi(p') = xi(p) Vi € Il'
It is well known [1, pp. 227-9, 288-9] that under (GS) the equilibrium is
unique, in the sense that for some 6 € mﬁ every equilibrium is of the form

p = hﬁ, A€ m+, and that (T) is asymptotically stable on mﬁ.

Our assumption of generalized gross substitutability is:

(i) V¥, p’€ mi, if there is a partition {11,12} of
I such that p/ =p, Vi € L. and p; >p, Vj € 1
ccs) P, =Py p and Py >py Vj €1,
/! =
then 3 p;x; B by pX

I1 I1

(ii) a strict inequality holds above if p is an equilibrium.

; ®EE@, x' €5("), and



In the case where § is always single-valued, (GGS) is a slight

generalization of (GS). What remains to be shown is that (GGS) also implies

uniqueness and stability.

3. UNIQUENESS

Let ﬁ € mi be any equilibrium. We want to show that if p € mi is also

an equilibrium then p = Ap for some A € m+. First, we demonstrate:

Lerma 1: If p € mﬁ and p # A\p for any A € R+, then ¥x € E(p),

S px >0and I px S0, vhere M) = (1€T: pilﬁié pJ./S

ieMp) Tt 1€s() © ]

Vj € 1) and 5G) = {1€1: p, /b, Zpy /b, V) € 1)

Proof: We shall show first that 3 p.x, > 0. Take any-such p.
B ivi
1eMp@)

Define p = min (pi/pi)- Then p = uﬁi Vi € M(p) # ¢, and Py > HP,

i €1 - M(@) # 9. Therefore, by (G6S), = px, Z 3 pi?ci
ieM@p) i eM(p)

Vx € E(p), ; € §(u§). But, by (H), uﬁ is an equilibrium; that is,

0 € E(up). Therefore 3 PyX; > 0 V& € E(p). To show that
i€M(p)

by pix£ = 0 we proceed in an analogous way, comparing p to the
i€s(p)

A )
equilibrium gp, where ¢ = max (pi/pi). However, no strict inequality
may be obtained because (GGS) does not require a strict inequality

to hold in part (i) if p’ is an equilibriumf

It follows immediately from Lemma 1 that the equilibrium is unique,

for if p # Ap for any A € m+, then ¥ € E(p) i € I such that x, > 0; so that

i
0 £ E(p).



4. STABILITY

Take any po € mﬁ. We want to show first that a solution exists to
(T) on [0,®) starting at po. To do this we start by constructing an artificial

dynamical system.

Define C = {p € ®*: min p,/p Z min p°/p and max p,/p S max po/p, }
+° i"ti i'741? i"ti i'vi’?

= . mi S = 0, 00 < o
and C, {p € %:. min pi/Pi Z 1/2 min pi/piAand max pi/pi S Zmax pilpi}.

Then C and C2 are both compact, convex subsets of mﬁ, and p0 € C C int Cz.
For any p € . C2, define ;(p) as the (unique) solution to{~%§n }]p—ﬁ]. Then
pE€C
2

define the correspondence {: ) o as:

E(p) ifp € c,

ce) = _
E(p(p)) otherwise

Consider the modified system of differential equations:
ah L ece
dt
Solutions to (T’) are defined as functions p: [0,] - R or p: [0,®) - N, which,
like solutions to (T), satisfy (S.1l) ~ (S.3).

It is easily verified that V¥p € mP, { is upper hemi-continuous at p,

and the set {(p) is non-empty, compact and convex. Furthermore, since 5(02)

).

is bounded, there exists a positive number o such that W € NP, sup le s a(1+lp
: x€L(p)

Therefore, by the existence theorem of Castaing-Valadier [2, pp. 291-2], there

~
exists a t > 0 such that

(v.1) V’ﬁo € m“, the set Sg(ﬁo) of solutions to (T’) on [O,E] starting
at 50 is non-empty and compact in Cu([O,E]; mP), the space of
continuous functions from [O,E] to %" endowed with the uniform

convergence topology; and



(v.2) Va c:m“, A compact, the correspondence

SE: A Cu([O,g]; mP): 50 - Sg(ﬁo) is upper hemi-continuous.

It follows immediately that for any 50 € C a solution exists to (T’) on
[0,®) starting at 50, the projection of which onto [O,E] satisfies (V.1l) and
(V.2). We wish to show that this solution is also a solution to (T). To this

end we have three Lemmas:

Lemma 2: If for all i € L pi(t) is an absolutely continuous

function on the interval [0,t] then so are the functionms

plt) = min(pi(t)/ﬁi)and o(t) = max (Pi(t)/;i)‘

Proof: We shall prove the theorem for w(t). The proof for o(t)’
is analogous. Take any € > 0. Then, by the definition of absolute

continuity there is a 6 > 0 such that:

%T' > Ipi(tq) - Pi(Tq)l < E€/n for all finite sets of pairwise

iq€Q
(L.1)

disjoint sub-intervals {(t ,T ): q € Q} of [O,E] such that 2
qQ° q €Q
q
-t < 8§, and all 1 € I,
(Tq q) ? :

Congider any such set. For each q € Q choose iq € I such that

1
(L.2) |l(tq)»- K(Tq)l = (;;fﬂ
q

p, (¢t ) -p, (7))
lq q iq q

For each i € I, define Q; = fq € q: iq= i}. Then each set:
{(tq,Tq): q € Qi} satisfies the premises of (L.l). Therefore, from

(L.1) and (L.2):

SIAME) =A@ )| =3 = lp,te)-p. e <z em=¢€l
q¢q ¢ 4 1€I q€Q, i 4 jer



Lemma 3: If: (i) p is a solution to (T) on [O,E] starting at

poE 9{:_, where t > 0,

(ii) p(t ') is not an equilibrium, for some t’ € (O,t-:),

du do . dp ' g -
and (iii) e’ ar and it exist_at t° and at satisfies (T)

at t’ (where W,0 are defined as in Lemma 2), then:

do
= s0att’.

dp
(iv) at > 0 and at

Proof: We shall prove the Lemma only for w; the proof for ¢ follows
analogously. Suppose (i) ~ (iii) are satisifed by p, Eo, t, t’.

Define N = {i € M(p(t')):

dp. dp,
11r- -d—: Zz 71;- —d-l- Yy € M(p(t’))}. Then by (T) and Lemma 1,
’1 t=t’ 3 t=t’

dpi
(L.3) at >0 Vi € N.
t=t’

Also, by continuity, there exists an h € 5R+ such that Vt € (t’- h, t"),
M(p(t)) © N. Consider any sequence {tq} such that t17 t’. Then

d k € N such that k € M(p (tq)) for an infinite subsequence of {tq}.
For notational simplicity we shall suppose that {tq} is that sub-
sequence. By the definition of M( ), (pk(tq)/ﬁk) = h(tq) Vq.

Also, by the definition of N, pk(t ')/§k= Ae?. Therefore,

q ’

a qy _ 3 et P, (t%) - p (") dp

L.4) Efl' - AED D 1 P L2
t=t’ g ¢’ P ¢l Py t=t

The Lemma follows from (L.3) and (L.4)l

Lemma 4: If p is a solution to (T’) on [0,) starting at 13'0 €C,

then the function w(t) = o(t) - u(t) is non-negative, and strictly

decreasing on any interval where w > 0 throughout the interval.

‘\



«

Proof: Non-negativity follows immediately from the definition of
w. To prove the lemma we need only show that if t’ > 0 and wt’) >0

1t €y,

t1 < t2, then w(tl) > w(tz). This will follow a fortiori if we can

show that:

then there is an interval Y = (t' - h, t’ + h) such that if t

N

(L.5) o(t ) = o(t ) and u(t ) < p(t ) if t sty €Y, t, <t_.

1 1 2

To show this suppose first that p remains always in C,. Take any

2
t’ > 0 such that w(t') > 0. By the definition of w and the uniqueness
of equilibrium, p(t’) is not an equilibrium. Thus, by continuity,

4 an interval Y = (t’- h, t’+ h) such that:

(L.6) p(t) is not an equilibrium if t € Y.
Furthermore it follows from the absolute continuity of w and ¢ on Y

(Lerma 2) that [4, pp. 321, 337]:

L.7) do and -E-ex15t a.e, on Y,

dt dt
and that [4, p. 340]:
t
1 dg _E
(L.8) o(t)) - o(t,) = ) ¢ dts and u(e)) - p(e,) = f dt, Ve ,t, €Y.
t

2 ty
Also, from lemma 3, (L.6) ~ (L.8), and the fact that, since it never

leaves CZ’ p is a trajectory of (T): .

dp do
. > — L] L] L]
(L.9) at 0 and at =0 a.e.onY

Thus if p never leaves C (L.5) follows from (L.8) and (L.9).

2’
Furthermore the above reasoning also shows that p cannot leave CZ‘
For if it did then, by the definition of C2’ there would have to be

some non-degenerate interval U over which p remained in CZ’ P was not

an equilibrium, and either ¢ was not decreasing or u was not increasing.

But we have just shown that to be impossiblef]



o

It follows that V 50 € C a solution exists to (T) on
[0,<) starting at p°, the projection of which onto [0,t] satisfies (V.l)
and (V.2). We have already seen that such solutions exist to (T'). By
Lemma 4 all such solutions remain forever in C CZCZ. Thus they are also
solutions to (T).

We say that a function W: mﬁ~+ ) is a Lyapounov function for (T)
on C iff:
(P.1) W is continuous on mi,
(P.2) for every trajectory p of (T) starting in C the function

W(p(t)) converges as t = ©, and
(P.3) if there exists t € m+ and a trajectory p of (T) starting in C

such that W(p(t)) is constant on [O,E], then p(0) is an equilibrium.
According to Theorem 6.1 of [2], if a Lyapounov function exists for (T) on
C, then (T) is quasi-stable on C.

The function W(p) = max pi/ﬁ1 - min pi/;i is a Lyapounov function, Property
(P.1) is obvious, and properties (P.2) and (P.3) follow immediately from Lemma &,
Thus (T) is quasi-stable on C. Since the initial choice of po was arbitrary,
therefore (T) is quasi-stable on m&. Furthermore, we shall show that every
trajectory of (T) has only one limit point. By (W) the norm lp| is constant
over any trajectory since %E-lpl = lpl-l p - x for some x € §(p) a.e., which
must equal zero. Thus, by the uniqueness of equilibrium, each trajectory can
have only one equilibrium as a limit point. Since each limit point is an

equilibrium a trajectory can have only one limit point. Therefore (T) is

asymptotically stable on mi.
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5. AN EXAMPLE

An example of an economic model in which excess demands satisfy (GGS)
but not (GS) is given by the case of a pure exchange economy in which all
agents have linear utility functions, Let §i(p) be the set of solutions to the

problem: Max}qlo X subject to p+x =0 and x +wi Z 0, where wl, qi € W:;
{xer®

i=l,...,m. The vector wi can be thought of as trader i's endowment vector.

m .
Define E(p) = 3 §l(p). Then § satisfies (W), (H) and (C). It is also
i=1

easily shown.using standard proofs [1] that (E) holds. The set E(p) is not
generally single-valued, so that (GS) does not hold. We wish to show that
(GGS) holds. |

To do this we begin by showing that 51' satisfies part (i) of (GGS)
V4 € {1,...,m}. Consider any such £. For any p € fﬂf:_ define hz(p) =

Max (q{'/p.), and MJZ(P) = {je1: q'.e/p. = lz(p)}. It can easily be shown that:
fjer} 44 i’

(T.1) g”"(p) = {xex: px =0, x +w'E 0, x +w§'= 0 Vj ¢M£(p)}.

j
Now take any p, p '€ 3‘2:'_ and a partition {11,12} of I such that pj' = P; Vi € L
and pj' > pj Vj € 12. Take any xégz(p), x' € §'e(p ’Y. We wish to show that:

(T.2) = p.x'z2 3 p.x.
jeII J ] jeIl 1]

We shall do this in three stages:

(1) Suppose that Mz(p) c1I Then, since p’x’ = 0,

1

(T.3) = px/=- 3 pl/.
jer, 19 jer, 14

£
Also, by the definitions of M, Mz(p') = Mz(p), so that Mz(p N ]'.2= @.
Therefore, from (T.l),

(T.4) = p! -+ x!



)
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From (T.3) and (T.4),

(T.5) = p.,x/= 3 p! w?
jer; 33 j€1, J

By exactly analogous reasoning,

£
(T.6) = pjxj = 3 ijj
JG]’.1 _]61’.2
The conclusion (T.2) with strict inequality follows from (T.5) and (T.6),
together with the assumptions that wz >0 and pj' > Pj Vi € 12.

(ii) Next, suppose that M'z(P) CI,. Then, from the definition of g",

2
J
S px/Z- 3 pwW, = 3 p.x. &
i . i i
jGI1 JGIl _1611
(1ii) Finally, suppose that M'c(p) intersects both I, and I_,. Then
1 2

Mj'(p K= Il’ so that:

(T.7)  Z px/=- 2 pJ.'xJ.’= b pj'wj
JGII JEIZ JGIZ
Likewise, by the definition of §,

(T.8) 2 pXx,==- 3 px, S 3 p.w'?

jer, i3 jer, i3 jer, i
In this case (T.2) with a strict inequality follows from (T.7) and (T.8) aé
it does from (T.5) and (T.6).

It follows immediately from these results that part (i) of (GGS) holds
for €. By the same reasoning it follows that part (ii) holds if it can be
shown that whenever p is an equilibrium,case (ii) (Mj'(p) c 12) above cannot
hold for all £ € {l,...,m}. To see that this must be true suppose that
M!'(p) I, V4 € {1,...,m}. Then, by the definition of each §£, if x € E(p)

m

then x, = - W? # 0, so that p cannot be an equilibrium. .
=1 '
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o FOOTNOTES

lA function x: R » W° (where R is any interval of the real line) is

absolutely continuous on R iff VE€ >0 H 6 > 0 such that 3 |x(t ) = x(7 )I <&
» q9€Q q q
for all finite sets of pairwise disjoint subintervals [(tq, 'rq): q€Q} of R

such that 3 (v -t ) < 6.
q€Q q q
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