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ABSTRACT

This paper studies the mean squared error (MSE) properties of Hoerl and Kennard’s (1970)
generalized Ridge Regression (RR) estimators. We make extensive use of so called G( ) functions to
provide both exact and asymptotic approximations to the MéE. The results of a limited simulation are

also reported.

1. INTRODUCTION

Vinod’s (1978a) survey notes that the performance of the "generalized" RR is poor compared to that
»
of the "ordinary” RR in several simulations. This seems to be related to the well known "admissibility"
of ordinary least squares (OLS) in the unit dimensional case mentioned in Stein (1956), Bunke (1975),

among others.

Definition of an admissible estimator

Let a px1 vector b be an estimator of 8, and let WMSE (b)=E(b—B) D(b—8), be the "weighted"
MSE, i.e., a quadratic loss function for a specified, diagonal matrix D. The estimator b is said to be

admissible under WMSE (b) if there exists no other estimator 4° such that WMSE(b") < WMSE (~b)

with strict inequality for at least one value of 8.

Stein (1956) gives several earlier references to the result that the usual maximum likelihood (OLS)

estimator of B is admissible for p=1. In "generalized" RR a shrinkage type modification is performed
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for each dimension separately by choosing the biasing parameters k; (i=1,..,p). The admissibility of

OLS for p=1 implies that any operational formulas for the choice of individual k; (i.e. which do not

depend on unknown parameters) cannot reduce the MSE of OLS everywhere in the parameter space.

By contrast, the so called Stein-Rule or related shrinkage methods can reduce the MSE of OLS for p>2

simply because three or more choices of k; are somehow coordinated in these methods.

In section 2 the biasing parameter k; used for generalized ridge estimator (GRE) is expressed in
terms of two constants f; and f;. Hoerl and Kennard’s (1970) first step in their iterative GRE
amounts to choosing f)=1 and f,=0. Similarly, Hemmerle and Brantle’s (1978) proposal when no
constraints are imposed amounts to a choice fj=f,=1. Other forms of GRE’s proposed in the
literature are also seen to be special choices for f; and f,. Hence these are called members of our

double f class (DFC) estimators.

Section 3 studies the theoretical bias and MSE of DFC using the so called g() functions based on
confluent hypergeometric functions. The resulting exact results and asymptotics are stated as functions

of f) and f,. Section 4 gives proofs and Section S5 briefly reports the results of a limited simulation.

The Appendices give the theory of g functions adapted to our context.

2. THE MODEL

. Let us write the standard linear regression model as
y=XB +u Q.n

where y is a Tx1 vector of observations on the dependent variable, LY is a Txp matrix of p explanatory
variables, E is a px1 vector of unknown regression coefficients, and u is a Tx1 vector of unknown
disturbances.

We state the following conventional assumptions:
Assumption 1 - The matrix of explanatory variables is nonstochastic and of rank p.
Assumption 2 - The disturbance vector u is distributed as multivariate normal with mean vector zero

and covariance matrix o2/, i.e.,

©
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u~N(0,021)

Assumption 3 - The sample size T is greater than the total number of explanatory variables p in (2.1).

The model in (2.1) can be written in the following canonical form:
/ y =Za + u, (2.2)
where

Z = XG, a = GB. (2.3)

GG=GG = [ (2.9)
and
. ZZ=A, XX = GAG (2.5)

where A is a pxp diagonal matrix of eigenvalues of XX as

——

»

A = Diag. [y, -+ 2,1 (2.6)

The ordinary least squares (OLS) estimator of « in (2.2) is

a=A"'Zy, @mn

and its mean, variance and the mean squared error (MSE) are, respectively, given as
Ea =a,V(a) = olA7}, (2.8)

and

b
MSE(a) = o*I A\ = E(a—a) (a—a). (2.9

i=]
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Further, we note from (2.3) that
a=Gb ' (2.10)
such that
MSE(E) = MSE(B). (2.11)
where b = (XX) "{!_ is the OLS estimator of 8 in (2.1).

The generalized ridge estimator (GRE) of a« in (2.1) given by Hoerl and Kennard (1970a), is
formed by adding k|, - - -, k,, the "additive eigenvalue inflation factors" to Apeas Ap. Spéciﬁcally, it can
be written as

aGRE = A +K17'Zy (2.12)

=Aa,

where K and A are pxp diagonal matrices given, respectively, as

K = Diag [ky, - -+ ,k,), (2.13)

A = Diag 8, - - -,3,], (2.14)

where 8; = A\, (\,+k;) 7}, for i=1,..,p; and a is the OLS estimator, (2.7), of the canonical model. For

the original model (2.1) the GRE of B8 is written as

bORE = GaORE = (XX+GKG)'Xy. (2.15)

In the particular case when k\=k,=..=k,=k we have K=k1, and (2.12) is the "ordinary" ridge estimator
(ORE) given by Hoerl and Kennard (1970).
A major problem associated with GRE of (2.12) is the determination of the unknown matrix K. A

solution to this problem and related ramifications are studied in the following subsection.
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2.1 Determination of 5
Let us write the MSE of a;, the i-th component of the OLS estimator a, from (2.7) as
MSE(a;) = o?/\,i = 1,....p. (2.16)
Similarly, it can be easily verified that

kiza,-z szi

2.17
(\j+k;)? * \+K)? 217

MSE (aPRE) =

GRE

where a;’"" is the i-th component of aGRE,

Thus

k[h; (k,-a,? —20'2) - O'Zkiz

MSE(afRE) — MSE = (2.18)
(@) @) N +k)?
It follows from (2.18) that for
N 0 <k < 27 __ (ap>o?) (2.19)
oriz _(fzhi—l !

MBSE (aPRE) is smaller than MSE (a;). In fact a sufficient condition under which MSE (aCR€) < MSE (a;)

is that
0< kl < 20’201_2 (2.20)

The upper bound of k; in (2.20), however, is more conservative than in (2.19). An alternative conservative

range of k;, given in Hoerl and Kennard (1970), is
0<ki < 0’2(1,—2 (2.21)

It is to be noted that k; = o a} is the optimal value of k; for which MSE (a®RE) is minimum.

The k; in (2.19) (2.20) and (2.21) for which GRE dominates OLS can be written in a compact and

general form as follows:



fio?
ki = ——— i=1,..p. (2.22)

"‘i2 —fzo'z)\i

where f| and f, are arbitrary scalars which could be stochastic or non-stochastic. For 0< f,<2, and fy=1

(2.22) becomes (2.19) and similarly (2.20) and (2.21) are special cases of (2.22).

We note that, since k; in (2.22) depends on the unknown parameters a; and o* it cannot be used to
determine GRE in (2.12) or (2.15). However, we can use unbiased estimators a; and s® for a; and o?,

respectively. The k; in (2.22) can then be determined as

: . f1s? 1 .0
k(fufdi =k = praC 52 = —dni=y—Za ’(2.23)
For fi=1 and f,=0 we get
(ky,0)i = s¥a? (2.24)

which is suggested by Hoerl and Kennard (1970) as their first iteration. Further for f{=2 and fy=2 we get

-

(ky i = 2sY (a2 =25\ (2.25)

based on Stein's "unbiased" estimate of MSE discussed in Vinod (1977). Also for f1=2 and fy=1 we obtain

(kAz. Di=2sY(a? —s\h), (2.26)
which corresponds to the upper bound of k; in (2.19), and is motivated in Vinod (1977). Recently, Hemmerle

and Brantle (1978) study fi=fy=1. based on their minimization of an "unbiased" estimate of MSE.
Although for some fixed positive k; given by (2.22) the MSE(a®RE) is smaller than that of OLS, this

result may not hold for stochastic k; given by (2.23). In Jact our following section shows that for Hoerl and
Kennard's (1970) choice fi=1 and f,=0 given in (2.24) the MSE of GRE is high, and GRE does not
dominate OLS. Similar lack of dominance can be shown for (2.25) and (2.26). We have noted earlier that
for the case when p=1 it is well known that the OLS estimator is *admissible", i.e., cannot be dominated

everywhere. The following section suggests a procedure for comparing MSE's for alternative choices of f| and

]
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S values.

2.2 A family of Double f-class Estimators

If we substitute (2.23) in (2.12) we can write a family of " double f-class" (DFC) estimators as

gDFC(fl:fz) = ég.
where
é = Diag. [3,,...,8,],
is a pxp matrix of shrinkage factors such that for i=1,...,p,

f1s?
A,a,2+(f, —f2)82 )

Si = A,'(Al+,;i)—l = [l—

As noted before f, and f, are arbitrary scalars which could be stochastic or nonstochastic.

(2.27) is an "operational' GRE. The i-th component of a®C(f,,f,) can be written as

fis?
Xia2+(fy —fo)s?

aiDFC(fl.fz) = siaf =1 ]a,.

»

(227

(2.28)

(2.29)

The estimator in

(2.30)

1t is interesting to note that for f,=0, the double f-class estimator reduces to the OLS estimator. Further, for

flﬁl andf2=0

2
DFC, = [1-—_
ai (ll 0) [l A'a[2+sz ]al:

(2.31)

which is the i-th component of the Hoerl and Kennard's (1970a) estimator having 12, given in (2.24). Also,

aPfC€(2,1) for f1=2 and fy=1 is an estimator motivated by Vinod (1977) having k; given in (2.26). Clearly,

no DFC estimator can dominate OLS since OLS is known to be admissible in this (one parameter) case.

For fy=1\, the i-th component of a® C(f,,f,) can be written as

f1s?

Aa?

aPULn) = -

]a;.

(2.32)
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It can be easily verified that (Hint: a;/a? = 1/a;) the moments of any order do not exist when f\=f,,
because the random variable a; in the denominator can be zero. Two particular cases of this are fi=/f =2

motivated in Vinod (1977), and f=f,=1 suggested in Hemmerle and Brantle (1978).
The above discussion indicates that the estimators aPf<(1,0), aPf<(2,1), aPf¢(1,1), and a?f¢(2,2)

suggested in the literature so far do not improve over OLS. In the following section, therefore, we analyze the
exact and approximate bias, moment matrix and MSE of the double f-class estimator. Further, we obtain f
and f, for which "approximate" MSE of DFC would be smaller than that of OLS in a certain region of the
parameler space.

3. THE BIAS AND MSE OF DFC

3.1 The Exact Results

First, we use (2.30) to write the sampling error of the DFC estimator in (2.27) as
aPfe(f.f2) —a = (a—a) —f\Da, 3.1

where D is a pxp diagonal niatrix which can be written as

—— - -

. D = Diag. [y'My/y'glg. e YMylyL yl, (3.2)

——— o~ ~p~

and M and L,,i =1,...,p, are TxT matrices given by

M=1-ZA""Z, L = f;M+ZDZ, (3.3)

—~— o~ =i ——f—

where D; is the pxp diagonal matrix of zero elements except the i-th which is 1/\;; and where we denote

fi=nNin andf_{ = (fi—Sf2/n. (3.4)
We also note that M is an idempotent matrix of rank n=T-p. From (3.1) we can write the sampling error of
the i-th component as

(aIDFC_ai) = (a,~ —a,) - f‘.d,a[. (3-5)

10

3
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where the notation aPfC(f,,f,) is simplified as aPfC, and where

d = yMylyL y, (3.6)

~ il

is the ith diagonal element of the matrix D of (3.2).
Secondly, according to Assumption 2 we observe that
Yy~N(3,021),5 = Za. _ 3.7

From (3.1) we note that to derive the bias and MSE of the double f-class estimators in (3.5) we require
the expectations of dia;,d,a?, and d?a?. To obtain these expectations we first derive Ed; and Ed? (see
Appendix 1) by using Lemma | of Sawa (1972, p. 658), and then use the Ullah and Nagar technique (see

Section 4) to get Edja;,Ed,a? and Ed?a?.

Before stating results, we introduce the Jollowing notations and functions for the sake of simplicity of

exposition.
N Gipy = GU~f} o,,"—;'—lm,gm (.8)
where
a'ZL Za 2
—~——fe—— )\,a,
9, = = . 3.9

All the results stated below hold under the assumptions 1 to 3 of sections 2 and for nonstochastic values of f,

and f,. We require f;= [f \ —le/n to be strictly positive, because for nonstochastic f3=0 or f3<o the

moments do not exist as indicated in the Appendix. We are now ready to state the following results.

THEOREM 1. The exact bias of an element of the double f-class estimator exists for f, 1—f2>0, and it is

given as

E(aPFC—a)) = _%fla;&;z.x (3.10)

where g, 5 | is as given in (3.8) for u=2 and v=1,
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Corollary 1. The following results regarding the exact bias of an element of aPfC(f,,f,) is true.

a. The exact relative bias of aPfC for a given sample size lies in the following range.
—f1(n+3) 'S E(aPFC—a,)a;1<0 (3.11)

if f1>o0, for £1<0 the inequality will be reversed.

b. The exact relative bias of aPfC is an increasing function of the noncentrality parameter 9; if f,>o. For

S1<o it is a decreasing function of 9;.

Note: The results in the above corollary follow by noting that g , ;>0 and —a%g,.z.|<0 according to
i

(A.9) of the Appendix. Further, for given T
E(a’DFC_ai)ai—l .

tends to zero in the limit as #; — oo, and it tends to —f/n+3, as 8, — 0, by using (3.10), (A.12) and

(A.6) of the Appendix A. This then gives the result in (3.11).

~

THEOREM 2. The exact MSE of an element of the double f-class estimator exists for fy—f,>0 and it is
givep as

2
E(ainf-o—“i)z = L;—+ai2[.f|(gi,2.l =& 30+ (3.12)
i

(n+2)

+4n

2
g
fi(g s, “81,4,2)]'*";"[—1' 18,21F

(n+2)

+4n

(g 22—83.2)

Note: Using (3.12) the MSE of a?f¢(f,,f,) can be obtained as

E(a%C—a) (aPC—a) = § E(aPFC—a))2 (3.13)
~ ~ ~ ~ sl

fo

13

[t
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" 3.2 Large #; Asymptotic Expansion

We now present the asymptotic expansions of the bias and MSE of the double f-class estimator in terms of
the inverse of 8;. These results help in analyzing the complicated expressions of the exact bias and MSE given
in (3.10) and (3.12), respectively. We note, however, that the results in Theorems 3 and 4 make sense for
sufficiently large 6;, which according to (3.9) mean relatively "small sigma" in Kadane’s (1970, 1971) sense.
Thus, the terms of order 8;~, 0,72 are the same as the terms of order 0%, o*, etc. respectively. We can now

state the following theorems.

THEOREM 3. The asymptotic expansion of the bias of an element of the double JS-class estimator in (3.10)

up to the order 1/8; is given as

hm

2 9, (3.14)

E(aPF-a)? = —

THEOREM 4. The asymptotic expansion of the MSE of an element of 1/6} in (3.12) up to the order 1/0} is

given as

2 a.Zf a-’f
E@Pf—a)? = T4 At 5t
i

N 402n 34, -2(/1—f) 43, (3.15)

»

":2 /1(n+4)+3n], and f,—f,> 0.

where 4,=/,(n+2)+2n, 4,=

Clearly, (3.15) implies that the asymptotic expansion of the MSE [a?F “(f1./)] is obtained by a
summation of the right hand side of (3.15) over the range i=1,..,p.

Using the definition §,=\,a?/20* we may rewrite (3.15) as
MSE (aPFC) = a4 P f1A\+ Pof\ A —P3(f1 = f2) [1P4As, (3.16)

where  Pi=c*/nA}al, Py=3c%nA}a}, Py=20%nA}a}, Ps=(n+2)/n, and Ay=f(n+4)+3n. . The

notation P, is chosen to suggest positive quantities since P,>o fori=1,..,4.

Now, this MSE is less than the MSE (a)=02\;”"! provided we have
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f.(9,~+%) PN (A A< iU =), (.17

where f, is not cancelled from both sides because it is not assumed to be positive. Now, verify that no
choice of f; and f, (two finite real numbers subject to f; —f,>0) can satisfy (3.17) everywhere in the

parameter space; which is also an implication of "admissibility” of OLS for p=1 mentioned earlier.

For large n the term P;! A,/4; may be approximated by (f;+2)/(f;+3). Now, for Hoerl and
Kennard’s (1970) (first iteration) choice f; = 1 and f, = 0 the condition for superiority over OLS for

large n becomes

3,3

@, + 5) "y <1, (3.18)

which will not hold. Hemmerle and Brantle’s (unconstrained) choice f| = f, = 1 was already shown

to have infinite MSE. In the present context (large n) the condition for it to reduce the MSE of OLS is

3, 3
o; + 2) 7 < 0, (3.19)

which is clearly impossibl.e (since #; >0). For large §;, f1>o0, and large n, (3.17) will be satisfied
provided f, is large and negative. Since #; can be infinite whereas f, must be finite (3.17) will be
violated for large enough 6;. Thus, our procedure will not reduce the MSE of OLS for all possible
values of 6, as implied by "admissibjlity” results. In a simulation in Section 5 we fix f;=1, choose f; to
be large and negative, and find that this choice reduces the MSE of OLS. When some information

about 8, is available in advance, it may be used to determine appropriate choices of f} and f;.

4. PROOFS OF THEOREMS 1 AND 2 -
In this section we shall give the proofs of Theorems 1 and 2 stated in Section 3.1.
4.1 Proof of Theorem 1

Let us consider the expectation on both sides of (3.5). Using (2.8) we write

E(G;DFC ‘—'(1,') = —ffEd,-a,, (4.1)

[t

in
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where f| = fi/n,and d;, = y'My/ y’ L y,fori=1,.,p from (3.6) above. To obtain the expectation of

~ e~ — .

d;a; on the right of (4.1), we write
Eda = o A7 7 B
where ¢ is a 1xp vector of zeros except the i element which is 1, and
z =~/ o ~ N(g,.{),_z: = Za/o,
by using (3.7). Now, we rewrite
b= yMylyly =2 Melz L 2.
Now we note that
Ezd; = E(f —E)¢1;+2E(1,-,

el [ eDd exp — L mD) el + 3B
= Go J EDd ew - -0 -Dlds + 7m4,

-2 Ed4 + 7Ea,
0z -

where

. n+l1
Ed, =-;'—G(1 — 3 0S5+ 1.—; + 1),

has been obtained from (B.14) of Appendix B by substituting k=1 — fyand x by

2 'L 7
i

~ ——~

o? 2

Next, noting the fact that

4.2)

(4.3)

(4.4)

“4.5)

(4.6)

4.7)

(4.8)
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and using (A.9) of the appendix, (4.5) can be written as

n - -
Ezd; = 7 lg21-81.0ZD 2% + 3 3g,1, (4.9)

where D is given in (3.3); further, substituting (4.9) in (4.2) we get
—~1

no; .
Eda = =G(1 - 1 0, ”T“ +2,2 4. (4.10)

Finally, using (4.10) in (4.1) we obtain the result stated in Theorem 1.
4.2 Proof of Theorem 2

Using (3.5) we write the MSE of the i component of aPfC as

E(aPfC—a;)? = E(a;~a))? + 2f} a;Eaid; — 2 f} Ea?d, 4.11)

+ f1? Ea? d?

The first term on the right hand of (4.11) is o%/A; as given in (2.8). Next, considering the second

term we note from (4.10) ihat

N .
n -
g Eaad, = == G = f3, 6, "—2“- 2.2 4. 4.12)
Now, taking the third term on the right hand of (4.11) we write
Eda? = g V' A7VZ E(GZd)Z A . (4.13)

where z and d; are as defined in (4.3) and (4.4), respectively. Using the procedure in (4.5), we note

that

Ei7d, = E{(z=%) (z=2) + (z —Z)z' + 2(z2-32) + 774, (4.14)
R -9 -
= .Ed,+2z——-a_, Ed, + (77 + 1) E4,
— z — — —

-—

@
1Ny

(<34
I~y

] l' 2 ’
~2ZDZ77 ZDA2- E4 + QIF + D ZDZ 2 B4 + (37 + DE4,

~—im e~ ~~i=} O8] ~ ~~i~ 04,

"

.
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where Ed; is as given in (4.6). Further, using (A.9) and (A.10) of Appendix A, (4.14) can be

simplified, and (4.13) can be written as

2 .
Eda? = %[a,? g1 + ‘;— g1l (4.15)

Similarly, considering the fourth term on the right hand side of (4.1 1) we first note that

Ez‘iar2 =zpZ757D7 2 T Ed* + Qz7 +1)ZDZ -—Edz (4.16)

~~r—-~~~~:~ —— ~ o~~~ 89;

t

+ (22 + I)Ed?
where

Ed? = ”(”4+2) (1,2 — &2l 4.17)

has been obtained from (B.16) of Appendix B by replacing k by 1 - f2and x by 6;. Now, using the

partial derivatives of G given in (A.9) and in (A.10) of Appendix A we can obtain (4.16) and hence

Ea?d? as
Eald? = o2 ' AT'\Z E(ZT'dD)ZA " ' (4.18)
» -— -~ - —— -~ e~ -
n+2) a?
= "(_4—[04 (832 — &40 +— x (822 — &3,2]

Finally, substituting (2.8), (4.12), (4.15) and (4.18) in (4.11) the result stated in Theorem 2 follows.

5. A SIMULATION -

We used two (Hald's and Gorman-Toman's) well-known data structures from previously published
simulations of RR in Hoerl, Kennard and Baldwin (1975), Lawless and Wang (1976), Vinod (1978b)
among others. We simulate "ordinary” as well as "generalized" RR for a useful comparison. These
have p=4, T=13 and p=10, T=36 respectively. For the purpose of this simulation we consider a

further transformation of (2.1).

y=X8+u=~Hn+u (5.1)
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where H = XGAY2, XX = GAG (as before), HH = I, and the unknown parameters are defined by

1 1
n=A2GB = A2a, (5.2)
where « is defined in (2.3).

Note that the MSE of an estimator [3 of B is a weighted sum of the MSE of an estimator % of 1

with weights A;~).
E@-B)(B—p) = EG—n)'A™" G —n) (5.3)

Let L? = o'y denote the squared length of the “true” parameter vector 7. Analogous to (3.9) let

#=%4, denote the non-centrality parameter defined by 20 = L?/o2. We choose seven values of ¢ in the

interval (0.5, 1250) leading to seven choices of n for the simulation. It may be argued that a large part

of the action insofar as which of the estimators dominates OLS is taking place on a "sphere” selected to

have the same L2and o2. Hence we select 02 = 1and L2 = % in all our experiments.

Given L? we choose p 'random numbers from a uniform distribution in the range -1 to +1 and call

them w;. Then n; = Lw,/ ‘Zw,?]'/’ satisfy L2 = n'n. Thus, the "true” »; are selected from a scaled unit

»

cube. This conforms with the practitioner’s notion that the true regression coefficients can be anywhere
in the selected range. The alternative procedure of selecting »; from a scaled unit ball of radius L was
not adopted.

Next, a vector u of T random normal deviates with mean zero and unit variance is created using a
"super duper" random number generator, Marsaglia, et. al. (1973).

The T (=13 or 36) elements of yare obtained 500 times for each choice of 7 (based on #) for the
two data structures (p=4, p=10) by adding u as in (5.1). The OLS estimator of n is

n° = (HH)~'Hy = H'y is then obtained without repeated matrix inversions. Various modifications of

OLS compared in our simulation include two ordinary ridge estimators: The first is abbreviated by

HKB, for Hoerl, Kennard and Baldwin's (1975) k=psi/Za??% and the second by LAWW for Lawless

.

[
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and Wang’s (1976) k=ps%/Za2\,. The well-known "positive part” Stein-Rule estimator, Stein (1956),

is abbreviated as STN +.

Bhattacharya’s (1966) estimator (BH+) is interpreted in Vinod (1978b) as a complicated
generalized ridge estimator. It is guaranteed to have a lower MSE than OLS, and does not belong to

the class of double f-class estimators.

A simulation of the DFC (f|,f;) estimator requires a careful choice of f, and f, values in addition
to those in the literature. An “optimal” choice of f, and f, values may be based on a minimization of
(3.16) subject to the inequality constraint (3.17). The solution based on Kuhn-Tucker conditions
depends on n, A; and 6, values; and seems to be too complicated to be useful. Upon simplifying

n=n+1=- - =n+10, and #=9+1= - - - =9+10, we find that f, may be found by solving the following
cubic equation: /7 +4/7+8f, —1=0, whose only real solution is f,=2.3733=2. The corresponding

“largest acceptable” f; can be shown to be

Sr =01 — 6,([+D/(f1+3). (5.4)

In other words a DFC estimator with f,=2, and f, given by (5.4) will have the same MSE as OLS.

Sinte the above simplification involving "largest ;cceptable" S, may not be satisfactory, we derive an
alternative f, as follows. Consider the unconstrained Lagrangian minimization of (3.16) by
differentiating it with respect to /), ;etting the derivative equal to zero and solve for f, as a function of
6 and f; to yield |

371 (n+4)+6f,n
T T2, (n+4)+3n

_ ((),-l-é') 2f1(n+2)+2n

2” 2f{(n+8)+3n" (55)

f200,./1)

Since @ is unknown in practice, we shall simply fix it at 1000 for this simulation. Now, for f;=2 and
#=1000 and n=7 (5.4) implies f,=—775 which is applicable to the p=4 example and abbreviated as
DFC(2,-775) in Table 1. The choice f,=1, fo= =749 or DFC(1,-749) considered for the p=4 example
also appears‘in Table 1. Similarly, for the p=10 example, equation (5.4) leads to DFC(1,-781) and

DFC(2,-825) estimators which appear in Table 2.
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We simulated a few additional cﬁoices of fi and f, values which are not reported in our tables to
save space. In general, our theoretical conclusions are supported by the simulations. For example,
choices where f,=/,, (2.32), having infinite MSE in theory, fail to dominate OLS in simulation. We
also find that negative choices of f, accompanied by either a negative or a large positive choice of f. 2
fail to dominate OLS. By analogy with the "positive part" Stein-Rule estimator we imposed the non-
negativity constraint on the shrinkage factors in our simulation which is equivalent to the constraint in

Hemmerle and Brantle (1978).

For each estimator, including OLS a weighted sum of squares of errors (WSSE) for j* choice of u is

b .
WSSE; = Y (q; =AY, (5.6)

i=l

for j=1,..,500, for the 500 replications. Their average, MSE = L, WSSE;/500, is reported as the
uppér figure in Tables 1 and 2 for the p=4 and p=10 structures respectively. Now, let us define
SDE = L, (WSSE; —MSE)?*500. To assess the sampling variability over the 500 replications we report
in the last row, marked !variability" in both tables, the value of SDE/\/500 associated with the OLS
estimator. Similar SDE values for other estimators are not reported. for bre\_lity. Had we simulated
104000 times we would have SDE/100 as a measure of variability which is an order of magnitude
smaller than ours. The cost of such‘a large sample would be high, although it would offer somewhat

greater comparative precision among estimators.

In Tables 1 and 2 the upper figure is the MSE value, and the lower figure is the percent of times
WSSE of the estimator is strictly less than the WSSE of OLS (%) in 500 replications. Although the
MSE performance of STN+ is good, ft should be remembered that it leaves the signs and relative
magnitudes of OLS regression coefficients unchanged; and therefore cannot help solve "wrong sign”
type practical problems. Furthermore, the % associated with STN-&- in Table 1 for =100 and 450 is
slightly below 50%. The fact that the performance of "ordinary” ridge estimators HKB and LAWW s
poorer here than in simulations reported in the literature may be attributed to the presence of weights
A;"!in our (5.3) and (5.5). The theoretical result that BH + guarantees a lower MSE than OLS in all

situations is generally supported by high percent numbers in both tables. The MSE performance of

\0

-
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BH+ is impressive. It is clear that Hemmerle and Brantle’s (1978) choice DFC(1,1) or Hoerl and
Kennard’s choice DFC (1,0) cannot be recommended on the basis of this simulation since % values are
often very low. Our DFC(2,-775) and DFC(2,-825) in Tables 1 and 2 respectively always have a lower

MSE than OLS, with the % almost never falling below 50%.

Clearly, there is room for a more ambitious simulation of choices of f, and f,, and a wider range of
choices of the eigenvalue spectrums before definitive conclusions can be reached. The practitioner may
simply choose f;=2 and let f, be chosen by graphical RIDGE TRACE methods, making sure that f,

does not exceed the "largest acceptable” value given in (5.4).



i | w—— wt . — g saste®

1.

-20-

MSE and Percent times WSSE is strictly less than the WSSE of OLS for p=4 structure?

0
Estimator 0.5 4.5 24.5 40.5 100 450 1250
OLS 590.07°| 615.68 | 620.37 638.60 | 665.05 642.03 | 698.67
0. 0. 0. 0. 0. 0. 0.
HKB 155.81 {1024.43 11093.68 |3677.22 [50717.7 | 97145.2 |47207.9
61. 20. 18. 2. 0. 0. 0.
STN+ 341.44 | 543.44*| 585.21 | 618.77*| 664.82 642.58 | 698.09
72. 54. 60. 50. 49. 48. 53
BH+ 588.91 | 61542 | 620.32 | 638.57 | 665.03 642.03 | 698.67
96.* 78.* 63.* 61.* 60.* 53.* 53.*
LAWW 156.01 11024.26 [1089.02 |3556.82 |50964.8 [127047. |32689.5
61. 20. 19. 2. 0. 0. 0.4
DFC(1,1) 156.52 [1040.19 [1151.02 |3981.35 |60169.1 |174703. 17773.4
61. 20. 18. L. 0. 0. 0.
DFC(1,0) 155.69*|11020.13 [1124.61 |3837.11 |43962.8 | 84728.9 |82904.0
61. 20. 18. 2. 0. 0. 0.
DFC(2,-775)|587.10 | 612.50 | 617.38*| 635.12 | 660.81* 640.76*| 695.04*
80. 59. 61. 51 50. 48. 52,
DFC(1,-749){588.53 | 614.03 | 618.82 | 636.79 | 662.75 641.08 | 696.48
» 80. 59. 61 SL. 50. 48. 53.*
Variability 37.45 39.31 | .39.87 | 40.38 47.46 39.44 42.83

I

a The eigenvalues A; are respectively 2.2357, 1.5761, 0.18661 and 0.0016238.
b The upper figure is the MSE, the lower figure is the %.
* The most favorable number in each column is indicated by a * (having low MSE, high %).
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2. MSE and Percent times WSSE is strictly less than the WSSE of OLS for p=10 structure?

Estimator 0.5 4.5 24.5 40.5 100 450 1250

OLS 33.18° | 31.91 33.71 |32.85 |32.68 | 32.70 |34.06
0 0 0 0. 0 0 0
HKB 6.08 |23.93 | 87.37 |33.60 [21.77 | 45.72 |50.02
9 57 7 46. 82 28 30
STN+ 9.35 |20.07*| 30.97 |29.78* [30.86 | 32.44*|33.99
99 83 56 74. 82 54 50
BH+ 16.12 [ 2291 30.69* [ 31.42 3205 | 32.48 |33.98
100.* 96. 83.* | 66. 3. 56.* |60.*
LAWW 5.96* | 23.99 | 78.57 | 4252 |22.50 | 58.41 |42.25
99 57 10 30. 85 20 36
DFC(1,1) 6.57 |30.48 | 145.54 |57.87 |29.28 |113.76 |41.13
98. 41. 1. 27. 49. 16. 40.
DFC(1,0) 8.42 12292 | 72.06 |33.67 [21.34*| 7565 |40.77
98. 57. 19. 46. 67. 19. 40.
DFC(2,-825) | 33.02 |.31.75 | 33.55 |32.70 |32.52 | 32.57 |33.94*
100.* 99. 69. 84.* 87. 56.* St
DFC(1,-781) | 33.09 |31.83 | 33.62 [32.77 |32.60 | 32.63 33.98
» 100.* 99.* 70. 84.* 88.* 56.* 52.
Variability 1.12 97 | . 1.01 98 | 1.03 1.03 1.08

a The eigenvalues A; are 3.6864, 1.5496, 1.2966, 1.0515, 0.94467, 0.65709, 0.36047, 0.23176, 0.14792 and 0.074018.
b The upper figure is the MSE and the lower figure the %,
* The most favorable number in each column is indicated by a °.
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APPENDIX

A. HYPERGEOMETRIC AND G FUNCTIONS

The hypergeometric functions |Fy and ,F| have the following power series representations [Slater

(1960)1,
I'(a+
1Fila;c;x) = mgo r§3+:)) ;',c > 0,lx] <
JFi(abicix) = Ic 3 C(a+m)L(b+m) x"' e> 0 Ixl < 1

Farb I'(c+m)

m=0

Similarly, the power series representation of the function G,

Glkxiac) = [ hitkxac)d

where x > 0,a2b, —1<k<1and

2 exp2ex/ (1 —=20)}

h(t k. x,ac) =
(thxac) = 7 e (1—2d —k)*

»

is given by [see Sawa (1972, p. 678)].

~<TI@-1) 1)

G=¢""To &2 % Taem

An alternative representation is

oo h —
~ 3 % Te—14h) ¢ (cathk), a>1.

[ (a+h)

For k=1, (A.5) and (A.6) reduce to

— I'la—c-1)

G=e F(a ~c)

1Fila—c—-la—c;x),a—c > 1.

Further, for k=0

2 (k)h ———= [ (c+h) Fy (@ -la+hx),a>1.

(A1)

(A.2)

(A.3)

(A.49)

(A.5)

(A.6)

(A7)

\e

"
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— (@a-=1)

G=e I'(a)

1Fi(a —1;a;x).
The partial derivatives of G with respect to x can be written as

8

ry” G(kx;a,c) = Glkx;a+l,c) — G(kx:a,c)

2
36—2 G(kx;a,c) = Gkx,a+2,c) — 2G(kx;a+1,c)
x

+ G(k,x;a,.c)
and so on. Also we note from (A.3) and (A.5) that

xR G(kx;a+1,c) > 0 and 3 G(kx;ac) < 0.
0k ax

(A.8)

(A.9)

(A.10)

(A.11)

Finally, for large x, the asymptotic expansion of the function G in (A.5), up to order —174—, is given
x

by [see Sawa (1972, p. 667)].

G (k,x;a,c) =% + (ck —a+2) —l; + [c(c+1)k? — 2c(a-2)k
x

+ (a —2)(a—-3)) —l;
X

+ Ec(c+1)(c+2)k3 — 3c(c+1)(@™D)k3

+ 3ca-2)@—Nk - (@=2)(a—3)(a —4)1)‘—‘4

B. EVALUATION OF SOME EXPECTATIONS REQUIRED IN SECTION 4

Let z by a Tx1 normally distributed random vector such that

Ez =7 and E(z-2) (z~2)' = Ir

-

Further, consider M as a TxT idempotent matrix with rank n<T, and the matrix

(A.12)

(B.1)
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L=fiM+2DZ (B.2)

~ —i—

where D’ is a pxp diagonal matrix of zeros except the i element which is L. These are as given in
-~ i

(3.3). L, is non-negative definite for f; >0.

The joint moment generating function M (¢,,t;) of the quadratic forms zL z and z’Mz can be

~—f~ _——

written as

M(t,ty) = Eexplt,z'L z + t,2'Mz] (B.3)

~

= f e f expltyz'L z + t,2’Mz] f(2)dz
-0 —-0o ~i~ - -~
where f(z) represents the multivariate normal density of z with mean vector 7 and covariance matrix

1.

—~

Since M is an idempotent matrix of rank n < T, and M and L commute we can always obtain an
~ -~ ~i

orthogonal matrix Psuch that the orthogonal transformation of the matrix

Q=1-204L —206,M, i=1,..p (B.4)

-~i -

can be written as A", which is introduced here to denote

10 0 0
L 0 (1-21) 0 0
FoP=| o 0 I 0 (B.5)
0 0 0 (=20 211

Since ZZ=A from (2.5), note that Q is a TXT diagonal matrix. Thus, if we restrict the domains of ¢,

—— e

and ¢, as
2t < 1l,and 2 t,f;+2t, < 1, (B.6)

it follows that Q is a non-negative definite matrix.
-~

\o-

1}

la

%

L]
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We can now simplify (B.3) as

- dizp-1s_ss110-11% (~ ...~
M) = exp 517071z -271107"| I f_mx(f)df

(B.7)

where g(z) is multivariate normal density of z with mean vector Q™' 7 and variance covariance matrix
-~ -~ ~i -~

QL. Finally, using (B.S) and noting that the integral value on the right of (B.7) is unity we obtain

-

g 1 n
M(t,ty) = exp%[f'g-'g—izl / (1=26) (1 =21,f5 —2t)) 2

In this case where the matrix M is such that
Mz =10
we note

Qz=-1242ZD2)7

—~ o~ ~e— e

In this case (B.8) is simplified as

24,0,
l _Zfl

L3
3"

1
M(,ty) = exp[ ] { (1=2¢)2(1=2¢,f5 —2¢5)

where 6, is as defined in (4.7). The following derivatives of (B.11) can then be essily verified.

aM(tlit2) n . . n+1 n

T 0= zh(ll,l f2,0;, 2 +1, 3 + 1),
Mty | n(n+2) . o, n+l n
T ~0 = ——2— h(l|,l'—f2,9,, ——2—+2, 3 + 2),

and h( ) is as defined in (A.4).

(B.83)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

Finally, using (B.12), (B.13) and (A.3) we obtain the following expectations for 0 < f; € 2 (See

Sawa (1972), Williams (1941)).



ks eremmtem -

- ——e s v

- 26- | -

zMz
fuipiiied IM(1),t5)
E( dt B.14
: i‘,~ -J _,,[ o (B.14)
_n n+l n
5 G(l —f2.0;— 3 + 1, 5 + 1)
ZMz 0 2
—_—— 0 M(f],lz)
E(—) = -t |—== a B.15
z.[.'lf f-m l[ a1 ty=0 l ( )
_ 2 . . n+l n .
= G(l-fz-oi,T + 1, 7 + 2) (B.16)
— GU—f30; 2L L5 1
2 2
where use has been made of
2ymh (1 —£5 0, 2L o) 242) = (1 —£3.0, 2541, 2 4) (B.17)
2 36, 2 2
and (A.9).
C. EXISTENCE OF THE MOMENTS OF a2fC
. -
First, we note that the multiple integral
ml—l mT—l
f f xp[—-z @ — 0dzy, - - - dzy .1

(0121 +..+ arzr )

where a,, m,(t=1,...,T) and r are positive, converges if 2r < m, +...+my (See Gradshteyn, et. al. (1965)).

Now let us write from (2.6) and (4.4)

y'My 'RIZ.
da; = —— " (A)~ IZ'y=cA[ -.z7] (C.2)
-y“[:‘rz -~ -~ ~ o~ Z'R 2 -1
2 2
z +..+z .
= Al lp+1 7

— . z
zf +f22|n+1 + o+ izl =

w

(e

-
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where z =P y/o, and

Rl = PMP and R2 = PL P. (C.3)

— ——

Further, the notation zl' in (C.2) is based on arranging the columns of the TxT orthogonal matrix
Pas P = [Pl le, where Pl is a Txp matrix and P2 is a Txn matrix, and accordingly partitioning

z" = [z °'zz" = lzy - 215, 21ipe1 ** - 2i7], where z; and zz' are pxl and T-px1 vectors, respectively.

-~ -] ~

We have written

~ ——

(é)_'?!. = (Q)-'Zpﬁy = fi.” A= cr(é)" ZP (C.4)

~l

because (A) "'\ZM = (A)"Z’PZP; = 0 by using (C.3).

We can write (C.2) as

z)
2+ ozl + 0+ fa2lr

da=u Azl + - +2}p) (C.5)

Using (C.1), and noting that z~N(PZa, 1,) it can easily be verified that for each of the elements

—~——— —

app&aring in (C.2)

E{ B zd 2y ] t=p+1,..,T (C.6)
2121 +lep+l + A +ZIZT t=ln-°-tp

converges for f; > o and, therefore, E d,a; exists.

Since d;a; is required in E aPfC and E a?d? in the risk function of aPfC (see Section 4) we note that the

Sirst two moments of aPF€ exist.
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