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Abstract

This paper considers the problem of estimating a polynomial distributnd
lag model under a more general stochastic specification on the coefficients
than considered earlier by Shiller. An estimator, namely the Generalized
Random Shiller (GRS) estimator, has been proposed. It has been shown that
the Shiller, Almon and Bayesian Almon estimators, among others, can be
considered as special cases of the GRS estimator. Finally, on the basis of
the numerical estimates, it has been suggested that the GRS estimator is tn
be preferred as compared to the other estimators when the lag distribution

is not expected to be smooth.
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A POLYNOMIAL DISTRIBUTED IAG MODEL WITH STOCHASTIC COEFF ICIENTS

by
Aman Ullah and Baldev Raj

1, INTRODUCTION

A popular method of estimating the coefficients of a finite distributed
lag model is the polynomial lag method proposed by Almon [1965], This method
assumes that the successive coefficients in the lag distribution lie on a low-
degree polynomial. Further, it depends on fewer parameters and produces very
plausible lag patterns that are often very>appealing. However, it can be
argued that the polynomial lag structure imposes strong constraints on the lag
distribution even though no prior information exists to justify them, Shiller
[1973] has argued that we specify this restriction not because we believe in
it but because we believe that the lag distribution is smooth, He suggested a
stochastic specification for the low-degree polynomial which implied a hetero-
scedastic covariance structure for the error term, He circumvented this problem
by transforming his basic specification before introducing the additive error.
However, it makes a difference whether we introduce the error term to the poly-
nomial lag specification of Almon or to the transformed polynomial lag specifi-
cation of Shiller (see e.g., Maddala [1977, pp. 384]). It has been shown that
the Shiller method produces a special type of ridge estimator, Lindley and
Smith [1972] have proposed a Bayesian estimator assuming a stochastic zero-degree
polynomial for the lag distribution, Their estimator has been generalized for
any-degree polynomial lag structure by Maddala [1977] and has been named as the
Bayes Almon estimator, This estimator also reduces to a special type of ridge
estimator, Like all ridge estimators the Shiller and Bayes Almon methods require
estimation of the ridge coefficient for which Shiller has suggested a rule of

thumb while Lindley and Smith have suggested an iterative method,



Iﬁ this paper we have analyzed the polynomial distributed lag model
when the coefficients of a lag distribution are assumed to be stochastic,
A polynomial distributed lag model with fixed coefficients imposes strong
constraints on the specification in the absence of any prior information
to justify it. An alternative parametric specification in distributed lag
models may be that parameters of distributed lags have both systematic and
stochastic components. We also consider the case where the systematic
component itself is stochastic, Thus our parametric specification is weaker
than the 'weak' stochastic specification of Shiller, It is imbortant to
note that the stochastic coefficient approach has a similarity, even though
superficial, with the analysis of a fixed coefficient model from the Bayesian
viewpoint. In the former approach the distribution of coefficient is intro-
duced as part of data-generating process while in the latter the distribution
of coefficient is an expression of prior beliefs of the investigator,

In Section 2 of this paper the model and the parametric specifications
are described, Section 3 presents some new estimators of the parameters in
the model, Then avnumerical example 1s given in Section 4, Finally, some

conclusions and suggestions for further research are presented in Section 5.



2, SPECIFICATION OF A POLYNOMIAL DISTRIBUTED IAG MODEL WITH STOCHASTIC
COEFFICIENTS

2,1 The Model and Its Assumptions

Let us write the finite distributed lag model with stochastic coefficients
as
(2.1) g

. y = B x—.+u’ t=1, ...’T
t 1=0 it "t-i t
th s . th

where Ve is the t~ observation on the dependent variable, X 4 is the t
observation of the i period lag value of x and u, is the usual disturbance

term in the equation corresponding to the tth observat:lon.1 Further, Bit is a

stochastically varying coefficient of the lag structure such that

where e is the unobservable disturbance term and considering ni to be another

random error we specify Bi as

(2.3) =+ gi+ . koL F T 10 s P

Bi
If both €4t and “1 are constant (could be zero) for all i and t then
(2.2) and (2.3) reduce to an Almon specification. Further, if G is constant
but g stochastic, (2.2) and (2,.3) reduce to the Shiller type stochastic
specification., Thus (2.2) and (2.3) imply a class of weak specifications in
the distributed lag models.

We make the following simplifying assumption:

Assumption 1:
1) Eu, =E ¢; = Em = 0 for all t and i.

(11) Eu = Eu, T, = E My eg = 0 for all t and i,

t €it

1The distribution term u, in model (2.1) has been taken into account so

that a comparison can be made with the conventional distributed lag model.



i) E =0 ifi-=
(111) E 1 0y = o 3
=0 otherwise
= 2 = 4t
(iv) Eut u, =0 ift=t
=0 otherwise

= = 4 = 37
v) E €gp €3t ¢! = Tgy ift=¢t and 1 = &

=0 otherwise2
(vi) The x,_, 1s an exogenous variable distributed independently of
€ye? “1 and u, for all t and 1,

Substituting (2.2) in (2,1) we get

P _
2.4y, = 150 Py Byt

where

P
2.5) w_= ut + =

t 1o Cit Xe-1
=0

such that by Assumption 1, E w, = 0 for all t and

= = ¢/
(2.5a) E WV = 0, ift=t¢t

=0 otherwise;

the Wpq is given by

(2.5b) Opp = 02 + g xﬁ-i Gii > 0.
b

The model (2.4) and restriction (2,3) can be written, respectively, in a

compact form as

2The analysis of this paper can be extended to the case where
E ¢4 eqr, is non-zero for all i and 1, We do not consider in this

paper for the sake of simplicity in exposition.



(2.6) y = XB + w
and

(2.7) B =As+17

where
= = - -
yP+1 BO WPfl 5 no
(2.8) y =|: ’ E= E s w=|: s 5-: aT]::
y 2 W, Y :
T B T 6 .
p x | M |
and
B vy ] 10...0
*p+1 *1 11...1
= A = : .
(209) x xp’_z oooxz ] . r
: E l1p... P
xT ...XT-p

We observe that y and w are vectors of order (T-p)xl; 1 is a (p+l)x1
stochastic vector, and B and § are unknown vectors of order (p+1)xl and
(r+1)x1, respectively, Further, X and A are (T-p) x (p+l) and (p+l) x (r+l)
matéices of known values, respectively,

The rank of the matrix X is assumed to be (p+l). Further it follows from

(2,5a) and (2,5b) that Ew = 0 and

wwd,pﬂ"ﬁ
(2.10) E WW’ =1 . ‘. =0
—0 . wm ——

where  is a positive definite matrix of order (T-p) x (T-p). It is noted that
if S cpp = 0 and U% = 0, then model (2.6), along with (2.7), reduces
to the Almon [1965] polynomial distributed lag model with fixed coefficients,

In this case the covariance matrix (2,10) reduces to a scalar times an identity

matrix, i.e., Gi I and (2.7) becomes



(2.11) B = As.
In the following section, using (2,10), we discuss various methods of

estimating the model (2.6) both under the stochastic specification of B in
(2.7) and nonstochastic specification in (2,11).
3. METHODS OF ESTIMATION

3.1 Estimation of B when ( is Known

The model (2,6), assuming () is known, may be estimated by applying
Aitken's generalized least squares (GLS), However, in order to avoid the
problems of multicollinearity and degrees of freedom, some other methods of
estimation discussed below may be used. We note that while the estimators
in I do not incorporate (2,7) or (2,11), the estimators in II are under the
restriction (2.11) and those in III are under the restriction (2.7).

I, Random Ridge Estimator

A simple solution to the dual problems of multicollinearity and hetero-

scedasticity in model (2.6) requires that we minimize (y - X BY Q-l (y - XR)

subject to the condition B’ = £2 € ©, The value of B so obtained is given by

1

Leontx ol

3.1) ber = & o

and its variance-covariance matrix is given as

-1

G.2) V) = ® o lx+uD ¥ g -1

X X o X+ p,I)-l.

The estimator BRR’ which may be termed as the Random Ridge (RR) estimator, is a
generalization of the ordinary ridge estimator developed by Hoerl and Kennard
[1970]. We note that this estimator exists even when the rank of X is less

than p + 1., We may now write (3.1) as

s et
(3.3) bRR a bGLS



where
a* = [I + pX alx !

and BGL is the generalized least squares (GLS) estimator of B in (2.6), i.e.,

S

= g =1 -1 -1
B.4) by =& a X "X ay.

It is clear from (3,3) that BRR is a "matrix" weighted average of the null and
BGLS vectors, The correction factor a*, which is different for different
elements, shrinks the estimated value of E a fixed percentage away from BGLS
towards the null vector, It can be seen that the Random Ridge estimator is
biased, Further, there exists some p > 0 such that the average value of the
square distance of BRR from B is smaller than the corresponding distance of
BGLS from B, Thus, the point estimate of B, obtained by the generalized ridge
procedure is on an average closer to B, than the corresponding point estimate
of B obtained by the generalized least squares procedure.

Bayesian Interpretation of the Random-Ridge Estimator

Assumption 2: The (p + 1) x 1 vector ﬁ is a random variable whose prior

distribution is normal with mean vector 0 and wvariance-covariance matrix

cg I,

B
Suppose that we add Assumption 2 to the model (2,6), and consider w in
(2.6) to be normally distributed, then we can provide a Bayesian interpretation

to the Random Ridge estimator, It can be shown that the RR estimator in (3.1)

is the mean of the posterior distribution of B with ='15 (see Zellner [1971,
o

B
p. 76]1). Further, following Lindley and Smith [1972], we can obtain an iterative

estimate of of starting from the generalized least square estimates of B's
B

in (3.4). That is



where g is the mean of the Si’ GLS* The RR estimator for =-;E then provides
8

B

new estimates for B's., A revised estimate of of may be obtained based on the new
B

estimates of B's and the procedure repeated until convergence in , is obtained.

Modified Random Ridge Estimator
Since the RR estimator implies a prior distribution for B with zero mean,

which may not be a plausible assumption to make in many situations, we may

obtain a modified Random Ridge (MRR) estimator of B, given as

~1 1

BMRR =X 0 X+ I)-1 X Q" y+ pa)

The MRR estimator is, in fact, the mean of the posterior distribution of pB

when the prior distribution of § is assumed to be N(a, Uf I).

Withp, =
B

mlqwl"'

II, Random Almon Estimator

The generalized ridge procedure restricts B to be in the hypersphere of
radius rz, which is an unduly restrictive copdition. Another difficulty with
the RR method is that it ignores the degrees of freedom problem associated
with the estimation process for the distributed lag model. It is well known
that when long lags are specified there may be very few degrees of freedom
left for the estimation process, This difficulty may be resolved if we use
some a priori structure on the B such as (2.11).

Writing the restriction on B in (2.11) as
(3.5) Sp =0
where
(3.6) s=1-A@ Al



is an idempotent matrix of order (p + 1) x (p + 1) and of rank (p - r);
we may obtain the restricted generalized least square estimator of B in

(2.6) which minimizes (y - XB)’ Qfl(y - XB) subject to the condition (3.5). This is

o ak
where BGLS is the unconstrained generalized least squares estimator of B
defined in (3.4) and c* is the correction factor defined as (+ represents

generalized inverse)

+

1s’] S.

-1 - - -
ckx =1- XQ x)ls'[s(x' QIX)
Its variance-covariance matrix is given as
= _ y =1 _.-1
(3.8) V(b,) =c* & X o¥.

The estimator BRA’ which may be termed as the Random Almon estimator, is a
generalization of the Almon [1965] estimator, An alternative form of BRA’
useful for numerical evaluations, is given at the end of this section’in the

Remark 4., The Almon estimator of B in (2.6) may be obtained by substituting

Q= Gil in (3.7), and is given as

3.9) bA = g* bLS
where
(3.10) d* =1 - X X)"1 s'[s X X)'1 s’ ]+ S

and ELS is the unconstrained least squares estimator of 8 in (2.9) and is given as

611 b= ® 0Ky,

L

The variance-covariance matrix of BA is given as

(3.12) V(EA) =d% X X)'1 ¥ ox x)"ld*’.



10

ITI. Random Shiller Estimator

We observe that while in I the Random Ridge and generalized least
squares estimators of B in (2,6) are obtained without using (2.7) or (2.11),
the Random Almon and Almon estimators in II are obtained by considering the
restriction B = A§, It has been, however, argued by Shiller [1973] that
this restriction is often specified not because we believe in it but because
we believe the lag distribution to be smooth, Since the latter may not be
true we now develop estimators by considering a stochastic specification of the
form given in (2,7) viz,

B =45+ 1.
The above specification can alternatively be written as
(3.13) R =R
wvhere R is a p - (r = 1) x (p + 1) matrix defined below

r+l r+1

[ cn°@®h (et L e G o 0. o
G =l 0 DCPH L enTED o™t
0 0. .. D°E, Co DT E,
such that )
(3.15) RA§ =0
and R is a random vector with (using Assumption 1) ERT = 0 and ERTY R = U%RR’;
o = og according to (2.7).

We note here that Shiller's [1973] specification is less general than that
given in (3,13) in the sense that R7 in his specification is considered as a random

vector with mean zero and covariance matrix 02 I, In fact he begins with

U
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B = Ag which implies R § = 0 and then puts a stochastic vector, say 1, to
specify R B = M. In addition, in his case Q = oi I,
Now to obtain the mixed estimator of B we combine (2,6) and (3.13), and

apply the Aitken theorem, This provides

G.16) b . =& alx+,u® @)YInlx gty

GRS

where p = %%3 cf = o%. The variance-covariance matrix of BGRS is
o B
B

(3.17) V(bgpg) = [X alx+ p R @R Y IR7L

The estimator (3.16) may be termed as the Generalized Random Shiller (GRS)
estimator, As would be expected, the GRS estimator becomes RA estimator given

in (3.7) when U% tends to zero, This follows by noting that

1

G.18) R @) rR=5=1-2aaa"1x,

where S is an idempotent matrix given in (3,6), and using the result
G.19) & olx+ =@ gt - s gloly +ﬁ 137t s,

It is also interesting to note that if U%'* 0 and T 0, i,e., 0 = UiI then
the GRS estimator becomes the Almon estimator given in (3.9),

Now, if we assume that RT) is distributed with zero mean and the variance-
covariance matrix 0% I then the mixed-estimator for B in (2.6) under the

restriction (3.13) is

(3.20) by = @ o x+ R RIX gly

and its variance-covariance matrix is

-1

& 1

’1x+p,R' R) ~.

L x o+ p R R g

X + pR’ r)"L Q

(3.21) V(byq)

The estimator BRS may be termed as the Random Shiller (RS) estimator., The RS

estimator is a generalization of the Shiller (S) estimator which considers

c,. =0, f,e., Q= Ui I (see Maddala [1977]) and it is given as

ii

(3.22) by = & X+ W B y, A =0 .
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The variance-covariance matrix of SS is

(3.23) VB = ® X+ R & ax+ oi ® RIX X+ 1 RR)L

Bayesian Interpretation of the GRS Estimator

Assumption 3: The (p + 1) vector of B is a random variable whose prior

distribution is normal with the mean A§ and variance covariance cf I,
Also, § follows a diffused prior. P
Suppose we add Assumption 3 to Assumption 1 and consider w to be
normally distributed, then we can provide a Bayesian interpretation to the
GRS estimator. In fact, following Maddala [1977, p. 385] it can be shown
that the mean of the posterior distribution of ﬁ is
G.26) & olx+ m syl x o't y
which is GRS estimator, as given in (3,17), because of (3,18), We may also
call GRS estimator as Bayes Random Almon (BRA) estimator, This is because
(3.24), using the Assumption 3, is the mean of the posterior distribution of
B for the model (2.6) under the restriction (3.5).

It is interesting to note that when o,, = 0, 1,e,, O = oﬁ I the GRS

ii
or BRA estimator becomes

3.25) By, = ® X+18) ¥ y

which is Bayes Almon (BA) estimator discussed in Maddala [1977] (also see

Lindley and Smith [1972]), Its variance covariance matrix is given by

(3.26) V(BBA) =& X+ 2 s)"1 & ax+ 2 0"21 YK X + s)'l,
It is clear from (3.16) and (3.25) that both the BRA (GRS), and BA
estimators are also ridge type estimators, Further, the BRA and BA estimators

treat E as a random variable while the RA and A estimators regard E as a fixed

parameter.
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The ridge coefficients in (3.16) and (3.25) may be obtained by an
iterative method similar to the procedure for p in the RR metﬁod, explained in I.
It is clear from the GRS and RS estimators that it makes a difference
whether ﬁe postulate that the variance-covariance matrix of RT is G%RR' or
o% I, 1In fact, both the RS estimator which is based on the misspecification of
RY) and the Shiller estimator will be less efficient compared to GRS.

At this point a few remarks on the above discussion may be useful,
Remark 1: The above exposition has been in terms of a single explanatory
variable x with a total lag length of p, but the analysis can easily be
extended to allow for more explanatory variables with different total lag

lengths (Tinsley [1967] and Almon [1968]).

Remark 2: In some situations it may be more desirable to assume that
Bit Bi + Qizt-i toegps 1=0, 1, cees P

Thus the size of the effect of x,_4 O ¥; depends on not only the lapée of
time and the specific x value but also on the value of the variable z. Under
this assumption the model becomes varying parameters distributed lag model
with two explanatory variables (see Almon [1968]).

Remark 3: 1In other situations it may be appropriate to postulate that

Big =By + Yyg Dreng ¥ You Dppoq * VY34 D3y

where D,, D, and D, are seasonal dummies, Assuming Bl’ ?11, §21 and §3i

1° 72 3

lie on low degree polynomials, the model has four Almon type explanatory
variables (see Pesando [1972]).

Remark 4: It is noted that O is a diagonal matrix whose inverse is easily
found, Therefore, the computation in the BRA (GRS) and other methods may be
quite easily and inexpensively handled, Further, the computation for the RA
and the Almon (A) estimators may be handled with even greater ease if we obtain

these estimators of B using an alternative approach, Substituting the condition
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(3.5) in the model (2,6) we may obtain y = Z § + u where Z = XA, Then the

-1 5471

generalized least squares estimator of §is d = (2’ z! cfl y and its
Z)"l, We may write the RA

variance-covariance matrix is V(d) = (2’ Q-l

estimator of B by substituting d for § in the condition (3,5) as:

-1, .-1 -1
y

= = y) ’

bRA A(Z 0~ 2) Z' 0
and its variance-covariance matrix is
1 "1 A'.

V@M)=A&'d z)

The Almon estimator and its variance-covariance may be obtained by substituting
Q= 6°I in 5., and V(§ ), respectivel
u RA RA’? TESP ey

Remark 5: The polynomial lag structure (2,3) excludes the possibility of any
long tail lag distribution. However, this problem can easily be solved by
using a piecemeal polynomial,

Remark 6: The Random Almon method is applicable only to a finite lag structure
whose length must be specified a priori, Some researchers have suggested trying
different values of p and choosing the optimal value on the basis of either the
minimm standard error or R? criteria,

Remark 7: The end point restrictions not dealt with here are generally imposed
a priori, but one can test these restrictions because they are limear hypotheses
which can be verified through standard tests, Schmidt and Waud [1973] have
argued against imposition of these end point constraints. In addition, the
question of tests for restrictions in the set of equations (2.11) or (3.13)
could easily be handled on the lines of similar tests for the A and S estimators

(see Maddala [1977] test B-10, p., 458),



15

3.2 Estimation of E when ( is not Known

In situations when  is not known, we may replace it by its consistent
estimator and obtain approximate estimators corresponding the alternative
estimators of B discussed above. From the large-sample point of view, all
that is required is any consistent estimator of () because the asymptotic
distributions under some general regularity conditions of the alternative
estimators are not affected (see Fuller and Battese [1973] and Anderson [1971]).

Now, we may discuss a few consistent methods of estimating the unknown

parameters in (.

o (2 ’ = S =
If 0 = (62, O, .uop 0) and M=1-2(Z 2)77, then Z = X4,

following Hildreth and Houck [1968], the LS estimator of o is
(3.27) & =[0m*) %)L amE) &
where # = My and X*¥ = (y, X); L being the vector of unit elements, Further

M = MkM, X* = Xéege Xk, & = & are the Hadamard products (see Rao [1970; p. 301).
A necessary and sufficient condition for o to be identified is that the rank
of l;D.(* is (p + 2). Once the estimate of o is obtained from (3.27) the estimate
of () immediately follows,

It is well known that the LS estimator 8 is an unbiased, consistent but
inefficient estimator of o, Further, it can be shown that EMW = 25 =
MO0 M*M(M when T} = 6“7 - 1:{).(*0 is normally distributed. Thus one may obtain the
GLS estimator of 0 as
(3.28) &= [om%) =1 oo)]"t omey I 6,

It is not clear whether we should use & or T in place of the true values
of o in the alternative estimators of B depending upon (). However, since &
is computationally easier and less expensive we use it in this paper. Further,
any element of & or O can be negative with positive probability. Since we

cannot use a negative value for a positive parameter, it has been suggested that
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one may replace negative elements of Gor & by zeros, Following this
suggestion, one may obtain truncatedestimators of B, In simpler situations
the truncated estimators are found to be preferable in terms of mean square
error to untruncated estimators. In the numerical example below we have

obtained the truncated estimators.
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4, AN EXAMPLE: AILMON MODEL

To illustrate the GLS, RA, RS and GRS estimators developed in the
previous section, we utilize the Almon data (see Almon [1968]), A stochastic

coefficients version of the model with eight period lag is briefly described

below:
8
4.1y = 2 B, x 4+ u
t 1=0 it T¢-1 t
where

Ve = capital expenditure in period t
Xy = capital appropriation in period t-i.
We further assume that

and éi lies on a second-degree polynomial, i.e.,

4.3) By = 8y + 63+ 8,174 7, 170, 1, ..., 8.

Our objective is to estimate the mean of B's on the basis of quérterly
data for the period 1953-1967, using the LS estimates of o's, The fixed
coefficient version of the Almon model has been estimated by Almon [1968]
and others, We present the GLS, RA, RS and BRA (GRS) estimates for the
stochastic version of Almon model in Table 1 along with the usual LS, A, S,
and BA estimates,

A plot of the alternative estimates in columns 2 to 5 in Figure 1
reveals that the LS estimator produces an erratic lag pattern while the
A, S and BA estimators produce a quadratic smooth lag pattern, Further, it
appears that the choice among the A, S and BA methods, purely on the basis
of the shape of lag distributions, is difficult.

In order to provide a comparison among alternative methods of
estimation in the distributed lag model with stochastic coefficients,

purely on the basis of shape of lag distributions, we have plotted the
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alternative estimates in columns 2, 3 and 6 to 9 in Figure 2, An interesting
point fo note in Figure 2 is that the A method seems to produce a more smooth
lag pattern compared to the RA method, Further, the GRS and RS methods are
to be preferred over RA estimator if a less smooth lag pattern is expected.
Ihe number of iterations required for convergence for the ridge type
estimators and the values of the ridge coefficients are also given in rows
12 and 13 respectively of Table 1, In all cases the convergence was obtained
in nine or less iterations,
The estimates of the model (4.1) were also obtained by the RR method,
The convergence for this method was obtained in fifteen iterations for the
ridge coefficient value of 2055. The RR estimates (.12141, ,12780, .13085,
.13687, .11795, ,09750, ,09769, .08332, ,06877), appear to produce an over

smoothed lag pattern although they are not equal, see Maddala [1977, p. 386].
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5. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper we studied the problem of estimating a polynomial
distributed lag model under more general stochastic specification on the
coefficients than considered earlier by Shiller [1973]. We first developed
an efficient estimator, namely the Random Almon estimator, for the stochastic
parameters distributed lag model when the mean of the stochastic coefficient
is regarded fixed, The Almon estimator is a special case of this estimator,
Further, when the mean of the stochastic coefficient is random we proposed
the estimator, namely the Generalized Random Shiller (GRS) estimator, It
has been indicated that the Shiller estimator, which is based on a misspecified
stochastic disturbance term, will be less efficient compared to the GRS, Also
we have shown that the Shiller, Almon, Bayesian Almon and Random Almon
estimators, among others, can be considered as special cases of the GRS
estimator, Finally, on the basis of the numerical estimates, it has been
suggested that the GRS is to be preferred as compared to the other estimators
when the lag distribution is not expected to be smooth.

Several suggestions for further research can be made, First, a
modification of the distributed lag model with stochastic coefficients when
an Almon lag is combined with the Koyck lag, may be done on the lines of
Schmidt [1974] work, Second, there is a need to extend the model when errors
are autocorrelated, and to compare its performance in the extended form with

the Hannan Inefficient estimator discussed in Hannan [1967].
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