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DOUBLE k-CLASS ESTIMATORS OF COEFFICIENTS

IN LINEAR REGRESSION

1. INTRODUCTION

It is well known that under certain assumptions the least squares
estimators of the parameters of the general linear regressionmodel are best
unbiased in the family of linear unbiased estimatbrs. If, however, we come
out of the family of linear unbiased estimators then it is possible to ob-
tain a family of biased estimators which is a nonlinear function of obser-
vations on the dependent variable and has a smaller mean squared error. In
fact, Stein (1956), and James and Stein (1961) suggested a biased estimator
for the orthonormal linear statistical model which dominates the least squares
estimator in thé sense that the sum of its component wise meén squared errors
is smaller than that of the former, provided at least three parameters are
to be estimated. Various interpretations and modifications of the above esti-
mator, in the orthogonal regression context have recently appeared in the works
of Baranchik (1964), Scolve, et al, (1972), Efron and Morris (1973) and Zellner
and Vandaeie (1975) among others., More recently, Bock (1975) extended the
James and Stein estimator in the nonorthogonal regression context.

In this paper we consider the estimation of the parameters of the genefalﬁ

linear regression model with the usual nonorthogonal regressors. We develop

the h-class and double k-class families of biased estimators by using an oper-
ational variant of the minimum mean square error estimator [See Theil (1971,
P. 125)] which depends on unknown parameters. The procedure of developing
these families is simple and straightforward. We note that the James and

Stein estimator in the regression context is a member of the double k-class



family of estimators. We present the model and the families of h-class __.__

and double k-class estimators in the Section 2. The h in h-class at.nd:k1 and

k2 in double k-class are taken as arbitrary scalars which could be stochastic

or nonstochastic. For k2==1 we obtain the Stein rules estimator as a member of

the double k-class. In Section 3 we analyze the exact and approxi- L

mate bias, moment matrix and the risk function of the double k-class estimators.

For 0 < k2 < 1,the range of the values of kl for which the sum of the component wise _

mean squared errors of the double k-class estimators (to the order of approxi-

mation considered) dominate the least squares estimator is established in -
corollary 1 of Section 3.2. We also obtain the range of kl for which

the double k-class estimator with k2==1 dominates the estimators for

0= k2 < 1, The double k-class estimators have no moments for kz > 1., Finally,

in the Section 4-we give the proof of some of the theorems stated in Section 3.
Some of the expectations and useful definitions required for the proof are pre-

sented in the Appendix.

2, THE MODEL AND ESTIMATORS

2.1 A Biased Estimator

Let us consider the regression model
(2.1) y=Xg+u
where y is a Txl vector of observations on the dependent variable, X is a
TxK matrix of known values with rank K< T, B is a Kx1 parameter vector and
u is a Txl random vector such that
(2.2) Eu=0 and Euu' = 021
The ordinary least squares (OLS) estimator of g in (2.1) and the residual

. . 2 ., .
variance estimator of o in (2.2) are written as



2.3) b= (X 'x)'lx'y

2

l\l\l
_ Vg = o= xy!
s = u'u = n y'My

=N o

respectively, where . .

(2.4) n=T--K, u=M and

M=1 - X(x'x)"lx'.

M is a TxT idempotent matrix of rank T-K.

It is well known that the estimators in (2.3) are consistent and also

(2.5 Eb=p, E®-B)G-H' = o ®x)"

Consider now a class of linear estimators
(2.6) p* = Ay

where A is an arbitrary KxT matrix. The moment matrix of B* can be written as

(2.7)  E(@*-B)(8*-B)' = oAA' + (AX-I)PB' (AX-I)'.

The matrix A for which (2.7) is a minimum is

(2.8) A = pR'X'"(XBB'X' + 0'21)-1.

Thus, using (2.6) we obtain the minimum mean square error (MMSE) estimator

(2.9) @ = pB'R'(XBB'X' + o)y

as given by Theil (1971, p. 125), Further, B* can be written as1

(2.10) B* = — (y-w)'y
o + (y-u)'(y-u)

where
(2.11) y-u = XB

according to (2.1).



2
We note that the estimator p* depends on unknown values on f .and o .

Thus, we propose an operational variant of (2.10) as

~ )
(2.12) b =p—XWI 4
su'u+ (y-u)! (y-u)

where b, and u and n are as given in (2.3) and (2.4), respectively, The pro-
posed estimator is a nonlinear function of y and it may not necessarily be

MMSE estimator., We can write b in an alternative form as

- "A
(2.13) ba(l- A u/o T ]b
y'y-u'u( -2)

where we note that

(2.14) 0 < u'u/n <1 .
Aga

— Yoo -‘1-'— C—
y'y=u'u(l n)

The estimator b 1s consistent and its small sample properties are given

in the following sections.

2.2 -Families of h~Class and Double k-Class Estimators

-While obtaining the operational variant of B* in (2.10) as. (2.12).we replace
the estimate of X8 -by -y-u according to (2.11). If, instead, -we.replace
.the estimate of XB by y-hﬁ where h 18 an-arbitrary -scalar (stcchaét:lc

or nonstochastic) we would obtain the operational variant of B* in (2.9) :as

(2.15) ,Sh - — (y-hu) 'y b
“h“a'u/n + (y-hi) ' (y~-hd)
E-3 1 ... G;‘.‘;hzln b
e A2 1
y'y-u'uh (1»--1;)

The family of estimators in (2.15) differ with the estimator in (2.13) only
with respect to the coefficients of u'i on their right hand sides. It is

clear that h = 0 yields the OLS estimator and h = 1 gives b.



A more natural generalization of ; can be found in the following

double k~class estimators @

Aga
(2.16) B , =] 1- klu‘:“ b

! 1°72 y'y-kzu'u

where kl’ k2 are arbitrary scalars which may be stochastic or nonstochastic,
This family of estimators embraces the family of h-class as its members, We
have shown in the following section that the moments of the estimator in (2.16)
can be obtained for fixed k2 when 0 = k2 < 1, It is interesting to note that

for the value k2 =1 (2,16) is the Stein-ruleestimators (1955, 1961). This

can be written as

- a'u
@11 by g = A -y b

-

The value of kl for which the risk function of the estimator in (2;17) domin-

ates the risk function of the OLS estimator is given by2

K
(2.18) OSkIS-Z-%E—Zl, d= £ M/A

3
j=1 + L
k -1
where X Ai = tr(X'X) and AL represents the largest characteristic root of
i=1

(x'X)'l. If (X'X) = I, then
2(K - 2)
(2.19) 0 < k] < -~y

and (2.17) is the James and Stein estimator for the orthogonal regression case

as given in Scolve (1968).3’4

For the value k2 = 0 the estimator in (2,16) can be written as



. k, 08
(2.20) b = (1 - =
kl,O vy

)b

A family of estimators, which is a member of (2.16), can

be written as

A'A +
(2.21) BY = [1.' mufs ] b
y'y-ku'u(l-;;)

where k 1s any scalar such that 0 < k < 1. We note that the coefficient

of b on the right hand of (2.21) is positive. Purther, for k=1 we

obtain b as given in (2.13).

3. THE BIAS AND MOMENT MATRTX OF b.

k

10k

2
In this Section we shall give excuct and approximate formulae for the

bilas, moment matriyx and the risk function of the double k-class estimators

for 0<k,<1.”

3.1 The Exact Resulits

Firstly, we write the sampling error of the estimator in (2.16) as

(3.1) (bkl’kzms) = (b-) = k; cb
where

o XMy
(3.2) c YNy °

and M and N are both TXT matrices given as

(3.3) MeT-XED X, N=1- kM



Further, M is an idempotent matrix with rank n and N 1is a non-negative
definite matrix provided

(3.4) 0<ky,<1.

Secondly, we make an assumption that the disturbance vector u in (2.1)
is distributed as multivariate normal with mean vector zero and variance

covariance matrix o2I, i.e.,

3.5) u v N(0,021),
Thus

(3.6) y v N(y,02I)
where

3.7) y=X8 .

Next we introduce the following notations and functions for the sake

of simplicity of exposition :

(3.8) gu,v o G(kz,e;% +u, !-2'--!- v) ; u,ve= 0,100
where
(3.9) 0w .3.3.'.&&

202

is a noncentrality parameter,

(3.10) 0<k, <1

2
and the function G( ) 1s as defined in (A.5) of the Appendix A.
We can now state the following theorems :

THEOREM 1. Under the assumption stated in (3.5) the exzact bias of the

double k-class estimator of B for 0 <k, <1 ad n > 1, is given by

- nkl
(3.11) E“’kl,kz'e) == 818

where 8,1 is as given in (3.8) for u=2 and v = 1.

THEOREM 2. Under the assumption stated in (3.5) the exact moment matriz of
the double k-class estimator of 8 for 0<k, <1 and n > 3 18 given by



(3.12) s(ﬂkl’kz-s) (le’kz-a)' - 02(X'X)-1[I~nk1g2’1-ki -'-’L';ﬂl (23,5785, 5)]

' 2 n(nt2
- 88"k (83 17, ) +15 252 3, yey 1

THEOREM 3. Under the assumption etated in (3.5) the exact risk function
of the double k-class estimator of B for 0 < k,<1 and n >3 s given by

(3.13) E(Skl’kz-e)'(ikl’kz-s) = oztr(X'X)-lll-nklgz’l-k: 3-(9-:31 (85,5785 9)]
where 'tr' represents the trace of the matriz and

-1 k
(3.14) tr(x'x) "= LA
1=1

i ?
A, 18 the i-th characteristic root of ot

The results corresponding to (3.11), (3.12) and (3.13) for the
h-class and estimators in (2.15) and (2.21) can be obtained by sub-
stituting k; = h’/n , k= h’(1 - 1) and k= k/n, k, = k(1 -
respectively. The bias and moment matrix for i;l in (2.12) is obtained
by substituting k = 1. However, if

(3.15) kz =1 or kz =0

then we note from (A.7) and (A.8) of the Appendix that - in (3.8)

]
will be represented in terms of confluent hypergeometric functions. Thus,
using the recurrence relations of the confluent hypergeometric functions

given in Slater (1960, p.19) and using the notation

K
-9 P('-2-+6) K K
(3.16) f& n"e TE T lfl (§+ 8; 3+ n;6)
s rGG+n)

the following corollary can be obtained.

Corollary 1. The exact moment matriz of the James and Stein estimator in
the nonorthogonal regression context, for ky =1 and K > 3, is given by6



kz n(n+2)

~ o~ P | 1
3.17) E(bkl’l-B)(ka’l-B)' =g X'X) "[1I - nklfo’1 4--———77——-— f—1,1]
k2 n(nt+2)

+ g’ [nk) + —=—7—1f; ,
and the risk functian ig given by

ki n(n+2)

. - 2 -1 e i
(3.18)  E(, 1-6)'(bk1 7B = oTtrX'X) UL - ak £y g £ 4]
1° ’

)
+ B'B[nkl + _—l:'_]fo’z

where fo,1 i8 obtained from (3.16) for 5§ =0 and ne=1, and 8o on.

It has been shown by Bock (1975) and Judge and Bock (1976) that for

K
2
S — - : =
(3.19) 0= kl ) (d-2); d i2=1 }\i/)\.L 2 2

~

bk 1 dominates OLS estimator in the sense that
1

E(B‘kl,l-a)'(ﬂkl’l-a) - E(-p)'(b-p) <O,

where, as given in (3.14),

k -1
L Ai e tr(X'X) .
i=]1
For X'X = I, the results in (3.17) and (3.18) give the moment matrix
and risk function of the James-Stein estimator in the orthogonal regression
context. In this case these results are identical with the expressions
obtained by Sclove (1968), Ullah (1970, 1974) and Ullahs (1976), among others.

Next, the corollary below can be easily stated.
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Corollary 2. The following results regarding the exact bias of the double
k-class estimator in (3.11) are true for 0 <k, <1 and kl'_?_ 0.

(a) Skl’kz is wnbiased only for ky =k, =0 or k =0 andin

that case it is OLS estimator. .
(b) The exact relative bias of an element of f’k K i8 a decreasing
1’72
function of both kl and kz.
(c) The exact relative bias of an element of ;’“1 K.* for a given
]
2

sample eize, lies in the following range:

(30 ) ‘miET 50’ inl,uoooo’K

(4) The absolute value of the exact relative bias of an element of

b i8 a decreasing function of the noncentrality parameter 0.
1°72

The results in the above corollary follows by noting that 8y 1 >0 and
r) L

(3.21) -3—1%-g21=3%;c(k2,e;1§-+2,%+1)>0
2 H]
2 2 T

(3.22) 35 82,1 " 35 6 (k05 5+ 2, 5+ 1) <0

according to (A.11l) of the Appendix. Further, for given T

(bkl’k “B)i
(3.23) it E—Lt-2— =0

B+ Bi
and -

(b -B)
kl,kz i ‘nkl

(3.24) lt E B == T32

6.0 i

by using (3.8) and (A.6) and (A.12) of the Appendix A. This gives the

result (3.20).
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3.2 Large - 6 Asymptotic Expansion

We now present the asymptotic expansions of the bias and moment
matrix of the double k~class estimators in terms of the inverse of © .7

‘These results help in analysing the complicated expressions of the exact

moment matrix and the risk function given in (3.12) and (3.13), respectively.

The following three theorems can now be stated.

THEORGH 4. The asymptotic expansion of the bias of the double k-class
estimator of B in (3.11) up to order 1/62 is given by

nkl

(3.25) E(ﬁk ~B)=- —+

k

1,1 1
[£+5 {(@t2)k, - T} 5 1B
12K 8" 2 2 82

vhere n>1 for 0<k,<1 and K21 for k,=1.

THEOREM 5. The asympiotic expansion of the moment matriz of the double

k-class estimator of B in (3.12) upto order 1/83 is given by
-1, %
-8)' = 02(X'X) " + — [BB'{4T+k; (nt2)}

(3.26) E(b
k -k, 402

-8) (b
l’kz k

1

n
- 2(8'2'X8) (X'D) 1] - —5 (68" {4(1-2k))
40

+ & (w+2) (T+2-2k,)} + (2'0) " 1'X'X
x{ (n#2)ky Tk, -(9—;3)-}]
where n > 3 for 0<k,<1 and K23 for k,=1.

THEOREM 6. The asymptotic expansion of the risk function of the double

k-class estimator of B in (3.13) upto 1/63 is given by \ v
(3.27) E(b -8)" (b -8) = o2 tr (X'B) +—n51— '8{ :
. ki, 8" B a2 tr (X'X) 5 [8'8{4+k, (n+2)
2 46
- 2 ErmeEn ™ L

403

+ kg (0k2) (T + 2 - 21:2)} +

'
/

[8'8{4 (‘1‘-2k2)

+ B'X'X8 tr(X'X)-l{(n"'z)'kz"T'kl n;2 H

where n >3 for 0 <k

2<1 and K>3 for k

2=1'.
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Proof of Theorems 4 to 6: Using (3.8) and substituting (A.12) in (3.11),

(3.12) and (3.13) the results in (3.25), (3.26) and (3.27) can be established
easily.

We can now state the following corollaries.

Corollary 1. The double k-class estimator of B8 in (3.1) dominates over
the ordinary least squares estimator b in (2.3) in large-6 asymptotics upto

the order 1/82, in the sense that

(3.28) 1im 62[E(b _B)'({”&’kz-e) - E(b~8)'(b-B)] < 0 ,

8- “1"‘2

for
K 2
{ 3.29) d = 15'1)«1/)\1‘ >2; 0< kl _<_-n-.|_'—2 (d-2)
and for any k, in
(3.30) 0<k,<1,
- . 4
where I A 1= tr(X'X) ~, A 1 i8 the 1-th characteristic root of (X'X)
i=1l

and AL i8 the maximum of 11, i=1,...,K.

The result in the above corollary follows by looking into the condition

under which the coefficient of 1 in the second term on the right hand side

ez
of (3.27) will be negative and also noting that kz is not involved up to
1 8 ' '
order oz °

We note that the condition (3.29) is the same as the condition (3.19)

for kz = 1 under which the exact risk function of gkl 1 (an extended
]

form of James and Stein estimator) dominates over the ordinary least squares

estimator.9

Corollary 2. The double k-class estimator of B in (3.1) for k, =1
dominates over the estimators for 0 Xk, <1 in large-6 asymptotice upto
the order ;13-, in the sense that
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L) 3 - b ' b
(3.31) lim 6 [xz(bkl 18’ (bk 18 - E(bkl’kz-ﬁ) (bﬁ'kz-e)] <0,
if

(3.32) d =4 and 0< kl S — (d -4)

where d Zis as given in (3.29).

3.3 Conclusion,
It is interesting to note from (3,27) that the double k-class estimators,

for given k., have the same risk functions (up to the order 1/02) for any k2 in

l’

0= kz < 1, Further, we observe from (3.28) that for

0 < kl < ——— (d-2)

the risk function of the double k-class estimatros, up to the order 1/67,
dominates the risk function of the OLS estimator. Finally, the result

in Corollary 2 indicates that if we consider the range of k1 as
0<k s-—l— (d-4) d=4
1~ ntbd ?

which is smaller than the range of k1 in (3.29), thenthe double k-class esti-

mator bk 1 for k2 = 1 will have smaller risk, up to order 1/93; than the
1’
double k-class estimators from O < k2 < 1. If, however, d < 4 then for any
positive k estimators b, for 0 < k < 1 will dominate the estimator b .
kisk, kl,l
This is because for d < 4 and k1 > 0 the inequality in (3.31) will be reversed.

4. PROOF OF THEOREMS 1 TO 3

In this section we shall give the proofs of theorems 1 to 3 stated

in the section 3.1.

4.1 Proof of Theorem 1.

Let us take the expectation on both sides of (3.1) and write

4.1 b - .
(4.1) E(bkl’kz B) klEcb
where
1 4
c =X My

y'Ny
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as given in (3.2) and use has been made of (2,5). To obtain the

expectation of cb on the right of (4.1) we write

(4.2) Ecb = o(X'X) 1X'Ezc
where
{4.3) zelanEn, za %B-
by using (3.6) and (3.7), and
(4.4) col ozl
Now we note t:hatm
4.5) Ezc = E(z~-z)c + zEc
- ——1-'-{75-[ (z-z)c exp - -;- {(z-2) ' (z-2) Ydz + zEc
(2m) z

= -a: Ec + zEc
9z

vhere, for n > 1 and 0§k2_<_1,

(4.6) B = 2 G(ky,0; 3+ 1, 2+1)

has been obtained from (B.15) of the Appendix B by substituting k = kz
and x by

4.7) 6= Ez

Next, noting the fact that
(4.8) Lpca(2E)R
a0
9z 3z

and using (A.9) of the Appendix, (4.5) can be obtained as

n . X n
(4.9) Ezc = 5 2z G(ky,0; 5 + 2, 7+ 1) .

Futt:ixer. substituting (4.9) in (4.2) we get

(4.10) Ecb = 3 8 G(k,,0; -‘é’--r 2, 3+ 1) .

Finally, using (4.10) in (4.1) we obtain the result stated in the

Theorenm 1.
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Proof of Theorems 2 and 3.

Using (3.1) we write the moment matrix of the double k-class

estimators as
(4.11) E(le X, -8) “’k Lok, =8)' = E(b-B) (>-8)" + Kk, (EBb'c + Ecbg')

- 2k Ecbb’ + k2 Ec’pb’ .
The first term on the right hand of (4.11) is cz(x'x)'l as given

in (2.5). Next, considering the second term we note from (4.10) that

(4.12) ESb'c = 2 88'G(k,,05 3+ 2, 3+ 1)
= EcbB' .

Now, taking the third term on the right hand of (4.11) we write

(4.13) Ecbb' = 02(X'X) 1x' (Ezz"c) X (X'X) "L

where z and c¢ are as defined 1n (4.3) and (4.4), respectively. Using
the procedure in (4.5), we note that

(4.14) Ezz'c = E{(z-z) (z-2)' + (z-z)z' + z(2~z)' + 2z'}c

— Ec+27z'-f-'-nc+(2'z"+1)zc
0zd2 oz

2
- zz' -9—5 Ec + (2zz' + I) g Ec + (zz' + I)Ec
30

where Ec 1g as given in (4.6). Further, using (A.9) and (A.10) of the
Appendix A, (4.14) can be simplified as

(6.15)  Ezz'c = 3 [22'6(k,,0; 3 Z+3, T+ 1) +6ky0; 3 F+2. 5+ 1)1

and (4.13) can be written as

(4.16)  Ecbb' = 2 [8B'G(k,,8; 2 +3, 3+ D +o0 (x'x) x G(k,,0; §+ 2,

n
-i'+ 1)].
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Similarly, considering the fourth term on the right hand side of (4.11)

we first note that

2
.17)  Ezz'e® = 3zt Ly me + (223" + D) G B + (33" + DEe’
ae

where, for n 2 3,
2 _ n(n+2) I, B ) . I,, 1
(4.18) Ec™ = % [G(kz,e, 5 + 1, 7+ 2) G(kz,e, >+ 2, > + 2)]

has been obtained from (B.16) of the Appendix B by replacing k by kz.and x by 0.
Now using the partial derivatives of G given in (A.9) and in (A.10) of the

Appendix A we can obtain (4.17) and hence Eczbb' as

4.19)  EPbb' = @) TR (Faz DR T = - BB (gg1{G(k,,05 § + 4y 5+ 2)
- Glky,85 2+ 3, 2+ D) + 2@ Helky,0; F+3, 542
T n
= G(kzs 5 '§'+ 23 E+ 2)}]

. Finally, substituting (2.5), (4.12), (4.16) and (4.19) in (4.11) the
result stated in Theorem 2 follows. The Theorem 3 follows by taking the trace

on both sides of (3.12).
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APPENDIX

A, Hypergeometric and G Functions

The hypergeometric functions 1F1 and 2F1 have the following power series

representations [Slater (1960)],

«©
ey =& 5 Laim) x ®
(A.1) JFi(asesx) = 1 mio Totms or® ©7 0 |x| <

Te . TC(a+mI(btm) x

z
'al’d =0 I'(c+m) m)

’ c>0, |x|<1

(A.2) 2Fl(a,b;C;X) =

Similarly, the power series representation of the function G,

o
@3 eloxmae) = [ hitikxa,edt

-0

where x >0, a=2c21, 0s k=<1 and

2 exp [2xt/1-2t]
[1-2¢127°11-2(1-)t1°

(A.4) h(t;k,x,a,c) =

is given by [see Sawa (1972, p. 659)]

[-]
_ ~x[(a-1) hl(eth) . . ..
(A.5) G=e NO) ;io (k) T(ath) 1Fl(a l;at+h,x), a>1,

An alternative representation is

@ h .
(A.6) G=¢eX = £ ﬁr%;’—*)‘l £ (Lesathsl),  a> 1.

For k=1, (A.5) and (A.6) reduce to

-x ['(a=-c-1)

@7 e=e"Tao 11

(a-c-1l;a-c;x), a-c> 1.
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Further, for k=0

-x ['(a-1)

*.8) =T TR 1

Fl(a-l;a;x).

The partial derivatives of G with respect to x can be written as

(A.9) g& G(k,x;a,c) = G(k,x;a+l,c) - G(k,x;a,c)

2
(A.10) é‘f G(k,x;a,c) = G(k,x;a+2,c) - 2G(k,x;a+l,c) + G(k,x;a,c)
ox

"and so on, Also we note from (A.3) and (A.5) that

(A.11) | g% G(k,x;atl,c) > 0 and é& G(k,x;a,c) <0,

Finally, for large x, the asymptotion of the function G in (A.5), up to

order JE , is given by [see Sawa (1972, p. 667)].
X

(4.12)  G(k,x;a,c) = %+ (c k-a+2) —15 + [c(ctDK% - 2c(a-2)k + (a-2)(a-3)] —13 )
X X
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B. Evaluation of Some Expectations Required in Section 4.

Let z by a Txl normally distributed random vector such that

(8.1) Bz =z and E(z-2)(z-2)' = I

Further, consider M as a TxT idempotent matrix with rank n < T. Then, it can be

verified that the matrix
(B.2) N=1--kM

will be non-negative definite for 0 < k = 1,
The joint moment generating function M(tl’tz) of the quadratic forms

z'Nz and z'Mz can be written as

(B.3) M(tl,tz) = E exp [tlz'Nz + tzz'Mz] )
] [~ -]
= j ces j exp [tlz'Nz + tzz'MZ] £(z)dz
-C0 . . ]

where f(z) represents the multivariate normal density of z with mean vector z
and covariance matrix I,
Since M is an idempotent matrix of rank n < T we can always obtain an

orthogonal matrix P such that the orthogonal transformation of the matrix

(B.4) Q=1- 2t1N - 2t2M

can be written as

n—(ZtIk* + 2t2)In 0 A
0 (1-2t)L,

(B.5) P'QP =

]

where k* = 1-k and A is a TXT diagonal matrix, Thus, if we restrict the domains

of tl,t2 and k as
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(B.6) 2t1<1, 2t1+2t2<1 and 0<k<1

it follows that Q is a non-negative definite matrix.

We can now simplify (B.3) as

1 -, -1 43 r° e
(B.7) M(t,,t,) = exp 5 [2'Q "z-2'z] IQ |2 I cee J g(z)dz
1272 2 - o
where g(z) is multivariate normal density of z with mean vector Q—IE and variance
covariance matrix Q-1.Fina11y, using (B.5) and noting that the integral value on
the right of (B.7) is unity we obtain
T-n

- (B.8) M(t1’t2) = exp 3 [z'Q z-z'z] //;l-Ztl) 2 (1--21:1k*-2t2)n/2

In the case where the matrix M is such that

(8.9) Mz = 0
we note
(8.10)  Qz = (1-2t))z.

In this case (B.8) is simplified as

£ 2'Z I-n

z'
= exp 2 (1-2t.) % (1-2t k*-2t n/2
T-2t, £ 1 1

(B.11) M(tl,t 2)

2)
where k* = 1-k, The following derivatives of (B.ll) can then be easily verified.

»

GM(tl.tz)

I SO | n
2
2M(t,,t,) , :
(B.13) ——%Ll- ﬂ%amuﬁm&§+z,%+n
% epmo
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where

z'z
(8.14) x ==

' and h( ) is as defined in (A.4).
Finally, using (B.12), (B.13) and (A.3) we obtain the following expectations

for 0 k < 1:11
0 | oaM{t,,t,)
z'Mz - 1272
@19 : [E“’ﬁi] I -“[ o, t,=0 1
=2ekumz+1, 3+, T2n21
2
. Y2 o 22M(t,,t,)
(B.16) E [%.%"z- - I -t [ > at
- 3, £,=0

o BED o0,k 3+ 1, 5+ 2) -
- Glkx; 3+2,3+2], T2n23 \
where use has been made of
(B.17) 2t h(t k%, 2+ 2, 24 2)= & h(t sk,x, 2+ 1, 24+ 2)
S Lt L S 5x MEpKX, 5+ 1,5

and (A.9).
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FOOTNOTES

1In obtaining (2.10) from (2.9) we note that

@pp'x' + DL = L 11 - x8(e” + prxiEe) IRX!]
[0}

2Also, see Bock (1975) and Judge and Bock (1976).

3For the variants of Stein-rule estimators, see, for example,

Baranchik (1964), Scolve et al. (1972), Bock (1973), Efron and Morris (1973),

Zellner and Vandaele (1975).

4

1f we take Q = X'X in the weighted loss function considered by Zellner-

Vandaele, then for kl = K/n+2 we obtain Zellner-Vandaele (1975) estimator,

51n general, kl and k2 could be stochastic. However, in this paper, we
analyze the results only for the fixed kl and kz. It can be easily shown that

for k2 > 1 the moments do not exist.

6We note that K =2 3 implies n = T-K 2 3.

7The results are valid for sufficiently large ©, which according to (3.9)

means sufficiently small o. The behavior of estimators, when the disturbance
term is small, has been analyzed by Kadane (1970, 1971), Also, for large ]
asymptotic expansion, see the workds by Sawa (1972), Basmann (1963) and Mariano

(1973), among others,

8We also note by using a result in Rao (1965, p. 59) that the minimum of

B'X'XB

5P = 1/KL'where kL is the maximum characteristic root of (X'X)-l.
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9It would be more interesting to obtain kl and k2 for which the difference

between exact risk functiomns, viz.,
<k P ®, Lk, T BRI Gp) <0

In this paper, however, we have considered the above difference up to order 1/92.

Also see the work by Sawa (1972, p. 669) in this respect.

10, . . . . . R .
A similar technique of obtaining expectations, in a different context,

was originated in the work by Ullah and Nagar (1974).

11This technique of obtaining expectations was originated by Williams (1941)

and later used by Sawa (1972) in different contexts,
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