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1. INTRODUCTION

The notion of the core has attracted the interest of economists for more than 100 years.
Much of the core's appeal stems from the intuitive and natural story behind it, the story that
first motivated F.Y. Edgeworth in 1881. It runs as follows. An allocation which is not in the
core is regarded as unstable. It is always the case, given such an allocation, that some
individuals will be able to form a coalition and obtain an allocation that each strictly prefers.

Thus, the primary motivation for the core is non-cooperative in nature. Nonetheless,
the core is not a non-cooperative solution concept. This is because, in particular, the
possibilities for forming coalitions, and making offers and counteroffers, are not explicitly
modelled.

In this work, we provide a non-cooperative implementation of the core. However, we
do not merely implement the core. The. nature of the game form employed is designed to
reflect the motivating story as accurately as possible. The present results thus provide formal
content to the usual intuitive justification for the core. In our view, the core would lose much
of its appeal were it not possible to provide such a non-cooperative foundation.

The situations covered by our analysis have a payoff structure summarized by a
transferable utility game in characteristic function form. This is embedded in a dynamic game
in continuous time in which each player bargains over with whom to form a coalition and how
to allocate the coalition's value among its members. The bargaining model employed allows
flexibility in the negotiation process. In particular, there is no fixed timing or order of moves.
At any positive time, any player can place a proposal on the table. A proposal consists of a
coalition together with a suggested allocation of that coalition's value among its members. A
coalition is formed if all its members accept the proposal before a new proposal is placed on
the table. Once a new proposal is put forward, it automatically rescinds the previous one, so
that only one proposal is on the table at any time. After a coalition, S, is formed, any member

can choose to leave and consume. In this event, all other members of S must also leave and



consume their part of the agreed upon allocation. The remaining players, N\S, continue
bargaining.

Continuous time is modelled along the lines of Perry and Reny (1991). A key feature
of the model is that each player can time a proposal so that each member of the coalition to
whom it is directed has an opportunity to react. Subgame perfectness and stationarity are the
other main assumptions. Stationarity, in particular, may be too strong a restriction in some
environments. Indeed, some environments may be less likely to yield core allocations than
others.

In this setup we show that for (v,N) a TU game:

(i) If an allocation is not in the core of (v,N), then it cannot be supported as a stationary
subgame perfect equilibrium (SSPE) outcome.
(i)  If (v,N) is superadditive and totally balanced (in particular, if it is a market game) then:

(@) If payoffs are not discounted over time, then an allocation can be supported as an
SSPE outcome if and only if it is in the core.

(b) If payoffs are discounted over time, then for every £>0, an allocation can be
supported as a stationary &-subgame perfect equilibrium outcome if and only if it
is in the e-core.

The proof of (i) is constructed so that it reflects precisely the motivating story for the
core. That is, assume, that some equilibrium allocation is not in the core. A blocking coalition
is then able to deviate via a sequence of unilateral moves before the proposed equilibrium
outcome is effected, guaranteeing each of its members more than they were to receive in the
candidate equilibrium. This is a contradiction.

Hence, a necessary condition for the existence of an SSPE is that the underlying game,
(v,N), have a nonempty core. But, since subgame perfection is employed, an equilibrium must
exist in every subgame; in particular, those in which only a subset of players remains. Thus a

stronger condition is required for existence, namely that the game (v,N) be totally balanced.
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When discounting is present, players willing to accept a proposal wish to do so as soon
as possible. Given the continuous time setting, this is ill-defined. No subgame perfect
equilibrium (stationary or otherwise) then exists. However, for every positive &, a stationary
&-subgame perfect equilibrium does exist, and the set of such equilibrium outcomes is the
g-core.

There are by now a number of papers in which a non-cooperative game is designed to
yield a cooperative solution. See, for instance, Harsanyi (1974), Selten (1981), Binmore
(1985), Gul (1989), and Chatterjee et. al. (1990). Moldovanu and Winter (1991) reanalyze the
game proposed by Selten (1981). Although the set of stationary subgame perfect equilibria in
Selten's game depends on the assumed order of moves, they show that an allocation is in the .
core (of the underlying NTU game) if and only if for every possible order of moves it is an
outcome of a stationary subgame perfect equilibrium.

The paper by Kalai, Postlewaite and Roberts (1979), henceforth KPR, is closest to ours
in spirit. Theirs is a static game in which, simultaneously, each agent announces a coalition to
which he wishes to belong and a feasible allocation for that coalition. Any coalition whose
members' announcements match, obtains for its members the the announced allocation. Others
receive their own value. KPR show that the set of strong Nash equilibria coincides with the
core. The problem, of course, is that the requirement of strong Nash equilibrium begs the
question.

The present work is also related to the literature on market games implementing the |
competitive outcome (see, for example, Gale (1987)). In such games traders meet in pairs each
period according to some matching mechanism. The typical result is that for large economies,
as the time between periods vanishes, every stationary equilibrium outcome converges to a
competitive one (see, however, Rubinstein and Wolinsky (1985)). As we assume time to be
continuous, it is enough in our game to replicate the economy sufficiently often in order to
converge to a competitive outcome. This of course, is just a consequence of the core

convergence theorem.



In the next section we provide a heuristic description of the model, and show, by means
of a few examples, the main features of the model, the roles of the assumptions, and the ideas
behind the proofs. In section 3 a formal description of the model is given. Section 4 contains

the theorems and their proofs.

(v

2. Overview of the Model and Examples
Consider a situation in which the underlying opportunities can be summarized by a
transferable utility game in characteristic function form, G = (v,N), where N = (1,2,...,n) is the
(finite) set of players and v:2N -+ R associates with every subset, S, of N (or equivalently,
every coalition) its value v(S).
The following extensive form describes how coalitions form and associated allocations
are achieved. Time is continuous. The game starts at t = 0 at which time a player can choose

to make a proposal or to be quiet. At every positive time t, a player can choose to make a

proposal, accept a current proposal, be quiet, or leave and consume. We now elaborate on

(e

these possibilities.

A proposal (x,S) by player i € N, consists of a coalition S (where i need not be a
member of S), and an allocation (xj)j €S’ the sum of whose components does not exceed v(S).
If player i makes a proposal (x,S) at time t, then this proposal is effective so long as no new
proposal is made. Thus, only one proposal is dealt with at a time, and once a new proposal is
made the previous one is no longer in effect.

A proposal becomes binding when it is accepted by all members of the relevant
coalition while it is effective. Once a player accepts a proposal, he must remain quiet until that

proposal becomes binding, or until it is replaced by a new proposal. (This restriction serves a

purely technical role and is discussed at length in example 1b below.)

(1]

Once a proposal, (x,S), becomes binding, we say that the coalition S has formed and
has accepted (x,S). Any player, i, in S can then choose to leave and consume. He thereby

obtains the payoff Xss according to the binding proposal (x,S). When this occurs, every j €



S\{i} must also leave and consume, thereby obtaining a payoff of X;- Thus, each member, i, of
S can ensure himself a payoff of X, once (x,S) becomes binding. So long as no member of S
leaves, each can make and accept proposals.

At any time during the course of play then, there may be a number of binding
proposals (yl,Sl), (y2,82),...,(ym,Sm), say, among players who have not left. In order to
submit a proposal (x,S) in the presence of such binding proposals, it is assumed that if
ieSn Sj, then S 2 Sj. Thus, players are not allowed to a make proposal to a strict subset of
coalitions that have already formed. This restriction is for simplicity only. Finally, if player i
never leaves to consume, his payoff is d < v(i).

It is assumed that for all times t, and after any history up to time t, players are not
allowed to choose to make a proposal, accept a proposal, or leave to consume either "just
before" or “just after” time t. That is, for any time t, for every history up to t and every vector
of actions available to the players at time t according to the history, there is an & > 0, such that
each player is quiet, according to his strategy, in the open intervals (t-,t) and (t,t+€). As is
well known, without some such assumption, the continuous-time game is not well-defined.
This particular assumption, however, is somewhat more than is needed for that purpose.
Indeed, it provides not only the technical service of ensuring well-definedness, it plays a
central role in obtaining the results.

The solution concept applied to this game is stationary subgame perfect equilibrium
(SSPE). That is, stationary strategies constituting a subgame perfect equilibrium (among all
strategies, not only stationary ones). A strategy is stationary if, after any history, it depends
only upon the set of players remaining, the current proposal, the set of players who have

accepted it, and the set of binding proposals.! Before the formal details of the game are

1We also allow stationary strategies to depend, in a limited sense, upon time. Indeed,
some time dependence is necessary. This is discussed fully below. For the intuition, however,
it is best at this point to put this (largely technical) issue aside.



described and the proofs of the theorems presented, it may be helpful to consider a few

examples which illustrate the main ideas.

Example 1:
There are two buyers and one seller. The seller (player 1) owns one unit of a divisible
good that is of no value to him. The two buyers (players 2 and 3) each value the good at one

dollar. A TU game describing this situation is given by:
N = {1,2,3}, v(i) = v(2,3) =0 fori € N, and v(1,2) = v(1,3) = v(N) = 1.

In this game the core consists of a single point, namely x* = (1,0,0). This corresponds to the
competitive outcome as excess demand results in the seller obtaining the entire surplus. We
now show (informally) that only the division x* can be supported as a stationary subgame'
perfect equilibrium outcome.

Assume, by way of contradiction, that (xl,xz,x3) is a stationary subgame perfect
equilibrium outcome with Xq < 1, and assume without loss that X,y < X3 Let t > 0 be such that
forallt <t no player accepts any proposal according to the strategies. By assumption, such a
time must exist.’2 Consider the following deviation by player 1: At time t = t/2 propose
(x1 + (l-xl-xz)/2, x2+(l-x1-x2)/2, {1,2}) and at time t,>t, accept this proposal, where ty is
such that all players, according to their strategies, are quiet in the interval (tl,tz]. Again, by
assumption, such a time t is guaranteed to exist. Consider the continuation after t,. Let t be
the first time after t, at which some player is not quiet according to his strategy. Player 2 can
guarantee himself a payoff of x2+(1-x1-x2)/2 by accepting the above proposal at any time

t € (t,,t5). If, according to his strategy, he is to accept this proposal, then the deviation is
23

2Indeed, given the empty history up to time zero, and the actions of the players at time
zero as specified by their strategies, there is an £ > 0 such that all players are quiet in the

interval (0,€). Since no player can accept a proposal at time zero, putting t = € will suffice.

&
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successful. But this contradicts x being an equilibrium. So, it must be that player 2, according
to his strategy, does not accept 1's proposal. It follows that, according to the equilibrium
strategies, at time t3 someone makes a proposal, say (y,T), and player 2 subsequently obtains a
payoff of at least x2+(l-x1—x2)/2. Note then that by stationarity, whenever (a) all players
remain, (b) the current proposal is (y,T), (c) no one has accepted it, and (d) there are no
binding proposals, the subsequent outcome, according to the equilibrium strategies, gives
player 2 at least x2+(l-xl-x2)/2. But this contradicts (xl,xz,x3) being the equilibrium outcome.
For player 2 can deviate at any time t < t by proposing (y,T), thereby rendering (a)-(d) all true
and ensuring himself (by stationarity) a payoff exceeding Xy

The above argument shows that the only candidate for an equilibrium outcome is
x* = (1,0,0). We now present (again, informally) a profile of stationary subgame perfect
equilibrium strategies yielding the outcome x*.

If the current time is not an integer, then all players are quiet. Suppose now that the
current time is an integer, and player 1 does not belong to any coalition that has formed. If the
current proposal is (x*,N), then each player who has not yet accepted it, does so. If all players
have accepted it, then all leave. If the current proposal is not (x*,N) and player 1 has not
accepted it, then player 1 proposes (x*,N) and the others are quiet. If player 1 has accepted it,
then the others accept it as well.

It remains to describe players' strategies after histories in which player 1 belongs to a
coalition that has formed. So, suppose that a coalition, S, containing player 1, has formed and
has accepted (y,S). Let d=l-2',i es Vi be the amount of surplus "wasted" by the binding proposal
(y,S). To obtain each players' acfion, consult once more the previous paragraph, while ignoring
the second half of the second sentence, and replace x* throughout with (y1+d,y2,y3). It is easy
to see that the above strategies constitute a subgame perfect equilibrium, are stationary, and
support the outcome x*.

The one seller/two buyers example above is often used to discredit the concept of the

core. It is, the argument goes, inconceivable that the two buyers will end up with no surplus.



They can, for example, tacitly bargain with the seller as a coalition, and this might yield both a
strictly positive payoff. Note, however, that for any such payoffs the buyers might secure, there
is an offer that the seller both prefers and can make to one of them which, from that one's
point of view, is strictly better. Stationarity guarantees that this offer must be accepted. This
exemplifies the general role stationarity plays in obtaining the result that only core points can
be supported as equilibrium outcomes.

The example above also gives the essentials of the general argument establishing that
only core allocations can be supported in equilibrium. It follows that a necessary condition for
the existence of an SSPE is that the core of the TU game be non empty. But this is not
sufficient. Given subgame perfection, histories after which any subset of the players remain
must also be considered. A necessary condition for the existence of an SSPE in such a
subgame is that the TU game restricted to this subset of players also have a nonempty core. It
thus follows that a necessary condition for the existence of an SSPE is that the game (v,N) be
totally balanced.

Is total balancedness a sufficient condition for existence? What about histories after
which some binding proposals are present and all players remain, say? After such a history the
underlying game, (v,N), is no longer relevant since some player, i say, may be able to
guarantee himself more than v(i) by leaving to consume his share of a binding proposal.
Indeed, the now relevant TU game is identical to (v,N) except that each member of a formed
coalition can guarantee himself a payoff equal to his share of the corresponding binding
proposal. Now, in order for an SSPE to exist, any candidate continuation equilibrium
allocation, x, must be immune to any feasible improvement. Since strict subsets of formed
coalitions cannot form, this amounts to x being unblockable by any coalition not a strict subset
of a formed coalition. When is such an x guaranteed to exist? It turns out that for TU games,

the assumption of total balancedness is enough to ensure the existence of such an x, regardless

(2]
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of the history.3 The next example serves to illustrate the importance of keeping track, given a
history, of the relevant TU game, and how an appropriate continuation equilibrium outcome is

constructed.

Example la:

Consider the following attempt at constructing an SSPE for the one seller/two buyers
game of example 1. For every subset of players, S, let x(S) be an element of the core of the
game (v,N) restricted to S, and put x(N)=x*. This is possible since (v,N) is totally balanced.
For any history, if the set of remaining players, according to that history, is S, then construct
the continuation strategies so that the subsequent outcome is x(S), a point in the core of the
game (v,N) restricted to S.

The above procedure does not produce an SSPE as we now show. Take a history
according to which all players remain, and ((.4,.4), {1,2}) is the only binding proposal.
According to the procedure outlined above the subsequent outcome will be
x(N) = x* = (1,0,0). But this gives player 2 a continuation payoff of zero, while player 2, by
leaving, can obtain a payoff of .4. Hence, any equilibrium continuation must give player 2 a
payoff of at least .4, the amount he can unilaterally guarantee himself by virtue of the existing
binding proposal.

As previously described, the correct procedure for constructing an equilibrium
continuation involves strategies that permit the players to agree on an outcome that is
unblockable, in the context of the relevant TU game, by coalitions that can feasibly form. It is
not difficult to see that, after the history given above, any outcome (xl,xz,x3) with x1+x2=1
and X(s Xp 2 .4 will suffice.

In general, there may be many binding proposals present after some history, and the

continuation outcome may require the joining of two or more previously formed coalitions. Of

3This result fails in the NTU case.



10

course, if the game is superadditive there is never any loss in joining previously formed
coalitions. On occasion, however, some must be joined. The proof of proposition 2 contains
the general construction of an appropriate equilibrium continuation outcome, after any history.
The assumption that, upon accepting a proposal, a player must be quiet until either the
proposal is replaced by another or until it becomes binding, is somewhat restrictive and so
merits some discussion. The example to follow shows that this assumption is needed to ensure
the existence of an SSPE. Moreover, it indicates that this assumption plays only a technical,

rather than a more substantive role in the analysis.

Example 1b:

Consider again the one seller/two buyers game of example 1 and, contrary to our
assumption, allow players, upon accepting a proposal, to make a new proposal if they wish. It
is easy to see that this additional flexibility does not affect at all the argument that points other
than x*=(1,0,0) cannot be supported as an SSPE allocation. Thus, as before, x* is the only
candidate for an equilibrium allocation. Consider, however, a history according to which, (a)
all players remain, (b) there are no binding proposals, (c) the current proposal is x=(0,.5,.5) to
the grand coalition, and (d) players 1 and 2 have accepted it. Because x* is the only candidate
for an equilibrium outcome, it follows (by stationarity) that if player 1 now proposes x* to the
grand coalition, his payoff will be 1 and players 2 and 3 will obtain payoffs of zero. However,
if player 3 accepts the current proposal, rendering it binding, his payoff will be .5 in the
continuation, and player 1's will be zero. Hence, player 1 wishes to replace the current
proposal before player 3 accepts it, and player 3 wishes to accept it before player 1 replaces it.
With time continuous, there can be no equilibrium in this race to be the first to move after a
given time.

To recap, the assumption under discussion is not needed to guarantee that non core
points cannot be supported as equilibrium outcomes. It plays a role only in ensuring that an

SSPE supporting a point in the core can be constructed and then only to ensure that irrational

(1]
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(out-of-equilibrium) proposals do not produce histories having no equilibrium continuation.

In the present model, as distinct from most of its predecessors, coalitions are not forced
to leave and consume once they form (Gul (1989) is an exception). Whether to stay and
continue negotiating or to leave and consume is endogenously determined by the players'
strategies. While this seems to be a natural assumption, it is also necessary, in the present
continuous-time context, to ensure the existence of an equilibrium. The final example is

designed to illustrate this.

Example 2:

Add both an additional buyer and seller to example 1. Let players 1 and 2 be the sellers
and 3,4,5 the buyers. Again, each seller has a single divisible good of no value to him, and
each buyer values each good alone at one dollar and both goods together at one dollar as well.
The unique core point is x*=(1,1,0,0,0).

Consider now a history according to which there are no binding proposals and the
current proposal involves the allocation x=(0,1/3,1/3,1/3) to the coalition {1,3,4,5}. Suppose
also that, according to this history, players 1,3 and 4, have accepted this proposal. Now, if
player 5 accepts this proposal, rendering it binding, his payoff in the continuation is at least
1/3. If, however, this proposal is replaced by another before the coalition {1,3,4,5) forms, then
in the continuation, the resulting division must (by stationarity) be (1,1,0,0,0), the unique core
point. It follows that player 5 must accept the proposal and that the coalition {1,3,4,5} must
form. However, if when the coalition {1,3,4,5} forms, each member, contrary to our
assumption, must leave and consume, player 2 will obtain a payoff of zero. But this cannot be
an equilibrium, since player 2 can, before player 5 accepts the current proposal, replace it by
another and thereby obtain a payoff of 1. So, player 2 wishes to replace the proposal before
player 5 accepts it, and player 5 wishes to accept it before player 2 replaces it. Hence, under
the assumption that coalitions, once formed, must leave, there is no equilibrium in this game.

On the other hand, if, as we assume, coalitions are not forced to leave, then one can
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construct the following continuation. At the next integer time, t, player 5 accepts the proposal
and the coalition {1,3,4,5) forms, but does not leave. At time t+1, player 2 proposes the
allocation (1, 0, 1/3, 1/3, 1/3) to the grand coalition. At time t + 2 all players accept this

proposal, and at time t+3 all leave and consume.

3. The Model
Histories: Let q stand for the choice to be quiet, £ for the choice to leave, and a for the choice

to accept the current proposal. Let

P={(x,5)I SgN, X; 2 v() for alli e S, 'ES X; < v(S)}
i€

denote the set of possible proposals.
A history, h, up to time t is an n-tuple of functions: h = (hl’hz’ ..... h n)’ where for each
i=1,2,...,n, hi:[O,t)—»Pu{q,a,ll, h;l(Pu{a]) is finite, and hil({l}) is either zero or one.
Denote by:
@) H, the set of all histories,
(ii) H(t), the set of all histories up to time t,
(iii) p(h), the current proposal according to h,
>iv) 7(h) for h e H(t), the amount of time, according to h, that has elapsed up to t
since p(h) was proposed,
) A(h), the set of players who have accepted p(h) according to h,
(vi) N(h), the set of players who have not yet left to consume according to h, and
(vii) I1(h), the set of current binding proposals among players in N(h) according to h.
With the exception of p(h), 7(h) and A(h), all entries in the above list are well-defined
owing to the fact that but for finitely many points in time, all players are quiet according to
any history. To render p(h) well-defined, it suffices to define p(h) = ¢ if, according to h, any
one of the following holds: the most recent proposal made coincides with the simultaneous

announcement of a distinct proposal; no proposal has been made; or there is a most recent

”n

(v
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proposal, (x,S), and it has been accepted by S. The remaining two entries, 7(h) and A(h), are
now taken care of by setting 7(h) = 0 and A(h) = ¢, whenever p(h) = ¢.

Payoffs: If a coalition, S, accepts (x,S) and subsequently leaves the game, then each ieS

receives the payoff x;. If player i never leaves, he obtains a payoff of d, < v().

Strategies: A strategy, fi’ for player i specifies, for each history, a choice for player i. That is:
fi:H—»P v {q,a,f} forallie N.

We say that player i has accepted the current proposal (x,S) according to h € H(t) if
the current proposal was made at time t <t and h,(t) = a for some t' € (t,t). Also, denote by
h|t the restriction of heH to [0,t).

We impose the following restrictions upon strategies:

(S1) If, according to he H(t), i has accepted the current offer, then fi(h)=q.

(52) If, according to h € H(t), (x,S) is a current binding proposal and

f.(h) = (y.S"), then SNS’ # @ implies that S ¢ S’.

(S3) If, according to h € H(t), i is not a member of any formed coalition, then
fi(h) L NA
(CZ)) ¥i, Vt >0, Yh € H(t), Vte [0,t),3 >0 s.t fi(h|'t) =q V220

satisfying T e (t-g,t+e)\(t}).
Conditions (S1)-(S3) merely ensure that the choices made by the players, according to their
strategies, are consistent with the rules of the game as previously described. For instance, (S1)
ensures that a player is quiet after accepting a proposal until it is either accepted by the
associated coalition or replaced by a new proposal. Condition (S2) guarantees that proposals
made to any member of a formed coalition must include every member of that coalition, while
(S3) ensures that no player can leave without having first accepted a proposal. In particular, in
order to leave and consume his own value, any player, i, must first propose (v(i), {i}), accept

it, and then leave. In the present continuous-time context this does not restrict in any way a
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player's freedom to leave. It does, however, ensure that the other players are given ample
warning before anyone leaves.

Condition (S4) plays a dual role. Its more substantive one is to ensure that no player
wishes to make a proposal, accept a proposal, or leave, as near as possible, yet before or after,
any fixed time t > 0. This guarantees, for instance, that if player 1, say, recognizes that
according to player 2's strategy, player 2 intends to leave, then player 1 can make a proposal to
player 2, with a view to convincing him to stay, at a time during which all others are quiet and
player 2 has not yet left. This is clearly important in order to obtain only core outcomes. For
it may be that players 1 and 2 must form a coalition to attain a core allocation. This could not
be guaranteed were player 1 not ensured of the opportunity to “convince” player 2 to stay by,
say, making an appropriate blocking proposal.

As a by-product, condition (S4) also serves a purely technical role. It guarantees that
the game is well-defined. To be more precise requires a short discussion. Call h = (hl’“"hn) a
path, if for some t € (0,], (a) h|t € H(t) for every t € [0,t) and (b) T is finite iff it is the first
time (hence the only time) such that all players have left according to h (i.e. the smallest t’
with hi(t') = {foralli e N\N(h|t’)). It is straightforward to determine from every path a
unique payoff vector for the players according to the rules described above. Thus, to
demonstrate that the game is well-defined, it suffices to show that any strategy-tuple, f,
satisfying (S1)-(S4) always induces a unique continuation path. That is, given any h’ € H(t’)
it suffices to show that there is a unique path, h, with its associated t e (0,»] satisfying (i) h =
h’ on the domain of h’, and (ii) f(h|t) = h(t) for every t € [t’,t]. That (S4) is (more than)
enough to guarantee this is by now rather well-known (see, for instance, Bergin and McLeod
(1989), Stinchcombe (1988), and Perry and Reny (1991)). Consequently, (S4) ensures that
after any history, any strategy-tuple induces a unique continuation-path which, by definition,
takes on the value q ("quiet") for every player for all but finitely many points in any bounded

interval of time. In what follows, let ui(f |h) denote player i's payoff determined from the

[

1]
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continuation-path induced by the strategy-tuple f after h € H, and let Fi denote the set of

strategies for i satisfying (S1) - (S4).

Solution concept:

A strategy profile f = (f,f,....T ) is a stationary subgame perfect equilibrium (SSPE) if:

(E1) Perfection: For all ieN and for all heH,
ui((f‘i,f'_i)lh) > ui((fi,f_i) |h) forall f; € F,,

(E2) Stationarity: Players' strategies depend only upon the time that has elapsed since the
current proposal was submitted, the current proposal, the set of players who have
accepted it, the set of players remaining in the game, and the set of binding proposals
among players still in the game. That is, if h, h' € H satisfy 7(h) = 7(h"), p(h) = p(h"),
A(h) = A(h"), N(h) = N(h"), and I1(h) = T1(h"), then fi(h) =f ().

For any history, h, call (7(h), p(h), A(h), N(h), I1(h)) the state according to h. Note
that the inclusion of 7 in the state variable has the effect of allowing stationary strategies to
depend, in a limited sense, upon time. Some time dependence is necessary to ensure existence
in the present environment. For instance, in the one seller/two buyers example, in order to
achieve the unique core point, x*, as an SSPE outcome, a proposal implying the allocation x*
must be made and then subsequently accepted. However, if a player's strategy. instructs him to
accept this proposal with no reference to time, then it must be accepted "as soon as possible",
yet after, it is made. This violates (S4). To avoid this difficulty, the proposal can instead be

accepted, say, one unit of time after it is made. This is compatible with condition (E2).

4. The Theorems
Theorem 1: If the outcome x can be supported as a stationary subgame perfect equilibrium,

then x is in the core of (v,N).



16

Proof: Suppose that x is not in the core. We shall show by way of contradiction that x cannot
be supported by an SSPE. So suppose that x can be supported by the SSPE strategy-tuple
f= (fl’fZ""f n). Clearly xi2v(i) for every ieN. Further, since x is not in the core, there is a
proposal, (y,S), with Y% for all ieS. Let S={1,2,....k}.

Suppose that there is a time, t, and a history, he H(t), such that (i) N(h)=N, (ii) Il(h)=¢
(iii) players 1,2,...,k-1 have accepted (y,S) according to h, and (iv) fi(h)=q for all i=1,2,...n.

Claim: Player k will, according to his strategy and before any proposal is subsequently made,
accept (y,S).
Proof of Claim: If a proposal, (z,T), is made before player k accepts (y,S), then at the time it
is made, the state variable will be rendered equal to (0,(z,T), ¢, N, ¢). Moreover, because
player k could have accepted the previous proposal, guaranteeing himself a payoff of Y X
but chose instead to allow it to be replaced by (z,T), the continuation must yield k a payoff of
say, W, 2y, Therefore, by stationarity, whenever the state variable takes on the value
O, (z,T), ¢, N, ¢), player k's subsequent payoff according to f is w2y, >X, . But this
contradicts f being an equilibrium since k can render the state equal to (0, (z,T), ¢, N, ¢) by
proposing (z,T) near enough time zero.

Next, suppose that there is a time t and a history heH(t) such that (i) N(h)=h, (ii) every
player i=1,2,...k-2 has accepted (y,S) according to h, and (iii) fi(h)=q for i=1,2,...n.
Claim: The proposal (y,S) will be accepted by players k-1 and k (in some order) before any
new proposal is made.
Proof of Claim: Note that player k-1 can guarantee himself a payoff of Yie-17%k-1 by
accepting (y,S) at time t. This is because for some amount of time after k-1's acceptance, by
(S4) all player must be quiet. But then at any time during this interval, the history will be
such that player k will accept (y,S), by the previous claim. Thus, indeed player k-1 can
guarantee himself a payoff of Yi-1- Now then, in the continuation after h, either no new

proposal is made according to f, or one is. In the former case, k-1 and k would receive

e

W
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payoffs of dk-l and dk respectively, contradicting k-1's ability to achieve a payoff of at least
Yi-17%k-129,.- In the latter case we arrive at a contradiction as in the previous claim. Player
k-1's payoff subsequent to the new proposal must be at least Vi1 But k-1 could then himself
make this proposal near enough time zero rendering the state variable such that his subsequent
payoff (by stationarity) would be at least Yie 17%k-10

Proceeding inductively in this manner establishes that for any time t and any history
heH(t) such that (i) N(h)=N, (ii) player 1 has accepted (y,S) according to h, and (iii) fi(h)=q
for i=1,2,...,n, the continuation according to (fl',fz,...,f n) involves the solution, S, accepting
¥.9).

But this contradicts x being an SSPE since player 1 can always offer (y,S) and then

accept it sufficiently near time zero so that such a history is generated, thereby ensuring

himself a payoff of yq >%y- Q.E.D.

Remark 1: Note how the line of proof employed above follows precisely the "story" that is
usually used to motivate the notion of the core. An outcome which is not in the core cannot
be supported since a blocking coalition is able to coordinate a mutually preferred proposal
before the candidate outcomes's proposal is accepted.

Remark 2: The ability to announce a proposal and have sufficient time for all members of the
associated coalition to sequentially accept it before the candidate outcome is consumed is an
essential property. One that requires continuous time. Thus, continuous time is an essential
feature of the model.

Remark 3: An implication of Theorem 1 is that (v,N) having a nonempty core is necessary for
the existence of an SSPE. Indeed, since the arguments above apply after any history in which
only a subset of the players remain, the game (v,N) restricted to any subset of players must
also have a nonempty core. Consequently, if an SSPE is to exist, (v,N) must be totally
balanced. We now establish that for superadditive TU games this condition is, in fact,

sufficient.
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Theorem 2: If (v,N) is superadditive and totally balanced, and x is in the core of (v,N), then x
can be supported as an SSPE outcome.

Before providing a proof, we remind the reader of the feature highlighted by example
la. Namely, the need to keep track of the relevant TU game. When there are binding
proposals present, each player can guarantee himself the payoff associated with his part of the
binding proposal. Moreover as shown in example 2, some players may be needed in order to
achieve a core allocation and so must be convinced to stay despite having reached a previous
agreement. The function z(-,-) defined below is designed to provide allocations that guarantee
each member of a formed coalition at least as much as his binding agreement ensures him (see
part (a) of Lemma 1 in the appendix). Moreover, no feasible coalition can block the allocation
given by z(-,-) (this follows from part (b) of Lemma 1). The strategies to be constructed
below will employ z(-,-) to determine the continuation outcome subsequent to any history. In

particular, those according to which binding proposals are present.

Proof: We provide SSPE strategies supporting the outcome x. For each nonempty ScN let
(v,S) denote the TU game with player set S and characteristic function v restricted to S.
Choose for each such S#N an element x(S) from the core of (v,S), and set x(N)=x. This is

possible because (v,N) is totally balanced.

Given IT={(y},51),y2.5%)....(y™,S™) (m=0 means that TI=¢) and S c N such that for
each k, either Skg Sor San=¢, define for every ieS, zi(I'I,S) as follows

L (x.(8)y))
k+jesk ! ifieS
Zi(H,S)= m k
xl(S) , ifieS\ v S
k=1



19

For heH, if I1(h)=IT above, and p(h)=(y,S) then permuting the indices on the elements of Il(h)
if necessary, there is an r < m such that S 2 Sl USZ...U S” (r=0 means that the union is empty).
Define [1(h) by [I(h)=((y,8),(y"* 1,S"+1).....y™.S™)}. Note that if (y,S) were accepted by the
members of S, IT would change to IL To simplify notation, zi(H(h),N(h)) and zi(fl(h),N(h))
will be denoted by zi(h) and ii(h), respectively. Note that ii depends only upon p(h), I1(h) and
N(h).

We now provide the desired strategies. For every t > 0, heH(t) and ieN,
(i) if 7(h) is not a positive integer, then fi(h)=q.
(ii) if 7(h) is a positive integer

(a) if p(h)=(y,S), and ii(h)ZZi(h) for all ieS\A(h), then

a, if ieS\A(h)
f,(h) = {

, otherwise

(b) Otherwise4
¢, if ieN(h)\A(h) and II(h)={(z(h),N(h))}

fi(h) = {(z(h),N(h)) if ieN(h)\A (h) and IT(h)#{(z(h),N(h))}

qQ, otherwise.
These strategies are certainly stationary since they depend only upon t(h), p(h), A(h), N(h) and

I(h). In addition, the path generated by f=(f 1 ,...fn) has all players propose (x,N) at time 1,
accept (x,N) at time 2, and leave at time 3. At all other times the players are quiet according to
this path. Therefore f yields the outcome x. (For a more formal treatment, see Lemma 2 and
put h=¢.) It remains to check that f constitutes a subgame perfect equilibrium.

Note that if f} (h)={ for some ieN(h)\(j} then according to fi it must be the case that
I(h)={(z(h),N(h))}. Hence, if player i leaves, every player in N(h) chooses to leave as well

4For h with fi(h) = (z(h), N(h)) as specified on occasion in (b), we must ensure that
- (z(h), N(h)) is a feasible proposal. This is the only place where superadditivity is used.
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and so t:l is clearly optimal given such a history. So, given t>0, consider he H(t) such that
jéA(h) and fi(h)el for all ieN(h)\(j}. It suffices to show that, given such a history, fJ is best for
j if the others employ fi‘
Let f J’ denote another strategy for j. Together, fj and f_j generate a unique path h”.
Since (by part (a) of Lemma 1) Zj(h)ZV(i), j does no better if, according to h’, j never leaves.
So suppose that, according to h’, j leaves at time t” with the proposal (y’,S”), and so receives
a payoff of yj. Since (y’,S’) must have been accepted by each member of S’ before time t’,
we have (y’,S")ell(h’ [t”) so that by Lemma 1 zj(h’ |t")2y ; . Without loss of generality then,
suppose that f J’ yields j a payoff of zj(h' [t).
We consider three exhaustive, although not mutually exclusive, cases:
Case A: A(h)=0.
Case B: p(h)=(w,T), and either ij(h) < zj(h) or for some i€ TN\A(h) it
is the case that ii(h)<zi(h).
Case C: p(h)=(w,T), 2j(h)>zj and for all ieTN\A(h) it is the case
that ii(h)Zzi(h).
Note that A covers all instances in which p(h)=0 (and more) and B and C cover all other cases.

Since the argument applying to cases A and B have a common component, we treat these two

cases together for a time, then separating them when necessary.

Cases A or B:

By employing fj, player j will obtain a payoff of zj(h). This is straightforward for case
B and follows from Lemma 2 for case A. It suffices to show that zj(h)sz(h’ [t*). So, suppose
by way of contradiction that zj(h)<zj(h’ [t")

Let t*=inf{ te[t,t']lzj(h)<zj(h' [t")}). We claim that zj(h)zzj(h' | t*). For suppose not.
Then zj(h)<zj(h' | t*)=zj(l'l(h' |t*),N(h’ |t*)). Now by (S4), according to h’, every player is
quiet for times sufficiently near t*. But this implies that for some £>0 and small enough,

Ti(h’ |¢*-e)=TI(h” |*) and N(h' |t*-£)=N(h’ | t¥). Hence, z,(h’ |t*-)=z;(h” | #)>2(h)

i®

7]
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contradicting the definition of t*. We conclude that indeed zj(h)zzj(h' |t*), as claimed. Note
then that t*<t’.

Therefore, for some sequence of positive numbers (€ n} converging to zero, we have
zj(h’ |t*+en)>zj(h)2zj(h' | t*). But this can happen, again by (S4), only if according to h”, at
time t* either the current proposal is accepted by a coalition containing j, or someone leaves
the game. The latter is not possible since j leaves at t”>t* and according to their strategies if
some i#j leaves at t*<t’, so must j. Hence, according to h’, at time t* the current proposal
p(h’ |t¥)=(y,S) with jeS, is accepted.

Now, because ij(h' |t*) is precisely the resulting value of zj(-) were the current offer
accepted, and because by (S4) all players are quiet for times near enough t*, we have
ij(h’ |t*)=zj(h’ |t*+en) for n large enough. But zj(h’ |t*+£n)>zj(h' |t*) then implies that
zj(h’ |t*)>zj(h' |t¥). Since by part (c) of Lemma 1, zie szi(h' | t"")=2',i c Szi(h' | t*), there must,
since jeS, be a keS such that zk(h' |t*)<zk(h’ [t¥). We now continue from this point with
case A only. The continuation of the argument for case B will be provided immediately after.
Case A: A(h)=9¢.

Now, because at time t* the proposal (y,S) is accepted by all members of S who have
not yet accepted it, and A(h)=¢, there is a time te [t,t*] such that player k according to h”
accepts (y,S) at time t But since k#j is playing according to f, , it must then be the case that
ik (h’ |tk)2zk(h’ |tk). But since the current proposal, the collection of accepted proposals, and
the player remaining in the game are unchanged from t to t* we have ik(h' |tk)=ik(h' |t%)
and zk(h' |tk)=zk(h’ | ). But this contradicts ik(h' |t*)<zk(h' | t%).

We conclude that zj(h).>.zj(h' |t”) so that the strategy fj is no better for j than fJ given
h. This completes the argument for case A. We now pick up where we left off and conclude
the argument for case B.

Case B: p(h)=(w,T) and for some i#j i€ T\A(h), it is the case that ii(h)<zi(h) or ij(h)Szj(h).
Claim: According to h’, the proposal p(h)=(w,T) is not accepted by all members of T and is
subsequently replaced by the proposal (y,S).



Proof of Claim: Since (y,S) is proposed at time t* according to h’, it suffices to show that
according to h’, (w,T)=p(h) is not accepted by all members of T. If for some i#j, ieT\A(h) and
ii(h)<zi(h), then according to fi player i will not accept p(h). Since, while the proposal
remains p(h), ii(-) and zi(h) remain constant (recall that the collection of remaining players is
constant from t to t” according to h”), player i will not, according to fi’ accept (w,T) so long
as it remains the current proposal according to h. The only other possibility is that ij(h)st(h)
and for i#j and ieT\A(h) zi(h)2zi(h). But in this case, if j accepts p(h), then it will be accepted
by all remaining ie T\A(h) according to fi. Subsequently, there will be a period of time during
which all players are quiet, the value of zj(h) will be ij(h), and during which no player will
have accepted the current offer (if there is one). Since by case A it is optimal from this point
on for j to play according to fj’ his resulting payoff (by Lemma 2) will be no greater than
ij(h)Szj(h). But j's resulting payoff from fJf is zj(h' |t’). Hence, zj(h' |t')s£j(h)5zj(h). But this
contradicts the assumption that zj(h' |t’)>zj(h), and completgs the claim.

By the claim, the proposal (y,S) is made at time t or later according to h”. In addition,
(y,S) is accepted by every member of S on or before time t*. Hence, there is a time te [t,t*]
such that player k (that player satisfying ik(h’ |t*)<zk(h |t¥) from the argument above
applying to both cases A and B), according to h” accepts (y,S) at time Y The conclusion
reached in the last two paragraphs of the argument in case A now goes through as before. This
completes the argument for case B.
Case C: p(h)=(w,T), ij(h)>zj(h), and for every ieT\A(h), z,(h)2z; (h).

If all players play according to fi’ then j obtains the payoff zj(h), since je A(h). We wish
to show that the strategy fj does not yield j a higher payoff, i.e. that ij(h’ |t’)<ij(h).

Now, all ieT\A(h) other than j (note that zj(h)>zj(h) implies jeT) will, according to fi'
accept the proposal (w,T) if it is not replaced by a new proposal. Also, all i¢ T will, according
to fi’ be quiet until (w,T) is accepted or replaced by a new proposal. So, if j accepts (w,T)

before making a new proposal, then (w,T) will be accepted by all members of T.

(®
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Subsequently, there will (for a period of time) be no current offer. By case A, it is then
optimal for j to employ fJ and thereby obtain ij(h), the new value of zj. Thus j cannot
improve upon f:l by accepting (w,T) before making a new proposal.

So, suppose that before j accepts (w,T), j makes a new proposal, (w’,T”). For a period
of time subsequent to j's proposal the current proposal will be (w”,T”), no player will have
accepted it, and the value of zj will remain equal to zj(h). Since, during this period, no player
has accepted the current offer, the analysis of case A indicates that j can do no better than
obtain a payoff of zj=zj(h). Since zj(h)<ij(h) we conclude that j cannot improve upon f:] by
making a proposal and not accepting (w,T).

The only remaining option is for j to leave before making a proposal and before
accepting (w,T). But this yields j a payoff no greater than zj(h) regardless of when j leaves
since the others, according to their strategies, either are quiet or accept the current offer. But

zj(h)sij(h) and so this is no better than employing fJ either. This completes the argument for

case C. Q.E.D.

We say that an allocation x belongs to the &-core of the game (v,N) if for every

coalition S ¢ N, whenever %, y; < v(8), it is the case that Y; < xj + € for some j € S. We also
i€eS

define a profile of stationary strategies f* to be an &-SSPE if for any history h € H and for all i,

ui(f*|h) +e> ui((f*_i,fi)|h), for all fi € F,.

Theorem 3: If payoffs are exponentially discounted and G = (v,N) is totally balanced, then x
can be supported as an &-SSPE if and only if x is in the &-core of (v,N).

Proof: To see that only &-core allocations can be supported as &-SSPE strategies one need only
apply once again the proof of Theorem 1 with the obvious changes. To see that any &-core
allocation can be supported as an &-SSPE it suffices to employ the strategies provided in the

proof of Theorem 2 with the following modifications. Let T A= {A,2A,3A,...} for A > 0.
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Replace in (i) the phrase "if 7(h) is not a positive integer” by "if #th) ¢ T A’ and replace in (ii)
the phrase "if 7(h) is a positive integer" by "if #(h) e T A'" For A close enough to zero, the
resulting strategies will constitute an &-SSPE.

Q.E.D.
Remark 4: The result expressed in Theorem 3 should be contrasted with what one would
expect were discounting introduced in a discrete time setting. Together with stationarity,
discounting and discrete time would, by virtue of Rubinstein-like arguments, not allow one to
support every core allocation as an SSPE. And this would be so for all € > 0 small enough.
The presence of continuous time is critical in order that the results be robust to the inclusion of

time-preference.

Remark 5: Exponential discounting is not essential. Any manner of discounting that is

continuous in time is also covered by the same proof.

(x
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Appendix
Lemma 1: For every heH, if p(h)=(y,S) and TI()={(y,$1),....s™.S™)}, then
(a) zi(h)?.yli( for every k=1,...,m and ie Sk,
(b) .)_‘, kzi(h) = _Z K xi(N(h)) for every k=1,...,m and
ieS ieS
© L 50 =Yg ).

Proof: (a) For every k, % K yli( < v(Sk) since (y,Sk) is a proposal. In addition, because x(N(h))
ieS
is in the core of (v,N(h)) and Sng(h) we have % k xi(N(h)) 2 v(Sk). Hence
ieS
Y k(xi(N(h))-yli() 2 0. This, together with the definition of zi(h) yields (a).
ieS
(b) This follows trivially from the definition of zi(h).
(c) Applying (b) to the RHS and using the definition of ii(h) yields
)3 ii(h)= ¥ xi(N(h)). The LHS has the same sum since it is precisely (b) summed
ieS ieS
over k=1,...,m.

QE.D.

Lemma 2: For any 20 and heH(t), if A(h)=¢, then the outcome generated by (f 1"“’fn) after h
is z(h).

Proof: Let t be the smallest time at least as large as t such that t-t(h) is an integer. According
to f, all players are quiet between t and t. Call the history so far generated he H(t). Now if
according to h, fi(E)=l, then the outcome will clearly be z(h) and this is equal to z(h). If
fi(ﬁ)z(z(ﬁ),N(ﬁ)), then between t and T=t+1, all players will be quiet according to f. Call the
history generated this way he H(T). Since p(R)=(z(h),N(h)), we have ii(ﬁ)=zi(l-1). To see this,

note that since no player has left between t and T, N(h)=N (h)=N(h) and by definition:
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I (x; (NE)-z(H)
hy J

ii(ﬁ)=zi(h) + for all ieN(h).
IN(h)|

But now use part (b) of Lemma 1 to conclude that z (ﬁ)=zi(ﬁ). Since no offer has been
accepted between t and T according to fi, we have zi(]_i)=zi(ﬁ)=zi(h) for every ieN(h). Hence
ii(ﬁ)=zi(ﬁ). Hence, given h, according to f, all players in N(h)=N(f) accept p(R)=(z(h),N(h)).
Finally, at time T=T+1 all players, having been quiet between t and T leave according to f,
yielding the outcome z(h).

Finally, suppose that p(h)=(y,S) and that fi(E)=a for some ieS. Since A(h)=A(h)=¢, this
means that ii(ﬁ)ZZi(ﬁ) for every ieS, and fi(ﬁ)=q for all other i. Moreover, by part (c) of
Lemma 1 it must then be the case that ii(ﬁ)=zi(ﬁ) for all ieS. Since for all ieN(h)\S,
2,(h)=z,(h), we then have ii(ﬁ)=zi(ﬁ) for all ieN(h). According to f, all players are quiet until
time T=t+1. Let heH(T) be the history so far generated. Accordingly, p(f)=¢ so that
f.(R)=(z(B),N(h)). But for every ieN(R)=N(h), ii(ﬁ)=2i(ﬁ)=z (h), so that fi(ﬁ)=(z(h),N(h)). As
before, in one unit of time all players accept (z(h),N(h)) and in another unit of time all players

leave.

QE.D.

a
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