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ABSTRACT

This paper extends the applicability of Epstein's (1981) value function method of
modelling dynamic factor demand to cases in which firms form non-static expectations over a
finite planning period. If expected prices are not expected to change after the end of the
planning horizon, then the duality between production functions and value functions--along
with Bellman's Equation--can be used to transform the producer's problem from one with an
infinite horizon to one with a finite horizon. This allows the analyst to provide exact solutions
to the producer's problem without resorting to numerical approximations.

The paper also tests to see if the regularity conditions imposed by the duality theorem
are consistent with data taken from the U.S. manufacturing sector. Exact posterior
probabilities for the restrictions are provided by using Monte Carlo methods to integrate the
posterior distribution over the region of the parameter space consistent with the regularity

conditions.



1. INTRODUCTION

A fundamental objective of an empirical study of factor demand is to develop models
that are capable of providing forecasts for levels of investment and labour demand.
Furthermore, in order to avoid the criticism raised by Lucas (1976), these models should be
consistent with the theory of a value-maximising firm. If inputs are costly to adjust, then the
firm faces a dynamic programming problem. In order to predict firm behaviour, the analyst
must estimate and solve the producer's problem.

The introduction of Euler equation methods has been a useful tool in the estimation of
production functions and cost functions that reflect cost of adjustment (see, for example,
Pindyck and Rotemberg (1983) and Shapiro (1986)). Under the assumption that
value-maximising firms form rational expectations, Euler equation methods allow the
estimation of the parameters of fairly flexible functional forms. However, since the producer’s
problem is not actually solved in the estimation (only the first-order conditions are assumed to
hold; the transversality condition is not used), the analyst must also solve a dynamic
programming problem in order to predict firm behaviour.

This is not a simple task. If the production function is quadratic and if prices are
assumed to follow an autoregressive process, then the technique described by Epstein and
Yatchew (1985) can be used to find closed-form solutions to the producer's problem. If a
closed-form solution is not available, then numerical approximations must be used (see the
survey in Taylor and Uhlig (1990)). While exercises of this sort are useful in analyzing the
properties of real business cycle models and in evaluating their plausibility, they appear to
have limited use in practical applications: no attempt to forecast real-world data have
appeared in this literature.

A way to avoid the difficulties in solving the producer's problem is to use the stock
market's assessment of the value of the firm. This is the approach taken by models of
investment that use Tobin's (1969) Q. An attractive property of the Q models is that the

analyst can generate an expression for investment that is a function of observed market data.



Unfortunately, these models have had only marginal success in explaining investment data -
see, for example, Summers (1981) and Abel and Blanchard (1986). Moreover, these models
cannot generate forecasts for investment without knowledge of the path of future stock market
prices.

An alternative approach is simply to hypothesize a functional form for the firm's value
function, which represents the maximized value of the firm and is a function of the firm's
endowment of capital and of the future path of prices. This approach is due to Epstein (1981),
and despite its attractiveness has received surprisingly little attention in the literature.

Epstein (1981) is remarkable for two reasons: first, he establishes a duality between the form
for the value function and that of the production function, and second, he provides decision
rules for factor demand and output supply that are derived from the value function (i.e., a
version of Hotelling's Lemma). Nonetheless, this approach has been used in only two
empirical applications: Epstein and Denny (1983) and Bernstein and Nadiri (1989).

Although the value function approach appears to be the best available for analysts who
wish to be able to provide forecasts, its lack of popularity can probably be attributed to the fact
that Epstein (1981) relies on a constant discount rate and static expectations to derive his
results. In his argument in favour of Euler equations methods, Shapiro (1986) is particularly
critical of these restrictions. While it is possible to extend Epstein's (1981) results to include
cases in which prices have a time trend, the restrictions on prices and on the discount rate are
particularly troubling for those who wish to analyze the effects of temporary policy changes.

So far, applications of value function methods have relied on the version of Hotelling's
Lemma provided by Epstein (1981). Epstein and Denny (1983) and Bemstein and Nadiri
(1989) estimate decision rules derived under static expectations. This paper exploits an aspect
of Epstein (1981) that has not received much attention, although it is central to the paper: the
fact that there is a duality between the production function and the value function. Instead of

requiring the assumption that current prices are expected to hold forever, the paper requires



only that there be a certain vpoint in the future after which relative prices are expected to
remain constant.

Since Epstein (1981) provides us with a way of deriving the production function from
the value function, Bellman's equation can be used to transform the original infinite-horizon
problem to one with finite periods. The idea of a finite but shifting planning horizon is
proposed by Nadiri and Prucha (1989). However, while Nadiri and Prucha (1989) assume that
output is constant after the planning horizon, the method developed below assumes only that
relative prices are expected to be constant.

The paper is divided into 5 sections. Section 2 adapts Epstein's (1981) duality theorem
to discrete time models (Epstein's (1981) theorems are derived in continuous time). Section 3
uses the duality theorem to specify the producer’s problem without the assumption of static
expectations. Section 4 provides an example of a value function-production function pair and

tests the restrictions imposed by the duality theorem, and Section 5 is the conclusion.

2. DUALITY IN DISCRETE TIME

This section adapts the theorems of Epstein (1981) to discrete-time models. The main
difference is the treatment of the control variables. In continuous time, the firm controls the
level of investment but must treat the level of the capital stock as fixed at any point in time.
In discrete time, the firm can control the level of the capital stock, but if capital endowments
are predetermined, the choice of the optimal capital stock defines optimal investment as well.
In both models, the firm cannot choose the level of investment and the level of the capital
stock separately at any point in time. The notation and proofs are taken from Epstein (1981):
Q* is the open positive orthant in k-dimension Euclidean space; for a vector x, x > 0 means
that x € @ and x > 0 means that x € Q", the closure of Q"; all vectors are column vectors, the
superscript T denotes transposition; 1 denotes the identity matrix of appropriate dimension; the

diagonal matrix -1 is denoted without ambiguity by 8, where 0 is a scalar; if



h(x) = h(x,, ..., xk) is a real valued function, hn is the matrix (h” )i.i; if h(x) = (hl(x)...hk(x)),
iy
. NP
then hx is the matrix (hx.)i,f

2.1  Duality Between Production and Value Functions

Price-taking firms are assumed to solve the infinite-horizon problem

_ o 141 LT T
JK, ,W)={(Kr:u’1,lt")}: Lty [FL K 0) - wiL - p K‘] )

where: | =K - (1-0K

perfectly variable factor, K € Q" is the stock of the quasi-fixed factor (capital), I e Q" is gross

K, >0, F(L k1) is the production function, L € Q™ is the

investment, w ¢ Q™ is the relative rental price of L' (assumed to be constant over time), p € Q"
is the relative rental price of K (also constant), r > 0 is the rate of discount, § is a diagonal
n x n matrix of the depreciation rates of the capital stock, J is the value function, 8 c Q***™ is

Q?"*™M is the domain of F.

the domain of J and ¢ c

Furthermore, define &(K ) = (K ,L)|(L K J)=(LK,K -(1-0K ) e ¢} and
8K, ) = ((o.w)| (K, ,.p:w) € 8). Denote by i((Ko,p,w), i(xo,p,w) = i((Ko,p,w) -(-&) K.,
L o,p,w) and y(K o,p,w) the optimal ¢=1 choices for inputs and outputs. A(K o,p,w) denotes the
optimal shadow price associated with the capital endowment X o Inorder to distinguish cases
Where the previous period's capital stock is predetermined, denote G(Ll,K‘;Kt_l) =F(L ‘,KI,K .-
(1-6) Kl_ I) = F(L’,K ’,I ') Note that the domain of G(- ,';Kl_ 1) is simply ¢(X t-l)' The f
superscript indexes firms.

The regularity conditions imposed on technology are:

T.I: F maps ¢ into o ; F is twice differentiable.

T2: F F,> 0, F, <0.

T3: GLKK 0) is strongly concave in &K 0) for each K 0



T4: Foreach (K gPW) € 6, a unique solution to the producer's problem exists. The
policy functions K, L, 7 and the shadow price A are at least once differentiable
on 8.

TS: 1-( +r)'lip(K o,p,w) is nonsingular for each (K op,w) € 6.

T.6: Foreach(L'K’K’ - (1-8)1(0) € o, there exists (Ko,p',w') € 0 such that (L’ ,K’)
is optimal in (1) at =/ given endowment K 0 and prices p’ and w’.

T.7: Foreach (K o.p,w) € 8, the problem (1) has a unique steady state capital stock
K(p,w) that is independent of K o and is globally stable.

T.8: Each firm's production function F satisfies the restrictions necessary such that
there exists an aggregate production function F” that generates decision rules

satisfying

k" C K, p,wy =LK (&I, p, w)
7 f

LK, pw =3 i &I p, w)
; 7

V" @Ky p.w) = 27 .

T.I - T.7 are adapted from Epstein (1981) and discussed there. 7.8 asserts the existence
of a representative firm. Consistent aggregation is not necessary for the duality proof in
continuous time, but it does simplify the proof in discrete time. In any case, consistent
aggregation is a maintained assumption for any applied work that does not use firm-level data.
Note also that adjustment costs are associated with gross investment, which is assumed to be
non-negative. Adjustment costs could be associated with net investment, but only with an
increase in the complexity of the model.

Suppose that F satisfies 7./-T.8 and let J be defined by (1). Then J satisfies the



Bellman equation
JKpw)=  max  (FLK-(1-8K) - w'L-pK + (1+1y I K pw)) (2a)
LK) e oK)
or, equivalently,
JK yp.w) = max  (GILK:K) - wiL - pK + (1+1) ' J(K p.w)) (2b)
LK) e ©(K)

The value function method simply posits a functional form for J(K o,p,w) and exploits

the 'inverse' to (2):

FLkD=  min_ (J(U-8&-DI, pw) + WL + p°K (1+rY J(Kpw))  (3a)
(pw) € 8(K
or
G'WKK)= — min  (JKypw) +w'L+p K -(1+r) I(K.p.w)) (3b)
(ow) € 8(K

Equations (3) are to be interpreted as defining the equivalent production functions F *
and G given a function J that satisfies appropriate regularity conditions. The regularity

conditions will involve the formulae:
R(K ypw) = W I 3(K ) pwY; pw) (42)
where WK:pw) =K - (1+1)] J;(K,p.w)
I1{(.¢ op,w) = KKK o,p,w) -(1-O) K 0 (4b)

LK ppw) = (1415 IXR pw) - J5(K o) (4c)



F(K o) = JK ypw) + WL + R - (147 IR p.w) (4d)

It will be shown that (4) describes the optimal decision rules at #=1 in (1). The

regularity conditions on J are:

V.iI:

V.2:

V3:

Vd4:

VS
V.6

V.7:

V.8

J is a real-valued, bounded-from-below and twice differentiable function defined
on 8.
@ -8 TR o) +p - B+ TERE (W), pw) > 0
i)  JKyppw) >0
For each (K o,p,w) €8,y20. Foreach X 0 such that 8(K 0) is nonempty,
(LK ..p.w), KK oP»W)) maps 8K o onto &(K »
The system K ’(K‘_ I,p,w) defines a sequence [K‘] such that (K ‘,p,w) € O forall¢
and 'Kl -+ K(p,w) a globally stable steady state, where (Kp,w) € 0
Vi is nonsingular
For (Ko,p',w') € 6, the minimum in (3) is attained at (p’,w’) if
(LK) = (Z(Ko,p',W')), R(Ko,p',w'), 7(K0p'.W'))
Zw Zp is nonsingular for (K o,p',w') €0
R L

w p
}’(K{;,p,w) is of the Gorman polar form:

P&l pw) = How) + B oK

The matrix

where B(p,w) is common to all firms.

Theorems 1 and 2 are due to Epstein (1981):

Theorem 1
(a)

(b)

Let F satisfy (T) and define J by (1). Then J satisfies (V). If J is used to define
F by (3)thenF =F.
Let J satisfy (V) and define F by (3). Then F satisfies (T). If F is used to define
T by (1), thenJ" = J.



Theorem 2
Let F satisfy (T) and let J be the dual value function. The policy functions are
givenbyK=R, 1=1,L=L andy=3y.

Theorem 1 demonstrates the duality between F and J and Theorem 2 is the analogue of
Hotelling's Lemma. The proofs of Theorems 1 and 2 are straightforward adaptations of the
proofs provided in Epstein (1981) and are reproduced in Appendix 1.

For applied work, Theorems 1 and 2 provide a simple method of specifying decision
rules that are consistent with the solution of (1). The analyst need only specify the form for J,
and Theorem 2 provides decision rules that can be used as a basis for estimation of J and
hence may be used of forecasting. If the form for F is desired, (3) is a straightforward method

for its derivation.! Note that (3) is a much simpler problem than (1).

2.2  Technical Change
Theorems 1 and 2 can be readily adapted to models that incorporate technical change.

the simplest case is to posit a rate of Hicks-neutral technical change g, so that
y,= ) FL K 1) = +9)"! GL KK ) 5)

The natural analogue for value function methods is to suppose that the maximized value of the

firm also grows over time:
J = U+g) JK,_ o) (6)

The question is whether or not Theorem 1 establishes a duality between (5) and (6).

10f course, this would require the analyst to restrict attention to the class of value
functions for which there is an analytical solution to (3).

w



The main complication is due to 7.7 and V.4, the assumptions that posit the existence
of a globally stable steady state level of the capital stock. In a steady state, firms will not
increase levels of inputs if the relative prices of those inputs are expected to increase at the

rate of technical change. If this is the case, then (1) can be rewritten as

S Kppwirg) = max ol 2 (HT y/IF (L:+1'Kt+1’lt+j) a +8)‘+H

t+ th+j)}1 =1

R -1 T, 4j-1 T
I+ WL - U+ pK ) @)

—(+e)  max (1 [1] Mool k1)
[(Kt+th+j)}°]° 18 M) 4

- wa‘+j _ PTKH_J.]] ®

= (I+g)‘J(K‘,p,w;r,g) -

Theorem 1 can now be used to establish the duality between the time-invariant
functions J and F; all that needs to be done is modify the discount rate so that technical
change is taken into account, as in the expression (8). The usual stability condition that r > g
is therefore required of this model. Given a functional form for J, we can determine the

(unique) F by adapting (3):

* _ t-1 . -1 7, T
F :(L:’K ‘,I‘) = (I+g) (p,w)mé nG(KO) {J([(1-6) (K‘-Ir),p,w) -w L‘-p K‘

+ (49 JK pw)]) (10)
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where (1+7) = (I+r)/(1+g). Similarly, the decision rules based on J in equations (4) can be

rewritten as
= wli 1%, .
R(K‘_I’pvw) = ‘V ('JP(K‘_PP’W), P,W) (lla)

where y(K) =K - ( +y)°1 J;(K,p,w)

1K, o) =R, _pwW) - (I-OK, (11b)
LK, ,.pw) = (d+p! J:(R",p,w) -JYK, pw) (110)
F(K o) = 1+0) UK, pw) + WL +pK, - a+p IR pw)] (11d)

Note that in the steady state, technical change only affects the level of output.

23  Summary

Value function methods are a simple way of modelling dynamic factor demand, since
the analyst need not solve the dynamic programming problem posed in (1) or (7). Moreover,
value function methods provide a way of generating a rich variety of functional forms for
value and production functions consistent with the producer's problem.

The main drawback to the use of value function methods is the maintained assumption
of static expectations. The existing applications (Epstein and Denny (1983), Bernstein and
Nadiri (1989)) estimate the decision rules that are derived from Theorem 2, which are derived
under static expectations.

Static expectations are difficult to justify as either a theoretical proposition or as an
empirical observation, and the lack of applied work based on Epstein (1981) can probably be

attributed to this fact. However, existing applications have only used Theorem 2; the

w
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implications of Theorem 1 have not been fully exploited. The next section uses Theorem 1 to
extend the use of value function methods to cases in which firms hold nonstatic expectations

over a finite planning horizon.

3. NON-STATIC EXPECTATIONS
In this section, the producer's problem as specified in (1) will be generalized to allow
for non-static expectations for a finite number of periods. This will mean abandoning
Theorem 2, but Theorem 1 can still be used to transform the infinite-horizon problem (1) into
a finite-horizon problem. In addition, short run fluctuations in the discount rate can also be

accommodated.

3.1  Finite Horizon

Suppose that in the first s periods of the producer's problem, prices are expected to be
(pi’wi)’ i=1,2,...,s and are expected to be (p,w) after period s. In addition, let ro i=1,2,...s be the
discount rate in period i, and let the discount rate after period s be r. If this is the case, then

the producer's problem is

S
JK) = Y B [FLKJ)-w'L -pk
0) (('I?TTL‘)]? [’=I p{-l 4 lt) wtl p: r]

t=5+1

+B, I (1+r)"+5H (FILKJ ')-wTL’—pTK[]} (12)

where the discount rate ﬁ‘ is defined by 1/(1+r ) +r2)...(1 +r). The relevant Bellman equation

is
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JK ) = I B IFLKJ)-wiL -piK)+B JK pw)} (13)
o (X, L)},{ o oty PR, "pw}

where J(Ks,p,w) is simply the maximized value of an infinite-horizon problem identical to the
one posed by (1). Since this is the case, we can use Theorem 1 to establish the duality
between J(K,p,w) and F(L,K,J). Given a functional form for J(K,p,w), we can derive F(L,X./)
from (3) and use both expressions in (13).

Although the duality theorem is derived under the assumption of static expectations, its
use is not restricted to models with that feature. If the analyst is willing to assume that after a
point s periods in the future, relative prices are not expected to change, then Theorem 1 can be
used to transform an infinite-horizon problem into one with a finite horizon.

Such an assumption is not implausible. If information is costly to obtain, then there
will be a point in the future at which the cost of forming expectations for an additional future
period will exceed the discounted gain. In other words, the difference between the solution to
the producer's problem under 'rational’ expectations and simply assuming that after period s
prices will remain constant will not justify the expense of formulating price expectations for
periods s+/ and onward.

Note that only expected relative prices are assumed to be constant after the end of the
planning horizon. In Prucha and Nadiri (1989), the producer's problem is also transformed into
one with a finite horizon, but with the assumption that after period s, the firm will be at
steady-state levels of inputs and output. In the current specification, the firm will plan to

converge to a steady state after period s according to the process described by (4).

3.2 Estimation and Solution
For applied work, the expression that describes r=1 behaviour is of most interest. In
other applications of value function methods (Epstein and Denny (1983) and Bernstein and

Nadiri (1989)), the assumption of static assumptions was maintained, so Theorem 2 could be
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used to provide the appropriate decision rule for estimation purposes. However, Theorem 2
cannot be used to provide an expression for #=/ behaviour for the firm facing (12).

If the length of the firm's planning horizon is known, then the appropriate decision rule
can be derived from the solution to (12). This is the approach taken by Nadiri and Prucha
(1989), who estimate the model with s=¢ and s=10 years. However, if the analyst is unwilling
to impose restrictions on s, then Euler equation methods are still valid. Since the evidence on
the length of the planning horizon is sketchy, this paper uses Euler equations as the basis for
estimation and hypothesis testing. The length of the planning horizon will be the subject of a

subsequent paper.

4. AN EMPIRICAL APPLICATION
As indicated in the previous section, the current application of the value function
method involves: (i) specifying a form for the value function J, (ii) solving (3) to find the
form of the production function dual to J, and (iii) estimating the parameters of the production
function from the Euler equations of the producer's problem. These are the steps taken in this

section. In addition, the regularity conditions required for the duality theorem are tested.

41 Value and Production Functions

A largely unexploited advantage of value function methods is the wide variety of
functional forms it offers for the analyst who wishes to model the behaviour of a representative
firm. The popular assumption of constant returns to scale (see, for example, models that use
Tobin's Q) is a sufficient condition for aggregation, but it is not necessary, as is noted by
Blackorby and Schworm (1982). Existing applications of value functions methods (Epstein
and Denny (1983), Bemnstein and Nadiri (1989)) postulate quadratic value functions.

Suppose we have single quasi-fixed input (capital) and a single variable input (labour).

Let the value function of the representative firm be:
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I pw) = ApwP + [poK + ”’wa] K, (14)

Suppose further that the representative firm experiences a rate of Hicks-neutral
technical change g, and that after period s, relative prices are expected to increase at the same
rate (see the discussion in Section 2). If this is the case, then the form of the production

function can be derived by solving the problem posed in (10). The dual production function is

a
F=G=cx2*P xg*'g“ (15)
BT ok B
where: cs %’i—y] a®HPH ﬁa Pl [1 + aa+ﬁ+ ! +I3a Bl (16a)
B kK
=p KD o "p
B
=B K,+K- —I——P’f: (16¢)
B .(K-D B
XLE_UTWK — +L-U—5wfl; (16d)
B
=B K,+L- U—Sw’f,; (16e)

The form for the production function is similar to the Cobb-Douglas production
function; this similarity is derived from the form of the first term of the value function (14).
Equation (15) can be interpreted as F(L,K,J) if the quasi-inputs X X and X | are represented by
(16b) and (16d) or as G(L,K;Ko) if they are represented by (16¢) and (16e), respectively.
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42  The Likelihood Function
As was noted in Section 3, Euler equation methods are appropriate for estimating the
parameters of (15). The first-order conditions for the optimal choice of current-period inputs

(i.e. the part of the solution to (12) that will be implemented) are
G (K LK, )-p,+ULer)] Gy Ky LK) =0 (17a)

G UK .LK )-w =0 (17b)

Applying (17) to (15) generates equations that can be used as a basis for estimation.
Define A = (a, B, BpK’ BWK)T the parameter vector, y, = output in period ¢,
z,= K o L‘, Yp K ] K e Pe ¥ ’)f the vector of observables for period ¢ and Z = (zI,...,zN)t
the entire data set. Equations (18a) and (18b) form the basis of the likelihood function:

o (bl )b

¢

-1 Yi+1
eyl

B, ¢ (182)

. y
oy [
t+1

y
e (hvz) = [a‘gﬂ] [Xi_] “w, (18b)
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Define u = (uK Uy )f. With perfect foresight and no measurement error, u, would be
t

set equal to zero in every period to satisfy the first-order conditions (17). To account for
these, the paper makes the weaker assumption that u ) is a random vector with mean zero.

Moreover, let U, be distributed as a bivariate normal with mean zero and covariance matrix ¥:
pluAxLz) = oy 12177 exp (12 uf 3 ) (19)

Furthermore, assume that errors are independent. Then the likelihood function given N

observations is

N
LayI|2) = o™ (212 expl-a12) L u £l u) (20)
=

43 Data

The data are taken from the U.S. manufacturing sector. Output is represented by the
total value added in the manufacturing sector, in billions of 1982 dollars. Labour inputs are
measured in millions of full-time equivalent employees. Output and labour data are drawn
from the National Income and Products Accounts tables. The output price is the deflator
(1982=1), and wages per full-time equivalent employee (including employer contributions for
social insurance) are measured in thousands of current dollars.

Capital stock and rental price data are provided by the Bureau of Labour Statistics.
The capital measure used is Tornqvist's discrete-time version of the Divisia aggregate of the
BLS series for structures and for equipment. The discount rate series is the BLS required rate
of return.

The data are annual, and run from 1948 to 1987. However, since u, depends on both a
lead and a lag in K, the estimation period is 1949 to 1986, making the sample one of 38

observations.
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44  Maximum Likelihood Estimation

The maximum likelihood estimates for ¥ are presented in Table 1. The likelihood
function is virtually flat in 7, so Table 1 displays the ML estimates for A for a range of values
for . Varying ¥y does not significantly affect the estimates for the other parameters.

Before these estimates can be used to model the behaviour of firms, the regularity
conditions required by Theorem 1 must be satisfied. One method of testing is to see if the ML
estimates satisfy the regularity conditions at each data point (this is the approach taken by
Epstein and Denny (1983)). The last column in Table 1 indicates whether or not the regularity
conditions hold.2 It suggests that for values of 7y less than 0.6, the ML estimates do not satisfy
T (the restriction of the first derivatives--T.2--is not satisfied).

However, such a test has its limitations. The difficulty is the fact that any conclusions
about the restrictions must be conditioned by the data that were observed. Unfortunately, this
is not consistent with classical statistics, which concerns itself with the behaviour of estimators
across all possible data sets. One way around this problem is to restrict attention to functional
forms in which the regularity conditions hold for all possible data sets, so long as the
parameter vector lies within the appropriate region. If this is the case, then testing the
regularity conditions can be done using classical techniques.

Even so, there is no compelling reason to restrict attention to these cases, since it is
possible to make use of Bayesian techniques, where all inferences are conditioned by the data

that were actually observed.

4.5 Bayesian Estimation

The first step in Bayesian estimation is to specify a prior distribution for the parameters
(4,7.0). Following Box and Tiao (1973) pp. 421-428, assume that prior beliefs about Ayand ¥
are independent, so that the prior can be represented by

p(A,%Y) = pAp(Pp(X) (21a)

2See Appendix 2 for the application of T to (15).
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Suppose further that we can represent a non-informative prior about A so that

P(A) = constant (21b)

p@) = 272 21c)
Furthermore, let us restrict attention to the values of ¥ that are considered in Table 1, so that

p(D=p(Y), i = 0.04,0.05.....0.14 (21d)

Give the prior described in (21) and the likelihood function (20), the posterior

distribution for A--after  is integrated out and conditional on each value of ¥ - is
p(A|Zp) =| S| ™2 (22)

N ¢
where S(A,P) = L wu .
=]

Define T(Z) to be the region in the parameter space such that T is satisfied at each point
in Z. Then the posterior probability that the production function satisfies the regularity
conditions--denoted p(T| Z,7)--is simply

pTizy = | pIZDAA 23)
T(2)
Unfortunately, there is no closed-form solution for the integral in (23). Instead, Kloek

and Van Dijk's (1978) method of Monte Carlo integration was used to evaluate the posterior
probability p(T|Z,y) for each value of . Values for A were drawn from a 4-variate normal
distribution with means equal to the ML estimates and standard deviations equal to 2.5 times
the estimated asymptotic standard errors reported in Table 1. Fifty thousand antithetic pairs
were drawn from this distribution to evaluate the integral in (23).

For estimation purposes, T provides inequality constraints for the parameters. For
¥2 0.06, the ML estimates satisfy T, so those estimates in Table 1 can also be interpreted as
constrained ML estimates.

For Bayesian estimation, the inequality constraints mean that we need only concern
ourselves with T(Z)--the region of the parameter space consistent with 7. To minimize
posterior expected quadratic loss, we calculate the posterior mean. As in Geweke (1986), this

is calculated as
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[ 2p(A|Z,1)dA

EQ|ZTy =12 (24)
| p(A|Z,pdA
T(Z)

The posterior means and standard deviations of the parameters are presented in Table 2, along

with the posterior probabilities associated with the regularity conditions. The probabilities
associated with regularity conditions are slightly more consistent with larger values of 7. As
for the point estimates, the ML and Bayes estimators for o and B are quite similar, and the
estimates for the adjustment cost parameters Bp K and BWK differ by about one half of their
posterior standard deviations. Since the ML estimates in Table 1 can be seen as the mode of
the posterior, the differences between Tables 1 and 2 can be interpreted as evidence on the
skewness of the posterior in the region T(Z).

So far, all inferences have been conditioned by the choice of the discount factor y. Our

belief about 7 can be updated by applying Bayes' Theorem:

immtnmxmn)

L] pZiy)dh pir)
!

p(%|2) = (25)

Table 3 offers two sets of posterior probabilities for two sets of prior probabilities. One
set of prior beliefs posits that all 10 values of 7 are equally likely (the "flat" prior); the other
represents the prior beliefs of the author (the “informative prior”). Since the likelihood
function is slightly inclined towards smaller values of ¥, the posterior mean of y is revised
downward, but only slightly.

If we wish to add the regularity conditions to the conditioning set for our inferences,

then the appropriate application of Bayes' Theorem is

p(T\Z,y)p(Y|2D)
p(Y|ZD = (26)
L p(T|Zy)p(Y|D)
:

Note that since larger values of 7 are slightly more consistent with the regularity conditions,
imposing them revises the posterior mean of ¥ partially upwards--almost exactly reversing the
effect of conditioning on the data alone. Table 4 shows that the posterior probabilities for y
are virtually identical to the prior probabilities.

To remove the conditioning on ¥, we can calculate the posterior probability p(T'|Z) by
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P(T|2) =L p(T|Z.y)p(%| D) @7
3
and the posterior moments by

EQA|ZT) = L EQA|ZT.p)p(r, 12D (28) .
]

Table 5 reports these posterior probabilities and moments. Since the informative prior

g

places more weight on large values of ¥, the posterior probabilities associated with the
regularity conditions is slightly higher than that generated with the flat prior, but the difference
is not great. The probability associated with the regularity conditions is hardly greater than

one half.

4.6  Partial Adjustment Coefficients A

Note that JpK for the value function in (14) does not depend on p or K o Since this is
the case, Epstein's (1981) Theorem 3 says that an accelerator relationship can be used to
describe behaviour after period s:

K -K , = MEK@p.w) - K ) (29)
where K is the steady state level of the capital stock and M is the (constant) partial adjustment

coefficient;
B

M=1-—bK (30)
Since M has an easily understood interpretation in determining how quickly firms respond to
innovations, its values are presented in Table 6. Note that the Bayes estimates are slightly
larger than the ML estimates, reflecting the negative skewness of the posterior for B DK

5. CONCLUSION )

This paper suggest that the duality between production and value functions
demonstrated by Epstein (1981) has empirical applications beyond continuous-time models
with static expectations. In particular, the duality theorem can be used to transform an
infinite-horizon producer’s problem to one with a finite horizon. In addition, value function

methods can be extended to accommodate technical change.
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There are many extensions to be considered, some of which were mentioned above:
disaggregating capital and labour inputs, incorporating non-Hicks-neutral technical change,
modelling labour inputs as quasi-ﬁxcd and letting adjustment costs depend on net investment.
In addition, it remains to be seen what length of the firm's planning horizon is most consistent

with observed behaviour.
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APPENDIX 1

Proof of Theorem 1 (Epstein (1981))
(a)  Let F satisfy T and show J defined by (1) satisfies V.

V..

VS:
V.6:

V2:
V3:
V4:
V.7

V.8:

J is well-defined on 8 by T.4. The boundedness of ¢ and 8 implies that J is
bounded below over 8. The required differentiability is established by applying
the envelope theorem, T.1 and T4 to (3).

It is well-known that J K(Ko,p,w) = MK op,w), so V.5 is a restatement of T.5.
Let (K’ w') € 8. k(Ko,p',w') and L(Ko,p',w') solve (2) given

(p.w) = (p’,w’). By the nature of problems (2) and (3), it follows that (p”,w”)
is optimal in (3) given (K,L) = (1‘<(K0,p',w') ,L(Ko,p',w')). However, the first
order conditions for an optimum in (3) yield K =K and L =L evaluated at

X o,p',w') (This proves the major part of Theorem 2). There is now no need to
distinguish between (K,L) and (R,[). Similarly,

y=JK oPW) + wL+pK- (1+n! J(K,p,w) = 3, where the equality follows
from (3). V.6 is dual to T.6.

Follows from T.2 and the envelope theorem applied to (2).

Follows from F 2 0 and T.6.

Follows from T.4 and T..7.

L and K satisfy

GZ(Z,R;KO) =w
GULR:K)=p- d+ryL AR p.w) (A.1)

Apply the strong concavity in K and L, the implicit function theorem, and the
fact that I - (1+r)”! ZP(Ko,p,w) is nonsingular (T.5).
See the proofs in Blackorby and Schworm (1982) or Epstein and Denny (1983).
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Now use J to define F- by (3). It must be shown that F = F" over their common
domain. By V.3, it is enough to prove that F = F * for all arguments of the form
(L(Ko,p,w), k(Ko,p,w), i(Ko W), (K ,pw) € 8. As in the proof that J satisfies V.6,
F LK jo.w), KK ypw), K ppw) = J(AU-8) KK yo.w), - 1K\ p.w)], pw) +
WL ypw) + pRE o w) - (1+1)T JREK 2. W)p.w) = 3K yp.w) = FUUK o ),
KK pw), 1K \0.W)).

(b) Let J satisfy V, define F by (3) and show F satisfies 7. F is well-defined by V.6 and
V3.
T4: LetX o,p',w’) € 0 and consider the corresponding version of (1). By the
definition of F, FLK.J) - w'L - p'K S J(K o' w') - (1+ry"! J& p.w) for all
LK)ed KX 0), and with equality is (LK) = (LK o,p',w'), KK op',w')). If this
is the case, then (p’,w’) is optimal in (3) by V.6.
Therefore, for any finite T 2 1

T
-t+] T ' T
:Ez I+7) +[F(L‘,K‘,I')-w L-p' K]S

T
T A+

: P - 4 I pt W)
1= |

=JKyo" W) - 141 JEpp' W)

Therefore, the value of any feasible program is bounded above by J(K O,p',w’).
The inequality becomes an equality if (Lt,Kl,l‘) = (LK - I,p',w’ ), K(K‘_ I,p',w’),

T
7(Kl_1,p',w')), yielding £1(1+r)-‘+I[F(Z‘X‘,7[) -w’ TZ‘ . p:‘l’k‘] =J(K0,p',w') i

a+T JR 2" W).
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T6:

T.7:
T2:
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By the stability of the steady state (V.4), R’T - K(p’w’) as T - =, Therefore,
(1+ryT IR p’ ")+ 0 and I A+ FCRT) -w' L, - p R ) =

=1
J(K o,p',w'). So J defines the value of programs corresponding to F.
MK o' w') = J (Kb’ W), K=R L=IL 1=Tandy=y. The required
differentiability of 4, K, L, I and y follows from (4) and V.1.
Restatement of V.5.
Let (L' XK' K’ - (I-&KO) edandlet (p’ w')e S(Ko) be optimal in (3). That
this price vector makes (L’,K’) optimal in (1) at /=] was shown in the proof of
TA4.

Restatement of V4.

By V.7 and the implicit function theorem, the functions p and w satisfying

@’ w’) = GLK.D, MLKD) iff
(LKD) = LK pp.w), KK po.w), T(K jupw) (A2)

are well-defined and differentiable. By V.6, the minimum in (3) is attained at

(LKD), MLK.D). Apply (A.2), V.2 and the envelope theorem to (3) to obtain
FULKD = (-8 -8 &-D) ) + b - U+ TgK M) >0 (A3)
FLKD =-1-87" 1(u-87 k-D). o) < 0

FILKD =%>0

(A.3) and the differentiability of /. and (p:W) yield the differentiability of F.F,
and F L
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T.3: (A.3) can also be written as

Ty wr \_ & d T a s
GULKK ) = p - 1+ UK o)
GILKK )= (A3")

G is concave in (LK) since it is the minimum of a family of linear and hence
concave functions. Strong concavity requires that the appropriate Hessian be

nonsingular. From (A.3’), it follows that

Gy =By - A+ T Kby - (ary T (K piwyivg - A+ry7 T (K,p#)
Gy, =By, - 0 T Kb, - A+ Ty (Kpoivyi,

Gy =w,

Gx=PL

Note that J KK = 0 by V.8. Therefore, we can write

LK GLL

O Ol _ (1~ e g @pntasn g wpin) [Pr Pr] _ o
G o ! g W) "

§ is nonsingular from V.7 and (A.2). R is nonsingular from V.5. Therefore RS
is nonsingular, and G is strictly concave.

T.8: See Blackorby and Schworm (1982) or Epstein and Denny (1983).

Now use F to define .f'r via (1). It was shown in the proof of 7.4 that J‘ =Jao
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APPENDIX 2
Application of T to (15)
T.I: Satisfied by choice of functional form.
. }" v,
T.Z. FL = m&[ X— > 0 t
t L‘
y, |B y, B
. o t pK K t wK wK
Fe =arprrx,; [m“m”] Y TRIX, [‘1—5 m] >0
t t
F =- (2] ychK_ yl wl(<0 Vi
I o X; T8 a+ X; T-%
t t
. 2
T3: GKK <0, GLL <0, GKKGLL - (GKL) >0 Wt
T4: Holdsif JK o,p,w) is strictly convex in (p,w). This implies
a>-1,B>-1, af(a+p+1) >0
Bp K
TS: 1- T"'—)" 20
T.6: SameasT4
B
. pK
To7o _B—'- < 1
1- 2%
T+y
T.8: Satisfied by choice of functional form.

\/3
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0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

a

1.4234
(0.05)

1.4279
(0.05)

1.4314
(0.05)

1.4338
(0.05)

1.4354
(.05)

1.4363
(0.05)

1.4366
(0.05)

1.4365
(0.04)

1.4363
(0.04)

1.4358
(0.04)

B

4.1526
(0.13)

4.1626
0.13)

4.1744
0.13)

4.1865
(0.14)

4.1973
(0.14)

4.2074
0.14)

4.2161
(0.14)

4.2233
(0.14)

4.2289
0.14)

4.2340
0.14)

Table 1

Maximum Likelihood Estimates

B

0.32962
(0.18)

0.30319
(0.18)

0.27686
(0.18)

0.25314
(0.187)

0.23459
0.17)

0.21820
(0.17)

0.20538
©.17)

0.19554
0.17)

0.18907
0.17)

0.18318
0.16)

Bvl(

-0.002266
(0.0026)

-0.001798
(0.0026)

-0.001333
(0.0025)

-0.000914
(0.0025)

-0.000581
(0.0024)

-0.000294
(0.0023)

-0.000069
(0.0022)

0.000104
(0.0021)

0.000224
(0.0020)

0.000326
(0.0020)

Log L
107.783

107.719

107.670

107.636

107.614

107.603

107.599

107.599

107.603

107.609

no

yes

yes

yes

yes

yes

yes

yes

yes

yes



0.05

0.06

0.07

0.08

0.9

0.10

0.11

0.12

0.13

0.14

1.4491
(0.05)

1.4487
(0.04)

1.4487
(0.05)

1.4484
(0.05)

1.4478
(0.05)

1.4471
(0.05)

1.4462
(0.05)

1.4452
(0.04)

1.4439
(0.04)

1.4430
(0.05)

Bayes Estimates

B

4.2530
(0.14)

4.2569
(0.14)

4.2621
0.14)

4.2676
(0.15)

4.2741
0.14)

4.2791
(0.14)

4.2824
0.14)

4.2848
0.14)

4.2861
0.14)

4.2884
0.14)

Table 2

Bx
0.19563
(0.18)

0.18745
(0.18)

0.18165
(0.19)

0.17660
0.19)

0.16944
(0.19)

0.16652
0.19)

0.16470
(0.18)

0.16470
0.19)

0.16454
(0.18)

0.16470
0.17)

B'K

0.000452
(0.0029)

0.000579
(0.0028)

0.000686
(0.0027)

0.000797
(0.0027)

0.000931
(0.0026)

0.001004
(0.0025)

0.001043
(0.0024)

0.001062
(0.0023)

0.001062
(0.0022)

0.001067
(0.0021)

(TZ,Y)
0.39858

0.43702

0.47139

0.51740

0.53694

0.55634

0.57134

0.58500

0.59917

0.61022

\=



Table 3
p(1Z)

Y p(y p(YZ)  p(y) p(12)
005 0.10 0.13030 0.03 0.03987

006 0.10 0.12051 0.05 0.06146
007 0.10 0.11176 0.07 0.07980
008 0.10 0.10494 0.15 0.16055
009 0.10 0.09856 020 0.20107
0.10 0.10 0.09371 020 0.19117
0.11 0.10 0.08968 0.15 0.13721
0.12 0.10 0.08624 0.07 0.06157
0.13 0.10 0.08339  0.05 0.04253
0.14 0.10 0.08092 0.03 0.02476

E(Y) = 0.095 E(Y) = 0.095
o(y) = 0.02872 o(y) = 0.02022

E(fiZ) = 0.09059  E(YZ) = 0.09280
o(fiZ) = 0.02882  o(YiZ) = 0.02046



Table 4
p(Z,T)

Y P POZT) p()  p(YZT)
005 0.0 0.10032 003  0.02983

006 0.10 0.10174 0.05 0.05042
007 0.10 0.10177 0.07 0.07060
008 0.10 0.10488 0.15  0.15592
009 010 0.10223 020  0.20265
0.10 0.10 0.10071 0.20  0.19963
0.11 0.10 0.09898 0.15 0.14715
012 010 0.09745 007 0.06761
013 0.10 0.09652 005 0.04783
0.14 0.10 0.09539 003 0.02836

E(y) = 0.095 E(Y) = 0.095
o(y) = 0.02872 o(y) = 0.02022

E(iZ) = 0.09059  E(Z) = 0.09280
6(Y1Z) = 002882  O(YZ) = 0.02046

E(YZ,T) = 0.09439 E(YZ,T) = 0.09462
o(¥Z,T) = 0.02853 o(y1Z,T) = 0.02006



w

P(TIZ)
E(aiT,Z)
E(BIT.Z)
E(B/T,Z)
E(B,«IT.Z)

Table §

Flat Prior
0.51766
1.4469
42732
0.17383
0.000865

Informative Prior
0.53276

1.4472

4.2747

0.17127

0.000911



Table 6
Partial Adjustment CoefTicients

Y ML Bayes
005 0.51956 0.70069
006 057535 0.71436
007 0.62650 0.72385
0.08 0.66936 0.73063
0.09 0.70108 0.74446
0.10 0.72781 0.75139
0.11 0.74799 0.75565
0.12 0.76310 0.75975
0.13  0.77294 0.76208
0.14 0.78175 0.76350

Flat Prior Informative Prior

E(MIT,Z)  0.74027 0.73347
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