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Abstract
A model of market participation in competitive asset markets is constructed. There are

two assets, a liquid asset traded without cost, and an illiquid asset traded subject to fixed
transactions costs. Agents have random needs for liquidity, but they are precluded from
trading claims contingent on their type, and from diversifying between assets. The model
has a participation externality, but in contrast to related work the competitive
equilibrium i8 unique, and there can be an underprovision of liquidity (too much
participation in the market for the illiquid asset) in equilibrium. Some computational
experiments illustrate possible equilibrium outcomes and welfare results.

*Financial support from the Lynde and Harry Bradley Foundation is gratefully
acknowledged.



1. Introduction

In this paper, a general equilibrium model of participation in asset markets is constructed.
There are two assets, a liquid asset which can be traded without cost, and an illiquid asset
for which trading is subject to fixed transactions costs. Agents have random liquidity
needs, but are restricted in their ability to diversify across the two assets, and they cannot
write contracts insuring against the need for liquidity. The model is used to study the
determinants of equilibrium asset market participation, and to examine whether
unfettered asset markets supply the appropriate quantity of liquidity.

There is a large literature which studies the provision of liquidity. Probably
most familiar to students of monetary economics i8 work on the optimal quantity of
money (see Woodford 1990 for a survey). Many monetary models exhibit a monetary
externality; in a competitive equilibrium economic agents tend to economize more than is
socially optimal on their holdings of cash balances. Thus, these models tend to exhibit an
underprovision of liquidity in equilibrium. The monetary externality can be corrected if
cash is forced to bear the same rate of return as riskless interest-bearing assets, either
through deflation or the payment of interest on money holdings. The banking model of
Diamond and Dybvig (1983) is another example of an environment where too little
liquidity can be supplied in equilibrium. In the Diamond-Dybvig model, banks insure
agents against random needs for liquidity through deposit contracts which allow for early
withdrawal. Given the structure of deposit contracts, there exists a bank run equilibrium
where all agents withdraw their deposits. Everyone is worse off in the bank run
equilibrium than if they withdrew only when liquidity was required. Thus, the possibility
of a bank run represents a failure of the banking system to provide adequate insurance
against liquidity needs.

Also related to the model in this paper is a class of models dealing with
participation in asset markets and coordination failure (e.g. Chatterjec 1988, Pagano
1989, and Allen and Gale 1991). In these models, agents typically have the choice between
participating in a market for a liquid (riskless) asset or in a market for risky equity. The



iore equity market participants, the less volatile are prices in the equity market. Thus,
given that investors are risk averse, there can be multiple Pareto—ranked equilibria with
differing levels of price volatility in the equity market. If the economy is "stuck” in an
inferior equilibrium, there is too much liquidity (relative to equity), which contrasts with
the properties of monetary models and of Diamond-Dybvig type banking models discussed
above.

The model constructed here is similar in some ways to that in Diamond and
Dybvig (1983). Specifically, there are three periods, and agents have uncertain preferences
which generate a demand for.liquidity. In contrast to Diamond and Dybvig’s setup, agents
are precluded from making arrangements in the first period to insure against the need for
liquidity, but they are permitted to communicate and trade in the middle period. There
are two assets, a liquid asset and an illiquid asset. Both assets can be acquired in the first
period, and they yield certain returns in the final period. Assets are traded in the middle
period. Liquid assets are exchanged at no cost, but agents incur a fixed transactions cost if
they either buy or sell an illiquid asset.

A competitive equilibrium always exists and, in contrast to the market
participation models discussed above, the equilibrium is unique. Given the nonconvexities
which fixed transactions costs introduce into each agent’s problem, different agents may
make different choices in equilibrium, in spite of the fact that all agents are identical in
the first period. There exist subsets of the parameter space where only the liquid asset is
traded, where only the illiquid asset is traded, and where both are traded. Some
intuitively obvious properties hold; in particular, an increase in the costs of exchanging
the illiquid asset implies that more liquid assets are held, and a decrease in the rate of
return on the illiquid asset leads to less participation in the market for that asset.

Since this is a model with incomplete contingent claims markets, and given
what is known about environments with incomplete markets (e.g. Hart 1975 and
Geanakoplos and Polemarchakis 1986), we would not expect a competitive equilibrium to
be Pareto optimal, in general. Using a notion of constrained Pareto optimality adapted to



this environment, we show that, if liquidity "matters enough,” there exists a region of the
parameter space where competitive equilibria are suboptimal. In this region, liquidity is
underprovided and there is too much participation in the market for the illiquid asset,
relative to the social optimum. This result is quite different from the results in Chatterjee
(1988), Pagano (1989), or Allen and Gale (1991), where participation externalities can
result in the overprovision of liquidity in equilibrium. In this model, if only the liquid
asset is traded in equilibrium, and we consider a small parameter change (such as a
reduction in transactions costs) which would cause some agents t0 trade the illiquid asset,
this change in market participation leads to a fall in the price of the liquid asset. Thus,
the liquid asset becomes less attractive, and the shift in market participation is
self-fulfilling. However, all agents would be better off if they continued to trade only in
the market for the liquid asset.

Some computational experiments are used to illustrate possible equilibrium
outcomes. Equilibria computed over a parameter grid show that it is possible to support
trade in the illiquid asset even given relatively large fixed transactions costs. It is also
possible to have equilibria exhibiting trade in both assets over a wide range of
transactions costs. If the probability of consuming early (requiring liquidity) is low, then
competitive equilibria tend to be constrained Pareto optimal. If the probability of
consuming early is high, there can exist a wide range of parameter values for which the
illiquid asset is traded (and sometimes only the illiquid asset is traded), but a Pareto
improvement would occur if trade in the illiquid asset were completely shut down and all
agents traded liquid assets. Thus, if we view this as a model describing when innovation
occurs in asset markets, there is a tendency for too much innovation.

The remainder of the paper is organized as follows. In Section é, the model is
constructed, and agents’ optimization problems are discussed in Section 3. In Section 4, a
competitive equilibrium is defined, the candidate equilibria are determined, and existence
and uniqueness of equilibrium is established. Section 5 contains some general results on

the optimal provision of liquidity in the model, and Section 6 gives a discusiion of the



numerical examples. The final section is & conclusion.

2. The Model
There are three periods, 0, 1, and 2, and a continuum of agents with unit mass. Each
agent may be one of two types: a type 1 agent consumes in period 1 and has preferences
given by u(c,), and a type 2 agent consumes in period 2 with utility v(cz), where ¢,
denotes consumption in period i. Type 1 agents will be denoted early consumers, and type
2 agents late consumers. The fraction of early consumers in the population is x, where 0 <
x < 1. Here,  is public knowledge in period 0, but an agent does not learn her type until
period 1. Thus, « is the probability of consuming early for any agent. It is assumed that
u(-) and v(-) are increasing, concave, and unbounded, that v’(0) = u'(0) = o, and that
~cu"(c)/u(c) 2 1.

In period 0, each agent receives an endowment of x, units of an investment
good, which can be used to produce either of two assets, denoted 1 and 2. Asset i yields a
return of ﬂi units of the consumption good in period 2 for each unit invested in period 0.
Two restrictions are placed on agents’ actions. First, it is assumed that agents are
precluded from trading in period 0, which prevents them from writing contracts
contingent on their type, or from setting up "banks" of the type studied in Diamond and
Dybvig (1983). That is, an agent cannot insure against the need for liquidity that arises if
she is an early consumer. Second, agents cannot diversify between assets 1 and 2. This
second restriction is similar to one imposed by Allen and Gale (1991). Limited
diversification and limited insurance opportunities are both observed empirically.l
However, the reasons for these restrictions are not built into this environment, though it
would be straightforward to motivate both restrictions with some simple (though blunt)
assumptions about technology and spatial aepara.tion.2 Also, under some circumstances
the restriction on diversification will not be binding.

In period 1, agents learn their types, late consumers each receive an endowment

of x, units of the consumption good, and early consumers receive nothing. Thus, early
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consumers wish to trade assets for consumption goods, and late consumers wish to trade
consumption goods for assets. Trade in the market for asset 1 is costless, but there are
resource costs associated with trading asset 2. We will denote asset 1 the liguid asset, and
asset 2 the illiguid asset. If an agent trades the illiquid asset for consumption goods she
incurs a fixed cost of a; units of the consumption good. Similarly, an agent exchanging
consumption goods for the illiquid asset incurs a fixed cost ay. The environment is such
that agents cannot share these transactions costs; transactions costs cannot be incurred by
an intermediary and spread over many individuals.

The model has at least two interpretations, the first being as a model of
participation in an equity market. Here, equity (the illiquid asset) is costly to trade, and
thus will be inferior to the liquid asset for early consumers if both assets trade at the same
price (which they need not in equilibrium). However, equity i8 superior to the liquid asset
for late consumers if it bears a higher two—period rate of return. Second, the model can be
interpreted in terms of banking and currency-holding. Banks hold the illiquid asset and
their only role is to facilitate transactions, while an agent can acquire the illiquid asset by
taking out a deposit with a bank. Sale or purchase of the illiquid asset is an accounting
transaction which requires that both parties to the tramsaction incur costs of
communicating with the bank (through check clearing, for example). If the liquid asset is
interpreted as currency, then we are assuming it has a terminal value of B, per unit
invested in period 0. However, it would be simple to embed the model in an overlapping
generations framework, in which asset 1 was valued fiat money,3 and the model would
have essentially the same implications.

There are similarities between this model and the banking model constructed
by Diamond and Dybvig (1983), in that consumers have uncertain preferences and
ancertain demands for liquidity. An important difference is that this model precludes
trading among agents in the first period, while Diamond and Dybvig’s model closes off
communication in the middle period, through a sequential service constraint (see Wallace

1988 for an explicit treatment of sequential service). Also, there is no opportunity in this



model, where there is in Diamond and Dybvig's, for one-period storage of the
consumption good. The fact that we have closed down a market (the market for insurance
against the need for liquidity) gives this model something in common with approaches in
the incomplete markets literature (e.g. Hart 1975 and Geanakoplos and Polemarchakis
1986). In contrast though, part of the market structure is determined endogenously here.
That is, the asset trading technology, in part, will determine what assets are traded in
equilibrium. It may be possible to have equilibria where both assets are traded, where
only the liquid asset is traded, or only the illiquid asset is.

3. Optimisation

Let q, (q,) denote the price of the liquid (illiquid) asset in terms of the period 1
consumption good. In period 0, an agent chooses whether to acquire the liquid or the
illiquid asset with her endowment of x, units of the investment good. She also chooses
how to allocate her period 1 portfolio, contingent on her type. If the agent learns she is an
early consumer in period 1, then she sells her stock of assets, provided transaction costs do
not exceed the proceeds from selling, and she then consumes. If she is a late consumer,
then the agent enmters period 1 with a stock of assets and an endowment of the
consumption good, Xy Since she will not consume until period 2, the consumption
endowment is exchanged for claims to assets. The consumer may also sell some of her
stock of assets and buy other assets. Choices are made to maximize expected utility,
wu(c,) + (1-7)v(c,). Given the nonconvexities due to the no~diversification restriction in
period 0, and the fixed transactions costs in period 1, the agent’s problem will ultimately
involve discrete choice. That is, let Vi denote the expected utility in period 0 to producing

asset i. The consumer then solves
(1) max(Vl,Vz)

where



(2 v, = mu(q;xg) + (1-m)v[max(Vyy,Vyo)]

and

() V,=mulmax(0,ag%y - ay)] + (1-m)¥imax{Vy;,VyVog)
with

(4) V), = Bylagxg + X — ag)/ag

(8 V=X thn/y

6 Vg =FxpthAx/ay,

() Vo, = By(ag%y + x; = @)/

and

(8) V23 = ﬂzxo + ﬂz(xl - "2)/ qy

Suppose an agent produces the liquid asset in period 0. Then, if she is an early consumer,
with probability , she consumes q,X, in period 1 [equation (2)]. If she is a late consumer,
with probability 1-x, she either incurs the transactions cost, ay, and sells her stock of
asset 1 and her consumption endowment to buy the illiquid asset, consuming V11 in
period 2 [equation (4)], or she sells the endowment for the liquid asset and retains the
stock of the liquid asset that was acquired in period 0, consuming V,, in period 2
[equation (5)]. Suppose the agent acquires the illiquid asset in period 0. If she is an early



consumer, she either sells her stock of Ms, incurring the cost @, Or consumes se10
[equation (3)]. If she is a late consumer, there are three possible actions that could be
taken in period 1. First, she could hold the stock of the illiquid asset acquired in period 0
until period 2, and exchange the period 1 endowment for the liquid asset, consuming V21
in period 2 [equation (6)]. Second, the stock of asset 2 and the period 1 endowment could
be exchanged for the liquid asset, with a consumption level of V,, in period 2 [equation
(7)]. Third, the stock of the illiquid asset from period 0 could be held until the final period
and the period 1 endowment exchanged for the illiquid asset, in which case V4 is
consumed in period 2 [equation (8)].

From (1)—(3), there are eight possible choices an agent could make, where a
single choice defines the asset acquired in period 0 and actions taken in period 1
contingent on type (early or late consumer). Let Uj(ql,qz) denote the expected utility the
agent achieves by taking choice j, given prices, where j=1, 2, 3, ... 8. From (1)3), these
expected utilities are defined as follows.

(9) U,(a;,95) = mu(qyxg) + (1-2)9(Vy,),

(10) Uy(y,99) = mu(q;xq) +(1-7)v(V},),

(11)  Uy(q;.a5) = mu(0) + (1-7)¥(Vy),

(12)  Uylay.ap) = 7u(0) + (1-7)v(Vyy),

(13)  Ugla;,a,) = 7u(0) + (1-7)v(Vyy),

(14) Ug(ay:95) = m(agxg = o) + (1-1)v(Vyy),

(15)  Uy(ay.a9) = mu(agxy — ay) + (1-m)¥(Vyy),



(16) Ug(‘lp‘lz) s ﬂ(Qg‘o - 01) + (1"')7(V23)s

Note that all choices are not feasible given prices q, and gy For a particular
choice j to be feasible, consumption must be nonnegative in each period. For example,
choice 6 is not feasible if q,x) ~ @; <0 (consumption is negative in period 1 if the agent
consumes early), and choice 8 is not feasible if x;~ay < 0 (consumption is negative in
period 1 if the agent consumes late). Let S denote the set of feasible choices, where 5; C
{1,2,3,..,8}

4. Competitive Equilibrium

Given the nonconvexities in each agent’s problem, we need to allow for the possibility
that there may not be a unique choice which maximizes expected utility given equilibrium
prices, and that different agents may make different equilibrium choices. Let P denote the

fraction of agents who make choice j.

Definition. A competitive equilibrium is given by g pj, i=1,2j=1,2, .., 8, such that
Withqi =qi,pj=pj,i= 1,2,j= 1,2, aes 8,

(1m) ql(pl + "Pg)xo = (1‘7)[(P2+P3+P6)xl + (P4+P7)(Q2xo+ xl"al)]
[market clearing for the liquid asset in period 1)

(18) ayl(pg+Py+pg) + (1-7)(pg+Pylixg
= (1-n)[p, (9 % +x;~ag) + (Ps+Pg)(x1 )]
[market clearing for the illiquid asset in period 1]

(19) Tp.=1
j J
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(20)  20,0¢p;¢Li=1,2j=1,2..8

(21) {4 P; > 0 then Uj(ql,q2) 2 Uk(ql,qz) forall k e S,
[equilibrium choices are weakly preferred to all feasible choices]

In the period 1 market—clearing conditions for the two assets, (17) and (18), the left side
of each equation represents the quantity of consumption goods received in period 1 by
gsellers of the asset, and the right side the quantity of consumption goods, net of
transactions costs, exchanged by buyers of the asset. For example, in equation (17),
agents making choice 1 (fraction p, of the population) acquire the liquid asset in period 0
and then sell it under all contingencies in period 1. If an agent makes choice 2, the liquid
asset is acquired, but sold only if the agent consumes early (with probability x). Thus, on
the left side of (17), P +7py is the fraction of the population selling the liquid asset, and
each seller receives q,x, units of the consumption good. Agents buying the liquid asset are
all late consumers. On the right side of (17), the fraction of the population exchanging
their endowment for the liquid asset is (1-x)(p,+P3+pg), and each of these agents has an
endowment of x, units of the consumption good. Some agents [fraction (1-x)(p,+p,) of
the population) sell their holdings of the illiquid asset and their endowment (each agent
exchanges QX +X; =0y units of the consumption good, net of transactions costs) for the
liquid asset.

4.1 Candidate Equilibria

As a first step in determining competitive equilibria, it is useful to eliminate types of
candidate equilibria where choices are clearly inconsistent with (17)(21). Let S = {j: P>
0} denote the set of choices made by a positive number of agents in equilibrium, where S ¢
Sf First, it helps to show that the price of the liquid asset must be strictly positive in
equilibrium.
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Lemma 1. In a competitive equilibrium, q; > 0.

Proof. Suppose q, = 0. Then from (17), we have py = p3 = Py = Pg = Py = 0. Then,
from (11), at least one of Py» Py OF Pg must be positive. If x; < &y then choice j is not
feasible for j = 1, 5, or 8, a contradiction. Kx, = ay then g, = 0, from (18). Choice 8 is
then not feasible, s0 pg = 0. From (9), (10), (11), and (13), (21) does not hold for j = 5
and k = 2, and for j = 1 and k = 2, a contradiction. if x; > ay, then from (18) g, > 0,
and (21) does not hold for j = tandk=2,forj=5andk=3,andfor j=8andk=T7.
Q.E.D.

Essentially, Lemma 1 states that, if the price of the liquid asset were zero in period 1, this
would imply an infinite one—period rate of return to holding the liquid asset from period 1
to period 2. Optimizing choices would then imply excess demand for the liquid asset in
period 1.

Proposition1. 3£S,4£8S,5¢ S.
Proof Suppose that 3 € S, so that pg > 0. Given Lemma 1, (21) does not hold for j =3
and k = 2, a contradiction. Similar arguments applyif4eSor5€S. QED.

The logic behind Proposition 1 is the following. Choices 3, 4, and § imply zero
consumption for early consumers. But, since the price of the liquid asset is positive in

equilibrium and v’(0) = o, choices 3, 4, and 5 are always dominated by choice 2.

Proposition2. T £ S.

Proof: Suppose that p, > 0. Then, (21) implies that Uﬁ(ql'qz) < U7(q1,q2). Therefore,
Bylay > Byfay Therefore, Un(ay,ap) > Uy(ay:0) and Ug(ay:0;) > Ug(ay,95), which
implies, from (21), that p, = pg = 0. Since p, > 0 implies qo > 0 (for feasibility), and
given Lemma 1, (18) does not hold, a contradiction. Q.E.D.
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From Propositions 1 and 2, choices 4 and 7 cannot be equilibrium choices. That is, agents
will never choose, in equilibrium, to sell the illiquid asset to buy the liquid asset, if they
are late consumers. If an agent acquires the illiquid asset in period 0 and is & late
consumer, the illiquid asset will be held until the final period, a8 with choices 6 and 8.

Proposition3. S # {1}, S # {6}, S # {1,8), S # {6,8}, S # {1.2}, S # {2,6}.

Proof S = {1},0r S = {6},0r S = {18}, 0r S = {6,8}, then (17) does not hold given
Lemma 1, a contradiction. I S = {1,2},0r 8 = {2,6}, then feasibility implies that q, > 0,
but then (18) does not hold, a contradiction. Q.E.D.

Proposition 3 deals with cases where candidate equilibrium choices imply that there are

sellers in an asset market and no buyers, or vice versa, thus violating market clearing.

Proposition4. S # {2,8), S # {1,2,8},S # {268}, S ¢ {1,2,6,8}.
Proof Suppose that S = {2,8}. Then (21) holds for j=8and k = 6, andforj=2andk =

1,0r

(22)  (Byfay—By/ap)x; 2 Byoglag

and

(23)  (Bolag - By/ay)ay%g + Xy) € aaq/ay.

But (22) implies that f,/qy — By/a; > 0. Therefore, (By/ay - Ay/a;)a;%g + x) >

Boa9/qq, 3 contradiction. Now, suppose that § = {1,2,8}. Given (21) and (22), the
following equality must hold.

(24) (pzl Q- ﬁll ql)(qlxo + xl) = ﬁzagl Qs
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But (22) implies that (f,/a, - B,/9,)(a;%9 + x)) > Byaplag 8 contradiction. Next,
suppose that S = {2,6,8}. Then (23) must bold, in addition to

(25) (ﬂg/ Q- ﬁll ql)xl = 5202/ a4y

But (25) implies that (fy/qy - ﬁl/ql)(qlxo +x)) > ﬁg“g/‘lg: a contradiction. Last,
suppose that S = {1,2,6,8}. Then (22) and (23) must both hold with equality. Therefore
Bolay - Byla; >0, but then Lemma 1 implies that (22) and (23) cannot both hold with
equality, a contradiction. Q.E.D.

Proposition 4 deals with some cases which violate optimality.

From Propositions 14, we are left with five possibilities in equilibrium. These
are: S = {2},8=1{8},8= {1,6}, S = {1,2,6}, and § = {1,6,8}. We will denote each case
by the set S that corresponds to each. Note that equilibrium choices are either 1, 2, 6, or
8. The fraction of agents acquiring the liquid asset in period 0 i8 p; + Py, and the fraction
acquiring the illiquid asset is pg + Pg- Equilibrium {2} has all agents acquiring and
trading the liquid asset, in equilibrium {8} all agents acquire and trade the illiquid asset,
and in equilibria {1,6}, {1,2,6}, and {1,6,8} both assets are acquired and traded.

Note that the equilibria with trade in both assets involve some agents holding
the liquid asset from period 0 to period 1, and thea holding the illiquid asset from period
1 to period 2 if they are late consumers (choice 1), while some other agents hold illiquid
assets from period 0 to period 1 and then hold liquid assets from period 1 to period 2 if
they are late consumers (choice 6). The agent making choice 1 acquires the liquid asset in
period 0 as insurance against the possibility of being an early consumer. If it turns out she
is a late consumer, the need for holding the liquid asset is gone and she reallocates her
portfolio to the illiquid asset. An agent acquiring the illiquid asset in period 0 would make
a smaller transaction in period 1 than would the choice 1 agent, if she chose to hold only
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the illiquid asset until the final period. Thus, given the fixed transactions costs, it could

be consistent for some agents to make choice 1 and some to make choice 6 in equilibrium.

4.2 Uniqueness of Candidate Equilibria Within Each Class

Having established five types of candidate competitive equilibria in the previous
subsection, we now show, through a series of propositions, that each type of candidate
equilibrium is unique, within its class, if it exists. Further, we establish necessary and
sufficient conditions for the existence of each type of candidate equilibrium.

Equilibrium {2}
Here, p, = 1 and Pj= 0for j=2,3, ..., 8. From the market—clearing condition, (17), we

can then solve for the price of the liquid asset to get

28 gy =(1-nx

Proposition 5. Equilibrium {2} is essentially unique (within its class), if it exists, and
exists if and only if

(27) 'm([l"']xll )+ (lﬂ)v(ﬁlxol [1-7]) 2 ﬂ(ﬂg[xl"agul"']/ Byx- "l)
+ (l-r)v(ﬁzxo-i-ﬂlxor/[l-f]).

Proof See the appendix.

What is meant by "essential” uniqueness in Proposition 5 is that expected
utility, quantities, and the price of the liquid asset (from (26)) are uniquely determined,
but q,, the price of the illiquid asset, is not. However, in equilibrium {2}, there are no

trades executed at the price qy, 80 that this source of nonuniqueness is inconsequential.
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Equilibrium {8}
In equilibrium {8}, we have pg = 1 and Pj= 0forj=1,2,3, ... 7. Then, from (18), the
equilibrium price of the illiquid asset is

(28) gy = (1-7)(x;-ap)/ 7

Proposition 6. Equilibrium {8} is essentially unique (within its class) if it exists, and
exists if and only if

(20)  wu([i-llx,—ag)/ - ay) + (1-m)v(Bpxo/[1-1])
2 ‘m(ﬂlxlll'“]/ 752) + (I-I)V(ﬂlxoxl/ [xl'azl + 52“0/ [1-]).

Proof See the appendix.
As with equilibrium {2}, equilibrium {8} is unique if it exists, except that q;, the price of
the liquid asset, is in general not uniquely determined. As was the case with the illiquid

asset in equilibrium {2}, the liquid asset is not traded here, so there is uniqueness for
everything which is essential.

Equilibrium {1,6}
Here, p, >0, pg > 0, and P;= 0 for j = 2, 3, 4, 5, 6 and 8. Then, from (17) we get

(30) q; = (1-x)pgx, /Py %y

and, from (18) and (26),

B) gy = (-, -ag) 7Ry + (1-0)xy /15y
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Since p; > 0 fori = 1, 6, then (21) must hold with equality for j = 1 and k = 6 o, using
(9), (14), (30) and (31),

(32) xu([1-7]pgx, /py) + (1-x)v(Bymxgpg/ (1-lp;)
= ru([1-alp, [x, ]/ 7pg + [1-117xy /7 - @y) + (1-7)w(Byxg+Byxgp, /pglt-r]).

From (19), we must have
(33) Pp+Pg= L
The values of p,, Pg, 4;, and qy which solve (30)~(33) constitute an equilibrium.

Proposition 7. If equilibrium {1,6} exists, it is unique within its class. Further,
equilibrium {1,6} exists if and only if

(38)  mulli-alley) + (1-r)v(Byxg + Byxy/l1-A1)
¢ m(B12flx;al/B; - o) + (1-M)¥(Byxy+By ey [1-4T0)

and

(35) m(ll-f]xllf) + (1“")"(5‘1’:0*1/ [x]_"azl + ﬂlxo'/[‘-'"]-e)
2 m(ﬁg[ﬁ"agl[l""]f/ ﬂlf - “1) + (l‘x)v(ﬂz,xg + ﬁlﬂol (1-19),

where

(36) 0= {8,010 + [P0 + 46,81 28,1,

and
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@) B= (Bynly + 100 + 458, 8y(xi-0g) 12} 2eB oy -00).
Proof See the appendix.
Equilibrium {1,2,6}

With equilibrium {1,2,6}, P> 0, pp > 0, Pg > 0, and P;= 0for j=3,4,5,6, 7,and 8.
From (17), we get

(38) gy = (1-)(pg+pg)x;/(Py+7Po)%p

and, from (18),

(8) oy = (1-py(x;-ag)/ mgRy + (1-7)’By (By+Pg)x /7BgP P2y
Here, (21) must hold with equality for j=1and k = 2, that is

(40) qy= Aol %g+ X ~20)/ (Byxg+H1 % /9y)-

Also, (21) must hold for j= 2 and k = 6, or, using (40) to substitute for q,,

(41) ‘m(ql‘o) - ﬂ(ﬁz[qlxo"’xl’ag]qlxo/ ﬂ1[q1x0+xl] - 31)
= (l‘f)v(ﬂzxo'*'ﬂlxl/ ‘ll) = (lﬂ)v(ﬂlxo‘fpl‘l/ ql)

From (19) and (38)—(40), we can then solve for pg, Py, and p, in terms of q, s follows:

(42) Pg = (ﬁll ﬁz)[(l"')xl"qlxol/ ’{1'(61/ ﬂz)lqlxoa
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(43) ;= [(-m)x;—mayxo)/(1-m)[1-(B; /B)l(a Xp+xy)s
(44) Pp=1-p; -Pg
Equilibrium {1,2,6} is the solution to (40)}(44) for q;, q,, P;, Py, and "p_B.

Proposition 8. Equilibrium {1,2,8} is unique (within its class), if it exists, and it exists if
and only if

(45)  mulayxg) - mulBylayxgx-aglayx/Bylayxgtxy) - @)
> (1-7)v(Byxy+hyx,/9;) - (1-m)v(Bxo+6,x,/9;)s

and

(46)  mu(@yxg) - mulByfayxg+x -aglay X /By (4 xgtxy] - @)
< (1“)7(52:0"'5111/ El) - (l-f)V(ﬂlxoWlxlﬁl).

where

() gy = {00y + (-0 + ang, 108,58 P 208,
and

48) = (onxy

Proof See the appendix.
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Equilibrium {1,6,8}
Here, p; > 0, pg > 0, pg > 0, and Pj= 0 for j = 1, 3, 4, 5, and 7. From (17), we get

(49) q = (1"')1’6‘1/ P1Xo
and, from (18),
(50) g = (1-7)(py+pg)(x;-ap)/*(Pg+Pg)xy + (1-«)%6:1/ 7(pg+Pg)xg-

Given pg > 0 and pg > 0, (21) must hold with equality for j = 6 and k = 8, that is, using
(14) and (16),

(51) ﬂlxll 9 = ﬁz(xf'ag)/ 4y

Similarly, (21) holds with equality for j =1 and k = 6, which gives, using (9) and (14),
using (51) to substitute for qo, and rearranging,

(52) mu(q,xp) - 7u(fy(x;-05)a %o/ Fy%y - a)
== (lﬂ)v(ﬂlxlxol [x1-02] + ‘lell ql) + (1'7)7(32*0"'3131/ ql)'

From (19), (49), (50), and (51), we can solve for p,, Pg, and pg, given q;, as follows

(53) Pg = [(1"')(11‘“2) qlxoﬁgf(xl "2)/31‘1]
* [(1-—1')(11-0,2) (1"‘)"ﬂ2(11'°2)/ B, - - (1-7) xll

(54) = (1‘7)‘11’5/ q;Xo

(55) pg=1-P;—Pg



Equilibrium {1,6,8} is the solution to (51)85) for q;, 49, Py Pgs and pg.

Proposition 9. Equilibrium {1,6,8} is unique (within its class), if it exists. Further,
equilibrium {1,6,8) exists if and only if

(56)  mulayxg) - ulBylx -op)ay%e/Ayxy — )
> - (1-n)v(Bxyxg/lx;-ag) + Ayxy/ay) + (-0)(Bpxo+hyx,/9y),

and

(57) "“(qlxo) ‘m(ﬁz(xl'az)qlxo/ ﬂlxl - al)
<= (1"‘)7(51:110/ [11‘02] + plxll ql) + (1"')7(5210*'5131/ ql)’

where

(58) g =y (1-n)x,/Bymxy,

and

60 {0 + 1t + agpd(e e e g %)
x pll 352(‘,1‘“2):’1‘01‘

Proof: See the appgndix.

4.3 Existence and Uniqueness of Equilibrium
We have established that there are potentially five types of equilibria. Further, there can
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be at most one of each type of equilibrium. Finally, Propositions 5-0 give necessary and
sufficient conditions for the existence of each type of equilibrium. Now, we will show that
an equilibrium always exists, and that it is unique. That is, at least ome type of
equilibrium exists, and no two types of equilibria coexist.

Define W(S) to be the subset of the parameter space for which an equilibrium
of type S exists, S = {2}, {8}, {1.6}, {1,2,6}, {1,6,8). From (27), (29), (30), (34)~38),
(45)~(49), and (56)~(59), we get the following:

W({2)) = {¢: F(#) 20},

w({8}) = {¢: F{(¢) < 0},

W({16}) = {¢: FX(4) £ 0, F*(¢) 2 0},
W({1,2,6)) = {# : F1(4) < 0, F¥(¢) > 0},
W({1,6,8)) = {¢: F(9) <0, F¥(9) > 0}.

Here, ¢ = ("‘o’xl*"l'az'ﬂl'ﬂz) is the parameter vector, and the functions
Fi(¢), i=1,2,3,4,are defined as follows:

Fl(4) = mu({1-six, /%) + (1-0)¥(Byx/l1-1]) - mu(Byfxyrall1-]/By7 - o))
'(lq)v(ﬁzxo"'ﬂlxof/ [1"])1

F2(¢) = ma(gyxy) + (1-)v(Bpxg*hyx,/9y)
- ‘m(ﬁzﬂlxo[ﬂlxo"”xl‘ag]/ ﬁl[ﬁlxo""‘l] -a)- (1-m)v(Byxg 8%,/ 9)

F3(¢) = mu(ayxg) + (1-mv(Byxoxyflxy-ag) + Bixy/ay)
- ’“(ﬂz[xl'“z]qlxo/ x,0, - 01) - (1“')"(»82‘0+ﬂ111/ ‘11)’

F4(4) = mu(Byx,[1-1/By7) + (1-m)v(Byxoxy /lxy-ag] + Byxgr/it—sl)
- mu({1-rlxy-ag)/7 - ay) - (1-m)v(Bpxy/l1-7])-



Given the equivalence between (35) and (45) and between (34) and (57), since ¥ > ¢, and
given the concavity of u(+) and v(-), we have F2(¢) < F°(¢). Sirice g, < T;, and given
that u(-) and v(-) are concave and —u"(c)/u'(c) 2 1; it follows that F'(¢) < F2(g).
Finally, F(¢) < F¥(#) a8 4, < q, and u(-) and v() are concave. We therefore have

)  Fie) < F(9) < F(9) < FY(9).

From (60), the sets W(S), S = {2}, {8}, {18}, {1,2.6}, {1,6,8}, are disjoint, and g W(S)
is the parameter space. Therefore, an equilibrium always exists, and it is unique, from
Propositions 5-9.

It is straightforward to show that W(S) is of positive measure for each S, so
that there exist parameters for which an equilibrium of each type exists. First, note that
Fl(¢) > 0 for ﬁl = ﬁz, which implies that W{2} is of positive measure, by continuity.
Next, note that F4(¢) 0 for “l =y =0 and ﬁl 52 Now, 8174/8132 < 0 when ﬂl
ﬂz 80 that, again by continuity, there exists 8 subset of the parameter space of positive
measure where F4 < 0, i.e. W({8}) is of potitive measure. Therefore, from (60), W(S) is
of positive measure for each S.

The parameter space can thus be divided into three regions of interest. First,
there is a region where only the liguid asset is traded (equilibrium {2}); second, there is a
region where only the illiquid asset is traded (equilibrium {8}); third, there exists a
ndiversification region," where both assets are acquired and traded in equilibrium (either
{16}, {1,2,6}, ot {1,6,8}). The locus F1(¢) = 0 separates the region in which the illiquid
asset i traded from the region in which it is not. Here, 8F1/801 > 0, BFI/Ba? > 0, and
5F1/ 06, < 0. Similarly, the locus F4(¢) separates the region in which the liquid asset is
traded from the region where it is not. We have 6F4/ day > 0, 3F4/ day > 0, and
6F4/ 832|F4=0 < 0. Therefore, the illiquid asset will be "more likely“ to be acquired and
traded, and the liquid asset "less likely" to be acquired and traded, as transactions costs



increase and the return on the illiquid asset increases. These results are quite intuitive.

5. The Optimal Provision of Liquidity

The objective of this section is to derive a welfare result to show how liquidity is
underprovided in a competitive equilibrium, relative to a social optimum. In evaluating
the optimality of the competitive equilibrium, we follow the spirit of work on incomplete
markets (e.g. Geanakoplos and Polemarchakis 1986). Here, we allow the social planzer to
determine the fractions of agents holding liquid and illiquid assets in period 0. We let ¢
denote the fraction of agents initially holding the liquid asset, i.e. 7= p; + Py The
planner must respect the restriction on diversification, and agents are free to trade assets
on competitive markets in period 1. Thus, the set of allocations that the planner can
achieve are competitivé equilibria, indexed by 7 € [0,1]. That is, a feasible allocation for
the planner is a competitive equilibrium, satisfying (17)~(20), but imposing the constraint

61)  py+py=17€[01}

In addition, (21) is replaced by

(62) Ifp;>0and 7> 1, then Uj(ql.qg) 2 Up(a)u0p): k= 1,2

(63) If P > 0and 1< 1, then Uj(ql,qz) 2 Uk(ql,qz); hhk=23,4,..8

Here, (62) and (63) state that agents cannot choose their actions in period 0, but their
choices in period 1 must be optimal.

We define an allocation to be constrained Pareto optimal if there i8 no
allocation which is feasible for the planner which makes all agents better off without
making any worse off. Clearly, there exist parameter values for which the competitive
equilibrium will be constrained Pareto optimal. First, if the return on the illiquid asset,
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By, is sufficiently large and transactions costs sufficiently sriiall, then équilibrium {8} with
tride only in the illiquid asset, will be the competitive equilibrium. This competitive
equilibrium could not be improved upon by forcing some agents to hold the liquid asset,
provided the return on the liquid asset, ﬁl, is sufficiently small relative to ‘82' Seoond,
transactions costs can always be made sufficiently large that the competitive equilibrium
is equilibum {2}, where only the liquid asset is traded. If transactions costs are large
enough to preclude trade in the illiquid asset, then forcing agents to hold the illiquid asset
forces them to consume zero if they are early consumers. Thus, in this case the
competitive equilibrium would be constrained Pareto optimal. The natural region of the
parameter space to look for suboptimal equilibria is then somewhere near or in the region
where both assets are traded.

Now, we will show that there are conditions under which suboptimal equilibria,
with too little liquidity provision, exist mear the locus Fl(¢). This locus defines a
boundary between the regions where equilibrium {2} exists, and where equilibrium {1,2,6}

does. Assume that
(64) w'(x) 2 v'(x) for all x > 0,
and

(65) 72 x, /(x5 +x;)-

In the region defined by F1(¢) 3 0, we have equilibrium {2}. The adjacent region of the
parameter space is W({1,2,6}), 8o that both regions have a positive fraction of agents
making choice 2, and expected utility is equal to Uz(ql,qz). Note also that, from (26),
(38), and (42)-(44), q, i8 a continuous function of the parameters at the locus Fl(¢) =0
separating the regions W({2}) and W({1,2,6}). Differentiating expected utility with
respect to q, and evaluating the derivative along F1(¢) = 0, using (10) and (26) we get



(d/ dql) l qlg(l_q)x 1 / nolﬂ(qlxo)+(l")v(ﬁlxo+ﬁlx1/ ql)]

= g/ (1=r)xy{(1-m)xywl(1-m)xy /o] = mxgy v {Byxg/ (1=}
> (g (1-r)x H(1-n)x wl(1-m)xy /1] - 7oy v (B xg))

= [Pxg/ (1-m)x {[(1—xy /oll(1-)xy /1] - xoBy v (Byxg)}

> (2B, x3/(1-x)x;J[w(Byxg) - V'(Byxg)) 2 0.

Here, the second inequality follows from —cu"(c)/u'(c) 2 1 and (65), while the
third inequality is implied by (64). Now, note from the proof of Proposition 8 in the
Appendix, that q; < q; in equilibrium {1,2,6}, where, from (26) and (48), q, is the price
of the liquid asset in equilibrium {2}. Therefore, from the above, expected utility falls,
given (64) and (65), when a parameter change causes the illiquid asset to be adopted.
From the planner’s point of view, equilibrium {2} is still feasible in region W({1,2,6}), by
simply setting 7 = 1. Therefore, equilibrium {1,2,6} is suboptimal, given (64) and (65), in
a neighborhood of the boundary F1(¢) =0.

The above results state that, if liquidity matters enough, then expected utility
falls when a parameter change causes the illiquid asset to be adopted. Liquidity matters
sufficiently if the marginal utility of early consumption is sufficiently large relative to the
n*arginal utility of late consumption ((64) bolds) and if the probability of early
consumption is sufficiently large ((65) holds). All agents would be better off if they
continued to hold the liquid asset rather than having some trade in illiquid assets, and the
competitive equilibrium i8 suboptimal. The underprovision of liquidity occurs here
because of a participation externality. That is, as the number of agents participating in
the market for the illiquid asset increases, this tends to drive down the price of the liquid



asset. Moving from a region of the parameter space where equilibrium {2} exists to one
where equilibrium {1,2,6} exists, P, increases relative to py, and q; must fall, from (17).
As a result of the decrease in its price, the liquid asset becomes less desirable, and the
increase in participation in the market for the illiquid asset is self-fulfilling.

The negative participation externality which exists in this model contrasts with
the positive externalities present in models constructed in Chatterjee (1988), Pagano
(1989), and Allen and Gale (1991). Also, our model has a unique equilibrium, whereas
these other models all feature multiple equilibria.

6. Examples

To illustrate possible equilibrium outcomes, some equilibria were computed numerically.
Here we assume u(c) = In(c), v(c) =1In(c), f; = x; =x, =1, and a; = a, = a. We thus
constrain the two-period interest rate on the liquid asset to be zero, and the equilibria
computed have ﬂ2 ¢ (1,1.1), so that the two—period interest rate on the illiquid asset is at
most 10%. We used three different values for the probability of early consumption, ¥ = .1,
x = .5, and x = .9. For each value of , equilibria were computed over a two-dimensional
grid in (a,f,) space.

In Figures 1-3, for each value of xr the parameter space is subdivided into the
regions where each type of equilibrium exists. Note here, that for a given value of ﬂz,
equilibria with trade in the illiquid asset tend to be supported with higher transactions
costs, the smaller is x. The illiquid asset is traded in equilibria {8}, {1,6,8}, {1,6}, and
{1,2,6}. In Figure 1, trade in the illiquid asset is supported with ﬂ2 =105 a=15and »
= 1, i.e. there is trade in the illiquid asset with a cost of buying or selling this asset 1.5
times the endowment of late consumers in period 1. However, in Figure 3, with ﬂ2 = 1.05,
a = .006, and x = .9, there is no trade in the illiquid asset. Also note, from Figures 1-3,
that the larger is x the smaller tends to be the range of transactions costs, for given ﬂz,
over which both assets are acquired and traded (the region where equilibria {1,6,8}, {1,6},
and {1,2,6} exist).



n

Figures 4, 6, and 8 are three-dimensional plots of expected utility computed
over the same grids as for Figures 1, 2, and 3, respectively. Figures 5, 7, and 9 are cross
sections of Figures 4, 6, and 8, respectively, with ﬁz = 1.05. In Figures 4 and 5, with r =
.1, expected utility decreases monotonically for fixed §, as a increases. That is, higher
transactions costs imply lower welfare. In contrast, with higher x in Figures 6-9, expected
utility can rise as a increases. Note that, for x = .9, from Figures 3 and 9, that with f, =
1.05 expected utility is lower through much of the region where equilibrium {8} exists
(only the illiquid asset is traded) than in the region where equilibrium {2} exists (only the
liquid asset is traded). Figures 7, 10, and 11 illustrate why expected utility can fall when
transactions costs decrease. Regions where this happens are also regions where the fraction
of agents acquiring the liquid asset (7) and asset prices decrease dramatically. Thus, as
transactions costs fall, participation in the market for the illiquid (liquid) asset rises
(falls), in such a way that the price of the liquid asset falls and agents are worse off.

In Figures 12-18, expected utility is computed for equilibria where a social
planner constrains the fraction of agents holding each asset at the initial date. Here, 7 is
the fraction of agents holding the liquid asset, ul is the expected utility of those agents,
and u2 is the expected utility of agents holding the illiquid asset. In Figure 12, the
competitive equilibrium is where ul and u2 intersect near 7 = .1, and this is constrained
Pareto optimal. Similarly, in Figure 13, the competitive equilibrium is at 7= 1, and it is
constrained Pareto optimal. No suboptimal equilibria were found for r = .1.

Now, consider Figure 14. Here, the competitive equilibrium is at 7 = 0, but all
agents are better off if ¥ = 1, 80 the competitive equilibrium is suboptimal. In Figure 15,
the competitive equilibrium is located where ul intersects u2, and again this is
suboptimal, being dominated by 7 = 1. In Figure 16, the competitive equilibrium is 7 =
1, which i8 constrained Pareto optimal. In Figures 14-16, there i8 in general too little
liquidity in a competitive equilibrium, and 7 = 1, though a constrained Pareto optimum,
is not a unique constrained Pareto optimum. Similarly, with ¥ = .9 in Figure 17, y= 018

the competitive equilibrium, which is suboptimal, as it is dominated by 7= 1, but there



is a continuum of constrained Pareto optima. In Figures 18 and 19, however, 7= 11is the
unique constrained Pareto optimum. In Figure 18, 7 = 1 dominates the competitive
equilibrium, where ul and u2 intersect, and in Figure 19, v =1 is also the competitive
equilibrium. |

These examples illustrate 8 tendency for a higher probability of a need for
liquidity (higher ) to produce suboptimality with greater likelihood. There was never too
much liquidity provided; all competitive equilibria were either constrained Pareto optimal

or dominated by feasible allocations where more liquid assets were held.

7. Conclusion

We have constructed a model of asset market participation where there is a tendency for
underprovision of liquidity. In this sense, our model differs from related models of market
participation, for example Chatterjee (1988), Pagano (1989), and Allen and Gale (1991),
where multiple equilibria arising from a participation externality can lead to the
overprovision of liquidity. In our model, there can be too little liquidity, or too much
participation in the market for the illiquid asset, as the price of the liquid asset tends to
fall when participation in this market increases. A decrease in the liquid asset’s price
tends to make liquid asset holders worse off, and the increase in participation in the
market for the illiquid asset is self-fulfilling. However, the competitive equilibrium for
this economy is unique.

This is a useful model of multiple asset markets, permitting the volume of trade
on each market to be determined endogenously, with possible outcomes involving trade in
both assets, trade in only the liquid asset, or trade in both assets. Given the
nonconvexities in individual agents’ optimization problems due to fixed transactions costs
and the constraint that agents cannot diversify their portfolios, different agents may
participate in different markets and make different portfolio decisions. This occurs in spite
of the fact that agents are identical, ex ante.

One possible extension of the model would be to introduce some aggregate



uncertainty by making the fraction of early consumers random as of period 0. As a result,
the prices of the liquid and illiquid assets would also be random. This could possibly
create participation externalities of the type studied by Chatterjee (1988), Pagano (1989),
and Allen and Gale (1991), and might provide an interesting interaction with the
externality already present here. Another extension could involve embedding the model in
an overlapping generations framework in which the liquid asset was fiat currency used for
intergenerational trade. Here, government monetary interventions affecting rates of return
would change the degree of market participation (see Chatterjee and Corbae 1991). It
might be expected that some modification to the standard welfare results for overlapping
_generations models would result.



Appendix
Proof of Proposition §
Given py = 1 and Py = 0 for all j # 2, and (26), (17)<(20) are satisfied by construction,
except for gy 2 0. For an equilibrium, we must find a price for the illiquid asset, q, 2 0,
such that (21) is satisfied for j = 2 and k # 2, given (26). With j = 2 and k = 11in (21),
and substituting using (26), we get

A1) Byxpl(1n) 2 (Bylag)(xy /7~ ).

Similarly, inequality (21) with j = 2 and k = 6 gives

(A2)  mu((talx,/x) + (-m)w(Byxg/l1-]) 2 mu(agxg-a;)
+ (1-x)v(Byxy By 7 [11]).

Inequalities (A.1) and (A.2) imply lower and upper bounds, respectively, that q, must
satisfy in equilibrium. If (A.1) holds, then

(A3)  Uglayay) ¢ mulli—six,/) + (1-m)v(Byxy/li=r)) ~ (1-m)v(Byxo+Byxqe/li=1])
+ (1r)v(Byxy+Byxrix ~ag) [1-sl[x, o))

Then, if (A.1) holds, we have Ua(ql,qz) < Uz(ql,qz). Next, we need to show that (21)
holds for j = 2 and k = 7. If (A.1) holds with equality, then

Us(‘lpﬂg) = U7(Q1:Q2) = (1'*)‘7(52!0"'51“0/[(1"“)‘1])
{1A)v{Byx —rag)xg/xy +By g (1-2)-By w12}y )
> 0.
In addition, (21) holds for j = 2 and k = 3, 4, 5, since u’(0) = o. Therefore, equilibrium
{2} exists if and only if there is a q > 0 satisfying (A.1) and (A.2). Since (A.1) defines a




s1

lower bound on g, and (A.2) an upper bound on q,, we can take (A.1) as an equality,
solve for q,, and substitute in (A.2). Then, equilibrium {2} exists if and only if (27) holds.
If equilibrium {2} exists, it is essentially unique, which is trivial by construction, and
from (26). Q.E.D.

Proof iti
Inequality (21) must be satisfied for j = 8 and k = 1, or, using (28),

(A4)  mu(agxg) + (1-n)v(Bpxgma, /[1-nllx;-ag] + ymxp/[1-1])
¢ mu([1-nllxy-ag)/7 - ay) + (1-7)v(Byxg/[1-1])

Similarly, (21) must hold for j = 8 and k = 6, or

(A-5) ﬂlxll 9 < ﬁz‘o"/ (1-7).

Inequalities (A.4) and (A.5) put upper and lower bounds, respectively, on q;. From (10),
if (A.4) holds, and (A.5) holds with equality, then

Ug(‘ly‘lg) < Ug(‘lp‘lg) '(I'W)V(ﬂlxoxll [11‘02] + pg“xo/ [1-7])
+ (1-7)v(Byxg + Boxor/(1-1))
< Ua(qPQ2)s

so that (21) holds for j = 8 and k = 2. If (A.5) holds with equality, then using (14) and
(15),

Ug(a;.99) = U,(a,:95) = BoXg = Boxg(x;-a9)/x; + a;Bymx/ (1-x)x, > 0.

Thus, if (A.4) and (A.5) hold, then there exists a q; satisfying (A.4) and (A.5) which



guarantees that (21) holds for j = 8 and k = 7. Also, (21) holds for j=8 and k = 3, 4, §,
given (A.4). Therefore, in 8 manner similar to the proof of Proposition 5, equilibrium {8}
exists if and only if there exists 8 q; 2 0 satisfying (A.4) and (A.5), that is, taking (A.5)
with equality and substituting in (A.4), we get (29). By construction, and from (28), it is
trivial that equilibrium {8} is essentially unique if it exists. Q.E.D.

Proof of P ition T
Inequality (21) must hold for j = 1 and k = 2, that is, using (9), (10), (35), and (36),

(A8)  Byx(pg/py)/(1-7) 2 By + By /(1-7)(pg/py)-

Also, (21) must hold for j = 6 and k = 8. Using (14), (16), (30), and (31), we get

(A7) By(x;-0g)/x(pg/py)? + By (1-7)x)/7(pg/Py) 2 Bylx)~t)

Now, if (21) holds for j = 1 and k = 2, from (8) and (10) we have ﬂzlq2 - ﬂllql >0,
which implies that, from (14) and (15), (21) holds for j = 6 and k = 8. Inequality (21)
holds for j= 1,8 and k = 3, 4, 5, as (30) implies that q > 0 so that choice 1 dominates
choices 3, 4, and 5, and choice 1 is in turn dominated by choice 2.

Let 0 = pg/p,. Then, since the left side of (32) is increasing in # and the right
side is decreasing in 0, and given the restrictions on u(-) and v(-), equation (32) yields a
unique solution for 4, which in turn gives unique solutions for q,, q, py,and pg from (30),
(31), and (33), and the solutions satisfy (20). We then have a unique equilibrium of type
{1,6} if the solution to (32), denoted by 0*, satisfies (A.6) and (A.7). Using (A.6), (A.7),
we then get 0* >4 and 0‘t < . Then, from (32), a unique equilibrium of type {1,6} exists
if and only if (34) and (35) hold. Q.E.D.



Proof of Proposition 8
As (21) holds for j= 1 and k = 2, we have ;52/q2 > ﬂl/ql, which implies that (21) holds
for j = 6 and k = 7. In addition, (38) implies that q; > 0, and (21) holds for j = 2 and k
=3,4,5.

For a solution to equation (41) to exist, demoted q;, it is necessary and
sufficient (by inspection) that

(A8) B> 4

Given (A.8), the right side of (41) is increasing in q, since v(-) is concave. Also, given
(A.8), the left side of (41) is decreasing in q1 for q) = ql’ gwen that u(-) is concave and

—cu"(c)/u*(c) 2 1. Thus, given (A.8), ql is unique. Given ql’ (40) and (42)—(44) solve
uniquely for gy, Py, Py and pg. We need to check that p1 >0,py >0, and pg > 0. From
(42)(44), these conditions are satisfied if and only if ql > q and q1 < q1 Therefore,
from (41), a unique equilibrium exists if and only if (45) and (46) hold. Q.E.D.

Proof of Proposition §

Given (51), we have

Ug(‘lp‘lz) = Us(‘lp‘lg) '(lﬂ)v(ﬂlxlxo/ [xl‘azl + ﬂlxl/ ql)
+ (lﬁ)v(ﬁlxo + ﬁlxll ql)
< Ue(qlqu)l

and (21) holds for j = 6 and k = 2. Since (21) then holds for j =1 and k = 2, we then
have f,/q9 > B,/a;, which implies, from (14) and (15), that (21) holds for j=6 and k =
7. In addition, (49) implies that q; > 0 80 that, from (9), inequality (21) is satisfied for j
=land k=3,4,5.

Note that a necessary and sufficient condition for a solution to (52) is



(A.9) ,62(1:1--¢r.2)/ﬂ1x1 > 1L

Given (A.9), the concavity of u(-) and v(-) imply that the left side of (52) is decreasing in
q, and the right gide of (52) is increasing in q,. Therefore, if and only if (A.9) holds, &
unique solution exists to (52), which we will denote ql . Given q1 , we can solve uniquely
for g, Py, Pg: Pg» from (51), and (53)—(55). For this solution to be an ethbnum, we
must have p, > 0, pg > 0, and py + pg < 1or, using (53)(55)), q1 > q,, and q1 < q1
Therefore, substituting in (52), a unique equilibrium of type {1,6,8} exists if and only if
(56) and (57) hold. Q.E.D. |



Footnotes

1. See Allen and Gale (1991) for references to the empirical evidence on limited
diversification.

2. If there were a sufficiently large fixed cost (identical for each investment technology)
associated with investment, then agents would not diversify. Also, insurance against the
need for liquidity could be precluded by physically separating agents in period 0.

3. To do this, collapse periods 0 and 1 into the first period of each agent’s life. If an agent
invests in the liquid asset, she buys fiat money at the beginning of the first period of life
from the old of the previous generation. Asset trading takes place between young early

consumers and young late consumers at the end of each period, after the current old die.
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Figure 1: Equilibria, Pl=.1
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Figure 2: Equilibris, Pl=.5
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Figure 4; Expected Utllity, Pl=.1

(alpha increasing SE; beta2 increasing NW)

Figure 5: pi=.}, beta2=1.05
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Figure 6 Expected Utility, Pl=.S

(alpha increasing SE; beta2 increasing NW)

Figure 7: pi=.S$, beta2=1.05
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Figure 8: Expected Utility, PI=.9

(alpha increasing SE; beta2 increasing NW)

Figure 9: pi=.9, beta2=1.05
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Figure 10: pi=.Sbeta2=105
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Figure 11: pi=.5, beta2=1.05
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Figure 12: Constrained Equilibria, pi=.1, beta2=1.05, alpha=.15
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Figure 13: Constrained Equilibria, pi=.1, beta2=1.05, alpha=3
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Figure 14: Constrained Equilibria, pi=.3, beta2=1.05, alpha=.025
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Figure 15: Constrained Equilibria, pi=.5, beta2=1.05, alpha=.04
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Figure 16: Constrained Equilibria, pi=.S, beta2=1.05, alpha=.1
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Figure 17: Constrained Equilibria, pi=.9, beta2=1.05, alpha=.001
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Figure 18: Constrained Equilibria, pi=.9, beta2=1.05, alpha=.005
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