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Abstract. While testing for conditional heteroskedasticity and
nonlinearity, the power of the test in general depends on the functional
forms of conditional heteroskedasticity and nonlinearity that are allowed
under the alternative hypothesis. In this paper, we suggest a test for
conditional heteroskedasticity/monlinearity with the nonlinear autoregressive
conditional heteroskedasticty (NARCH) model of Higgins and Bera (1989) as the
alternative. Standard testing procedures are not applicable since our
nonlinear ARCH parameter is not identified under the null hypothesis. To
resolve this problem, we apply the procedure recently proposed by Davies
(1987). Power and size of the suggested test are investigated through
simulation and an empirical application of testing for ARCH in exchange rates
is also discussed.

Keywords. ARCH;. bilinear; Davies’ test; NARCH; Nonlinearity; Nonlinear time
series models.
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1. INTRODUCTION

Autoregressive conditional heteroskedasticity (ARCH), introduced by
Engle (1982), is frequently used to model the changing volatility of economic
time series. Such applications of the ARCH model can be found in Weiss
(1984) and papers surveyed in Engle and Bollerslev (1986). When testing for
conditional heteroskedasticity, the form of the test statistic, and hence the
power of the test, in general depends on the functional form of the
conditional variance specified under the alternative hypothesis. .In this
paper, we suggest a test in which the alternative is the nonlinear ARCH
(NARCH) model proposed by Higgins and Bera (1989b). Consider the dynamic

linear regression model

Ye = xt'_'p + e (t=1,...,T) (1.1)

where X, is a vector of k predetermined variables which may include lagged
values of the dependent variable Yeo Let & denote the information set at
time t which includes current and all lagged values of €t The error €. is
generated by the ARCH process

e |2, ~ N(O,b)

where ht is a function of the elements of Qt-l' Engle (1982) proposes

several functional forms for ht’ but emphasizes the linear ARCH model

+ a,¢€ + ...+ ape (1.2)



for its analytic convenience and ease of interpretation. Other functional
forms, however, have been found to be useful [See Engle and Bollerslev
(1986), Higgins and Bera (1989b), and Nelson (1989)]. For example, the
linear ARCH model (1.2) requires o, > 0 and a; 20 (i=1,...,p) to insure
that the conditional variance is strictly positive. Geweke (1986) and

Pantula (1986) suggest the logarithmic specification

2

2
log(ht) = a, + allog(et_l) + ... + aplog(et_p

) (1.3)
for which the conditional variance is positive for all parameter values.

The Lagrange multiplier (LM) or score test principle provides an easily
computed test for the presence of linear ARCH. Engle (1982) shows that the
IM statistic for the null hypothesis HO: al = ,,, = ap = 0 in (1.2) is
equivalent to T-Rz, where R2 is the squared uncentered multiple correlation
coefficient of the regression of ?i on an intercept and Zi_i (i=1,...,p)
and the Et's are the least squares residuals of (1.1). In general, however,
the form of the IM statistic depends on the functional form of the ARCH
process assumed under the alternative hypothesis. Conducting the above test
for ARCH when the true alternative is, for example, the logarithmic model
(1.3), may result in a significant loss of power. Furthermore, there is a
general view that linear ARCH models do not provide a rich enouéh class of
nonlinearities, and this necessitates a need for a more flexible parametric

specification for the conditional heteroskedasticity [see Pagan and Wickens

(1989, p. 983)]. In this paper we propose a test for ARCH in which the
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alternative is the nonlinear ARCH (NARCH) model suggested by Higgins and Bera
(1989b). The NARCH model of order p, NARCH(p), specifies the conditional

variance function

1/5
h, = [¢0(02)5 N A ¢p(€i-p)s] (1.4)

with the parameter space restricted to

p
250, $,20, (1=1,....0; 6>0; L4 =1
§=0

Rearranging (1.4)

@1 i (e
gt b . b

the NARCH model is seen to be a Box-Cox power transformation of the terms of
the linear ARCH model (1.2). The Box-Cox transformation is widely used in
the selection of functional form of the mean of a regression model. In the
present context, the NARCH model encompasses many of the functional forms
used for ARCH. For example, when § = 1 the model is identical to the linear
ARCH model (1.2). As & approaches O from above, the model is equivalent to
Geweke's logarithmic model (1.3). Higgins and Bera (1989b) discuss other
ARCH specifications which NARCH encompasses. Furthermore, by adding Box-Cox
transformations of lagged values of ht to the right hand side of (1.4), the
model can easily be generalized to include the GARCH model of Bollerslev

(1986, 1988).



The null hypothesis to be tested is Ho: ¢1 -, = ¢p = 0. When these
conditions are imposed, the conditional variance function (l1.4) reduces to a
constant and the model becomes the standard normal regression model. It is
immediately noticed, however, that when the null hypothesis is imposed, §
drops out of the conditional variance function ht' In other words, the
nuisance parameter § is identified only under the alternative hypothesis. It
can be shown that under Ho, the information matrix is singular; thus
invalidating the standard formulation of the LM test. Watson and Engle
(1985) encounter the same problem in testing the constancy of a regression
coefficient against the alternative that the parameter follows a first order

autoregressive process. They consider the varying coefficient model
-= L
Ve = XY + ztﬁt + €

where X, is a vector of exogenous variables, v is vector of fixed
parameters, zt is an exogenous scalar and et is a random disturbance. The

stochastic parameter ﬁt is generated by

(B, - B) = 68,1 - P) +u, 4] < 1.

where ¢ and B are fixed parameters and u, 1s a random disturbance with
variance q. Since the unconditional variance of ﬂt is q/(1-¢2), constancy of
the parameter S can be examined by testing q = 0. When q = 0, however, ¢ is
not identified. 1In order to proceed, they follow the suggestion of Davies
(1977) and base a test on Roy’s union-intersection principle. Like Watson

and Engle (1985), we follow Davies (1977), and in addition make use of

I
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approximations provided by Davies (1987) to simplify the computation of
p-valﬁes for the test. In Section 2, we briefly review the work of Davies
(1977, 1987) and discuss its application to our'testing problem. In Section
3 we derive the IM test required to implement Davies’ procedure and in
Section & we report Monte Carlo results on the finite sample null
distribution and power of the proposed test. To illustrate the usefulness of
the test, in Section 5 we present an application of testing for nonlinear

ARCH in foreign exchange rates. Section 6 contains a few concluding remarks.

2.. DAVIES' TEST

Davies (1977) considers a situation in which the density of the sample
depends on two parameters « and §. It is desired to test the hypothesis a =
0 against the alternative a > 0. It is assumed that, for a given value of 4,
an appropriate Gaussian test statistic Z is available to test a = 0. When
the null hypothesis is true, however, it is assumed that the model is free of
. 1In such a situation, in which the nuisance parameter # is not identified
under the null hypothesis, the asymptotic distribution theory of Z is
invalid. Since the distribution of Z is correct for any arbitrarily assigned
value of §, Davies appeals to the "union-intersection principle” of Roy

(1953) and suggests basing the test on a critical region of the form

(sup Z(8) > c).
9



Although the distribution of this test is unknown, Davies prévides
approximations for computing the p-values. The approximations require
perfbrming numerical integration of cbe continuous time autocorrelation
function of Z(8). Davies (1987) extends his results to statistics which are
asymptotically xz and provides a much simpler approximation for the
p-values. It is this approximation which we make use of below.

To apply the results of Davies (1987), we first fix § at an arbitrary
value 8* and derive a test for ¢1 -, .. = ¢p = 0. In Section 3, we show that

*
given § = § , the IM test statistic is

s(s¥) = T-R?

where R2 is the squared multiple correlation coefficient of the regression of

€, on an intercept and

*
@ % -
t-i .
8* (i=-1,...,p),

where Zt is the least squares residual. The actual test statistic is defined

as

*
S = sup S(§ ). ’ (2.1)
*
§

*
However, unlike S(§ ), S will not have an asymptotic xg distribution
under the null hypothesis. Of course, it will be very difficult to find the

exact critical values or p-values for S. Davies (1987) suggests an upper

3
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bound of the p-values which is described below.

For each value of § € A C Rf, we can express S(§) as

P 2
S(8) = ) Z;(8) = Z'(8)2(8)

i=]
where Z(§) = (21(8), 22(8), eees ZP(S))' is a p X 1 vector. Under certain
regularity conditions and the null hypothesis HO: ¢1 = ., = ¢p = 0, 21(8)'s
are asymptotically i;i.d. N(0,1). Define Y(6§) = 3Z(§)/36 and denote
Var[Y(§)] = B(8) and Cov[Z(5),Y(8)] = A(8). Let Al(S), AZ(S), e AP(S) be
the eigenvalues of B(§) - A'(8§)A(S) and let n(§) ~ N(0,A), where A =
di X, (8), A, (8), ..., A (8)).

1ag(A;(6), A,(6) 58

~ Under the above setup, Davies (1987, p. 35) shows that

Pr[(Sup S(§); § € A) > u] =< Pr(x: > u) + I $(5)ds
A

where

- -1)/2
12 e u/Zu(p 1)/

2P 2 1y /2

(2.2)

¥(§) = E[n’ (6)n(8)]
As proved in Davies (1987, Theorem A.l)
[ weoras
A

is the expected number of upcrossing of the level u by S(§) for § € A. This
can also be viewed as the correction factor to the standard x2 p-value due to

the scanning across a range of values of § € A. Theorem A.2 of Davies (1987)



further shows that

172 172

2 [(pr1)/2

E[n’ (6)n(8)]
[p/2

= E[]as™“(8)/85]] - (2.3)

Combining (2.2) and (2.3), the upper bound of the significance level is given

by

-u/2 ~1)/2
e u/f u(p M

2?/2[;—/5

Prix? > u) + I E[|85"%(5)/85|]ds. (2.4)
P A

. Davies proposes to estimate

J E[|as'(6)/85|]ds
A

from the total wvariation

V= I |as*2(5) /a5 | ds
A

= |s"%s)) - sV | + |56, - sYEG ] 4

+ s - 5% | | (2.5)

where L and U are the lower and upper bounds for § and 81, 62, ceny SM are

172

the turning points of S7°(§). Therefore, from (2.4), the'significance level

of our test based on S will be approximately

- -8/2.(p-1)/2
Pr(xlz) >8) +v.e—S

ZP,ZW

(2.6)

]
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Although (2.6) is only an'approximacion, we expect it to perform better than
basing the test on just the first term in (2.6). In thé second term, one
part is essentially the x§ density function and the other part, V; reflects
the variation in s”z(s) over values of § corresponding to different
alternative hypotheses. Davies (1987) presents numerical results which show
that this type of approximation performs very well.

Here we should note that the set A need not coincide with the
theoretical range for §; it could be any subset of that range. The only
constraint is that the same set should be used for maximizing S(§) in (2.1)
and in calculating V in (2.5). Also, Davies (1977, p. 253) mentions that for
the the procedure to be useful, S(§) cannot have spurious peaks. To see that

spurious peaks of S(§) is not very likely in our case, let us write S(§) as

-1
2 W) THYE
T-R” = T e

where £ is the vector of ?i and W includes an unit vector and Box-Cox

2 ~2

. ~2 ~
transformations of €c.10 €g.2r ot et-p

Therefore, this is a standard
Box-Cox regression with transformation only in the non-constant independent
variables. Later, in the simulation study, we present graphs of realizations
of S(§) under both the null and alternative hypotheses which indicate that
S(§) is in fact very smooth.

To see the behavior of the test under Ho and the alternative hypothesis

HA: at least one ¢i # 0, let us first note that

§'¢€

’
plim 22 < o, plim HTH = a finite non-null matrix
T—» T—o
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and under ﬁo that :i:: W' E/T = 0 for any value of §. While under the

plim

W'é #» 0 for any §. Therefore, the test is
T—)®

alternative hypothesis HA’
‘consistent. However, we cannot claim that our test has any optimality

property. For a weak optimality property of this kind of test, see Davies

(1977, p. 252).
3. 1M TEST FOR FIXED §

*
We now derive the IM test with § fixed at a pre-assigned value §. The

conditional variance function (1.4) becomes

*

1/5
* * *

h, - [¢0(02)8 + ¢1(e:_1)6’ R RGN

P
Let ¢' = (¢1,...,¢p),~v' = (02,¢') and ' = (B',v’). The log-likelihood for
the NARCH regression model can be written, omitting a constant,
e2
2(0) = -+ T log(h,) - T =5 (3.1)
2 B T & 7m_ Sl

where the summations are over t. Higgins and Bera (1989b) show that the
information matrix is block diagonal between the regression parameters B8 and
the variance parameters v. Furthermore, since Ho does not impose

restrictions on f, the LM test reduces to [see e.g. Bruesch and Pagan (1980))

™ - d(?);I(?)Lid(?)v (3.2)

[0

[
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where d(o)y and I(H)VV are the score function and information matrix with

respect to the variance parameters and "~" denotes quantities evaluated at

the restricted maximum likelihood estimators (MLE’s). Differentiating (3.1)

with respect to the variance parameters, the score function is
a2 v 1 Ml
v 2ht ov ht

and the hessian of the log-likelihood is

— ¢ ——— § — ¢

The information matrix with respect to the variance parameters is then given

by

vv avav'

2
" £
-EFLWV

1, - 2]

s

2 2
oy 1 Bl O O + ¥ Ble) |- 1 e
th2: ht v v’ ht av' th v
1 , @&h_ dh
"I LE S a
t

which can be consistently estimated by
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S RN ) |
vy 2 ht v ht av'|’

Therefore, the LM statistic (3.2) is

-1
~ {~2 - Lo = (-~
M = 1 X EEE iE -1 ) EEE.EEE Y fEE iE -1 (3.3)
2 v ;2 v av' dv ;2 '

where ?t is the least squares residual and 32 is the usual MLE of the
variance of the error in the standard normal linear regression model. Now
define f to be a column vector whose elements are <2i/§2) -1(=1,...,p)

and let z = 8ﬁt/8v and Z' = (zl....,z The 1M statistic (3.3) can then be

T)'

expressed in matrix form as
M = %of'Z(Z'Z)'lz'f

which is 1/2 the regression sums of squares from the regression of f on Z.
Furthermore, since under the null hypothesis :i:: f'f/T = 2 and the
arithmetic mean of the elements of f is 0, an asymptotically equivalent form
of the test statistic is

franylzee 2

*
M = S(§) = T-——57% T-R

2 . . e .
where R” is the squared multiple correlation coefficient from the regression

of £ on Z. The elements of z, are easily shown to be

-

[}
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and

*
(G X!
= O * (iﬁl,...,p).
§

Q
t
ct

|

Q
©-

e

Since a linear transformation of the variables in a regression does not

affect the R2, the test can be computed by regressing ?t on an intercept and

*
@pf -1
- (L =1,...,p).
)

The independent variables of the auxiliary regression are seen to be Box-Cox
transformations of Zi where 6* is the Box-Cox parameter. When 6* = 1, the
statistic is equivalent to Engle’s ARCH test. As 6* — 0, the test would be
based on the regression of ?i on an intercept and log(?i_i) (i=1,...,p).
This limiting case corresponds to the test for ARCH when the alternative is
the logarithmic model (1.2). If a regression package is available for

estimating a Box-Cox model with transformation only of the independent

variables, S could be obtained very easily.
4, SIMULATION EXPERIMENTS
‘In this sectiqn we conduct a simulation study to determine the accuracy

of the approximation (2.2). We also consider the power of Davies’ test and

Enéle's ARCH test when the alternative model is in the class of NARCH models.
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Lastly, we compare the power of these two tests under a bilinear alternative,

w

to the IM test for that specific alternative.

To determine the accuracy of the approximate level of significance
(2.6), for various sample sizes ranging from 25 to 200, 500 random normal
samples were generated and Davies’ test for NARCH (D-N) was computed.
Therefore, the maximum standard error of the estimates of type 1 error
probabilities and power in the following tables would be VT§§T§7§65 = ,022.
The D-N test is based on the alternative hypothesis that the series is
generated with a conditional mean zero and NARCH(1l) heteroskedasticity, that

Py

is

Yel®.q - MO, (4.1)

where

1/6
h, = [¢0<a2)5 + ¢1<yf_,1)5]. - .2)

Computing the approximate level of significance requires finding the supremum
of S(§) and the total variation of SU2(6) over the permissible range of §.
Since the parameter space only imposes § > 0, an upper bound for § must be
chosen. We only present results for 0 < § < 2. Below we discuss the
consequences of varying the upper bound.  The supremum of S(S) and the

turning points of si/?

(6) were found using a grid search with step length
.0l. Davies’ test provides only an approximate p-value for the statistic.
To examine the quality of this approximation, we choose a nominal level of

significance, then compute the p-value for each sample. When a computed
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p-value is less than the nominal significance level, a rejection is recorded.
Estimates of the type 1 error probabilities are obtained by counting the
number of times the null hypothesis is rejected and dividing by 500. We then
compare the those estimates to the chosen nominal significance level.

In Table 1, we present the estimates of the type 1 error probabilities
of D-N for different sample sizes and different nominal levels of
significance. For comparison, we also report the corresponding values for
Engle’s LM test for ARCH (LM-A) against an ARCH(1) alternative. A rejection
for LM-A is recorded when the computed value of the statistic exceeds the xi
critical value determined by the nominal level of significance. The results
for D-N indicate that the approximation (2.6) works well. All estimated
probabilities are quite close to the specified nominal significance levels.
The quality of the approximation for D-N is certainly no worse than the
approximation provided by the asymptotic distribution theory for IM-A.

We also give in Table 1 estimates of probabilities of type 1 error
obtained by comparing the supremum of S(§) to the xi critical value for the
specified nominal significance level. This is the test which results from
omitting the second term in (2.6). The simulations indicate, as expected,
that the null hypothesis is rejected too frequently when the simple xi
critical value is used. Figure 1 is a plot of the the xi density function
and a nonparametric estimate of the density function of D-N based on the 500
samples of size 100 from Table 1. A kernel estimator was used with a window
width of 1 and a biweight kernel function [see Silverman (1986)]. As seen in

Figure 1, the density of D-N is skewed further right than the xi density.

;
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Again, this indicates that a critical value based on the xi density will lead
to too frequent rejection of the null hypothesis.

The supremum search of S(§) was conducted over the interval 0 < § < 2.
All quantities in Table 1 were also computed using 5 and 10 as an upper bound
for §. The results indicated that the choice of the upper bound does not
affect the quality of the approximation of the significance level of D-N.

The performance of the test using the xi critical value became worse. Since
the supremum of S(§) cannot decrease when the upper bound of § increases, the
likelihood of rejecting the null can get larger as the upper bound for §
increases.

To determine the power of D-N, samples were generated from the model
(4.1) and (4.2). Experiments were conducted with points in the parameter
space at ¢1 € {(.3,.5,.8y x8§ e (.01,.1,.3,.5,.8,1.0,1.5}. - To reduce the
computational burden, the step length for both the supremum search of S(§)
and the computation of the total variation of s”z(s) was increased to .025.
Again, all experiments were based on 500 replications. We also compute the
empirical power of IM-A for comparison. Results for samples of size 50, 100
and 150 are presented in Table 2.

The results indicate that D-N will significantly increase the ability to
detect conditional heteroskedasticity when the data are generated under
NARCH. For a given sample size T and given value of ¢1, as § declines to O,
that is as the alternative moves away from the linear ARCH model, the power
of D-N systematically increases relative to LM-A. In some instances, there

is a gain in power of more than 15%. Equally important, when § = 1, that is

4

[

[
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when the true model is Precisely Engle’'s linear ARCH model, there is little
if any loss in power from using the D-N test relative to IM-A.

Regarding the computation of the D-N test statistic § = sup S(6), as we
mentioned earlier, it would be undesirable if $(§) pPossesses spurious peaks.
In Figures 2 and 3, we present plots from two random replications under the
null and alternative hypotheses, respectively. 1In Figure 2, although S(§)
has a clear maximum, the graph is somewhat flat. This may be due to the fact
that § is not identified under the null hypothesis. In Figure 3, S(§) has a
maximum very close to the true value .5. The value of § for which S(§) is a
maximum, provides an empirical estimate of §. For maximum likelihood
estimation after the testing this could pProvide a starting value.

It would‘also be desirable if the D-N test has good power against
other types of nonlinear models. Recently there has been interest in the
ability of different tests to detect a variety of nonlinear models [see
Keenan (1985), and Luukkonen, Saikkonen and Terdsvirta (1988)]. In a
pPreliminary attempt to investigate this possibility, we generated samples

from the single term bilinear model

Ve = Pepfe1 t (4.3)
where

€. ~ N(0,1).

As discussed in Higgins and Bera (1989a), this process has second moments

’

which are very similar to the ARCH model. 1In Table 3, we present the
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estimated power, based on 500 replications, of the D-M test for
pe(.1,.3,.5,.8) and samples of size 50, 100 and 150. For comparison, we
report the estimated power of IM-A and the IM test (IM-B) for the specific
alternative given by (4.3)." The results in Table 5 are self explanatory.
When B is only of moderate size, f < .5, the power of D-N and IM-A are very
similar. At B = .8, D-N does appear to be slightly more powerful than LM-A.
Unfortunately, when compared to Lﬁ-B, neithér test does well. This, however,
is not unexpected since IM-B is based upon the specific alternative model
given in (4.3). These preliminary results do indicate that D-N can detect
types of nonlinearity other than those encompassed in the NARCH

specification.
5. AN APPLICATION

We motivate our test by suggesting that the LM test for the linear ARCH
model (LM-A) may not readily detect different kinds of nonlinearity and
conditional heteroskedasticity. We suggest a LM test (D-N) based on a
broader alternative, the NARCH model, which may be able détect a wider range
of nonlinearity. To illustrate this possibility, in this section we examine
the spot exchange rates between the U.S. dollar and the French franc (Ff),
German mark ka), Italian lire (Il), Japanese yen (Jy), Swiss franc (Sf) and
British pound (Bp). The data are monthly from January 1973 to December 1986.
The series actually analyzed are the first differences of the logarithms
cénter about their means. These particular series were chosen because their

conditional means can be represented by a simple autoregressive (AR) model.

(s

1)

(v

(s

v
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The sample autocorrelation and partial autocorrelation functions of the
series indicate that an AR(1l) process is a adequate model for the conditional
mean of each of the series. Since the presence of conditional
heteroskedasticity is anticipated, the significance of the autocorrelations
were tested using standard errors and a portmanteau test robust to the
presence of linear ARQH [see Milhej (1985) and Diebold (1986)]. The AR(1)
models were estimated by least squares and the least squares residuals were
used to compute Engle’s IM test for linear ARCH and our test for NARCH for
orders 1 through 12. The p-values for each test statistic are reported in
Table 4. Examining the p-values reveal that the two tests can give very
different impressions about the presence of ARCH and nonlinearity. LM-A does
not indicate any ARCH, at conventional levels of significance, for Ff, I1, Jy
and Sf; however, D-N finds ARCH significant at the 10% level for at least ome
order for each of these series. For Gm and Bp, the two tests are in close
agreement through all orders of the test.

To further illustrate that LM-A may fail to detect nonlinearity when the
conditional heteroskedasticity is not linear, both the linear ARCH and NARCH
models were estimated for the Il series. The Il series was chosen because
the discrepancy between the two test seems greatest. The smallest p-value of
IM-A is .43, while the p-values for D-N are less than .10 at orders 3, &4, 8,
11 and 12. Table 5 shows maximum likelihood estimates for the linear ARCH(3)
model (L-ARCH) and the NARCH(3) models. Other order models were also
estimated, but these gave the best fit. In spite of LM-A being
insignificant at all orders, it is evident from Table 5 that some form of

nonlinearity is present in I1. The parameter e, is significant in L-ARCH and
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the parameters @, and a, are significant in NARCH. The salient result in

(L)

Table 5 is that the nonlinearity parameter § is estimated as 4.00 in the
NARCH specification. The high degree of nonlinearity in the conditional
variance function may explain why IM-A does not detect conditional

heteroskedasticity in this series.

6. CONCLUSIONS

Our Monte Carlo results present evidence that the approximation given by
Davies (1987) is sufficiently accurate in small samples so as to be able to
confidently use D-N. The power studies indicate that D-N can be

significantly more powerful than the IM test for linear ARCH when the

(o

alternative is NARCH. As illustrated by our simulation study, this is

particularly true when the nonlinearity parameter § is quite small. From our

experience in estimating NARCH models with exchange rate data, small values
of § are frequently encountered. Also in the empirical example presented
here, 1IM-A could not detect heteroskedasticity when the estimated value of §
was quite high. However, the D-N test was able to pick up this nonlinear.
conditional heteroskedasticity. Hence, D-N should be a useful test when some

type of conditional heteroskedasticity is suspected.

"
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TABLE 1

ESTIMATES OF THE TYPE 1 ERROR PROBABILITIES

10% 5% 1%

2 2 2

SAMPLE D-N IM-A x D-N IM-A x D-N IM-A x

SIZE 1 1 1
25 .082 .056 .152 .038 .022 .092 .018 .008 .030
50 .066 .050 .178 .032 .016 .086 .006 .004 .024
75 .076 .082 .158 .032 .024 .090 .014 .008 .022
100 .072 .088 .150 .030 .034 .080 .010 .004 .0lé
150 .094 .078 .166 .056 .036 .1ll4 .010 .012 .03é
200 .102 104 .196 .058 .044 .126 .020 .018 .038




ESTIMATED POWER OF D-N AND ILM-A AGAINST NARCH(1)

TABLE 2

et
.3
SAMPLE
SIZE ) D-N 1M-A D-N L1M-A D-N 1IM-A
.01 466 .374 .876 .690 .998 .946
.10 .404 318 .806 .642 .994  .902
.30 L334 (314 .640 .536 .936 .826
50 .50 .298 .302 .542  .482 .890 .774
.80 .276  .272 .524  ,490 .790 .748
1.00 .278  .292 444 448 .712  .660
1.50 .350 .364 494 498 .694 674
.01 .872 .668 .000 .938 .000 .994
.10 .646 .538 .946 .796 .000 .982
.30 .488 .458 .858 .758 .998 .958
100 .50 402,446 .792  .720 .962° .896
.80 .376  .396 .720 .704 .932 .888
1.00 404 424 .678 .680 .910 .868
1.50 448 490 .662 .670 .840 .812
.01 .970 .838 .000 .992 .000 1.000
.10 L7466  .612 .990 .904 .000 .996
.30 .624 566 .954 .858 .000 .978
150 .50 .544 526 .888 .818 .998 .974
.80 .482  .498 .814 .790 .980 .974
1.00 .540  .546 .808 .808 .954 .936
1.50 .606 .638 .818 .816 .938 .914

\¢

e



TABLE 3

ESTIMATED POWER OF D-N, LM-A AND LM-B AGAINST BILINEARITY

o
SAMPLE

SIZE 1 .3 .5 .8
D-N .100 .133 .167 .267
50 IM-A .033 .167 .133 .200
IM-B .167 .367 .567 .733

D-N ,038 .126 .304 .456
100 IM-A .034 124 .332 404
IM-B 154 - .692 .938 -~ .928

D-N .050 172 404 .602

150 IM-A .056 .184 .436 .478
IM-B .224 .886 .994 .964




TABLE 4

P-VALUES OF IM-A AND D-N FOR EXCHANGE RATE DATA

ORDER Ff Gm s} Iy st Bp
OF
ARCH IM-A D-N IM-A D-N IM-A D-N IM-A D-N IM-A D-N IM-A D-N
1 .47 .10 .01 .00 .85 .24 .37 .46 .41 .32 .01 .02
2 .50 .16 .03 .01 .52 .33 42 .14 .62 .48 .02 .05
3 .46 .14 .02 .01 .43 .06 .61 .15 .23 .05 .05 .12
4 .63 .30 .03 .01 .50 .08 .64 .06 .30 .08 .09 .21
5 .40 .13 .07 .07 .59 .13 .70 .11 .24 .03 .16 .33
6 .59 .21 .17 .13 .67 .11 .69 .19 .18 .04 .12 .26
7 .38 .11 .06 .05 .53 .11 .78 .17 .21 .05 .18 .36
8 .40 .12 .05 .05 .63 .09 .86 .23 .21 .05 .12 .26
9 .52 .18 .32 .35 .70 .11 .87 .32 .33 .11 .11 .22
10 .59 .24 .35 .34 .69 .18 91 .44 43 .17 .13 .14
11 .63 .66 .58 .45 .66 .09 .80 .22 .55 .16 .16 .20
12 .79 .67 .85 .61 .70 .09 .83 .17 .67 .22 .12 .29

«
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TABLE 5

ESTIMATED MODELS FOR DOLLAR/LIRE EXCHANGE RATE*

L-ARCH: ¢ @ ay a, ag
.396 3.722 .020 .091 .048
(.095) (.686) (.054) (.035) (.073)
NARCH: ] 02 ay a, a, )
.397 3.723 .0001 .006 .0008 4.00

(.0006) (.0006) (.0004) (.0006) (.00006) (.0005)

*
Standard errors of the estimates are shown in parenthesis.
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FIGURE 1. Nonparametric density estimate for D-N.
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FIGURE 2. Plot of S(§) under null hypothesis.
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FIGURE 3. Plot of S(§) under alternative hypothesis (¢ = .8, § = .5).
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