Western University

Scholarship@Western

Department of Economics Research Reports Economics Working Papers Archive

1990

A First Graduate Course in Economic Theory and

Game Theory

Glenn M. MacDonald

Follow this and additional works at: https://ir.lib.uwo.ca/economicsresrpt

b Part of the Economics Commons

Citation of this paper:

MacDonald, Glenn M.. "A First Graduate Course in Economic Theory and Game Theory." Department of Economics Research
Reports, 9001. London, ON: Department of Economics, University of Western Ontario (1990).


https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/econwpa?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/economicsresrpt?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.lib.uwo.ca%2Feconomicsresrpt%2F488&utm_medium=PDF&utm_campaign=PDFCoverPages

Y

am e

[—iad

et A = bR S - —oatod

4 21703

ISSH:0318-725X
ISBN:0-7714-1180-4

RESEARCH REPORT 9001

A PIRST CRADUATE COURSE IN ECONOMIC THEORY
AND GAME THEORY
by

. Glenn M. MacDonald

Department of Bconomics
University of Western Ontario
London, Ontario, Canada

H6A 5C2

Deparime:? of Dosnzmi lbrary

"FEB 1 41994




»
()

A FIRST GRADUATE COURSE IN ECONOMIC THEORY
AND GAME THEORY

Glenn M. MacDonald

University of Western Ontario

Economics Research Center/NORC
University of Chicago

and

Rochester Center for Economic Research

University of Rochester



rove

"

Contents

L

IL

oL

COMPETITIVE ENVIRONMENT
Consumer Theory
Producer Theory

STRATEGIC ENVIRONMENT
Game Theory

READINGS AND PROBLEMS

Page

33
47



.

Preface

The pages following contain suggested readings, some problems and a collection of
notes. This material was assembled over the last few years in the course of instructing first
year M.A. and Ph.D students in Economics at the University of Western Ontario. I circulate it
in hopes that someone may find it useful.

This is not a text, and so makes no claim to include all topics or to be comprehensive.
Rather, its intent is simply to provide information sufficient to give the student familiarity with
the main concepts found in the best general economics journals. Readings are those I found
belpful in achieving this goal.

The problems range from easy to quite difficult, from purely theoretical to highly
applied, and cover a wide range of topics. Many allow the: student to discover some useful
idea or method of attack.

The notes themselves are little more than a list of notation, definitions, theorems and
proofs. They are intended to allow students to write less and concentrate more in class. They.

contain no motivation, intuition or explanations and so serve only as a skeleton.
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NOTES ON CONSUMER THEORY
L Commoditics
The definition of a commodity must specify its physical characteristics, the date and
place of availability, and whether delivery is contingent on any as yet unobserved events.
Assume a finite list of commodities, indexed by A= 1,....J; | <e. The quantity of commaodity h
is x, ¢ R A commodity bunde is a vector x = (¥p.-.%)" € F. Let0=00...0)" eR..

2. Prices

All transactions occur at the outset in an initial exchange. The price of commodity h is
p, € R. Assuming “free disposal” implies p, € R,; this will be strengthened to p, € R, A
price system is a vector p = (p 1,...;1,)' € Ri + The value of any commodity bundle x at prices

pisp’x.

3.  Consumers
Consumers choose a commodity bundle from those that are feasible and affordable.
The consumption set X = R_{_ describes feasible x. (In general X C Rl is closed, convex and
bounded below.) Affordable x are described by the budget correspondence. The consumer is
endowed with an income of we R . The budget correspondence mﬂj_:] - Ri is defined
pointwise by
Hp.w) = (x|p'x<sw}n Ri.
v is convex— and compact—valued and continuous (for X = Rl .

)

4.  Preferences
Preferences over commodity bundles are described by a binary relation », defined on

Ri X Ri, with "x » y" interpreted as "x is at least as preferred as y". Assume:



Al:  (Completeness): V(xy) € Ri X R_f_, eitherx > yory > x,
A2 (Transitivity): YGry) € RE xR! and () € RY xRL such thatx » yandy » 2,
x>z
Since Al implies » is reflexive (x > x), » is a complete preordering. Also impose
A3:  (Continuity): Vxe R., both (y ¢ R |y » x) and {y ¢ R] | » y} are closed.
Two other binary relations are implied: i) Indifference "~": x ~y & (x » y and y » x); ii) Strict
preference ">": x>y & (x » y and not y > x). -

5.  Represcntation of » by a Utility Function
Definition: Let » be a complete preordering on R, x RL. The function u! + R
represents » & (V(x.y) € Ri X Iti with x > y, u(x) 2 u(y)).

Theorem (Debreu): Let » satisfy A1-A3. Then there exists a continuous function u

representing ».

While the result is correct as stated, the proof to follow adds monotonicity to the list of

hypotheses. (Monotonicity: V(x.y) € Ri X Ri satisfying x # y and X, 2y, forall A, x > y.)

PROOF: Let 1 be the unit vector in Rl. Letxe Ri. By strong monotonicity, there exists
a scalar ¥_e R_such that u 1 ~x. Define u:R_f_-'R_‘_by u(x) = u_.

To verify that u represents », suppose x » y. 'Ihenux-t-xandu’-t~y. Ifux<uy.
strong monotonicity and A2 give y » x. Therefore uxzuyandhenceu(x)zu(y). Conversely,
suppose 4(x) > u(y). Then uxzuy and u 1y uy-t, implying x > y.

Intervals / ¢ [0,») of the form I = (i, &) or I = [0,#) are a basis for the order topology of

R,. That is, every open setinlt+canbewrittenastheunion of such intervals, sayula.
a
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Since u"’ (v Ia) =uu! (Ia), to demonstrate continuity of « it suffices to check that for all such
o

I, u'l(l) is open.
ul () = (x € R |u<ut)<a)
= ((xe R} Ju@ <u) v (x e BY Jut) 2 31)°
=(xe Rilu(r)sul"n (xe Rilu(x)zﬁ}‘

={xe Ri]m; x)nixe Rilx; n)°

which is open by A3. u~'({0,@)) is analysed similarly. ||

Theorem: Let f:R - R be continuous and strictly increasing and u a continuous representation

of ». Then v = fou is a continuous representation of .

PrOOF: i) v:R i - R, in which case v it is possible for v to represent »; ii) Since u
represents >, x > ¥ & u(x) > u(y). But by strict monotonicity of f, u(x) > u(y) & v(x) > wy).

Thus x > y & w(x) > W(y). Also, fand u are continuous, so f 0 u is, as well. Il

6.  The Consumer Problem
| The consumer is assumed to select a commodity bundle that is feasible and affordable,
and that is as preferred as any other feasible and affordable bundle; The demand
correspondence §: Ri:l -R i is defined pointwise by
o.w) = {x € ¥(p.w)|x 2 ¥, ¥ € YP:W)}.

Observe that since u represents >, x € @(p,w) & x € argmax u(y). Since u is continuous on Rl.
yeY(p.w)

and for each (p,w) ¥(p,w) is a compact subset of Ri, u achieves a maximum on Y(p,w) i.c. ¢

exists.

7. Properties of @
a) VAeR, _,V(o.w)e Ri:l , O(Ap, Aw) = 9(p,w);



b) If for some (p,w) € RI“, both x € p(p,w) and y € ¢(p,w), then x ~ y;
++

¢) @ is upper—hemi continuous.

8.  Other Restrictions on >

Forany ze R’, let |zl = (z'z)%. Also, x = (<, %) is a partition of x into subvectors e
and 2. .

a) Local Nonsatiation: ¥ is locally nonsatiated if Vx e Ri and € ¢ R_, there exists
y e RE with |lr-y]| <eandy > x.

b) Monotonicity: (Definition given above, p. 2.)

c) Convexity: » is convex if for all x € R, (ye ltily » x} is convex.

d) Strict Convexity: Y is strongly convex ifforallx e Ri, x ~yand x #y imply
% e Int(% € RL|F 3 x), where X =hx + (I —A)y and A ¢0.D).

e) Differentiability: see Debreu, "Smooth Preferences,” Economerrica, 40 (1972),
603—15.

f) Separability: » is (weakly) separable if for all x € Rl andy e RL ) ) 2 0 )
o (o) » 010 and b) () y (D) 0 61D 1 015D,

9.  More Predictions

a) Let » be locally nonsatiated. Then Y(p,w) € Rii’ ,xe plpw)ap'x=w.

PROOF: Suppose x € ®(p,w) and p’x <w. Choose € > 0 so that ||x~y|| < € implies p”y
< w. By local nonsatiation there exists y, > X with ||x—ye|| <€ Thusx e @(p.w), a
contradiction. ||

. . 1 r2 n . 1 2 n

b) Consider n > 2 commodity bundles x*, X",...X and price vectors p, P s....0
arrayed in a vector o, pl, 2,000 = &, pi):::'l'. o is directly revealed preferred to
. written ¥RO if p' xf 3 p' ¥, If the inequality is strict o is strictly directly preferred to ¥/,



denoted xiij Let (i I ,z' } be a subset of {I,...,n} having m elements. E %x sxme such

) subset x'Rx , ' ‘1 R ‘2, ,x‘mROxi hold, x* is revealed preferred to ¥, wrinea e,

o Definition: (x‘,p'):_'lz satisfies the Generalized Axiom of Revealed Prceerce (GARP)

if xiRAj implies not ZJPJ.’ . |
Definition: Let » satisfy A1-A3, be locally nonsatiated, and represeated by the

function u: RI - R. u rationalizes (x‘ D )‘_1,1fV ie{l,..n}, x’ € <p(p',p' x'l

Theorem (Afria:—Varian)° There exists an increasing function u rationalining
@, P} if and only if (¢, p'] sasisfy GARP.

PROOF: Varian, Hal R. "The Nonparametric Approach to Demand Theory”
Econometrica, 50 (July 1982), 945-73.

Theorem: Letx° ¢ o(p°w) and ' € op’, p'*2°). Then (p' - p%)'(x’ - x 9 <o.

PrOOF: Since x! € (p(pl 1. xoﬁ,

pl'd <p''2, .1
in particular RO Thus, since GARP must be satisfied, not x Opx! must hold, or
po, 0 < pO, o 9.2)

Adding (9.1) to (9.2) gives the result. I

RI'”

¢) If » is convex, Y(p,w) € YA @(p,w) is convex.

SRS v - 8t - —— e



letz0 ¢ ¢(p,w) and e op.w); P~ x!. Fora €[0.1},

define T=2x + (1-3\.)!1. Then p’X < w and by convexity of », X » x0. since x? ryforye

Yp.w), X € Pp.Ww). i

ProoF: For some (p,w) € Riil.

d) If » is strictly convex and locally nonsatiated, @ is single—valued and continuous.

PRrROOE: For some (p,w) € Ri:l , let xo € ¢(p,w) and xl € ¢(p,w), and assume xo # 1J .
Thenx = %(xo +xI) satisfies p’X < w and X € Int{X ¢ Riﬁ 1. x}, by strict convexity. Thus
Ixe(xe ltj_l x » x) withp’x <w. Therefore x” ¢ o(p.w), a contradiction. Therefore 20 =

x!. Since ¢ is single—valued and upper hemi—continuous it is continuous. i

Whenever @ is single—valued, it will be referred to as the Marshallian (or Ordinary)
demand function f. R_f:] -+ Ri.

e) Slutsky Conditions. Let » be locally nonsatiated and strictly convex. Assume > can
be represented by u € Cz (R_f_). LetQc Rj_:’ be open and such that (p,w) € Q implies f{p,w) €
R!,. Thenif @#8,fe C/(@) and the b matrix Vf+,f - fipm)" is negative semidefinite,
symmetric and singular; in particular, (fo+ V“ff') p=0. (foa (af,/apk) hki=1,...] and V“f
= (af,/aw) h=1,.1)

PROOF: Section 13.

10.  Some Propertics of ue C(R})
Suppose that u € C‘Z(R_f)issu'icdyquasiemve. Denoting dw/dx, by u, and
dwax gx, by u,, ,

* sonm.

-t
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Vu=|. andV2u=

(| Uty

The relevant properties are:
2. Vu=u’; ;

0 _ gl
b). For x eR_H_,

x’Vzu(xo) x < 0 with strict inequality almost everywhere in R

Vzu(xo) Vu (xoj I
Vu( xo) ‘0 is nonsingular almost everywhere in R __;

if Vu(’) # 0, define OG) = (x € R. |Vu(x)"x = 0). Then Vx € 0GP,

l

g Moreover, the matrix

L
e); Let & be the image of x under u; i.e. 4 = u(x). For x such that u, # 0, the equation u(x) —
u = 0 may be solved for x, = qh(x_h, u), where X, = (II""’xh-I' xh+1""’xl)' qh is twice
continuously differentiable on the interior of its domain. For u, >0, all k, —aqh/axk >0
is called the Marginal Rate of Substitution (MRS o of x, for x,; thfdxk =—u, /uh.
Also quhlaxi > 0, often referred to as "diminishing MRS."
11.  Slutsky—Hicks Approach
Under the conditions given in 9 (e), f(p,w) can be characterized as the interior solution
to the programming problem
max u(x) subject to p'x = w.
x
. The Lagrange function for this problem is

L(x,A;p,w) = u(x) + A(w —p’x),




where A > 0 is an "undetermined multiplier." Assuming X is the maximal value of x, and A~

the associated value of A, implies

VLE A pw) =0, (Tux) -A'p=0), (1L.1)

VAL(x‘, l‘; pw) =0, (w- p'x‘ =0), (11.2)
and

Vx such that p’x = 0, x'ViL(x‘, l‘;p,w)x <0, (11.3)

where Vi L(-) is the matrix of second partial derivatives of L with respect to x.

Properties to note are:

a).  (11.1)implies A" > 0, since some u,(x') > 0, by local nonsatiation (i.c. p’x = w and
uh(x*) <0, all h, are incompatible). Then th(x‘) > 0 for all A, again from (11.1);

b).  (11.3) is redundant. That is, since » is strongly convex, u is strictly quasi concave and
property 10(b) holds at x‘. Now consider (11.3). Let x be such that p’x=0. By
(11.1), Vu(x ) "x = 0, implying x’Vu(r"yx < 0. But Vou@x') = ¥ L, M pw), s0 (11.3)
is satisfied.

12.  Derivation of Slutsky Marri
The predictions in 9(e) refer to the matrix V pf + Vw . This matrix is referred to as the
Slutsky matrix and is obtained as follows.
Recall that the first order necessary conditions (11.1) and (11.2) can be written
Vu(x*) - A*p =0
and
w—p'x*=0.
Observe the Jacobian matrix of this system equals the matrix in 10(b), nonsingular almost
everywhere. Also, expressions on the left hand side of each equation have continuous
derivatives with respect to x, A, p and w. Thus, by the Implicit Function Theorem there exists
functions f; Q - RL and 6: Q - R++' with f e CI(Q) and 0 ¢ CI(Q). such that




Vulflo.w)] — B(p,w)p =0 (12.1)
and
w—p’'flip,w) = 0. (12.2)
Now since f and 8 have continuous partial derivatives, differentials dx* and dA*, dp and dw
satisfy
dx* ~ pf v »f dp
) Fpe' vwe] LW}

Also, given the continuous differentiability of the expressions in (12.1) and (12.2), it is also

true that
axv) [V —p|TIx1, 0)[dp
x| = | 0] |x*¥* -=1)law)

where /, is the Ix! identity matrix, and the inverse exists almost everywhere. It follows that
since x* = f(p,w)

= fom) I (12.3)
W -

VPB’ VWB’ -’ 0

Define Z, z and { by

’ 2 -1
@ ga 7"

where Z is Ix/. Then the relationship between upper left hand submatrices in (12.3) is

vpf=1*2+qf'. (12.5)
Also, the relationship between the upper right hand submatrices is v J =—2 Thus (12.5)
becomes

fo:l*Z—Vwﬁ‘. (12.6)
Define the Slutsky matrix by § = A*Z. Then (12.6) gives

S=fo+waf’. (12.7)

(12.7) is the Slutsky Equation.
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13.  Proof of Slutsky Conditions 9(e)
(@ S=8’
PROOF: S is a principal submatrix of a symmetric matrix. ||
() Sp=0

2
ProoF: Postmultiplying (12.4) by [ ‘5] gives a matrix whose upper right

submatrix, Zp equals 0, implying Sp = 0. I

Note that since p ¢ R, and A* ¢ R__,, Sp = 0 implies Rank (5) < I-I.

c) Vye RI, y’'Sy <O.

ProOOF: Since A* > 0,y’Sy<0&y'Zy<0.

From (12.4), premultiplied as in part (b), the upper left hand submatrices satisfy
ZV%u - 2p’ =I;. Post multiplication by Z gives

VuZ=2-p'2=2 (13.1)

Next, for any y € R, define g = Zy. Note that ¢’Vu(x*) = A"'y’Zp = 0, from (12.1) and
(b). Thus g € O(x*), in which case q’Vzu(x*)q <0. But q'Vzu(x*)q = y’ZVZuZy =y’Zy, from
the definition of ¢ and (13.1). I

(a) — (c) are inherited by the matrix V pf +V wﬁ" ; see (12.7).

14.  Miscellany

a) Interpretation of S

Suppose p and w are allowed varied by dp and dw provided x*dp = dw; ic. wis
adjusted so that x* is affordable when the price system is p + dp. (This adjustment is called
"Slutsky compensation”.) Define V* = u[fip,w)]. Since u and f are continuously differentiable,
differentials dV*, dp and dw satisfy

. T8
.
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dv* = Vu'(V fdp + 7, fdw)

=VWu'(V pf +V wﬂ" )dp (Slutsky compensation)

= A*p’Sdp(12.1 and definition of S)

=0. (13(0))
The second equality demonstrates that S is the matrix of changes in x* in response to (small)
Slutsky compensated changes in p. That dV* = 0 as a result of such variations in p implies
that S* is also the matrix of changes in x* in response to (small) changes in p when w is
adjusted to hold V* constant ("Hicks compensation”). S is often called the matrix of
substitution effects and the Slutsky equation written

v pf =5-V wﬂ" :

i.e. the effect of p on fis the sum of the substitution (S) and income effects (—V wﬂ' ). The

diagonal elements of this matrix are

=S, -x
aph hh ™ "k ow
and Shh <0.

b) Interpretation of A*

Fordp =0

avs =W’V faw
= l*p'wadw
= A*dw,

since z = —wa and —p’z = 1 (12.3, 12.4).

Thus, A* is the marginal utility of income.
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c¢) The condition p’V wf = 1 is sometimes called "Engel Aggregation”. Also,
p’'S=0 ¢=>p'(vpf+ V ) =0, implying p'fo+f' = (’; this expression is sometimes called

"Cournot Aggregation”.

15.  Duality
a) Assuming only A1 — A3, it is possible to define the functions G: Rif — Rand E:

R, xR+ R, pointwise by

G(p.w) = max ,{u(x)|p’x < w}
X € +

E(pu) = min ,{p’x|u(x) > u}.

XE+

G is referred to as the indirect utility function and E as the expenditure function.

b) When, in addition, » is locally nonsatiated, prediction 9(a) holds and G is i) strictly
increasing and continuous in w; ii) nonincreasing and quasi—~convex in p; and iii) homogeneous
of degree 0 in (p,w). Also, E is i) strictly increasing and continuous in «; and ii)

nondecreasing, linear homogeneous and concave in p. Moreover the following relationships

between G and E hold:

You) € RL, xR, Glp, Eu) = (15.1)
and

Yow) € R, Elp, Gow)] = w. (15.2)

c) When » is also strictly convex the demand correspondence becomes the
(Marshallian, or Ordinary) demand function fip,w); 9(d) again. Also, define h: R_f_+ xR- Ri
pointwise by

h(p.u) = argmin{p’x|u(x) > u).

-

”

[
o . - eiae e e o
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h is called the Hicksian (or Compensated) demand function. f and h are related by

Vpw) € RLE, flp.w) = hip, Gp.w)) (15.3)
and
V() € R, x R, h(p) = flp, E@)]. (15.4)

d) If the further condition u € Cz(Ri) is included, it may be shown that G ¢ ¢ (Q) and
Ee CZ(Q') where Q' is defined for given u(-) by: (p,w) € Q@ = (p, G(pW)) € Q’. Three
further results are

i)  Shepherd's Lemma: V(p) € Q°, hipu)” =V E(pu) and V lp.u) = ViE(p,u);

PrOOF: i) For u € CARL,) and (o.w) € Q, h(pu) may be characterized as an interior
solution of ’

min p’x st u(x)=u,

x
yielding first order necessary conditions
p-— p'Vu(x‘) =0 *
and u(x)—-u=0; **

x_ is the minimal commodity bundle and p‘ # 0 a Lagrange multiplier. Since
EQ.u) =p’h(pu), |

V E@u) = h(pi) + P’V hpu).
Differentiating (**) with respect to p gives

Vux)'V hpa) =0,

implying
if) vph=v§5mh=vp51svw,u)en. I
p'Vph(p,u) =0.

ii)  Roy's Identity: filpw) =V pG " @GRw);
and iii) Vph = S.




14

Proor: Differentiating (15.3) with respect to p gives
Y hou) =9 flo. E@u)] + 9, flp.EQIV E@u)’

=V fip.E@u) +V, fIpE@u)lhpu) (Shepherd) '
=V fID.E@u) +V, flp EQuMPE@W)’ (from 15.3) -
=S (Slutsky eqn.) |

e) Theorem: Let g: R i:’ - R be homogeneous of degree 0, nonincreasing and
quasiconvex in its first | arguments, strictly increasing in its last argument, and twice
continuously differentiable. Then there exists a binary relation ) satisfying A1-A3 that is
locally nonsatiated and strongly convex, and such that u ¢ C’®Y), for which

Vo.w) € Ri_tl, gp.w) =max {u(x)|p’x<w),

xeR,

This result demonstrates that every function g satisfying the conditions given is an indirect
utility for some » having the stated characteristics. There is an analogous result for Y-

expenditure functions.

f) Can u(-) be obtained from f?

If E is known, u(-) for which E is the expenditure function can be constructed as
follows. For each u € R let Iu ={xe Ri]x = VpE(p,u) for some p € ll_{_'_}. LetI={(ux)|ue
R xe I“). I is the graph of u(-), equivalent to u(-) itself.

1ffe C'®I*Y), E may be obtained as follows. Select some (p%w?) and 4, and require

E@°% =’ (15.6)
From Shepherd's lemma .
V E@a’) = hpad). (15.7)

L TN

(15.7) is a system of I partial differential equations, for which (15.6) serves as an initial
condition, given uo. The Frobenius theorem implies that (15.6) and (15.7) have a solution .
E(p,uo) if and only if Vph is symmetric. But from 15(d)(iii), Vph = §, which is symmetric.
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Thus, given A(-), E(p,uo) may be constructed for each Ler

Next, from (15.4), (15.7) is equivalent to

v E(p,u) =fip, EQp.u )8 (15.8)
which therefore, in conjunction with (15.6), has a solution. Altogether, given f, u may be

obtained by solving (15.6) and (15.8) to obtain E, and proceding as above.

16.  Uncertainty
Throughout this Section, » will be assumed to satisfy A1—A3 and strong monotonicity.
a) General Setup
Random events may occur. Assume there are M <« distinct events, called states of
nature and indexed by i € {(I,...M}. Let ¥ be a vector of commodities consumed only if state

xI

i occurs, and define x = - 1. Such commodities are called contingent claims. With p the

M

associated price system, the analysis may proceed as above without modification, with
M .

1= 3 1. (I:R® ~N is the number of elements in any vector, where N is the natural
i=1

numbers.)

b) Expected Utility

It is often convenient to restrict preferences so that u may be written

M . .
ux) = T wvx), (16.1)
i=l
. x!
where % is the probability with which state i occurs; let & = | -
KM
RM|2<M<wz1-I} Note that v is independent of i. ('I‘husallz.’musthavethesam
number of components.) (16.1) is called the Expected Utility Hypothesis and v the subutility

andII={ze¢

function. One set of restrictions on  that yields (16.1) is additive scparability across states,

implying
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ux) = tévictj),

coupled with the restriction v"(x") = piv(xj) for all ¥ and some parameter pi € (0,1), yielding
u(x) = ?:p‘mf),

and finally, the assumption pi = ui, all i,

M
Observe that for any continuous monotonic transformation f: R —+ R, fou = Jx'(fov) if
1

and only if fis of the formflz) =a +Bz; ae R, PeR
(16.1) will be assumed in the rest of this Section.

¢) Risk Aversion
Definition: Given (16.1), » displays risk aversion if V& € I1 and Vx € R'.

Z ) < v( 2 1:‘1')
i=1

Theorem: y displays risk aversion & v is concave.

ProoF: (1) Suppose v is concave. Then

{x’”’v(x"’ 1y g }

M . . M-2 ., .
T ave) = 3 aived) + M+ M)
i=1 i=1

MM MM

< M.Zjn‘ V(Ii) + (ﬂ:M 1, nM)v [“iju ;:; “Mlﬂ} (concavity of v)
i= +

< M3, i M2 e M ) vn”’zf"z + M-I My MM
< ZEva)+ @M ) [ s e O

i=l

SV[XK’J}].

i=1

et
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(ii) Suppose v is not concave. Let m =/ /M. Then for some e R': and X ¢ R’_:_', and some
A e (0,1),

) + I-Aved) > v + (1-A)A). *)
Let = (A, I-))’ and x = (x', x%)’. Then (*) violates the definition of risk aversion for such

% and x. Il

For the rest of this Section, M = (I(¢) = 1, all i).

d) Increasing Risk
Order states so that ¥ < 2*/, i e (1,...M-1). Given =, define PR - [0,]] pointwise by
M .

PX)= X ™I (x), where IR - {0,1) is the indicator function. P € 2 where Pis the set of

=1 e
all distribution functions having support {xl ,,tM }.

Let {i,, iy i3, i) c{l,...M}) with i <iy<iy<i, (M > 3 is required).

i
Definition: P’ ¢ 2 is a simple mean preserving spread of P ¢ 2 if i) &’ = (1:1, L

i+l i i+1 i i
g,n] yoeusT —g,n2 ,...,u3-e,n4+e,...,nM),with§>0ande>0,andii) xdP =

szp'.

Definition: A distribution function P’ is a mean preserving spread (m.p.s) of P ¢ 2 if

i) P’ ¢ Pand ii) there exists a sequence [Fi];;-:,Pie 2 with P? = P, P/*! a simple mean
pmervingspmdofﬂ,andﬂ-al". (Hemconvergenceisdeﬁnedbyl'i-o}’ﬁxjx
(® ) + )
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Theorem (Rothschild/Stiglitz, LE.T. 1970): P’ is a m.ps. of P if and only if
D VieR J [P*(v) - P(V)Idv > 0;

(~==,x)

i) l[P’(v) —P(W))dv =0.

e) Risk Aversion and Increasing Risk
Let ¥'be the set of all increasing concave functions v: R, +R. Observe that given =,

and (16.1), j vGP = u(d,..M).
[0,]

Theorem: Let P’ be an mp.s. of P. ThenWve ¥ J WE)dP > Iv(i:')dP
R R

+ +

e) Indices of Risk Aversion
Letpt = |XdP and &° = J(fr'—u)zdP. Assuming > displays risk aversion, the equation

y(u—r) = J (E)dP (16.2)
[0,=)

may be solved for 7 ¢ [0,») (i.e. v(0) < Jv(:t')dP < v(W) and v is continuous. Thus the
Intermediate Value Theorem applies.)

Definition: r is called the Risk Premium

1
Theorem: If ve C'R), r=v’ (V"G + (v WV QWF + oA1)>.

A

Wl
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PrROOF: Write (16.1) as
0= | - -vner.
[0,%)
Expanding w(u—) and v(x) in a second order Taylor series around i gives

2
0 [tive - v + Fv7o)

) + v WE) + PG 1P

=—r' @) +25v"(u) - e *)

(*) is a quadratic in 7. Solving, and taking the positive root gives the desired expression. ||

LetR, = —v"(uyv’ (). Then
1
rER!+ R+ AL (16.3)

The derivative of the right hand side of (16.3) with respect to R 4 is
1

RAI-U+ ch’)_ 550 (16.4)
and, with respect to 02,
1

HR + A >0
(16.4) is the motivation for

Definition: R A(J'E) = —v"(x)/v’ (%) is the Coefficient of Absolute Risk Aversion.
Similarly,

Definition: R R(E) = —v"(X)x/v’ (x) is the Coefficient of Relative Risk Aversion.
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NOTES ON PRODUCER THEORY

1.  Producers
A production plan is a vector y € R’; Yp2 0 is interpreted as an output andyh <(0asan
input. The value of a production plan y given a price system p is "profit” p’y. The producer

is assumed to select a technologically feasible production plan that is profit maximizing.

2. Technology

Let ¥ c R be the production ser. Y will be interpreted as including all technologically
feasible production plans. Assume

B1: Y is closed;

B2: (Free disposa) K c Y;

B3: (Irreversibility) If ye Yandy#0, -y e Y;

B4: Vpe R_L, {yeY|p’y = 0} is compact.

Observe that B2 and B3 imply R i nY =0, (the "No land of Cockaigne" assumption)
and that B2 implies 0 € Y (the “possibility of inaction™).

3.  Representation of ¥ by a Production Function

Since Y is closed its boundary may be represented by a continuous implicit function:
F(y) =0 & y € Bndy Y. Moreover, F may be required to satisfy F(y) <0 & ye Y.

This may be proved by observing that Y may be interpreted as a "weakly worse" set of
a complete, transitive and continuous binary relation < defined on B x K; "y < y’" is read "y is
less productive than y’". Debreu's Theorem gives continuous F such that y < y* & F(y) <
F(y’). A monotonic transformation allows F(0) =0,and y ¢ Y & F(y) <0.
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4. Net Output Correspondence
Given the producer's objective, and technological feasibility as described by Y, the net
output correspondence &: R - ® is defined pointwise by

VpeR  Ep=lyeY|p'y2p'y.Fe )

Givenp € RL'_, let f’p ={yeY|p'y20); ?p is nonempty (0 € ffp) and compact (B4).
Thus &: R_L - RI, defined pointwise by

VpeRl Ep=lyeT Ipy2py.7e ),
exists, since the function p’y is continuous on Y

Now, since ¥ = Y (ye Y|p'y <0), y ¢ £(p) implies p’y >p’¥, ¥ € ; thus €(p) ¢
£). Also, if & exists, y € E() implies p’y > p'5. 7 € Y, thus §@) c ). Therefore & =§

and since £ exists, so does &.

5.  Propertiesof §
a) VieR ,VpeRI , EAp) = &(p)
b) If for some p € Ri_._,y R)) andyI e E(p), thenp'y0=p'y1;
c) E(p) is upper—hemi continuous;
d)  Consider n > 2 production plans y',...y" and price vectors pl...p" arrayed in a

vector (¥, pi):';.

Definition: (¥, p")".;'; satisfies the Weak Axiom of Profit Maximization (WAPM) if ¥
i=l,...,n and j=1,...,n, pi y' > pi y'

Definition: A production set Y p—rationalizes (yi, p’):': if v i=l,....n,
DyeY; and ii) p* y‘zpi y,allyeY.
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Theorem: There exists a production set p—rationalizing (yi. pi)‘:r:'l' if and only if (yi,
PHE" satisfies WAPM.

=1

Theorem: Let po € RL_, pI € R_L yo € §(po) and yI € §(p1). Then

Proof: y? e E7) = 1" Y210 . ¥ e 8@)=p' ¥ >p' »°. Adding the
inequalities gives the desired result. I

Corollary: pro a&pl amip?l =pi h # k, then (pi —pz)(yi —yz) >0.

6. Other Restrictions on ¥ and/or F

Let (yl ,yz ) be a partition of y into subvectors y] and yz.

a)
b)

)
d)
e)

Convexity: Y is convex

Strict Convexity: Y is strictly convex if yo € Y and yl € Yimply y € Int Y, for
5 =27+ a2y A e D).

Monotonicity: Y is monotonic if yo € Yand yI € Rf imply yo + yl €Y.
Differentiability of F: F € CC®.

Linear Homogeneity: Y\ e R_,ye Y-Adye Y.

Separability of F: F is separable if it may be written F(y) = fiv' ("), V02,

whereF:Rz-’R,vI:R"-olt,vzzltlz-vltandtl+lz=l.

7.  Morc Propertics of §

(a) IfY is convex, then Vp € R

l

e E(p) is convex.

ProoF: Lety’ € E(p), ye E(p). Then VA € [0.11, 5 € ¥ for 3 = 4y + (I-0)y’. Also,
p'5=p"y’ 2p’y, ¥y Y. Thus¥ e E). I
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(b) If Y is strictly convex, & is single valued and continuous.

ProOF: Let yo € &(p), yl e E(p) and yo # yl . Thenys %(yo + y’ ) satisfies 7 € Int Y by strict

- convexity, and p’y =p’y. Thus3y’ e Y with p’y’ >p’y0; ie. yo ¢ E(p). It follows that

P

y? = y! must hold.
‘ Since & is single—valued and upper hemi—continuous, it is continuous. I
When & is single—valued, it will be referred to as the net output function z.
8.  Some Properties of F e C’®).
Let Y be strictly convex and monotonic, and F ¢ CZ(R‘) Denote 8F/3yh by F,, and
FFley,dy, by F,.
)  VF=@Fy
b)  Fory’ e R, if VFGP) # 0, define 00") = {y € K |VF(%)’y = 0). Then
' Vye O(yo), y’VF(yo)y > 0 with strict inequality almost everywhere. Moreover,
2p,.0
the matrix \ F%’ ) vp(yo) is nonsingularalmostevczywhueinlll.
VF(y")" 0
c) ForysuchthachaéO,I"(y)=0maybt:solvedfm'yh=g"(y_k),1llv'hel"=
Y 4= (yl,...,yh_l, Yyer=dpP- g'I is strictly concave and twice continuously
differentiable on the interior of its domain. For h # k, 3¢"/y, = --F/F < 0 and
azqh/ayi <0.
9.

Let ¥ be strictly convex, monotonic and such that F ¢ CC@®). Then Vp € R.._, the

_ matrix Vz is symmetric, positive semidefinite and singular (Vzp = 0, in particular).

Under the given conditions, z may be characterized as the interior solution to

max p’y subject to F(y) = 0.
y
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The Lagrange function for this problem is

Lymp)=p’'y—0F
where 1 > 0 is an undetermined multiplier. Assuming y* is the maximal net output vector and
1* the associated value of 1| implies

VyL(y‘, n*p=0, (@ —n*VFG*) =0) o.1)
&*
VnL(Y‘. n*p)=0, Fer)=0 9.2)
and
Vy such that y’VF(y*) = 0, y’V,L(y‘Jl*:p)y <0. 9.3)

Observe that using (9.1), n* > 0 and Fh(y‘) > 0 for all h. Also, the assumed
quasi—convexity of F implies (9.3) is satisfied.

The proposition given above may be demonstrated as follows. First, an expression for
Vz is needed. Writing (9.1) and (9.2) as

p—n*VF(*)=0 9.4
and F(y*) =0, 9.5)
note that the Jacobian of this system is nonsingular almost everywhere, by 8(b). Moreover,
derivatives of the lefi—hand—side with respect to y, 1| and p are continuous. Thus the Implicit
Function Theorem yields existence of functions z: R_L - RI and p: R_L + R, with y* = z(p),
n*=pp), ze 82 (Ri_') andpe 3’2 (R_L). Therefore differentials dy* and dn* exist such that

dy* = Vz(p)dp (9.6)
and dn* = Vp(p)dp. 9.7
Also, since the left—hand—side of (9.4) — (9.5) is continuously differentiable,

[n*vzrm W)] [ay*] . [dp]

= (9.8)
VFG*)' 0 0

*

Define the matrix [“ “] 10 be the inverse of the matrix on the left—hand—side of (9.8).
a a

Then, in particular n*AVzF(y‘) +aVF(y*)' =1 ] and AVF(y*) = 0. Solving (9.8) for dy* and
dn* gives

o]




dy*)_[A a [dp]’
o) lor ol
in which case dy* = Adp. Thus, from (9.6),

Vz=A. 9.9)
r a) Vz=(V2)’

PROOF: A is a principal submatrix of the inverse of a symmetriq matrix. |
b) Vp=0

PrOOF: AVF(y*) = 0 implies VzVF(y*) = 0, and (9.4) gives VF(y*) = (Im*)p, n*>0. |
c) Vge R’, q’'Vz(p*)g > 0.

PROOF: N*AVZF(y*) + aVF(y*)’ =1,
= N*AVF(*)A + aVF(y*)’'A = A
= A'VFy*A =4, (9.10)
since A is symmetric and VF(y*)'A = 0.
Letge RI. Then
q'V2q = ¢’ Ag=n*q’A’PF()Aq, 9.11)
from (9.10). Let r = Aq. Then,
VF(*)'r=VF(y*)'Aq =0,
in which case
r'VPEy*)r >0, (9.12)
by quasiconvexity of F. But
r'PFRo%r = ¢’ A’FFo*)Aq = (1M*)q V204,
by (9.11), so (9.12) gives the result. I

-,
3
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9. The Le Chatelier Principl

Let v: R - R* (I < n <), and denote the ih coordinate of W(y) by V'), i € {1,...n).
For any set /€ {1,..n), let V = (y e R [V) <0, i e I). Assume Int(V' n 1) # @ for
I1={(1,..,n}, and v strictly convex for all /.

Now, for each I define: Z: lli - R’ pointwise by

)= argl;uaxw’yly eVny)

Theorem: Assume Y is strictly convex, monotonic and such that F € CZ(R’ ). Then
VI (1,..n), if I' cland I’ #1, and if for some p, p'2 @) = 5’7 @), the mawixVZ (p) -
v/ (P) is positive semi—definite when the derivatives exist and are continuous.

ProoF: Given p, let 1;’(0) =max{p’y|y e Va Y}

y

Then, assuming V7 exists and is continuous, ¥ (p) = 7(p) and Pl (p) = V/(p). Let

I'p) = (o) — ¥ (p). Then T(p) 2 0 and ') = 0, and therefore VI'(p) = 0 and V'T(®) is
positive semidefinite. But V2I(p) = V7 (3) - VZ(p). I

10.  Duality
a)  Assuming B1-B4, the profit function %: R, - R, may be defined pointwise by

Vp e RL'_, n(p) =max(p'y|y € Y}.
y

n(p) is a linear homogeneous and convex function. That is, Vye R -
n(yp) = max{(p)’y|y € Y}
y

=ymax{p'y|ye Y}
y

= YR(p)-

-t
>
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Also, for price vectors po and pl letp = wo +({ —'y)pl . Then

x(p) = max ([’ + U-p'1y|y € Y}
y r 4 ’
s_max{wo ylyeY} + max[(l—y)p’ ylye?Y)
Yy

= vrzy@") + (1P,
the latter by linear homogeneity.
b) Imposing the additional condition that Y is strictly convex and monotonic it
follows that Vp € RI , K(p) = p’z(p). Moreover, when F € CZ(RI)

Theorem (Hotelling): Vx = z.

ProoF: For any p, n(p) = p’2(p). Thus Vx(p) = z(p) + p’Vz(p) = z(p), since
p'V2p)=0. |

c) Restricted Profit (or "Cost") Functions. Lety = (yl ,yz) andp = (pl .pz); yl € RH,

?

yze er,ll +P=1 Fixyzatyz anddcﬁnenR:Ri_'_xR - R pointwise by
V.)€ R, X W R = maylp'y|6' 5D € 1.
y

Like =, R is linear homogeneous and convex in pI and satisfies Hotelliug's result with the
obvious modifications. Moreover, = is strictly concave in ?2.
In the particular case where given §° > 0, and the function z': RLXR’Z & defined
pointwise by /(7 5%) = argpax(p’ ¥|0" 59) € Y) satisfies 2,@" 7°) <0, all h, define the cost
y
function c: Rii & - R, pointwise by c(v' 7°) = —p! 1 (p’ 5. Then c is nonnegative,

linear homogeneous and concave in p’ , and convex in yz .
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NOTES ON COMPETITIVE EQUILIBRIUM

1.  Market Demand

If each consumer's preference preordering is locally nonsatiated, strictly convex and -
representable by u € c ®R i ), commodity demand may be summarized by the ordinary demand
function f € c! (Q) with the symmetric, negative semi—definite matrix S = Ap f+A Jf'
satisfying Sp = 0.

Assume there are n consumers, with ] < n <, and leti € {1....,n} index them along
with their demand functions and incomes; that is, fi(p,wi) is consumer i's commodity demand.
Letws= (wI W)’ € R:+.

Market Demand D: R, xR" - R! is defined pointwise by

n , .
Vow) € R, XKL, Do) = T fow). (RY
i=
It is immediate that D € C’(Q), for Q defined by (p,w) € Q & Vi, (p.w") € Q. For such (p,w),
n . . n . . N : .
Vopw = 2V fiow)= TS -V slew)siew)],
P i=1 P i=1 o
implying
n i i i . n .
V.Dow) + IV oW s W) = XS (12
i=l i=l
n s
Since S = ¥ § is symmetric, negative semi—definite and yields Sp = 0, the matrix on the
i=1
left—hand side of (1.2) shares these properties.
n . . M o
Theorem: ¥(p,w) € Q, the matrix S =V Dip,w) + 2V f'ew)f'ew) is symmerric

i=l

and negative semi—definite with Sp = 0.



Testing of the Theorem in Section 1 would require information on individual income
and consumption. Under what conditions would aggregate information suffice? One such
condition is the Representative Consumer restriction:

Vie (L) Vi’ € (Ian)ywi=w andyi =y .

Under this condition f* = and the lefi—hand side of (1.2) becomes

nlV o) + 9, 1 @ f o,

for w=(I/n) ( E‘. ’vi). Testing would require data on np,w and aggregate consumption of each

i=l
commodity. Observe that _ti is not restricted.

Another approach permits consumers to differ in terms of z" and w , but restricts _>_i.

Definition: If V(p.wh) ¢ € the indirect utility G(pw/) can be written G'(p.w) = &/(p) +
i Y Y .ol

B(p)w, G has the Gorman Polar Form; o: R, -+Rand B:R__ -R__.

Observe that the requirement that G be an indirect utility restricts o and B. It can be shown
that of and B satisfying the conditions do exist.
When _>f is such that G is of the Gorman Polar Form, (p,wi) e Q' implies
fiowh =, G ow'V Glow) (Roy)
= [V &'(p) + VB(p)W] + VB(p)
and
v, fiow) = VBEVBE):
Note that V_f(p.w') is independent of i and w', and that if all G are of the Gorman Polar

Form, (p,w) € Q implies

Dlpw) = ZVollp) + 786) w1 + B
i= i=

LUt "R
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which depends only on the market level information np and w. Indeed, D is the demand

~ - a .
behavior of a single consumer having income w = n#w and indirect utility G(p.w) = ¥ o'(p) +
i=]

Bp)w.

Referring back to (1.2), for (p,w) € Q

S =V D% + BE) V() Do#Y',
in which case the restrictions on S may also be tested with information on aggregate
consumption, p,w and n. The key is that Vw f i(p,wi) does not depend on i or w'. The Gorman
Polar Form is sufficient for this feature; it is also necessary.

Theorem (Gorman): G (p,wi) is of the Gorman Polar Form &
Vo) e @, Vo.w'h e Q'Y fiowh =Y ff w).

3.  Market Net Output

If each producer's production set is strictly convex and monotonic with boundary
representable by F ¢ c? (Rl), net output behavior for any producer may be summarized by
zeC! ® i +) and the symmetric positive semidefinite matrix Vz satisfies Vzp = 0.

Assume there are m producers, I < m < », and index them by j; j e {1,..,m}. Define
market net output Z: Ri+ R pointwise by

VpeR! ,zp)= .m):,lzi(p). G.1)

It is immediate that VZ is symmetric and positive semidefinite with VZp = 0, and that only the
market-lovel data m, p and aggregate net output are needed to test these restrictions.

e m .
4. L Japettye ol

To consider equilibrium it is necessary to specify commodity endowments and shares
of producer profit. For consumer i, let e Ri be an endowed commodity bundle and
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¢ = (s}..55)" € 011" be a vector of profit shares; ¥j, X, = 1. Letting 7 = @'...®)" be
i=l

the vector of producer profits, wis replaced by p'ii + 5", Demand behavior can be
analysed as before, with the budget comespondence being - RL_ X Ri x [0,11" x R, - R:
defined pointwise by V(p.¥'s') € R _ xR} x [0.1]™ x KT,
YoXsme (xeRl |p'x<p’z+5'x).
The demand comrespondence is : R} , xR} x [0.1]" x K + Ry, defined pointwise by
Vp.&' s’ 1) € R :__'. X Ri x [0,11™ x R:_‘,
PP:E L) € (xe YEiXSm)|xx y, all y e Foix's'im)).
Let /1 be the associated demand function.
Market demand is then D: RL, x R% x [0,1]™™ x K -+ R} defined pointviise by
Vs € RL, xR x (01" x KT,
D(p:x,s.m) = i%ti‘(p;f".s‘,n) -,

where % = (x'/

verX™) and § = (s],....5%). Where needed, D will be written (D,....D) .
Definition: A competitive equilibrium is a price system p* such that
Dip;x,sp*’'Z(p*)] = Z(p*).

The function E =D — Z is called excess demand. Observe that ¥p € R_L’_,p'E =p’(Ef' -3

—p’Z =0. p’E =0 is sometimes called Walras' law.

Considerapmeexchangewonomy(dﬂlerthaemmprodmm'f:ﬂ,allﬁ.
Such a economy is completely described by % and 3’, i € {I,...,).

Equilibrium in an exchange economy requires D = 0. By Walras' law, if D, = 0 for
h= 1,...J—1,Dl=0 must hold. It is thus sufficient to consider whether p is such thatf)’=0
for h = 1,...J—1. Call the I-I vector of excess demands D(p;x).
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Note that if p is an equilibrium price system, then so is Ap, YA € (0,=). Thus p may be
"normalized” by requiring p’1 = I; i.e. setA = (o). Let P = (p e R, [p’1 = I}. Then, for
fixed %, D: P+ R, .

Theorem: Let ®: P - Ri—l be continuous and P c P be compact. Then 3 an economy
(endowments % and preferences _>f) with n > | such thatVp e P,D = ¢.
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NOTES ON GAME THEORY
- L Definition of a Game in Extensive Form

A game tree T is a finite set V (with typical element v) and a reflexive partial order <
on V x V such that i) Vv € V, (v € V|v < v} is completely ordered by <; and ii) Eh:o eV
satisfying Vv e V, Vo <V

Elements of V are referred to as vertices. Vo is the distinguished vertex; v is a terminal
vertex if (Ve V|v#v,v<v})=6¢;v’ isafollower of vif v/ #vand v <v’; v’ is an immediate
follower of vif v/ #v,v<v’ and (Ve V|[v#v,v#v' ,v<v<v']) =90

Let T be the set of terminal vertices. The set (v e V|V < v, ve T} is called a play of
the game. Also, let S = VAT be the set of nonterminal vertices, F: V - 2Ybea correspondence
such that ¥v € V, F(v) = (¥ € V| is an immediate follower of v}; and #: 2" - (0,1,...} be the
function #V') = number of verticesin V', V' c V.

"% Letne {I12..)and i€ (I,..,n} =N; N is the player set. An n—player game in
extensive form, G, is:
i i)  a game tree [
ii)  afuncton P:T-R"
iii) a partition {SO,S],...,SH] of S;
iv) VWve SO’ a probability distribution on F(v) such that all elements of F(v) occur
with positive probability;
v) Vie N, a partition {sf.,...,s':.“'} = {.9::}?;1 of 5, where m, is the number of sets in
the partition, satisfying a) Vj € {1,..;m ), We V,(ve V[V <v) n Scv)ve
- V;and b) Vv e S:.. Vv’ es:., #FW)) =#F@K")] Efj'

vi) VieN,Vje {1"“’"’:‘]' a partition {0’1, ’d:fJ} of u‘?’F(v) such that Vv e S’

Vece {I,f{’}, #[F(v) N d:c] =



In all that follows "game" will mean "n—player game in extensive form".

P is called the payoff function; (Sklz is the player partition; Si are the information sets,
and each { - ,Cl,fl
Player i is said to have perfect information if Vj e {1 ,...,m‘.}, #(Sé) =1. Gis a game of

} is a choice partition.

perfect information if Vi € N, player i has perfect information.

2. Strategics

LetC {Cj}]e” ,m}

ce (1,. ,f}

such that Vj € (I,.. ,m},o(S’)e{ -

Define 6 = (0,,....0 ) and Y= X 2 G ¢ 3. Where convenient, and with slight abuse of
ieN

notation, ¢ will be written 6 = (6., ¢ ), with 6 . =(0,,....0. ., v ,o);o.e}: X 3.
[t -i i-1 Sivr -i jeN j
JEi

m.
. A strategy for player i is a function o {Sz,...,S‘.'} +C,

] Let the set of such functions be 2‘; AL Z‘.

3. The Normal Form
Given any strategy vector ¢ € 3, the probability distribution over F(v), v € SO’ induces a

probability distribution over vertices in T: T: TxZ-~ [0,/]] with Vo € 3, X t©(v;0) = 1.
veT

Define the function p: Y- R" pointwise by p(c) = ZTt(v)P(v). p is called the normal form of
ve

the game. The ith component of T is written ‘ti(c) and referred to as player i's expected payoff.
A strategy ©; € Ziissaidwbedomimedbyc‘.eziif: Vo ,e %, p(0,0)2

p(c‘.,o_‘.) with strict inequality for some ©_.

A mixed strategy for player i is a functionp: X.-+[0,1] with 3 uo) =1 K

oe
i

v o, ¢ Z,., u‘.(oi) € (0,1), H, is said to be completely mixed. To distinguish between K, and G,
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c,is often called a pure strategy. Let M, be the set of mixed strategies for i, b = (i, )
(sometimes b = (1, u_i)) and M = xNMl; peM
i€

A behavioral strategy for player i is a function ﬁi: C, - [0,1] with Vje {1,..m)

fj
c?}p (C’w) 1. The restriction of {L to {C’l - ,C’/] is called Wr* Ifv C"‘.c eC, ﬁ‘.(C".c) e (0,1),
1

i, is said to be completely mixed. Let M, be the set of behavioral strategies for i, L =
(THNNNTS) (sometimes ji = (1, 1)) and M= i)e(Nﬂ'; e M.

$If £: X -+ Y is a function and X ¢ X, the restriction offtoxo is the funcﬁonf’:xo-s Y defined
pointwise by Vx € X2, 200 = fx).

5. Kuhn's Theorem

Forves’ letA’(v) (C’ |G’ AFTeV|v<v)#d,j € (Ll..m} ce(l,. f’ 1.
Player i is said to have perfect recall if V j € {1,..m.}, VveS’ Vv’ eS’ AJ.(V) A’(v) If all
players have perfect recall, G is said to have perfect recall.

Any vector of mixed strategies W, in conjunction with the distribution over F(v) for

v e S, induces a distribution over T — p:T x M - [0,]] with X p(v;p) = L. Likewise any
veT
vector of behavioral strategies i induces p: T x M - [0,1] with TP = 1.
veT

It is not difficult to verify that given ji € M and the implied p, there exists L € M such
that V v € T, p(viil) = p(v;i); ie. that any distribution over T induced by some Ji can be
induced by some | The contrary does not always hold.

Theorem (Kuhn, 1953). If G has perfect recall, then ¥ | € M there exists R € M such

that ¥ v € T, p(viih) = p(viid)-

In what follows G will always be assumed to have perfect recall.

B oanINEDA oo BB e s BT

Bl
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5.  Nash Equilibriym

Definition: c* ¢ 3 is an equilibrium of Gif Vie N,V o€ Z‘.. p‘.(O:, 0:-) ZP,-(G,-.GT,.)-

Theorem: An equilibrium exists if G has perfect information.

Define 7: M - K" pointwise by ¥ it € M, T() = Z p(v;i)P(v), and T: M - K" pointwise by
veT
Vie M, R@)= 2 PMRP(Y).
veT
*
Definition: p € M is an equilibrium in mixed strategies if Vie N, V M, € M‘,
* * *
O O
~% ~

The definition of an equilibrium in behavioral strategies substitutes j , M and X, for x, 1 and
M in the above definition.

Theorem: G has an equilibrium in mixed and behavioral strategies.

Foranyve V,let I‘v= {veV|v<¥). With <rcsu-ictedtol‘vxl"v, I‘vand < form a
subtree. Observe that if v’ € I‘v, F(v))c I‘v.
The restriction of the game G to l‘v is
i) the subtree I‘v;
ii) the restriction of P to T N l"v.
iii) the partition {So N I‘v,...,S’l n I‘V] of Sn l“v;
iv). WweS o0 l"v, the probability distribution on F(v);
v) Vie N, the partition (S} n rv,...,s':."' AT} of §;nT;
vi) VieN,Ve (1..m), the partition (C,,nT,} ~ of v  FO).
ce{I....fél veSin T,
IfVie N,Vje {l,...,m‘.},cither.S’::nl"v =¢orS nT, =), the restriction of G to T is
called a subgame of G, G .
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o s ' _ j T
Observe that for any subgame G , Vi, Vj, Vc either dk nT =¢orC, nT, = C{.c. It

follows that the restriction of the behavioral strategy for player i to {C‘::c] . is well
cl

ic v
defined; call this function ﬁw, the set of possible restrictions for player i ﬂ“, and the vector of
such functions fi ; fi, € Mv =x M.
ieN
Given a subgame Gv and restriction {i_ obtained from fi (in conjunction with
probability distributions over F(v*), v’ € S a probability distribution p : (7'n r)x Hv -
[0.1], with | ;;hr p,v"i) = 1, is implied. B is the distribution over terminal vertices in

v €
14

Tn I‘v given play begins at vertex v. { (defined in Sec. 5) is thus exactly ﬁv .
0
Define t: M - R" pointwise by & () = X p, (v"; fl) P(v"), and an equilibrium >f
v'eT

Gv in behavioral strategies analogously to the definition for G itself.

Definition: ;1' € M is a subgame perfect equilibrium (SPE) of G if for all subgames
G,, i, is an equilibrium of G in behavioral strategies.

Theorem: IF {i" is a SPE of G, [i_ is a NE.

Theorem: G has a SPE.

7. Sequential Equilibriym (Kreps—Wilson)

A system of beliefs is a function &: .S\S’o -+[0,]] withVie N, Vje (1 ,...,mil Zs,. Ew)=1.
ves,

LetE;{:(-)betheresu-ictionofgtoS‘:; An assessment is a pair (i1, &).

If {1 is completely mixed, it is possible to calculate an associated system of belicfs
using Bayes' rule and fi. Denote such a system of beliefs by E(- |f0)-

Definition: The assessment (fi, £) is consistent if there is a sequence of completely
mixed behavioral strategies {fi } such that i -{i implies §(- |/L,) - €.

For any v € S and associated subtree l‘v. let pv(-; fl) be the induced probability

distribution over T, and ﬁv(}'l) = ﬁv(v'; mPW).t
v'eT
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3

Definition: Given an assessment (1, £),

e Lm0} € My T B0, B 8> T
i

is sequentially rational for player i if

i
. §{:(v)itw.(jl;, fi_). fiis sequentially rational
i
if ;’1‘. is sequentially rational for player i, all i.
Definition: A sequential equilibrium (SE) is a consistent assessment (;1‘, §‘) where ﬁ.
is sequentially rational.
Theorem: G has a SE.
Proof (Sketch): G has a SPE. The argument demonstrates that there is at least one SPE from
which a consistent assessment (§, &) can be constructed and where 1 is sequentially rational ]
Theorem: If @i » € ) is an SE, i’ is a SPE.

Proof: Let (1", )be a SE. If i is not a SPE, there exists v € S, with 8] = (v} for some i
and j, and a subgame Gv such that ﬂ: is not an equilibrium of Gv, implying i:w.,(ﬁ:., ;1:.,) <
% /(s fi_,) for some i€ Nand i e M, In particular, i}, must not be a best reply at some
information set S': : containing vertices occurring with positive probability given ﬁ:, otherwise,
the inequality would not be strict. But consistency requires é{: to be computed using |.'l* and
Bayes' rule, in which case if ;1:, is not a best reply to ﬁ:, it cannot be sequentially rational
given such &i: I

1 v may not be such that the restriction of G to I is a subgame, in which case there is the
minor technical issue that the restriction of i to I', is not well defined. p,, must be constructed
from | directly.

g (Grossman—Perry)
A prototypical signalling game has the following special structure:
i) n=2; i) S, = (v,); iii) m, = #{F(v,)] and ¥j, S} c F(v;
S, RS R
. . v o] _ ) —¢. e o _ J
lV) VJ’ VJ 3f"-f] -fIv V) mz "f]v VJ, Sz _j\'J=I Clj.
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Let (ﬁ‘, E,*) be a sequential equilibrium of any game G and T = (veT|p, v; ﬁ*) >
0

0). Information set §) is of the equilibrium pash if W e T, (¥ ¢ V|5 <v) n 8| =¢. 1f s}is
off the equilibrium path, §{.* is referred to as an off equilibrium path belief. In the signalling
game, only Sg and §£‘ can be off the equilibrium path.

A perfect sequential equilibrium requires that off equilibrium path beliefs satisfy a
condition in addition to consistency—credibility—developed as follows.

Given a sequential equilibrium (', €°), let S be an off equilibrium path information
set, and ﬁ; be a behavioral strategy for player 1 such that for some v € T with pvo(v |ﬁ;, ﬁ;) >

0,5)" (7 € v|¥ <v} # holds; i] is called a signalling deviasion. Let g s 0.1 be
the p obability distribution over vertices in Sél that is consistent with (ji ;, ﬁ;), and define a
system of beliefs £ pointwise by &) =& ), ve 8§ B’ =&} (), ve si’. Also, let i
be sequentially rational for player 2 given beliefs £, and equal to ﬁ; for C{c # C";

Definition: If Vv ¢ ), % (i}, /) > %) ("), with strict inequality for some v, ji; is
called a successful signalling deviation for Si'

Definition: Given a sequential equilibrium assessment (j.tt, &t), é* is credible if there
is no off equilibrium information set S::’ for which a successful signalling deviation exists.

Definition: A sequential equilibrium assessment (u*, é*) is a perfect sequential
equilibrium (PSE) if & is credible.

Observe that if ﬁ* is completely mixed (ﬁ*, 5*) is a PSE. Also, there are examples for
which no PSE exist.

Theorem: If " (i) is a mixed (behavioral) strategy equilibrium of G, it is also a
mixed (behavioral) strategy equilibrium of every game having the game normal form as G.

Proof: n(w) = X p(v; WPW)
veT




Now p(v; ) = 3, [tv:0) IT p(o)l.
GeY ieN

Thus, r(p) = £ X [t(v;0) 1 Ko JIP(v)
veT OEY ieN

T I u(c,)[ Z 1(v;0) P(v)]

O’EE ieN

= 3 I u(o (0')
O’ez :eNp. ‘)p

Thus whether u is an equilibrium in mixed strategies depends only on p(c). Then, whether
ﬁ‘ is an equilibrium also depends only on p(c) (by Kuhn's Theorem). I

10.  Normal Form as a Primitive
In Section 5 th. normal form p was treated as a derived object. In some instances it is

convenient to consider it to be a primitive, as follows. A strategy for player i is a vector

(01, "0 )eZcR‘ Letm= Zm, = x 24 p: 2- R", and write p(0) =
ieN

®,(0),...p,,(G)).
Treated as a primitive then, a normal form game g is a triple (V, X, p) and G = (0;,...,0:) is

anethbnumﬁ'VxeNc —argmaxp(c C . )

Theorem: Let (N, X, p) be a normal form game with
) Vi,Zc R™ is compact and convex;;
if)  p continuous,
and iii) Vi, Vo_‘, p; is strictly quasi concave in .
Then (N, X p) has an equilibrium.

Proof: Deﬁncthemappmgr,z gpomtmseby Vo, eZ r(c)= argtﬁaxp(c.,o)
Ge

r; exists because 2; is compact and p; is continuous. Moreover, a simple extension of Berge's
maximum theoremT implies r; is upper—hemi continuous, and strict quasiconcavity of p, in

conjunction with convexity of Z, implies that r; is a function; thus r, is continuous.
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Define r: £~ Tpointwise by ¥ 6 € Z,(6) = (;(T_).es?(G_)). Observe that Y, is
compact and convex, and o* is an equilibrium if and only if o‘ = 1(0‘).
r is a continuous function from a compact convex subset of R™ o itself. By Brouwer's

fixed point theorem r has fixed point, o*. I

+Harris, Dynamic Economic Analysis, Theorem 1.1.

12.  Repeated Games
Let g = (N, I, p) be a normal form game with Ec K" compact and p continuous; 0 is a

generic element of . For any i, let i, = min max p,(0), and define
C_£ .0, ¢eX;

U= {uep( Z)|ui >y_‘.}. U is the convex hull of U.
In a repeated game gD , 8 is played at each date r € D, where without loss of generality
D = (0,1,..,.D}; D = = is permitted. Information available to players at the outset of ¢ is the

t-1
X 2 andH0= {$). H‘ is the set of
t'=0

possible histories prior to 1, with generic element A .

history of play prior to t. Define, fort> 1, H =

A strategy 6‘. for player i in the repeated game is a sequence of functions {éi :] D’

where 6,: H - 2, Let Zi be the set of feasible strategies for i; 2= X Zi; 6=(5....6,),
ieN

sometimes written (éi,é_‘.). Leto, e Y denote actions taken at ¢, given G and some h K ie.
c,= o(h).

The payoff function for gD is p: $ - R defined pointwise by:

v6e $, p©6) = X 8p(o),

teD

where & € (0,1), G, = é(h), ho = ¢, and h‘ = (00,...,0‘_ I)'

A repeated game g° is the normal form (N, Z, ).

"Eolk" Theorem: Let D = «. ThenYue U,36* € X and 8" € (0,1) such that & > 8¢
implies i) 6* is a NE of gD; and i) p(6*) = u/(1-9).



42

Proof: Letoe pl(u); G exists since u € U. Also let (pi earg{ min max p(o)}. Then
0_,€X; 0,eX
P,-((Pi) = U,

Let h, be the history describing G being played at all dates prior to #. Forany h #k,
define i(h) to be the index i of the player who first failed to play 6‘. in the history A ) when all
other players i’ chose E'Si,, if there is such an i, and i(h) equals 0 otherwise.

Consider the strategy 0': defined pointwise by

" if 1 e DMO),iR) =1 €N,
63(h) = ‘:‘. otherwise. .
Observe that i's payoff from equilibrium play by all players is ﬁi(fr*) = p,.(a)/(z—a) = u/(1—8).
Any deviation by i at ¢ yields i a payoff of at most

28'u+8‘ max p(c,5 )+ 2‘, 8‘37
t’=0 c. eZ t' =141

Thus 6*isaNE if, Vie D

u/(1—8)> 2‘,8"u + &' max p{c, c )t 2 8‘14_‘

t C. EZ‘ t =41
= [uJ(1-9)(I-3) + s’omg p(0,5 )+ 8 us1-9),
i
or
(-du)/(1-8) > max p(c,0_). *
u, 5 P *)

Since u;>up either (*) is satisfied for any 8 or there is 8 € (0,1) for which (*) is an equality.
Define §* = max{03}. |

Theorem: If dim U = n, SPE replaces NE in the Folk Theorem."
Theorem: If g has an unique equilibrium, 6*, and D < =, gD has a unique equilibrium,
G*, in which Vi, V¢, Vh‘, é‘i“(h r) = 0%
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Proof: For any 6, € £, and any sequence of histories (A ‘}g, |
cx e § &
P{, 0% = E‘Ds po;p 9%
< Y & max p(c.0*
_ED Giezi T ] -u)
= X 8p(o%),
€D '
establishing that 6* is a NE.
Suppose 6° # 6* is a NE of g°. ThenVi, VG, € 2'., p6) 2 J G
This must hold, in particular, for &, = &; for all histories k with ¢ < D, in which case, ¥, Yo, €
.

pLo’ 5 o’ 5) 2p(C; 0;_5)- *)
) )

But by uniqueness of equilibrium in g, o* is the only vector for which (*) may obtain for all i.

Thus 6’ = o*. Given this condition, 6’ = C* may be demonstrated, and so on, yielding
D

&’(h) =c*all hiie. &’ = G6*, a contradiction. I

Theorem: Assume i) D < «; ii) dim U = n; and iii) g has two equilibria 6, and o with
Vie N,p(0,)# p(Cp). ThenVue U, ¥e>0,3D, <= and 8" € (0,1) such that D > D, and

8¢ (&“1) imply g° o in which |36 — 12
1) imply 8 hasaSPE,c,mwhzch|pi(o)—u-1:5———]<s.

For any X C Rk, dim X is the minimal number of linearly independent vectors needed to span
X.

13.  Anonymous Games (Mas—Collel)

Let Tc R™ be compact and o a Borel probability measure on 3 # Let 4 be the set of
such measures, endowed with the topology of weak convergenoc.T

A player's payoff is a function p: X4 - R, written p(c, o) where G € Y is the player's

action and @ €  is the probability measure of others' actions; that . is all that matters about



what others do is what is meant by anonymity. Similarly, the game does not identify players
apart from the features of this payoff function. |

p is assumed continuous for each player. Let £be the set of such payoffs. An
anonymous game is a probability measure on 2 v.

Let y be a probability measure on #x Yand define i) y 2byVPc 3? Y 2(P) = ¥(P x
X); and ii) TybyVsc .22; T5(s) = ¥s x .

Definition: y* is an equilibrium of the game v if i) 7;, = v; and ii) 'Y* H(D,G) IP(O.‘Y*Q

>pE y;:)” = 1. Noto that it s implicit that each player has y  measure 0,
Theorem: v has an equilibrium, v*.

In general, y* will not be symmetric, in the sense that some players having identical

payoffs will take different actions in equilibrium.

#Let o’be a collection of subsets of a set X. fisa G algebra if i) X ¢ i) A e /=

A e & andiii) A € A,y € o=

(v An} € & Given a topology on X, let ¢be the
n=1

collection of open sets in X. There is a minimal & algebra & containing ¢; that is, & is a
subset of every ¢ algebra containing @ # is called the Borel ¢ algebra of subsets of X. Let
(TR S R* (extended reals). W is a (Borel) probability measure if )VAe &, H(A) 2 0;

if) (X) = 1; and i) A € 3‘,.42«; .., and A  UA_. = ¢ unless n=n’, imply p [ uI An] =
- n=

Z u@A).
n=1 '
1-'I'he topology of weak convergence is often called the weak* topology; see
Hildenbrand, Core and Equilibria of Large Economy, p. 48 ff. The relevant fact here is that
the sequence { un} of measures in £ converges to yt — R if and only if for every
bounded and continuous function f: ¥~ R, the sequence of real numbers (] fdp.n} converges to

[fap.
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14.  Anonymous Sequential Games (Jovanovic—Rosenthal)

An anonymous sequential game allows an anonymous game to be played at each date
te D ={0,1,.). It requires that differences in payoffs across players can be described by
distinct values of an individual "state variable" 8, where 0 € 8 and 8 c R™ is compact. 0 is
permitted to evolve over time for each player.

Let .lezbe the set of Borel probability measures on 8 x X, endowed with topology of
weak convergence, and having generic element Y. Then define i) Yo by VA c .f ) ye(A) =
YAXD), and i) ¥ by Vs € P 7s) = y(8s).t

A player's return at date t is p: D x 8 x Tx "82" R, written p '(9, o, v); assume V¢, VO,
Vo, ¥y, p'(e, 0,Y) <P <=. A given sequence of individual states, actions and measures,
(8,0, 7,)} ields a player a payoff of

{
‘EDBP,(O,,O,,‘Y),

where B € (0,1) is a fixed discount factor.

Individual state variables © evolve as follows. There is an initial distribution of 6,
summarized by a Borel probability measure on 8, 7 Subsequently, given 0 » O, and Yp the
distribution of individual states at r+] is given by a continuous probability measure on 8,
Fl( ' ;6',0‘,7) :

Part of the definition of equilibrium will sequire a player to select some action G € pX
given 1, 8 and the past and anticipated future behavior of other players as summarized by
Y= {y‘};; Ye .71(925 Agy X AgyX... This problem can be characterized by a function
V:Dx8x .7(924 R, where V(2,6,Y),

Ve = ma, {p,(e,o:f,) + Bé v, F @8’ 6,0, 1)].

Define 5"(9,'7) to be the argmax of the expression in braces.
Definition: ¥* is an equilibrium if
* * * %
) Y3 =v,andVeeD,yy = | F(-;6,0,7)y, (d8xdo),
90 0 9‘” axy ! /7t

*x
ii) VeeD, Y,

[(9,0) €8x 3]o=35, y":)” =1

i) Vv, and 5‘ are as defined above.



Theorem: Every anonymous sequential game has an equilibrium.

The game is stationary if neither p, nor F . depend on z. An equilibrium ?* is stationary
. *
1theD,‘yt = ¥ for some ¥ € .192

Theorem: For any stationary anonymous sequential game, there exists /) such that '7*

is stationary.

tIn general, feasible actions for any player can be allowed to depend on 6 and Yo
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THE UNIVERSITY OF WESTERN ONTARIO
LONDON CANADA

Let consumer preferences » (weak preference) be defined on the consumption set RI ,
having typical element x. Denote the budget correspondence—the set of affordable x
in Ri—by Y¥(p.w). Define strict preference by x > y & (x > y, and not y > x), and the

demandsetbycps{xey(p,w)lifyeRiandy>x,theny¢y}.

@) Among other things, > is often assumed complete. Suppose instead that > is

very incomplete, in the sense that for all x and y (with x ¢ R}, y ¢ R} and
X # y) neither x » y nor y > x. Show that ¢ =¥, and explain why. What is the
empirical content of the theory so specified?

(ii) Now require > to be complete, but such that for all x and y, with x € Ri and

yeRI.bothx;yandy?_x. What is ¢, and why? Compare the resulting

demand set ¢ to that obtained in (i), and explain the relationship between
them.

Let the consumption set be [0,k], for some k € R. Let the preference relation > be
defined by: Vx,ye [0k], x> yex>y.

1). Show that » is continuous, complete and transitive.

ii). For each x € [0,k], let F(x) = {y € [0,k}ly » x}. The mapping F is called the

"weak preference correspondence”. Draw the graph of F, and show that F is
both u.h.c. and Lh.c.
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iii). Let the unit price of the good be p, and income w. Let ® = w/p < k. Interpret
©. Show that the demand correspondence

o) = (xe [0,0]I (y:x and not x > y) 2 y ¢ [0,0])
is well defined (i.e. Vx e [0k],xe porx ¢ @) and ¢ # .

iv).  Suppose the preference ordering is as above except that exactly k units of the
good is strictly worse than any other number. Reconsider parts (i) — (iii).

Let the consumption set be Ri and the preference preordering be represented by

Lo

u(x)=hH Xp ,with0<0.h<eo.
=1

(a) Check that the preferences represented by u(x) are complete, transitive,
continuous, locally nonsatiated, monotonic, strictly convex, and weakly
separable on RL.

(®) Derive the demand function f(p,w) and verify that the Slutsky matrix has rank
I-1 and is symmetric negative semidefinite.

© Suppose /=2 and that you do not know u(xl,xz). However, you do know that

the data are described by k(lexl) = pllpz, for some k € R —+ Can such data
be "rationalized"? Use these data to construct u(xl.xz).

Consider a two—good consumer problem where preferences may be represented by

u(x) = x?x%_a; o€ (0,1) and Xy, > 0. The price system is p = (pl,pz)', exogenous

income is w, and each consumer has an endowment of x, equal to il > 0. There is no
endowment of Xy

(a) Lety=x, — il, y < 0 (> 0) will be called sales (purchases). For all p, w, a

and 'il, what is the utility maximizing y? Call it y*. Suppose zero degree
homogeneity of y* in (p,w) is a maintained hypothesis, and let © = w/pl.
Compute dy*/dw. Call this result the “prediction”.
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©
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(e)
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Suppose that you, the investigator, assume preferences to be precisely as
specified, but do not know the particular values of & and il. However, you
are willing to structure the differences among consumers in the following
manner: o is the same for all consumers and i'l varies across consumers. il

is a realization of a random variable Xl, where realizations are independent
across consumers, and the density of Xl is denoted ¢(il). E(Xl) =N < = and
Var(xl) < =, where ¢ is known to you. Further, ¢(§l) > 0 implies il >0. Let

A= Xl — M and rewrite y* in terms of A. Calling the density of A y(5), what

fraction of the population chooses y* > 0?7 < 0? What is the expected value
of y* given ©, E(y*lw)? For given & and y, graph E(y*») in the (w,y*) plane
and represent what might be various (®,y*) pairs in the picture (a "scatter
diagram”). What is JdE(y*lw)/0w, and will a simple regression of y* on @
reveal dE(y*lw)/dw if the sample is large?

Suppose the procedure which supplies data on y* and  is such that
observations are taken only if y* > 0 (called "selection on y*"). For example,
sales and purchases might be carried out at different locations, with sampling
at just one. A large sample of such data will permit estimation of

E(y*ly* > 0, w). Explain, first using the scatter diagram, then formally, why
JE(y*ly* > 0, 0)/dw < JE(y*lw)/ow. This inequality is one type of "selection

bias". In a similar way, explain why selecting on ® > @ (for some ®) for

example, generates JE(y*lo) > ®)/dw = JE(y*ldw)/dw. What is the critical
economic distinction between y* and ® that causes selection on y* to be
disastrous, and selection on ® innocuous?

The best solution to sample selection problems is to construct the sample
correctly in the first place. Such is not always possible, but even when it is
investigators sometimes intentionally "oversample"”; that is, they choose a
non—andom sample based or some characteristic of the data. Suppose that
the fixed fraction y of the sample is taken from consumers for whom y* > 0,
and 1—y from those for whom y* < 0. Estimates based on such data estimate

E(y*h,0) = 1E(y*o,y* > 0) + (1-0)E(y*lo, y* < 0).

Show that JE(y*hy,w)/0w = JE(y*lw)/dw if and only if y equals exactly the
fraction of the population that chooses y* > 0. Procedures of this kind, and
that referred to in (c), are examples of the general procedure called "choice
based sampling”. Assess the impact of choice based sampling on the process
of testing theories.

A famous technique for handling sample selection bias is the use of

"Heckman's A". In this case, A is a an estimate of E(AIA < -i.-m_—a— — W), which is

included as a regressor, along with ®, in a regression having y as dependent
variable, where y is only observed if y* > 0. The coefficient of  is then used
as an estimate of dE(y*lw)/0w. This procedure works. Why?
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Suppose there are /=2 goods, and all consumers have preferences characterizable by the

. : %y %2
utility function u(x) = Xy X o > 0, (xh >0 Vh)
() Assume a.; + 0y = 1, and so write u(x) = x?x;'a. Why does this restriction
involve no additional loss of generality?

(ii) For a consumer facing prices p = (pl,pz)’ and income w, derive the
Marshallian demand functions fh(p,w;a) and Hicksian demands hh(p,u;a).

Check the properties of the Slutsky matrix, and show that for these preferences
Marshallian demand is always more price elastic than Hicksian.

(iid) Derive the indirect utility function G(p,w) and expenditure function E(p,u) and
check their properties.

(iv)  Suppose you, the analyst, do not know o or w for any particular agent, but are
willing to assume:

(a) for each agent, a and w are realizations of random variables A and W
which are stochastically independent and have known densities n(a)
(>0eace (0,1)) and p(w) (> 0 & y € (0,)), where E(A) and E(W)
exist;

and

(b)  estimation will provide a very good picture of average Marshallian
demand

1
fh(p) = JOth@,w;a)n(a)p(w) dwda.

Given (a) and (b), what predictions can you make about the structure of average
demand? Would an “average" consumer—i.e. one for whom a = E(A) and

w = E(W)—choose average demand fh(p)? Why?

Consider a very simple decision problem wherein an individual chooses some variable
y, and the realized value of that choice is X = y + A, where A is a random variable
taking on values a and —a, a 2 0, equiprobably. Suppose that for any given X=x,
utility is f(x). (Here I have "substituted” in a constraint, so that a standard i
optimization looks like an unconstrained one.) f(y) is twice continuously differentiable,

strictly concave, and has a maximum at y.

@) What is the expression for expected utility given y?
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@iv)
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Assume expected utility is maximized by some y = y* < ». What are the first
and second—order necessary conditions characterizing this choice?

Let V* be the expected utility generated by y*. Show that dV*/da = 0 for
o = 0. What does this result say, in terms of what the individual would be
willing to pay to eliminate risk A when a is small, and why is this so?

Does the result in (iii) continue to hold if X = y + A + Z, where Z is some
random variable distributed independently of A?

Consider the infinite horizon consumer problem

and

sup EB‘(:,
le,x)p 0

Be D),

X, € R given,
X1 € (==, X /Bl

¢, Sx - B, ®

Let V(xo) denote the supremum given X,

1)

2)

Show that for all X5 V(xo) = 4o,

Explain why the following argument is incorrect. "Consider the collection of
constraints (*):

L ﬁxl
¢, $X; —ﬁxz,
Multiplying the B constraint by B gives
€oSXy)— fx,

Be,<Bx, —B’x,

”l(
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Summing these inequalities yields

()’:B‘c‘ Sx, (*%)

Therefore any feasible (c,, x ) sequence satisfying (*) satisfies (**), in which

case V(xo) < xo."

3) Show that if the setup is modified to require X, 20, allt, then V(xo) =X
Explain.

Consider a two n household whose collective preferences can be represented by

u(z) = lezzl ; B e (0,1). The home produced goods 2! are constructed according to
2% e

and z°= 2 ye O,1)

where ti is the time spent by person i (i=1,2) on home production, and xi is the input of
the sole purchasable commodity, x, which has price p. Person i produces good i and/or

sells tirne in the market at price s'. The household has w in exogenous income. Each
agent has total time T available, and both pool their resources and seek to maximize

u(z).
i) Set up the household's problem.

i)  Find the optimal z', x' and t".
iii) Determine the effects of changes in si, p and w on optimal zi, xi, ti.

iv) Explain why the ti and zi obtained in (ii) are the same ::s those which would
follow from solving

Max u(z_).
S.T. ZE‘tl = T(sl + s2) + W
i

and - =0"t

O b 2 Y
where al-_-[%—%] .anda2=[-;—l-z,—y] ,§1=1§_aand§2=1§?
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Examine optimal tl/t2 and explain the nature of its dependence on @, B, ¥ and

sllsz.

Show that the elasticities of optimal ti, x and zi with respect to changes in w
are all less than unity, while the same elasticities with respect to "full income"
equal unity. What does this say about observed income elasticities?

Suppose the subutility v(x) displays constant absolute risk aversion:

vx, - v (x)/V' (x) = a,

for some constant & > 0.
i) Show that v(x) can be written as X
ii) Let consumption be the random variable X, and assume X ~ N(p,o’z).
Suppose two situations are compared, where the difference between them is
the magnitude of 02: o% > o% Show rhat increasing o? from 0(2) to c% isa
Rothschild—Stiglitz mean—preserving spread.
(i)  ForX as in (ii), what is E[v(%)]? Check that %E[v(m] <0,
o0
iv) Show that the “risk premium"” k, defined by

v(u—k) = E[v(x)],
is equal to 27-.

Suppose that at each date t € [0,T], there is just one commodity, x(t). The utility
associated with any consumption path is

T
Jov[x(t)]e_ptdt,

where p > 0 is a constant, and

1
v[x()] = "_(‘EE

where € > 0 a constant. &=1 implies v[ ] = f[ ]. Let r be the instantaneous rate of
interest, and w an exogenous income at each date.

i)

Explain why the budget constraint is

T T
J x(t)e—ndt = | we™dt
0 0

\O‘ N
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ii)

iii)

iv)

vi)

vii)
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Find the utility maximizing consumption path x*(t), and explain how it varies
with changes in w and p.

Suppose there is a single output y,, and that y, = gl(yz,....y,) can be
represented by the function (o, and P are exogenous parameters)

I -1 !
"= {hEZah(—yh)_B] ,p>-1, h-_?zah =1.

Define ¢ = 1/(1+8). What is 6? Why?
What are the marginal products, in terms of y,, of y2,...,yl?

For a given level of y,, what is the input share

l ,
= Pui/, S Pk h=2.-d
in terms of marginal products.

Show that the relative input shares sh/sk(h, k = 2,...,J) vary with relative input
prices in a particular way, depending on o©.

Suppose we are interested in evaluating the statement that "relative input
prices affect relative input shares”. Strictly speaking, in the case analyzed in
parts (ii) — (v), is this statement a valid claim?

The oo and P are exogenous. This means their values are determined outside

the model. Suppose Mother Nature determines these values from an
atomless distribution v(B,ot,,...,0.)), with support being the closure of

I
I={x...x)eRIx, >-1;0<x <1forh=2..5and Zx =1
Xy 1 h b5

What kind of claim can you make about the statement in (vi)?

Generating restrictions requires that conditions be placed on exogenous
entities. (vii) illustrated one method of doing so. Would you find the
behaviour ascribed to Mother Nature et al. in (vii) a reasonable model? How
do you decide when a model is reasonable, and how might the one
determiningtheahandﬂm(vii)beimproved?
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Suppose the demand side of an economy comprises n consumers, all of whom behave
so as to satisfy GARP. Let xY be the vector of commodities demanded by consumer j

. . n ..
when the price vector is p% i = 1,..,M indexes observations. Let x! = Zz xJ.

ii)

iii)

=1

Suppose it is possible to renumber observations so that for all consumers xY is

revealled preferred to xi+1’j. Show that the market will behave so as to
appear to satisfy GARP at the aggregate level:

pi xi 2pi xk 3 not (pk xi < pk xk); i, k=1, .M

Show that in the absence of the restrictions in part (i), even if all consumers
behave so as to satisfy GARP, the aggregate consumptions need not do so.

Explain what (i) and (ii) have to do with the existence of a representative
consumer?

Consider the competitive firm using one input (x) to produce one output (q) according

to the production function q = xln. Output is sold at price p, and x purchased at price
r. The firm faces a fixed cost of F.

(a)

(b)
©

@

(e)
43

\CVhat is the firm's variable cost function? Total cost function? Call the latter
().

What is the firm's supply curve?

Assume demand is zero elastic at quantity Q. What is the equilibrium price
(p*), quantity of output per firm (q*), and number of firms (N*)?

The aggregate cost of production is N-C. Set up the problem of finding the N
and q which minimize aggregate cost given that total output is Q. Call these

N and g. Show that N = N* and q = q*. Also show that the Lagrange
multilphpr (on the constraint that Q be produced) equals p*. Explain these
conclusions.

Does the result in (d) depend on the inelastic demand side?

Let market demand for Q be Q = D(p), with D(p) twice continuously
differentiable and D’ < 0. Can the equilibrium outcomes p*, q*, N* be
derived by assuming the market solves a programming problem? If so, display
the problem and show that it does what is required.

1]

te

iR
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Suppose work involves accidents. To simplify, assume a "standard accident” involving
no "pain and suffering” such that if it occurs, the worker loses a fraction k of his pay.

- All workers are homogeneous, but jobs are not: some jobs, although otherwise

identical have larger probabilities of accidents than others, i.c., some kinds of work are
inherently riskier than others (all have the same value k though). Index jobs by p,
where p is the probability of an accident, defined over the interval [0,1]. Since jobs are
different, and assuming all jobs get done in equilibrium, they each pay a different wage
summarized by a function w(p). Assume workers are risk averse and utility depends
only on consumption of a composite good. Each worker applies for the job offering the
"optimal” value of p for him.

(a) Suppose no accident insurance is available. Derive conditions characterizing
equilibrium job choice (be sure to state what, if any, restrictions this imposes
on w(p)).

(b) Now suppose a system of workman's compensation is instituted, in which the
worker buys actuarially fair insurance at net (i.e. the premium is paid only if
there is no accident) premium & = p/1-p per dollar purchased. Now
characterize equilibrium job choice. What restrictions does this institution
place on observed values of w(p)? What is special about the relationship
between & and p?

(© The restrictions on w(p) obtained in case (a) are rather different than in case
(b). What is the fundamental economic reason for this? Also, what change in
the?assumptions for case (b) would make its implied restrictions similar to case
(a)? Why?

Ideas lead to new ideas. Denote time by t € {0,1,...} and suppose that there is a list of
ideas {90,91,...] such that 9t +1 may be discovered if and only if Gt has; 60 is primitive

and given. Suppose that learning depends fundamentally on heterogeneity in
knowledge as follows. There is a continuum of agents at each t. Let 5, € [0,1] be the

fraction of the population knowing 6 ; thus 1 — s, know other ideas in {90”“’9t—1 ).

The fraction knowing 9t 4 & t+1 is

S = Ayl —sp) | *)

(Thinking of s,asa binomial random variable S a- st) is its variance; hence the
interpretation in terms of heterogeneity of knowledge.) 50 € (0,1) is a given constant

and A € (0,4) ensures s,_, € (0.1).

t+1
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ii1)

iv)

A general version of (*) is

5.1 = 6,
with f continuous. For k € {1,2,...} define the "iterate” function fk(s) by

fk(s) = ﬂfk_l(s)] k=23,..
and
f 1 (s) = 1(s).

Show that a) if s* is such that f(s*) = s*, fk(s‘)/=s" for any k; b) if f is
differentiable and if s* is such that f(s*) = s*, then

(") =M
holds for any k; and c) there is an s* satisfying s* = f(s*).
The sequence {St}g is said to converge to s* (written s, = s*¥)ifforanye> 0
there exists T such that t > T implies |st —s*| <&. Using (*) show that

A € (0,3) implies that 5, s* with s* being the positive solution to s* = f(s*),
if there is one.

Verify that for A € (3,3.3), the equation s* = f,(s*) has exactly three solutions,
say s’("), s’f and s3» with sa < s‘l‘ < s¥. Then, prove that 50 * s’i‘ implies a) $, —
s’i‘ for any S0’ and b) the subsequences [so, S5, 4,...] and [sl,s3,...} converge

to distinct limits, either 56 or s§.

Assume that {st}g may be obtained from
5, = ft(so) t > 1 so given,

where ft is fk (above) with k =t. a) Let d = Bstfaso; d0 = 1. Can you say
anything about {dt)S? For example, is d,, <d,? Tllustrate your answer by

computing [stlgo, varying S0 from o= 010 w0 o= .011 and computing dt as
the difference in the computed 5, divided by .001. Do this calculation for
A =2, 3.25 and 3.98.
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The people of Arva (called Arvans), having little else to do, knit socks. As anyone
who has been there knows, the Arvans are distributed uniformly along a line of finite
length.* Describe this neighborhood by the uniform density on the unit interval (0,1],
so each person has an address a, a € [0,1]. The people of Arva are a bit unsociable,
and so knit by themselves at home. Moreover, they are creatures of habit, so each knits
t(a) hours per day, taken to be exogenous and differentiable. But Arvans living closer
to London are distracted by its many delights, and so knit less: t’(a) <0. A firm
offers (and we assume that Arvans accept) to supply each person living at a with wool,
w(a), for all a. The firm buys wool at price p_, . In return the firm receives the socks,

which it sells at Galleria for price p. All Arvans produce socks S according to the
technology S — g(w,t) = 0, where this technology is twice continuously differentiable
and has all the other properties usually given to Y (except w and t are measured
positive here).

i) For any given allocation of wool by address (the function w(a)) how many
socks are produced and what is the firm's profit?

ii) What is the condition determining the profit maximizing allocation w(a)?
iii) What condition ensures w(a) > O for all a € [0,1]?

iv) What? determines whether those who live close to London get mare or less
wool?

v) How does a change in p, affect the optimal w(a), total production of socks,
and profits of the firm?

vi)  Letgw.n)=Aw"P; A>0,ae (01)anda+ P < 1. Show that w(a) is
predicted to be a log linear function of t(a) and p_. What simple data

generation process would make running a regression using data on wool
allocation (by address), the price of wool, and time spent knitting an
appropriate method for testing this theory?

Bltftgou have not been there, little will be missed by assuming Arva to be isomorphic to
wa.

Some jobs are more pleasant because they are cleaner than others. Individuals have
utility functions given by

U(CD)=C—-pD

where C is consumption of goods (off the job) and D is the amount of dirt encountered
on the job. Individuals differ in their distaste for dirt and p is distributed uniformly on
[0,1]. (Each individual's p is known to all) Workers have no nonlabor income, all
jobs involve identical effort and all workers work (which is why effort etc. is ignored in
U). Firms, on the other hand, find dirt useful. Each firm hires only one worker and
produces output with value 1in a dirty environment; that is, one with D = 1. Each firm
can, alternatively, provide a clean environment, that is set D = 0, but in this case gets
output worth only o.. Firms differ in the costs of clean—up and this difference is

described by « being distributed uniformly on [0,1).
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Suppose finally that wd is the wage paid for a worker in a dirty environment and wE s
that paid in a clean environment. There are N workers and N firms.

(a) What determines each worker's choice of job?

®) Given wd —w°, how many workers choose a dirty job?

(©) What determines whether a given firm cleans up or not?
d) Given wd — w®, how many firms do not clean up?

(e) Find the equilibrium w3 — wE and the equilibrium number of dirty jobs.
(3] What individuals end up in the dirty jobs and to which firms are they
aEsmgl:lid" How does utility vary with p and how do profits vary with a?
xplain.

Corsider the Rock—Scissors—Paper game depicted below.

Y0 e e e

(a) What is the set of feasible (pure) strategies, Zi forie {1,2). Let ol be the jth
element of Zi.

(®  Letji; be amixed strategy for player i, with j;; = Prob (o)). Whatis
70l fori = 12.

(©)  Why s there no equilibrium 2—tuple (1;.4L,) with both ";j =1and u;j, =1
for some j and j°?

@  Show that there is no equilibrium in which any “’i‘j = 10r0. Thatis
“;j € (0,1) V ij must hold.

®

i
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(e) If p: is a best reply to p.;. and u.: is completely mixed, u: must be an interior
solution to

max 7, (it ,p.*) subject to Xy, . = 1.
by 1HpH #H1;

An analogous requirement exists for p.;

Set up the appropriate Lagrangeans and obtain the first order conditions. Interpret them
in terms of player i's payoff to following strategy o{

() = Show that the conditions obtained in (¢) have an unique solution. Explain.

Consider the following situation. A firm has a product which it offers for sale to two
customers. The product costs $c (fixed) per unit to produce. The firm knows that one
consumer would be willing to pay at most $u for a single unit of the good, and the
other would be willing to pay at most $v, with u > v > ¢ > 0. Assume prices, u, v and
c are all integer multiples of lc, price above u+1c are not allowed, and that no
consumer will ever buy more than one unit under any circumstances. The firm does
not know which consumer is willing to pay u, and which would pay only v. Trade
proceeds as follows. The firm makes consumers an offer. This offer consists of two
prices, at ¢ach of which the firm will sell exactly one or zero units., (If the firm wishes
to sell 2 units at the same price, p, its offer is (p,p).) Given this offer, consumers either
buy or leave the market, and the game ends. The firm is interested in maximizing
profit (equal to O if no sales occur). Consumers maximize net “utility”: u—p or v—p if
p is the price paid. (Consumers may pay different prices here.) No purchase yields
zero utility, and each consumer does not directly observe the other's purchase.

(a) Set this situation up as a 3—person game in extensive form. (For purposes of
displaying the same tree, let u, v and ¢ be small numbers, say u=3, v=2, c=1.)

(b) Show that the firm's offering (u,v) and both consumers purchasing if and only
if they can do so for a price not greater than their willingness to pay, is an
equilibrium of this game. What are the equilibrium payoffs?

(©) Show that the offer (c,c) with consumers purchasing if and oaly if they can do
S0 at price ¢ or less is also an equilibrium. What are the equilibrium payoffs?

(d) Why does the firm fare so poorly in part (c) despite the fact that it does the
offering, and consumer's best alternative is valued at 0?
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Consider the following game

i) Find all the equilibrium (NE) behavioural strategy vectors u*.

ii) Find laﬂ the Sut:;game Perfect Equilibria (SPE). Display an NE that is not SPE.
Explain.

iii) Find all the sequential equilibrium assessments ®*,p).

Two teams, A and B are engaged in a "best 2 of 3" tournament. The winner gets P> 0
and the loser earns 0. In any game dxeoutcomedependsonteameﬁ'ortli (i=AB)as
follows: Pr(A wins IAA,XB) = ¢OLA -AB) with &(x) + &(~x) = 1,¢’ >0 and ¢” < 0
forx>0(xslA—xB). The cost of effort to any team, in any game, is c(kl) with
c0)=0,c’(0)=0,c’ >0 for kl #0,c” > 0. Assume teams are risk neutral.

i) Show that there is an unique symmetric SPE.

ii) Prove that in this SPE winning and losing are equally likely for team A in the
first and third (if it occurs) games, but in the second, team A is more (less)
likely to win if it won (lost) the first game. Explain.

In the game displayed below, the belief system is displayed in square brackets, and the
behavioural strategies are in round brackets. The vertices immediately following the
initial vertex are chosen with equal probability.

i) Verify that the assessment depicted is a sequential equilibrium. What payoffs
occur with positive probability in equilibrium?

ii) If nature chooses the left vertex, it looks as if player 1 should eam a higher
payoff than he in fact does. Why does he do so poorly?

(®
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o iii) Show that the SE displayed is not a PSE, and display a PSE.

g 23.  Consider a duopoly. Consumers are passive, their behavior being summarized by the
demand function Q = 1—p where Q is aggregate quantity produced and p is its price.
The active players in the game are firms. Firm i (i = 1,2) has constant marginal cost,

5 normalized to zero, and no other costs. Firm i may choose a price ., which must be

chosen from the set P = {1/N, 2/N,...,(N—1)/N,1}, where 2 < N <«. Let Py = k/N be

the kth element of P; k = 1,...N. The firm charging the lowest price sells to the whole
market. If both choose the same price, the quantity demanded at that price is divided
between the firms equally.

i) What are the firms' strategy sets and payoff functions?

ii) Show that when firms announce prices simultaneously and noncooperatively,
there is exactly one equilibrium, and display it.

iit) Suppose firm 1 must announce and commit to his price before firm 2 does.
What are the equilibrium prices? Compare them to those you derived in (ii)
and explain.

iv) Suppose that, along with the changes made in part (iii), firm 2's costs remain
as specified but firm 1's constant marginal cost is equal to 1/N. Does this
change alter your answer to (iii)?
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Two agents seek to divide a pie of size 1. If they arrive at an agreement, they obtain
the agreed upon shares; otherwise, both receive 0. The bargainers take turns making
proposals. At date t=0 player A suggests he receives a share so € [0,1]. Player B

immediately replies "OK" or "No". If he says "OK" the game ends, player A gets s
and player B obtains l—so. Otherwise, at date t=1, player B makes a proposal l-sl, to
which player A immediately responds "OK" or "No". If "OK" player A obtains s, and
B gets I—sl. And so on, for t=2,...

Player A's payoff is his share multiplied by & 4 Where t s the date of

agreement; similarly for player B, with 8; multiplying his share: § A'aB € (0,1). A
strategy for each player specifies, for each date t and history of previous proposals and
replies (i.e. under perfect information “history" can replace “information set"), some
proposal or reply, depending on whether the player is offering or responding to t.

i) Show that any division of the pie can be the NE outcome of this game.

ii) Now consider SPE. Let M be the largest share (not payoff M§ ‘i) player A

could obtain in any SPE of the game. Consider the subgame beginning at t=2.
Why is the largest share player A could obtain in any SPE of that subgame
also equal to M? :

iii) Consider player B's offer at t=1. Why must player B receive a share of at
least 1-6 AM in the SPE of any subgame beginning at t=1?

iv) Consider player A's offer at t=0. Why must player A receive a share at most
equal to l-SB[l—SAM], and why does M = 1 [l—SAM] hold?

v) Modify the above argument ((i1) - (iv)) to show that M is also the least player
A can obtain.

vi) Show that the strategy in which player A demands M whenever it is his turn to
offer, and accepts any offer at least as large as M whenever it is his turn to
accept or reject, with the corresponding strategy for B, is a SPE of this game.
Is there any other SPE?

vii) Solve for M. Why does player I's payoff rise with an increase in his discount
factor 5, ?
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